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Detecting a single photon without absorbing it is a long standing challenge in quantum optics. All experiments
demonstrating the nondestructive detection of a photon make use of a high quality cavity. We present a cavity-
free scheme for nondestructive single-photon detection. By pumping a nonlinear medium we implement an
inter-field Rabi-oscillation which leads to a ⇠ ⇡�phase shift on weak probe coherent laser field in the presence
of a single signal photon without destroying the signal photon. Our cavity-free scheme operates with a fast
intrinsic time scale in comparison with similar cavity-based schemes. We implement a full real-space multimode
numerical analysis of the interacting photonic modes and confirm the validity of our nondestructive scheme in
the multimode case.

PACS numbers: 85.60.Gz, 42.50.Dv, 42.65.-k

Unlike “demolition” detection [1, 2], quantum non-
demolition (QND) or “nondestructive” photon detection ide-
ally avoids any absorption of the photons during the measure-
ment. It is essential for applications in quantum information
processing as it can nondestructively monitor the outcome of
the system interaction and the operation of quantum gates.

Due to the ultrastrong coupling between a high qual-
ity microwave (mw) cavity and a qubit, nondestructive
single-photon detection has been demonstrated in mw cav-
ity quantum-electrodynamics (QED) [3–9]. A breakthrough
result demonstrated a ⇡ phase shift of an atom resonantly cou-
pled to a high-Q mw cavity after a full-cycle Rabi oscillation
(RO) [6]. However, the experimental verification of the non-
destructive detection of an optical photon in an optical cav-
ity has only been reported very recently [10]. So far, all ex-
perimental proposals, except for the microwave proposal by
Sathyamoorthy et al. [11] using a chain of superconducting
transmons strongly coupled to a propagating mw photon, de-
tect a mw or optical single photon by exploiting sophisticated
cavity-QED designs.

Nondestructive detection of a traveling single photon is a
key element in quantum information processing but is even
more challenging compared to the detection of a single pho-
ton in a cavity. A strong traveling classical light signal field
in a Kerr nonlinear medium can cause cross phase modula-
tion (XPM) on a weak copropagating probe field [12, 13].
However, the probe field’s phase shift induced by a single sig-
nal photon is typically too small to be detected. Therefore,
the nondestructive detection of a single photon exploiting the
cross Kerr nonlinearity has proved to be a particular challenge
in the field of quantum optics [13]. Researchers have sug-
gested approaches that enhance the weak cross-Kerr e↵ect for
single-photon phase modulation [14] and detection [13] but its
use for nondestructive measurement has been questioned [15–
17] if the “Ising”-type interaction, â†âb̂†b̂, between the signal
and probe modes: â and b̂, is utilized. In this letter, we theoret-
ically propose a method for nondestructive detection of a sin-
gle traveling photon without using a cavity. In our proposal,
we apply a tunable three-mode interaction âaâ†pâ†s + â†aâpâs

FIG. 1. (Color online) Schematic for detection of a single travel-
ing photon. (a) configuration for nondestructive detection of a single
traveling photon in a nonlinear medium. A weak probe coherent
field |↵pi (green line) interacts with the signal and auxiliary modes
âs (blue line) and âa (magenta line) in a third-order nonlinear (�(3))
medium. The probe field, after transmitting through the medium, is
displaced via a highly reflective beam splitter and then is detected.
(b) level diagram describing the interaction between the signal, aux-
iliary and probe photons.

resulting in “Rabi”-like oscillation in mode occupation.
We begin by discussing the main concept for the nonde-

structive detection of a single photon by describing the setup
as depicted in Fig. 1(a). As in [18], we strongly pump a non-
linear optical medium to create a standard three-wave-mixing
Hamiltonian. In this setup, the nonlinear coupling among the
auxiliary mode âa, the signal field âs and the probe mode âp

is enhanced and dynamically controlled by the strong pump
(control) field Ec with frequency !p and propagation constant
kp. The modes âa, âs and âp are assumed to have the cen-
tral frequencies !a, !s and !p, propagation constants ka, ks

and kp, and durations ⌧a, ⌧s and ⌧p, respectively. We assume
that the three modes su↵er zero dispersion over their individ-
ual bandwidths and propagate with constant group velocities.
This is reasonable if the duration of the signal and probe fields
are long enough to span a narrow bandwidth. By properly
choosing the length L of the nonlinear medium and control-
ling the intensity of the pumping, we can enable an accumu-
lated interaction of 2⇡ among the three fields âa, âs and âp as
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they propagate through length L of the medium. The interac-
tion Hamiltonian describing the three-wave mixing among the
fields in the medium (along the z direction) âa, âs and âp takes
the form (~ = 1)

