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Abstract: Likelihood-based methods of statistical inference provide a useful general methodology, which are

appealing as a straightforward asymptotic theory may be applied for their implementation. It is important

to assess the relationships between different likelihood-based inferential procedures, in terms of accuracy and

adherence to key principles of statistical inference, in particular those relating to conditioning on relevant

ancillary statistics. An analysis is given of the stability properties of a general class of likelihood-based statis-

tics, including those derived from forms of adjusted profile likelihood, and comparisons are made between

inferences derived from different statistics. In particular, we derive a set of sufficient conditions for agreement

to Op(n−1), in terms of the sample size n, of inferences, specifically p-values, derived from different asymptot-

ically standard normal pivots. Our analysis includes inference problems concerning a scalar or vector interest

parameter, in the presence of a nuisance parameter.
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1. Introduction

A highly useful statistical methodology for inference on a scalar or vector interest parameter in the

presence of a nuisance parameter is furnished by procedures based on the likelihood function, including

tests and confidence sets based on the likelihood ratio statistic. Though no explicit optimality criteria are

invoked, a quite general asymptotic theory allows straightforward implementation of such methodology

in a wide range of settings. However, accuracy and what may be termed inferential correctness are

(Young, 2009) key desiderata of any parametric inference. When constructing, say, a confidence set for a

parameter of interest in the presence of nuisance parameters, we desire high levels of coverage accuracy

from the confidence set. Further, it is important that procedures are inferentially correct, meaning

that they respect key principles of inference, in particular those relating to appropriate conditioning on

ancillary information when this is relevant. The crucial issue here is the stability of the statistic used for

inference, the extent to which the unconditional distribution of the statistic agrees with the conditional

distribution of the statistic, relevant for achieving inferential correctness. Henceforth, when speaking

of the stability of a pivot, we shall mean whether or not its marginal distribution inherently respects

ancillary information. Specifically, a statistic which is stable to second-order is one whose conditional

distribution given the observed value of an ancillary statistic agrees to second-order, O(n−1), in the

sample size n with its unconditional, i.e., marginal distribution. Our objective in this paper is to

both analyse and elucidate properties of likelihood-based methods of statistical inference against these

desiderata, and to provide new results, which shed light on what is achieved by alternative approaches

to implementation of likelihood-based methods of inference. We make two specific novel contributions.

We provide a general assessment of the stability properties of likelihood-based statistics commonly

used for parametric inference. Our analysis considers first the case of the signed root likelihood ratio
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statistic for inference on a scalar interest parameter, in the presence of a nuisance parameter. In doing so,

we establish a generalization to the practically realistic context involving nuisance parameters of results

described by McCullagh (1984) and Severini (1990). We then discuss this issue for asymptotically

standard normal pivots more generally, in particular those constructed from adjusted forms of profile

likelihood, before considering inference for vector interest parameters. The results presented here allow

comparisons to be drawn between the inferential properties of parametric bootstrap procedures and

techniques of higher-order inference based on asymptotic, analytic approximation.

We also provide an explicit comparison of inferences, specifically p-values, obtained from differ-

ent asymptotically standard normal pivots, including those constructed from adjusted forms of profile

likelihood, establishing certain higher-order equivalences and differences. We derive a set of sufficient

conditions ensuring agreement of p-values derived from different asymptotically standard normal pivots,

to order Op(n
−1).

2. Background

Suppose that Y = (Y1, . . . , Yn) is a continuous random vector and that the distribution of Y depends

on an unknown d-dimensional parameter θ, partitioned as θ = (ψ, φ), where initially we suppose ψ = θ1

is a scalar interest parameter and φ is a nuisance parameter of dimension d− 1. We later consider the

case of a vector interest parameter ψ.

Let L(θ) be the loglikelihood function for θ based on Y and let θ̂ = (ψ̂, φ̂) be the global maximum

likelihood estimator of θ. Further, let θ̃ = θ̃(ψ) = (ψ, φ̃) = {ψ, φ̃(ψ)} be the constrained maximum

likelihood estimator of θ for given ψ. Then the profile loglikelihood function for ψ is M(ψ) = L{θ̃(ψ)}
and the likelihood ratio statistic for ψ is W (ψ) = 2{M(ψ̂)−M(ψ)}, where M(ψ̂) = L(θ̂), since θ̃(ψ̂) = θ̂.

The signed root likelihood ratio statistic is R(ψ) = sgn(ψ̂− ψ){W (ψ)}1/2. Testing H0 : ψ = ψ0 against

Ha : ψ > ψ0 or Ha : ψ < ψ0 can be based on the test statistic R(ψ0). Asymptotically, as the sample

size n increases, the sampling distribution of R(ψ) tends to the standard normal distribution. Heading

the list of desiderata for refinement of the inference procedures furnished by such first-order asymptotic

theory is the achievement of higher-order accuracy in distributional approximation, while respecting

the need for inferential correctness.

Two main routes (Young, 2009) to higher-order accuracy emerge from contemporary statistical

theory. The most developed route is that which utilises analytic procedures, based on ‘small-sample

asymptotics’, such as saddlepoint approximation and related methods, to refine first-order distribution

theory. The second route involves simulation or bootstrap methods, which aim to obtain refined dis-

tributional approximations directly, without analytic approximation: see, for instance, DiCiccio et al.

(2001), Lee & Young (2005), DiCiccio & Young (2008).

