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a b s t r a c t

This study aims at demonstrating the capability of the immersed-body method to simulate
wave–structure interactions using a non-linear finite-elementmodel. In this approach, the Navier–Stokes
equations are solved on an extended mesh covering the whole computational domain (i.e. fluids and
structure). The structure is identified on the extended mesh through a nonzero solid-concentration field,
which is obtained by conservatively mapping the mesh discretising the structure onto the extended
mesh. A penalty term relaxes the fluid and structural velocities to one another in the regions covered by
the structure. The paper is novel in that it combines the immersed-body method with wave modelling
and mesh adaptivity. The focus of the paper is therefore on demonstrating the capability of this
new methodology in reproducing well-established test cases, rather than investigating new physical
phenomena in wave–structure interactions. Two cases are considered for a bottom-mounted pile. First,
the pile is placed in a numerical wave tank, where propagatingwaves aremodelled through a free-surface
boundary condition. For regular and irregular waves, it is shown that the wave dynamics are accurately
modelled by the computational fluid dynamics model and only small discrepancies are observed in the
close vicinity of the structure. Second, the structure is subjected to a dam-break wave impact obtained
by removing a barrier between air and water. In that case, an additional advection equation is solved
for a fluid-concentration field that tracks the evolution of the air–water interface. It is shown that the
load associated with the wave impact on the structure compares well with existing numerical and
experimental data.

© 2015 The Authors. Published by Elsevier Masson SAS.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The accurate computation of wave loads is important in
offshore engineering, for example, to optimally design oil and
gas platforms or coastal defence structures. In recent years,
there has also been an increased interest in offshore renewable-
energy devices, which can be either mounted on the sea
bed (fixed devices) or moored to it (floating devices). In this
context, an accurate prediction of the wave loading is vital to
ensure that offshore renewable-energy devices are economically
viable and can withstand rough sea conditions. Computational
models can assist in the design of offshore renewable-energy
devices by analysing several different configurations, while
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limiting expensive laboratory or onsite testing. The hydrodynamic
behaviour of such devices is however complex due to: (i) the
interactions between extreme waves and structures (either fixed
or floating), and (ii) the mutual interactions between fluids and
structures if the latter floats. The method presented in this paper
has been developed to tackle both aspects. Only fixed structures
are considered in this manuscript.

Various methods exist to numerically model fluids interact-
ing with a structure. One possibility consists in solving the
Navier–Stokes equations on a mesh excluding the structure
(defined-body method). This is typically done if the structure is
fixed.When the structuremoves in the fluid domain, re-meshing is
necessary. This is computationally expensive and might also yield
highly-distorted grids. Another approach, which does not require
re-meshing, consists in meshing the entire domain (containing
both fluids and structure) andmodelling the effect of the structure
through surface or body forces. This methodology underpins the
so-called immersed-boundary method, proposed by Peskin [1] in
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the context of cardiac mechanics. Reviews of immersed-boundary
typemethods are available in the literature [2–4]. This method has
been successfully applied tomany flowsof technological relevance,
partly because it is very efficient in dealing with the presence of
complex boundaries [5,6].

The use of nonlinear computational fluid dynamics models
in the context of wave–structure interactions is the exception
rather than the rule. Various alternatives exist, such as empirical
methods, physical testing, and simplified numerical approaches,
as detailed by Folley et al. [7] in the context of wave energy
converter arrays. If potential flow is assumed, the scattering
of plane waves induced by a bottom-mounted cylinder, in the
linear diffraction regime, is described by a Laplace equation for
the velocity potential and a set of boundary conditions. The
problem has an analytical solution [8]. It is also commonly
solved numerically using the so-called boundary element method,
which works on either a linearised formulation of the problem
(linear potentialmodels) or the non-linear formulation (non-linear
potential models). Linear approaches operate in the frequency
domain and are therefore not computationally demanding. Both
their low computational demand and limited complexity make
them ideally suited to industry-standard applications. In contrast,
non-linear approaches operate in the time domain, so that both
transient phenomena and non-linear wave–structure interactions
can be addressed. Therefore, non-linear potential models are
increasingly used for computing extreme loads on fixed and
moving structures. Computational fluid dynamics models are
attractive when potential flow assumptions cannot be made,
because they can account for viscous and rotational effects
through the resolution of the Navier–Stokes equations. This is
particularly needed when the structure is subjected to extreme
waves, for which viscous effects and air entrainment cannot be
neglected. However, the accurate prediction of wave propagation
using computational fluid dynamics models is difficult, even in
the absence of a structure. This is due to the inherent energy
dissipation introduced by the discretisation schemes [9]. The
ability of the finite-element model ‘Fluidity’ [10,11] to simulate
linear andmoderately non-linear gravitywaveswas demonstrated
in two- and three-dimensional numericalwave tanks [12,13]. Good
agreement was found between the simulation results and the
theoretical predictions in the inviscid regime.

