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Abstract 

The Ikaros family of zinc finger transcription factors is essential for B cell development, and 

frequently mutated in B cell malignancies. Our lab has previously identified Ikaros target 

genes in pre-B cells by combining Ikaros ChIP-seq binding data and gene expression 

profiling. To address the kinetics and mechanisms of Ikaros-mediated 

transcriptional regulation, I have used an inducible Ikaros system, which allows for the 

monitoring of cellular and molecular changes during Ikaros-mediated gene silencing at high 

temporal resolution. Within minutes of Ikaros induction, the Ikaros-regulated model loci 

Igll1 and Myc showed decreased promoter accessibility and RNA polymerase II (RNAPII) 

occupancy. These early events were followed by changes in nucleosome composition, 

including an increased histone H2B/H3 ratio, the deposition of the histone variant H2A.Z, 

and decreased active histone acetylation marks. Histone deacetylation was not required to 

initiate down-regulation of Igll1 and Myc transcription, since treatment with the histone 

deacetylase inhibitor Trichostatin A did not interfere with Ikaros-mediated gene silencing. I 

next elucidated the mechanistic relationship between the early events of decreased promoter 

accessibility and decreased RNAPII occupancy. Addition of Triptolide resulted in the 

removal of RNAPII from the Igll1 and Myc promoters, but did not affect nucleosome 

occupancy and its regulation mediated by Ikaros. This suggested that Ikaros regulates 

nucleosome positioning and occupancy directly, and not through effects on RNAPII. 

Consistent with this hypothesis, Ikaros-mediated gene silencing was delayed by RNAi-

mediated knockdown of chromatin remodeler Mi-2β (Chd4), the ATPase subunit of the Mi-

2/NuRD complex. Hence, Ikaros-initiated chromatin remodelling was identified as one of the 

earliest events during Ikaros-mediated gene silencing, and was required for rapid 

transcriptional down-regulation of Ikaros target genes. 
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1 Introduction 

1.1 Early B cell development and the Ikaros family of transcription factors 

1.1.1 Early B cell development  

Mammalian haematopoiesis is a hierarchical process. In this hierarchy, haematopoietic stem 

cells (HSCs) obtain a broad developmental potential, and are able to generate all cells of the 

immune system. As cells progress down into a specific lineage, they gradually restrict cell 

fate potentials and acquire specialised cellular functions. The orderly step-wise process of 

early B cell development is discussed here, with reference to the key transcription factors 

required for lineage specification (Cedar and Bergman, 2011) (Figure 1.1).  

Murine HSCs initially give rise to multi-lineage progenitors (MLPs), which do not self-renew 

but have the potential to generate early progenitors of lymphoid and myeloid lineages 

(Morrison et al., 1995). Common lymphoid progenitors (CLPs) can further specify B cell 

lineages, or eventually differentiate into T lymphocytes or nature killer cells (NKs) (Kondo et 

al., 1997). The process of early B cell development is intimately connected to the 

rearrangement of immunoglobulin genes, a process also known as V(D)J recombination. 

Specification of the B cell lineage features the expression of the pan-B cell marker B220 in 

pre-pro-B cells (Hardy fraction A, Fr A) (Hardy et al., 1991; Matthias and Rolink, 2005). 

This is followed by the expression of CD19, and the recombination of diversity (DH) and 

joining (JH) segments of the immunoglobulin heavy chain (IgH) in pro-B cells (Hardy Fr 

B/C). The IgH locus then continues to rearrange its variable (VH) segments to DJH. The 

product of the rearranged IgH is assembled with the surrogate light chain (SLC) to form a 

pre-B cell receptor (pre-BCR) on the surface of cycling pre-B cells (Hardy Fr C’). Following 

this, SLC is down-regulated and immunoglobulin light chain (IgL) genes are rearranged in 

resting pre-B cells (Hardy Fr D). The appearance of the assembled B cell receptor (BCR) on 

the cell surface defines the immature B cell (Hardy Fr E) stage (Hardy et al., 1991; Matthias 

and Rolink, 2005) (Figure 1.1).  
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Figure 1.1 Schematic illustration of early B cell development in the bone marrow 

B cell development from HSCs takes place in a highly ordered hierarchical manner. Murine HSCs initially 
give rise to MLPs, which can generate early progenitors of lymphoid and myeloid lineages. CLPs can 
eventually give rise to B cells, or T lymphocytes or NKs. After the entry of pre-pro-B cells, DH-JH 
rearrangement is initiated and finished in pro-B cells. This is followed by the rearrangement of VH-DJH. 
The product of the rearranged IgH is then assembled with SLC to form pre-BCR on the cellular surface in 
cycling pre-B cells. Following this, SLC is down-regulated and the rearrangement of IgL is initiated in 
resting pre-B cells. The appearance of the assembled BCR on the cellular surface defines the immature B 
cell stage.  

Loss of function studies using mouse models have identified key transcription factors for the 

specification of B cell lineage, including PU.1, Ikaros, E2A, EBF1, Pax5 and Foxo1. The 

expression of these transcription factors is temporally regulated. PU.1 and Ikaros are the 

earliest expressed transcription factors, even before the commitment to the lymphoid branch. 

PU.1-deficient mice die during embryonic development and show defective generation of 

both lymphoid and myeloid progenitors (Scott et al., 1994). The expression level of PU.1 

helps to specify distinct cell fates in the haematopoietic system. Low expression of PU.1 

induces B cell development; however, high expression of PU.1 suppresses the B cell fate and 

promotes the development of the myeloid lineages (DeKoter and Singh, 2000). Further 

investigation revealed that PU.1 binding to chromatin is cell-type specific, and is colocalised 

with lineage-determining transcription factors, such as E2A and EBF in B cells (Heinz et al., 
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2010). This suggests that the B cell lineage is specified by a combination of key transcription 

factors. As with PU.1, the transcription factor Ikaros is also expressed very early during 

haematopoiesis. Ikaros-deficient mice lack B cell progenitors, and show defects in the 

development of other immune cell compartments (Georgopoulos et al., 1994; Wang et al., 

1996; Yoshida et al., 2006). This will be further discussed in section 1.1.2.  

E2A, another key transcription factor in B cell development, is encoded by Tcf3 with two 

splice variants E12 and E47. In the absence of E2A, B cell development is blocked as early as 

the pre-pro-B stage, and IgH segments fail to undergo rearrangement (Bain et al., 1994; 

Zhuang et al., 1994). During pre-pro-B cell development, E2A is up-regulated concomitantly 

with the initiation of IgH rearrangement, and activates the expression of Ebf1 (early B cell 

factor1) and Foxo1 (forkhead box protein O1) (Lin et al., 2010b; Zhuang et al., 2004). 

Similar to E2A, ablation of EBF1 also leads to a very early block at the pre-pro-B stage in B 

cell development. EBF-deficient cells fail to rearrange DH to JH at the IgH locus (Lin and 

Grosschedl, 1995). However, ectopic expression of EBF1 rescues B cell development in 

E2A-/- mice (Seet et al., 2004), suggesting that EBF1 is a downstream target of E2A. E2A and 

EBF are important to activate B cell specific genes. For example, forced expression of E2A 

and EBF1 leads to the activation of the pre-BCR component λ5 in early B cell progenitor 

cells (Sigvardsson et al., 1997) and in non-lymphoid cells (Sigvardsson, 2000). In addition to 

E2A and EBF1, the transcription factor Pax5 is required for B cell lineage commitment. 

Induction of Pax5 expression in pro-B cells requires the binding of EBF1 to the Pax5 

promoter, and the binding of PU.1, Foxo1, IRF4 and IRF8 to the Pax5 enhancer (Decker et 

al., 2009; O'Riordan and Grosschedl, 1999). Pax5 is required for the expression of additional 

B cell specific genes contributing to further lineage commitment, and for the suppression of 

alternative lineage choices. The importance of Pax5 in specifying B cell lineage is 

highlighted in studies showing that targeted inactivation of the Pax5 locus leads to a 

developmental block at pro-B cell stage (Nutt et al., 1999). Furthermore, Pax5-/- pro-B cells 

retain significant developmental plasticity, and are able to adopt alternative cell fates with the 

addition of appropriate signals (Nutt et al., 1999; Urbanek et al., 1994). 

The pre-BCR is composed of an Ig heavy chain (Igμ) and the SLC consisting of λ5 (encoded 

by Igll1) and VpreB (encoded by Vpreb1/2). The deposition of the pre-BCR on the cell 

surface, alongside the signalling subunits Igα and Igβ, is an important checkpoint during early 

B cell development. Signals from the pre-BCR provide rapid feedback for the functionality of 

the recombined IgH. The importance of the pre-BCR has been revealed by a series of gene 
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disruption experiment. The IgH locus was targeted by homozygous deletion mutation in the 

transmembrane region of IgH (µTM), and a mouse stain that is unable to deposit the pre-BCR 

on the cell surface was generated. In these µTM
-/- mice, the transition from cycling pre-B stage 

to resting pre-B stage is blocked, and no further B cell development is observed (Kitamura et 

al., 1991). Similarly, SLC-/- mice show an impaired B cell development; however, the 

developmental block is incomplete, where a small number of immature B and mature B cells 

are still observed (Shimizu et al., 2002). This is possibly due to the prematurely expressed 

immunoglobulin light chain (Shimizu et al., 2002; Su et al., 2003). Therefore only signalling-

competent pre-B cells can initiate a cascade of cellular responses and mature further. Pre-

BCR first promotes a burst of cell proliferation, expanding the cells which have successfully 

rearranged Igµ (Jumaa et al., 2005; Yasuda et al., 2008). Pre-BCR then facilitates 

differentiation. Pre-BCR signalling results in elevated expression of the Ikaros family 

member Aiolos (Thompson et al., 2007). Ikaros and Aiolos cooperate to down-regulate λ5 

and VpreB, and ensure the termination of pre-BCR expression (Thompson et al., 2007). The 

pre-BCR signalling also induces cell cycle arrest at G1 (Ma et al., 2010; van Loo et al., 2007), 

and initiates VL to JL rearrangement at the κ and λ light chain loci (Herzog et al., 2009). If 

inappropriately regulated, enhanced proliferation of cycling pre-B cells may lead to the 

accumulation of genetic lesions and the development of pre-B cell leukaemia (Jumaa et al., 

2005).  

 

1.1.2 The transcription factor Ikaros 

The transcription factor Ikaros, encoded by Ikzf1, is expressed in haematopoietic stem cells, 

all lymphoid and some myeloid cells (Georgopoulos et al., 1992; Hahm et al., 1994; Lo et al., 

1991). Structural analysis revealed that Ikaros is a zinc finger protein, with its zinc fingers 

organized into two separate clusters residing at the N- and C-terminus (Georgopoulos et al., 

1992). Gel shift and DNaseI footprinting assays of Ikaros mutant-GST fusion proteins 

demonstrated that the N-terminal zinc fingers determine the DNA binding activity of Ikaros 

(Hahm et al., 1994). Later, the zinc fingers in the C-terminus were shown to be essential for 

dimerization with other Ikaros proteins (Sun et al., 1996).  
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Ikaros is the founding member of the Ikaros family of transcription factors. Using degenerate 

primers against the C-terminal domain, the close relative Aiolos (encoded by Ikzf3) was 

discovered (Morgan et al., 1997). Shortly, another family member, Helios (encoded by Ikzf2), 

was found through its interaction with Ikaros (Hahm et al., 1998). Both Aiolos and Helios 

show a high degree of sequence homology to Ikaros, especially within the zinc finger 

domains, and their expression is predominantly confined to lymphoid lineages (Hahm et al., 

1998; Morgan et al., 1997). Two additional distantly related family members, Eos (Ikzf4) and 

Pegasus (Ikzf5), are more widely expressed and are detected in lineages other than 

haematopoietic cells (Honma et al., 1999; Perdomo et al., 2000). 

Ikaros itself is alternatively spliced, producing at least eight isoforms (Figure 1.2). Each 

isoform contains a distinct composition of N-terminal zinc fingers and a shared C-terminal 

protein interaction domain (Hahm et al., 1994; Molnar and Georgopoulos, 1994; Payne et al., 

2003). The N-terminal zinc fingers determine Ikaros isoform DNA binding affinity and 

sequence-specificity. Zinc fingers 2 and 3 are essential for DNA binding, and recognize the 

core consensus sequence (G)GGAA(A). However, to achieve higher binding affinity and 

subsequently stronger regulation of transcription, additional zinc fingers 1 and/or 4 are also 

required (Cobb et al., 2000; Hahm et al., 1994; Molnar and Georgopoulos, 1994). Recently, 

an elegant study from the Smale lab on mouse models with deleted zinc finger 1 or 4 revealed 

that the Ikaros isoforms containing zinc fingers 1 or 4 regulate distinct sets of genes during 

lymphocyte development (Schjerven et al., 2013). Mice expressing Ikaros lacking zinc finger 

1 show severely impaired expression of Igµ at the pro-B stage. However, in mice with 

deletion of Ikaros zinc finger 4, early B cell development is only mildly affected (Schjerven 

et al., 2013).  
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Figure 1.2 Schematic illustration of Ikaros domain structure 

The cartoon shows the structure of Ikaros isoforms 1-5. The ellipses are representative of zinc fingers, 
with the blue eclipses at N-terminus responsible for DNA binding, and the red eclipses at C-terminus 
responsible for dimerization. All isoforms contain C-terminus and vary at the N-terminus. Additional 
isoforms are not shown in this figure (Payne et al., 2003). 

Genetic studies revealed that Ikaros is critically involved in haematopoiesis, particularly 

during lymphocyte development (Merkenschlager, 2010). An Ikaros-deficient mouse strain 

was generated by deletion of Ikzf1 exon 7, which destabilises Ikaros protein. These Ikaros-

null mice lack B cells, NK cells, and foetal T cells (Wang et al., 1996). The development of T 

lymphocytes is restored in adult mice, however the differentiation is defective with an 

increased number of CD4 single positive cells at the expense of CD4 CD8 double positive 

precursor cells. A more severe phenotype was observed in Ikaros mutant mice homozygous 

for deletion of Ikzf1 exon 3 and 4 (zinc finger 1-3), which produces short Ikaros proteins 

deficient in DNA binding. These mice lack not only B, T and NK cells, but also their earliest 

defined progenitors (Georgopoulos et al., 1994). The varied severity between these two 

Ikaros mutants can be explained by the interactions between Ikaros and family members. The 

recovery of T cell development in Ikaros-null mice suggests the ability of other Ikaros family 

members to compensate for Ikaros function (Wang et al., 1996). However in mice expressing 

the non-DNA binding Ikaros isoform, these short Ikaros proteins interact with other family 
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members and produce non-functional Ikaros complexes, therefore posing a dominant 

negative effect and abolishing the compensation.  

Additionally, mice heterozygous for dominant negative Ikaros rapidly develop T cell 

leukaemia (Winandy et al., 1995). This suggests a role of Ikaros as a tumour suppressor. In 

support of this, IKZF1 deletion is observed in more than 80% of patients suffering from the 

oncogenic tyrosine kinase BCR-ABL+ acute lymphoblast leukaemia (ALL) (Mullighan et al., 

2008). Using mouse models with selected deletions of Ikaros N-terminal zinc fingers, Smale 

and colleagues recently discovered that the zinc fingers 2-4 of Ikaros protein are essential for 

the tumour suppression functions of Ikaros, in both T malignancies and the BCR-ABL+ B-

ALL (Schjerven et al., 2013).  

The expression of Ikaros gradually increases during early B cell development (Ferreiros-

Vidal et al., 2013). In pro-B cells, Ikaros is essential for V-DJ rearrangement by activating 

the recombination machinery and ensuring correct accessibility and compaction of the IgH 

locus (Reynaud et al., 2008). At the transition from cycling pre-B cells to resting pre-B cells, 

Ikaros, together with elevated level of Aiolos, functions to silence the expression of the SLC 

component λ5 and VpreB (Thompson et al., 2007). Ikaros and Aiolos also down-regulate c-

Myc (Ma et al., 2010), and subsequently induce cell cycle arrest in G1 (Ferreiros-Vidal et al., 

2013). Remarkably, simple overexpression of Ikaros in a cycling pre-B cell line is sufficient 

to drive global transcriptional changes that mimic the transition from cycling to resting pre-B 

cells (Ferreiros-Vidal et al., 2013). This in vitro study is supported by research using 

conditional Ikzf1 knockout mice (Heizmann et al., 2013; Schwickert et al., 2014). Deletion of 

Ikzf1 in pro-B cells results in a complete block at the cycling pre-B stage. Restoration of 

Ikaros, but not Aiolos, rescues the differentiation into the resting pre-B cells (Heizmann et al., 

2013; Schwickert et al., 2014). These studies emphasize the essential role of Ikaros in early B 

cell development. 

 

1.2 Transcriptional regulation in B cell development 

B cell lineage commitment is achieved by the establishment of lineage-specific 

transcriptional programmes, which involves the activation of lineage-specific genes, and the 

silencing of inappropriate genes. This is largely determined by the key transcription factors 

required for B cell development.  
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To understand how these unique gene expression patterns are orchestrated during 

development is a formidable task. Fundamentally, transcription of mRNA is carried out by 

the core RNA polymerase II (RNAPII) transcription machinery based on the genomic DNA. 

However in eukaryotes, DNA is largely inaccessible to the transcription machinery, as it is 

packaged into macromolecules with proteins, termed chromatin. Here, a few important 

mechanisms involved in modulating RNAPII and chromatin status during transcriptional 

regulation are discussed. 

1.2.1 RNA polymerase II 

The enzymatic activity of DNA-dependent RNA polymerase was first discovered by  Weiss 

and Gladstone in rat liver nuclei (Weiss and Gladstone, 1959). In 1969, the RNA 

polymerases I, II, and III were first separated and identified by Roeder and Rutter (Roeder 

and Rutter, 1969). RNA polymerase I was found in the nucleoli, and II and III were in the 

nucleoplasm (Roeder and Rutter, 1970). The functional specificity of RNA polymerases was 

resolved based on their differential sensitivities to α-amanitin by Chambon’s and Roeder’s 

groups (Gniazdowski et al., 1970; Kedinger et al., 1970; Weinmann et al., 1974; Weinmann 

and Roeder, 1974). RNA polymerase II (RNAPII) was found to transcribe mRNA.   

For effective mRNA transcription, RNAPII is first recruited to gene promoters, and 

assembled into the pre-initiation complex (PIC) together with the general transcription factors 

(GTFs) (step1). This transcription machinery then unwinds double-stranded DNA (dsDNA) 

to form an open complex (OC) (step2). After transcription initiation, RNAPII polymerises 

mRNA and escapes promoters (step3). This early elongating RNAPII is subsequently paused 

at promoter-proximal regions (step4). For effective elongation, RNAPII needs to be released 

from pausing (step5). Transcription is thus productive along the entire body of the gene 

(step6). Following that, RNAPII is terminated when it encounters the transcription 

termination signal (step7), and perhaps recycled for a new round of transcription (step8) 

(Fuda et al., 2009).  

All these steps are delicately assisted and regulated by a complex set of factors, and each step 

can be potentially rate-limiting to transcription. To understand transcriptional regulation, 

RNAPII serves as a useful target to study the steps and factors involved in transcriptional 
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regulation. Here, the regulation of RNAPII at initiation and elongation steps is further 

discussed (Figure 1.3, 1.4). 

1.2.1.1 Transcription initiation  

RNAPII is the core of the transcription machinery. RNAPII is composed of 12 subunits, 

namely Rpb1-12, with a total mass of about 500kD (kilodaltons) (Cramer et al., 2000; Young, 

1991). Rpb1 and Rpb2 form the central mass of the enzyme. They position on opposite sides 

of a cleft, at the bottom of which lies the catalytic site of the enzyme (Cramer et al., 2000). 

Rpb1 has a unique C-terminal domain (CTD). It contains up to 52 tandem repeats of the 

heptad sequence YSPTSPS (Tyrosine- Serine- Proline- Threonine- Serine- Proline- Serine). 

Rpb1-CTD extends from the catalytic core of RNAPII and lies at the nascent mRNA exit site 

(Cramer et al., 2001). Rpb1-CTD can be phosphorylated at multiple positions in a 

programmed way during transcription initiation and elongation (Bentley, 2014). It acts as 

important scaffold for the assembly of factors regulating the synthesis and the processing of 

mRNA transcripts (Corden, 2013; Hahn, 2004).  

RNAPII can unwind DNA double helix, polymerise RNA and proofread the nascent 

transcript. However, on its own, RNAPII is not able to recognize promoters or initiate 

transcription. A minimal set of general transcription factors (GTFs), namely TFIIB, -D, -E, -F, 

-H, is required (Grunberg and Hahn, 2013; Liu et al., 2013). The TATA-binding protein 

(TBP), which normally occurs as a subunit of TFIID, marks the promoter through its 

interactions with TATA, and bends DNA by approximately 90 degrees forming an assembly 

platform for PIC (Kim et al., 1993a; Kim et al., 1993b). This TBP-DNA interaction can be 

facilitated and stabilised by TFIIA (Bleichenbacher et al., 2003; Geiger et al., 1996; Tan et al., 

1996). TFIIB bridges TBP and RNAPII (Hahn, 2004). TFIIF, identified as a RNAPII loading 

factor, enters the PIC together with RNAPII (Roeder, 1996; Sopta et al., 1985). TFIIE is 

primarily a loading factor for TFIIH (Holstege et al., 1995; Pan and Greenblatt, 1994). TFIIH 

is the only GTF possessing ATP-dependent enzymatic activities. TFIIH contains 

CDK7/Kin28 (cycling-dependent kinase, CDK), XPD/Rad3 (DNA helicase) and XPB/Ssl2 

(DNA translocase), and seven other subunits (Egly and Coin, 2011). These GTFs are 

essential to recruit RNAPII to gene promoters and initiate transcription. 
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Step 1: the assembly of pre-initiation complex (PIC) 

The assembly steps of the PIC remain to be further elucidated, since recent studies point to 

two distinct pathways of human and yeast PIC assembly. Describing the human PIC, TBP, 

TFII-A, -B and RNAPII first form a complex with DNA. This is followed by sequential 

addition of TFII-F, -E and finally –H (He et al., 2013). While describing the yeast PIC, an 

intermediate complex containing TBP, TFII-A, -B, -E, -H is first assembled onto the DNA, 

and subsequently, TFIIF and RNAPII are added (Murakami et al., 2013).  

The assembly of the PIC is the first rate-limiting step in RNAPII transcription. It is regulated 

by cell type- and DNA sequence-specific transcription factors, and is assisted by transcription 

cofactors. Transcription cofactors can be broadly categorised into two classes. One class 

contains proteins or complexes that can modify histones or remodel chromatin in an ATP-

dependent manner (this is further discussed in section 1.2.2). The other class includes factors 

that directly interact with the core transcription machinery to modulate transcription, such as 

Mediator and SAGA (Grunberg and Hahn, 2013). 

Mediator is a multisubunit complex composed of four separate modules: head, middle, tail, 

CDK/kinase (Ansari and Morse, 2013). It bridges transcription factors with the transcription 

machinery. Mediator head module interacts with RNAPII Rbp1-CTD. This interaction is 

stabilized by the TFIIF (Bernecky et al., 2011). Meditor interacts with transcription factors at 

multiple interfaces (Borggrefe and Yue, 2011). For example, Mediator directly interacts with 

the transcription factor GATA1 during erythropoiesis. Conditional deletion of the Mediator 

subunit MED1 abolishes the expression of β-globin, and blocks erythroid development 

(Stumpf et al., 2010). In pro-B cells, Mediator colocalizes with key transcription factors for B 

cell development, such as PU.1, Ebf1, E2A and Foxo1, and marks enhancer regions that are 

important for the specification of B cell identity (Whyte et al., 2013). 
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Figure 1.3 Schematic illustration of transcription initiation 

Transcription initiation starts from the assembly of the pre-initiation complex (PIC) at gene promoter. This 
involves general transcription factors TFII-B, -D, -E, -F, -H, and RNAPII, and can be assisted by 
transcription cofactors, such as the Mediator complex. Following this, the formation of the open complex 
(OC) is recognized by the generation of single-stranded DNA (ssDNA) by the XPB subunit of TFIIH. 
Promoter escape to accomplish transcription initiation is accompanied by the phosphorylation of Rpb1-
CTD serine5 by the Cdk7 subunit of TFIIH, dissociation of RNAPII from most of the general transcription 
factors, and m7-G-capping at the 5’ of pre-mRNA. 
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Step 2: the formation of the open complex (OC) 

The formation of the open complex (OC, or open PIC) features the unwinding of dsDNA, 

thus creating a ‘transcription bubble’ (Fuda et al., 2009). TFIIH is required to melt the 

promoter dsDNA and form the open complex (Grunberg et al., 2012; Kim et al., 2000). The 

DNA translocase subunit of TFIIH, XPB/Ssl2, inserts 15bp of downstream DNA into the 

RNAPII cleft by right-handed threading. Combined with the fixed position of upstream DNA, 

the rotation then leads to DNA unwinding (Grunberg et al., 2012).  

The formation of the OC has recently been discovered to be the second rate-limiting step 

during transcription initiation in eukaryotes (Kouzine et al., 2013). Casellas and colleagues 

developed ssDNA-seq to quantify the melting of dsDNA. In naïve B cells, most genes that 

are induced upon activation are already bound by RNAPII. However, the generation of 

ssDNA at promoters, which indicates the formation of the OC, is only observed after B cell 

activation. This is accompanied by the stimulated expression of TFIIH (Kouzine et al., 2013). 

Step 3: promoter escape 

Following the formation of the OC, the template strand of DNA is orientated to the catalytic 

site of RNAPII by TFIIB (Kostrewa et al., 2009; Liu et al., 2010). The OC then scans 

downstream for transcription start site (TSS). The selection of TSS is facilitated by TFIIB, 

TFIIF, and additional assisting factors (Kostrewa et al., 2009; Liu et al., 2013; Sainsbury et 

al., 2013). Following this, RNAPII starts polymerising RNA. This is accompanied by the 

conformational changes of RNAPII-TFIIB, which leads to the dissociation of TFIIB, other 

GTPs and Mediator from RNAPII (Sainsbury et al., 2013). Subsequently, RNAPII escapes 

the promoter and proceeds to early elongation. TFIIH also plays an important role in RNAPII 

promoter escape. The kinase subunit of TFIIH, CDK7, phosphorylates serine5 on the Rpb-

CTD, and aids RNAPII breaking contact with promoter-bound factors (Jeronimo and Robert, 

2014; Saunders et al., 2006; Wong et al., 2014). 

 

27 
 



1.2.1.2 Transcription elongation  

After successful promoter escape, early elongating RNAPII can be paused at 20-60nt 

downstream of the TSS. This RNAPII promoter proximal pausing mechanism was first 

described for Drosophila heat-shock genes (Rougvie and Lis, 1988). In mammalian cells, the 

control of RNAPII pause-release is also a highly regulated rate-limiting step during 

transcription (Figure 1.4) (Guenther et al., 2007; Rahl et al., 2010).  

Step 4/5: RNAPII pause-release 

RNAPII promoter proximal pausing is imposed by two factors, the 5,6-dichloro-1-β-D-

ribofuranosylbenzimidazle (DRB) sensitivity-inducing factor (DSIF) and negative elongation 

factor (NELF). To reverse their effect, positive transcription elongation factor (P-TEFb) is 

required and allows for productive elongation (Zhou et al., 2012). P-TEFb is a nuclear-

localized cyclin-dependent kinase (CDK), containing cyclins T1/T2 and the catalytic subunit 

CDK9. P-TEFb functions in releasing paused RNAPII by phosphorylating NELF subunit 

NELFe (Fujinaga et al., 2004), DSIF subunit hSpt5 (Chen et al., 2009), and serine2 on the 

Rpb1-CTD (Ramanathan et al., 2001). Phosphorylated NELF is dissociated from RNAPII, 

and phosphorylated DSIF functions as a positive elongation factor (Peterlin and Price, 2006). 

In addition, the hyperphosphorylated Rpb1-CTD, conveniently located at the pre-mRNA exit 

site (Cramer et al., 2001), serves as an important scaffold for the binding of RNA processing 

complexes and other positive elongation factors to facilitate transcription elongation (Bentley, 

2014; Zhou et al., 2012). 
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Figure 1.4 Schematic illustration of transcription elongation control 

After promoter escape (Figure 1.3), RNAPII is paused at the promoter proximal region, after producing 
approximately 20-60nt of pre-mRNA. The pausing is imposed mainly by two factors, NELF and DFIS. 
Productive elongation need to overcome the pausing by P-TEFb, which phosphorylates NELF, DFIS and 
Rpb1-CTD serine2. This leads to the dissociation of NELF from RNAPII, transformation of DFIS to 
positively assisting elongation, and recruitment of mRNA processing complexes. 

Because paused RNAPII requires P-TEFb for productive elongation, regulating the activity 

and localization of P-TEFb is essential for proper gene expression. P-TEFb is sequestered in 

an inactive state by the RNA-binding protein HEXIM1/2 and 7SK snRNP (containing 7SK 

RNA, LARP7 and MePCE) (Li et al., 2005b; Nguyen et al., 2001; Yang et al., 2001). 