A detailed account of analytic methods for distributional approximation which yield higher-order

accuracy is given by Barndorff-Nielsen & Cox (1994). Two particular highlights of an intricate theory

are especially important. These are Bartlett correction of the likelihood ratio statistic W (ψ), which

we discuss in Section 8, and the construction of analytically modified forms of the signed root likeli-

hood ratio statistic R(ψ), designed to offer higher-order accuracy. These two procedures also provide

inferential correctness, specifically conditional validity, to high (asymptotic) order, in the two key set-

tings where conditional inference is crucial, namely multi-parameter exponential family and ancillary

statistic contexts. Particularly central to the analytic approach to higher-order accurate inference on
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a scalar interest parameter is Barndorff-Nielsen’s R∗ statistic (Barndorff-Nielsen, 1986). In both the

multi-parameter exponential family and ancillary statistic contexts, the R∗ statistic is conditionally, and

hence unconditionally, distributed as standard normal, to error of third-order O(n−3/2) in the sample

size. So, analytic standard normal approximation of the sampling distribution of the R∗ statistic yields

third-order accuracy under repeated sampling, while respecting the requirements of conditioning to that

same order.

Lawley (1956) showed that Eθ{R(ψ)} = n−1/2m(θ) + O(n−3/2) and varθ{R(θ)} = 1 + n−1v(θ) +

O(n−2), where m(θ) and v(θ) are both of order O(1), while the third and higher-order cumulants are

of order O(n−3/2) or smaller; see also Bickel & Ghosh (1990). Therefore, {R(ψ) − n−1/2m(θ)}/{1 +

n−1v(θ)}1/2 has the standard normal distribution to error of order O(n−3/2). DiCiccio & Stern (1994a)

showed that {R(ψ)−n−1/2m(θ̃)}/{1+n−1v(θ̃)}1/2 also has the standard normal distribution to error of

order O(n−3/2). This DiCiccio & Stern (1994a) result asserts that [R(ψ)−Eθ̃{R(ψ)}]/[varθ̃{R(ψ)}]1/2

is also distributed as standard normal to error of order O(n−3/2). In turn, this distributional result

immediately suggests the parametric bootstrap approaches to third-order accurate inference discussed

by DiCiccio et al. (2001) and Lee & Young (2005). For testing H0 : ψ = ψ0 against one-sided

alternatives, p−values distributed, under repeated sampling, as uniform to error of order O(n−3/2),

and hence yielding error rate O(n−3/2), can be obtained by bootstrapping R(ψ0) at the parameter

value θ = (ψ0, φ̃0), where φ̃0 = φ̃(ψ0). DiCiccio & Young (2008) show that this parametric bootstrap

procedure respects the requirements of conditioning in multi-parameter exponential family settings to

third-order.

From a repeated sampling perspective, such third-order accurate inference can be similarly obtained

(Lee & Young, 2005) by bootstrap approximation to the sampling distribution of other asymptotically

standard normal pivots, in particular, pivots constructed as standardized versions of the difference

ψ̂−ψ0 or the score function ∂M(ψ)/∂ψ|ψ=ψ0 , which avoid calculation of both the global and constrained

maximum likelihood estimators, and may therefore may be more appealing for use in a computationally-

intensive bootstrap inference. A fundamental question which arises concerns the inferential implications

of choice of a particular statistic: when do inferences based on different choices of statistic agree to high-

order? It is necessary also to ask whether such inference respects the requirements of conditioning on

relevant ancillary statistics, in models which admit the existence of such. Since a bootstrap calculation

involves unconditional sampling at parameter value θ = (ψ0, φ̃0), the key question is the extent to which

the conditional and unconditional distributions of the statistic being used for the inference differ.

In this paper we provide an analysis directed at these questions, providing new results on the sta-

bility properties of likelihood-based statistics and agreement of p-values derived from different asymp-

totically normal pivots. The implications of the analysis for bootstrap methodology and detailed com-

parisons of the latter with analytic procedures of inference will be described elsewhere.

We consider first the stability properties of the signed root statistic R(ψ); in doing so, we establish

a generalization to the nuisance parameter context of a result of McCullagh (1984): see also Severini

(2000, Section 6.4.4). We then discuss the stability issue in problems involving nuisance parameters for

asymptotically standard normal pivots more generally, before examining conditions which ensure that

p-values derived from two different pivots agree to second-order. Extension of the conclusions to test

statistics based on general adjusted forms of profile likelihood are described, before presenting results
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concerning inference for vector interest parameters.

It should be noted that our analysis here is concerned exclusively with inferential comparisons

‘under the null’, so, for instance we examine the unconditional and conditional distributions of the

signed root statistic R(ψ) under the model in question when the true parameter value is θ = (ψ, φ).

Similarly, the analysis concerns comparison of different p-values under assumed correctness of the null

hypothesis being tested.

3. Notation

In the calculations that follow, arrays and summation are denoted by using the standard conven-

tions, for which the indices r, s, t, . . . are assumed to range over 1, . . . , d. Summation over the range

is implied for any index appearing in an expression both as a subscript and as a superscript. Dif-

ferentiation is indicated by subscripts, so Lr(θ) = ∂L(θ)/∂θr, Lrs(θ) = ∂2L(θ)/∂θr∂θs, etc. Then

E{Lr(θ)} = 0; let λrs = E{Lrs(θ)}, λrst = E{Lrst(θ)}, etc., and put lr = Lr(θ), lrs = Lrs(θ) − λrs,
lrst = Lrst(θ) − λrst, etc. The constants λrs, λrst, . . ., are assumed to be of order O(n). The variables

lr, lrs, lrst, etc., each of which have expectation 0, are assumed to be of order Op(n
1/2). The joint

cumulants of lr, lrs, etc. are assumed to be of order O(n). These assumptions are usually satisfied in

situations involving independent observations. The observed information matrix is J(θ) = [−Lrs(θ)],
while the expected (Fisher) information matrix is I(θ) = [−λrs(θ)]. It is useful to extend the λ-notation:

let λr,s = E(LrLs) = E(lrls), λrs,t = E(LrsLt) = E(lrslt), etc. The Bartlett identities involving the λ’s

can be derived by repeated differentiation of the identity
∫

exp{L(θ)}dy = 1; in particular,

λrs + λr,s = 0, λrst + λrs,t + λrt,s + λst,r + λr,s,t = 0.

