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Abstract

Hydrodynamic modelling is an important tool for the development of tidal

stream energy projects. Many hydrodynamic models incorporate the effect of

tidal turbines through an enhanced bottom drag. In this paper we show that

although for coarse grid resolutions (kilometre scale) the resulting force exerted

on the flow agrees well with the theoretical value, the force starts decreasing

with decreasing grid sizes when these become smaller than the length scale of

the wake recovery. This is because the assumption that the upstream velocity

can be approximated by the local model velocity, is no longer valid. Using linear

momentum actuator disc theory however, we derive a relationship between these

two velocities and formulate a correction to the enhanced bottom drag formula-

tion that consistently applies a force that remains close to the theoretical value,

for all grid sizes down to the turbine scale. In addition, a better understanding

of the relation between the model, upstream, and actual turbine velocity, as

predicted by actuator disc theory, leads to an improved estimate of the usefully

extractable energy. We show how the corrections can be applied (demonstrated

here for the models MIKE 21 and Fluidity) by a simple modification of the drag

coefficient.
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1. Introduction

One of the key advantages of tidal energy as a renewable energy source,

is the predictable nature of the resource. Methods for the detailed prediction

of tidal dynamics using hydrodynamic numerical models have been developed

over many years and have been applied for many different purposes. Less well5

understood is how the placement of tidal energy converters in the flow will

modify the existing tidal currents at both local and regional scales [1]. The

challenge here is that the detailed flow around a turbine is a three-dimensional

phenomenon comprising far smaller length scales than those of the underlying

tidal resource. A typical approach therefore is to model the turbine scale flow10

in a three-dimensional CFD simulation based on a actuator disc, blade element,

or actuator-line model (see e.g. Sun et al. [24], Harrison et al. [10], Batten

et al. [2], Malki et al. [16], Churchfield et al. [3]). The effects of the turbine in

a large scale hydrodynamic model are then parameterised, based on properties

extracted from the CFD model.15

The main requirements for the turbine parameterisation are the removal of

the correct amount of momentum and energy from the flow. As will be argued

in this paper (section 6; see also Vogel et al. [26]), if the model applies the

correct thrust force, this also ensures that the correct total amount of energy

is taken out of the flow. Part of this energy extracted in the model should be20

interpreted as unresolved mixing losses, so that the energy that can be usefully

extracted for power production is not directly available. However, the fact that

the correct amount of energy and momentum have been taken out, means that

the large scale effect of the turbine on the flow is reasonably well modelled.

It is important to note, that the turbine properties derived in e.g. a CFD25

model, or from lab experiments, typically consider the placing of a single turbine

in uniform background flow. Speed dependent properties are then expressed in
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terms of the background velocity, which, because the velocity is slowed down in

the presence of a turbine, is available as the undisturbed upstream velocity. In

a finite width channel, blockage effects may also affect the resulting thrust curve30

but can be corrected for (see e.g. Garrett and Cummins [9], Whelan et al. [29])

to derive the thrust curve for an idealised free-standing turbine. In addition,

the results may be dependent on the turbulent properties of the flow.

An approach followed in many models, e.g. TELEMAC, MIKE 21, ROMS,

FVCOM, is to implement the thrust in the form of an equivalent drag force term.35

For depth-averaged models this effectively comes down to an increased bottom

drag [14, 25, 21, 8, 17] (see however Draper et al. [7], Serhadlıoğlu et al. [23]

for an alternative approach, the line momentum sink method, which is based

on the application of LMADT entirely at the subgrid level). Three-dimensional

models may implement the drag as a force over the entire water column [5], or40

if the vertical resolution allows it the drag can be applied over a vertical cross

section (e.g. Roc et al. [22]), i.e. an idealised actuator disc.

Since the thrust force is given as a function of the upstream velocity, it is

important to consider what velocity to use for the equivalent drag force in the

model. One option is to probe the numerical velocity solution somewhat up-45

stream of the turbine location. This however brings with it various difficulties

such as the question of how far upstream is appropriate, or the fact that the

flow upstream might not actually return to the uniform background flow con-

dition that was considered in the CFD model, due to bathymetric changes or

the presence of other turbines. Additionally, the use of a non-local velocity is50

not desirable for numerical and computational purposes: it makes it hard to

treat the term implicitly (in the time-integration sense), potentially leading to

time step restrictions for stability, and memory access outside of a fixed numer-

ical stencil, or across sub-domains in a domain-decomposed parallel model, is

computationally inefficient.55

When enough mesh resolution is available, both in the horizontal and vertical

dimensions, to resolve the flow through the turbine, the relationship between the

upstream velocity and the turbine velocity can be predicted using Linear Mo-
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mentum Actuator Disc Theory (LMADT). Using this relationship the quadratic

drag law can be reformulated into a function of the local velocity, thus over-60

coming the difficulties and ambiguities mentioned above. This is the approach

followed by Roc et al. [22]. The typical width of a tidal turbine, order 20m, can

however be orders of magnitude smaller than the spatial scales of the tidal flow

so that resolving an individual turbine may become prohibitively expensive.

If the mesh resolution available is such that computational cells are much65

larger than the turbine scale, the drag force is necessarily applied over a larger

area. In a typical implementation a constant drag is applied over a single cell

(the cell that contains the turbine). If the cell size is in fact large enough it

may be expected (this will be further investigated in this paper), that the local

velocity is not actually affected greatly by the presence of the drag term since70

the drag force is “smeared” out over a large area and the local cell velocity

represents an average of the velocity in a large area around the turbine. In that

case the difference between the undisturbed background flow and the local cell

velocity may be neglected and the turbine can be implemented as a function of

the local velocity.75

As will be shown in this paper however, when the mesh resolution is re-

fined closer to the turbine scale, this approximation is no longer tenable as the

difference between upstream and local velocity becomes too large. As long as

individual turbines are not resolved however, the approach by Roc et al. [22] is

also not completely valid because the local velocity is still larger than the theo-80

retical turbine velocity predicted by LMADT. In particular, for depth-averaged

models the local velocity will remain higher than the actual turbine velocity

even when the horizontal scales are sufficiently resolved because the drag acts

on the entire water column and thus the depth-averaged model velocity rep-

resents an average of the actual turbine velocity and a higher by-pass velocity85

above and below the turbine. Even in three-dimensional models the drag force

is often applied over the entire water column [5], or limited to one or only a

few layers [30, 11], and does not necessarily give an accurate representation of

the actual turbine cross-section and thus the model velocity where the drag is

4



applied is not necessarily equal to the real turbine velocity.90

Here we demonstrate how the actuator disc computation may be modified

to include the fact that the drag force numerically is applied over a different

cross section than the actual turbine. Thus again an analytical relationship can

be derived between the undisturbed upstream flow and the local cell velocity,

and similarly the drag force can be reformulated as a drag law dependent on95

the local cell velocity. Like the approach taken by Roc et al. [22], this leads to

a correction to the drag law, which in this case depends on the local cell width,

and can easily be implemented in existing models, as will be demonstrated here

for the Fluidity and MIKE 21 models.