Reversing the association with 7SK snRNP plays a major role in delivering the active form of 

P-TEFb.  
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In one way, the release of P-TEFb can be mediated through direct interaction with Brd4, a 

bromodomain protein of the BET family (bromodomain and extraterminal) (Jang et al., 2005; 

Yang et al., 2005). Brd4 recognizes acetylated histones, particularly acetylated histone 

H4K5/K8/K12 (Hargreaves et al., 2009). Brd4 then directs P-TEFb to these hyperacetylated 

gene promoters. Interference with Brd4 by siRNA or BET inhibitors, such as JQ1 and I-BET, 

impairs P-TEFb recruitment to the gene promoters with paused RNAPII. This leads to 

decreased phosphorylation of Rpb1-CTD serine2, and subsequently suppresses inducible 

gene expression (Filippakopoulos et al., 2010; Hargreaves et al., 2009; Nicodeme et al., 

2010). Additionally, a small fraction of P-TEFb can be activated though its association with 

the super elongation complex (SEC) (Smith et al., 2011). P-TEFb/SEC can be recruited to 

paused RNAPII through MED26 of the Mediator complex (Takahashi et al., 2011) or PAFc 

(polymerase-associated factor complex) (He et al., 2011), and subsequently increases the 

release of paused RNAPII. P-TEFb/SEC can also be targeted to distinct genomic loci 

associated with disease progression. For example, the MLL gene (mix lineage leukaemia) 

generates in-frame fusions with translocation partners including the genes encoding 

components of SEC. The fusion proteins thereby bring P-TEFb/SEC to MLL target genes for 

activation, and therefore induces leukemic transformation (Lin et al., 2010a).  

Transcription factors can impose their effects on RNAPII through modulating the pause-

release. For example, c-Myc directly interacts with P-TEFb, and enhances transcription at 

target genes without changing the recruitment of the transcription machinery (Rahl et al., 

2010). Elevated c-Myc, either by ectopic overexpression or physiological stimulation, 

invades active promoters and enhancers in embryonic stem cells, lymphocytes and B-cell 

leukaemia cell lines. Through interactions with P-TEFb, chromatin invasion by c-Myc leads 

to increased binding of CDK9 to c-Myc bound promoters, increased phosphorylation of 

Rpb1-CTD serine2, and subsequently, universally amplified transcription (Lin et al., 2012; 

Nie et al., 2012).  

Once released from pausing, RNAPII elongates at a speed of ~3.8Kb/min on the human 

genome (Singh and Padgett, 2009), until encountering termination signals. 
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1.2.2 Nucleosomes as barriers to transcription 

In eukaryotes, genomic DNA is packaged into chromatin, and the fundamental structural unit 

of chromatin is the nucleosome. Nucleosomes were first discovered due to the regular 

patterns on nuclease digestion and electron microscopic analysis of chromatin (Hewish and 

Burgoyne, 1973; Olins and Olins, 1974; Woodcock et al., 1976). They consist of a histone 

octamer with ~147bp of DNA tightly wrapped around (Luger et al., 1997). Nucleosomes are 

connected by short ‘linker DNA’ into a linear array, forming the primary structure of 

chromatin. Linear arrays of nucleosomes are further compacted into chromatin fibres through 

interactions between neighbouring nucleosomes. Subsequent fibre-fibre interactions 

contribute to the formation of more condensed higher order structures of chromatin (Luger et 

al., 2012; Tremethick, 2007). This high order structure partitions the chromatin into less 

condensed and transcriptionally active euchromatin, and densely packed and transcriptionally 

inert heterochromatin (Luger et al., 2012). 

The compaction of genomic DNA into chromatin has a profound influence on transcription. It 

occludes the genomic DNA from being accessible to most transcription factors and regulatory 

cofactors, as well as the transcription machinery (Fuda et al., 2009). For transcription, this 

organized and compacted chromatin is made accessible in a highly regulated manner. The 

regulation of nucleosomes is fundamental to the generation of alternative chromatin structure.  

 

1.2.2.1 Nucleosome distribution 

The genome-wide distribution of nucleosomes shares common features among eukaryotes. In 

the majority of the genome, nucleosomes are regularly spaced. The length of spacing varies 

among different cell types in human and, within the same cell type, active chromatin shows 

shorter spacing than found in repressed heterochromatin (Valouev et al., 2011). However in 

many functional regions, nucleosomes are often depleted, creating a nucleosome-free region 

(NFR). These NFRs are observed at transcription start sites (TSSs), transcription termination 

sites (TTSs), and enhancers (Struhl and Segal, 2013). Specifically, nucleosomes surrounding 

the TSS, starting from the -1 (upstream) and +1 (downstream) nucleosomes, are well 

positioned and phased (Kaplan et al., 2009; Valouev et al., 2011), and this phasing pattern 

fades away as RNAPII signal decreases (Schones et al., 2008). 
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The nucleosome positioning in the genome is affected by DNA sequence. Nucleosome 

formation is optimal when bendable AA/AT/TA/TT dinucleotide occurs ~10bp periodically 

and interacts with histones (Brogaard et al., 2012; Drew and Travers, 1985; Segal et al., 

2006). In contrast, homopolymeric poly(dA:dT) is rigid and favours nucleosome depletion 

(Hughes et al., 2012; Raveh-Sadka et al., 2012). However, DNA sequence is not the only 

determinant of nucleosome positioning, since nucleosomes assembled in vitro based on DNA 

sequence alone do not fully agree with their in vivo distribution. For example, reconstitution 

of human chromatin in vitro reveals a ‘container’ model that favours nucleosome formation 

(Valouev et al., 2011). This model states that high GC content favours nucleosome formation, 

and this nucleosome formation is enhanced by being surrounded by AT-rich repelling 

elements. However, this GC/AT preference is not observed in vivo in primary human cells 

(Valouev et al., 2011). As another example, in vitro reconstituted yeast chromatin does not 

show strongly positioned +1 nucleosome (Zhang et al., 2009).  

In addition to the intrinsic DNA sequence preference, the chromatin environment is an 

important determinant of nucleosome positioning. With the addition of yeast whole cell 

lysate and ATP, Pugh and colleagues were able to reproduce a native nucleosome distribution 

in vitro, including the well positioned nucleosomes surrounding the TSSs (Zhang et al., 2011). 

As another example, transcription is fine-tuned by manipulating nucleosome-disfavouring 

sequences. However, the level of gene expression is dominantly determined by the binding 

affinity of transcription factors (Raveh-Sadka et al., 2012). Therefore, transcription factors, 

together with chromatin modifiers, override the intrinsic DNA preference and regulate the 

accessibility of functional regulatory DNA elements. This is particularly important to modify 

the transcription landscape and mediate cell differentiation.  

 

1.2.2.2 Nucleosome composition and dynamics 

The nucleosome consists of ~147bp of DNA wrapped around a histone octamer, which is 

composed of two copies each of the histones H2A, H2B, H3 and H4. The nucleosome is 

stabilised by a multitude of protein-protein interactions within the histone octamer, and by the 

interactions between the histone octamer and the entire length of nucleosomal DNA 

(Andrews and Luger, 2011; Luger et al., 1997). Histone H2A dimerizes with H2B, while H3 

dimerizes with H4. The (H3-H4)2 tetramer is formed due to a strong four-helix bundle 
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interaction between two H3 proteins (Luger et al., 1997). Two H2A-H2B heterodimers 

interact with the (H3-H4)2 tetramer through a weaker four-helix bundle interaction between 

H2B and H4 (Luger et al., 1997). Additionally, the association of H2A-H2B dimers within 

the nucleosome is strengthened by contacts between the two H2A histones. The nucleosome 

core can be viewed as three spatial domains, the (H3-H4)2 tetramer and two H2A-H2B 

dimers. The (H3-H4)2 tetramer lies at the ‘central region’ of the DNA wrap, governing ~80bp 

DNA. H2A-H2B dimers dock at the DNA ‘entry’ and ‘exit’ sites of the nucleosome, 

associating with ~35bp DNA each (Bintu et al., 2012; Talbert and Henikoff, 2010).  

Nucleosome assembly and disassembly are highly structured processes (Figure 1.5). A study 

of salt-induced nucleosome disassembly suggests that the first step is the dissociation of the 

H2A-H2B dimers from the (H3-H4)2 tetramer. This is followed by the release of H2A-H2B 

dimers from the nucleosomal DNA and lastly, the (H3-H4)2 tetramer is removed from DNA 

(Bohm et al., 2011). The reverse of this process is the primary assembly pathway. During 

nucleosome (dis)-assembly, simultaneous steps are possible (Andrews and Luger, 2011).  
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Figure 1.5 Schematic illustration of nucleosome (dis)-assembly  

The first step in nucleosome disassembly is the dissociation of the H2A-H2B dimer from the (H3-H4)2 
tetramer. It is followed by H2A-H2B dimer release from the DNA. And lastly, the (H3-H4)2 tetramer is 
removed from DNA.  The reverse of this process is the primary assembly pathway. This schematic is 
adapted from (Bohm et al., 2011). 

The study of nucleosome structure and its (dis)-assembly processes suggests that the spatial 

domains of nucleosomes are independently controlled. Indeed, the (H3-H4)2 tetramer is more 

stably associated with DNA in vivo (Xu et al., 2010). The (H3-H4)2 tetramer, governing the 

central region of DNA wrapping, determines the strength of the barrier to elongating RNAPII 

in vitro (Bintu et al., 2012). Transcription by RNAPII can disrupt H2A-H2B dimers, without 

changing the position of the (H3-H4)2 tetramer (Kireeva et al., 2002). Due to the 

independently controlled domains of nucleosomes, accessibility to DNA can be generated by 
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partial disassembly of the nucleosome. For example, to initiate V(D)J recombination during 

B cell development, recombination signal sequences (RSSs) need to be accessible to the 

recombination machinery. The generation of RSS accessibility is not achieved by complete 

disassembly of the nucleosome core, but by transiently evicting H2A-H2B dimers, thereby 

exposing ~35bp DNA (Bevington and Boyes, 2013).  

The nucleosome is not a static entity. The protein-protein interactions between the spatial 

domains and the protein-DNA interactions between the core histones and the nucleosomal 

DNA are intrinsically dynamic. Nucleosomal DNA undergoes spontaneous partial 

unwrapping off the histone surface and rewraps, which makes the nucleosomal DNA 

transiently accessible (Li et al., 2005a). DNA unwraps fastest at the DNA entry site of the 

nucleosome, and the kinetics slow down dramatically as DNA elements locate increasingly 

inside the nucleosome (Tims et al., 2011). Interestingly, this nucleosome intrinsic 

unwrapping/rewrapping dynamic is still observed in folded chromatin fibres (Poirier et al., 

2008). In addition, the interactions between the spatial domains of the nucleosome core are 

also dynamic. The nucleosomes go through dynamic disassembly and assembly, termed 

turnover. By directly measuring newly incorporated histones, nucleosomes are shown to turn 

over in both yeast and Drosophila cells. Nucleosome turnover is more rapid at regulatory 

elements and active genes (Deal et al., 2010; Dion et al., 2007; Rufiange et al., 2007). 

Furthermore, this turnover happens to both the H2A/H2B dimer and the (H3/H4)2 tetramer. 

The H2A/H2B dimer turns over much faster than the (H3/H4)2 tetramer in both intra- and 

intergenic regions (Jamai et al., 2007).  

The spontaneously dynamic histone-DNA and histone-histone interactions provide another 

means to transiently expose DNA binding sites to regulatory factors. This transient exposure 

of DNA is hypothesised to be captured by ‘pioneer transcription factors’, and subsequently 

induce a cascade of events to further open up chromatin and facilitate transcription (Tims et 

al., 2011). Because of this dynamic nature of nucleosomes, some nucleosomes are labelled 

‘fragile’ in the yeast genome. These fragile nucleosomes show higher sensitivity to 

Micrococcal nuclease (MNase) digestion and salt concentration. They mainly flank the 

promoters of transcriptionally poised genes, allowing for swift up-regulation upon cellular 

signals (Xi et al., 2011). 

Taken together, regulatory DNA elements can be transiently exposed to transcription factors 

due to the spontaneous nucleosome dynamics. These dynamics can be influenced by the 
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factors that induce changes in nucleosome stability, including the incorporation of histone 

variants, or post-translational modifications of histones (Weber and Henikoff, 2014). In 

addition, nucleosomes can be partially disrupted at certain spatial domains (Ballare et al., 

2013), or totally disassembled to allow for DNA access by more transcription factors and the 

transcription machinery (Agalioti et al., 2000; Petesch and Lis, 2008). This process is carried 

out by ATP-dependent chromatin remodelers. These topics are further discussed in the 

following sections. 

 

1.2.2.3 Histone variants and histone chaperones 

Sequence divergence is observed in core histones, giving rise to histone variants. Whilst the 

expression of the ‘canonical’ histones is restricted to S phase of the cell cycle, histone 

variants are expressed and incorporated into nucleosomes throughout the cell cycle (Osley, 

1991; Talbert and Henikoff, 2010). Since the first histone variant was discovered by West 

and Bonner (West and Bonner, 1980), histone variants have been attracting a lot of attention 

due to their profound influence on nucleosome stability as well as biological processes 

ranging from transcriptional regulation to genome stability. 

The highest degree of histone sequence divergence is observed in the histone H2A and H3 

family. While histone H2A variant H2A.X is mainly involved in DNA damage response, 

H2A.B, MacroH2A, H2A.Z, and histone H3 variant H3.3 have been shown to be involved in 

transcriptional regulation (Bonisch and Hake, 2012). 

H2A.B (H2A.Bbd or H2A.Lap1) is found only in mammals and is highly tissue-specific. 

Compared to canonical H2A, H2A.B is considerably shorter and less stable (Bonisch and 

Hake, 2012). An H2A.B-containing nucleosome protects ~30bp less DNA against 

Micrococcal nuclease (MNase) digestion (Doyen et al., 2006). In both mouse and human, 

H2A.B is associated with active genes (Soboleva et al., 2012; Tolstorukov et al., 2012). 

MacroH2A, found mainly in vertebrates, contains a distinct non-histone globular (macro) 

domain. MacroH2A is enriched on the inactive female X chromosome (Costanzi and Pehrson, 

1998) and senescence-associated heterochromatic foci (Zhang et al., 2005b), suggesting a 

role in transcriptional repression. Histone variant H2A.Z is almost universally expressed and 

highly conserved between species (Talbert and Henikoff, 2010). Despite the overall similarity 
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of its structure to that of canonical H2A, H2A.Z fulfils unique functions and is essential to 

many organisms including mouse and human (Bonisch and Hake, 2012).  

H2A.Z is not uniformly distributed in the genome. It is enriched at gene promoters and 

enhancers in mammalian cells (Barski et al., 2007; Raisner et al., 2005; Schones et al., 2008). 

H2A.Z is also incorporated into the strongly positioned +1 nucleosome immediately 

downstream of the TSS, and a few well positioned nucleosomes further downstream, but is 

relatively depleted over the rest of the gene bodies (Barski et al., 2007; Tropberger et al., 

2013). The enrichment of H2A.Z is positively correlated with transcriptional activity, 

chromatin accessibility, and active histone modifications (Conerly et al., 2010; Hu et al., 

2013). In contrast, the enrichment of H2A.Z is anti-correlated with DNA methylation during 

B cell lymphomagenesis (Conerly et al., 2010). This implicates a role of H2A.Z in active 

transcription.  

H2A.Z poses its influence on transcription through modulating the stability of nucleosomes, 

with H2A.Z shown to destabilise nucleosomes in vivo (Weber and Henikoff, 2014). H2A.Z-

containing nucleosomes protect only ~120bp DNA from MNase digestion in human T cells 

(Tolstorukov et al., 2009) and embryonic stem cells (ESCs) (Hu et al., 2013). The 

incorporation of H2A.Z enhances the dynamics of nucleosomes. This favours nucleosome 

removal at regulatory regions during transcription. For example, H2A.Z deposition leads to 

decreased nucleosome occupancy and increased chromatin accessibility at promoters and 

enhancers in ESCs. This is important for the binding of key active and repressive regulatory 

complexes (Creyghton et al., 2008; Hu et al., 2013). Knockdown of H2A.Z compromises the 

self-renewal and differentiation abilities of ESCs (Hu et al., 2013). During the specification 

of ESCs into endoderm/hepatic fate, H2A.Z works together with the transcription factor 

Foxa2, mediating nucleosome depletion at lineage-specific genes and also facilitating their 

activation (Li et al., 2012).  

In addition to favouring the access to regulatory regions, H2A.Z also facilitates transcription 

elongation. In Drosophila, H2A.Z deposition enhances the turnover of the +1 nucleosome. 

Depletion of H2A.Z results in a stronger barrier to RNAPII during transcription elongation 

(Weber et al., 2014).  

Deposition and removal of H2A.Z is an active process. In yeast, the general histone 

H2A/H2B chaperone Nap1 and Chz1 preferentially bind H2A.Z over H2A (Luk et al., 2007; 

Straube et al., 2010). These chaperones act as reservoirs for histone H2A.Z, and deliver it to 
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the ATP-dependent chromatin remodeler Swr1. Swr1 catalyses the exchange of H2A.Z for 

canonical H2A (Luk et al., 2010; Mizuguchi et al., 2004; Watanabe et al., 2013). The removal 

of H2A.Z from chromatin is catalysed by the chromatin remodeler Ino80 (Papamichos-

Chronakis et al., 2011). In mammalian cells, the equivalent of Swr1 falls into two distinct 

complexes, P400/Tip60 and SRCAP. Recently, ANP32E, a H2A.Z-specific histone 

chaperone in human, was discovered as part of the P400/Tip60 complex, but not SRCAP 

(Mao et al., 2014; Obri et al., 2014).  

Histone H3 variant H3.3 differs from canonical histone H3 only by four to five amino acids, 

and yet it displays a distinct role in the regulation of transcription (Filipescu et al., 2013). 

H3.3 is widely distributed in the genome, and is observed at regulatory regions, gene bodies, 

and heterochromatin (Weber and Henikoff, 2014). Histone H3.3 does not alter nucleosome 

dynamics in vitro, agreeing with its high similarity in structure to canonical H3 (Thakar et al., 

2009). However in vivo, H3.3 deposition facilitates chromatin accessibility to regulatory 

complexes. In ESCs, depletion of H3.3 reduces nucleosome turnover, and decreases the 

binding of the repressive complex PRC2 (polycomb repressive complex 2) (Banaszynski et 

al., 2013). This in vivo property of H3.3 to destabilise the nucleosome can be attributed to its 

interactions with partners. Felsenfeld and colleagues reported that H3.3-containing 

nucleosomes, when present together with H2A.Z, are highly unstable. H2A.Z/H3.3-

containing nucleosomes are more sensitive to salt concentration and are easily disrupted (Jin 

and Felsenfeld, 2007). They flank the active promoters, enhancers and insulator regions. Due 

to their instability, these nucleosomes are more easily replaced by non-histone DNA binding 

proteins, therefore favouring transcriptional regulation (Jin et al., 2009). In support of this, 

H3.3-containing nucleosomes turn over at different speed depending on the genomic regions, 

with the turnover being the fastest at promoters and enhancers which are associated with 

active histone marks and histone H2A.Z, intermediate at gene bodies, and slowest at 

telomeres (Kraushaar et al., 2013). 

 Two histone chaperones are responsible for H3.3 incorporation: HIRA (histone regulator A), 

and DAXX (death-associated protein) together with ATP-dependent chromatin remodeler 

ATRX. The former incorporates H3.3 into genic and euchromatic regions (Banaszynski et al., 

2013), while the latter deposits H3.3 to pericentrometic and telomeric heterochromatin 

regions (Goldberg et al., 2010).  
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1.2.2.4 Histone modifications and histone-modifying enzymes 

Histones can be post-translationally modified by methylation, acetylation, phosphorylation, 

sumoylation, and other modifications. These post-translational modifications (PTMs) appear 

on both the globular structure of the nucleosome core, and the N-terminal tails of histones. 

Histone tails extend away from the nucleosome core, and are involved in interactions with 

neighbouring nucleosomes or regulatory factors (Luger et al., 1997). Histone modifications 

have a profound impact on chromatin dynamics and transcriptional regulation (Kouzarides, 

2007). They can be categorised into those that correlate with transcriptional activation, and 

those that correlate with transcriptional repression. Histone modifications affect transcription 

by altering the stability and dynamics of nucleosomes, or by recruiting or occluding other 

non-histone proteins (Kouzarides, 2007).  

Acetylation was the first described histone modification (Phillips, 1963). Acetylated histones 

are mainly associated with active genes (Tropberger et al., 2013; Wang et al., 2008). The 

positive effect of histone acetylation on transcription is due to the altered stability and 

dynamics of the nucleosome. Acetylation of lysine (K) residues on the histones neutralises 

their positive charge. Since DNA is negatively charged, lysine acetylation thereby weakens 

the charge-dependent interactions between histones and nucleosomal DNA. In this way, 

histone acetylation increases the nucleosome dynamics, thus making the nucleosomal DNA 

more accessible to transcription factors and the transcription machinery (Zentner and 

Henikoff, 2013).  

The tails of histone H3 and H4 can be acetylated at multiple sites. They positively affect 

transcriptional outcomes due to a cumulative effect on charge neutralisation, rather than the 

acetylation of specific lysines (Zentner and Henikoff, 2013). This is supported by a study that 

investigates the effects of lysine-to-arginine mutations on transcription. Arginine (R) is used 

to mimic the positively charged, but unable to be acetylated lysines (K). It is hypothesised 

that if the charge neutralisation effect on transcription is cumulative, mutations on the 

specific lysine residues should affect the same set of genes. Indeed, specific K→R mutations 

of the H4 tail at K5, K8, and K12 affect nearly identical group of genes. Furthermore, 

combined mutations enhance this transcription deregulation (Dion et al., 2005). In support of 

this, lysine-to-glutamine mutations on the H3 tail, which mimics the acetylated lysines, 

revealed that these lysine residues have generally redundant roles on transcription (Martin et 

al., 2004). In addition to acetylation on the histone tails, acetylation also occurs on the 
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globular domain of the nucleosome core. Lysine acetylation near the nucleosome DNA 

entry/exit regions (H3K56Ac) modulates nucleosome partial unwrapping (Neumann et al., 

2009), and those near the centre of the nucleosome directly facilitates nucleosome 

disassembly in vitro (Simon et al., 2011). Acetylation of H3K64 and H3K122, which lie 

within the nucleosome globular domain, favours nucleosome disassembly, and directly 

facilitates active transcription in vivo (Di Cerbo et al., 2014; Tropberger et al., 2013). 

In addition to modulating the physical properties of the nucleosome, acetylated histones are 

recognised by histone ‘readers’. In this way, histone modifications serve as docking sites for 

the binding of regulatory proteins, and signal downstream events. Histone acetylation is 

recognised by a specific reader module, the bromodomain (Zentner and Henikoff, 2013). 

Brd4 recognizes acetylated histone H4, and directs P-TEFb to these gene promoters and 

enhances RNAPII elongation (Hargreaves et al., 2009). Hyperacetylation of  H4 and 

deposition of H2A.Z together signal the binding of Brd2, and subsequently induces active 

transcription (Draker et al., 2012).  

Lysine residues on histones are acetylated by histone acetyltransferases (HATs), and are 

deacetylated by histone deacetylases (HDACs) (Allis et al., 2007). Histone deacetylation by 

HDACs are mostly related to transcription inactivation. For example, HDAC SIRT7 binds its 

target gene promoters and deacetylates H3K18. This leads to the transcriptional repression of 

its target genes (Barber et al., 2012). Yeast HDACs Sir2 and Clr3 facilitate the establishment 

and maintenance of heterochromatin. This is achieved by their role in repressing active 

transcription and decreasing histone turnover rate, as well as bringing in the H3K9-specific 

histone methyltransferase Clr4 (Alper et al., 2013; Buscaino et al., 2013). In addition to the 

role of HDACs in repressing transcription, HDACs are also found at actively transcribed 

genes. They work together with HATs, and control the dynamics of histone acetylation at 

active genes (Wang et al., 2009). Interestingly, HDAC6 is only associated with active genes 

at the promoters and particularly at the gene bodies in mammalian cells (Wang et al., 2009). 

In addition, the half-lives of histone acetylations are a few minutes for many events (Barth 

and Imhof, 2010). These observations support the mechanism, as proposed in yeast (Carrozza 

et al., 2005; Huh et al., 2012) and Drosophila (Rincon-Arano et al., 2012), that acetylated 

histones loosen DNA-histone interactions to allow RNAPII traveling, but are rapidly 

deacetylated to promote chromatin assembly after transcription, therefore preventing cryptic 

transcription. 
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In contrast to acetylation, lysine methylation can have both positive and negative effects on 

transcription, depending on the lysine residue methylated. Methylations on H3K4, K36 and 

K79 are associated with active transcription, while H3K9Me2/3, H3K27Me2/3 are usually 

found at inactive heterochromatin (Barski et al., 2007).  

H3K4Me3 facilitates active transcription by recruiting the chromatin modifiers and other 

downstream effector proteins. Readers for H3K4Me3 include the PHD (plant homeo domain) 

module, chromodomain, and other modules (Yun et al., 2011). H3K4Me3 is recognised by 

TAF3, a subunit of the general transcription factor TFIID, through its PHD module. This 

directly links H3K4Me3 to the recruitment of the transcription machinery (Vermeulen et al., 

2007). H3K4Me3 also facilitates the recruitment of the chromatin remodeler Chd1 

(chromodomain helicase DNA binding protein 1) to gene promoters, and subsequently opens 

up chromatin and stimulates transcription (Bartke et al., 2010; Lin et al., 2011). However, 

H3K4Me3 density is not proportional to the transcription level. H3K4Me3 is found at active 

gene promoters as well as poised ones (Guenther et al., 2007). Furthermore, significant 

reduction of H3K4Me3 by deleting the histone methyltransferase SET1/MLL complex (Dpy-

30 subunit) does not dramatically down-regulate the transcription of active genes in ESCs 

(Jiang et al., 2011). 

In a similar manner to H3K4Me3, H3K9Me3 is recognised by the chromodomain of the 

heterochromatin protein 1 (HP1). This is important for gene silencing and chromatin 

compaction (Bannister et al., 2001; Lachner et al., 2001). 

Histone modifications and histone modifiers cross-talk with each other and co-regulate 

transcription (Bartke et al., 2010; Vermeulen et al., 2010). For example, H3K4Me3 

methyltransferase SET1 complex (SET1C) is recruited to gene promoters through direct 

interactions with the HAT p300, and they work cooperatively to facilitate transcription (Tang 

et al., 2013). In yeast, histone methyltransferase Set2 methylates H3K36, which is observed 

at active gene bodies. Set2 also recruits HDAC Rpd3S to active genes to repress cryptic 

transcription on the gene bodies (Carrozza et al., 2005).  
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1.2.2.5 Chromatin remodelers  

The reorganisation of chromatin structure is carried out by ATP-dependent chromatin 

remodelers. The targeting of chromatin remodelers to chromatin depends on specific histone 

modifications and is facilitated by context-specific transcription factors. The chromatin 

remodelers directly bind nucleosomes and subsequently catalyse nucleosome repositioning or 

eviction, or alter nucleosome composition (Clapier and Cairns, 2009). An ATPase domain is 

shared by all chromatin remodelers. Depending on their additional unique domains, 

chromatin remodelers are categorised into four different families, namely the CHD 

(chromodomain helicase DNA binding) family, the SWI/SNF (switching defective/sucrose 

nonfermenting) family,  the INO80 (inositol requiring 80) family, and ISWI (imitation switch) 

family (Clapier and Cairns, 2009).  

The CHD family members Mi-2α/Chd3 and Mi-2β/Chd4 contain two PHD domains, two 

chromodomains and an ATPase domain (Clapier and Cairns, 2009; Woodage et al., 1997). To 

remodel nucleosomes, the ATPase activity of Mi-2 is stimulated by chromatin, but not by 

free histones or DNA (Wang and Zhang, 2001). The PHD domains of Mi-2β are required to 

facilitate transcriptional regulation. PHD1 and -2 function individually to bind histone H3 

tails. Mutations in these two domains compromise the ability of Mi-2β to restrain Mb-1 

expression, even to the same level as Mi-2β knockdown (Musselman et al., 2012).  

Mammalian Mi-2 (predominantly Mi-2β) exists in the Mi-2/NuRD (nucleosome remodelling 

and deacetylase) complex. In addition to the ATPase subunit Mi-2, the Mi-2/NuRD complex 

also contains histone deacetylases HDAC1/2, methyl CpG binding domain proteins MBD2/3, 

metastasis-associated proteins MTA1-3, and histone-binding proteins/retinoblastoma-binding 

proteins PBBP4, -7 (Tong et al., 1998; Xue et al., 1998; Zhang et al., 1998). The Mi-2/NuRD 

complex is the only complex possessing both chromatin remodelling and histone 

deacetylation functions.  

The Mi-2/NuRD complex has been associated with transcriptional repression in different 

systems (Curtis and Griffin, 2012; Kaji et al., 2006; McDonel et al., 2009; Reynolds et al., 

2012). As examples in the B cell compartment, Mi-2/NuRD subunit MTA3 was shown to 

directly interact with the transcription factor Bcl-6 in B lymphocytes. The MTA3-Mi-

2/NuRD complex is required for transcriptional repression by Bcl-6, as knockdown of MTA3 

results in up-regulated expression of Bcl-6 target genes (Fujita et al., 2004). During EBF and 

Pax5-mediated Mb-1 activation, the Mi-2/NuRD complex limits Mb-1 activation level. Mi-
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2/NuRD restrains the increase in chromatin accessibility, and limits DNA demethylation at 

the Mb-1 promoter. Knockdown of Mi-2β fails to restrain the transcription activities and 

results in stronger Mb-1 activation (Gao et al., 2009). These observations also highlight the 

unique feature of the Mi-2/NuRD complex to combine different transcriptional regulatory 

processes, including nucleosome reorganization, histone modifications and DNA methylation.  