Differentiation of the definition λrs =
∫
Lrs(θ) exp{L(θ)}dy yields λrs/t = λrst + λrs,t, where λrs/t =

∂λrs/∂θ
t. Further, let (λrs) be the d × d matrix inverse of (λrs), and let η = −1/λ11, τ rs = ηλ1rλ1s,

and νrs = λrs + τ rs. Thus, λrs, τ rs, and νrs are of order O(n−1), while η is of order O(n). For clarity,

we point out that a superscript or subscript of ‘1’ refers to the scalar interest parameter ψ, where ψ is

the first component of θ.

Suppose that A is an ancillary, i.e., distribution constant, statistic such that (θ̂, A) is sufficient. To

distinguish conditional calculations from unconditional ones, the accent symbol ˚ is used to denote

quantities derived from the conditional distribution of Y given A. Since the conditional loglikelihood

L̊(θ) differs from the unconditional loglikelihood L(θ) by a quantity that depends on A but not on θ, it

follows that W̊ (ψ) = W (ψ) and that L̊r = Lr, L̊rs = Lrs, etc. Let λ̊rs = E̊{Lrs(θ)}, λ̊rst = E̊{Lrst(θ)},
etc., and put l̊r = lr(θ), l̊rs = Lrs(θ) − λ̊rs, l̊rst = Lrst(θ) − λ̊rst, etc. The quantities λ̊rs, λ̊rst, etc. are

random variables depending on A, assumed to be of order Op(n). The variables l̊r, l̊rs, l̊rst, etc. have

conditional expectation 0, so they also have unconditional expectation 0, and they are assumed to be

of order Op(n
1/2). Further, the joint conditional cumulants of l̊r, l̊rs, etc. depend on A, and they are

assumed to be of order Op(n). It is useful to extend the λ̊-notation by letting λ̊r,s = E̊(LrLs) = E̊(lrls),

λ̊rs,t = E̊(LrsLt) = E̊(lrslt), etc. Also, let (̊λrs) be the d×d matrix inverse of (̊λrs), and let η̊ = −1/̊λ11,

τ̊ rs = η̊λ̊1rλ̊1s, and ν̊rs = λ̊rs + τ̊ rs, so that λ̊rs, τ̊ rs, and ν̊rs are of order Op(n
−1), while η̊ is of order

Op(n).

We note at this point, following Barndorff-Nielsen & Cox (1994, Section 7.2), that construction

of an ancillary statistic A such that (θ̂, A) is sufficient is, except in rather special cases, only possible
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for transformation models and, in a degenerate sense, for full exponential family models, where θ̂

itself is sufficient. It is therefore in general necessary to consider conditioning on statistics A which

are approximately ancillary in a suitable sense. Results presented here continue to hold under the

assumption that A is locally ancillary (Cox, 1980). Let θ0 be an arbitrary but specified parameter

value, and let A ≡ A(Y, θ0) be a candidate ancillary statistic. If the density of A under parameter value

θ0 + n−1/2δ satisfies

fA(a; θ0 + n−1/2δ) = fA(a; θ0){1 +O(n−q/2)},

then (Cox, 1980; McCullagh, 1987, Section 8.3) A is said to be q-th order local ancillary in the vicinity

of θ0. Note that this definition applies only to parameter values in an O(n−1/2) neighbourhood of θ0:

if θ0 is the true parameter value, as n increases the likelihood function becomes negligible outside this

neighbourhood. The loglikelihood function based on A satisfies LA(θ0 + n−1/2δ) = LA(θ0) +O(n−q/2).

As is the case in the no nuisance parameter context considered by Severini (1990) and McCullagh (1987,

Section 8.4), results in Section 4 below relating to stability of asymptotically standard normal pivots will

continue to hold for any second-order local ancillary A, as will results in Section 8 concerning stability of

an adjusted profile likelihood ratio statistic. Essentially, the assumption of a second-order local ancillary

is sufficient to ensure the relationships detailed below between conditional and unconditional cumulants.

The technique of proof used here to compare the conditional and unconditional distributions of

asymptotically standard normal pivots to second order is a generalization of that described by Severini

(2000, Chapter 6) in the case of a scalar interest parameter without nuisance parameters. For this

technique, it is essential to compare the λ̊-quantities with their λ-counterparts.

We first investigate the difference between λ̊rs and λrs; note that λrs = E(Lrs) = E{E̊(Lrs)} =

E(̊λrs). Furthermore, var(̊λrs) = var{E̊(Lrs)} = var(Lrs) − E{v̊ar(Lrs)} = O(n) − E{Op(n)} = O(n),

and consequently, λ̊rs = λrs +Op(n
1/2). An identical argument shows that λ̊rst = λrst +Op(n

1/2), etc.

Assume that differentiation of the identity λ̊rs = λrs + Op(n
1/2) yields λ̊rs/t = λrs/t + Op(n

1/2),

where λ̊rs/t = ∂λ̊rs/∂θ
t and, as before, λrs/t = ∂λrs/∂θ

t. We note that, as a rule, differentiation of

an asymptotic relation will preserve the asymptotic order, but that care is necessary; see Barndorff-

Nielsen & Cox (1994, Exercise 5.4) and Pace & Salvan (1994). The asymptotic order of the difference

between λ̊rs/t and λrs/t indicated here, therefore, actually constitutes an additional assumption of

our calculations. The preceding results imply λ̊rs,t = λrs,t + Op(n
1/2), since the Bartlett identities

λ̊rs/t = λ̊rst + λ̊rs,t and λrs/t = λrst + λrs,t yield λ̊rs,t = λ̊rs/t − λ̊rst = λrs/t − λrst + Op(n
1/2) =

λrs,t + Op(n
1/2). Define ∆̊rs = λ̊rs − λrs, so that ∆̊rs is a function of θ and A having order Op(n

1/2).