For any numerical modelling study it is important to look at the effect of100

changing the grid resolution on the results of interest. In the modelling guide-

lines for tidal resource assessments in [15], a range of grid resolutions is rec-

ommended depending on the stage of the resource assessment, ranging from

kilometre scale for regional studies, down to a range of 500 m to 50 m for spe-

cific site feasibility studies. Since the wake of a turbine is a three-dimensional105

phenomenon, it is not expected that an accurate description of the near-field

flow can be obtained with a depth-averaged model. Nevertheless, such models

should be capable of studying far-field effects. This relies on the correct forces

and their effect on the large-scale flow being modelled correctly. As this paper

shows however, the results of the standard enhanced bottom drag parameter-110

isation of the turbine thrust force will deteriorate as the mesh resolution falls

below that of the near-field/wake length scale (≈ 200− 300 m for a typical tur-

bine). The correction proposed in this paper ensures that consistent results can

be obtained with grid resolutions smaller than the length scale of the turbine

wake, all the way down to the turbine scale.115

2. Enhanced bottom drag formulation

In this section we will describe the enhanced bottom drag parameterisation

of turbines used in many models [21, 6, 17, 30] and demonstrate some issues
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with mesh dependency. We will do this within the framework of MIKE 21 [28],

a depth-averaged hydrodynamics model widely used in the marine renewable120

industry, and an equivalent drag-based implementation in Fluidity, an open

source, finite element modelling package [20, 12]. By comparing results between

the two models we verify that their implementation is based on the same theory

and the same issues are observed.

The aim of the turbine parameterisation is to represent the drag force of the125

turbine on the flow, which is typically given as:

~F (~u) = 1
2ρCt(|~u|)At|~u|~u, (1)

here ~u is the flow velocity, ρ the density of sea water, Ct the dimensionless

drag or thrust coefficient, and At the effective cross-sectional area of the tur-

bine in the flow. The drag coefficient Ct may itself be a function of speed

due to turbine properties such as rating, pitch control and the use of a cut-130

in speed. As discussed in the introduction the drag law, often derived from a

small-scale three-dimensional CFD model, is typically expressed as a function

of the undisturbed background flow velocity, which corresponds to the uniform

velocity upstream of the turbine in the case of an idealised domain.

The depth-integrated shallow water equations (in conservation form) are

given by

∂H~u

∂t
+∇ · (H~u⊗ ~u) + gH∇η + cb|~u|~u = 0, (2)

∂η

∂t
+∇ · (H~u) = 0, (3)

where H is the total water depth between bottom and free surface, elevated at135

a level z = η, ~u is the depth-averaged velocity, g the gravitational acceleration

and cb is the bottom friction coefficient, ∇ is the horizontal gradient vector, and

t is time.

A local momentum balance in a fixed local horizontal area A is derived by

integrating (2) over this area, multiplied by ρ:140

d

dt

∫
A

ρH~u+

∫
∂A

ρH (~n · ~u) ~u+

∫
A

ρgH∇η +

∫
A

cbρ|~u|~u = 0. (4)
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The second term represents momentum flux through the boundary ∂A. The

third term can be rewritten as an integral of hydrostatic pressure around the

three-dimensional water column below A. The last term represents a momentum

sink term due to bottom friction.

To implement the turbine thrust force through an enhanced bottom friction,145

cb → cb + ct, we need the additional momentum sink to be equal to the force,

~F (~u) in (1). To address the question of which velocity ~u is used to compute

~F (~u), in a first attempt we simply employ the local, depth-averaged velocity

and average the force over the area A. Thus, we require that∫
A

ctρ|~u|~u =

∫
A
~F (~u)

A
. (5)

Combined with (1) , it readily follows that the enhanced bottom drag coefficient150

ct in this case should be set to:

ct(~u) =
Ct(~u)At

2A
. (6)

Since we consider the parameterisation of turbines in hydrodynamic models

where mesh distances are larger than the size of an individual turbine, the force

is applied over the smallest area possible, typically the area of a single mesh cell.

Thus the area A in (6) corresponds to the cell area over which the enhanced155

drag coefficient is applied. In models where the cell area is much larger than

the turbine cross section At, the additional drag is small and therefore the

presence of the turbine will not have a large effect on the numerical solution for

~u in that cell. As an example, for typical values of Ct = 0.6, a mesh distance

∆x = 200 m and turbine diameter D = 18 m, if the drag is applied over a single160

square computational cell of ∆x×∆x, we get

ct(~u) =
Ctπ

(
D
2

)2
2∆x2

≈ 0.00122, (7)

which is only half of a typical value of cb = 0.0025 for the background bottom

friction coefficient.

Since the effect of the additional drag is relatively small it is to be expected

that the assumption that the local velocity within the cell is close to the undis-165

turbed background flow is valid for relatively coarse resolution models, and can
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therefore be used in the averaged force in the right-hand side of (5). As the

resolution is increased however and the mesh distances become closer to the

turbine scale, the drag is applied over a smaller area and the reduction in local

flow speed may become much larger. Because of the quadratic dependency of170

the drag force on the flow speed, this may have a significant impact on the force

that is applied in the model.

3. Local velocity drop in idealised channel

We investigate the mesh-dependent reduction in local flow speed in more

detail in the following idealised set up: a turbine is placed in a rectangular175

channel of length 10 km and width 1 km. The depth at rest is set to 25m

and a bottom friction of cb = 0.0025, equivalent to a Chézy coefficient of 62.6

m1/2s−1, is applied. At the upstream boundary a uniform velocity of 3.0 ms−1 is

enforced. At the downstream end a Flather boundary condition is applied. The

steady state solution without a turbine can be described as a balance between180

the free surface gradient and the bottom friction. The necessary free surface

slope leads to a water level that is approximately 0.9 m higher at the upstream

boundary than at the downstream boundary, which in turn (due to the nonlinear

continuity equation) leads to an acceleration along the channel with u ≈ 3.12

ms−1 downstream. The velocity at the turbine location, halfway the channel185

was observed to be approximately 3.055 ms−1.