In addition to the role in transcriptional repression, Mi-2 has also been associated to 

transcriptional activation. During T cell differentiation, Mi-2β directly interacts with the Cd4 

enhancer, and positively regulates Cd4 expression (Williams et al., 2004). Furthermore, Mi-

2β is reported to be critical for self-renewal and lineage commitment of HSCs, which 

involves the activation of lineage-specific genes (Yoshida et al., 2008). The activating role of 

Mi-2β may be an indication of Mi-2β functioning outside of the Mi-2/NuRD complex. In 

support of this idea, Mi-2β N-terminal domain has been reported to be associated with the 

chromatin remodeler Brg1 (Shimono et al., 2003). 

Brg1, or Brm, is the ATPase subunit of the SWI/SNF complex (also known as BAF). In 

addition to Brg1/Brm, the mammalian SWI/SNF complex contains 9 to 11 other subunits. 

The composition of the SWI/SNF is partially different between cell types, and their functions 

are not well understood (Wu et al., 2009). These additional subunits may be involved in 

regulating the recruitment, the assembly and/or the activity of the SWI/SNF complex 

(Schubert et al., 2013; Wu et al., 2009; Yang et al., 2007). Brg1/Brm, both the SWI/SNF 

complex-associated and the isolated, is able to alter histone-DNA interactions. Brg1 can 

produce a stably remodelled di-nucleosome from a mono-nucleosome template, or transfer 

the histone octamer from donor nucleosomes to acceptor DNA (Phelan et al., 2000).  

Brg1/Brm plays an important role in opening up chromatin and activating transcription. 

Knockdown of Brg1/Brm inhibits the activation of Mb-1 mediated by EBF and Pax5 during 

B cell development (Gao et al., 2009). The SWI/SNF complex is required to maintain the 

expression of Myc in leukaemia cells, by essentially maintaining the accessibility at the 

enhancers and facilitating the binding of the transcription factors to DNA (Shi et al., 2013).  

Contrary to the role of Brg1/Brm in increasing chromatin accessibility and activating 

transcription, a recent genome-wide study showed that knockdown of Brg1 disrupts the 

nucleosome landscape at promoters, and decreases overall nucleosome occupancy. 

Knockdown of Brg1 also leads to the up-regulation of Brg1 target genes (Tolstorukov et al., 

2013). The dual roles of the Brg1/Brm SWI/SNF complex in both transcriptional activation 
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and repression may be due to the variations in the composition and activity of the complex in 

a cell type-specific manner. 

 

1.3 Ikaros and transcriptional regulation 

Ikaros has both activating and repressing effects on transcription (Ferreiros-Vidal et al., 2013; 

Heizmann et al., 2013; Merkenschlager, 2010; Schjerven et al., 2013; Schwickert et al., 2014). 

Ikaros was first discovered to bind the regulatory element of Cd3δ, and activate its 

transcription in lymphocytes (Georgopoulos et al., 1992). This original concept of Ikaros 

being an activator was first challenged by the observations that in B and T lymphocytes and 

early B cell progenitors, Ikaros proteins form clusters at pericentromeric heterochromatin, 

where silent genes are colocalised (Brown et al., 1999; Brown et al., 1997; Klug et al., 1998). 

This observation lead to the hypothesis that Ikaros may recruit its target genes to 

heterochromatic compartments, where repressive proteins are enriched, to maintain the silent 

state of target genes. This hypothesis is supported by the finding that several inactive genes 

adopt a position away from heterochromatin regions in resting B cells, and upon activation, 

these genes move towards heterochromatin concomitantly with the up-regulation of Ikaros 

and the clustering of Ikaros at heterochromatin (Brown et al., 1999). The targeting of Ikaros 

to heterochromatin is achieved through direct DNA binding, and requires the C-terminal zinc 

fingers to form Ikaros dimers or multimers (Cobb et al., 2000; Trinh et al., 2001). 

Ikaros binding in the genome co-occurs with several transcription factors important for 

haematopoiesis, including EBF, E2A, Pax5, PU.1 and IRF4 (Ferreiros-Vidal et al., 2013; 

Schwickert et al., 2014). This colocalisation may indicate possible competitions or 

collaborations between Ikaros and other transcription factors. Indeed, Ikaros directly binds 

the Igll1 promoter to down-regulate the transcription, and mutation in the Ikaros DNA 

binding domain or the deletion of a single Ikaros binding site abolishes the gene repression 

(Sabbattini et al., 2001; Thompson et al., 2007). EBF1 also binds the Igll1 promoter, and 

activates transcription (Martensson and Martensson, 1997). Ikaros and EBF1 compete with 

each other and balance the expression of Igll1 in pre-B cells (Thompson et al., 2007). 

Similarly, Ikaros competes with the transcription activator Elf1 to regulate the expression of 

Dntt in thymocytes (Trinh et al., 2001). In yolk sac erythroid cells, Ikaros binds to the human 

γ-globin promoter and facilitates the binding of the transcription factor GATA1. Together, 
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Ikaros and GATA1 promote the transcription of human γ-globin by increasing the PIC 

assembly and the phosphorylation of RNAPII serine2 by Cdk9 (Bottardi et al., 2011).  

Ikaros also regulates transcription through its association with chromatin modifiers. This was 

first demonstrated by Georgopoulos and colleagues using a yeast two hybrid assay (Kim et al., 

1999). Ikaros interacts with chromatin remodelers Mi-2/NuRD and Brg1-SWI/SNF 

complexes (Kim et al., 1999), as well as corepressors Sin3 (Koipally et al., 1999) and CtBP 

(Koipally and Georgopoulos, 2000). In erythroid cells, Ikaros facilitates the recruitment of 

Brg1 to activate the human γ-globin gene (Bottardi et al., 2011). In thymocytes, Ikaros is 

predominantly associated with the Mi-2/NuRD complex (Sridharan and Smale, 2007). Ikaros 

and Mi-2β both bind the Cd4 silencer and regulate Cd4 expression during T cell development 

(Naito et al., 2007). Loss of either Ikaros or Mi-2β leads to the activation or repression of the 

Cd4 locus, respectively. Interestingly, this deregulation can be rescued by double mutation of 

Ikaros and Mi-2β (Naito et al., 2007). Genome-wide profiling of Ikaros and Mi-2β binding in 

double-positive (DP) thymocytes confirmed that Ikaros colocalises with Mi-2β at both 

promoters and enhancers, particularly at active genes (Zhang et al., 2012). Ikaros appears to 

inhibit the binding of Mi-2β, as loss of Ikaros leads to increased binding of Mi-2β and 

decreased H3K9Ac (Zhang et al., 2012). However in pro-B cells, contrasting observations 

were reported (Schwickert et al., 2014). In pro-B cells, Ikaros preferentially binds to active 

promoters and enhancers, and these binding sites are overlapped with Mi-2β only at the 

promoters, but not the enhancers. Further contrasting the observations in thymocytes, loss of 

Ikaros in pro-B cells does not lead to the redistribution of Mi-2β binding, nor a global 

decrease of H3K9Ac (Schwickert et al., 2014). The differences observed in thymocytes and 

pro-B cells may be due to the different roles of Ikaros in thymocytes and pro-B cells, or the 

differences in the experimental strategies.  

Ikaros protein itself can be post-translationally modified, which modulates its functions. 

Ikaros is dynamically phosphorylated within the regions encoded by exon 3 and 7 during the 

cell cycle. Ikaros is hypophosphorylated in G1 and hyperphosphorylated after entry into S 

phase (Gomez-del Arco et al., 2004). The phosphorylation of Ikaros inhibits its ability to 

impede the G1-S transition (Gomez-del Arco et al., 2004). Phosphorylations at alternative 

sites within Ikaros have been linked to both facilitating and inhibiting Ikaros nuclear 

localization and DNA binding (Gurel et al., 2008; Uckun et al., 2012). Additional means for 

the regulation of Ikaros function is via sumoylation. The sumoylation of Ikaros reduces its 
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ability to repress transcription, possibly by reducing the interactions with chromatin modifiers 

(Gomez-del Arco et al., 2005). 

To regulate transcription, Ikaros directly binds DNA. The mechanisms include competition or 

collaboration with other transcription factors, interaction with the transcription machinery, 

recruitment of chromatin modifiers, and spatial compartmentalization in the nucleus. The 

activities of Ikaros can be controlled by post-transcriptional modifications. The potential of 

Ikaros to act as a repressor or activator therefore depends on the cellular context in a stage-

specific manner. 

 

1.4 Aims of this thesis 

The principal aim of this study is to understand the kinetics and mechanisms of Ikaros-

mediated transcriptional regulation. By applying an inducible Ikaros system to pre-B cells, 

the changes in chromatin status are identified. Furthermore, the kinetics of these regulatory 

events are monitored at high temporal resolution, and subsequently the order of events is 

comprehended. Following these observations, between the possible early and later events, 

causal relationships are investigated. 
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Figure 1.6 Aim of this study 

The principle aim of this study is to understand the kinetics and mechanisms of Ikaros-mediated 
transcriptional regulation. During transcriptional down-regulation, introducing Ikaros to a negatively 
regulated target gene can change the locus from an active state to an inactive state. This may feature 
outcompeting transcription activators, the loss of RNAPII, and compaction of the gene promoter. This 
study aims to investigate what changes are induced in chromatin status by Ikaros, and what is the order of 
these events. Furthermore, between possible early events and late events, the causal relationships are also 
evaluated. 
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2 Materials and methods 

2.1 Cell culture 

All cells were maintained at 37°C in a humidified chamber with 5% (v/v) CO2. 

The B3 pre-B cell cells, isolated and cloned from a lymphoma occurring in an IL-7 transgenic 

mouse (Fisher et al., 1995), were cultured in Iscove's Modified Dulbecco's Medium (IMDM, 

Invitrogen), supplemented with 10% (v/v) foetal calf serum (FCS) (Biosera), and antibiotics 

(100U/ml Penicillin and 100μg/ml Streptomycin) (GIBCO, Invitrogen). The culturing 

concentration was maintained between 0.5-3×106 cells/ml by splitting the cells every two 

days.  

The 293T packaging cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, 

Invitrogen), supplemented with 10% (v/v) foetal calf serum (FCS) (Biosera), 2mM L-

Glutamine, antibiotics (100U/ml Penicillin and 100μg/ml Streptomycin), and 50μM β-

mercaptoethanol (GIBCO, Invitrogen), and were expanded every two days. 

Frozen stocks of cell vials were generated by resuspending 1×106 cells in 1ml of FCS 

containing 10% (v/v) DMSO (Sigma), cooled down in Mr Frosty freezing container in -80°C 

freezer for 24 hours , and kept  in liquid nitrogen. 

2.2 Cloning 

2.2.1 shRNA design  

Work related to shRNA targeting Ikzf1 (encodes for Ikaros) and H2afz (encodes for H2A.Z) 

were discussed in discussion and presented as supplementary figures. 

The sequence of untranslated region (UTR) and coding region of the gene was used as 

reference for the design of siRNA. 19 or 21 nuclear tides (nt) targeting sequence was 

designed using the designer of small interfering RNA (DSIR) algorism 

(http://biodev.extra.cea.fr/DSIR/DSIR.html),  the siDesign algorism by Dharmacon 

(http://dharmacon.gelifesciences.com/design-center/), the siRNA Wizard algorism by 
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InvivoGen (http://www.sirnawizard.com/), or Sigma MISSION shRNA. Top hits were 

screened for off-targets using NCBI blast. The first two targeting sequences against H2A.Z  

were taken from published data designed by Dr Keji Zhao’s lab, NIH-NHLBI, USA (Hu et al., 

2013). Selected hits were then fit in shRNA hairpin by inserting a loop of TTCAAGAGA 

between the sense strand and the anti-sense strand of siRNA, and also adding restriction 

enzyme site BglII overhang at 5’ and XhoI at 3’ for further cloning into pQsupR plasmid. 

Detailed sequence of shRNA targeting Ikzf1 and H2afz was listed in Table I.1.  

2.2.2 shRNA cloning 

All enzymes used for cloning were purchased from New England Labs.  

The pQsupR control plasmid and the plasmids with shRNA inserts targeting Mi-2β or 

Brg1/Brm were generated by Dr Stephen Smale’s lab, UCLA (Ramirez-Carrozzi et al., 2006), 

and were purchased from Addgene.  

The pQsupR plasmid was also used for the house designed shRNA cloning. shRNA cloning 

protocol was obtained from Dr Jesus Gil’s lab, MRC CSC, with kind help from Dr Selina 

Raguz. To clone the shRNA into the retroviral plasmid, the pQsupR control plasmid (1µg) 

was first digested with BglII/XhoI, and linearized plasmid backbone was purified from 1% 

agarose gel using QIAquick gel extraction kit (Qiagen). To prepare shRNA insert, the 

forward and reverse shRNA oligos were ordered from Sigma, and resuspended in sterile 

water at 100µM. The forward and reverse oligos were then annealed by combining 2.5µl of 

each oligos with 95µl of 1× ligation buffer (from T4 DNA ligase kit), heating at 100 °C for 

30s, and cooling down at room temperature. 1µl of annealed shRNA and 1µl of purified 

pQsupR backbone were ligated using 1µl (400U) of T4 DNA ligase at room temperature for 

2 hours. Ligation background control was included by performing same ligation procedure 

but adding 1µl of H2O instead of shRNA insert. 

2.2.3 Inducible Ikaros vector from IRES-GFP to IRES-mCherry 

The inducible Ikaros plasmid designed by previous PhD student, Ben Taylor, was in a MSCV 

(murine stem cell virus) retroviral plasmid containing IRES-GFP (IRES stands for internal 
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ribosome entry site) (more details in section 3.1). To change IRES-GFP to IRES-mCherry, 

the sequences of IRES and mCherry were amplified using Phusion high fidelity DNA 

polymerase from pMIG plasmid (MSCV vector containing IRES-GFP) and fluorescent 

reporter vector (from Rory Blevins, a previous PhD student in the lab), respectively. Primers 

used for amplification contains either appropriate restriction enzyme sites or complimentary 

sequence allowing to join cDNA fragments by PCR sewing (Table I.2). Both joint IRES-

mCherry cDNA and inducible Ikaros MSCV plasmid with IRES-GFP were digested with 

EcoRI/SalI, purified and ligated as described before, generating inducible Ikaros MSCV 

plasmid with IRES-mCherry. Inducible control plasmid with IRES-mCherry was produced in 

parallel.  

2.2.4 Bacteria transformation and plasmid DNA isolation 

Ligation products were delivered into competent DH5α E.coli. To do so, 5µl of ligation 

product was mixed with 20µl of 5× KCM buffer (0.5M KCl, 0.15M CaCl2, 0.25M MgCl2), 

and topped up to 100µl with H2O. The 100µl mixture was then combined with 100µl DH5α 

bacteria. The bacteria mix was kept on ice for 20 minutes and room temperature for 10 

minutes, before plating onto lysogeny broth (LB) agar plates supplemented with 50µl/ml 

ampicillin and incubating at 37 °C overnight. Individual colonies were picked and grew in 

3ml of LB supplemented with ampicillin. Minipreps of individual colonies were screened by 

appropriate restriction enzyme digestion and subsequently DNA sequencing by MRC 

genomics facility. Selected colonies were then inoculated and plasmids were isolated using 

maxipreps kit (Qiagen). 

2.3 Transfection and infection 

2.3.1 Transfection and virus collection 

The viral packaging genes gag and pol are stably integrated in the 293T fibroblast packing 

cell line.  
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The MSCV retroviral particles for inducible Ikaros were produced by 293T fibroblasts using 

calcium phosphate transfection protocol as previous described (Cobb et al., 2000). In brief, 

the 293T fibroblasts were cultured in 10cm dish to around 40% confluence in 9ml medium. 

The formation of DNA-containing precipitates was produced by adding 500μl of 2× HEBS 

(12mM Dextrose, 50mM HEPES, 10mM KCl, 280mM NaCl, 1.5mM Na2HPO4•2H2O in 

sterile water, pH7.05) drop by drop to 500μl of 0.4M CaCl2 solution with 4μg of MSCV 

plasmid DNA and 4μg of pCL-Eco envelop helper plasmid DNA. The transfection solution 

containing DNA precipitates were then added to the cells drop by drop. Fresh medium was 

then fed to the cells after 12 hours and 24 hours of transfection. Supernatant of 3.5ml 

containing retroviral particles were collected after 36 hours, 48 hours and 60 hours of 

transfection, and pooled for infection. 

The pQsupR retroviral particles for shRNA were produced by 293T fibroblasts using 

Lipofectamine 2000 (Invitrogen) as described in the standard Invitrogen protocol 

(http://tools.lifetechnologies.com/content/sfs/manuals/Lipofectamine_2000_Reag_protocol.p

df). In brief, the 293T fibroblasts were cultured in 10cm dish to around 90% confluence in 

12ml medium. The transfection solution was generated by combining 1.5ml Opti-MEM 

(Invitrogen) medium containing 60μl Lipofectamine 2000 with another 1.5ml Opti-MEM 

medium containing 16μg of pQsupR plasmid DNA and 16μg of pCL-10A1 helper envelop 

plasmid DNA. The combined solution was kept at room temperature for 20 minutes before 

adding to the cells drop by drop. The transfection solution was kept with the cells for 12 

hours and fresh medium was fed to the cells after 12 hours and 24 hours. Supernatant 

containing retroviral particles were collected after 36 hours, 48 hours and 60 hours of 

transfection, and pooled for infection. 

2.3.2 Infection 

Lymphocytes, including B3 pre-B cells and JE131 thymocytes, were infected in 6-well plates. 

2×106 cells were plated with 3ml of retroviral supernatant, supplemented with 10mM pH 7.6 

HEPES and 4μg/ml polybrene (Sigma-Aldrich). The spin infection was then performed at 

2500rpm for 1.5 hours in 37°C. For infection with shRNA retrovirus, the cells were further 

kept with the virus in the incubator for 3 hours after spin infection. At last, the infected cells 

were fed with fresh medium. 
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To infect fibroblasts, the cells were cultured in 10cm dish to 60% confluence. The cells were 

then maintained in 4ml of viral supernatant supplemented with 10mM pH 7.6 HEPES and 

4μg/ml polybrene (Sigma-Aldrich) for 6 hours in the incubator before changing to fresh 

medium. 

2.4 Ikaros induction 

Ectopic inducible Ikaros was induced from cytoplasm to the nucleus by adding 0.5µM 4-

hydroxytamoxifen (4OHT, Sigma-Aldrich). Since Myc (an Ikaros target gene of interest and a 

key player in transcription) can be up-regulated by ethanol (EtOH), the carrier for 4OHT 

(Leach et al., 1999; Nakahara et al., 2003; Paice et al., 2002; Yagle and Costa, 1999), to 

reduce concentration of ethanol during treatment, 4OHT was resuspended at 20mM in 95% 

EtOH as stock. To perform time course study, Ikaros was induced for different time prior to 

sample collection, and processed at the same time for downstream analyses. 

2.5 Fluorescent activated cell sorting (FACS)  

2.5.1 Cell sorting 

Cellular fluorescent level was assessed using BD LSRII or FACSCalibur flow cytometer, and 

cell sorting was performed on BD FACSAria II or III cell sorter. To sort, cells were pelleted 

and resuspended in sorting buffer [10% (v/v) FCS in PBS-/- (PBS stands for phosphate-

buffered saline)] at around 10×106 cells/ml, and passed through cell-strainer cap into 

12x75mm polypropylene tubes to further remove cell lumps. Samples were then submitted to 

MRC flow cytometry facility to sort for cells expressing specific window of fluorescent 

proteins (GFP or mCherry). 

2.5.2 Cell cycle analysis by propidium iodide (PI) staining 

Cells were washed once with cold PBS-/-. 0.5×106 cells were resuspended in 300µl of 

propodium iodide (PI) staining buffer [PBS-/- supplemented with 50μg/ml propidium iodide 

(Sigma-Aldrich), 10µg/ml RNase A (Life Technologies, NY, USA), and 0.05% v/v NP40 
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(Calbiochem, Merck Millipore)], and incubated on ice for 30 minutes. PI profile was 

analysed using a BD LSRII flow cytometer. Live cells were identified using forward scatter 

(FSC) and side scatter (SSC) profiles, and doublets were discriminated using FSC-W/FSC-A 

gating. Data were analysed using FlowJo software. 

2.6 Immunofluorescence (IF) 

Fibroblasts were cultured in 6-well plates with sterile coverslips at the bottom. Suspension 

cells after required treatment were plated into 12-well plates with poly-L-lysine coated 

coverslips (BioCoat) for 10 minutes at the bottom. Coverslips were then washed with PBS 

and fixed with 4% paraformaldehyde (PFA) in PBS for 10 minutes at room temperature. 

Fixed samples were washed in PBS, and were permeabilised with 0.5% Triton X-100 for 5 

minutes. Samples were subsequently incubated in blocking solution [3% normal goat serum 

(Vector), 0.1% Triton X-100 in PBS] for 30 minutes at room temperature in a humid chamber. 

Primary antibody was diluted 1:1000 in blocking solution (Table I.3), and added to the 

samples for 1 hour at room temperature or incubated overnight at 4 °C in a humid chamber. 

Coverslips were washed 3 times in PBS and incubated with secondary antibodies coupled 

with appropriate fluorophores (Molecular Probes) that were diluted in blocking solution for 1 

hour at room temperature in a dark humid chamber. Cells were then washed 3 times in PBS 

and mounted in Vecatshield (Vector Laboratories) with DAPI (0.1µg/ml). 

Samples were visualised using a TCS SP5 Leica laser scanning confocal microscope. 

Microscope settings and laser power were kept constant among samples. Images were 

processed using Leica Confocal software and Adobe Photoshop CS5.  

2.7 Western blot 

2.7.1 Protein quantification 

Cells were pelleted and washed once in cold PBS supplemented with protease inhibitor 

cocktail (Roche). Cell pellet was then resuspended in 1 volume of cold PBS, topped with 1 

volume of 2× sample buffer [100mM Tris (pH 6.8), 20% glycerol, 2% sodium dodecyl 

sulphate (SDS)] at the concentration of 1×106 cells in total volume of 100µl. Samples were 
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incubated at 95 °C for 10 minutes. Protein concentration was measured using the Pierce™ 

BCA Protein Assay Kit (Thermo Scientific) according to manufacturer’s instructions. After 

quantification, 10% (v/v) β-mercaptoethanol and 0.002% bromophenol blue were added to 

protein samples, and kept at -20°C. 

Otherwise, if protein quantification was not required, after washing with PBS, 1×106 cells 

was resuspended in 50µl PBS and topped with 50µl 2× sample buffer containing β-

mercaptoethanol and bromophenol blue, and incubated at 95 °C for 10 minutes. 

2.7.2 Cell fractionation 

To fractionate the B3 cells to cytoplasmic fraction and nuclear fraction, cells were first 

washed once with cold PBS supplemented with protease inhibitor cocktail. Cells were 

resuspended in cold cell lysis buffer [10mM HEPES (pH 7.9), 10mM KCl, 1.5mM MgCl2, 

0.34mM sucrose, 10% glycerol, 1mM DTT, 0.1% Triton X] at 1×106 cells/20μl, and lysed on 

ice for 5 minutes. Sample was then span down at 1300 rcf for 5 minutes at 4°C. Supernatant 

was collected and used as cytoplasmic fraction after removing debris by centrifuging at 

25000 rcf for 10 minutes in 4°C. The pellet was washed once with cold cell lysis buffer 

without Triton X before lysed with nuclear lysis buffer (3mM EDTA, 0.2mM EGTA, 1mM 

DTT) 1×106 cells/20μl for 30 minutes on ice, and used as nuclear fraction. 1 volume of 2× 

sample buffer [100mM Tris (pH 6.8), 20% glycerol, 2% sodium dodecyl sulphate (SDS), 10% 

(v/v) β-mercaptoethanol, 0.002% bromophenol blue]  was added to both cytoplasmic and 

nuclear fractions and boiled at 95°C for 10 minutes. The nuclear fraction was further 

sonicated at high speed for 3 cycles of 15s on/off. To load on gel, same volume of each 

fraction was loaded. 

2.7.3 Western blotting 

The quantity of protein loading varies depending on protein of interest. Together with 

dilution of primary and secondary antibody, information can be found in Table I.3.  

Proteins, together with the Benchmark pre-stained protein ladder (Invitrogen) as size 

reference, were loaded on a SDS-polyacrylamide gel, consisting 4 % stacking gel [4% (w/v) 
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acrylamide, 125mM Tris-HCl (pH 6.8), 0.1% SDS, 0.067% ammonium persulphate (APS), 

0.12% N,N,N’-tetramethylethylenediamine (TEMED)] and a 10 % acrylamide resolving gel 

[10 % acrylamide, 390 mM Tris-HCl (pH 8.8), 0.1 % SDS, 0.05 % APS, 0.1 % TEMED]. For 

large proteins, such as Rbp1, Chd4, Brg1 and Brm, 4–15% precast polyacrylamide gel (Bio-

Rad) was used. Proteins were separated by running the gel in running buffer (25mM Tris base, 

192mM glycine, 0.1% SDS)), using Bio-Rad minigel system for 1-1.5 hours at 30mA per gel. 

Proteins were transferred to a Protan nitrocellulose transfer membrane (Schleicher & Schuell 

Bioscience) using the Trans-Blot® SD Semi-Dry Transfer Cell (BioRad) in transfer buffer 

[48mM Trizma base, 39mM glycine, 0.037% (w/v) SDS and 20% v/v methanol]. The transfer 

was performed for 1.5 hours at 140mA/25v/gel. The membrane was then incubated for half 

an hour in blocking buffer [5% (w/v) fat free milk powder (Marvel), 1.2g/L Tris (pH 7.4), 

8.75g/L NaCl] followed by incubation with the primary antibody (diluted in blocking buffer) 

for 1 hour at room temperature or at 4°C overnight with agitation. Membranes were then 

washed three times for ten minutes in wash buffer [1.2g/L Tris (pH 7.4), 8.75g/L NaCl] 

before incubation with horseradish peroxidise-coupled secondary antibodies (α-rabbit and α-

mouse antibodies were purchased from Amersham and used at 1:5000 dilution in blocking 

buffer) for 1h at room temperature. After washes of secondary antibody, detection was done 

using the Luminata Crescendo Western HRP Substrate (Millipore) following manufacturer’s 

instructions with Kodak X-Omat photographic films. 

2.8 Gene expression quantification 

2.8.1 RNA extraction and reverse transcription 

RNA extraction was performed using the QIAshredder and RNeasy Mini kits (Qiagen). 

Residual DNA was eliminated using DNA-free kit (Ambion), according to manufacturer’s 

instructions. 

Reverse transcription was performed using Superscript First-Strand Synthesis system 

(Invitrogen). In brief, 500ng of total RNA was combined with 1µl of 10mM dNTP mix and 

1µl of 0.25µg/µl random primers, topped up to 11µl with RNase-free H2O. The mix was 

incubated at 65°C for 5 minutes and left on ice for 1 minute before adding 1µl of 0.1M DTT, 

4µl of 5× first strand buffer, 1µl of RNaseOUT and 1µl of 200U/µl Superscirpt III reverse 
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transcriptase. The reaction mixture was then incubated at 25°C for 5 minutes, at 50°C for 1 

hour, and at 75°C for 15 minutes. cDNA was then diluted 10× before analysed using real-

time quantitative PCR (RT-qPCR). 

2.8.2 Real-time quantitative PCR (RT-qPCR) 

Primers used for RT-qPCR analysis were listed in Table I.4 and I.5.  

To design primers, reference sequence was obtained from UCSC genome browser. Primers 

were designed using Primer3 (http://frodo.wi.mit.edu/primer3/), and screened for off-targets 

using UCSC in silico PCR tools. The amplification efficiency and linearity of each primer 

pair was determined using sequential 2-fold dilutions genomic DNA (for testing of qPCR 

primers for nascent mRNA and ChIP). Primers presenting good linear fits of the C(t) versus 

logarithm of the genomic DNA concentration (R2>0.99) and amplification efficiencies within 

the range of 1.8 – 2.2 were selected. 