ĤI =
g(Ec)

2
âaâ†pâ†s +

g⇤(Ec)
2

â†aâpâs , (1)

where g(Ec) indicates the nonlinear coupling strength which
can be tuned by the intensity of the pump field Ec.

Next we explain how to induce a substantial phase shift in
the weak probe field to distinguish between the vacuum and
single-photon states of the signal field. We arrange that the
auxiliary field is initially in the vacuum state |0ia. The sig-
nal field can be either the vacuum state |0is or a single-photon
state |1is. The weak probe coherent field |↵pi copropagates
with the signal mode and the pumping field along the z direc-
tion. We assume that ↵p ⌧ 1 such that |↵pi ⇡ |0ip + ↵p|1ip.
We schematically depict the interaction between the photons
by the level diagram shown in Fig. 1. For a weak probe field
↵p ⌧ 1, the joint quantum state |0p, 0ai is mostly populated,
while the occupation of the state |1p, 0ai is approximately
|↵p|2 exp(�|↵p|2/2). The signal field drives the transition
|1p, 0ai $ |0p, 1ai. To provide a simple but transparent picture
for our idea we consider the ideal case of !c + !a = !p + !s

and kc + ka = kp + ks. If g(Ep)L = 2⇡ and a single photon in
the signal field, i.e. â†s |Øi = |1is, (where |Øi is the vacuum),
the signal field will drive the transition |1p, 0ai ! |0p, 1ai and
then bring back the occupation to |1p, 0ai. In this case, the
state |1p, 0ai su↵ers a ⇡ phase shift and therefore the probe
field becomes | it = |0pi � ↵p|1i ⇡ | � ↵pi. For a vacuum
signal field |0si, the probe field has no phase shift after propa-
gating through the medium. As a result, the transmitted field
is | it = |↵pi. In our numerical simulation, the transitions
|(n + 1)p, 0ai ! |np, 1ai involving higher Fock states with
np > 0 are also taken into account by truncating the probe
field at a large Fock state.

To detect the change in the probe field, we displace the
probe field after it has propagated/transmitted through the
nonlinear medium by a coherent field |�↵pi. Then the density
matrix of the detected field is related to that of the transmitted
field by ⇢D(�↵p) = D(�↵p)⇢tD(↵p) [19], where D(↵p) is the
displacement operator. To do so, we inject a large coherent
field | � ⇠↵pi (⇠ � 1), in to a highly reflective beam splitter
((1 � ⌘) : ⌘) with a reflectivity of ⌘ > 0.99, together with the
probe field, so that the transmission is | � ↵pi [20]. In doing
so, the detector will measure a coherent field | iD = | � 2↵pi
if a single photon is present, but no photon (| iD = |0pi ) is
detected if no signal photon is input into the system.

We next evaluate the performance of our single-photon de-
tection. We first treat the propagation of the optical fields via a
single mode approach governed by a quantum Langevin equa-
tion by replacing the time t with the position z

@⇢/@z = �i[ĤI , ⇢] +L⇢ , (2)

where ⇢ is the density matrix of the system at the posi-
tion z, and L⇢ takes into account the possible decoherence,

FIG. 2. (Color online) Wigner functions of the transmitted and de-
tected states for a probe field with |↵p|2 = 0.6. (a) Transmitted signal
state | is after interacting for the length of the media; (b) Trans-
mitted probe field | it after interacting for the length of the media;
(c) Detected state | iD presented to detector. The concentric circles
show the Wigner function contours of the detection field in the case
of an input signal vacuum state.