For the simulations with a turbine, the following turbine parameters were

chosen: the thrust coefficient Ct = 0.6 with a turbine diameter of D = 16 m

giving a turbine cross-sectional area of At = 201 m2. The simulations were

performed using both MIKE 21 and Fluidity on a series of identical triangular190

meshes with uniform resolutions starting at a mesh size of ∆x = 320 m, doubling

the resolution each time with the mesh size decreasing down to ∆x = 20 m,

and one final resolution at ∆x = D = 16 m. For the parameterisation of

the turbine in Fluidity the enhanced bottom drag approach described in the

previous section was used. Although Fluidity here uses a finite element scheme195
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∆x = 320 ∆x = 160 ∆x = 80 ∆x = 40 ∆x = 20, 16
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Figure 1: The speed at the turbine location, inside the enhanced bottom drag cell, decreases

with increasing resolution both in the Fluidity and MIKE results.

with a discontinuous piecewise linear velocity and piecewise quadratic pressure

solution (the mixed P1DG−P2 formulation, see Cotter et al. [4]) a piecewise

constant drag field was used to simplify the computations and to remain close

to the numerics of MIKE which uses a finite volume scheme with higher order

flux reconstructions. Although the exact details of the implementation in MIKE200

were not available, the results between Fluidity and MIKE were found to be close

enough to extend the analysis based on the parameterisation used in Fluidity

to that in MIKE 21.

Figure 1 displays the obtained velocity in the cell in which the drag has been

enhanced to parameterise the effect of a turbine. For the cell centred scheme of205

MIKE 21, cell values were directly available from the model, whereas for Fluidity

cell averaged values were computed. It can be seen that the obtained velocity is

indeed highly mesh-dependent, and drops with increased mesh resolution. Since

the square of this velocity is used to implement the drag term, a 10% drop in

the local velocity leads to a 20% drop in the drag force.210

In a model of a fully resolved turbine the local velocity is expected to drop
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and can be estimated using linear momentum actuator disc theory (LMADT,

see [9] for an application of this theory to tidal turbines). The theory assumes

inviscid flow and a uniform upstream velocity u0. Furthermore, it defines a

velocity u1 through the turbine, and velocities u3 and u4 in respectively the215

wake and bypass flow (see figure 3). LMADT also defines pressures: p0 for

the upstream pressure, p1 and p2 directly on either side of the turbine, and

a uniform pressure p4 downstream where the velocities u3 and u4 are defined.

At the same downstream location, the cross-sectional area of the wake flow is

defined as A3. In addition, LMADT defines the known cross sections Ac for the220

total channel cross section and At for the turbine cross section.

Through selective application of the continuity equation, momentum con-

servation and Bernoulli’s principle, seven equations can be derived for the un-

knowns u1, u3, u4, p1, p2, p0 and A3, given u0 and p4 as upstream and down-

stream boundary conditions respectively (see Appendix A). These equations225

can be simplified greatly by assuming At � Ac, which means no blockage ef-

fects are taken into account. For this case, u4 = u0, p4 = p0 and the velocity

through the turbine can be computed as (cf. equation (A.22) in the appendix):

u1 = 1
2

(
1 +

√
1− Ct

)
u0. (8)

For our idealised channel case considered above, we may compute u1 = 2.49230

ms−1. As we can see in the figure 1 however, the drop of the velocity in the

turbine drag cell is much smaller. This is due to the fact that the force is applied

over a larger width than is assumed in the LMADT calculation. In Appendix

B it is shown how this calculation can be adjusted to take this into account in

addition to the fact that the force applied is based on the local instead of the235

upstream velocity. In the appendix, the following relation between local cell

velocity û1 and upstream velocity u0 is derived:

û1 =
1

1 + 1
4
At

Ât
Ct

u0, (9)

here Ât = H∆y is the numerical cross-section, which reflects the fact that in a
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∆x = 320 ∆x = 160 ∆x = 80 ∆x = 40 ∆x = 20, 16
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Figure 2: The speed inside a square drag cell decreasing with increasing resolution. Results

are model outputs from Fluidity. The plotted speed is the average value over the square area.

The decreasing cell speed can be accurately predicted using (9) derived from actuator disc

theory.

depth-averaged model the force is effectively applied over the entire water depth

H.240

Figure 2 shows that the speed predicted by (9) closely follows that computed

with Fluidity. It should be noted that in the derivation of (9) we have assumed

that the drag is applied over a square area and we are therefore here comparing

with Fluidity results on meshes that incorporate a ∆x×∆x square cell consisting

of two triangles, but are unstructured everywhere else. In figure 1 however245

the Fluidity results were obtained on fully unstructured meshes with the drag

applied over the arbitrary triangle that contains the specified turbine location.

This is so that it would correspond with the turbine implementation in MIKE.

Comparing the two figures it can be seen that the Fluidity results are indeed

different. For this reason we first derive a correction for the rectangular drag250

cell case in the next section, followed by a correction for triangular drag cells in

section 5.
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u0
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∆
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Figure 3: Approximation of the enhanced drag formulation by actuator disc theory. The effect

of the enhanced drag is assumed to be equivalent to an actuator disc of width ∆y, the width

of the cell in the direction transverse to the flow. An upstream velocity u0 is assumed to

reduce to a “turbine” velocity u1 inside the rectangle, of dimensions ∆x × ∆y, in which the

enhanced drag is applied. The relation between u1 and u0 can be estimated using actuator

disc theory which involves eliminating wake and bypass velocities u3 and u4 from a set of

algebraic equations derived from selectively applying mass and momentum conservation and

Bernoulli principles (see Appendix A).

4. Turbine correction for rectangular cells

The aim of the correction is to ensure that we apply the correct force based

on a given thrust coefficient Ct:255

F = 1
2ρAtCtu

2
0, (10)

where u0 is the upstream velocity which is not readily (and locally) available.

We need to take into account that the force in the model is not applied over the

cross-section At, but is “smeared” horizontally over a rectangle of dimensions

∆x ×∆y. Here, the rectangle is assumed to be aligned with the flow with ∆x

the length of the cell in the streamwise-direction, and ∆y the width of the cell260

in the transverse direction (see figure 3).