A reaction mix was composed of 2X SYBR Green qPCR mastermix (Qiagen), 0.3mM 

primers, and 1-2μl of cDNA or ChIPed DNA in a final volume of 12μl. RT-qPCR was 

performed using the following program: reaction was activated by incubating at 95°C for 15 

minutes, then a cycle of denaturising at 94°C for 15 seconds, annealing at 60°C for 30 

seconds, and elongating at 72°C for 30 seconds was repeated 40 times. Fluorescence was 

read at 72°C, 75°C, 78°C and 83°C. The melting curve was determined from 72-90°C at 

0.2°C intervals. qPCR quantification was performed using a Chromo4 Opticon or a Bio-Rad 

CFX96 Real-Time qPCR machine, and was analysed using Opticon Monitor 3 Software or 

CFX96 Manager Software, respectively. Relative abundance of detected sequences was 

calculated using the ΔΔC(t) method (Pfaffl, 2001). In brief, C(t) is the number of 

amplification cycles after which fluorescence of PCR products can be detected above 

background. Suppose qPCR products are amplified exponentially, i.e. amplification 

efficiency is close to 2, the relative abundance of the gene or region of interest (C(t)1) 

compared to a control (C(t)2) can be calculated as 2-ΔC(t)1/2-ΔC(t)2. For gene expression, 

housekeeping genes were used for normalisation. ChIP-qPCR analysis follows the same 

principle but normalization was different and was discussed in relevant context.  
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2.9 Micrococcal nuclease (MNase) assay 

2.9.1 MNase digestion 

30×106 cells were collected in 18ml of complete medium and cross-linked in 1% 

formaldehyde by adding 2ml of fixation buffer (0.5mM EGTA pH 8.0, 100mM NaCl,                                             

1mM EDTA, 50mM HEPES pH 8.0, 10% Formaldehyde in sterile H2O). Cells were 

incubated for 10 minutes at room temperature on a rotating platform, and fixation was 

stopped by adding glycin to the final concentration of 140mM. Fixed cells were then 

centrifuged at 4°C for 5 minutes at 1700rpm, and washed twice with cold PBS. Cell pellet 

was then resuspended in 0.5ml of cell lysis buffer (5mM PIPES pH 8.0, 85mM KCl, 0.5% 

NP-40 in sterile H2O) supplemented with protease inhibitor cocktail (Roche), 0.15mM 

Spermine (Sigma), and 0.5mM Spermidine (Sigma), and lysed on ice for 20 minutes. Sample 

was then pelleted at 4°C for 10 minutes at 900 rcf, and washed once in 1ml of cold MNase 

CaCl2- buffer (10mM Tris-HCl, pH 7.4, 15mM NaCl, 60mM KCl) supplemented with 

0.15mM Spermine and 0.5mM Spermidine. Sample was then resuspended in MNase CaCl2+ 

buffer (10mM Tris-HCl, pH 7.4, 15mM NaCl, 60mM KCl, 1mM CaCl2) supplemented with 

0.15mM Spermine and 0.5mM Spermidine at 2×106 cells in 100µl, and digested with MNase 

(Roche) at 200U/ml in room temperature for 10 minutes. Digestion was stopped by adding 

20µl/2×106 cells of stop buffer (100mM EDTA, 10mM EGTA). As undigested control, 2×106 

cells were treated in parallel without adding MNase.  

To map nucleosome positioning, 120µl of digested or undigested control chromatin was 

supplemented with 80µl MNase CaCl2- buffer, 1% SDS, 50μg/ml proteinase K, and 

100μg/ml RNase A, and incubated at 37°C for 2 hours and 65°C overnight. DNA was 

extracted with using a phenol/chloroform protocol, and precipitated with ethanol and sodium 

acetate (pH 5.2). Precipitated DNA was washed once in cold 70% ethanol, and dried pellet 

was resuspended in 50µl sterile H2O. To check the efficiency of digestion, 10µl of digested 

and undigested DNA were analysed using agarose gel electrophoresis. Afterwards, DNA was 

subject to quantification using pigogreen before analysis by RT-qPCR or sequencing. 

To use MNase digested chromatin for chromatin immunoprecipitation (ChIP), after digestion, 

chromatin was supplemented with protease inhibitor cocktail and sonicated for 4 minutes at 

4°C with 30 seconds on, and 30 seconds off using a Bioruptor® (Diagenode). Un-sonicated 
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chromatin and debris were span down at 25000rcf for 15 minutes at 4°C and supernatant was 

taken for IP. Before IP, chromatin was supplemented with 0.1% SDS, 0.1% sodium 

deoxycholate, and 1% Triton X-100.  

2.9.2 Picogreen quantification 

PicoGreen® dsDNA quantitation assay kit was purchased from Life Technologies. As an 

ultrasensitive nucleic acid stain, it has the advantage of detecting as little as 25 pg/ml of 

dsDNA in the presence of ssDNA, RNA, and free nucleotides. Quantification was carried out 

according to the manufacturer’s instructions. Particularly, for MNase assay DNA 

quantification, standard curve was made from a maximum of 100ng DNA 6 sequential 2-fold 

dilutions, and 1µl of extracted DNA was used in the assay. Fluorescence was read by Bio-rad 

CFX96 RT-qPCR machine. After quantification, DNA was diluted to 2ng/µl, and 1µl was 

used per qPCR reaction. 

2.10 Chromatin immunoprecipitation (ChIP) 

2.10.1 Histone and histone modification ChIP 

Chromatin for histone and histone modification ChIP was fragmented by MNase digestion as 

described in section 2.8.1. For all IPs, 10µl of Dynabeads® Protein A or G (Life 

Technologies) was first washed twice with cold RIPA standard buffer (140mM NaCl, 10mM 

Tris-HCl pH 7.5, 1mM EDTA pH 8.0, 0.5mM EGTA pH 8.0, 1% Triton X-100, 0.1% SDS, 

0.1% sodium deoxycholate), and incubated with antibody of interest for 3 hours at 4°C on a 

rotating platform. Antibodies used and antibody to beads ratios were specified in table I.3. 

Saturated antibody was washed away by RIPA standard buffer on a magnetic stand before 

incubating beads/antibody with chromatin overnight at 4°C. For each histone and histone 

modification IP, 50µl chromatin was combined with 150µl RIPA standard buffer  and was 

added to beads/antibody in 300µl tube stripes. For histone acetylation ChIP, 5mM sodium 

butyrate (inhibitor for HDAC class I and II) and 10mM nicotinamide (inhibitor for HDAC 

class III) were supplemented to the chromatin on top of protease inhibitor cocktail. Unbound 
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chromatin and non-specific binding was washed away sequentially by RIPA standard buffer, 

RIPA high salt buffer (500mM NaCl, 10mM Tris-HCl pH 7.5, 1mM EDTA pH 8.0, 0.5mM 

EGTA pH 8.0, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate), RIPA LiCl buffer 

(250mM LiCl, 10mM Tris-HCl pH 7.5, 1mM EDTA pH 8.0, 0.5mM EGTA pH 8.0, 1% 

Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate), and TE buffer (10mM Tris-HCl, 1mM 

EDTA, pH 7.5). Washed beads were resuspended in 200µl of histone ChIP elution buffer 

(25mM Tris, 1mM EDTA, pH 9.2) with 100µg/ml Proteinase K and 100µg/ml RNase A, and 

incubated in PCR machine at 37°C for 30 minutes, 65°C for 6 hours and 95°C for 10 minutes. 

For qPCR analysis, 5µl of supernatant was used per reaction in a total volume of 30µl. 

2.10.2 RNAPII ChIP 

RNAPII ChIP protocol from Dr Ana Pombo’s lab, MDC Germany, was used with adjustment 

(http://www.epigenesys.eu/images/stories/protocols/pdf/20111121162410_p48.pdf). Briefly, 

cells were fixed and washed as described in MNase assay. Fixed cells were then lysed in 

swelling buffer (25mM HEPES, 1.5mM MgCl2, 10mM KCl, 0.1% NP-40, pH 7.9) at 50×106 

cells/ml on ice for 15 minutes. Lysed cells were centrifuged at 900 rcf for 10 minutes at 4°C 

and resuspended in sonication buffer (140mM NaCl, 50mM HEPES, 1mM EDTA, 1% Triton 

X-100, 0.1% SDS, 0.1% sodium deoxycholate, pH 7.9) at 50×106 cells/ml. Fragmentation of 

chromatin was done by sonication at high speed for 25 minutes at 4°C with 30 seconds on, 

and 30 seconds off using a Bioruptor® (Diagenode). Un-sonicated chromatin and debris were 

span down at 25000rcf for 15 minutes at 4°C and supernatant was taken for IP. Chromatin 

was quantified by doing 10-fold dilution in 0.1M NaOH and measured by nanodrop. 140µg 

chromatin was used per IP. IP incubation was done as described for histone ChIP. Unbound 

chromatin and non-specific binding was washed away sequentially by sonication buffer, wash 

buffer A (500mM NaCl, 50mM HEPES, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% 

sodium deoxycholate, pH 7.9), wash buffer B (250mM LiCl, 50mM HEPES, 1mM EDTA, 

0.5% NP-40, 0.5% sodium deoxycholate, pH 8.0), and TE buffer (10mM Tris-HCl, 1mM 

EDTA, pH 7.5). Washed beads were resuspended in 300µl of elution buffer (50mM Tris, 

1mM EDTA) with 1% SDS, 50µg/ml Proteinase K and 100µg/ml RNase A, and incubated at 

37°C for 2 hours, 65°C overnight with agitation. DNA was extracted using a 

pheonol/chloroform protocol and precipitated with ethanol and sodium acetate. For qPCR 

analysis, 1µl out of 50µl was used per reaction in a total volume of 12µl. 
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2.10.3 Ikaros ChIP 

Ikaros ChIP followed the same protocol as for RNAPII ChIP, except for the preparation of 

chromatin. Briefly, 100×106 cells was washed once in PBS-/- and resuspended in 35ml PBS-

/- containing 1mM Disuccinimidyl glutarate (DSG, Thermo Scientific), and incubated on a 

rotating platform for 30 minutes at room temperature. Cells were then washed and 

resuspended in PBS, and fixed again with 1% formaldehyde as described in section 2.8.1. 

After cell lysis as described, pellet was resuspended in nuclear lysis buffer (50mM Tris-HCl 

pH 8.1, 10mM EDTA pH 8.0, 0.5% SDS) and incubated on ice for 5 minutes before 

sonication for 15 minutes. 50µg chromatin was used per IP. 

2.11 Sequencing library preparation 

MNase assay and ChIP DNA sequencing libraries were prepared using 

NEBNext Ultra™ DNA Library Prep Kit for Illumina according to manufacturer’s 

instructions. Particularly, 50ng DNA from MNase assay and 10ng DNA from ChIP or input 

were used to prepare the library, and during PCR amplification step, 10 and 14 cycles were 

used, respectively. No size-selection step was performed for MNase DNA sequencing 

libraries, and a size-selection of 200-400bp after PCR amplification was performed for ChIP 

library. The libraries were differentially indexed for multiplexing during sequencing.Library 

quality was checked on a DNA high sensitivity chip using bioanalyser at MRC genomics 

centre. Sequencing was performed on Illumina high-throughput sequencer at MRC genomics 

centre.  

2.12 Bioinformatics analysis 

2.12.1 Reference data and Gene Annotation 

All genome sequences, their respective indices and gene annotations used were downloaded 

for the NCBI37 Mouse genome build from Illumina IGenomes repositories. 

(http://support.illumina.com/sequencing/sequencing_software/igenome.html) 
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2.12.2 Sequencing alignment 

Single-end and paired-end sequences for RNAPII and MNase digested data respectively were 

aligned using BWA version 0.7.4 and SAM files generated using the relevant single or 

paired-end modes. Following sequence alignment, SAM files were sorted and indexed using 

samtools version 0.1.18 to created indexed BAM files. The quality of all datasets and 

predicted fragment lengths for single end data were analysed using ChIPQC Bioconductor 

package. Coverage files in the form of normalised BigWigs were generated for polymerase II 

data using rtracklayer package with coverage depth normalised to total reads outside of 

known mm9 blacklists. To calculate normalised coverage per base for MNase data, paired-

end reads were first reconstructed into complete fragments in silico and coverage calculated 

from these fragments normalised to total reads outside of mm9 blacklisted regions. 

Following sequence alignment and quality assessment, RNAPII counts within 500bp pstream 

and 50bp downstream of transcription start sites (TSSs) and in remaining genes were 

calculated and travelling ratios for all genes evaluated as the reads in TSS regions over those 

in remaining genes. Counting was performed using ChIPQC bioconductor package. 

2.12.3 Coverage plots of genes 

Coverage plots over genes were created using the Sogi Bioconductor package. Coverage 

plots of RNAPII data over genes was created using predicted fragment lengths and 

normalised to total reads outside mm9 blacklisted regions. Coverage plots of MNase data 

over genes was performed using the predicted centre of MNase fragments derived from 

paired-end data. 
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3 An inducible system to study Ikaros-mediated transcriptional 

regulation 

3.1 Inducible Ikaros  

To study the kinetics and mechanisms underlying Ikaros-mediated transcriptional regulation, 

our lab has devised an inducible Ikaros system. In this system, full length Ikaros (Ikaros-1) is 

fused with the ligand-binding domain of estrogen receptor (ERt2) at the C-terminus, and is 

HA-tagged at the N-terminus (Figure 3.1). This HA-Ikaros-ERt2 is cloned into a murine stem 

cell virus (MSCV) vector. Additionally, IRES-GFP (Internal Ribosome Entry Site, green 

fluorescent protein) is cloned downstream of HA-Ikaros-ERt2, so that the HA-Ikaros-ERt2 

fusion protein and the GFP protein are translated from the same transcript. In this way, the 

GFP protein can be used as an indicator of the level of inducible Ikaros expression. The 

transcription of HA-Ikaros-ERt2-IRES-GFP is driven by the 5’ MSCV long terminal repeat. 

 

 

Figure 3.1 Schematic illustration of inducible Ikaros system 

The illustration shows inducible control (top) and inducible Ikaros (bottom) MSCV retroviral vectors. 
Control vector contains HA-ERt2, while Ikaros vector contains HA-Ikaros-ERt2. Either fusion protein is 
translated from the same transcript as GFP.  

In this study, the inducible Ikaros system was introduced to the mouse pre-B cell line B3, 

which was used as a model for cycling pre-B cells. To obtain this, retroviral particles carrying 

inducible Ikaros plasmid were produced by 293T packaging cells, and were used to infect B3 pre-

B cells. To obtain a less heterogeneous infected cell population, the cells were sorted for GFP 

within a high and narrow GFP positive window using flow cytometry, and this level was 

maintained throughout this study. 
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After introducing to cells, HA-Ikaros-ERt2 fusion protein is constitutively expressed but 

tethered to heat shock proteins in the cytoplasm. Following the addition of 4-

hydroxytamoxifen (4OHT), a ligand of ERt2, Ikaros fusion protein is released and led into 

the nucleus by its Nuclear Localization Signal (NLS). B3 cells express endogenous Ikaros, 

and this inducible system is designed to allow for an increase in the dosage of Ikaros in the 

nucleus upon induction with 4OHT. Admittedly, estrogen receptors form stable dimers upon 

ligand binding (Tamrazi et al., 2002); however, Ikaros dimerization or multimerization is 

essential for its function (Cobb et al., 2000; Trinh et al., 2001). Here, the properties of the 

inducible Ikaros system were well characterised. 

3.2 Translocation of inducible Ikaros is fast and efficient 

To test the efficiency and timing of inducible Ikaros translocation from cytoplasm to nucleus, 

the localisation of inducible Ikaros was monitored by immunofluorescence (IF) microscopy 

(Figure 3.2). Inducible Ikaros fusion protein was detected by anti-HA antibody (red), while 

the nucleus was marked with DAPI (blue), a fluorescent stain that binds to AT-rich regions of 

DNA. Without Ikaros induction (4OHT 0min), almost all of the inducible Ikaros was in the 

cytoplasm. As soon as 15 minutes after Ikaros induction (4OHT 15min), a proportion of 

inducible Ikaros was observed in the nucleus. After 2 hours of Ikaros induction (4OHT 2h), 

almost all the inducible Ikaros had translocated into the nucleus. It is noteworthy that 

inducible Ikaros formed clusters at pericentromeric heterochromatin, as previously described 

(Brown et al., 1997). This pericentromeric targeting of Ikaros requires its DNA binding 

ability (Cobb et al., 2000), and therefore showed that inducible Ikaros binds to DNA. 
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Figure 3.2 Translocation of inducible Ikaros by Immunofluorescence 

Pictures show Ikaros translocation before induction (top), and 15min (middle) and 2h (bottom) after 
induction. Inducible Ikaros was recognized by anti-HA antibody (red) on left column, nucleus was marked 
by DAPI (blue) in the middle column, and the merged picture was shown on the right.  

To validate Ikaros translocation, cells were lysed and fractionated into cytoplasmic and 

nuclear fractions, and protein extracts from each fraction were analysed by western blotting. 

The quality of fractionation was controlled by blotting with antibodies that recognise proteins 

specific for each fraction, i.e. tubulin for cytoplasm and histone H3 for nucleus (Figure 3.3). 

Anti-HA antibody was used to identify inducible Ikaros (Figure 3.3A). Before Ikaros 

induction (4OHT 0min), almost all of the inducible Ikaros was present in the cytoplasmic 

fraction (CYT). After 15 minutes of induction (4OHT 15min), inducible Ikaros signal in the 

cytoplasm (CYT) decreased and that in the nucleus (NL) increased. After 2 hours of 
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induction (4OHT 2h), almost all of inducible Ikaros was seen in the nuclear fraction. This 

was also validated with an anti-Ikaros antibody, recognising both ectopic Ikaros fusion 

protein (expected size ~95KDa) and endogenous Ikaros (expected size ~57KDa) (Figure 

3.3A). Therefore, data from western blotting presented similar timing and efficiency of Ikaros 

translocation as shown by IF. Taken together, the results have shown that the translocation of 

inducible Ikaros from cytoplasm to nucleus is fast in its response to 4OHT induction, and is 

efficient in that a large proportion translocates within a short time window. 

A further advantage of using anti-Ikaros antibody is to comprehend the relationship between 

the ectopic and endogenous Ikaros. From the loading of whole cell lysate (WCL) in the 

western blot (Figure 3.3A), it was observed that the level of ectopic Ikaros was comparable to 

endogenous Ikaros. This is important to the system since Ikaros mRNA expression mildly 

increases during B cell development (Ferreiros-Vidal et al., 2013; Heizmann et al., 2013; 

Schwickert et al., 2014), and such a dosage increase of Ikaros is able to drive the transition 

from cycling to resting pre-B stage (Ferreiros-Vidal et al., 2013). In this sense, the level of 

inducible Ikaros in B3 cells is likely to be physiological in the context of haematopoiesis. 

Furthermore, it is worth noting that before Ikaros induction, a small fraction of inducible 

Ikaros was in the nucleus, while most of the endogenous Ikaros was in the cytoplasm. After 

induction with 4OHT, the level of endogenous Ikaros in the nuclear fraction also increased. 

This could be because inducible and endogenous Ikaros interact with each other and form 

dimers or multimers (Sun et al., 1996), thereby reciprocally influencing the localization of 

each other. 
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Figure 3.3 Translocation of inducible Ikaros by western blotting 

B3 cells with inducible Ikaros vector (A) and with control vector (B) were lysed and fractionated into 
cytoplasmic and nuclear fractions, and protein extracts from whole cells lysate (WCL), cytoplasm (CYT) 
and nucleus (NL) were loaded in the western blot. Inducible Ikaros was detected by either anti-HA or anti-
Ikaros antibodies. Anti-tubulin and anti-histone H3 were used as controls for cytoplasmic and nuclear 
fractions. The localization of inducible Ikaros was monitored before induction, and after 15 minutes and 2 
hours of induction. 

Interestingly, after Ikaros induction, both anti-HA and anti-Ikaros antibodies recognized one 

or two additional bands in the nuclear fractions, higher than the expected Ikaros fusion 

protein band, and the signals were stronger as more fusion protein translocated (Figure 3.3A).  

This could be due to post-translational modifications of the fusion protein after translocation 

into the nucleus. In this case, it is important to identify whether the modifications happened 

to the HA-Ikaros or the ERt2 part of the fusion protein. To this end, control cells carrying 

inducible control vector (HA-ERt2, Figure 3.1) were included (Figure 3.3B). After 4OHT 
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induction in the control cells, HA-ERt2 fusion protein travelled into the nucleus in a similar 

manner as inducible Ikaros. However, no extra bands were observed, indicating that 

translocated HA-ERt2 fusion protein was not post-translationally modified. Thus, it was more 

likely that inducible Ikaros was post-translationally modified after travelling into the nucleus.  

 

3.3 Inducible Ikaros is functional 

Ikaros target genes in B3 cells have been identified through an integrative analysis of ChIP-

seq binding data and gene expression profiling (Ferreiros-Vidal et al., 2013). To ask whether 

inducible Ikaros is functional, a selection of target genes that show strong Ikaros binding and 

are highly responsive to Ikaros overexpression were chosen as candidate genes for this study, 

namely Igll1, Myc, Ccnd2 for down-regulation, and Lig4, Zfp36 for up-regulation.   

3.3.1 Inducible Ikaros binds to Ikaros target genes 

The pericentromeric clustering of inducible Ikaros suggested that inducible Ikaros binds to 

DNA (Figure 3.2) (Cobb et al., 2000). I first tested the ability of inducible Ikaros to bind to 

known Ikaros target genes. To this end, Ikaros chromatin immunoprecipitation (ChIP) was 

performed before or after 3 hours of Ikaros induction, followed by RT-qPCR (real-time 

quantitative PCR). Ikaros binding was quantified as enrichment over input, and exemplified 

with two target genes, down-regulated Igll1 and up-regulated Zfp36. Neighbouring primers 

flanking expected Ikaros binding sites were used to produce high-resolution profiles of Ikaros 

binding (Figure 3.4). Using anti-Ikaros antibody, both endogenous and inducible Ikaros were 

detected. Before Ikaros induction (Ikaros-0h), at the Igll1 locus, Ikaros binding was observed 

from 300bp upstream to the transcription start site (TSS) and peaked around 200bp upstream. 

After 3 hours of induction (Ikaros-3h), enrichment of Ikaros binding almost doubled at the 

pre-bound region, and also mildly extended to 100-200bp downstream of the TSS. At the 

Zfp36 locus, weak but above background binding signal was observed both upstream and 

downstream of the TSS before induction (Ikaros-0h). After induction (Ikaros-3h), Ikaros 

binding was up to three times stronger, with a better defined peak shape at 300-600bp 

upstream and TSS-100bp downstream. Increased Ikaros binding after induction suggested 
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inducible Ikaros binding to target genes. The fold change in Ikaros binding after induction is 

not expected to be comparable among Ikaros targets, considering the differential binding 

affinity and local chromatin architecture for different target genes.  

Inducible Ikaros binding was also confirmed using an anti-HA antibody (Figure 3.4). After 3 

hours of Ikaros induction (HA-3h), Ikaros targeted sites showed strong binding of inducible 

Ikaros. It was worth noting that there was weak inducible Ikaros binding before induction 

(HA-0h). This corresponded to the leaking of the inducible Ikaros into the nucleus before 

induction, possibly through interactions with endogenous Ikaros, as seen in translocation data 

by western blotting (Figure 3.3A). 

 

 

 

 Figure 3.4 Ectopic inducible Ikaros binds to expected Ikaros binding sites 

Top row shows Ikaros binding by ChIP-qPCR using α-Ikaros antibody before (blue line) and after (red) 
induction, and Ikaros targets Igll1 and Zfp36. IgG negative controls are shown in green and purple. Bottom 
row shows Ikaros ChIP using α-HA antibody. Data shown is an average of three biological replicates. 
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3.3.2 Inducible Ikaros regulates transcription  

To test the function of inducible Ikaros, the expression of selected target genes was 

monitored after Ikaros induction using reverse transcription and qPCR. To capture the 

immediate changes in transcription, intronic primers amplifying primary transcripts were 

used. As a carrier control, inducible Ikaros cells were treated with ethanol (EtOH) in parallel 

with 4OHT. To control for the effect of 4OHT, control cells carrying empty vector (Figure 

3.1, 3.3B) were also treated with EtOH or 4OHT. Gene expression was normalized to stably 

expressed housekeeping genes Ubc and Ywhaz. No significant changes were observed in the 

expression of target genes under either control condition (Figure 3.5). Thus, for simplicity, 

only analysis for Ikaros induced conditions are shown in this study.  

 

 

Figure 3.5 Transcriptional regulation in Ikaros induction and control conditions 

Figure shows relative gene expression profiles of B3 cells with control vector and B3 cells with inducible 
Ikaros vector treated with EtOH as control (in blue) or 4OHT to induce Ikaros (in red), for 15min. 30min, 
45min, 1h, 2h or 6h. Relative gene expression was calculated by normalizing to housekeeping genes Ubc 
and Ywhaz, and further normalized to control vector-EtOH-15min sample. Top row shows Ikaros down-
regulated genes Igll1, Myc and Ccnd2, and bottom row shows Ikaros up-regulated genes Lig4 and Zfp36. 
Only inducible Ikaros cells treated with 4OHT showed significant changes after treatment. Data shown 
was the average of three biological replicates. 
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To emphasise the trend of gene expression changes after Ikaros induction, relative expression 

to housekeeping genes was further normalized to the un-induced sample, taking 0min as 

value 1. After 5 minutes of Ikaros induction, the negatively regulated genes, Igll1 and Myc, 

were significantly down-regulated (Figure 3.6). The expression of Ccnd2 was significantly 

reduced after 15 minutes of Ikaros induction. The repression level of down-regulated genes 

also became progressively stronger during induction. The strongest repression of Myc (to 

~35%) and Ccnd2 (to ~20%) was reached within 1 hour of Ikaros induction, whilst the down-

regulation of Igll1 progressed until 6 hours after Ikaros induction. At these selected genes, 

different response kinetics and strength of regulation were observed. Igll1 presented the most 

immediate (5 minutes) and strongest repression (to less than 5%).  

The positively regulated Ikaros target genes, Lig4 and Zfp36, were significantly up-regulated 

after 15 minutes and 5 minutes of induction, and achieved a 4-fold and a 2.5-fold of increase 

after 6 hours of induction, respectively (Figure 3.6). 

 

 

 

Figure 3.6 Inducible Ikaros regulates transcription of candidate target genes 

Graphs show relative gene expression of candidate Ikaros target genes after 0min, 5min, 15min, 30min, 1h 
and 6h of Ikaros induction. Top row shows gene expression for down-regulated Igll1, Myc and Ccnd2, 
bottom row for up-regulated Lig4 and Zfp36. Data shown was an average of three biological replicates. 
Student T-test P value: * p<0.05, *** p<0.01. 
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3.3.3 Inducible Ikaros results in cell cycle arrest 

Finally, I tested whether Ikaros induction results in cell cycle arrest. DNA content was used 

as the readout for different cell cycle phases. Propidium iodide (PI), an intercalating agent 

and fluorescent molecule which binds to nucleic acids, was used to stain DNA in cells and 

was measured by flow cytometry. PI profiles and cell cycle analysis were presented after 0, 2, 

6, 12 and 16 hours of Ikaros induction (Figure 3.7). Before induction, B3 cells with inducible 

Ikaros were cycling with a profile of 35% of G1, 46% of S and 13% of G2 phase. There were 

no significant differences in the cell cycle profiles after 2h, 6h or 12h of induction. Only after 

16h of Ikaros induction was the cell cycle arrest observed with an accumulation of G1 stage 

cells up to 53% and a decrease of both S and G2 cells. Therefore, inducible Ikaros resulted in 

cell cycle arrest at G1 after 16 hours of induction. 

 

 

Figure 3.7 Inducible Ikaros results in cell cycle arrest 

(A) shows cell cycle profiles by PI staining after 0, 2, 6, 12 and 16 hours of Ikaros induction. (B) shows 
quantification of cells in different cell cycle stages: blue for G1, red for S, and green for G2 phase. Data 
shown was an average of three biological replicates. Student T-test P value: *** p<0.01 
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3.4 Discussion 

In this chapter, I have characterised the inducible Ikaros system in B3 pre-B cells. Inducible 

Ikaros translocation into the nucleus was observed as soon as 15min after induction by 4OHT, 

analysed by both IF and western blotting. This translocation was almost complete after 2 

hours of Ikaros induction. Translocation of inducible Ikaros was then confirmed to lead to 

functional changes in the nucleus. Inducible Ikaros first bound to the binding sites of Ikaros 

target loci. Secondly, inducible Ikaros regulated transcription of the target genes, which 

consequently resulted in cell cycle arrest. Taken together, the inducible Ikaros system is not 

only fast and efficient, but also functional.  

At the transcription level, inducible Ikaros can induce changes within minutes of induction, 

providing a powerful system to study the dynamics of transcriptional regulation at high 

temporal resolution in mammalian cells. Furthermore, this transcriptional regulation occurs 

long before cell cycle arrest (which occurs after 16 hours of Ikaros induction). Thus, the 

inducible Ikaros system is suitable to study the direct effects of Ikaros on transcription, and 

the kinetics of Ikaros-mediated regulatory events during transcriptional regulation. 

After Ikaros induction, the regulation of gene expression was not only fast, but also became 

stronger with time after 4OHT treatment. The kinetics of transcriptional regulation may 

depend on how much and how fast ectopic Ikaros translocates. Therefore, the stability of the 

level of inducible Ikaros and the reproducibility of 4OHT treatment are required to compare 

the observations from different experiments. Hence, the expression levels of inducible Ikaros 

were carefully maintained according to their GFP levels, and the cells were always induced in 

the same way as described in materials and methods.  

Ikaros can be phosphorylated (Cho et al., 2008; Gomez-del Arco et al., 2004; Gurel et al., 

2008; Uckun et al., 2012) or SUMOylated (Gomez-del Arco et al., 2005), and these 

modifications can both positively and negatively regulate Ikaros function. To further identify 

the types of modifications observed (Figure 3.3) and their functional roles, more analyses 

need to be done. It will however not be included in this project. 
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4 Genome-wide profiling of Ikaros-mediated changes in chromatin 

status 

To understand the influence of Ikaros on chromatin status, I profiled genome-wide RNAPII 

binding and nucleosome occupancy before and after Ikaros induction. In concert, the analysis 

of both RNAPII and nucleosomes allowed for the genome-wide profiling of Ikaros-mediated 

changes in chromatin status. 