L⇢ = P j=a,p,s
� j

2

⇣
2â j⇢â

†
j � â†j â j⇢ � ⇢â†j â j

⌘
with � j is the loss

per meter of the jth mode. Numerically solving the quan-
tum Langevin equation, one can calculate the transmitted
state of the probe field and the detected state. As a test, the
Langevin equation reproduces all the results shown in Fig.
2(a) of the work [18]. We will implement a more thorough
multi-mode propagation analysis later on but for now we take
�a = �p = �s = 10�3 rad ·m�1.

We consider the click at the detector as evidence of a sin-
gle photon in the signal mode. If no click is observed, then
no photon is in the signal mode. We assume perfect quan-
tum e�ciency of the detector. Thus the vacuum state of the
signal mode yields no click on the detector with 100% prob-
ability. When a single photon is injected into the system, the
state presented to the detector is | iD = | � 2↵pi. This state
can generate a click with a certain probability but the small
vacuum element in | iD can lead to a detection failure of
the signal photon with a probability Perr. Therefore, taking
↵p 2 <, this error probability is [21] given by Perr(↵p) =
Tr[|0pih0p|D(�↵p)⇢(L)D(↵p)] ⇡ |h0p| � 2↵pi|2 = e�4|↵p |2 . We
note that this error decreases exponentially with ↵p but we will
see below that the non-destructiveness of the protocol also de-
graded with increasing ↵p. If we explore an N-cascade detec-
tion configuration [11, 18], and consider a single click on any
detector as an indicator for a single photon in the signal mode,
then the error probability of failing to detect the signal photon
decreases as PN

err. This error decreases rapidly to vanishing
small values as N increases.

Another parameter indicating the “non-destructive” perfor-
mance of the detection is the fidelity of the signal single-
photon state F (↵p, L) = Tr[⇢(↵p, L)|1sih1s|], after detection.
The value of F can be evaluated numerically and for low val-
ues of ↵p we find it close to unity.

Next we estimate the performance of our system by numer-
ically simulating the mode master equation Eq. 2. For a vac-
uum signal state |0si, the detected field after the beam splitter
is trivial, being the initial probe vacuume field |0pi. Thus we
are primarily interested the detection field | iD in the case of a
single-photon signal input |1si. First, for a certain probe field
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of |↵p|2 = 0.6, and a single-photon signal field |1is, we investi-
gate to what extent the phase of the transmitted probe field can
be shifted while the signal field remains unchanged. Figure 2
shows the Wigner functions of the transmitted and detected
field. In Fig. 2(a), the Wigner function indicates the trans-
mitted signal field at z = 2⇡ is almost a single photon state
|1is. The fidelity is evaluated to be F ⇡ 0.9. The transmitted
probe field | it has a complicated Wigner function which in-
cludes a region with a large negative value. It means that | it
is a quantum field at z = 2⇡ because the initial probe field in-
cludes considerable occupation in higher Fock states |npi with
np > 1. As a result, the fidelity |h�↵p| it |2 is about 0.73, see
Fig. 2(b). After displacing by | � ↵pi with the beam splitter,
the Wigner function (Fig. 2(c)) moves to the left by ↵p with
the result that the detected field | iD can be well distinguished
from the field of |0pi, the latter being the detected field in the
case of a vacuum input signal.

During the time evolution of three modes, the occupation
of the probe field displays Rabi-like oscillation as the fields
propagates through the medium. The occupation of the probe
field first transfers to the auxiliary mode and then returns to
the probe field at gz = 2⇡. The fidelity of the signal mode
also oscillates with the propagation distance z. This process
repeats every gz = 2⇡. It is found that, given a small |↵p|2,
the phase of the probe field is shifted by ⇡ at gz = 2⇡, but
the loss of the signal mode is negligible. For example, when
|↵p|2 = 0.6, the probe field acquires a phase shift of ⇠ ⇡ at gz =
2⇡, while an occupation of 0.894 in the signal mode yields a
high fidelity for non-demolition F ⇡ 0.9. As |↵p|2 increases
the fidelity of the signal mode decreases gradually. If |↵p|2
increases to 0.8, the non-demolition fidelity F drops to 0.84.
The signal mode is more greatly modified by a stronger probe
field because the more populated higher Fock states with np >
1 interact dispersively with the signal mode [22]. As a result
the transitions involving higher Fock states prevent us from
perfect non-demolition of the signal mode.