The purpose of this work is to analyse the capability of ‘Fluidity’
in the simulation of waves interacting with a structure. The
structure is modelled as a volumetric body force immersed in the
fluid domain [14]. The so-called immersed-body approach is a
continuous forcing approach based on a penalty term. It relies on
two distinct meshes: one covering the entire domain (extended
mesh), and the other discretising solely the structure (solid mesh).
The region occupied by the structure is identified through a solid-
concentration field,which is computed by projecting a unitary field
from solid to extended mesh. One of the advantages of this dual-
mesh approach is that each mesh can be used by a different finite-
element model when both the fluid and the structural dynamics
are of interest, as shown in [14]. The novelty of this paper stems
from the combination of the immersed-body approach with wave
modelling and adaptive re-meshing. Since this methodology has
never been applied to wave–structure interactions, the focus of
the paper is on well-established test cases rather than on studying
new physical phenomena. The paper is organised as follows. The
general principle of the immersed-bodymethod and the governing
equations are derived in Section 2. Section 3 details the methods
used in this study to model waves and Section 4 focuses on the
procedure used to compute the load on the structure. Section 5
explains how the fluid-dynamics model can modify the extended
mesh dynamically in time, in order to refine the resolution around
certain flow features. Dynamic mesh adaptivity is particularly
attractive to reduce the computational cost of fluid dynamics
simulations. Finally, results are shown in Section 6 for three cases.
First, a cylindrical pile is subjected to a regular train of small-
amplitude gravity waves in the inviscid regime. In this context,
linear diffraction theory [8] is used as reference solution. Second,
the same cylindrical pile is subjected to an irregular focused
wave group. In considering this case, the surface elevation in
the absence of the structure is first compared to the second-
order irregular wave solution by [15]. Third, a square cylinder
is subjected to a dam-break water wave in the viscous regime.
Results are compared with numerical and experimental results
from the literature [16]. Conclusions are drawn in Section 7.

2. Underlying equations for modelling fluid–structure interac-
tions

The fluid/marine dynamics model ‘Fluidity’ is a finite-element
open-source (LPGL) numerical tool which solves the non-hydro-
static Navier–Stokes equations on unstructuredmeshes [17,10,18].
In a purely hydrodynamics problem, the equations ofmotion of the
fluids are given by

∇ · uf = 0, (1)

ρ
∂uf

∂t
+ ρ


uf · ∇


uf = −∇p + ∇ · (2µS) + B, (2)

where uf is the fluid velocity, p is the pressure field, ρ is the fluid

density, µ is the dynamic viscosity of the fluid, S is the deviatoric
part of the stress tensor, and B represents other source terms (such
as the gravitational force).

When a structure is immersed in the fluid domain, the
fluid–structure interactions can be modelled in two different
ways: either by excluding the structure from the computational
mesh and solving only for the fluid dynamics in the regions
covered by the fluid (defined-body method), or by solving the
equations of motion in an extended domain that covers both
fluid and structure (immersed-body method [14]). The defined-
body method is typically used for fixed structures. If the structure
moves, however, it becomes computationally expensive because
re-meshing is necessary to track the structure’s motion. It can
also lead to highly-distorted grids. In this context, the immersed-
body method is attractive because re-meshing is not necessary.
Instead, the regions Vs covered by the structure are filled with
the surrounding fluid Vf so that one computational mesh spreads
across the whole domain (i.e. V = Vf ∪ Vs). At the location of
the structure, a penalty term is used to relax fluid and structural
velocities to one another. The momentum equations for the fluids
are thereforemodified in twoways. First, they have to be solved for
a monolithic velocity, which is defined over the extended domain
V , i.e.

u = αf uf + αsus, (3)

where us is the solid velocity, and the concentration fields are
defined as αf = Vf /V for the fluid and αs = Vs/V for the solid.