In a depth-averaged model the drag force acts over the entire depth H of

the water column. This means that it acts acts as an actuator disc with a cross-

section of Ât = H∆y and thickness ∆x. If we want to apply LMADT to predict

the velocities in our model, we therefore need to apply this cross-section in the265
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calculation. As usual we neglect the thickness ∆x, and assume an infinitely thin

disc.

Although the required force is expressed using the actual turbine cross sec-

tion At, the thrust coefficient should be defined using the cross section Ât that

it is actually applied over in the model:270

Ĉt :=
F

1
2ρÂtu2

0

=
At

Ât

Ct. (11)

Assuming û1 is an adequate estimate for the local velocity in the cell with

enhanced drag ct and cell area A, the force applied by the enhanced drag is

given by (cf. the left-hand side of (5)):

F = ρActû
2
1. (12)

Note that here, we cannot use (9) as this was derived based on the assumption

that the standard enhanced bottom drag formulation without correction was275

applied, i.e. the force was different from (10). Using LMADT, taking into ac-

count the different cross-sections, and following the same steps in the derivation

of (8), we arrive at the same expression but with Ct replaced by Ĉt:

û1 = 1
2

(
1 +

√
1− Ĉt

)
u0. (13)

After substitution, we write F as a function of the upstream velocity u0:

F = ρAct
1
4

(
1 +

√
1− Ĉt

)2

u2
0. (14)

To obtain the appropriate value of ct we equate this expression with the desired280

force in (10). This leads to:

ct =
CtAt

2A

4(
1 +

√
1− At

Ât
Ct

)2 . (15)

In comparison with (6) from the standard enhanced bottom drag formulation, we

have obtained an additional factor that corrects for the fact that we are using the

local cell velocity instead of the upstream velocity. For coarse resolution runs, we

have At/Ât → 0, and thus we fall back, as expected, to the unmodified enhanced285
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drag formulation, since the cell velocity is close to the upstream velocity. As we

have seen for finer resolutions, still coarser than the turbine scale, the difference

between cell and upstream velocities becomes significant.

The correction derived above can also be applied to three-dimensional sim-

ulations with a resolved turbine, where the drag force is applied in three-290

dimensions over a vertical cross-sectional area (actuator disc) with Ât = At

and therefore Ĉt = Ct. The correction factor then simplifies to exactly that

given by Roc et al. [22]. For the unresolved case however, both in two and three

dimensions, the correction derived here not only corrects for the difference be-

tween upstream and turbine velocity, but also for the difference between the295

actual turbine cross-section and the cross-section over which the drag is applied

numerically.

Returning to our idealised channel case, in figure 4 it is shown how the force

in the standard enhanced bottom drag formulation applied to a square decreases

with increasing mesh resolution. It is to be noted that the relative drop in drag300

force is larger than the relative drop in speed, due to the quadratic dependency

of the force on the speed. Adjusting the drag formulation according to (15), the

applied force is not only more accurate at coarse resolution, but also remains

much closer to that computed from the upstream velocity directly as the mesh

resolution approaches the turbine scale.305

5. Turbine correction for triangular cells

We now return to the case where the enhanced drag formulation is applied to

a single triangular cell, not necessarily aligned in any way with the flow. Again

we may approximate the applied drag by an actuator disc spanning the width

of the triangle. In this case however, if we thus collapse the applied drag force310

to a single line, the amount of drag varies along the disc.

We assume here that the streamlines run parallel through the triangle and

use a local coordinate system where x is in the streamwise direction and 0 ≤ y ≤

∆y in the transversal direction, where ∆y is the largest width of the triangle. We
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∆x = 320 ∆x = 160 ∆x = 80 ∆x = 40 ∆x = 20, 16
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Figure 4: In the standard enhanced drag formulation for tidal turbines, equation (6), the

applied force is a quadratic function of the local velocity in the drag cell (here, a square area

of ∆x × ∆x). As the mesh resolution increases, the local velocity drops, and therefore the

force that is applied within the model decreases. Using the correction in (15) however, the

same force can be maintained more or less independent of resolution.
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may subdivide the triangle into a number of streamtubes of infinitesimal width315

dy, which can be considered as rectangles ∆x× dy, whose length ∆x = ∆x(y)

is a function of y.

For simplicity we first consider a triangle that is oriented in such a way that

it is at its widest at y = ∆y, in other words its top edge is aligned with the

streamline at y = ∆y (see figure 5). Furthermore, we have ∆x(y = 0) = 0 in320

the bottom vertex, and ∆x(y) varies linearly for 0 ≤ y ≤ ∆y. Its area can be

computed as A = 1
2∆x(∆y)∆y. The function ∆x(y) is therefore given by:

∆x(y) =
2A

∆y2
y. (16)

The force applied in each streamtube is given by

dF = ∆x(y)dyρctû1(y)2, (17)

where û1(y) is the velocity through the streamtube. Similar to (B.2), we apply

actuator disc theory where we assume that this force is applied over a cross325

section Hdy and obtain a modified thrust coefficient:

Ĉt :=
dF

1
2ρHdyu2

0

=
2∆x(y)dy

Hdy

û2
1

u2
0

ct (18)

Following the same steps as in equations (B.2)–(9) we may derive the following

relation between û1(y) and the upstream velocity u0:

û1(y) =
1

1 + 1
2

∆x(y)dy
Hdy ct

u0 =
1

1 + Act
H∆y2 y

u0. (19)

The varying width ∆x(y) thus leads to a variation of the velocity û1(y) for

0 ≤ y ≤ ∆y. In the computer models the accuracy of this variation is limited330

by the numerical approximations employed.

In MIKE, the underlying discretisation is based on a piecewise-constant ve-

locity in each cell. To estimate the cell average obtained in the model we

therefore evaluate (19) at the centroid, y = 2
3∆y, which gives:

uMIKE

1 =
1

1 + 2
3

Act
H∆y

u0. (20)

16
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∆
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Figure 5: Left figure: a triangle with its top edge aligned with the streamlines. A coordinate

reference frame is chosen, with 0 ≤ y ≤ ∆y the coordinate in the cross-stream direction. The

width ∆x of the triangle in the streamwise direction, varies as a function of y, starting at

∆x(y) = 0 at y = 0, and reaching its maximum width ∆x(y) = ∆xmax at y = ∆y. Right

figure: a non-aligned triangle can be divided in two triangles that share an edge that is aligned

with the streamlines. In this case, the maximum width ∆xmax is the length of the shared

edge.