The bioinformatics analysis in this chapter was done by Dr Thomas Carroll. 

 

4.1 Ikaros mediates changes in RNA polymerase II profiles 

To ask whether Ikaros can modulate RNAPII profiles at target genes, total RNAPII density, 

including initiated but paused and productively elongating, was compared before and after 

Ikaros induction, using chromatin immunoprecipitation for RNAPII followed by high-

throughput sequencing (ChIP-seq). An antibody that recognises Rbp1 N-terminus, thus the 

total RNAPII regardless of its phosphorylation state at the CTD, was used for ChIP.  

4.1.1 Sequencing library preparation and sequencing quality  

B3 pre-B cells with inducible Ikaros were treated for 6 hours with 4OHT for Ikaros induction 

or with ethanol treatment for the control. This time point was selected since strong changes in 

transcription were observed at selected target genes after 6 hours of induction (Figure 3.6) 

and the cell cycle was not yet affected (Figure 3.7). Fragmented chromatin was used for 

RNAPII ChIP, and chromatin without IP (input) was used to control for any genomic or 

sonication bias. DNA fragments from both IP and input were selected for sizes between 100-

300bp, and the samples from two biological replicates were used to generate sequencing 

libraries for the Illumina HiSeq2500 sequencer. The libraries were sequenced at single-end 

for 50 cycles, generating 50bp reads. 
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Libraries were sequenced in depth, with the library of RNAPII ChIP before Ikaros induction 

from replicate1 (Rep1-RNAPII-0h) being the highest obtaining 81 million reads, and the 

library of input before Ikaros induction from replicate2 (Rep2-INPUT-0h) being the lowest 

obtaining 17 million reads (Table 4.1).  

The first quality control step is the mapping rate. Sequencing reads were aligned to mouse 

genome mm9. All ChIP libraries showed high percentage of unique mapping, with similar 

mapping percentages of 85% ~ 94% (Table 4.1).  

 

Table 4.1 RNAPII ChIP-seq general statistics 

Libraries Total Reads Mapped reads Mapped% Duplication% 
Rep1-RNAPII-0h 81,646,769 77,028,433 94% 33% 

Rep1-RNAPII-6h 49,283,217 41,740,022 85% 59% 

Rep1-INPUT-0h 23,241,633 15,970,663 69% 28% 

Rep1-INPUT-6h 47,277,191 43,157,432 91% 22% 

Rep2-RNAPII-0h 78,566,451 69,637,707 89% 52% 

Rep2-RNAPII-6h 64,854,713 59,581,374 92% 32% 

Rep2-INPUT-0h 17,071,938 10,701,144 63% 25% 

Rep2-INPUT-6h 47,270,265 40,972,794 87% 21% 

 

 

Another general quality control of sequencing is duplication rate. It is the percentage of reads 

with the same start and end positions (duplicates) over the total amount of reads in each 

library. Here, two libraries showed high duplication rates of 50% ~ 60% (Table 4.1). 

Duplicates exist due to various reasons. First, they come from real biological signals. For 

ChIP-seq, genomic regions with strong binding affinity for the protein of interest, or regions 

with consistent binding among the cell population, are highly enriched during IP, thereby 

more likely to be duplicated during sequencing. Second, sequencing saturation also leads to 

high duplication rate. Third, duplication can be caused by PCR amplification during library 

preparation. If the DNA sample used to generate a sequencing library is not complex enough, 

over-amplification by PCR during library preparation results in artefacts observed as 

duplicates. In this particular case, RNAPII often stalls at narrow promoter proximal regions, 

which gives a high possibility of duplication in these regions. Further, Rep1-RNAPII-6h (59% 
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duplication) and Rep2-RNAPII-0h (52% duplication) each obtained 50 and 80 million reads, 

increasing the possibility of duplication due to sequencing saturation. Admittedly, it was 

difficult to rule out the possibility of PCR over-amplification during library preparation. It is 

hard to estimate the contribution of each factor to duplication rate. However, it is suggested 

that one should be very cautious when removing duplicates during ChIP-seq analysis, since it 

more strongly removes true biological signal than background noise (Carroll et al., 2014). 

Removing duplicates has been tested for the analysis, but RNAPII signals at promoter 

proximal regions were strongly reduced (data not shown). Hence, analysis for RNAPII ChIP-

seq was carried out without removing duplicates. 

Rep1-RNAPII-0h showed a duplication rate of 30%, similar to Rep2-RNAPII-6h; meanwhile, 

Rep2-RNAPII-0h showed a similar duplication rate to Rep1-RNAPII-6h. Since biological 

replicates were processed at the same time during ChIP and library preparation, which made 

them technically very comparable, libraries were matched up according to their duplication 

rate across biological replicates. To compare among samples, normalised signal was obtained 

by scaling to sequencing depth. Normalized sequencing data was then used for downstream 

analyses. 

 

4.1.2 RNA polymerase II profile and its change mediated by Ikaros  

RNAPII profile 

To assess the profile of RNAPII binding genome wide, I first asked if RNAPII sequencing 

data reflected transcriptional activity. To this end, RNAPII density of the 1000 top expressed 

genes was compared to the 1000 bottom expressed genes (Figure 4.1). Gene lists based on 

expression level were obtained from published B3 pre-B cell microarray data (Ferreiros-

Vidal et al., 2013). To generate the profiles, genomic regions were segregated to 4 sections: 1) 

TSS, as from -30bp to +300bp relative to TSS, 2) TTS, as from -300bp to +300bp relative to 

TTS, 3) gene body, as the remaining part of the gene, and 4) intergenic region, as the rest of 

the genome (Rahl et al., 2010). Reads mapped to the gene body were normalized according to 

gene length. RNAPII density was then calculated using reads per million (RPM).  
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The RNAPII profile of top expressed genes showed a strong peak just downstream of the 

TSS, agreeing with the extensive promoter proximal pausing. There was higher than 

background RNAPII signal along the gene body, followed by a small peak just downstream 

of the TTS, reflecting the termination process (Figure 4.1). In contrast, the RNAPII profile of 

the bottom expressed genes did not show RNAPII binding at the TSS, gene body or TTS. 

Hence, this sequencing dataset lives up to the expected RNAPII distribution profile, and 

discriminates active from inactive genes. 

 

 

Figure 4.1 RNAPII coverage across intragenic region of active genes and inactive genes 

RNAPII density calculated as reads per million (RPM) was plotted along the intragenic region, of top 
expressed 1000 genes (blue) and bottom expressed 1000 genes (red). 

Changes in RNAPII profile mediated by Ikaros 

To evaluate RNAPII profiles before and after Ikaros induction, selected target genes were 

first examined. At the down-regulated Igll1, Myc and Ccnd2, the TSSs showed strong 

RNAPII binding before Ikaros induction, and lower binding was observed at the gene bodies 

and TTSs. After Ikaros induction, the RNAPII signal was significantly decreased at the TSSs 

and gene bodies of these negatively regulated genes (Figure 4.2A). The changes at Igll1 were 
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the most dramatic, as the RNAPII signal was almost gone after 6 hours of induction. RNAPII 

binding at the Myc locus reduced to about ½ after 6 hours of Ikaros induction, both at the TSS 

and the gene body. Ccnd2 lost ¾ of RNAPII binding at the TSS and almost all at the gene 

body. The decreases in RNAPII binding at these down-regulated genes were to different 

extents. This is in agreement with the gene expression data (Figure 3.6). The up-regulated 

genes, Lig4 and Zfp36, showed increased RNAPII binding after Ikaros induction (Figure 

4.2B). This increase appeared more obvious at the TSSs. Rex1 (Zfp42) and Acta1 (encodes 

for α-actin) were used in this study as controls for inactive genes in B3 cells, as they are not 

expressed and do not contain any Ikaros binding sites within 1Mb region (Ferreiros-Vidal et 

al., 2013). There was no RNAPII binding observed at these inactive control loci at the same 

scale (Figure 4.2C). This confirmed the RNAPII profile of the bottom expressed 1000 genes 

(Figure 4.1). No enriched RNAPII signal was observed in input samples at any loci. 
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Figure 4.2 RNAPII profile changes during Ikaros induction at selected loci 

RNAPII profile changes during Ikaros induction at (A) down-regulated Igll1, Myc, Ccnd2, (B) up-
regulated Lig4, Zfp36, and (C) negative control Rex1(Zfp42), Acta1. Each picture presents coverage 
profiles of RNAPII-0h, RNAPII-6h, Input-0h and Input-6h at the same scale. 

Next, additional Ikaros targets were examined, based on the microarray gene expression 

profiling data in B3 cells after Ikaros overexpression (Ferreiros-Vidal et al., 2013). The 

subsets of regulated genes were selected with the criteria that they were significantly 

regulated (corrected p value < 0.05), either down-regulated or up-regulated, after 6 hours of 

Ikaros induction and the regulation of gene expression remained significant in the same 
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direction after 48 hours of Ikaros overexpression. The list came down to 117 genes for down-

regulation and 68 genes for up-regulation. The RNAPII profiles for these two sets of genes 

were generated as previously described. The down-regulated gene set showed general 

decrease of RNAPII density at the TSS, gene body and TTS (Figure 4.3). In contrast to the 

down-regulated set of genes, the up-regulated set of genes showed an increase in RNAPII 

density at the TSS, milder increases were also observed at the gene body and TTS. This 

indicates that the changes observed at selected loci are not special cases, and are 

representative of overall RNAPII profile changes at Ikaros regulated genes following Ikaros 

induction. 

 

 

 

Figure 4.3 RNAPII coverage profile changes during Ikaros induction at regulated genes  

RNAPII densities calculated as RPM were plotted along the intragenic region. Picture (left) shows 
RNAPII coverage profiles after 0h (blue line) and 6h (red line) of Ikaros induction for down-regulated 
Ikaros target genes; picture (right) shows RNAPII coverage profiles after 0h (blue line) and 6h (red line) of 
Ikaros induction for up-regulated Ikaros target genes. 
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c-Myc is a universal amplifier of expressed genes by facilitating RNAPII pause-release, and 

this facilitating effect is reversed by Myc knock-down or c-Myc inhibitors (Lin et al., 2012; 

Nie et al., 2012; Rahl et al., 2010). Importantly, Myc is an Ikaros target gene that is 

immediately down-regulated after Ikaros induction (Figure 3.6). Myc mRNA and c-Myc 

protein have very short half-lives (Hann and Eisenman, 1984). It was therefore a concern that 

after 6 hours of Ikaros induction, down-regulated Myc may lead to global reduction in 

RNAPII elongation. This would subsequently result in decreased transcription, and thereby 

introduce a bias on the interpretation of the genes regulated by Ikaros. To address this 

possibility, global RNAPII profiles were analysed before and after 6 hours of Ikaros 

induction (Figure 4.4). Before Ikaros induction, expressed genes contributed to the RNAPII 

signals along the intragenic region, highlighting RNAPII pausing at the TSS and transcription 

termination immediately downstream of the TTS. Importantly, no difference in the global 

RNAPII profile was observed after Ikaros induction. This suggests that the down-regulation 

of Myc does not globally reduce RNAPII elongation after 6 hours of Ikaros induction. This 

also supports the idea that the changes in RNAPII profiles are selective for Ikaros target 

genes. 

 

Figure 4.4 Global RNAPII coverage profiles before and after Ikaros induction 

RNAPII density calculated as reads per million (RPM) was plotted along intragenic region. Global 
RNAPII coverage profiles were compared before (black dash line) and after 6 hours of Ikaros induction 
(red line). 
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Taken together, RNAPII profiling is consistent with the expected RNAPII genome-wide 

distribution, which not only discriminates actively transcribed genes from inactive ones, but 

also reflects rate-limiting processes during RNAPII traveling. Further, inducible Ikaros is 

shown to introduce changes in RNAPII binding selectively at Ikaros target genes, and the 

changes are in agreement with regulation at the transcriptional level. 

 

4.1.3 Ikaros mediates changes in RNA polymerase II recruitment and elongation  

I next asked whether Ikaros regulates RNAPII through modulating RNAPII recruitment or 

elongation. Recruitment level can be quantified using the RNAPII density proximal to the 

promoter. The efficiency of elongation was quantified using the RNAPII travel ratio (TR) 

(Rahl et al., 2010). The TR measures the ratio between the RNAPII density in the promoter (-

30bp to +300bp of TSS) and in the gene region. More efficient RNAPII elongation results in 

less RNAPII at the promoter region and more at the gene body, and a lower TR. 

For simplicity, it is assumed that the elongation rate, which reflects the speed of RNAPII 

travelling on the chromatin template, remains constant (Ehrensberger et al., 2013). Figure 4.5 

left panel illustrates how down-regulation can be achieved. In the first scenario, Ikaros 

regulates RNAPII only at the level of recruitment, but does not influence elongation 

efficiency, so that TR remains the same before and after Ikaros induction (Figure 4.5A-L). In 

this case, RNAPII density decreases to the same extent at the promoter and the gene region. 

Preliminary examination showed that the Ikaros target gene Myc fell into this category of 

regulation. Second, Ikaros may not influence RNAPII recruitment, but increase RNAPII 

pausing (Figure 4.5B-L). In this scenario, the RNAPII density at the promoter remains or 

slightly increases due to stronger pausing, whilst RNAPII density in the gene region is 

reduced and the TR is higher after 6 hours of Ikaros induction. Third, Ikaros may reduce both 

RNAPII recruitment and elongation (Figure 4.5C-L). In this situation, RNAPII density at the 

promoter is reduced after Ikaros induction, while signal at the gene region is reduced even 

more as a consequence of both decreased recruitment and increased pausing. The Ikaros 

target gene Ccnd2 appeared to fit this model. Finally, Ikaros may reduce RNAPII density at 

the promoter region, and less efficiently at the gene body (Figure 4.5D-L). Figure 4.5R 

illustrates four possible RNAPII regulation scenarios during Ikaros-mediated transcriptional 
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up-regulation. To examine whether Ikaros regulates RNAPII through one dominant 

mechanism or different mechanisms for different subsets of target genes, statistical tests will 

be used.  

 

 

Figure 4.5 Schematic of possible Ikaros-mediated RNAPII regulation scenarios 

Left panel shows possible regulation scenarios of down-regulated genes, while right panel shows those for 
up-regulated genes. Yellow area presents RNAPII density before Ikaros induction, while blue area 
presents that after 6 hours of Ikaros induction. Each scenario represents the possible combinations of 
regulation and recruitment and elongation levels. Each dot on the line at either TSS, gene body or TTS 
indicated of ¼ of RNAPII density, and it was intended to be representative of simplified percentage 
changes. 
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4.2 Ikaros mediates changes in the nucleosome landscape 

4.2.1 Methodology 

To determine nucleosome position, I used Micrococcal nuclease (MNase) to digest chromatin. 

MNase is derived from Staphylococcus aureus and is a relatively non-specific endo-

exonuclease that digests both single-stranded and double-stranded nucleic acids. Treating 

chromatin with MNase, naked DNA is exposed for digestion, whilst DNA that is tightly 

wrapped around nucleosome is protected. In this way, DNA fragments that survive MNase 

digestion reveal the position of nucleosomes. To minimise nucleosome sliding during MNase 

treatment, cells were cross-linked with 1% formaldehyde. To balance the requirement of high 

resolution mapping for mono-nucleosome and the risk of over-digestion, MNase treatment 

was optimised to obtaining mostly mono-nucleosomes and minor di-nucleosomes (Barski et 

al., 2007; Schones et al., 2008). Digestion efficiency was checked using DNA agarose gel 

electrophoresis. DNA fragments purified from digested chromatin were subjected to high-

throughput sequencing (MNase-seq) to determine the nucleosome landscape before and after 

Ikaros induction. I have received very helpful advice from Dr Steven Henikoff, FHCRC, 

USA, on how to conduct these experiments.  

Canonical nucleosome consists of eight core histones with 147bp of DNA wrapping around it 

(Luger et al., 1997). However, nucleosomes in vivo are highly dynamic. They can be partially 

unwrapped (Tims et al., 2011) or partially composed (Henikoff et al., 2011), or contain 

histone variants (Weber and Henikoff, 2014). These nucleosomes may protect shorter lengths 

of DNA (Henikoff et al., 2011). For the purpose of mapping all types of nucleosomes, it was 

crucial that sequencing libraries were prepared using a specifically optimised protocol to 

bypass any size cut-off procedure. To discriminate between differentially composed 

nucleosomes (fully, partial or variant-containing), it is important to be able to calculate the 

precise length of each DNA fragment sequenced. To this end, libraries went through pair-end 

sequencing for 50 cycles at each end using an Illumina HiSeq2500 genome sequencer. 

A total of 200 million reads were generated for MNase-0h and 220 million for MNase-6h 

(Table 4.2). Sequencing reads were mapped against the mouse genome mm9. Libraries 

showed 97% and 98% unique mapping, respectively. An additional quality control for pair-

end sequencing is the pairing rate. 92% of reads from both libraries were paired with its mate 
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within a 1kb distance in the genome. This corresponded to 90 million and 100 million 

sequenced fragments for MNase-0h and MNase-6h, respectively. The mouse genome is 

2.8×109 bp and considering there is a nucleosome every 200bp on average in the genome 

(Zhang and Pugh, 2011), mouse chromatin contains around 14 million nucleosomes. In this 

sense, the sequencing achieved 6-7 times coverage. The duplication rate for both libraries 

was around 10%, consistent with the high complexity of nucleosome positioning in the 

genome and indicative of a high library quality. 

 

Table 4.2 Nucleosome sequencing general statistics 

Libraries Total reads Mapped reads Mapped% Paired reads Paired% Duplicates% 
MNase-0h 195,647,692 190,255,641 97% 179,586,712 92% 11% 
MNase-6h 223,900,854 218,460,712 98% 205,098,842 92% 11% 

 

 

For genome-wide analysis, true DNA fragments were re-generated by filling in the gap 

between read pairs. Following that, fragment lengths were calculated and their distribution 

plotted (Figure 4.6). MNase-0h and MNase-6h showed strong agreement in their fragment 

length distributions and both peaked around 150bp, corresponding to fully-composed stable 

mono-nucleosomes. Fragments shorter than 150bp were well preserved, representative of 

DNA protected by differentially composed nucleosomes, and other subnucleosome-sized 

particles, including transcription factors, the transcription machinery, and other large 

regulatory complexes. There was also a minor proportion of fragments that were longer than 

150bp, indicating that chromatin was not over-digested by MNase. 
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Figure 4.6 Fragment size distribution of nucleosome sequencing 

Figure shows insert fragment size distribution of nucleosome sequencing before (top) and after (bottom) 6 
hours of Ikaros induction, with x-axis being insert size and y-axis being read count. The distributions of 
fragments in two libraries were very similar. 

4.2.2 The nucleosome landscape is changed by Ikaros 

The genome-wide distribution of nucleosomes features both well positioned and phased 

nucleosomes surrounding the TSS (Struhl and Segal, 2013). To evaluate the quality of the 

MNase-seq dataset, I first examined whether my sequencing captured this feature (Figure 

4.7A). As expected, nucleosomes were depleted at the TSS. The -1 and +1 nucleosomes were 

well positioned relative to the TSS. +2 to +5 nucleosomes were also phased, and phasing was 
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lost at more distant nucleosomes. The phasing pattern was less obvious in nucleosomes 

upstream of the TSS. 

 

 

Figure 4.7 Nucleosome distribution around TSS 

Graph highlights nucleosomes surrounding the TSS, with their density calculated as RPM. A shows 
nucleosome distribution of all genes, and B shows that of top (blue line) and bottom (red line) expressed 
genes. 
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The positioning and phasing pattern of nucleosomes surrounding the TSS is positively 

correlated with the level of gene expression (Schones et al., 2008). To test this correlation, 

nucleosome profiles surrounding the TSS were generated separately for the top 1000 

expressed genes and bottom 1000 expressed genes (Figure 4.7B), as described for the 

RNAPII analysis (Figure 4.1). Highly expressed genes showed strong nucleosome depletion 

at the TSS. The +1 nucleosome was well positioned with a pronounced phasing pattern of 

downstream nucleosomes. In contrast, at silent genes, the TSS was occupied by nucleosomes 

and there was no phasing pattern either upstream or downstream of the TSS. Interestingly, +1 

nucleosomes of silent genes seemed to shift closer to the TSS compared to the +1 

nucleosomes in highly expressed genes. Hence, this MNase-seq dataset reflected the expected 

nucleosome distribution at the genome-wide level. 

Next, the nucleosome landscape was evaluated before and after Ikaros induction at selected 

target genes. The nucleosomes occupying promoters and TSSs were examined, which best 

reflect transcriptional activities (Struhl and Segal, 2013). RNAPII profiles were included to 

illustrate transcriptional activities. The down-regulated Igll1 promoter was almost depleted of 

nucleosomes before Ikaros induction.  After 6 hours of Ikaros induction, the promoter was 

highly occupied by nucleosomes, reflecting reduced promoter accessibility (Figure 4.8). This 

change was particularly strong immediately upstream of the TSS. The negatively regulated 

Myc promoter showed a milder increase in nucleosome occupancy. All three down-regulated 

genes examined shared an interesting feature after Ikaros induction, which was the increase 

of nucleosome occupancy at sites that were occupied by RNAPII before Ikaros induction. 

The nucleosomes neighbouring RNAPII appeared to close in after Ikaros induction, filling 

the gap previously occupied by RNAPII (Figure 4.8). This data suggested that Ikaros may 

mediate changes in nucleosome positioning and occupancy, thereby controlling promoter 

accessibility during transcriptional regulation. Particularly, Ikaros could be involved in the 

possibly active competition between nucleosomes and RNAPII at the TSS. 
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Figure 4.8 The nucleosome landscapes at down-regulated gene promoters 

Figure shows the nucleosome landscape at promoters and downstream of the TSSs of down-regulated Igll1 
(Top), Myc (middle) and Ccnd2 (Bottom). At each locus, the profiles of RNAPII before (dark pink), and 
after Ikaros induction (light pink), nucleosome before (light purple), and after (dark purple) Ikaros 
induction, and reference gene position were presented. 

In contrast, up-regulated genes like Zfp36 showed mildly decreased nucleosome occupancy at 

the promoter after Ikaros induction (Figure 4.9). The promoter of Lig4 did not show obvious 
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nucleosome occupancy changes before and after Ikaros induction. This could be due to active 

transcription before Ikaros induction, though at lower level, which has already made the 

promoter relatively accessible. Interestingly, at the TSSs of both these up-regulated genes, the 

nucleosomes neighbouring RNAPII appeared to be more apart from each other after Ikaros 

induction, creating a bigger gap for RNAPII.  

 

 

Figure 4.9 Nucleosome landscape at up-regulated and control gene promoters 

Figure shows the nucleosome landscape at the promoter and downstream of the TSS of up-regulated Zfp36 
(Top), Lig4 (bottom). At each loci, the profiles of RNAPII before (dark pink), and after Ikaros induction 
(light pink), nucleosome before (light purple), and after (dark purple) Ikaros induction, and reference 
genome were presented. 

4.2.3 Mapping of differentially composed nucleosomes  

To investigate whether Ikaros regulates nucleosome composition, DNA fragments were 

divided into 4 size classes: >140bp for stable and fully composed nucleosomes, 110-140bp 

for partial nucleosomes possibly with one dynamic pair of the H2A-H2B dimer or containing 

89 
 



destabilising histone variants, 80-110bp for more dynamic and destabilised nucleosomes, and 

<80bp for subnucleosome-sized particles (Henikoff et al., 2011).  

Taking the down-regulated Igll1 as an example (Figure 4.10), the majority of sequenced 

fragments were grouped as >140bp, consistent with the analysed fragment length distribution 

(Figure 4.6). Ikaros increased nucleosome occupancy at the Igll1 promoter and TSS after 

Ikaros induction (labelled as total). With careful inspection, the increase appeared mainly, if 

not only, in the size classes of 110-140bp and >140bp. This suggested that Ikaros 

preferentially incorporated or exchanged for more intact and stable nucleosomes to the Igll1 

locus during repression. No increase was observed in the size classes of 80-110bp and <80bp, 

which corresponded to the binding of destabilised nucleosomes or chromatin regulatory 

complexes. Consistent with this notion, at the up-regulated Zfp36 locus, the decrease in 

nucleosome occupancy seen in total was mainly contributed by the nucleosomes that protects 

longer piece of DNA (Figure 4.10). The sequencing coverage at the fractions of partial 

nucleosomes and subnucleosome-sized particles were not deep, and consequently were less 

reliable to examine the changes in the composition of nucleosomes. To ask whether Ikaros is 

able to manipulate the composition of nucleosomes to favour the direction of its 

transcriptional regulation, nucleosome composition is further examined in later sections. 
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Figure 4.10 Nucleosome landscape based on the composition of nucleosomes 

Nucleosome landscape at Igll1 (top) and Zfp36 (bottom) of total nucleosomes, and subnucleosome 
particles protecting <80bp DNA, partial nucleosomes protect 80-110bp, 110-140bp and more than 140bp 
DNA, before and after Ikaros induction. 
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4.3 Discussion 

Here, the genome-wide profiles of RNAPII and nucleosome were determined in B3 pre-B 

cells before and after Ikaros induction. These profiles set out the landscape of chromatin 

status, and revealed striking changes in RNAPII binding and promoter accessibility mediated 

by Ikaros. They suggest possible mechanisms used by Ikaros to regulate transcription. 

Furthermore, they also help focus on particular loci to study the kinetics and mechanisms of 

Ikaros-mediated transcriptional regulation in depth. 

RNA polymerase II profiles 

The binding of RNAPII was determined by high quality ChIP-seq. Whilst no RNAPII 

binding was observed at silent genes, the binding of RNAPII at active genes reflected the 

promoter proximal pausing, elongation at the gene body, and the termination process (Figure 

4.1). Confident with the quality of RNAPII profiling, we have shown that Ikaros modulated 

the RNAPII density selectively at Ikaros target genes (Figure 4.2, 4.3). At the down-regulated 

genes, an obvious decrease in RNAPII binding was observed after 6 hours of Ikaros induction, 

in contrast to an increase at the up-regulated genes. Moreover, the degree of change in 

RNAPII binding faithfully reflected the strength of Ikaros regulation on the transcriptional 

level (Figure 3.6), with Igll1 being the strongest among down-regulated targets, and the 

down-regulation being more dramatic than the up-regulation. 

To take the analysis to the next level, the regulation of RNAPII by Ikaros will be examined at 

two rate-limiting steps, the recruitment and the elongation (Figure 4.5), and categorise the 

genes regulated by Ikaros depending on the scenarios of RNAPII regulation, and to test 

whether there is a dominant mechanism used by Ikaros to regulate RNAPII. To this end, a 

high quality set of differentially expressed genes after Ikaros induction is required. So far, the 

gene expression profiling to identify Ikaros target genes was done using microarray 

(Ferreiros-Vidal et al., 2013). Though it has been very informative and instructive, there is 

the limitation that the probes used in the array are designed from exons, thereby only 

recognising differential expression at the level of mature transcripts. Additionally, the B3 

cells used to generate the microarray dataset express lower level of inducible Ikaros, therefore 

the transcriptional changes are relatively milder (Figure 3.5 and Figure 3.6). These factors 

together lead to a potential loss of target genes that can be identified. Our collaborators, the 
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STATegra consortium, profiled gene expression by RNA-seq after 0h, 2h, and 6h of Ikaros 

induction, in B3 cells expressing comparable level of inducible Ikaros to this study. When the 

dataset is available, the classification of Ikaros target genes according to its RNAPII 

regulation mechanisms will be tested. 

Recently, the rate-limiting step of RNAPII promoter melting has been discovered in 

eukaryotes (Kouzine et al., 2013), and it would be of interest to investigate whether Ikaros 

can regulate promoter melting. In that study, Casellas and colleagues developed ssDNA-seq 

to measure the extent of promoter melting. The generation of ssDNA leads to a shift of the 

RNAPII peak at the TSS downstream by about 18bp (Kouzine et al., 2013). Therefore, before 

uptaking the technique of ssDNA-seq, the RNAPII binding profile of the differentially 

regulated genes will be zoomed in to examine whether there is a shift of RNAPII after Ikaros 

induction.  

Nucleosome landscape 

Nucleosome landscapes were determined using MNase-seq. Digestion by MNase to mostly 

the mono-nucleosome level allows for high-resolution mapping of nucleosome positioning. 

The data showed that Ikaros modulated promoter accessibility during transcriptional 

regulation. After 6 hours of Ikaros induction, an increase in nucleosome occupancy was 

observed at the negatively regulated gene promoters (Figure 4.8). The up-regulated gene 

promoters showed no increase or a mild decrease in nucleosome occupancy (Figure 4.9).  

It is interesting to test whether Ikaros can further control the composition of nucleosomes to 

favour the direction of transcriptional regulation (Figure 4.10). For example, at the down-

regulated Igll1 locus, Ikaros preferentially deposited nucleosomes that protect longer piece of 

DNA. There was no increase observed in the size class of 80-110bp corresponding to the 

destabilised nucleosomes. A series of factors can contribute to the stability of the 

nucleosomes and consequently the length of DNA they protect, including the nucleosome 

integrity, the incorporation of histone variants and the histone modifications. The 

composition of nucleosomes needs further investigation. Furthermore, the size class of <80bp 

corresponds to the binding of transcription factors and chromatin modifiers. Should a 

decrease in these subnucleosome-sized particles be statistically significant, it may be due to 

direct effects of Ikaros to remove these regulatory complexes. It may also be an indirect 

effect of Ikaros decreasing promoter accessibility.  
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The current sequencing depth however has limited the strength of further investigation. So far, 

a 6-7 coverage depth of nucleosome sequencing was achieved from one biological replicate. 