By definition, αf + αs = 1 is satisfied in the whole domain.
Second, a penalty force F is added to relax the monolithic and

solid velocities to one another. Therefore, the momentum balance
on the extended mesh becomes

∇ · u = 0, (4)

ρ
∂u
∂t

+ ρ (u · ∇) u = −∇p + ∇ · (2µS) + B + F , (5)

where the penalty force F weakly ensures that the monolithic and
solid velocities equal one another in the structure. The penalty
force is thus expressed as

F = βαs (us − u) , (6)
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where the relaxation factor β = ρf /1t dictates how fast the
monolithic and solid velocities equal one another. In this study,
it is assumed that β is driven by inertial effects rather than
viscous effects. This assumes that ρ/1t ≫ µ/l2e , where 1t
is the computational time step and le is the local edge length
in the mesh. The penalty term is nonzero only in the regions
covered by the solids. These regions are identified by a nonzero
solid-concentration field αs on the extended mesh. The solid-
concentration field is computed by conservatively mapping the
solid mesh onto the extended mesh [14]. The mapping is achieved
by projecting a unitary field from solid to extended mesh using a
Galerkin projection, so that

F

αsdV =


S

dVs = Vs, (7)

is satisfied at a discrete level (F denoting the extendedmesh and S
being the solidmesh). Importantly, themonolithic velocity directly
results from the resolution of Eqs. (4)–(5) over the extended
computational mesh, rather than being derived from Eq. (3).
The equations are discretised spatially using finite elements and
temporally using a Crank–Nicolson scheme, as already reported
in [14,11].

3. Wave modelling

There are two ways of modelling waves in ‘Fluidity’. The
first approach consists in defining a computational domain that
contains only water and representing waves as a free-surface
boundary condition [12]. In this framework, Eq. (5) is solved under
the Boussinesq approximation. Therefore, the density at a position
x can be written as ρ(x, t) = ρ0 +ρ ′(x, t), where the perturbation
density ρ ′ is such that ρ ′

≪ ρ0. As a result, the total density can be
replaced by ρ0 in all the terms of Eq. (5), except in the gravitational
force. The Navier–Stokes equations then become

∇ · u = 0, (8)
∂u
∂t

+

(u − û) · ∇


u = −∇p′

− g∇η + ∇ ·


2µS


+ ρ ′gk, (9)

where û accounts for the velocity of a mesh moving with the
free-surface, η is the free-surface elevation above a reference level
z = 0, p′ is the perturbation pressure, and g is the gravitational
acceleration pointing in the direction k. The velocity field at the
free-surface is related to the free-surface elevation through the
kinematic boundary condition, which imposes that the velocity of
a water particle normal to the surface is equal to the speed of the
surface in that direction [19]. The algorithm used for computing
the free-surface elevation is detailed in [20]. Thismethod is used in
Sections 6.1 and 6.2, where waves propagate in a numerical wave
tank. In this context, a mixed finite-element discretisation method
is used, where discontinuous linear polynomials are used for the
velocity field (i.e. a P1DG discretisation) and continuous piecewise
quadratic polynomials are used for the pressure field (i.e. a P2
discretisation) [21,22].

The second approach consists in defining a computational
domain that contains both air and water. Thus, the governing
equations are solved for each fluid, assuming that the fluid phases
are immiscible. The Navier–Stokes equations for the fluid element
i are expressed as

∂

∂t
(ζiρi) + ∇ · (ζiρiui) = 0, (10)

∂

∂t
(ζiρiui) + (ζiρiui · ∇) ui = −ζi∇p + ∇ ·


2µSi


+ ζiρigk,(11)

where ζi denotes the fluid-concentration field and varies between
0 and 1. An additional advection equation is solved for ζi, in order
to track the evolution of the air–water interface, i.e.
∂ζi

∂t
+ ∇ · (ζiui) = 0. (12)

The interface-tracking algorithm of ‘Fluidity’ is extensively de-
scribed byWilson [23]. This approach is used in Section 6.3, where
the incoming wave is generated through the collapsing of a wa-
ter column. In that case, the advection equation for the fluid-
concentration field is solved on a dual control-volume mesh, for a
piecewise-constant representation of the fluid-concentration field.
Consistent discretisations for the momentum and material ad-
vection steps further ensure conservation of ζi. Additionally, a
high-order flux reconstruction in combination with a flux limiting
scheme is used to accurately track the air–water interface on un-
structured meshes. This provides a simple alternative to schemes
that require an explicit interface reconstruction, and particle based
methods [23]. The advective fluxes are limited using the HyperC
approach, and the Bassi–Rebay discretisation scheme is used for
the diffusion term [24,18]. The velocity field is piecewise constant
over the elements (i.e. a P0 discretisation), while the pressure field
is piecewise constant over control volumes (CV) and its degrees of
freedom are stored in exactly the same locations as P1 (i.e. a P1CV
discretisation). The advantage of the P0 − P1CV discretisation pair
is that the advective velocity will be exactly divergence-free in the
advection equation for P1CV tracers, as the continuity equation is
tested with P1CV test functions.