Then lrs = Lrs − λrs = (Lrs − λ̊rs) + (̊λrs − λrs) = l̊rs + ∆̊rs.

4. Stability result for R(ψ) and other pivots

We now consider the stability of R(ψ) and other asymptotically standard normal pivots.

4.1 R(ψ) is a stable pivot to second order

Theorem 1 The conditional and unconditional distributions of R(ψ) agree to error of order O(n−1),

given the ancillary statistic A.

Proof. To error of order O(n−1), the variance of R(ψ) is 1 and the third- and higher-order cumulants are

0; the mean is of order O(n−1/2). The conditional distribution given A has the same cumulant structure
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as the unconditional distribution. Thus, to show that the conditional and unconditional distributions

agree to second-order, it suffices to show that E̊{R(ψ)} = E{R(ψ)}+Op(n
−1).

Standard calculations, such as those given by Lawley (1956) and detailed in the Appendix of

DiCiccio & Stern (1994b), show that W (ψ) has the expansion

W (ψ) = τ rslrls − 2λrtτ sulrsltlu − τ rtτ sulrsltlu + λruνsvτ twλrstlulvlw

+ 1
3τ

ruτ svτ twλrstlulvlw +Op(n
−1).

DiCiccio & Stern (1994b) showed that R(ψ) may be decomposed as R(ψ) = η1/2{R1 + R2 +

Op(n
−3/2)}, where R1 = −λ1rlr and

R2 = λ1rλstlrslt + 1
2λ

1rτ stlrslt − 1
2λ

1rλsuνtvλrstlulv − 1
6λ

1rτ suτ tvλrstlulv.

Note that R1 is of order Op(n
−1/2) and R2 is of order Op(n

−1). Since E(R1) = 0, it follows that

E{R(ψ)} = η1/2{λ1rλstλrs,t + 1
2λ

1rτ stλrs,t + 1
2λ

1rλstλrst + 1
3λ

1rτ stλrst}+O(n−1).

Note also that R1 = −λ1rlr = −λ1r̊lr and

R2 = λ1rλstlrslt + 1
2λ

1rτ stlrslt − 1
2λ

1rλsuνtvλrstlulv − 1
6λ

1rτ suτ tvλrstlulv

= λ1rλst̊lrs̊lt + λ1rλst∆̊rs̊lt + 1
2λ

1rτ st̊lrs̊lt + 1
2λ

1rτ st∆̊rs̊lt

− 1
2λ

1rλsuνtvλrst̊lůlv − 1
6λ

1rτ suτ tvλrst̊lůlv.

Thus, since E̊(R1) = 0,

E̊{R(ψ)} = η1/2{λ1rλstλ̊rs,t + 1
2λ

1rτ stλ̊rs,t + 1
2λ

1rλsuνtvλrstλ̊uv + 1
6λ

1rτ suτ tvλrstλ̊uv +Op(n
−3/2)}

= η1/2{λ1rλstλrs,t + 1
2λ

1rτ stλrs,t + 1
2λ

1rλsuνtvλrstλuv + 1
6λ

1rτ suτ tvλrstλuv +Op(n
−3/2)}

= η1/2{λ1rλstλrs,t + 1
2λ

1rτ stλrs,t + 1
2λ

1rλstλrst + 1
3λ

1rτ stλrst +Op(n
−3/2)}

= E{R(ψ)}+Op(n
−1).

It follows that the conditional distribution of R(ψ) differs from its marginal distribution by error of

order O(n−1), given A. �

McCullagh (1984) generalized the notion of the signed root statistic to the case of a vector interest

parameter and established this stability result in the case of no nuisance parameters; Severini (1990)

gave a further demonstration for the case of a scalar interest parameter with no nuisance parameters.

Therefore, the result shown here extends the work of McCullagh and Severini to situations where

nuisance parameters are present.

This second-order stability of R(ψ) for the nuisance parameter context has been discussed, but not

demonstrated formally as we have here, by Pierce & Bellio (2006). The methodological consequence of

the result is immediate. Any approximation to the unconditional distribution of R(ψ) having error of

order O(n−1) also approximates the conditional distribution of R(ψ) to the same order of error. Such

an approximation may (DiCiccio et al., 2001) be derived, for instance, from the bootstrap distribution

of R(ψ). If that approximation is then used, say, to construct confidence limits for ψ, then those limits

have coverage error of order O(n−1) conditionally as well as unconditionally.
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4.2 Stability of other asymptotically standard normal pivots

We now consider general asymptotically standard normal pivots of the form T (ψ) = η1/2{T1 +

T2 + Op(n
−3/2)}, where T1 = −λ1rlr and T2 is of the form T2 = ξrstlrslt − ξrslrls, with ξrst and ξrs

assumed to be of order O(n−2), so that T1 is of order Op(n
−1/2) and T2 is of order Op(n

−1). We

demonstrate below that commonly used pivots may all be expressed in this form; for example, for R(ψ),

the preceding expansions show that ξrst = λ1rλst + 1
2λ

1rτ st and ξrs = 1
2λ

1tλurνvsλtuv + 1
6λ

1tτurτvsλtuv.