It is suggested that ideal high-resolution mapping of nucleosomes requires at least 15-30 

coverage depth (personal communications with Dr Steven Henikoff). Attempts were made to 

generate another sequencing replicate, however these were unsuccessful due to unresolved 

low pairing rate from pair-end sequencing.  

Should ideal sequencing depth be achieved from more than one biological replicate, more in 

depth analyses can be done using the nucleosome landscapes. First, it is important to assess 

whether the modulation of promoter accessibility is observed at other Ikaros regulated genes. 

Further, it would be interesting to ask whether the strength of nucleosome occupancy 

regulation positively correlates with the strength of transcriptional regulation. Next, it is 

intriguing to investigate whether the existence of partially composed nucleosome favours 

transcription in mammalian cells. In yeast and Drosophila, they correlate with genes poised 

for activation and are therefore suggested to favour transcription (Weber et al., 2010; Weiner 

et al., 2010; Xi et al., 2011). However in mouse ESCs, Rando and colleagues found little 

correlation between the footprints of these partially unwrapped or less stably bound 

nucleosomes and the transcriptional activities (Carone et al., 2014). Taking advantage of the 

mapping of the differentially composed nucleosomes, we can examine the correlation of the 

partial nucleosomes with transcriptional activities in mammalian cells. 

RNA Polymerase II vs nucleosomes 

RNAPII and nucleosome occupancy at gene promoters were both regulated by Ikaros. 

Though the changes were to different extents, one unifying feature was the anti-correlation of 

RNAPII binding and nucleosome occupancy around the TSSs. The competition between 

RNAPII and nucleosomes, whether active or passive, needs to be further explored. For 

instance, it is possible that Ikaros increases the binding of one factor, thus making the DNA 

binding regions unavailable to the other. To answer this question, it would be helpful to study 

the kinetics of changes in chromatin mediated by Ikaros, to see if one change appears before 

another. 
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5 Kinetics of Ikaros-mediated changes in chromatin status  

Ikaros modulates both the RNAPII binding and promoter accessibility of its target genes 

(Figure 4.8, 4.9). Here, I zoomed in the time frame to investigate the kinetics of changes in 

chromatin status during Ikaros-mediated transcriptional regulation. Furthermore, based on 

these kinetics, the order of events occurred during transcriptional regulation was evaluated.  

 

5.1 Kinetics of changes in RNA polymerase II mediated by Ikaros 

To examine how fast Ikaros can change RNAPII density, I performed RNAPII ChIP-qPCR in 

a time course of Ikaros induction, namely 0 minutes, 5 minutes, 15 minutes, 30 minutes, 1 

hour and 6 hours (Figure 5.2). The antibody used for RNAPII ChIP recognizes total RNAPII, 

as described previously (section 4.1). ChIP enrichment, defined as percentage over input, was 

used to evaluate the binding of RNAPII.  

The quality of RNAPII ChIP-qPCR was first evaluated before Ikaros induction (Figure 5.1). 

At the promoters of negative control genes Acta1 and Rex1, RNAPII enrichment was not 

detectable. At the promoters of active genes such as Igll1, Myc and Ccnd2, a significant 

RNAPII enrichment of 0.8-1.6% over input was observed. Lig4 and Zfp36 are not silent in B3 

cells, therefore enrichment of RNAPII was also observed at these loci before Ikaros induction. 

Moreover, within each locus, RNAPII enrichment was the highest at the TSSs, and lower at 

the gene bodies and TTSs (enrichment of less than 0.5% over input), as expected (Guenther 

et al., 2007) (Figure 4.1).  
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Figure 5.1 RNAPII enrichment at selected Ikaros target genes and control genes before induction 

The enrichment of RNAPII (blue) and negative control antibody IgG (red) was examined at the promoters 
of inactive genes Acta1 and Pou5f1, and the promoters, gene bodies and TTSs of the Ikaros target genes 
Igll1, Myc, Ccnd2, Lig4 and Zfp36. Data shown was the average of three biological replicates. 

After Ikaros induction, the binding of RNAPII decreased at the negatively regulated genes 

Igll1, Myc and Ccnd2. Strikingly, RNAPII was significantly down-regulated as soon as 15 

minutes after Ikaros induction at the Igll1 and Ccnd2 promoters, and 30 minutes at the Myc 

promoter. Down-regulation became progressively stronger during Ikaros induction at all three 

genes, and the strongest repression level seemed to be obtained within 1 hour after induction 

(Figure 5.2). Comparing the repression level of these down-regulated genes, Igll1 had the 

strongest effect within 6 hours of induction, with a ~80% reduction compared to the ~50% 

decreases at Myc and Ccnd2. This is in agreement with the changes in mRNA transcription 

(Figure 3.6) and in RNAPII genome-wide profiling (Figure 4.2).  

The up-regulated genes Lig4 and Zfp36 showed increased RNAPII binding after Ikaros 

induction. The kinetics of the increases were relatively slower compared to down-regulation, 

with significant increases observed after 1 hour of Ikaros induction. The level of regulation 

was also milder compared to repression, with increases less than 2-fold.  
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Figure 5.2 Kinetics of changes in RNAPII after Ikaros induction 

Graphs show RNAPII enrichment at TSS, gene body, and TTS of Ikaros-regulated (top panel being down-
regulated, bottom panel being up-regulated) genes and negative control genes (bottom right), after 0min, 
5min, 15min, 30min, 1h and 6h of Ikaros induction. Data shown was an average of three biological 
replicates. P value: *<0.05, ***<0.01. 

Taken together, the binding of RNAPII rapidly responds to Ikaros induction at target genes 

and the changes in RNAPII faithfully agree with mRNA transcriptional regulation. Thus, 

inducible Ikaros system is proved to be a powerful and reliable system to monitor the kinetics 

of the regulatory events mediated by Ikaros.  
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5.2 Kinetics of changes in nucleosome occupancy mediated by Ikaros  

Next, the dynamics of promoter accessibility was monitored using a MNase-qPCR assay. To 

capture the kinetics, the MNase assay was performed in the same time course as for RNAPII, 

namely 0 minutes, 5 minutes, 15 minutes, 30 minutes, 1 hour and 6 hours after Ikaros 

induction.  

To quantify nucleosome occupancy, firstly, DNA concentration was accurately measured 

(described in detail in section 2.9.2) and 2ng of either MNase digested or undigested DNA 

were used per qPCR reaction. Nucleosome occupancy was calculated by normalizing the 

signal from digested to that of undigested, in order to correct for any possible genomic bias. 

The promoter of the inactive control gene Rex1, which should be stably occupied by 

nucleosomes, was used as an internal control.  To further correct for variations introduced by 

DNA quantification, the digested/undigested signal of the locus of interest was further 

normalized to that of the Rex1 promoter. Finally, to emphasize the kinetics of changes in 

nucleosome occupancy at specific loci, fold changes of the normalized nucleosome 

occupancies after Ikaros induction were calculated against the 0min un-induced sample 

(Figure 5.2). Though complicatedly normalized, each step was carefully examined and little 

technical noise was observed (data not shown). As a positive control, the repressed gene 

Acta1 promoter showed similar nucleosome occupancy compared to Rex1 (data not shown), 

and remained unchanged during Ikaros induction (Figure 5.3). At the selected Ikaros target 

loci, qPCR primers used were marked in the nucleosome profiling snapshots with upstream to 

downstream in the genome as left to right in the graph.  

At the down-regulated gene Igll1 promoter (primers: Promoter and TSS), nucleosome 

occupancy was significantly increased to 5-fold as soon as 5 minutes after Ikaros induction, 

immediately making the promoter less accessible. Within 6 hours of induction, the increase 

of nucleosome occupancy reached about 18-fold compared to the un-induced situation. In 

contrast, nucleosome occupancy remained unchanged at an upstream (Upstream-1) and a 

downstream site (+1 nucleosome). This supports the idea that nucleosomes at the promoters 

are highly regulated, compared to those at the gene bodies and intergenic regions (Struhl and 

Segal, 2013). Likewise, down-regulated Myc also showed a significant increase in 

nucleosome occupancy. The kinetics were slower and milder compared to the Igll1 locus, 

with a significant increase first observed after 15 minutes of induction which reached to 3-
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fold within 6 hours. Similar to the kinetics of RNAPII binding, the changes in nucleosome 

occupancy were mostly obtained within 1 hour after Ikaros induction.   

In contrast to the decreased chromatin accessibility at the down-regulated gene promoters 

after Ikaros induction, nucleosome occupancy at the up-regulated Lig4 and Zfp36 promoters 

were progressively reduced, making the promoters more accessible. The kinetics were also 

slower compared to down-regulation, with a significant decrease observed within 30 minutes 

to 1 hour after induction. This is similar to the kinetics seen in RNAPII binding. 

 

 

 

Figure 5.3 Kinetics of nucleosome positioning mediated by Ikaros 

Graphs show nucleosome occupancy at promoters of Ikaros-regulated (top panel being down-regulated, 
bottom panel being up-regulated) and control loci (top right), after 0min, 5min, 15min, 30min, 1h and 6h 
of Ikaros induction. qPCR primers used were marked in the nucleosome profiling snapshots with upstream 
to downstream in the genome as left to right in the graph. Data shown was an average of three biological 
replicates. P value: *<0.05, ***<0.01. 
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5.3 Kinetics of changes in nucleosome composition mediated by Ikaros 

The nucleosome landscape after Ikaros induction captured changes in different size classes of 

nucleosomal DNA (Figure 4.10). The difference in the length of DNA protected from MNase 

digestion reflected the variations in nucleosome stability (Luger et al., 2012; Xi et al., 2011). 

Here, the composition of the nucleosome was examined at the level of nucleosome integrity 

and the incorporation of histone variants. Further, the kinetics of changes in nucleosome 

compositions were monitored after Ikaros induction. 

5.3.1 Nucleosome integrity 

The nucleosome core can be viewed as three independently controlled spatial domains. The 

(H3-H4)2 tetramers are more stably associated with DNA, governing the ‘central region’ of 

the DNA wrap. H2A-H2B dimers are more dynamic, docking at the DNA ‘entry’ and ‘exit’ 

sites of the nucleosome (Bintu et al., 2012; Rhee et al., 2014; Talbert and Henikoff, 2010). 

The ratio between H2B and H3 can be used as an indication of how intact the nucleosome is 

(Bevington and Boyes, 2013; Kireeva et al., 2002). To examine the integrity of nucleosome 

composition, enrichment of histone H2B and H3 was quantified after Ikaros induction by 

ChIP. 

To achieve clearer boundaries between nucleosomes, I optimized the ChIP protocol by using 

MNase digested chromatin for IP. This was adapted from a native MNase-ChIP protocol 

from Keji Zhao’s lab. Briefly, as for MNase assay, cross-linked chromatin was fragmented by 

MNase digestion to mostly mono-nucleosome level, and this chromatin lysate was used for IP 

to analyse the composition of nucleosomes.  

To test whether the protocol has worked, the mapping of nucleosome by histone H3 MNase-

ChIP was compared to that by MNase-qPCR. Theoretically, these two methods should 

produce similar results on nucleosome occupancy. In the MNase-ChIP, there is no unbiased 

genomic input control, since the chromatin fragmented by MNase treatment has been 

enriched for regions protected by nucleosomes. Therefore enrichment of histone H3 at the 

locus of interest was quantified by normalizing to that of the promoter of the internal control 

Rex1. As expected, the nucleosome occupancy analysed using these two methods was highly 

comparable over the same time course after Ikaros induction (Figure 5.4). At the Igll1 locus, 
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both methods showed the same kinetics of increase in nucleosome occupancy, as well as a 

similar fold change. This confirmed that the newly developed MNase-ChIP protocol was 

highly reliable. 

 

 

 

Figure 5.4 Nucleosome occupancy measured by MNase assay and histone H3 MNase-ChIP 

Nucleosome occupancy measured by MNase assay (left) and histone H3 MNase-ChIP (right) showed very 
similar kinetics and fold change at Igll1 locus after Ikaros induction. Data shown was an average of three 
and five biological replicates, respectively. P value: ***<0.01. 

Following this, the integrity of nucleosomes was investigated after Ikaros induction (Figure 

5.5). The control locus Rex1 did not show any significant changes of H2B enrichment over 

H3, therefore the integrity of nucleosomes remained the same after Ikaros induction. At the 

down-regulated Igll1 promoter, there was an increased H2B/H3 ratio after Ikaros induction, 

significantly after 6 hours of induction. Similar changes were observed at the negatively 

regulated Ccnd2 promoter, with a significant increase observed after 1 hour of Ikaros 

induction. This suggests that those re-positioned or deposited nucleosomes, which decrease 

the accessibility of the down-regulated promoters, are more fully composed. This perhaps 

further decreases the chance of access to nucleosomal DNA by non-histone DNA-binding 

proteins, thereby acting synergistically to favour transcriptional down-regulation. In contrast, 

the up-regulated promoters appeared to be the other way around (Figure 5.5). At the Lig4 

locus, a significant decrease in H2B/H3 ratio was observed within 30 minutes of Ikaros 
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induction, indicating that the nucleosomes became more partially composed on top of the 

decreased occupancy (Figure 5.3). These partial nucleosomes are more likely to expose DNA 

regulatory regions, thus further favouring nucleosomal DNA accessibility to DNA binding 

proteins during transcriptional up-regulation.  

In conclusion, Ikaros modulates nucleosome integrity to favour transcriptional regulation 

towards either direction. This supports the observations in the nucleosome landscapes of 

different size classes of nucleosomal DNA (Figure 4.10). Furthermore, the kinetics of 

changes in nucleosome integrity appear to be slower. 

 

 

 

 

Figure 5.5  Kinetics of changes in nucleosome intactness mediate by Ikaros 

Graphs show nucleosome intactness measured by enrichment of H2B/H3 at the promoters of Ikaros-
regulated (top panel being down-regulated, bottom panel being up-regulated) and control loci (bottom 
right), after 0min, 5min, 15min, 30min, 1h and 6h of Ikaros induction. Data shown was an average of three 
biological replicates. P value: *<0.05. 
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5.3.2 Histone variant H2A.Z 

Histone variants can alter nucleosome stability during transcriptional regulation (Weber and 

Henikoff, 2014). H2A.Z is one of the most conserved histone variants between species. 

H2A.Z-containing nucleosomes protect ~120bp of DNA in vivo (Hu et al., 2013; Tolstorukov 

et al., 2009), and are reported to play an important role in poising genes for transcriptional 

activation (Weber and Henikoff, 2014). Here, the involvement of histone H2A.Z during 

Ikaros-mediated transcriptional regulation was investigated.  

Using the same MNase-ChIP technique, H2A.Z enrichment was examined. Here, I focused 

on the involvement of H2A.Z in the composition of nucleosomes, rather than its distribution 

in the genome. For this purpose, the influence of nucleosome occupancy was ruled out by 

normalizing histone H2A.Z to H3. Surprisingly, at the down-regulated Igll1 locus, strong 

incorporation of H2A.Z was observed at the nucleosomes surrounding the TSS (Figure 5.6). 

In particular, at the +1 nucleosome, the incorporation of H2A.Z was significantly increased as 

soon as 5 minutes after Ikaros induction, and reached to 6-fold within 6 hours. Igll1 was not 

an exception. Similar effects were seen at the negatively regulated Myc and Ccnd2. The 

increases in the incorporation of H2A.Z reached about 1.5-fold within 6 hours at the +1 

nucleosomes, appearing milder compared to the changes at Igll1. The data suggested that 

Ikaros mediates H2A.Z incorporation during gene repression. In contrast, the involvement of 

H2A.Z at the up-regulated genes appeared to be the other way around. At the positively 

regulated Lig4 and Zfp36 loci, decreases of H2A.Z were observed (Figure 5.6). Whilst only 

~20% reduction in H2A.Z involvement was observed at the -2 nucleosome at the Zfp36 locus, 

nucleosomes surrounding the Lig4 TSS showed reduced H2A.Z involvement as soon as 15 

minutes after Ikaros induction and reached 40~60% reduction within 6 hours. 
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Figure 5.6 Kinetics of the changes in H2A.Z mediated by Ikaros 

Graphs show H2A.Z involvement at promoters of Ikaros-regulated (top panel being down-regulated, 
bottom panel being up-regulated) and control loci (bottom right), after 0min, 5min, 15min, 30min, 1h and 
6h of Ikaros induction. Data shown was an average of three biological replicates. P value: *<0.05. 

Canonical histone H2A was also examined after Ikaros induction (Figure 5.7). At the down-

regulated Igll1 and Myc loci, contrasting the increased involvement of variant H2A.Z, 

decreases in canonical H2A were observed at the nucleosomes surrounding the TSSs.  While 

the decrease was significant but mild at Igll1, the strongest and fastest change was observed 

at the Myc locus. An ‘inconsistent’ increase of H2A involvement was observed at the Ccnd2 

promoter (interpreted later, Figure 5.8). At the up-regulated loci, significantly increased 

involvement of H2A was observed near the TSSs (Figure 5.7). In general, the changes of 

H2A.Z and H2A were mainly opposite to each other, although not perfectly complementary 

in either fold change or kinetics. 
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Figure 5.7 Kinetics of the changes in H2A mediated by Ikaros 

Graphs show H2A.Z involvement at promoters of Ikaros-regulated (top panel being down-regulated, 
bottom panel being up-regulated) and control loci (bottom right), after 0min, 5min, 15min, 30min, 1h and 
6h of Ikaros induction. Data shown was an average of three biological replicates. P value: *<0.05. 

The non-perfect but roughly complementary changes in H2A.Z and H2A lead to the question 

whether there was an active exchange between the canonical histone H2A and histone variant 

H2A.Z. Histone H2A and variants are deposited or removed as (H2A-H2B) dimers (Burgess 

and Zhang, 2013; Luk et al., 2010; Morrison and Shen, 2009; Ranjan et al., 2013). 

Considering that Ikaros mediates the changes in nucleosome integrity (Figure 5.5), it was a 

better idea to answer this question by normalizing histone H2A.Z or H2A to H2B, thus 

correcting for the number of (H2A-H2B) dimers in the nucleosome.  
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Remarkably, the increased incorporation of H2A.Z at the Igll1 locus was still observed after 

normalizing to H2B (Figure 5.8A). This suggested that the increase is not only due to 

nucleosomes getting more fully composed, but that there is a selective incorporation of 

H2A.Z. This was accompanied by minor loss of H2A (Figure 5.8A). Similar effects were 

observed at the Myc and Ccnd2 loci (Figure 5.8B, C). This supported the idea that there is an 

active exchange of H2A.Z for H2A during Ikaros-mediated transcriptional repression. 

Interestingly, the ‘inconsistent’ increase of H2A at the Ccnd2 promoter was gone after 

normalizing to H2B, suggesting that the increase was because the nucleosomes were getting 

fully composed. In contrast, the exchange of H2A.Z for H2A was not observed at the up-

regulated loci of Lig4 and Zfp36 or the control locus Rex1 (Figure 5.9).  

 

Figure 5.8 Kinetics of the exchange between histone H2A.Z and H2A mediated by Ikaros at down-
regulated genes 

Enrichment of H2A.Z (left) and H2A (right) over H2B at the promoters of down-regulated Igll1, Myc and 
Ccnd2 promoters. Data shown was the average of three biological replicates. 
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Figure 5.9 Kinetics of the exchange between histone H2A.Z and H2A mediated by Ikaros at up-
regulated and control genes 

Enrichment of H2A.Z (left) and H2A (right) over H2B at the promoters of up-regulated Zfp36, Lig4 and 
control Rex1 promoters. Data shown was the average of three biological replicates. 

Additionally, an individual H2A.Z-nucleosome can contain two H2A.Z histones (homotypic), 

or one H2A.Z and one H2A (heterotypic). Structural analysis predicts that heterotypic H2A.Z 

will cause a major structural clash between H2A-H2A.Z interactions, therefore destabilizing 

the nucleosome (Suto et al., 2000). In mouse trophoblast stem cells, only heterotypic H2A.Z 

nucleosomes mark the TSSs of active genes (Nekrasov et al., 2012). To examine the 

composition of H2A.Z-containing nucleosomes, one reliable way is to perform sequential 
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H2A.Z H2A ChIP (Nekrasov et al., 2012; Weber et al., 2010). Another less accurate way to 

guess the composition is by comparing the fold changes of H2A/H2B and H2A.Z/H2B. Since 

chromatin IP is not 100% efficient, it is probably reasonable to assume that homotypic 

H2A.Z (ZZ) would have a better chance of being IPed using H2A.Z antibody than 

heterotypic H2A/H2A.Z (AZ). Following this idea, if the increased incorporation of H2A.Z is 

due to the exchange from AA to AZ, the fold increase in H2A.Z/H2B should be higher than 

the fold decrease in H2A/H2B. Similar deduction can be used for the exchange from AZ to 

ZZ: the fold increase in H2A.Z/H2B may still be observed, but it should be less than the fold 

decrease in H2A/H2B. Another potential source of the increased incorporation of H2A.Z is 

the exchange from AA to ZZ. In this case, the fold increase in H2A.Z/H2B would ideally be 

the same as the fold decrease in H2A/H2B. Following this theory, the fold changes of 

H2A.Z/H2B and H2A/H2B were calculated after 6 hours of Ikaros induction (Figure 5.10). 

At down-regulated Igll1 and Myc, the fold increases in H2A.Z/H2B were higher than the fold 

decreases in H2A/H2B, favouring the possibility that the incorporation of H2A.Z happened 

from AA to AZ.  

 

 

Figure 5.10 Fold change of H2A and H2A.Z enrichment over H2B 

Fold decrease of enrichment of H2A over H2B was calculated by normalizing 0min enrichment to 6h 
enrichment (in red, on the left). Fold increase of enrichment of H2A.Z over H2B was calculated by 
normalizing 6h enrichment to 0min enrichment (in blue, on the right). Fold change of 1 (no change 
between 0min and 6h) was marked with dash line. Data shown is an average of three biological replicates. 
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5.4 Kinetics of changes in histone modifications mediated by Ikaros 

Next, I asked whether Ikaros influences histone modifications during transcriptional 

regulation. Acetylations on the histone H3 and H4 tails were first investigated by MNase-

ChIP, using antibodies anti-acetyl-histone H3 (K9, K14, K18, K23, K27) and anti-acetyl-

histone H4 (K5, K8, K12, K16). 

Histone modification signals were normalized to histone H3 to correct for nucleosome 

occupancy. Positive and negative controls were examined, where inactive genes showed no 

enrichment of histone acetylations and good enrichment was observed at active genes (data 

not shown). The trend of the changes was emphasized by normalizing enrichment signals to 

the un-induced 0min condition. 

After Ikaros induction, a gradual decrease in acetylated histone H3 was observed at the 

down-regulated Igll1, Myc and Ccnd2 promoters (Figure 5.11). The up-regulated Zfp36 and 

Lig4 promoters showed an increase in the acetylation level at histone H3. Similar to histone 

H3, deacetylation of histone H4 was observed at the down-regulated Igll1 promoter (Figure 

5.12). At the Myc and Ccnd2 loci, deacetylation of H4 appeared mild after Ikaros induction. 

Meanwhile, increased H4 acetylation was observed at the up-regulated Zfp36 and Lig4 

promoters.  

In general, the data suggested that Ikaros mediates histone deacetylation during gene 

repression, and facilitates histone acetylation during transcriptional up-regulation. Compared 

to the kinetics and strength of changes in RNAPII binding and nucleosome occupancy, 

histone acetylation and deacetylation appeared much milder. It is worth noting that there was 

an increase of acetylation level after 5 minutes of Ikaros induction at the Igll1 promoter. This 

was likely due to technical reasons, which will be further discussed in section 5.6 (Figure S2). 
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Figure 5.11 Kinetics of changes in acetyl-histone H3 mediated by Ikaros 

Graphs show acetyl-histone H3 at the promoters of Ikaros-regulated genes (top panel being down-
regulated, bottom panel being up-regulated) after Ikaros induction. Data shown here was the average of 
five biological replicates. P value: *<0.05. 
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Figure 5.12 Kinetics of changes in acetyl-histone H4 mediated by Ikaros 

Graphs show acetyl-histone H4 at the promoters of Ikaros-regulated genes (top panel being down-
regulated, bottom panel being up-regulated) after Ikaros induction. Data shown here was the average of 
five biological replicates. P value: *<0.05. 

Following this, another well characterised active histone mark, H3K4Me3 was examined 

(Figure 5.13). A minor decrease was observed at the Igll1 promoter, while the Myc and 

Ccnd2 promoters remained mostly unchanged. A subtle increase was observed at the up-

regulated Zfp36 promoter. In general, the changes in H3K4Me3 appeared slow and mild, 

suggesting that methylation or demethylation of H3K4 is not an early event during Ikaros-

mediated transcriptional regulation.  
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Figure 5.13 Kinetics of changes in H3K4Me3 mediated by Ikaros 

Graphs show histone modification H3K4Me3 at the promoters of Ikaros-regulated genes (top panel being 
down-regulated, bottom panel being up-regulated) after Ikaros induction. Data shown here was the average 
of five biological replicates. P value: *<0.05. 

In terms of repressive histone marks, attempts have been made to examine H3K9Me3. 

However, it was technically unsuccessful. I used a widely accepted antibody for ChIP 

(ab8898), but my ChIP result did not discriminate positive loci from negative loci after 

normalizing to histone H3 signals, either in mouse ESCs or B3 pre-B cells.  
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5.5 The order of events 

Ikaros regulates transcription of its target genes through a variety of regulatory events. Ikaros 

modulates the binding of RNAPII and nucleosome occupancy at regulated promoters. 

Additionally, Ikaros also influences the composition of nucleosomes and post-translational 

modifications on histones.  

In general, changes at the down-regulated promoters appeared stronger than the up-regulated 

gene promoters. More importantly, the kinetics of these changes were monitored at high 

temporal resolution. Based on the kinetics, the order of events was comprehended at the 

model locus Igll1 (Figure 5.14). RNAPII binding and nucleosome occupancy at this promoter 

appeared to respond the fastest after Ikaros induction. Not only were the changes significant 

only after 5 or 15 minutes of induction, but the strongest level of regulation was achieved 

early. Here, I used the shape of a growth curve, including lag phase, log phase, and stationary 

phase (Figure S1), to help discriminate and illustrate the trend and timing of these regulatory 

events. It looked as if the change in the occupancy of RNAPII and nucleosome started off 

from ‘log phase’, and reached ‘stationary phase’ within at least 1 hour of Ikaros induction. 

Subsequently, H2A.Z was incorporated at the promoter proximal region. This increase 

seemed to start from the ‘lag phase’, and the ‘log phase’-like increase appeared perhaps after 

30 minutes of Ikaros induction. The change in H2B was even slower than H2A.Z 

incorporation. Histone deacetylation and the decrease of H3K4Me3 showed almost linear 

changing curve. As the transcription output, Igll1 gene expression started with a short ‘lag 

phase’, and then progressed into ‘log phase’. There seemed to be a minor delay of the kinetics 

of transcription compared to that of RNAPII binding, consistent with biological expectations. 

The Myc locus presented a similar order of events (data not shown). 
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Figure 5.14  The order of regulatory events during Ikaros-mediated Igll1 repression 

Graphs shows changes in RNAPII and nucleosome density (top), nucleosome composition (middle), and 
histone modifications (bottom) during Ikaros-mediated Igll1 repression (the end) 
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To interpret the order from a different way, fold changes of the regulatory events were plotted 

against time after Ikaros induction. The kinetics of RNAPII binding and mRNA expression 

were first compared (Figure 5.15A). The trend lines that best fit were polynomial algorithm 

by the order of 2. Comparison of the fitted trend lines showed that the changes of RNAPII 

appeared earlier than those in mRNA. Next, similar analysis was applied to the kinetics of 

changes in nucleosomes surrounding the TSS. The increase in nucleosome occupancy 

appeared ahead of the incorporation of H2A.Z and the increase in histone H2B (Figure 

5.15B). Using this method however, it was difficult to compare increased changes to 

decreased ones. So the kinetics of changes in RNAPII and nucleosome occupancy were not 

compared. 

 

Figure 5.15 Interpretation of the order of regulatory events using fitted trend lines 

The observed fold changes in chromatin status was plotted against time of Ikaros induction, and the best 
fitting trend lines were calculated. (A) compares RNAPII to mRNA. (B) compares nucleosome occupancy 
measured by H3, nucleosome intactness measured by H2B/H3, and incorporation of H2A.Z at the 
nucleosome closest to Igll1’s TSS. 

In summary, based on the kinetics of changes in regulatory events during Ikaros-mediated 

transcriptional repression, the regulation of RNAPII and nucleosome occupancy appeared to 

happen early. Subsequently, active histone modifications were reduced and H2A.Z was 

incorporated. 