4. Load computation

As mentioned in the introduction, an accurate prediction of
the wave loading is crucial in offshore engineering applications.
In order to compute the load on the structure, the pressure and
velocity fields are first projected from the extended mesh to the
solid mesh using a Galerkin projection. Given a donor mesh D and
a target mesh T on a domain Ω , a Galerkin projection on a field q
from D to T ensures that

Ω

qDdV =


Ω

qTdV , (13)

by minimising the L2 norm of the interpolation error. These
projections are explained in detail in other publications by the
authors [14,25], where the forces are transferred from a fluid-
dynamics solver to a solid-dynamics solver (and vice-versa) in
the context of fluid–structure interactions with moving (rigid and
deformable) structures. In a discrete form, Eq. (13) involves solving
a linear system of equations containing amassmatrix based on the
basis functions of the targetmesh and amixedmassmatrix formed
of the basis functions of the target and donormeshes. In this study,
the intersections between bothmeshes are further identified using
an advancing front algorithm [26].

Once the projections are completed, the pressure gradient and
divergence of the Reynolds stresses are computed on the solid
mesh. The total load on the structure is obtained by integrating
their sum over the solid mesh, i.e.

L =


S


−∇p + ∇ · (2µS)


dVs. (14)

According to Gauss’ theorem, this is equivalent to integrating
pressure and Reynolds stresses over the surface of the structure.
Following this procedure, the accuracy of the load calculation
depends on the resolution of the solid mesh. A detailed analysis
on the mesh requirements is beyond the scope of this study. Here,
the resolution of the solid mesh is chosen such that it yields an
accurate determination of the load.

5. Mesh adaptivity

‘Fluidity’ has the capability of optimising the mesh in time, in
order to refine the spatial resolution around certain flow features.
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Fig. 1. Sketch of the numerical wave tank.

For example, if vortices develop in the wake of a structure, the
mesh can be periodically re-generated to focus the resolution
around the shed vortices and coarsen it elsewhere. Details on the
mesh-adaptivity procedure can be found in [27]. In this work, a
hr-adaptive method is used where both the mesh vertices and
their connectivity are changed throughout the simulation. In this
context, the desired geometric properties of the new mesh are
described by a metric, which is a symmetric positive-definite
tensor field. The metric is computed from the Hessian H of the
solution field and a user-defined weight ϵ, i.e.

M = det|H(x)|−
1

4+n
|H(x)|
ϵ(x)

, (15)

where n is the dimension of the space and the modified Hessian
|H| is

|H(x)| = Q (x)T |Λ(x)|Q (x), |Λ(x)|ij =


|λi(x)| if i = j,
0 if i ≠ j. (16)

In Eq. (16), {λi} are the eigenvalues of the Hessian, Q is the matrix
of normalised eigenvectors, and the superscript T stands for the
transpose. A metric is constructed for each of the fields on which
adaptivity is performed. The global metric is obtained from the
superposition of each metric. The metrics provide a bound for the
L2-norm of the solution’s interpolation error (which is used as a
simple proxy for discretisation error), whose target value is ϵ. The
mesh is modified through optimisation, by minimising the error
between the current size and shape of the elements and the values
encoded in the global metric. The adaptivity procedure consists in
generating a mesh M, such that every edge v has unit edge length
when measured with respect to the metricM , i.e.

∥v∥M =

√

vTMv = 1 ∀v ∈ M. (17)

According to Eq. (15), the mesh is refined for high curvatures in
the chosen field (i.e. large eigenvalues) or small values of the field
weight ϵ. Conversely, the mesh is coarsened in regions of low
curvature in the field or if the field weight is increased. In this
study, mesh adaptivity is controlled solely by the target value ϵ of
the L2-norm of the solution’s interpolation error. Mesh adaptivity
is used in Section 6.3.

6. Results

6.1. Small-amplitude waves interacting with a cylindrical pile

The ability of ‘Fluidity’ to simulate small-amplitude regular
waves propagating in a numerical wave tank (without structure)
has already been demonstrated [12,13]. In this section, a cylindrical
pile is mounted in the numerical wave tank to investigate
wave–structure interactions. Fig. 1 shows a sketch of the domain.
The centre of the cylindrical pile is placed at a distance of 42D from
the tank outlet, and 17D from the inlet and sides (D being the pile
diameter). The tank depth is h = 2.4D. The horizontal, lateral and
vertical directions are denoted by x, y, and z respectively. Regular
small-amplitude waves are generated by setting the horizontal
velocity at the inlet (x = 0) to the linear wave solution,
Fig. 2. Solid-concentration field on the extended mesh in the x–y plane, where the
close-up highlights the resolution of the pile. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

u(z, t) = aω
cosh(k(z + h))

sinh(kh)
cos(ωt), (18)

where a is the wave amplitude and the wavenumber k is given by
the associated dispersion equation,

ω2
= gk tanh(kh). (19)

In Eq. (19), the wave frequency is ω = 2π/T , where T is the wave
period. In this paper, the simulations are performed at full scale,
with a pile length that is typical for fixed or floating wind turbines.
Therefore, the wave period is chosen to be equal to T = 10 s, as
typically used for the design of such structures.