Both conditionally and unconditionally, the fourth- and higher-order cumulants of such a pivot are

immediately seen to be of order O(n−1) or smaller. Consequently, if we are to show that the conditional

and unconditional distributions of these pivots agree to error of order O(n−1) given A, all we need to

show is that the first three conditional cumulants agree with the unconditional ones to error of order

Op(n
−1). We show below that the first and third conditional cumulants agree with the unconditional

ones to the required order of error without further restrictions on ξrs and ξrst. We demonstrate that

for the second conditional cumulant to agree to with the unconditional one a sufficient condition is that

ξrs1 = 1
2λ

1rλ1s. It is easy to see that R(ψ) satisfies this criterion, for, in this case,

ξrs1 = λ1rλs1 + 1
2(λ1rηλ1sλ11) = λ1rλ1s + 1

2{λ
1r(−1/λ11)λ1sλ11} = λ1rλ1s − 1

2λ
1rλ1s = 1

2λ
1rλ1s.

Theorem 2 The unconditional and conditional distributions of T (ψ) agree to error of order O(n−1)

given the ancillary statistic A.

The result follows immediately from the following three lemmas concerning the stability of the first

three cumulants of T (ψ), beginning with the first cumulant, the mean.

Lemma 1 E̊{T (ψ)} = E{T (ψ)}+Op(n
−1).

Proof. Recall that T1 = −λ1rlr = −λ1r̊lr and that T2 = ξrstlrslt − ξrslrls = ξrst(̊lrs + ∆̊rs)̊lt − ξrs̊lr̊ls.
Then, E{T (ψ)} = η1/2{ξrstλrs,t + ξrsλrs +O(n−3/2)} and

E̊{T (ψ)} = η1/2{ξrstλ̊rs,t + ξrsλ̊rs +Op(n
−3/2)}

= η1/2{ξrstλrs,t + ξrsλrs +Op(n
−3/2)}.

Therefore, the conditional first cumulant agrees with the unconditional one to error of order Op(n
−1),

as required. �

Next, we consider the second cumulant of T (ψ), the variance.

Lemma 2 If ξrs1 = 1
2λ

1rλ1s, then v̊ar{T (ψ)} = var{T (ψ)}+Op(n
−1).

Proof. See Appendix. �

Finally, we treat the third cumulant of T (ψ), the skewness.

Lemma 3 ˚skew{T (ψ)} = skew{T (ψ)}+Op(n
−1).

Proof. See Appendix. �

Recall that a sufficient condition for v̊ar{T (ψ)} = var{T (ψ)} + Op(n
−1) is ξrs1 = 1

2λ
1rλ1s; if this

condition holds, we have skew{T (ψ)} = η3/2(λ1rλ1sλ1tλrst − 6ξ11) +O(n−1).
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5. Comparison of p-values

Our objective here is to utilize preceding calculations to examine conditions which ensure that p-

values based on two different asymptotically normal pivots agree to second-order. Note that here we

refer to the p-value calculated from the exact sampling distribution of the pivot, or any approximation

to the exact p-value accurate to Op(n
−1). Such accuracy of approximation will be obtained, for instance,

quite generally for an asymptotically normal pivot by bootstrapping (Lee & Young, 2005), but would

not be obtained by the normal approximation.

Consider hypothesis testing for ψ based on a test statistic expressible as T (ψ) = η1/2(T1 + T2) +

Op(n
−1), where, as in the preceding section, T1 = −λ1rlr and T2 is of the form T2 = ξrstlrslt − ξrslrls,

with ξrst and ξrs assumed to be of order O(n−2). We have shown that the first three cumulants of T (ψ)

are

κ1 = E{T (ψ)} = η1/2(ξrstλrs,t + ξrsλrs) +O(n−1),

κ2 = var{T (ψ)} = 1 +O(n−1),

κ3 = skew{T (ψ)} = η3/2(λ1rλ1sλ1tλrst + 3λ1rλ1sλ1tλrs,t − 6ξrs1λ1tλrs,t − 6ξ11) +O(n−1),

while the fourth- and higher-order cumulants are of order O(n−1) or smaller.

Consider another test statistic T̆ (ψ) = η1/2(T̆1 + T̆2) + Op(n
−1), where T̆1 = −λ1rlr = T1 and T̆2

is of the form T̆2 = ξ̆rstlrslt − ξ̆rslrls, with ξ̆rst and ξ̆rs assumed to be of order O(n−2). Our goal is to

establish conditions on the two pivots T (ψ) and T̆ (ψ) which ensure that p-values agree to second-order.

Theorem 3 If the conditions

ξ̆rst = ξrst +O(n−5/2), (5.1)

and

ξ̆rs + ξ̆tuλtuτ
rs = ξrs + ξtuλtuτ

rs +O(n−5/2), (5.2)

are satisfied, then the p-value derived from the pivot T (ψ) will agree with that derived from the pivot

T̆ (ψ) to second-order, i.e., to error of order Op(n
−1).

Proof. The p-value for testing against alternatives greater than ψ is the right-hand tail probability for

T (ψ). The normalizing Cornish-Fisher expansion shows that the p-value is

1− Φ(η1/2T1 + η1/2T2 − 1
6κ3ηT

2
1 − κ1 + 1

6κ3) +Op(n
−1),

where Φ(·) denotes the standard normal cumulative distribution function.

Let the first three cumulants of T̆ (ψ) be denoted by κ̆1, κ̆2, κ̆3; the p-value based on T̆ (ψ) is

1− Φ(η1/2T1 + η1/2T̆2 − 1
6 κ̆3ηT

2
1 − κ̆1 + 1

6 κ̆3) +Op(n
−1).