115 
 



5.6 Discussion 

The order of regulatory events 

The study of the order of regulatory events is important to understand the process of 

transcriptional regulation. It has the advantage of inferring possible causal relationships 

between these events without perturbing the system. However, the order is difficult to clarify 

due to the lack of high temporal resolution. In mammalian cells, the order of regulatory 

events has been monitored along the developmental process. For example, during the 

differentiation of ESCs to endoderm/hepatic progenitor cells, activation of the developmental 

genes first requires H2A.Z-mediated binding of the transcription factor Foxa2. Foxa2 then 

recruits chromatin remodelers to H2A.Z-containing nucleosomes, and this subsequently leads 

to the loss of these nucleosomes and eventually transcriptional activation (Li et al., 2012). In 

another study, Crabtree and colleagues reported the sequential process of HP1-mediated gene 

silencing at the resolution of days. This process involves the early increase of H3K9Me3 and 

loss of H3K4Me3, followed by a gradual loss of H3K27Ac and much later, DNA methylation 

(Hathaway et al., 2012). In Drosophila, the activation process of a heat shock gene Hsp70 has 

been studied at high temporal resolution (Petesch and Lis, 2008). Lis and colleagues showed 

that the loss of nucleosomes at the gene body occurs first within 30 seconds of heat shock, 

and is independent of RNAPII binding. However, the relevance of this observation to 

mammalian cells remains to be tested.   

In this study, the changes in chromatin status mediated by Ikaros were not only evaluated, but 

also timed at a high temporal resolution. The down-regulated genes were more sensitive to 

Ikaros induction compared to the up-regulated, in terms of the response time and the strength 

of regulation. Therefore, I focused on transcriptional down-regulation, and used Igll1 and 

Myc as model loci.  

To interpret the order of the regulatory events, their kinetics curves were compared, rather 

than the first time point when significant changes were first observed. This is because each 

aspect of chromatin status is evaluated using different techniques, or different antibodies. 

This introduces different levels of technical variation that biological changes need to 

overcome in order to appear significant. Giving credibility to the interpretation by comparing 

kinetics curves, the kinetic curve of gene expression showed a minor delay compared to that 

of RNAPII binding. Among the regulatory events examined, the regulation of RNAPII 
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binding and promoter accessibility appeared early. Subsequently, histone deacetylation and 

the decrease in H3K4Me3 were observed, as well as the incorporation of H2A.Z.  

Interestingly, genome-wide profiling of chromatin status showed that the occupancy of 

RNAPII and nucleosomes are negatively correlated around TSSs. From kinetics studies here, 

it is still difficult to distinguish which of these two regulatory events happens first. The anti-

correlation and the similar kinetics in the regulation of RNAPII and nucleosomes have heated 

up the question of whether both events are directly or independently regulated by Ikaros. 

The incorporation of histone variant H2A.Z during gene repression 

H2A.Z favours the destabilisation of nucleosomes in vivo, and is associated with 

transcriptional activation (Weber and Henikoff, 2014). It is therefore surprising to see the 

substitution of H2A.Z for H2A during Ikaros-mediated transcriptional repression. Further 

investigation is required to understand the role of H2A.Z. 

First, an individual H2A.Z-nucleosome can contain two H2A.Z histones (homotypic), or one 

H2A.Z and one H2A (heterotypic). Preliminary examination favours the possibility that the 

incorporation of H2A.Z happened from AA to AZ (Figure 5.10). This does not help explain 

the incorporation of H2A.Z during Ikaros-mediated gene repression, as heterotypic H2A.Z is 

predicted to favour the destabilisation of the nucleosomes (Suto et al., 2000).  

Recently, more attention has been brought to the acetylation of H2A.Z. In mouse ESCs, 

acetylated  histone H2A.Z correlates with transcriptional activities better than total H2A.Z 

(Hu et al., 2013). Similar results were also seen in human cancer cells (Valdes-Mora et al., 

2012), supporting the idea that acetylated H2A.Z is more responsible for transcriptional 

activation. Furthermore, even when H2A.Z/H3.3 containing nucleosomes are strongly 

unstable in vivo, nucleosome containing only H2A.Z does not have dramatic alterations in 

their stability (Jin and Felsenfeld, 2007). Taken together, the nucleosome destabilizing ability 

of H2A.Z could be due to a combination of the composition and post-translational 

modifications of nucleosomes.  

The major role of H2A.Z in transcription is poising genes for activation and facilitating the 

opening of chromatin. Although a loss of H2A.Z might be observed upon activation, it is 

usually attributed to the loss of the H2A.Z marked nucleosome (Conerly et al., 2010; Li et al., 

2012; Papamichos-Chronakis et al., 2011; Zhang et al., 2005a). In this sense, to poise a gene 
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for activation, an incorporation of H2A.Z may be observed. Indeed, this was seen in a study 

from Craig Peterson’s lab (Papamichos-Chronakis et al., 2011). In yeast, the expression of 

KAR4 is oscillated during the cell cycle, with it being inactive in G2/M and active in G1. At 

the KAR4 promoter, H2A.Z is more enriched when KAR4 is inactive than when it is active. 

Dr Peterson explains it as H2A.Z marking and poising the genes for activation during cell 

cycle progression (personal communication).  

In the case of Ikaros-mediated gene repression, incorporation of H2A.Z was observed at all 

the Igll1, Myc and Ccnd2 loci in B3 pre-B cells. Igll1 encodes for pre-BCR component λ5, 

which need to be silenced upon differentiation (Merkenschlager, 2010). It is therefore 

biologically unlikely that H2A.Z needs to poise Igll1 for reactivation. In addition, Myc and 

Ccnd2 facilitate cell cycle progression, but they won’t be immediately needed upon 

differentiation (Clark et al., 2014).  

It is possible that H2A.Z incorporation is due to the fact the histone variants are expressed in 

all cell cycle stages. They are probably most available to close up active promoters when 

transcriptional repression occurred outside of S phase. To address this possibility, it is 

important to examine the incorporation of H2A.Z mediated by Ikaros at different cell cycle 

stages.  

Finally, it is important to entertain the possibility of H2A.Z being actively involved in Ikaros-

mediated gene repression. To this end, it would be useful to examine transcriptional 

regulation by Ikaros in H2A.Z-deficient cells. Attempts have been made to knockdown 

H2A.Z in B3 cells using shRNA and siRNA. However, it has not yet been successful. In the 

future, this question is worth further investigation. 

A technical issue of histone modification ChIP at the Igll1 locus 

It is unusual to see a dramatic increase in histone acetylation after 5 minutes of Ikaros 

induction at the Igll1 locus. The acetylation levels observed later seemed more comparable to 

that after 5 minutes of Ikaros induction, rather than 0 minutes (Figure 5.11, 5.12). After 

careful examination, the ‘jump’ of the acetylation level after 5 minutes of Ikaros induction 

was likely due to technical issues.  

To focus on the processes of acetylation and deacetylation, the levels of histone acetylation 

were normalised to histone H3 to correct for nucleosome occupancy. Before Ikaros induction, 
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the Igll1 promoter was almost totally depleted of nucleosomes (Figure 4.8). The low 

enrichment of H3 at 0min was likely to compromise the normalisation. Since Ikaros induction 

rapidly increased nucleosome occupancy at the promoter (Figure 5.3), H3 enrichment 

measured after 5 minutes of induction was able to bring the normalisation to an accurate 

range. 

This is supported by the following observations. First, the jump from 0min to 5min was only 

strongly observed at the Igll1 promoter, where nucleosomes were highly depleted before 

induction (Figure 4.8), and dramatically increased after Ikaros induction (Figure 5.3). Second, 

this hypothesis was tested using sonicated chromatin for ChIP. MNase treatment breaks down 

chromatin to mostly mono-nucleosomes, leaving sharp nucleosome boundaries. Sonication, 

however, breaks down chromatin randomly. Therefore, sonicated chromatin fragments are 

likely to contain more than one nucleosome. In this sense, sonicated chromatin would contain 

higher background, and consequently make it easier to meet the requirement for accurate 

normalisation. In support of this, whilst a 15-20 fold increase in nucleosome occupancy was 

observed using MNase-qPCR or MNase-ChIP at the Igll1 promoter, only a 4-fold increase 

was observed using sonicated chromatin (Figure S.2A). This suggested that ChIP using 

sonicated chromatin contains higher background. Following this, using sonicated chromatin, 

histone modification ChIP data from two biological replicates showed that the jump from 

0min to 5min was almost gone (Figure S.2B).  

Admittedly, I still cannot rule out the possibility that the ‘jump’ is a biological response to 

Ikaros induction. It is possible that when Ikaros needs to bring in nucleosomes to close up the 

Igll1 promoter, nucleosomes surrounding this active transcription environment, which may be 

carrying acetylation marks, are recruited. Subsequently, histone deacetylation processes come 

into action to facilitate transcriptional repression. In this case, a ‘jump’ followed by 

deacetylation can also be observed. 
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6 Mechanisms of Ikaros-mediated regulatory events 

The kinetics of changes in regulatory events during gene repression suggested that the 

regulation of RNAPII binding and nucleosome occupancy happens early, and the changes in 

nucleosome composition and histone modifications occur later. However, this order needs to 

be further tested; and more importantly, it remains an unanswered question whether the 

temporal order of these events is a reflection of causal relationships. Here, I first investigated 

the relationship between the early regulation of RNAPII binding and nucleosome occupancy. 

After this, the contribution of the later histone deacetylation to transcriptional down-

regulation was tested. 

 

6.1 Nucleosome regulation does not depend on RNAPII density 

The changes in nucleosome and RNAPII occupancy mediated by Ikaros appeared to follow 

similar kinetics in an anti-correlated manner (Figure 4.8, 5.2, 5.3). It is possible that 

nucleosomes and RNAPII are both directly and independently regulated by Ikaros. It is also 

possible that Ikaros controls only one event. When nucleosomes and RNAPII actively 

compete for DNA binding at the promoters, the other event is consequently changed.  

To test whether the increase in nucleosome occupancy during Ikaros-mediated gene 

repression is a consequence of reduced RNAPII density, nucleosome occupancy after Ikaros 

induction was monitored under the condition where the influence of RNAPII was ruled out 

through its targeted degradation. To degrade RNAPII in vivo, triptolide (TPL) was used. 

Triptolide is a diterpene triepoxide isolated from a traditional Chinese medicine. It inhibits 

the ATPase activity of TFIIH subunit XPB, and longer or stronger treatment leads to 

proteasome-dependent Rbp1 degradation (Manzo et al., 2012; Titov et al., 2011; Vispe et al., 

2009; Wang et al., 2011), and therefore it has been used to block RNAPII initiation 

(Henriques et al., 2013; Jonkers et al., 2014). 

To achieve rapid RNAPII degradation in B3 cells, cells were treated with 1μM TPL. The 

degradation conditions were tested after 30 minutes, 1 hour, 2 hours, 3 hours and 4 hours of 
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TPL treatment, and the cells treated with DMSO, the carrier for TPL, were used as a control. 

The kinetics of degradation were analysed by western blot (Figure 6.1A). Cells treated with 

TPL showed decreased RNAPII signal after 2 hours of treatment, and almost all RNAPII 

signal was gone after 3 hours of treatment.  

Next, to make sure that the reduction of RNAPII protein was functional, mRNA production 

was examined. From the same number of cells, a mild decrease of total mRNA quantity was 

observed after 2 hours of TPL treatment (data not shown). In addition, assuming the 

degradation is functional, short lived mRNA should be more affected than long lived mRNA, 

and for an individual gene, primary transcripts should show more dramatic changes than 

mature transcripts. Therefore, mRNA from the same number of cells treated with DMSO or 

TPL was used for transcription analysis (Figure 6.1B). As the TPL treatment progressed, 

mRNA levels of all genes examined were reduced, consistent with the reduction in the 

quantity of total mRNA. More importantly, short lived mRNA Ccnd2 and Myc showed 

earlier reduction than long lived housekeeping genes Gapdh and Ubc, and the Igll1 primary 

transcripts decreased faster than its mature transcripts. The minor increases after 30 minutes 

of TPL treatment at Gapdh, Ubc and Igll1 were likely due to a bias in cell counting. In brief, 

TPL was shown to efficiently degrade RNAPII and impair transcription in B3 cells. 

 

Figure 6.1 Triptolide (TPL) is used to degrade RNAPII 

B3 cells were tested with 1µM TPL treatment for 30 minutes, 1 hour, 2 hours, 3 hours and 4 hours. Carrier 
DMSO was used as control. RNAPII degradation was analysed by (A) western blotting and (B) gene 
expression analysis by qPCR. 
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To balance the efficiency of RNAPII degradation and the risk of dramatic cellular changes 

due to impaired transcription, inducible Ikaros B3 cells were pre-treated with TPL for 3 hours 

to degrade RNAPII. DMSO treatment was included as a control. After the pre-treatment, 

Ikaros was induced in a time course of up to 1 hour (Figure 6.2A). To assess the efficiency of 

RNAPII degradation, RNAPII binding at the TSSs of Ikaros target genes was first evaluated 

by ChIP-qPCR (Figure 6.2B). In cells treated with DMSO, RNAPII was enriched at the 

promoter of the active control gene Actb, but not the promoter of the inactive Rex1. 

Decreased binding of RNAPII was observed at the down-regulated Igll1 and Myc promoters 

after Ikaros induction (as in Figure 5.2). In cells treated with TPL, RNAPII binding was 

abolished at the promoters of all these genes (Figure 6.2B).  

 

 

Figure 6.2  RNAPII is efficiently deleted at gene promoters 

(A) Schematic design of the RNAPII degradation experiment. (B) RNAPII density at the gene promoters 
including the negative control Rex1, positive control Actb, and down-regulated Igll1 and Myc. Graph 
showed that RNAPII was efficiently deleted with TPL treatment. Data shown was an average of three 
biological replicates. 
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Following the efficient degradation of RNAPII, changes in nucleosome occupancy after 

Ikaros induction were investigated using MNase-qPCR (Figure 6.3). For credibility, analyses 

of RNAPII binding and nucleosome occupancy were done using the same preparation of 

chromatin. To focus on whether the increase in nucleosome occupancy was due to RNAPII 

giving away DNA binding sites, the same primers were used to examine RNAPII binding and 

nucleosome occupancy at the TSSs. Interestingly, before Ikaros induction (0min), very 

similar levels of nucleosome occupancy were observed in cells treated with TPL and those 

treated with DMSO. This suggested that when RNAPII is no longer bound, nucleosomes do 

not occupy the TSSs of Igll1 and Myc. Therefore, the nucleosome occupancy at these two 

promoters is highly regulated at the basal level in B3 cells. After Ikaros induction, increases 

in nucleosome occupancy were observed at the TSSs of Igll1 and Myc in the cells pre-treated 

with DMSO (as in Figure 5.3). Importantly, TPL treatment did not result in any differences in 

the kinetics or the fold changes of the increases in nucleosome occupancy at these loci after 

induction (Figure 6.3). Therefore, at Ikaros negatively regulated model loci Igll1 and Myc, 

the regulation of nucleosome occupancy was independent of the changes in RNAPII binding. 

This data suggested that nucleosome occupancy may be directly regulated by Ikaros. 

 

 

Figure 6.3 Nucleosome occupancy regulated by Ikaros after TPL or DMSO treatment 

Graph shows nucleosome occupancy after Ikaros induction with TPL (red) or DMSO (blue) pre-treatment. 
No significant difference was observed at either baseline level or the kinetics of regulation between control 
condition and RNAPII degraded condition. This was average of three biological replicates. 
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6.2  Nucleosome regulation influences transcription by RNAPII 

Next, the influence of the changes in nucleosome occupancy on the regulation of RNAPII 

binding was examined. To this end, instead of creating a histone-deficient condition, the 

regulation of nucleosome was interfered with to dissect its influence on the modulation of 

RNAPII binding. To interfere with the regulation of nucleosomes, it was important to find the 

chromatin remodeler(s) that work with Ikaros. Mi-2β, the catalytic subunit of the Mi-2/NuRD 

complex, is a top candidate. Ikaros and Mi-2β co-regulate the expression of Cd4 during T cell 

development (Naito et al., 2007). Mi-2β co-localizes with Ikaros in thymocytes and pro-B 

cells (Schwickert et al., 2014; Zhang et al., 2012), and in B3 cells, Ikaros was shown to 

interact with Mi-2β by co-IP (Ben Taylor, unpublished). 

First, Mi-2β was silenced in B3 cells via RNA interference (Ramirez-Carrozzi et al., 2006). 

In brief, shRNA sequence against the Mi-2β gene (Chd4) was inserted into a pQsupR 

retroviral plasmid (Figure 6.4A). The plasmid also contained GFP and puromycin N-acetyl-

transferase (PAC) conferring puromycin resistance. To distinguish the transduction of 

inducible Ikaros and Mi-2β shRNA (both containing GFP), I replaced the original 

fluorophore GFP in the inducible Ikaros plasmid to mCherry (details in section 2.2.3) (Figure 

6.4B), and generated mCherry positive B3 cells expressing inducible Ikaros. Following that, 

these cells were infected with retroviral particles containing shRNA targeting Mi-2β. After 

infection, approximately 10% of GFP positive cells were obtained under optimised conditions. 

Additionally, knock-down of Mi-2β was lethal to B3 cells. Therefore, the cells after one day 

of shRNA infection were supplemented with 20μM pan caspase inhibitor in culture, thus 

blocking cell apoptosis at an early stage. This dosage of pan caspase inhibitor was optimised 

to be able to block programmed cell death, while the concentration of the carrier DMSO (0.1% 

final) was not toxic to the cells (data not shown). After 2 days of shRNA infection, the cells 

were sorted for the GFP positive population using flow cytometry to enrich for shRNA-

containing cells. The efficiency of Mi-2β knock-down was examined using western blotting 

after 1, 2 or 3 days of sorting. The first clean knock-down was observed two days after 

sorting. Therefore, the sorted GFP positive cells were then kept in culture for 2 days to 

establish the Mi-2β knock-down condition before Ikaros induction (Figure 6.4C). Each 

biological replicate started from fresh infection, and Mi-2β knock-down efficiency was 

individually confirmed using western blotting (Figure 6.4D).  
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Figure 6.4 shRNA knockdown of Mi-2β 

(A) Schematic design of shRNA against Mi-2β in pQsupR plasmid, in which shRNA was transcribed from 
the mU6 promoter. The plasmid also contains GFP and puromycin selection site transcribed from the 
CMV promoter (Ramirez-Carrozzi et al., 2006). The fluorophore in inducible Ikaros plasmid was changed 
from original GFP to mCherry (B). (C) Timeline of shRNA knock-down experiment. (D) Mi-2β was 
efficiently knocked down with shRNA, shown by western blotting. Each biological replicate started from 
fresh infection, and the efficiency of knock-down was individually validated. 

Following the efficient knockdown of Mi-2β, the next step was to test whether Mi-2β  was 

involved in Ikaros-mediated nucleosome regulation. For this purpose, Ikaros was induced in 

shRNA control and Mi-2β knock-down cells in parallel, and nucleosome occupancy was 

monitored using MNase-qPCR (Figure 6.5). In control cells (Empty), the negatively regulated 

Igll1 and Myc promoters showed an increase in nucleosome occupancy (as in Figure 5.3). In 

detail, significant increases were observed after 5 minutes of Ikaros induction at the Igll1 

promoter and after 15 minutes at the Myc promoter. After 2 hours of induction, nucleosome 

occupancy increased to 8-fold and 2.5-fold at the Igll1 and Myc promoters, respectively. In 

contrast, in Mi-2β knock-down cells (sh-Mi2), at the Igll1 promoter, nucleosome occupancy 
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increased significantly only after 15 minutes of Ikaros induction, and to 3-fold after 2 hours. 

At the Myc promoter, a significant increase to 1.7-fold was observed only after two hours of 

Ikaros induction (Figure 6.5). The control locus Acta1 showed no significant changes of 

nucleosome occupancy after Ikaros induction in either control or Mi-2β knock-down cells.   

The data showed that the Mi-2β knock-down not only delayed the kinetics of nucleosome 

regulation mediated by Ikaros, but also compromised the magnitude of regulation. On the 

other hand, the results also confirmed that changes in nucleosome occupancy mediated by 

Ikaros were, at least partially, through the chromatin remodeler Mi-2β.  

 

 

 

 

Figure 6.5 Nucleosome regulation mediated by Ikaros is impaired under Mi-2β knock-down condition 

Nucleosome occupancy was measured using MNase assay during Ikaros induction in control cells (blue) 
and Mi-2β knock-down cells (red). After Mi-2β knock-down, nucleosome regulation mediated by Ikaros 
was delayed and compromised at Igll1 and Myc loci. Data shown was an average of five independent 
biological replicates. P value: *<0.05, ***<0.01. 
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Next, the influence of the compromised nucleosome regulation on mRNA transcription was 

examined. To this end, Ikaros was induced in control and Mi-2β knock-down cells in parallel, 

and mRNA transcription was monitored by qPCR analysis (Figure 6.6). In control cells, the 

expression of Igll1 and Myc were both significantly down-regulated after 15 minutes of 

Ikaros induction, and achieved approximately 60% repression after two hours of induction. In 

contrast, in Mi-2β knock-down cells, Igll1 and Myc were significantly down-regulated only 

after two hours of Ikaros induction, with a milder reduction of 40% (Figure 6.6). Therefore, 

interference with nucleosome regulation mediated by Ikaros, resulted in delayed and 

compromised gene repression. 

 

 

Figure 6.6 Gene expression regulation by Ikaros is impaired under Mi-2β knock-down condition 

Gene expression was quantified by qPCR during Ikaros induction in control cells (blue) and Mi-2β knock-
down cells (red). After Mi-2β knock-down, gene expression regulation by Ikaros was delayed and 
compromised. Data shown here was an average of five independent biological replicates. P value: *<0.05, 
***<0.01. 

The compromised transcriptional regulation resulting from the interference with nucleosome 

reorganization indicated that the regulation of nucleosome occupancy is probably upstream of 

the control of RNAPII binding. To test this hypothesis, it would be ideal to monitor the 

binding of RNAPII in Mi-2β knock-down cells after Ikaros induction. However, such delicate 
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comparison requires high quality RNAPII ChIP, which needs a large number of cells. From 

the five biological replicates attempted, despite striking differences in RNAPII enrichment at 

positive and negative loci, the capturing of biological differences was inefficient (data not 

shown). 

Taken together, the data suggested that the regulation of nucleosome occupancy is probably 

an upstream event of the control of RNAPII binding, and affects the transcriptional repression. 

To understand how Ikaros utilises Mi-2β to reorganise nucleosomes, the binding of Mi-2β 

was examined by ChIP-qPCR after Ikaros induction at down-regulated loci Igll1 and Myc, 

and control loci Pou5f1 and Rex1 (Figure 6.7). However, no significant changes were 

observed after Ikaros induction within each locus. This is further discussed in section 6.4. 

 

 

Figure 6.7 Mi-2β binding during Ikaros induction 

Graphs show Mi-2β enrichment around the TSS of Ikaros down-regulated target genes Igll1 and Myc, and 
control genes, after 0min, 5min, 15min, 30min, 1h and 6h of Ikaros induction. Data shown was an average 
of three biological replicates. 

Additionally, one can argue that the delayed gene repression is not directly due to the 

compromised nucleosome regulation, but is because the Mi-2β deficient cells are stressed, 

since knockdown of Mi-2β leads to cell apoptosis. To answer this question, chromatin 

remodeler Brg1/Brm knockdown was done in parallel using shRNA targeting both Brg1 and 
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Brm (Ramirez-Carrozzi et al., 2006) (Figure 6.8A). Cultured with caspase inhibitor, the 

control B3 cells proliferated 2.5 times within 24 hours, the Mi-2β knockdown cells divided 

around 1.5 times a day, but the Brg1/Brm knockdown barely divided after knockdown (data 

not shown). Therefore, perhaps the Brg1/Brm knockdown cells should suffer more than the 

Mi-2β knockdown cells. In this sense, if the delayed gene repression was due to cellular 

stress, the delay should be more obvious in the Brg1/Brm knockdown cells. However, it was 

the other way around (Figure 6.8B). The gene repression was similar in the Brg1/Brm 

knockdown cells as in control cells. This suggested that the side effect of apoptosis block was 

not the main reason to cause the delayed and compromised transcriptional repression. 

However, the influence of cellular stress due to the interference with Mi-2β on chromatin 

remodelling needs to be further addressed. 

 

 

Figure 6.8 Effect of Brg1/Brm knock-down on Ikaros-mediated transcriptional regulation 

(A) Brg1/Brm was efficiently knocked down in B3 pre-B cells using shRNA. (B) Gene expression was 
quantified by qPCR during Ikaros induction in control cells (blue), Brg1/Brm knock-down cells (green) 
and Mi-2β knock-down cells (red). After both Brg1/Brm and Mi-2β knock-down, gene expression 
regulation by Ikaros was delayed and compromised, while Mi-2β knock-down showed more severe effect. 
Data shown is an average of five independent biological replicates. P value: *<0.05, ***<0.01. 
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6.3 Histone deacetylation is not necessary to initiate gene repression 

During Ikaros-mediated gene repression, histone deacetylation was observed and appeared to 

be a later event (Figure 5.11, 5.12). Interestingly, class I histone deacetylases (HDACs) 

HDAC1/2 are present in the Mi-2β/NuRD complex (Reynolds et al., 2013). Here, the role of 

histone deacetylation during Ikaros-mediated transcriptional repression was investigated.  

First, histone deacetylation was blocked by HDAC inhibitor trichostatin A (TSA). TSA is a 

hydroxamic acid, and blocks class I and II HDACs activities by binding to their zinc-

containing catalytic domain (Kim and Bae, 2011). In B3 cells, TSA alone induced 

transcriptional changes at as little as 5ng/ml (data not shown). The inhibitory effect of TSA 

was then tested at 1ng/ml using western blotting with antibodies recognising acetylated 

histone H3 and H4 (Figure 6.9). TSA treatment at 1ng/ml for 1 hour strongly increased the 

acetylations of histone H3 and H4 in inducible Ikaros B3 cells (Figure 6.9).  

 

 

 

Figure 6.9 TSA treatment leads to a global increase in histone H3 and H4 acetylation 

Cells treated with 1ng/ml TSA for 1h showed global increase in histone acetylation at H3 (left) and H4 
(right), and the effect was not compromised by inducing Ikaros with 4OHT. This is a representation of 
three biological replicates.  

To test specifically whether Ikaros-induced histone deacetylation was blocked with 1ng/ml 

TSA treatment, the level of histone acetylation was monitored after 1 hour of Ikaros 

induction in the cells treated with TSA or the carrier ethanol (Figure 6.10). To prevent 

introducing hyperacetylation at the baseline level, cells were not pre-treated with TSA. At the 
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Igll1 and Myc promoters, Ikaros induction lead to significant histone deacetylation at histone 

H3 and H4 in ethanol treated cells. In contrast, in TSA treated cells, Ikaros induction did not 

induce histone deacetylation. Therefore, 1ng/ml TSA treatment efficiently blocks histone 

deacetylation by Ikaros. It is worth noting that at Igll1 locus, TSA treatment decreased the 

histone acetylation level compared to ethanol treatment. This could be due to the readjusted 

histone acetylation and deacetylation equilibrium introduced by TSA (Makarona et al., 2014). 

 

 

Figure 6.10 TSA impaired histone deacetylation mediated by Ikaros 

Histone acetylation of H3 and H4 tails were examined by ChIP at the Igll1 and Myc loci. Ikaros was 
induced by 4OHT (red bars) with or without TSA treatment for 1h. Data shown was the average of three 
biological replicates. NS: not significant, student t-test P value >0.05 *: p value <0.05, ***: p value <0.01. 

Following this, nucleosome occupancy was examined under these conditions (Figure 6.11). 

In ethanol treated cells, Ikaros induction increased nucleosome occupancy at the Igll1 and 

Myc promoters. TSA treatment for 1 hour did not significantly alter the baseline level of 

nucleosome occupancy before Ikaros induction. Furthermore, in the TSA treated cells, Ikaros 

induction resulted in similar levels of increase in nucleosome occupancy as in the control 

cells. Therefore, the regulation of nucleosome occupancy at the promoters was independent 

of histone deacetylation. 
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Figure 6.11 TSA treatment does not impair nucleosome reorganization by Ikaros 

Ikaros was induced by 4OHT (red bars) with or without TSA treatment for 1h. At the down-regulated Igll1 
and Myc promoters, TSA treatment did not alter the nucleosome reorganization mediated by Ikaros. Data 
shown here was the average of three biological replicates. NS: not significant, p value > 0.05. 

Next, the binding of RNAPII was analysed under the same conditions (Figure 6.12). In 

ethanol treated cells, Igll1 and Myc showed decreased binding of RNAPII after Ikaros 

induction. TSA treatment for 1 hour alone mildly but not significantly decreased RNAPII at 

the Igll1 and Myc loci. Furthermore, Ikaros induction in the TSA treated cells reduced the 

binding of RNAPII to the same level as in the control cells. Thus, the regulation of RNAPII 

was independent of histone deacetylation.  

Finally, gene expression was directly examined (Figure 6.12). The gene expression data 

agreed faithfully with RNAPII binding, and that Ikaros induced down-regulation of Igll1 and 

Myc were not influenced by the blocked histone deacetylation. 
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Figure 6.12 TSA treatment does not impair RNAII and transcription regulated by Ikaros 

Ikaros was induced by 4OHT (red bars) with or without TSA treatment for 1h. At down-regulated Igll1 
and Myc promoters, TSA treatment did not alter the changes in RNAPII mediated by Ikaros (left). 
Transcriptional regulation of Igll1 and Myc was not compromised either (right). Data show here was the 
average of three biological replicates. NS: not significant, p value > 0.05, *: p value <0.05. 