Small-amplitude waves are considered for two different values
of the wave steepness ak: a very small amplitude wave with ak =

0.001 and a finite, yet small, amplitude wave with ak = 0.01.
In the latter, the linear diffraction theory is still valid even if
the deformations of the free-surface become significant compared
to the structure diameter. Defining the deep-water wavelength
as λ0 = 2πg/ω2, the present non-dimensional water depth in
all cases is equal to h/λ0 = 0.45, which is considered as an
intermediate water depth [12]. At the outlet of the domain (x =

59D), the velocity components are left free and the non-hydrostatic
part of the pressure field is naturally set to zero. An absorption
layer is also used in the region 51D ≤ x ≤ 59D to avoid spurious
wave reflections. To this end, the artificial absorption term σu
is added to the right-hand-side of the Navier–Stokes equations,
where

σ =


1
4


tanh


sin(π(4x̃ − 1)/2)
1 − (4x̃ − 1)2


+ 1


if 0 ≤ x̃ ≤

1
2
,

1
4


tanh


sin(π(3 − 4x̃)/2)
1 − (3 − 4x̃)2


+ 1


if

1
2

≤ x̃ ≤ 1,
(20)

with x̃ = (x − L0)/L, and L = 8D is the length of the absorption
layer that commences at x = L0 = 51D [28]. A no-normal flow
condition is used at the bottom and lateral sides of the tank,while a
combined pressure and free-surface kinematic boundary condition
is prescribed for the top surface [12].

An unstructured mesh is generated in the x–y plane and
extruded vertically into tetrahedra using seven uniformly-spaced
layers. The typical edge length of the mesh elements in the
horizontal plane varies from le = D/2 at the external boundaries
to le = D/10 around the cylinder. Fig. 2 shows the extended
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Fig. 3. Streamwise evolution of the non-dimensionalised surface elevation at the pile centreline for ak = 0.001 and t = 15.5T . The grey area represents the location of the
pile. The continuous line is the wave amplitude calculated using linear diffraction theory, while the symbols represent the numerical result obtained with the defined-body
approach (left) and the immersed-body approach (right).
computational mesh (coloured by the solid-concentration field)
in the horizontal plane and the inset highlights the vicinity of
the pile. It is apparent that the solid-concentration field smoothly
varies from 0 (in the fluid) to 1 (in the structure), as expected
for a continuous piecewise linear discretisation. However, the
mesh resolution is fine enough for the pile to be reasonably well
represented on the computational mesh. Additionally, simulations
were run for finer spatial resolutions around the pile, up to le =

D/20, without noticeable differences in the numerical results. The
time step size is fixed at 1t = T/40. The temporal resolution
was also refined down to 1t = T/100, as discussed hereafter.
Importantly, if large values of the time step are chosen, the results
exhibit a temporal shift in the evolution of the horizontal velocities.
The simulations were ran on 12 processing cores and required
approximately 10 min of run time per second of physical time.
The flow is considered inviscid to enable direct validation against
linear diffraction theory [8]. The present numerical results are
shown for modelling the pile using two different approaches:
either the computational mesh excludes the region occupied by
the pile (defined-bodymethod) or themesh covers the entirewave
tank and a separate solid mesh discretises the three-dimensional
pile (immersed-body method). In the latter case, the position of
the pile on the extended mesh is represented through a solid-
concentration field, as described in Section 2. Figs. 3 and 4 show the
evolution of the free-surface elevation in the horizontal direction,
at the pile centreline and t = 15.5T , and for different values
of wave steepness. Symbols represent the numerical result using
the defined-body method (left) and the immersed-body method
(right), while the continuous line shows the analytical solution
by [8]. The grey area further illustrates the location of the pile.
The overall agreement between the computational fluid dynamics
results and the linear diffraction theory is very good. However,
local discrepancies are observed in the vicinity of the pile. In
particular, the value of the free-surface elevation in the defined-
body case at the front and rear of the pile is within a maximum of
3% of the theoretical solution for both values of wave steepness
investigated. In the immersed-body case, the discrepancies vary
between a 7% underestimation of the value at the front and a 15%
overshoot at the rear. These percentages decrease to 3% and 11% at
1t = T/100. Similar observations can be made on the horizontal
velocity field ux, whose evolution in the horizontal direction is
shown in Figs. 5 and 6 for the two values of the wave steepness.
A snapshot of the horizontal velocity profile is also shown in
Fig. 7 for ak = 0.001 and a depth of z = −h/7. A possible
explanation for larger discrepancies obtained with the immersed-
body approach in comparison to the defined-body approach is that
the representation of the immersed pile by the solid-concentration
field is not sharp. The solid-concentration field linearly varies
between 0 (at the physical location of the pile boundary) and 1 (at
the first mesh node inside the pile). Although the pile is reasonably
well represented on the computational mesh, the value of the free-
surface at the firstmesh node inside the pile is nonzero. These non-
physical values could explain the presence of slight overshoots and
undershoots of the free-surface elevation around the pile, when
it is modelled as an immersed body. Another explanation is that
the penalty forcing used in the immersed-body approach tends to
impose a no-slip boundary condition as physically encountered on
the surface of the structure. Discrepancies at the fluid–structure
interface could therefore be observed when the computation is
inviscid. Finally, the fact that there is nomajor differences between
the results obtained for the very small amplitude wave (Fig. 3)
and the finite amplitude wave (Fig. 4) is encouraging. It confirms
thatwave energy is conserved in the computational fluid dynamics
model, as already observed in the absence of a structure [12].