For the case where the triangle does not have one of its edges aligned with a335

streamline, we may consider splitting the triangle into two triangles that share

an edge that is aligned along the streamline (see figure 5). The length of this

shared edge is the maximum width ∆xmax of the triangular drag cell in the

streamwise direction. The area of either of the two triangles that the cell is

split into, can be computed as A1,2 = 1
2∆xmax∆y1,2, where ∆y1,2 is the height340

of either triangle. Therefore for each of the triangles we have A1,2/∆y1,2 =

1
2∆xmax. Thus if we apply the same enhanced friction coefficient ct in both

triangles, it follows that the estimate (20) for the cell average of uMIKE
1 is the

same in both triangles:

uMIKE

1 =
1

1 + 1
3

∆xmax

H

u0. (21)

Moreover, if we define the overall cross-stream width of the original combined345

triangle as ∆y = ∆y1 + ∆y2, we again have A/∆y = 1
2∆xmax. Thus, in the

actual model where the original, non-aligned triangular drag cell is not split, we

can use the same equation (20) for the estimated average velocity of the entire

cell as we did for the aligned case.
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Using this estimated average, the force applied in the model is then:350

F = Aρct(u
MIKE

1 )2 = Aρct

(
1

1 + 2
3

Act
H∆y

)2

u2
0. (22)

By equating this to the desired force (1), we may derive a quadratic expression

for ct

−2A2AtCtc
2
t +A

(
9H2∆y2 − 6AtCtH∆y

)
ct − 9

2AtCtH
2∆y2 = 0 (23)

In Fluidity, the P1DG-discretisation prescribes a linear variation for velocity.

Thus we approximate (19) by evaluating it at y = 0 and y = ∆y and assuming

a linear variation in between:355

uFluidity

1 (y) =

(
1− 1

1 + H∆y
Act

y

∆y

)
u0 (24)

The force applied in the model can be found by integrating:

F =

∫ ∆y

y=0

∆x(y)ρct(u
Fluidity

1 (y))2dy (25)

= Aρct

1− 4
3

(
1

1 + H∆y
Act

)
+ 1

2

(
1

1 + H∆y
Act

)2
u2

0. (26)

Equating with the desired force in (1) this time results in a cubic expression for

ct:

A3c3t +A2 (4H∆y − 3AtCt) c
2
t

+ 6A
(
H2∆y2 −AtCtH∆y

)
ct − 3AtCtH

2∆y2 = 0. (27)

In case the triangular drag cell does not have an edge that is aligned with the

streamlines, we may again consider splitting it into two triangles with a shared

edge that is aligned with the flow. Here however, (24) does not predict the same

linear function for uFluidity

1 in both triangles, since although A/∆y = 1
2∆xmax

is the same, the value for ∆y in the denominator of y/∆y is different for both360

triangles, and due to the different orientation of the top triangle, the sign of the

gradient of uFluidity

1 with respect to y will be opposite. The combined piecewise
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Figure 6: Results for the enhanced drag formulation with the drag applied in a single triangular

cell as implemented in both Fluidity and MIKE 21. As in figure 4, which show the results for

the rectangular case, the force applied decreases significantly with increasing mesh resolution.

Applying the correction for ct however, given by solving (23) (MIKE 21) or (27) (Fluidity),

the force can be kept more or less constant and much closer to the desired value.

solution is therefore not supported by the underlying discretisation. However,

we did find that when using the value of ct found by solving (27), the discrete

model gave results that varied only slightly for different orientations of the365

triangular cell.

The results in figure 6 indicate that again the force applied in the unmodified

enhanced drag implementation, in Fluidity and MIKE reduces significantly with

increasing mesh resolution. A modification to the enhanced bottom drag ct was

derived in this section, solving for ct in (23) and (27) for MIKE and Fluidity370

respectively, that is shown here to lead to a force that remains close to the

desired value. The correction in MIKE was implemented by first finding the

value for ct from (23) and then working back from (6) to compute what value

of Ct should be entered in the GUI to achieve this value in MIKE.
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6. Power production375

The correction to the enhanced drag formulation, derived in this paper, is to

ensure that the correct amount of momentum is extracted from a shallow water

model. This means that the force F applied by the enhanced drag in the drag

cell (or region) is an accurate approximation of the real thrust exerted by the

turbine on the flow. The amount of energy taken out of the flow within the cell380

is given by:

Pcell = Fû1,model, (28)

where û1,model is the velocity in the enhanced drag cell. As we have seen however,

in the case where turbines are not fully resolved this velocity will be larger than

the actual velocity u1,turbine that goes through the turbine (as predicted by ac-

tuator disc theory). Therefore, the real power production Pturbine = Fu1,turbine385

will be smaller than the amount of power Pcell taken out of the model in the

drag cell.

This discrepancy can be explained from the fact that part of the mixing

losses are not modelled explicitly within the model, but occurs at the sub-grid

scale. Following the analysis of Vogel et al. [26], the total amount of power390

taken out of the flow can be split as follows:

Ptotal = Pturbine + Pmixing, (29)

where Pmixing takes account of the mixing losses due to a.o. shear between the

wake and bypass flows. The total power can be computed as [26]:

Ptotal = Fu0. (30)

Therefore, as long as the model applies an accurate representation of the thrust

force F , using the correction presented in this paper, and an accurate value395

for the upstream velocity u0, the total power extracted from the flow in the

model will be accurate as well. The fact that the power Pcell extracted within

the drag cell, according to (28), is larger than Pturbine means that the mixing

loss that occurs in the model (outside the drag cell) must be smaller than the
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real Pmixing predicted by actuator disc theory. Therefore part of the mixing400

loss occurs within the drag cell itself. Thus Pcell accounts for both the power

Pturbine taken out by the turbine itself and additional losses that happen at the

sub-grid level.

Vogel et al. [26] considers the case where the drag of an entire farm is smeared

out over an enhanced drag region, with the assumption that all mixing losses405

actually occur within this region. In that case it may be assumed that the total

power extraction in the model is a good approximation of the total power extrac-

tion predicted by actuator disc theory, so that the available usefully extracted

power can be computed as a fraction of that using the same theory.