In summary, without decreasing the histone acetylation level, Ikaros was still able to increase 

nucleosome occupancy, reduce RNAPII binding and eventually, down-regulate gene 

expression to the same level. The data also supported the finding from the kinetics study that 

histone deacetylation appeared to be a later event during Ikaros-mediated transcriptional 

repression.  
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6.4 Discussion 

I carried out mechanistic tests on the observed order of regulatory events in chromatin during 

Ikaros-mediated transcriptional repression. Nucleosome repositioning appeared to be directly 

regulated by Ikaros, not through the influence of RNAPII binding, since degradation of 

RNAPII did not result in or alter nucleosome reorganization. On the other hand, when the 

regulation of nucleosome occupancy was compromised by interfering with chromatin 

remodeler Mi-2β, transcriptional regulation was delayed. This indicated that the regulation of 

RNAPII density was, at least partially, influenced by nucleosome occupancy at the promoters. 

After testing the causal relationship between the early events of RNAPII and nucleosome 

regulation, the involvement of a seemingly later change, histone deacetylation, was examined. 

The block of histone deacetylation did not alter the regulation of nucleosome and RNAPII 

density, and histone deacetylation was not necessary to initiate gene down-regulation. This 

supported the kinetics study that histone acetylation was a later event during Ikaros-mediated 

transcriptional repression. These mechanistic tests not only support the kinetics studies, but 

also shed light on the causal relationships between these regulatory events. 

 

Mi-2β in Ikaros-mediated transcriptional repression 

In Mi-2β knock-down cells, the increase in nucleosome occupancy mediated by Ikaros was 

not only delayed, but also milder. This is the first direct evidence that Ikaros regulates 

nucleosome positioning through Mi-2β in the B cell compartment. 

It remains to be answered how Ikaros utilises Mi-2β to regulate promoter accessibility. 

Interestingly, the enrichment of Mi-2β at the regulated promoters did not significantly change 

after Ikaros induction (Figure 6.7). It is possible that the quality of the ChIP was not good 

enough. ChIP for chromatin remodelers has been considered difficult. In this ChIP, the 

enrichment at the silent genes Pou5f1 and Rex1, presumably not bound by Mi-2β (Schwickert 

et al., 2014; Zhang et al., 2012), was not dramatically different from the enrichment of the 

Mi-2β regulated promoters. Thus, a better quality ChIP may be required. Furthermore, 

strictly speaking, the ChIP enrichment of Mi-2β does not necessarily reflect Mi-2β binding to 

DNA. Mi-2β interacts with Ikaros in B3 cells (Ben Taylor, unpublished). The ChIP 

enrichment can be due to the interaction of Mi-2β with the DNA binding protein Ikaros. After 
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induction, increased dosage of Ikaros may help the pre-associated Mi-2β molecules bind 

DNA. Additionally, Ikaros may also influence the stability or activity of Mi-2β in the context 

of NuRD complex. How Ikaros utilises Mi-2β to reposition nucleosomes is still an open 

question. 

The knockdown of Mi-2β did not totally abolish nucleosome reorganization mediated by 

Ikaros. It is possible that there were still a fraction of Mi-2β proteins left after knock-down. 

They may facilitate Ikaros to reorganise nucleosome positioning to a lesser level. Another 

possibility is that Mi-2β is not the only chromatin remodeler that works with Ikaros (Kim et 

al., 1999; Morris et al., 2014; Sridharan and Smale, 2007). There may be cooperative 

regulation of the nucleosome reorganisation between the chromatin remodelers, and therefore 

transcriptional repression is not totally abolished after the knockdown of Mi-2β (Morris et al., 

2014).  

 

Histone deacetylation in Ikaros-mediated gene repression 

HDACs in human are divided into four classes: Zn2+ dependent  class I (HDAC1, 2, 3, 8), 

class II (HDAC4, 5, 6, 7, 9, 10), class IV (HDAC11), and NAD+ dependent class III (Sirt1-7) 

(Delcuve et al., 2012). To identify which HDACs work with Ikaros to deacetylate histones 

during transcriptional repression, HDAC1 and 2 are top candidates. They are part of the Mi-

2/NuRD complex as well as the corepressors Sin3 and CtBP, which interact with Ikaros (Kim 

et al., 1999; Sridharan and Smale, 2007). HDAC1 and 2 exhibit a high degree of homology, 

and form homo- and heterodimers between each other. They work together but also have 

distinct roles depending on the cell types (Delcuve et al., 2012). To test the involvement of 

HDAC1/2 in Ikaros-mediated histone deacetylation, more specific HDAC inhibitors to 

HDAC1/2 can be used, such as MS-275 (Quintas-Cardama et al., 2011) or BRD8430 (Frumm 

et al., 2013). Furthermore, since Mi-2β plays a vital part in Ikaros-mediated gene repression 

in B3 cells, it would be interesting to test the role of HDAC1/2 in the context of the Mi-

2/NuRD complex. 

It is worth emphasizing that this study does not argue against the importance of histone 

acetylation or deacetylation during transcriptional regulation, but raises the point that histone 

deacetylation is not necessary to initiate transcriptional repression mediated by Ikaros. 
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7 Discussion 

7.1 Overview 

In B3 pre-B cells, I applied an inducible Ikaros system to monitor the changes in chromatin 

status mediated by Ikaros at a high temporal resolution. By adding 4OHT, inducible Ikaros 

translocated into the nucleus quickly and efficiently. This led to significant changes in 

transcription of selected Ikaros target genes as early as 5 minutes after induction, and induced 

cell cycle arrest after 16 hours of induction. This inducible Ikaros system serves as a powerful 

tool to study the kinetics and mechanisms of Ikaros-mediated transcriptional regulation. 

Genome-wide profiling of RNAPII and nucleosome density after 6 hours of Ikaros induction 

revealed that Ikaros decreased promoter accessibility and RNAPII binding during 

transcription down-regulation, and vice versa during up-regulation. Time course studies at 

selected model loci indicted that changes in nucleosome occupancy and RNAPII binding 

were early events during Ikaros-mediated transcriptional repression. These experiments also 

revealed later changes in histone modifications and nucleosome composition, including the 

integrity of nucleosomes and the incorporation of the histone variant H2A.Z.  

Once the order of chromatin-based events during Ikaros-mediated transcriptional repression 

was clarified, I began to address the causal relationships between these events. Changes in 

RNAPII and nucleosome occupancy both occurred very early, and appeared in an anti-

correlated manner. Investigating the relationship between these events, I found that RNAPII 

was not required for the maintenance of a nucleosome-free region at Ikaros target promoters. 

On the other hand, interference with chromatin remodelers that regulate nucleosome 

occupancy compromised the regulation of RNAPII binding by Ikaros. This suggests a direct 

role for Ikaros in directing chromatin remodelling and nucleosome occupancy upstream of 

the regulation of RNAPII binding. Decreased histone acetylation was not necessary to initiate 

Ikaros-mediated transcriptional repression, and histone deacetylation appeared to be a later 

event than increased nucleosome occupancy and reduced RNAPII binding. 

In this study, I applied an inducible system of the key transcription factor Ikaros to a well-

defined and critical developmental stage during early B cell development. The observations 
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in this study not only improved the understanding of how Ikaros mediates transcriptional 

changes during early B cell development, but also provided direct evidence for the order and 

causal relationships between regulatory events during transcriptional regulation in high 

eukaryotes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Cartoon of the mechanisms used by Ikaros to down-regulate transcription 

This cartoon illustrates the sequence of the regulatory events and mechanisms used by Ikaros to down-
regulate transcription. In an active transcription state (A) a gene promoter is highly accessible to 
transcription factors, including Ikaros and EBF, and is bound by RNAPII. The neighbouring nucleosomes 
around the TSS are modified with active histone marks, including acetylation. Induction of Ikaros (B) 
increase the binding of Ikaros at the pre-bound binding site in the regulated promoter, possibly forming 
dimer or multimers with Ikaros itself or family members. This may also out compete the transcription 
factors involved in activating the gene, such as EBF (discussed in section 7.3). (C) Subsequently, Ikaros 
induction increases the nucleosome occupancy at the negatively regulated promoter. This process is 
facilitated by chromatin remodeler Mi-2β. (D) The increase of nucleosome occupancy results in or 
facilitates the decrease in RNAPII binding. Following these events, H2A.Z is incorporated into the TSS 
neighbouring nucleosomes (Ei) and histones are deacetylated (Eii). After these initial regulatory events, 
transcription of Ikaros down-regulated gene may be further silenced by other mechanisms (F). It probably 
leads to the full closure of the promoter and loss of all active histone marks and RNAPII binding. 
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7.2 Ikaros works together with Mi-2β to regulate transcription 

Ikaros physically interacts with Mi-2β in T cells (Kim et al., 1999) and in B3 pre-B cells (Ben 

Taylor, unpublished). Here, I provide direct evidence that Ikaros works with Mi-2β to 

increase nucleosome occupancy at negatively regulated promoters in pre-B cells, and that this 

regulatory event is critical to Ikaros-mediated gene repression, as knock-down of Mi-2β 

interferes with increased nucleosome occupancy mediated by Ikaros, and subsequently delays 

the changes in transcription. 

How does Ikaros cooperate with Mi-2β? Although the binding of Ikaros substantially 

overlaps with that of Mi-2β at permissive promoters in both thymocytes and pro-B cells 

(Schwickert et al., 2014; Zhang et al., 2012), there is disagreement on the effect of Ikaros on 

Mi-2β binding. In thymocytes, Ikaros reportedly inhibits the binding of Mi-2β, as loss of 

Ikaros leads to increased Mi-2β binding (Zhang et al., 2012). However in pro-B cells, loss of 

Ikaros does not lead to the redistribution of Mi-2β binding, arguing against the role of Mi-2β 

in controlling the chromatin changes at Ikaros-regulated gene promoters (Schwickert et al., 

2014). My results support the idea that Ikaros cooperates with Mi-2β to down-regulate 

transcription, and this co-regulation is positively co-ordinating, rather than inhibitory as seen 

in thymocytes (Naito et al., 2007; Zhang et al., 2012).  

It remains to be discovered how an increased level of Ikaros leads to an increase in 

nucleosome occupancy mediated by Mi-2β. Preliminary data shows that increased Ikaros 

binding does not influence the binding of Mi-2β to regulated promoters (Figure 6.7). 

Therefore, Ikaros does not seem to control the recruitment of Mi-2β in pre-B cells. Perhaps 

Ikaros stabilizes the interactions between Mi-2β and nucleosomes by binding to DNA and 

interacting with Mi-2β, or by changing the local chromatin conformation. Ikaros may also 

increase Mi-2β activity by controlling the stability and activity of Mi-2β in the context of Mi-

2/NuRD.  

Mi-2β may work independently of the NuRD complex (Naito et al., 2007; Shimono et al., 

2003), or in the context of NuRD complex. The Mi-2β/NuRD complex possesses histone 

deacetylation activity due to HDAC1/2 subunits (Reynolds et al., 2013) and histone 

deacetylation is observed after Ikaros induction. It would be very interesting to test whether 

this histone deacetylation observed is due to HDAC1/2. If so, the next question would be 

whether HDAC1/2 functions in the context of NuRD complex.  
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7.3 Ikaros decreases RNA polymerase II binding during transcription repression  

In this study, Ikaros was shown to reduce RNAPII binding during transcriptional regulation, 

through reducing recruitment and/or down-regulating pause-release. The reduction of 

RNAPII binding at down-regulated genes is at least partly due to the increase in nucleosome 

occupancy at the promoters mediated by Ikaros, thereby precluding access of the 

transcription machinery to DNA. Therefore, the regulation of RNAPII binding by Ikaros can 

be downstream of the regulation of nucleosome occupancy.  

There is another possibility that Ikaros can reduce RNAPII binding indirectly. Ikaros may 

mediate a decrease in RNAPII binding through competing with transcription factors. Ikaros is 

thought to compete with the transcription factor EBF1 in pre-B cells, where they both bind to 

the Igll1 promoter to balance its expression (Thompson et al., 2007). In cycling pre-B cells, 

Ikaros induction leads to the down-regulation of Igll1. I performed EBF1 ChIP to examine 

the binding of EBF1 after Ikaros induction at the Igll1 promoter (Figure S3). Both Ikaros and 

EBF binding peaks are positioned around 200bp upstream of the TSS. After 3 hours of Ikaros 

induction, Ikaros binding increases to almost 2-fold, while EBF1 binding reduces to half. 

Since the binding sites of Ikaros and EBF1 overlap in the Igll1 promoter, it is possible that 

increased Ikaros binding blocks the binding of EBF1. Reduced EBF1 binding may decrease 

RNAPII recruitment to Igll1. Competition between Ikaros and EBF may be a general 

mechanism for decreased RNAPII recruitment in B cell progenitors, where 52% of EBF1 

binding peaks overlap with Ikaros (Ferreiros-Vidal et al., 2013; Lin et al., 2010b).  

These observations, however, do not rule out the possibility that Ikaros may directly regulate 

RNAPII, in a pathway that is independent of decreasing promoter accessibility or competing 

with transcription activators. In erythroid cells, to activate transcription, Ikaros reportedly 

regulates the transcription machinery by recruiting the PIC component TBP and interacting 

with Cdk9 to promote RNAPII elongation (Bottardi et al., 2013; Bottardi et al., 2011). In this 

study, the genome-wide profiling of RNAPII binding in B3 pre-B cells suggested Ikaros may 

modulate RNAPII at both recruitment and elongation levels under different scenarios (section 

4.1.3). Further analysis may reveal one or more dominant mechanisms used by Ikaros to 

regulate RNAPII during B cell development. 
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7.4 The competition between RNAPII and nucleosomes 

Viewed simplistically, transcriptional regulation could be described as a fight between 

RNAPII and nucleosomes. These two are the principle components of the complicated 

battlefield of transcription. The rest of the transcriptional regulatory events are either 

positively or negatively, directly or indirectly, affecting either RNAPII or nucleosomes to 

contribute to transcriptional regulation.  

RNAPII pausing at promoter proximal sites is important for maintaining permissive 

chromatin architecture. As shown in Drosophila, two thirds of NELF-dependent genes are 

down-regulated in response to NELF-depletion. Examination of selected promoters shows 

significant increase in nucleosome occupancy due to loss of paused RNAPII upon NELF 

depletion (Gilchrist et al., 2008). This is further explained as the promoter sequences of 

NELF-dependent highly paused genes inherently favour the formation of nucleosomes, 

therefore loss of paused RNAPII leads to the promoter architectures adopting their natural 

feature (Gilchrist et al., 2010). Therefore, RNAPII dominantly competes with nucleosome at 

Drosophila promoters, and prevents nucleosomes from adopting their favourite positions. 

However, this competing mechanism remains to be seen in mammalian cells. 

In this study, I provide initial evidence of this competition by demonstrating that RNAPII and 

nucleosome density are anti-correlated at both up-regulated and down-regulated gene 

promoters after Ikaros induction. Based on this observation, the changes in RNAPII and 

nucleosome density could be both dependent on Ikaros. It is also possible that one is directly 

regulated by Ikaros, and the change in the other is a passive consequence of the competition 

between RNAPII and nucleosomes. Furthermore, the changes in RNAPII and nucleosome 

density also follow similar kinetics, and appear earlier than other regulatory events examined. 

The almost simultaneous regulation further heats up the questions about the existence of 

active competition between RNAPII and nucleosomes, and the causal factors that induce 

these changes.  

My experiments show that loss of RNAPII does not lead to increased nucleosome occupancy 

at Ikaros targets in contrast with observations in Drosophila. Preliminary prediction using 

parameters from the Segal lab suggests that the DNA sequences of both Igll1 and Myc 

promoters favour the formation of nucleosomes (Kaplan et al., 2009). Admittedly, it is 

possible that the RNAPII degradation treatment (3 hours) is not long enough for nucleosomes 

to adopt their favourable positions. This also indicates that mammalian cells may use 
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different mechanisms from Drosophila, and that nucleosomes at gene promoters are highly 

regulated, rather than simply following the thermal dynamics. Furthermore, promoter 

accessibility is also tightly regulated during transcriptional regulation mediated by Ikaros, and 

this regulation is independent of RNAPII binding. 
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Appendix 

 

Figure S.1 Growth curve 

Typical yeast growth curve contains lag phase, log phase and stationary phase. The shape of these phases 
were used to illustrate the trend in the kinetics of regulatory events during transcriptional regulation. 
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Figure S.2 Comparison of ChIP methods 

A) shows different methods used to quantify nucleosome occupancy, namely MNase assay to directly 
quantify nucleosome protected DNA fragments (left), histone H3 ChIP using MNase digested chromatin 
(middle) and histone H3 ChIP using sonicated chromatin. (B) shows different methods used to quantify 
acetylated histone H3, namely acetyl-histone H3 ChIP using MNase digested chromatin (left) and acetyl-
histone H3 ChIP using sonicated chromatin. Sonicated chromatin ChIP was an average of two biological 
replicates, the rest were three. 
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Figure S.3 Increased binding of Ikaros leads to a decrease of EBF binding at Igll1 locus 

Ikaros (blue shads) and EBF (pink shade) binding at the Igll1 locus and negative control sites before (light) 
and after 3h (dark) of induction. IgG negative controls are shown in dark green. Data shown is an average 
of three biological replicates.  

174 
 



Table S.1 shRNA design 

Oligos name Sequence 

H2AZ_sh1_F GATCCCCCCTTATTATCTCAGGACTCTATTCAAGAGATAGAGTCCTGAGATAATAAGGTTTTT

GGAAC 

H2AZ_sh1_R TCGAGTTCCAAAAACCTTATTATCTCAGGACTCTATCTCTTGAATAGAGTCCTGAGATAATAA

GGGGG 

H2AZ_sh2_F GATCCCCCCGTATTCATCGACACCTGAATTCAAGAGATTCAGGTGTCGATGAATACGGTTTTT

GGAAC 

H2AZ_sh2_R TCGAGTTCCAAAAACCGTATTCATCGACACCTGAATCTCTTGAATTCAGGTGTCGATGAATAC

GGGGG 

H2AZ_sh3_F GATCCCCCGACACCTGAAATCTAGGACATTCAAGAGATGTCCTAGATTTCAGGTGTCGTTTTT

GGAAC 

H2AZ_sh3_R TCGAGTTCCAAAAACGACACCTGAAATCTAGGACATCTCTTGAATGTCCTAGATTTCAGGTGT

CGGGG 

Chd4_F GATCCCCGACTACGACCTGTTCAAGCAGTTCAAGAGACTGCTTGAACAGGTCGTAGTCTTTTT

GGAAC 
Chd4_R TCGAGTTCCAAAAAGACTACGACCTGTTCAAGCAGTCTCTTGAACTGCTTGAACAGGTCGTAG

TCGGG 
Brg1/Brm_F GATCCCCTGGAGAAGCAGCAGAAGATTTTCAAGAGAAATCTTCTGCTGCTTCTCCATTTTTGG

AAC 
Brg1/Brm_R TCGAGTTCCAAAAATGGAGAAGCAGCAGAAGATTTCTCTTGAAAATCTTCTGCTGCTTCTCCA

GGG 
Ikzf1_3UTR_3F GATCCCCCCAGTGGTATTCAGAGATTAATTCAAGAGATTAATCTCTGAATACCACTGGTTTTT

GGAAC 

Ikzf1_3UTR_3R TCGAGTTCCAAAAACCAGTGGTATTCAGAGATTAATCTCTTGAATTAATCTCTGAATACCACT

GGGGG 

Ikzf1_CDS_sh1_F GATCCCCGGGCATGTACCCAGTCATTAATTCAAGAGATTAATGACTGGGTACATGCCCTTTTT

GGAAC 

Ikzf1_CDS_sh1_R TCGAGTTCCAAAAAGGGCATGTACCCAGTCATTAATCTCTTGAATTAATGACTGGGTACATGC

CCGGG 

Ikzf1_CDS_sh2_F GATCCCCGCAATGTCGCCAAACGTAATTCAAGAGATTACGTTTGGCGACATTGCTTTTTGGAA

C 

Ikzf1_CDS_sh2_R TCGAGTTCCAAAAAGCAATGTCGCCAAACGTAATCTCTTGAATTACGTTTGGCGACATTGCGG

G 

Ikzf1_CDS_sh3_F GATCCCCGCCCTATGACAGTGCCAACTATTCAAGAGATAGTTGGCACTGTCATAGGGCTTTTT

GGAAC 

Ikzf1_CDS_sh3_R TCGAGTTCCAAAAAGCCCTATGACAGTGCCAACTATCTCTTGAATAGTTGGCACTGTCATAGG

GCGGG 

Ikzf1_CDS_sh4_F GATCCCCGTGCCAACTATGAGAAGGATTCAAGAGATCCTTCTCATAGTTGGCACTTTTTGGAA

C 

Ikzf1_CDS_sh4_R TCGAGTTCCAAAAAGTGCCAACTATGAGAAGGATCTCTTGAATCCTTCTCATAGTTGGCACGG

G 

Ikzf1_CDS_sh5_F GATCCCCAGAAGGAGGATATGATGACATTTCAAGAGAATGTCATCATATCCTCCTTCTTTTTT

GGAAC 

Ikzf1_CDS_sh5_R TCGAGTTCCAAAAAAGAAGGAGGATATGATGACATTCTCTTGAAATGTCATCATATCCTCCTT

CTGGG 
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Ikzf1_CDS_sh6_F GATCCCCACAGGACGCCGTGGATAACTTTTCAAGAGAAAGTTATCCACGGCGTCCTGTTTTTT

GGAAC 

Ikzf1_CDS_sh6_R TCGAGTTCCAAAAAACAGGACGCCGTGGATAACTTTCTCTTGAAAAGTTATCCACGGCGTCCT

GTGGG 

Ikzf1_CDS_sh7_F GATCCCCACTATGAGAAGGAGGATATTTCAAGAGAATATCCTCCTTCTCATAGTTTTTTGGAA

C 

Ikzf1_CDS_sh7_R TCGAGTTCCAAAAAACTATGAGAAGGAGGATATTCTCTTGAAATATCCTCCTTCTCATAGTGG

G 

 

Table S.2 Primers for cloning 

Primer name Sequence 

IRES_Forward AAGCAGATCTCGCCCCTCTCCCTCCCCCCC 

IRES_Reverse TGCTCACCATGGTGGCGACACCATGGTTGTGGCCATATTA 

mCherry_Forward ATAATATGGCCACAACCATGGTGTCGCCACCATGGTGAGCAA 

mCherry_Reverse AAGCGTCGACATCTACTTGTACAGCTCGTCC 

 

Table S.3 Antibodies 

Antibody Company Catalogue # IP 

(/10µl beads) 

Western 

(/proteins) 

Histone H3 Abcam AB1791 1.5µg 1:20000/5µg 

Histone H2A Abcam AB18255 2.5µg  

Histone H2A.Z Abcam AB4174 2.5µg  

Histone H2B Abcam AB1790 2µg  

acetyl-Histone H3 Abcam AB47915 2µl 1:2000/10µg 

acetyl-Histone H4 Millipore 06-866 1µg 1:2000/10µg 

H3K9Ac Millipore 07-352 1µg  

H3K4Me3 Millipore 07-473 1µg  

H3K9Me3 Abcam AB8898 2µg  

Mouse IgG DakoCytomation Z0259 1µg  

PolII-total Santa Cruz sc-899 20µl  

Chd4 Abcam AB72418 7.5µl 1:2000/10µg 

SNF2B/Brg1 Millipore 07-478  1:2000/10µg 

Brm BD Tranduction 610390  1:500/10µg 

Ikaros-C Stephen Smale's lab homemade 3µl 1:10000/5µg 

HA.11 Covence MMS-101R 3µl 1:5000/5µg 

Tubulin Sigma T9026  1:2000/10µg 
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Table S.4 Primers for gene expression 

Gene Forward Reverse 

Chd4 ATCCGAAACCACAAGTACCG CTTTCCTCGCCTTCACTGTC 

H2afz GGCACCCTAAAGCATTACCA ACAGAAGGAGCCCATTTGTC 

Igll1 CAGAGCGGAACATTCTCAGC AAGGAAGGCAAGGGTCTCTC 

Lig4 GCCGTATTCATCGACACCTG AAGTGACGAGGGGTGATACG 

Myc TGGGCGTGCCTGTGAAATGA ACGGAGTGCGTCCTCAGGTG 

Smarca2(Brm) CATGTCCCCTTTGCAGACTT TTTCTGTTCTTATGAAGGGCATC 

Smarca4(Brg1) TTCTCACCTGTGCCCTAACC GGTTTGCCTCTTCTCCACAG 

Ubc AGGAGGCTGATGAAGAGCTTGA TGGTTTGAATGGATACTCTGCTGGA 

Ywhaz CGTTGTAGGAGCCCGTAGGTCAT TCTGGTTGCGGAAGCATTGGG 

Zfp36 GCTGGCTGGAAATGAGAGAG CCCCCTACCTCAACCTTAGC 

 

Table S.5 Primers for ChIP and MNase assay 

Primer Forward Reverse Size 

Myc5 ACCCCAGCTCCTAAACCAGA CCGGTCTACACCCCATACAC 121 

Myc12 TCCAGGGTACATGGCGTATT TCGGCTGAACTGTGTTCTTG 89 

Myc14 TCATGCTGCGCTATTACTGTTT CCTCTGCTTTGGGAACTCG 120 

Myc17 CTCACTCAGCTCCCCTCCT CTCCCCTCCCTTCTTTTTCC 75 

Myc19 AGGGATCCTGAGTCGCAGT CGCTCACTCCCTCTGTCTCT 92 

Myc20 CAGCGAGAGACAGAGGGAGT CACTCCAGAGCTGCCTTCTT 92 

Myc21 CCTAAGAAGGCAGCTCTGGA GCTGATGTTGGGTCAGTCG 88 

Myc24 AACCAGAGGGAATCCTCACA GAACCGCTCAGATCACGACT 100 

Myc27 GAGTGCATTGACCCCTCAGT GAATCGGACGAGGTACAGGA 80 

Lig4_5 CAGCGTGCGGATACAACTAA CTTTGTCCCAGCGTCACC 120 

Lig4_7 GACAAAGCACGGGAAGGAC CTGCTAAGCAAGTGGTGTGG 83 

Lig4_9 CGCCTCCACTGTCTCTGC CAGGCTCCAAGTTCCTCAAA 91 

Lig4_11 CAGAAGAGAATCCTCCCACCT CTGCACAGTGAAAAGGCTACC 101 

Lig4_15 CTCTCTCAACTTCCCCCACA CATTTTTATTTGCGGGCTCA 109 

Zfp36_2 GCAGCTGTCTTTGAAGGGACT AGGCACCTGCTAGGAATGAC 118 

Zfp36_6 GGGGAGAGACAAGTTGGAAG GCCGGAATCACAGTCCTAAA 112 

Zfp36_13 TACGCGAGTGACAGCAGTGT GCTGGCTGGAAATGAGAGAG 103 

Zfp36_17 GGAAAAGGCTAAGGCAGGAT GCCCCAAGTCTTCTGTTGTT 92 

Zfp36_22 GAATGGCCTTGGTGAAGAGA GCCCCATAAAAGGAGAAAGC 84 

Zfp36_23 CGTGGCCACTAGAGCTTCC TTTTGCATGCTAACCAGCAG 96 

Zfp36_24 CATGCAAAATGTGCCTGAAC CGCTACCATCACCTCCAGTT 99 

Ccnd2_12 GAGAGAGAGAAGAGTGGAAGGTG GAGAGAGGAGAGCGAGCTGA 109 

Ccnd2_16 GCTAGGGGCCTCGGATAG CTTTATGCCCCCATGGTATG 94 

Igll1_9 TGTCTTAGTTTGTGATATGAGACCTACAGG AGCAGAAGTATAGGCTCAGCAAAAA 110 

Igll1_11 AGGATACCCCTGGCCCTACAT GCCGTAGAGAGCAACTGAACACCT 107 
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Igll1_13 GGACCTGCTCCACAGACCCAG CTGCCTGTCTTAACCCATCCC 92 

Igll1_15 CTGTGAGTGAAAACAGTTAGGCTTGC ACCAGCAGGCACACCCCAGTG 106 

Igll1_17 GGTGGAAACTAGAGACAGCCTGG CGGCAAAAGGATTGTTCCTCC 94 

Igll1_19 GCAAGTGAGGCTAGAGTTGACTTTG CAGCAGGAGGAGAACTTCACACTG 104 

Igll1_21 TGCTGTTGGGTCTAGTGGATGG GCCTGTTGCTTCCCACTGAAG 102 

Igll1_31 CAGCCAGTATCCCGACAAGT AGAATCTGCTGGGCCTGATA 93 

Igll1_37 ACTGGGTTCCATGACTCCAC TCACTGTCTTTCCTGTGCCTAA 117 

HS17 GCTCACCCTGGAAACATCTGCTATTG CGATGCTGCATGTGCTTCCACTTA 101 

Rex1  TTTGCGGGAATCCAGCAGT CGTCCCATCGCCACTCTAGAC 106 

B-Actin GCAGGCCTAGTAACCGAGACA AGTTTTGGCGATGGGTGCT 101 

Oct4-TSS GGGTGAGAAGGCGAAGTCTGAA GTGAGCCGTCTTTCCACCAGG 88 
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