6.2. Nonlinear waves interacting with a cylindrical pile

The regular waves considered in the previous section are not
very realistic because, in practise, sea states must be considered
as irregular. In this section, the computational domain is similar
to the numerical wave tank considered in the previous section,
except that the wave maker generates relatively steep transient
wave groups; these transient wave groups being achieved through
the focusing ofmultiple frequency components. Also no absorption
layer is used because the analysis concerns the results close to
the time at which the focused event takes place, i.e. when the
waves are not reflected by the domain boundaries. The focused
wave events are chosen such that the maximum wave amplitude
occurs at a distance xf = 10 h from the input boundary. Three
values are considered for the sum of focused event amplitude:
Asumkp = 0.018, Asumkp = 0.09, and Asumkp = 0.18, where kp
is the wavenumber corresponding to the peak in the JONSWAP
spectrum [29] and Asum corresponds to the linear amplitude sum
of all wave components. The latter has a spectral density function
given by

Sηη(ω) =
αg2

ω5
e−

5
4


ωp
ω

4
γ β , (21)

where

β = e
−

(ω−ωp)2

2ξ2ω2
p , (22)

and

ξ =


0.07 for ω ≤ ωp,
0.09 for ω > ωp.

(23)
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Additionally, ωp = 2π/Tp is the circular peak frequency, Tp is the
peak period, α is the energy scale parameter, and γ is the peak
enhancement factor. For the purpose of the present work, these
parameters were chosen as γ = 2.5 and Tp = 16 s, with α

being adjusted to achieve a particular amplitude sum Asum. The
wavemaker input kinematics were computed using the second-
order solution by [15]. Since it is numerically challenging to have
a stable solution for large values of the wave steepness when
the flow is inviscid, a uniform kinematic viscosity equal to ν =
10−3 m2 s−1 is used in the present simulations as viscous damping.
Ongoing work is investigating different stabilisation methods that
could minimise this viscous dissipation.

First, the numerical results are shown in the absence of a
pile. In that case, the tank width is reduced to a value of w =

0.34D, because the waves are uni-directional and undisturbed by
diffraction effects. The tank dimensions in the streamwise and
depth-normal directions are 51D and 2.4D, respectively (D being
the pile diameter as defined in the previous section). The edge
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Fig. 7. Spatial evolution of the horizontal velocity ux at t = 12T and a depth of
z = −h/7 using the immersed-body approach. The black circular line shows the
contour of the pile. The inset shows ux in the vicinity of the pile.

length of themesh elements in the horizontal plane is constant and
equals le = 0.17D. These simulations were ran on 12 processing
cores and required approximately 1.5 min of run time per second
of physical time. Figs. 8–10 show the free-surface elevation for
the different values of Asumkp when the time at which the event
focuses equals tf = 10Tp. The continuous line represents the
second-order irregular wave solution established by [15], while
symbols represent the computational fluid dynamics results. The
dotted line highlights η/Asum = 1, which is the maximum
value of the free-surface elevation given by the linear solution.
Good overall agreement is obtained between the numerical results
and the second-order solution at Asumkp = 0.018 (Fig. 8) and
Asumkp = 0.09 (Fig. 9). The slight attenuation of the maximum
crest elevation is believed to be due to the viscous damping
term. At larger amplitudes of the focused event (Fig. 10), the
computational fluid dynamics results exhibit a downstream shift
of the focused location (compared to the second-order solution)
and an asymmetry in the minima of the free-surface elevation.
This is expected because, at Asumkp = 0.18, harmonics higher
than the second order become non negligible as demonstrated
by [30]. Therefore, these results show that the computational fluid
dynamics model is capable of capturing high-order harmonics in
the free-surface elevation.