We now determine sufficient conditions on ξ̆rs and ξ̆rst to ensure that the p-value obtained from T̆ (ψ)

agrees with that obtained from T (ψ) to error of order Op(n
−1). Agreement of the p-values to this order

occurs when

η1/2T̆2 − 1
6 κ̆3ηT

2
1 − κ̆1 + 1

6 κ̆3 = η1/2T2 − 1
6κ3ηT

2
1 − κ1 + 1

6κ3

to error of order Op(n
−1), that is when

{η1/2(T̆2 − T2)− 1
6(κ̆3 − κ3)ηT 2

1 } − {(κ̆1 − κ1)− 1
6(κ̆3 − κ3)} = Op(n

−1).
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Note that the first term on the left-hand side of the preceding equation is random, as it involves terms

of the form lrslt and lrlt, while the second term is a constant. Consequently, by separating the random

and non-random components, we see that the preceding equation actually stipulates two conditions:

η1/2(T̆2 − T2)− 1
6(κ̆3 − κ3)ηT 2

1 = Op(n
−1),

(κ̆1 − κ1)− 1
6(κ̆3 − κ3) = O(n−1).

The second of these equations gives (κ̆1−κ1) = 1
6(κ̆3−κ3) +O(n−1), so we can write the two equations

as:

η1/2(T̆2 − T2)− (κ̆1 − κ1)ηT 2
1 = Op(n

−1), (5.3)

(κ̆1 − κ1)− 1
6(κ̆3 − κ3) = O(n−1). (5.4)

Since ηT 2
1 = (−1/λ11)λ1rλ1slrls = τ rslrls, equation (5.3) yields

η1/2[(ξ̆rst − ξrst)lrslt − (ξ̆rs − ξrs)lrls − {(ξ̆tuv − ξtuv)λtu,v + (ξ̆tu − ξtu)λtu}τ rslrls] = Op(n
−1). (5.5)

The quantity η1/2{(ξ̆rst − ξrst)lrslt − (ξ̆tuv − ξtuv)λtu,v} in (5.5) is reduced to order Op(n
−1) if (5.1)

holds.

Furthermore, the remaining term η1/2{(ξ̆rs−ξrs)+(ξ̆tu−ξtu)λtuτ
rs}lrls in (5.5) is reduced to order

Op(n
−1) if (5.2) holds. We show that equation (5.4) is satisfied when conditions (5.1) and (5.2) hold.

Note that equation (5.4) yields

η1/2{(ξ̆rst − ξrst)λrs,t + (ξ̆rs − ξrs)λrs}+ η3/2{(ξ̆rs1 − ξrs1)λ1tλrs,t + ξ̆11 − ξ11} = O(n−1).

Also, condition (5.1) yields ξ̆rs1 = ξrs1 +O(n−5/2), so under this condition, equation (5.4) reduces to

η1/2{(ξ̆rs − ξrs)λrs}+ η3/2(ξ̆11 − ξ11) = O(n−1).

Since τ11 = −λ11 = η−1, condition (5.2) gives ξ̆11 − ξ11 = η−1(ξ̆rs − ξrs)λrs + O(n−5/2), and hence, it

follows that under conditions (5.1) and (5.2), equation (5.4) is satisfied. �

Note that conditions (5.3) and (5.4) together constitute necessary and sufficient conditions for the

p-values to agree to order Op(n
−1). The quantity on the left side of (5.3) is of the form

η1/2(Arstlrslt −Brslrls),

where

Arst = ξ̆rst − ξrst, Brs = (ξ̆tuv − ξtuv)λtu,vτ rs + ξ̆rs − ξrs + (ξ̆tu − ξtu)λtuτ
rs,

so a necessary condition for agreement in general of p-values to order Op(n
−1) is that Arst and Brs both

be of order O(n−5/2). The condition that Arst is of order O(n−5/2) is the same as (5.1), and in light

of this condition, the condition that Brs is of order O(n−5/2) is equivalent to condition (5.2). Thus,

conditions (5.1) and (5.2) are necessary for agreement of p-values to order Op(n
−1). Of course, it is

possible that the p-values from two test statistics T̆ (ψ) and T (ψ) fail to agree to order Op(n
−1) generally,

i.e., for arbitrary models, yet they do agree for some specific model owing to particular features of the

model. This situation could be revealed by verifying conditions (5.1) and (5.2) for the specific model.
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6. Examples

To illustrate the results of the previous sections, we consider eight asymptotically standard normal

pivots, in addition to the signed root likelihood ratio statistic R(ψ).

We begin by considering four pivots that involve observed information. Recall that for R(ψ), we

have ξrstR = λ1rλst + 1
2λ

1rτ st and ξrsR = 1
2λ

1tλruνsvλtuv + 1
6λ

1tτ ruτ svλtuv, and hence, ξrsR + ξtuR λtuτ
rs =

1
2λ

1tλruνsvλtuv + 1
2λ

1tνuvλtuvτ
rs.

Example 1. Wald statistic with observed information. For the Wald statistic defined by TWO(ψ) =

(ψ̂ − ψ){−M̂11}1/2 = (ψ̂ − ψ){−L̂11}−1/2, we have ξrstWO = ξrstR and ξrsWO = 1
2λ

1tλruνsvλtuv. Therefore,

ξrs1WO = 1
2λ

1rλ1s and ξrsWO + ξtuWOλtuτ
rs = ξrsR + ξtuR λtuτ

rs. We deduce that, to error of second order,

TWO(ψ) is both stable in the sense discussed in Section 4 and produces the same p-values as R(ψ).

Example 2. Score statistic with observed information. For the score statistic defined by TSO(ψ) =

M1(ψ){−M̂11}−1/2 = L1{θ̃(ψ)}{−L̂11}1/2, we have ξrstSO = ξrstR and ξrsSO = 1
2λ

1tλruνsvλtuv+
1
2λ

1tτ ruτ svλtuv.

Thus, ξrs1SO = 1
2λ

1rλ1s and ξrsSO + ξtuSOλtuτ
rs = ξrsR + ξtuR λtuτ

rs. It follows that, to error of second order,

TWO(ψ) is also stable and again produces the same p-values as R(ψ).