A “good” single-photon detection requires a high fidelity
F of the signal mode and a small detection error Perr. Reduc-
ing the mean photon number of the probe field can increase
the fidelity of the transmitted signal mode but also leads to
an increase in the detection error because it provides less sig-
nal to the detector. For one measurement, the error probability
Perr ⇡ e�4|↵p |2 decreases exponentially as |↵p|2 increases. From
Fig.3, this analytic form (blue line) is in good agreement with
the numerical results (circles) for small |↵p|2. The numerical
value of Perr reaches its minimum 0.09 at |↵p|2 = 0.6 and then
increases slowly as |↵p|2 increases. On the other hand, the fi-
delity F decreases as well. When |↵p|2 = 0.6, F = 0.9. An
e�cient QND detection requires F /Perr � 1. Thus, a probe
field of |↵p|2 ⇠ 0.6 is optimal and yields F /Perr = 10. A N-
cascade configuration of the detection unit can reduce the er-
ror possibility to PN

err and relax the requirement F N/PN
err � 1.

The green line in Fig.3 provides an estimate of the N re-
quired to achieve PN

err < 5%. Even for a very weak probe
field of |↵p|2 = 0.2, four cascaded detection units can achieve
P4

err ⇠ 3% and F 4/P4
err > 27.

FIG. 3. (Color online) Detection error, Perr, and fidelity F , as a
function of the probe field. Blue line indicates the analytic estima-
tion. Circles show the numerical data for di↵erent probe fields, while
the diamond data (with regard to left vertical axis) shows the fidelity
of the transmitted signal mode. The green line (right vertical axis),
gives the number N of cascaded detection units to achieve an overall
detection error PN

err < 5%.

Although QND measurement of photons using XPM in a
Kerr nonlinear medium has been proposed for decades [13,
14], it has been widely doubted [15–17] when a continuous-
time multi-mode model [16], or a finite response time [17],
is considered and has never been demonstrated experimen-
tally at the single-photon level. However our scheme exploit-
ing “Rabi”-like oscillation overcomes most of these di�cul-
ties. Above we discuss the performance of our nondestructive
single-photon detection using four-wave mixing in a single-
mode model. In what follows, we investigate the validity
of our scheme by numerically simulating the interaction of
continuous-time multi-mode quantum wave packets propagat-
ing in real space.

For our purpose of single-photon QND detection, we only
need to address the fidelity and phase shift of a photon-pair
input state |1p, 1si after propagating a certain distance. Dur-
ing the propagation of the probe and signal fields the aux-
iliary field can be excited. To simulate the interaction we
define an associated wave function �ps(t; zp, zs) for the state
|1p, 1si, and the wave function �a(t; za) for the auxiliary field
state |1ai. These wave functions imply that the photons |1pi
and |1si (|1ai) appear(s) at zp and zs (za) at time t with prob-
ability of |�ps(t; zp, zs)|2 (|�a(t; za)|2). The state of the fields
can be described by a general wave function |�(t; za, zp, zs)i =R

dza�a(t; za)â†a|Øi +
R R

dzpdzs�ps(t; zp, zs)â†pâ†s |Øi, where
|Øi is the vacuum state. We apply a Gaussian input
�ps(t; zp, zs) = 1p

⇡⌧p⌧s
e�(zp�zp,0)2/2⌧2

p e�(zs�zs,0)2/2⌧2
s , where zp,0

and zs,0 are the group delays of the probe and signal wave
functions, respectively. For simplicity, we assume ⌧p =
⌧s = ⌧. Assuming this product input yields no quan-
tum (or classical) correlations in the input we have initially,R R

dzpdzs|�ps(0; zp, zs)|2 = 1 and
R

dza|�a(0; za)|2 = 0. The
evolution of the photonic wave functions is governed by the
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FIG. 4. (Color online) Evolution of the wave function �ps for (a) the
same propagating speeds vp = vs = 1 and delay, and (b) di↵erent
speeds vp > vs (vp = 1 but vs = 0.6) and di↵erent delays, xs0 = �4
and xp0 = �7.6. Inset plot in Fig. (b) shows the positions of input
probe (blue line) and signal (red line) wave functions corresponding
to the first red spot.