For the case, considered in this paper, where individual turbines are modelled410

but are not necessarily fully resolved, part of the mixing losses are modelled

explicitly. As argued above however, using the power extracted from the flow

by the turbine parameterisation still leads to an overprediction of the usefully

extractable energy. It is to be noted that in a shallow water model, even if

an individual turbine is resolved in the horizontal mesh, with a minimum mesh415

distance smaller or equal than the turbine diameter D, the effective cross-section

Ât = ∆yH will still be larger than the actual turbine cross-section At. This

is because the actual cross-section does not span the entire depth of the water.

Thus, the velocity at the turbine in the model should be interpreted as a depth-

averaged velocity that averages between the velocity through the turbine, and420

the bypass velocity above and below the turbine. This velocity is therefore

expected to be higher than the real turbine velocity itself, and therefore the

power extraction by the depth-averaged turbine-parameterisation will always be

an overprediction of the actual power available to the turbine. The difference

between these power values roughly corresponds to vertical mixing losses that425

are not explicitly modelled in the depth-averaged model. In the next section we

will explain how the relationship between the upstream velocity and the local

velocity in the model, derived in this paper, can also be used to predict the

usefully extractable energy, excluding mixing losses, more accurately.
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7. Conclusions430

In order to estimate accurately the resource available to tidal turbines and to

assess their impact on the hydrodynamics, it is important to represent properly

the drag force exerted by the turbines on the flow. In depth-averaged, and

more generally under-resolved hydrodynamic models, one should keep in mind

that the local model velocity at the turbine is different from both the upstream435

and the actual velocity passing through the turbine. The relationship between

them is dependent on the mesh resolution, and in the case of depth-averaging,

the ratio between the actual turbine cross section and the flow cross section

spanning the entire depth. Therefore, although the use of the local velocity for

the implementation of the drag force is computationally attractive, it is required440

to take these relationships into account to avoid spurious and mesh-dependent

results. In addition, a better understanding of the relation between local and

upstream velocity is necessary for an accurate estimate of the power available

to the turbine.

Here we have presented the theory for a single, isolated turbine, and demon-445

strated that a correction based on linear momentum actuator disc theory taking

into account the actual numerical cross section that the force is applied over in

the model, can be used to obtain results that are consistent over a range of

grid scales. It was shown that the standard enhanced bottom drag formulation

results in a drag force that decreases with decreasing grid lengths, in particular450

when the grid size falls below the length scale of the turbine wake (roughly

10–20 turbine diameters). With the correction the applied force can be kept

constant to a large degree, thus ensuring that the effect of the turbine on the

large scale flow is correctly modelled.

The analysis for single, isolated turbines may be sufficient for sparsely pop-455

ulated turbine sites which see little interaction between turbines. It is generally

recognised however, that in order to achieve the maximum available energy from

certain sites, one needs to consider turbine configurations that benefit from lo-

cal and global blockage effects [18], e.g. fence structures. It should be pointed
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out that depending on resolution, the hydrodynamic model already takes into460

account blockage effects. In three dimensions, if the turbines are fully resolved,

an accurate estimate of the local turbine velocity is available. Therefore if we

assume that the force can be expressed as a function of local properties, block-

age effects should also be dealt with correctly. This is the approach taken by

Roc et al. [22], and as we have shown here, the correction to the enhanced drag465

approach converges to this formulation in the limit of a fully resolved turbine

in three dimensions.

For the under-resolved case, the difference between the actual turbine cross-

section and the numerical cross-section in the model may also influence the

accuracy of, in particular, local blockage effects. The correction could poten-470

tially be improved by taking this difference into account. If the turbine force is

expressed as a function of the actual local turbine velocity, and assuming this

expression remains valid for different blockage ratios, this can be achieved in

two steps. First, we use LMADT, without taking the low blockage limit, to re-

formulate it as a blockage-dependent function of the upstream velocity (see e.g.475

Garrett and Cummins [9], Whelan et al. [29]). Then this expression can again

be reformulated, now as a function of the local velocity in the drag cell using

LMADT that takes into account blockage based on the numerical cross-section.

The significance of such a further correction is yet to be determined in numer-

ical tests, and is part of planned future work. As argued above however the480

correction in this paper will lead to the correct blockage behaviour in the limit

of a resolved turbine, in other words it converges to the correct answer. The

uncorrected standard enhanced drag approach on the other hand will converge

to an answer that is incorrect in both low and high blockage cases.

Finally, for local blockage effects that take place entirely at the subgrid485

level, e.g. multi-rotor devices and (partial) fences of turbines, further analysis is

needed to derive a relation between thrust and upstream velocity that takes lo-

cal blockage into account. This could be achieved using a number of approaches

including lab experiments and more detailed CFD simulations with combined

devices, as well as with analytical approaches such as in [18] and [19]. There it490
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was shown how in a partial fence of turbines, the relation between thrust and

velocity upstream of a single turbine, can be combined into a relation between

the total thrust of the fence and a velocity upstream of the fence. This thrust

curve for the fence can then be used to treat it as a single device when imple-

menting it in a hydrodynamic model. It should however be emphasised that495

knowledge of the local-blockage dependent thrust curve is not sufficient for a

correct implementation. As for the single device case, it should be combined

with the predicted relation, derived in this paper, between upstream and local

cell velocity which is dependent on the numerical properties of the model, in

particular mesh resolution.500

With more closely packed turbines the representation of turbine wake struc-

tures and wake recovery also becomes much more important. In addition, the

turbulence characteristics may have a great impact on the performance of the

turbines. As mentioned in the introduction, depth-averaged models will not

be sufficient to accurately model these three-dimensional near-field effects. In505

further work we would like to explore however, how well these effects can still

be approximated in depth-averaged models, possibly through parameterisation

and tuning of horizontal turbulence models. Nonetheless, we recognise that in

general it may no longer be possible to simply extrapolate from the results of a

single isolated turbine, and it may be required to study the effects of combin-510

ing multiple turbines in detailed three-dimensional CFD calculations and lab

experiments.
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Appendix A. Linear Momentum Actuator Disc Theory

In this appendix we briefly review the main steps in the derivation of the520

actuator disc theory used in tidal turbine calculations. This is so we can refer

to the relevant equations when the modifications, that take into account the

numerical implementation details of the enhanced bottom drag formulation,

are derived in the main text. These results can be found in e.g. Garrett and

Cummins [9], or Whelan et al. [29].525

We consider a channel of cross-sectional area Ac in which a turbine is located

with cross section At. We assume a uniform flow across the channel upstream

of the turbine with velocity u0, the flow through the turbine is u1. Further

downstream we define u3 to be the velocity in the wake, and u4 the bypass

velocity. Furthermore we assume that at the point down-stream where u3 and530

u4 are defined we have a uniform water level η4. The water level upstream

is denoted by η0, and the water levels just upstream and downstream of the

turbine, associated with the pressure drop across the turbine are denoted by η1

and η2.