The following two asymptotically standard normal pivots, though constructed using the observed

information, are somewhat unusual, in that they are not standard components of likelihood-based

inference. They involve pivots constructed by evaluating the observed information at the constrained

maximum likelihood, rather than the global maximum likelihood estimator as in Examples 1 and 2. In

practice, their use might be judged more cumbersome: they are included in our discussion primarily to

demonstrate the theoretical results.

Example 3. Wald statistic with observed information evaluated at the constrained maximum like-

lihood estimator. For the pivot TWOC(ψ) = (ψ̂ − ψ)[−M11{θ̃(ψ)}]1/2 = (ψ̂ − ψ)[−L11{θ̃(ψ)}]−1/2, we

have ξrstWOC = ξrstR and ξrsWOC = 1
2λ

1tλruνsvλtuv + 1
2λ

1tτ ruτ svλtuv = ξrsSO. Hence, ξrs1WOC = 1
2λ

1rλ1s

and ξrsWOC + ξtuWOCλtuτ
rs = ξrsR + ξtuR λtuτ

rs. So a novel fact that emerges here is that TWOC(ψ) =

TSO(ψ) + Op(n
−1). In addition, to error of second order, TWOC(ψ) is stable and produces the same

p-values as use of R(ψ).

Example 4. Score statistic with observed information evaluated at the constrained maximum likeli-

hood estimator. For TSOC(ψ) = M1(ψ)[−M11{θ̃(ψ)}]−1/2 = L1{θ̃(ψ)}[−L11{θ̃(ψ)}]1/2, the correspond-

ing score statistic, we have ξrstSOC = ξrstR and ξrsSOC = 1
2λ

1tλruνsvλtuv = ξrsWO. Thus, ξrs1SOC = 1
2λ

1rλ1s

and ξrsSOC + ξtuSOCλtuτ
rs = ξrsR + ξtuR λtuτ

rs, so, similarly to the previous example, it emerges that

TSOC(ψ) = TWO(ψ) + Op(n
−1). Also, to error of second order, TWOC(ψ) is stable and again produces

the same p-values as R(ψ).

We now consider four pivots corresponding to Examples 1-4 above, but based on expected, rather

than observed, information.

Example 5. Wald statistic with expected information. For the version of the Wald statistic defined

by TWE(ψ) = (ψ̂−ψ){−λ̂11}−1/2, we have ξrstWE = λr1λst and ξrsWE = 1
2λ

1tλruνsvλtuv + 1
2λ

1tτ ruλsvλtu,v.

Then, ξrs1WE = λ1rλ1s and ξrsWE + ξtuWEλtuτ
rs = ξrsR + ξtuR λtuτ

rs + 1
2λ

1tτ ruλsvλtu,v + 1
2λ

1tτuvλtu,vτ
rs.

Example 6. Wald statistic with expected information evaluated at the constrained maximum likeli-

hood estimator. For the pivot described as in Example 5, but with the expected information evaluated

at the constrained maximum likelihood estimator instead of the global maximum likelihood estima-

tor, TWEC(ψ) = (ψ̂ − ψ)[−λ11{θ̃(ψ)}]−1/2, we have ξrstWEC = ξrstWE and ξrsWEC = 1
2λ

1tλruνsvλtuv +
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1
2λ

1tλruνsvλtuv + 1
2λ

1tτ ruτ svλtu,v. Then, ξrs1WEC = λ1rλ1s and ξrsWEC + ξtuWECλtuτ
rs = ξrsWE + ξtuWEλtuτ

rs.

We therefore see that neither TWE(ψ) nor TWEC(ψ) generally satisfy the above sufficient condition

for stability to error of order O(n−1), and, of course, they do not generally provide p-values that agree

with those from R(ψ) to error of order Op(n
−1). However, the p-values calculated from TWE(ψ) agree

with those from TWEC(ψ) to error of order Op(n
−1).

Example 7. Score statistic with expected information. For the version of the score statistic defined by

TSE(ψ) = M1(ψ){−λ̂11}1/2 = L1{θ̃(ψ)}{−λ̂11}1/2, we have ξrstSE = λr1νst and ξrsSE = 1
2λ

1tλruνsvλtuv +
1
2λ

1tτ ruτ svλtuv − 1
2λ

1tτ ruλsvλtu,v. Therefore, ξrs1SE = 0 and ξrsSE + ξtuSEλtuτ
rs = ξrsR + ξtuR λtuτ

rs −
1
2λ

1tτ ruλsvλtu,v − 1
2λ

1tτuvλtu,vτ
rs.

Example 8. Score statistic with expected information evaluated at the constrained maximum likeli-

hood estimator. Evaluating the expected information instead at the constrained maximum likelihood

estimator, for TSEC(ψ) = M1(ψ)[−λ11{θ̃(ψ)}]1/2 = L1{θ̃(ψ)}[−λ11{θ̃(ψ)}]1/2, we have ξrstSE = λr1νst and

ξrsSEC = 1
2λ

1tλruνsvλtuv − 1
2λ

1tτ ruνsvλtu,v. Thus, ξrs1SEC = 0 and ξrsSEC + ξtuSECλtuτ
rs = ξrsSE + ξtuSEλtuτ

rs.

So, neither TSE(ψ) nor TSEC(ψ) generally satisfy the above sufficient condition for stability to error

of order O(n−1). Again, they do not generally provide p-values that agree with those from R(ψ) to

error of order Op(n
−1). However, we note that the p-values calculated from TSE(ψ) agree with those

from TSEC(ψ) to error of order Op(n
−1), although they do not generally agree with those from TWE(ψ)

and TWEC(ψ) to error of order Op(n
−1).