Perhaps more importantly, the ability of modelling this free-
surface effect can now be combined with the immersed-body
method. To achieve this, the same pile as used in Section 6.1 is
mounted in the tank at a distance of 10.3 h from the inlet (i.e. at
a distance of 0.3 h from the location of the focused event). The
typical edge length of the mesh elements in the horizontal plane
varies from le = D/2 at the external boundaries to le = D/10
around the cylinder. These simulations were ran on 12 processing
cores and required approximately 25 min of run time per second
of physical time. Fig. 11 shows the free-surface elevation for the
different values ofAsumkp when the time atwhich the event focuses
equals tf = 7.5Tp. The continuous line is the computational fluid
dynamics results without pile, the symbols show the results with
a defined pile, and the dashed line shows the results with an
immersed pile. Note that the free-surface elevation is normalised
by its maximum value η⋆

max without pile. The dotted line therefore
highlights η/η⋆

max = 1. The first noticeable feature in these results
is that there is no major difference between the defined-body and
immersed-body approaches. The second observation concerns the
effect that the pile has on the free-surface elevation. For Asumkp =
Fig. 8. Temporal evolution of the non-dimensionalised surface elevation at the tank
centreline for Asumkp = 0.018, xf = 10 h, and tf = 10Tp . The continuous line is
the second-order solution, the symbols represent the computational fluid dynamics
results, and the dotted line highlights η/Asum = 1.

Fig. 9. Temporal evolution of the non-dimensionalised surface elevation at the tank
centreline for Asumkp = 0.09, xf = 10 h, and tf = 10Tp . The continuous line is
the second-order solution, the symbols represent the computational fluid dynamics
results, and the dotted line highlights η/Asum = 1.

Fig. 10. Temporal evolution of the non-dimensionalised surface elevation at the
tank centreline for Asumkp = 0.18, xf = 10 h, and tf = 10Tp . The continuous line is
the second-order solution, the symbols represent the computational fluid dynamics
results, and the dotted line highlights η/Asum = 1.

0.018 and tf = 7.5Tp, the maximum and minimum values of the
free-surface elevation are increased by 23% and 35%, respectively,
due to the presence of the pile. At Asumkp = 0.09, these
percentages further increase to reach 28% and 43%; the difference
between the two cases clearly emphasising the importance of non-
linearity. Finally, Fig. 12 highlights the spatial evolution of the non-
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Fig. 11. Temporal evolution of the non-dimensionalised surface elevation at the tank centreline for xf = 10 h and tf = 7.5Tp: Asumkp = 0.018 (left), Asumkp = 0.09 (right).
The continuous line is the computational fluid dynamics results without pile, the symbols show the results with a defined pile, the dashed line shows the results with a
immersed pile, and the dotted line highlights η/η⋆

max = 1.
Fig. 12. Spatial evolution of the non-dimensionalised surface elevation η/Asum at t = 7.5Tp for Asumkp = 0.09: defined-body method (left) and immersed-body method
(right). The black line shows the contour of the pile. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 13. Spatial evolution of the non-dimensionalised surface elevation η/Asum at t = 8.75Tp for Asumkp = 0.09: defined-body method (left) and immersed-body method
(right). The black line shows the contour of the pile. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
dimensionalised surface elevation for Asumkp = 0.09 and t = 7.5Tp
using the defined-body method (left) and immersed-body method
(right). Note that the nonzero value of the free-surface elevation
inside the pile in the defined-body case is an artefact of the colour
plot. The same diagnostics are shown at t = 8.75Tp by Fig. 13.
These figures can be further compared to Fig. 14, which shows the
same diagnostics in the absence of pile. The diffraction effects due
to the presence of the pile are particularly apparent at t = 8.75Tp.