First we formulate the conservation of mass for the flow through the turbine

and in the bypass flow

Atu1 = A3u3, (A.1)

Acu0 = A3u3 + (Ac −A3)u4, (A.2)

where A3 is the cross-sectional area of the wake at the location where u3 is535

defined. Here we neglect the influence of the water level on the cross sections,

so that the cross-sectional area of the bypass flow is given by Ac−A3. Inclusion

of the dependency of cross section on the water level is only significant for high

Froude numbers, with details given in [29].

The force F exerted by the turbine on the flow (and vice-versa), can be

related to a conservation of momentum principle in the entire channel, or to the
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pressure drop across the turbine:

F = Acρu
2
0 −A3ρu

2
3 − (Ac −A3)ρu2

4 + ρgAc(η0 − η4), (A.3)

F = ρgAt(η1 − η2), (A.4)

where g is the gravitational acceleration. Finally, applying Bernoulli’s principle

along streamlines: 1) from upstream, where u0 is considered uniform, to just

before the turbine, where water level η1 is defined; 2) from just after the turbine,

where water level η2 is defined, to downstream where a uniform water level η4

is defined; and 3) in the bypass flow from upstream to downstream. This yields

three more equations:

1
2u

2
0 + gη0 = 1

2u
2
1 + gη1, (A.5)

1
2u

2
1 + gη2 = 1

2u
2
3 + gη4, (A.6)

1
2u

2
0 + gη0 = 1

2u
2
4 + gη4. (A.7)

Assuming boundary conditions for u0 and η4, and an expression for F as a540

function of u0, we have seven equations for seven unknowns: u1, u3, u4, η0, η1, η2,

and A3.

General solutions

The Bernoulli equations (A.5) to (A.7) can be rewritten as expressions for

water level differences:

gη1 − gη2 = gη0 − gη4 + 1
2

(
u2

0 − u2
3

)
, (A.8)

gη0 − gη4 = 1
2

(
u2

4 − u2
0

)
, (A.9)

and thus

gη1 − gη2 = 1
2

(
u2

4 − u2
3

)
. (A.10)

We can therefore rewrite the two expressions (A.3) and (A.4) as:

F = A3ρ
(
u2

4 − u2
3

)
− 1

2Acρ
(
u2

4 − u2
0

)
(A.11)

F = 1
2Atρ

(
u2

4 − u2
3

)
(A.12)
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Equations (A.2), (A.11) and (A.12) give three equations for the three unknowns545

u3, u4 and A3. Substitution of A3(u4−u3) = Ac(u4−u0) from (A.2), in (A.11)

eliminates A3:

F = A3ρ (u4 − u3) (u4 + u3)− 1
2Acρ

(
u2

4 − u2
0

)
= Acρ (u4 − u0) (u4 + u3)− 1

2Acρ
(
u2

4 − u2
0

)
= Acρ (u4 − u0)

(
u3 + 1

2u4 − 1
2u0

)
.

(A.13)

We can rearrange (A.12) and (A.13) in the following manner, respectively:

A2
c (u4 − u0)

2
u2

3 = A2
c (u4 − u0)

2

(
u2

4 −
2F

Atρ

)
, (A.14)

A2
c (u4 − u0)

2
u2

3 = ρ−2
(
F − 1

2Acρ (u4 − u0)
2
)2

. (A.15)

We introduce the additional definitions,

Ct :=
F

1
2Atρu2

0

, and ε :=
At

Ac
. (A.16)

Note that we do not have to assume that F is actually quadratic in u0, so that

Ct is not necessarily a constant; it may still be dependent on u0. With these we550

can derive the following quartic polynomial in u4 from (A.14) and (A.15):

1

4

(
Ctε−

(
u4

u0
− 1

)2
)2

−
(
u4

u0
− 1

)2(
u2

4

u2
0

− Ct

)
= 0. (A.17)

Finally, by (A.12):

u3 =
√
u2

4 − Ctu2
0, (A.18)

and A3 can be derived by again substituting (A.2) in (A.11) but this time to

eliminate Ac(u4 − u0), so that

F = A3ρ (u4 − u3)
(
u3 + 1

2u4 − 1
2u0

)
, (A.19)

which in combination with (A.12), gives:555

A3 =
1
2u4 + 1

2u3

u3 + 1
2u4 − 1

2u0

At. (A.20)
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Zero blockage limit

From the above, it follows that in the limit ε→ 0: u4 → u0 and thus η4 → η0.

In this limit, (A.18) becomes

u3 →
√

1− Ct u0, (A.21)

and combining (A.20) and (A.1):

u1 =
1
2u4 + 1

2u3

u3 + 1
2u4 − 1

2u0

u3 → 1
2

(
1 +

√
1− Ct

)
u0. (A.22)

The energy yield then becomes:560

P = Fu1 → 1
4

(
1 +

√
1− Ct

)
CtAtρu

3
0. (A.23)

The maximum yield as a function of Ct is obtained by:

d

dCt

[(
1 +

√
1− Ct

)
Ct

]
=

1− 3
2Ct +

√
1− Ct√

1− Ct

= 0 (A.24)

=⇒
(

3
2Ct − 1

)2
= 1− Ct =⇒ Ct =

8

9
(A.25)

Thus the maximum power (assuming no blockage) is

Pmax =
16

27
· 1

2Atρu
3
0 ≈ 0.59 · 1

2Atρu
3
0. (Betz limit) (A.26)

Appendix B. Predicting the reduced velocity in the enhanced drag

cell

Here we show that LMADT can be used to predict the local cell velocity

in the standard enhanced drag formulation. When we neglect variations in the565

streamwise-direction (here denoted as the x-direction), the results of the drag

force applied in a shallow water model can be approximated by an infinitely

thin actuator disc with a cross-sectional area of ∆yH. Here, and in the rest of

the paper, ∆y is the width of the drag area, in the cross-stream direction.