partial di↵erential equations (PDEs) [23]

@�ps

@t
= �vp

@�ps

@zp
� vs
@�ps

@zs
� ig0

2

Z L

0
fg(za, zp, zs)�adza ,

@�a

@t
= �va

@�a

@za
� ig0

2

Z L

0

Z L

0
fg(za, zp, zs)�psdzpdzs ,

where we assume perfect phase and energy matching �k =
(kc + ka � kp � ks) = 0 and �a = (!c + !a � !p � !s) = 0,
respectively. The nonlinear medium is assumed to possess
a spatial nonlocal response distribution [24] fg(za, zp, zs) =

1p
⇡�3

e�
(za�zp )2

2�2 e�
(za�zs )2

2�2 , where � indicates the finite interaction
length. The prefactor of this spatial response function is not
important for experimental implementation because the cou-
pling strength can be tuned via the pump laser power. The
photon pulses are long enough to assume that the group veloc-
ity of each mode is constant in time (we assume va = vp = 1 ).
The fidelity of the photon pair state |1p, 1si is evaluated asF =
1
2 |1 �

R R
dzpdzs�⇤ps,in(te; zp, zs; zp,e, zs,e)�ps(te; zp, zs; zp,e, zs,e)|,

where �⇤in(te; zp, zs; zp,e, zs,e) means the input wave packets
�ps(t = 0) freely propagating to the output position zp,e and
zs,e. With this definition we expect the fidelity to be F = 0
when no phase shift is present but F = 1 for a ⇡ phase shift.
Throughout our simulation, we set � = 0.2 and the duration
⌧ = 0.6 in z.

We numerically simulate the time evolution of the associ-
ated wave function �ps at di↵erent positions in real space using
the xmds package to solve the PDEs [25]. Here the probe and
signal wave functions initially have no correlation yielding a
form for �ps of a 2D symmetric Gaussian. In Fig. 4(a), the
probe and signal wave functions have the same delay and are
assume to copropagate at same group velocity, vp = vs = 1.
We find that only the diagonal region of the wave function
�ps has a ⇡ phase shift because the nonlinear interaction oc-
curs only when the probe and signal photons overlap in space,
|zp � zs| < �. In Fig. 4(b), the signal pulse enters the medium
first and is followed by the probe pulse (see inset plot). The
probe mode propagates faster than the signal mode. This con-
figuration has been used for XPM to induce a large phase shift
using an Ising type interaction but the resulting fidelity was
poor [26]. In our case, during the propagation the probe field

scans over the whole signal pulse and subsequently the two
fields interact completely with each other. It is found that the
wave function starts to invert when the leading edge of the
probe pulse meets the tail of the signal pulse. As a result,
a ⇡-phase shift can be induced after the probe pulse passes
through the entire signal pulse and we find that the fidelity is
very high, with F ⇡ 1.

The experimental implementation of our scheme can be
conducted in various systems. We follow the configuration
in [18]. We use a polarization-maintaining photonic crys-
tal fiber (PCF) as the nonlinear medium and pump it with a
100 mW � 1 W cw laser beam at 532 nm. By controlling the
power of the pump laser and the length L of the PCF, we can
achieve a full Rabi oscillation for L ⇠ 66m. We choose a
weak 504 nm long laser pulse with the input state |↵pi as the
probe mode âp. The 710 nm as the auxiliary mode is absent in
the input. In this setup, we are able to nondestructively detect
a single photon at 766 nm. Note that only the pump laser is
strong. As a result, this pump laser will modulate the energy
of other three modes in the same way and can be neglected.
The relative large self modulation of the pump laser energy
can also be canceled by tuning the pump wavelength a little.
We also note that a slot-waveguide configurations can yield
four-wave mixing strengths almost four orders larger than in
PCF [27].

In conclusion, we have proposed a cavity-free scheme to
detect a single optical photon without destroying it. In our
setup we have induced a ⇡ phase shift in a weak probe field
by a traveling single photon in a nonlinear medium with this
single photon remaining largely unchanged.

⇤ keyu.xia@mq.edu.au
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