6.3. Dam-break wave impact on a square cylinder

This test case differs from the previous ones in that the
dynamics of two fluids (air and water) are considered. The initial
domain configuration is shown by Fig. 15 (left). A square pile of
width D and height 6D is placed in a domain of size 13D×5D×6D.
The pile is centred at a distance 8D from the left boundary of the
domain. The latter is delimited by solid boundaries, on which the
normal component of the velocity field is set to zero. A water
reservoir of height h0 = 2.5D, length 3.5D and width 5D is
separated by a barrier from the domain filled with air. The barrier
separating the water reservoir from the rest of the domain is
initially removed, which generates a dam-break wave propagating
towards the pile. The Navier–Stokes equations are solvedwith two
materials of different density and viscosity, i.e. ρ1 = 1.2 kg m−3,
µ1 = 18.27 µPa s for the air phase, and ρ2 = 103 kg m−3, µ2 =

1.002 m Pa s for the water phase. The corresponding Reynolds
numbers in eachmaterial are equal to Re1 = ρ1upD/µ1 = 6.3 ·105
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Fig. 15. Left: sketch of the initial configuration for the dam-breakwave impact on a square cylinder. Right: iso-contour of the fluid-concentration field after thewave impact
on the pile and slice through the adapted mesh.
and Re2 = ρ2upD/µ2 = 9.6 ·106, where up is the peak value of the
vertical velocity when the fluid impacts upon the pile.

The air–water interface is tracked by solving an advec-
tion–diffusion equation for a fluid-concentration field, as ex-
plained in Section 3. Additionally, mesh adaptivity is used on the
fluid- and solid-concentration fields with weights equal to ϵαf =

0.09 and ϵαs = 0.001. The minimum value of the mesh edge
length is further fixed at D/50 in the adaptive algorithm. As a re-
sult, the adapted mesh has approximately 1.2 million nodes. Fi-
nally, the time step size is such that the Courant number is fixed
at 0.1. In this work, it is important to highlight that the simula-
tions are performed without subgrid scale model despite the fact
that the Reynolds number is large. This means that the smallest
turbulent structures are unresolved. The study of wave–structure
interactions with turbulence modelling is the subject of ongoing
research.

Fig. 16 shows the time evolution of the force acting on the
cylinder. Time and force are non-dimensionalised by

√
h0/g

and Fref = ρ2gh2
0D/2, respectively. The dashed and dash-

dotted lines highlight the results obtained with the defined- and
immersed-body approach, respectively. The continuous line is the
numerical result available in the literature [16], which considers
the same setup. Finally, the dots show the envelope delimiting the
experimental results from [16]. The present results agreewell with
the reference solutions, especially for predicting the force due to
the incoming wave. At t⋆ ≈ 7, the load on the cylinder drops and
changes sign. This is because the incoming wave has hit the outer
boundary of the domain yielding a reflected wave. The time at
which the latter impacts upon the pile is slightly under-predicted
in the present work. This could be due to two factors. First, the
finite-element pair used is of relatively low order (a P0–P1CV
discretisation). As a result, the accuracy of the wave tracking
tends to decrease as time evolves due to numerical dissipation.
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Fig. 16. Time-evolution of the force acting on the cylinder when subjected to the
dam-break wave impact. A close-up around the time of impact is also shown.

Second, the spatial resolution used at the outer boundary is limited
because most of the mesh refinement takes place around the pile,
as illustrated by Fig. 15 (right). This affects the accuracywithwhich
the reflected wave is modelled. The detailed analysis of the flow
features close to solid boundaries is the subject of ongoing work.

7. Conclusions

This paper focuses on the application of the immersed-body
method to the simulation of wave–structure interactions. The
immersed-bodymethod is a versatileway tomodel fluid–structure
interactions. It consists of immersing the structure in an extended
fluid domain and weakly applying the boundary condition
at the fluid–structure interface through a penalty force. In
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this paper, results obtained with the immersed-body method
were systematically compared to those obtained by excluding
the structure from the computational domain (defined-body
approach). Two different numerical setups were considered. First,
gravity waves were propagated in a numerical wave tank filled
only with water (one-fluid problem). For regular waves, the paper
showed that the overall wave diffraction behaviour was well
reproduced by both the defined- and immersed-body approaches.
The weakness of the immersed-body approach lay in the values
of the wave elevation in the close vicinity of the structure,
where overshoots and undershoots of the wave elevation are
observed. These local effects are potentially of importance for
the load computation, and therefore, require further analysis.
However, they do not seem to significantly affect the wave
dynamics away from the structure. Good agreement between
defined- and immersed-body approaches was also obtained when
irregular focused wave groups interacted with the pile. Second,
a dam-break wave was generated by the collapse of a water
column. In this context, an additional advection equation was
solved for the air–water interface. The load associated with the
wave impact on the structure was accurately modelled using
both defined- and immersed-body approaches. A challenge in
tracking fluid–fluid interfaces is however to reduce the numerical
dissipation associated with low-order discretisation methods.
Future work will focus on the in-depth analysis of flow features
in the vicinity of the structure as well as incorporating high-order
discretisation schemes or parametrisations.
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