Following the assumption made above (5), the magnitude of the force applied570

in the enhanced bottom drag approximation is given by:

F = 1
2ρAtCtû

2
1. (B.1)
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Note that here we need to use the actual turbine cross section At as that is the

user input in this formulation to calculate the enhanced drag ct in (6). Further

we assume that the velocity used to compute the force in this approximation,

which is simply the local velocity in the drag cell, will be accurately predicted575

as the velocity û1 in the modified actuator disc theory that follows below.

Following the steps in the derivation of (8), (A.22) in the appendix, but now

applied to an actuator disc of cross section Ât = ∆yH, we first define a modified

thrust coefficient (cf. (A.16) in the appendix):

Ĉt :=
F

1
2ρÂtu2

0

=
At

Ât

û2
1

u2
0

Ct. (B.2)

Following the same derivation of (8), we then obtain a relation between the local580

model velocity û1 and the upstream velocity u0 if in (8) we replace Ct with Ĉt.

This gives an expression for the ratio û1/u0 that can be substituted in (B.2), to

give:

Ĉt =
At

Ât

(
1
2

(
1 +

√
1− Ĉt

))2

Ct. (B.3)

After some algebraic manipulation1, this can be reworked to

Ĉt =

At

Ât
Ct(

1 + 1
4
At

Ât
Ct

)2 . (B.4)

Finally, the relation between the local velocity û1 within the cell that the en-585

hanced drag is applied in, and the upstream velocity u0 is given by

û1 =
1

1 + 1
4
At

Ât
Ct

u0. (B.5)

Appendix C. Implementation details

In this appendix we summarise, how the analysis derived in this paper can

be practically applied in existing models.

1the authors made use of SymPy, a python library for symbolic mathematics: www.sympy.

org
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Turbine drag applied over a rectangular area590

For models where the turbine parameterisation consists of an enhanced bot-

tom drag applied over a fixed, rectangular area A (e.g. [25]), we may use the

analysis presented in section 4. Where existing models typically make no distinc-

tion between upstream and local turbine velocity, they calculate the enhanced

drag coefficient as ct = CtAt/2A. Such implementations can be improved using595

the correction given by (15). The extra factor at the end of (15) can easily be

included by the user in either Ct or At, without the need for code modification,

if these are the input parameters to the model.

An additional complexity arises if Ct itself is not a constant. This occurs for

example if a cut-in speed and/or rating are applied to the turbine. In this case,600

Ct is typically given as a function (thrust curve) of the upstream velocity u0.

In the model however only the local velocity û1 is available. Using the formula

û1 = 1
2

(
1 +

√
1− Ĉt

)
u0, Ĉt =

At

Ât

Ct, (C.1)

however, it is straight-forward to transform a lookup table that gives the thrust

coefficient for different values of u0, into a lookup table that is a function of û1,

by computing û1 for the given values of u0 as a pre-processing step.605

For the computation of the power available to the turbine, we may use

(A.23). Here, again we use (C.1) to derive the upstream velocity u0 from the

local cell velocity û1. Combining these two equations, we derive:

Pturbine =
2
(
1 +
√

1− Ct

)(
1 +

√
1− Ĉt

)3CtρAtû
3
1. (C.2)

Again, in the case that Ct is not a constant, a lookup table may be used to

obtain the correct value of Pturbine for each value of û1.610

Turbine parameterisation in an arbitrary triangular mesh

For models such as MIKE 21 and Fluidity that employ triangular meshes

and which implement turbines through an increased drag applied within a single

triangle, the theory presented in section 5 can be applied. In triangular mesh
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models where the drag force is based on a cell-averaged velocity, the value for615

the enhanced drag coefficient can be found by solving (23) for ct. Models that

use a linear interpolation of velocities stored in the vertices, such as Fluidity

should use the value of ct found by solving (27). The same approach could also

be followed to implement a turbine in a single drag cell in Telemac 2D, where

its Finite Element modus is expected to behave in a similar manner as Fluidity,620

using a linear representation of the velocity within a cell.

In models, like MIKE, where the applied drag force and the associated coef-

ficient ct are not explicitly prescribed, the same effect can be achieved by modi-

fying the value of Ct. This is done by assuming the implementation is equivalent

to the standard enhanced bottom drag formulation according to equation (6).625

Indeed the results in figure 1 where the standard drag implementation of Fluid-

ity is compared with results in MIKE show that this is true to at least a good

approximation. By providing MIKE with a modified value of Ct

Ct,modified =
2Act
At

, (C.3)

we can therefore create the effect of applying a value of ct obtained from (23)

without modifying the code. Note, that in equation (23) we use the original630

value of Ct for the real turbine.

For non-constant Ct that is given as a thrust curve, MIKE (and similar

models) use the local cell velocity û1 instead of the upstream velocity to look

up the value of Ct. This can be corrected by converting the upstream values u0

in a u0 → Ct look-up table into cell velocities û1 using equation (20).635

To compute the power that can be usefully extracted by the turbine we again

use (A.23) this time combined with (20), giving:

Pturbine = 1
4

(
1 +

√
1− Ct

)
CtAt

(
1 + 2

3

Act
H∆y

)3

(uMIKE

1 )3. (C.4)

For finite element models, such as Fluidity, that consider a linear variation

of the velocity within the cell we can use (24) which predicts the relationship

between the upstream velocity and the velocity in the cell as a function of y.

By first taking an average of the finite element solution uFluidity

1 within the drag
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cell in the streamwise direction (x-direction), we can then use this equation to

estimate the upstream velocity u0. This estimate may in practice still vary in

the cross-streamwise direction (y-direction), so we take the cell average of its

cube to obtain an estimate for u3
0 in (A.23). Combining all this gives:

Pturbine = 1
4

(
1 +

√
1− Ct

)
ρ
CtAt

A

∫ ∆y

y=0

∆x(y)

 ∫ ∆x(y)
x=0 uFluidity

1 dx
∆x(y)

1− 1+H∆y
Act

y
∆y

3

dy. (C.5)

A practical implementation in Matlab of the correction in three dimensions

for users of MIKE 3 is described by Waldman et al. [27]. This is based on

the square correction derived in this paper, which was also briefly described640

in Kramer et al. [13]. The implementation automatically adjusts the input

parameters to MIKE 3 and updates them to take into account a variation in

flow directions, and the possible movement of vertical layers.
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