Construction of the asymptotically normal pivot for inference on the interest parameter ψ in the

presence of a nuisance parameter using observed information is therefore key to ensuring that p-values

calculated from the marginal distribution of the pivot, as might be approximated in generality by

parametric bootstrapping, automatically respect to second-order the conditioning on ancillary statistics

required for inferential correctness. We remark that the importance of using observed information

instead of expected information for approximate conditional inference is, of course, well known, having

been argued by Efron & Hinkley (1978), who were partly inspired by the discussion given by Pierce

(1975) to the paper by Efron (1975) on the geometry of exponential families. Our analysis here, however,

gives a very direct operational interpretation, in terms of the p-values derived from the marginal sampling

distributions of commonly used pivots.

Further discrimination between pivots may be based on the requirement of parameterisation invari-

ance, that inferential conclusions should not depend on the parameterisation: see, for instance, Pace

& Salvan (1997, Section 2.11). Requirement of invariance of the inference under reparameterisations

which are (Barndorff-Nielsen & Cox, 1994, Section 1.5) interest-respecting would exclude use of Wald

statistics: see, for instance, McCullagh (1987, Section 7.4).

7. Extension to adjusted profile likelihood

The general form of the asymptotically normal test statistic that we have considered, where the

statistic is expressible as T (ψ) = η1/2(T1 + T2) + Op(n
−1), where, T1 = −λ1rlr and T2 is of the form

T2 = ξrstlrslt − ξrslrls, with ξrst and ξrs assumed to be of order O(n−2), covers, as we have shown

in the previous section, important special cases which are commonly applied in practice. It does not,

however, include asymptotically standard normal pivots based on adjusted forms of profile likelihood.

Fortunately, only a very simple change to the analysis is necessary is accommodate pivots based on

adjusted likelihoods. The criteria for second-order stability and equivalence of p-values are unchanged,
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since, to the order being considered, the version of the pivot based on the adjusted profile likelihood is

obtained by a constant, additive adjustment of that based on the unadjusted profile likelihood.

There have been many suggestions to replace the usual profile likelihood function M(ψ) by an

adjusted version M̄(ψ) = M(ψ) +B(ψ), where B(ψ) is an adjustment function which is a function of Y

and ψ only, whose derivatives with respect to ψ are of order Op(1). The likelihood ratio statistic based

on the adjusted profile likelihood is W̄ (ψ) = 2{M̄(ψ̄)− M̄(ψ)}, where ψ̄ is the point at which M̄(ψ) is

maximized. The signed root of the likelihood ratio statistic based on the adjusted profile likelihood is

R̄(ψ) = sgn(ψ̄ − ψ){W̄ (ψ)}1/2.

Following our previous notation, we write B1(ψ) = ∂B(ψ)/∂ψ, B11(ψ) = ∂2B(ψ)/∂ψ2, etc. Let

β1 = E{B1(ψ)}, β11 = E(B11), etc.; these quantities are assumed to be of order O(1). Further, let

b1 = B1(ψ) − β1, b11 = B11(ψ) − β11, etc., with these quantities assumed to be of order Op(n
−1/2).

Assume also that the joint cumulants of nb1, nb11, lr, lrs, etc. are of order O(n).

In many instances, a specific adjustment function B(ψ) has been proposed to take into account the

effect of nuisance parameters for inference about ψ, notably the modified profile likelihood of Barndorff-

Nielsen (1983) and the adjusted profile likelihood of Cox & Reid (1987). Other adjustments with

the same structure as described above are detailed by Skovgaard (1996), Severini (1998), DiCiccio &

Martin (1993) and Barndorff-Nielsen & Chamberlin (1994). These adjustment functions have the effect

of reducing the mean of the profile score from order O(1) to order O(n−1): see, for instance, DiCiccio

et al. (1996). The adjustment functions have β1 = ρ + O(n−1), where ρ = −ηλ1rνst(1
2λrst + λrs,t).

Since, in general, E{M1(ψ)} = −ρ + O(n−1), it follows that E{M̄1(ψ)} = O(n−1): see McCullagh &

Tibshirani (1990), DiCiccio et al. (1996).

Another version of the adjustment function that derives from Bayesian inference based on a prior

density π(θ) is defined by

B(ψ) = −1

2
log

(
det[−Lab{θ̃(ψ)}]

det{−Lab(θ̂)}

)
+ log

[
π{θ̃(ψ)}
π(θ̂)

]
,

where a, b = 2, . . . , d, i.e., {Lab(θ)} is the (d− 1)× (d− 1) submatrix of {Lrs(θ)} corresponding to the

nuisance parameters. This adjustment function arises from the Laplace approximation to πψ|Y (ψ), the

posterior marginal density function for ψ, developed by Tierney & Kadane (1986), who showed that

πψ|Y (ψ) = cM̄(ψ){1+O(n−3/2)}, for values of ψ such that ψ−ψ̂ is of order O(n−1/2). In this case, W̄ (ψ)

corresponds to the posterior ratio statistic to error of order Op(n
−3/2), and β1 = ηλ1r(1

2ν
stλrst−πr/π):

see DiCiccio & Stern (1994a). Finally, we note also that Firth (1993) developed particular adjustment

functions motivated by the specific aim that ψ̄ be unbiased to error of order O(n−3/2).

For a general adjustment function B(ψ), DiCiccio & Stern (1994a) showed that R̄(ψ) = η1/2{R̄1 +

R̄2+Op(n
−3/2)}, where R̄1 = R1 = −λ1rlr and R̄2 = R2−λ11β1; in particular, R̄(ψ) = R(ψ)+η−1/2β1+

Op(n
−1).

Pierce & Bellio (2006), considering specifically the first two types of adjustment functions discussed

above, the adjustment functions related to modified profile likelihood and Bayesian inference, also

observed that, to error of order Op(n
−1), R̄(ψ) differs from R(ψ) by only a constant, although they did

not detail the associated formulae involving β1. Having made this observation, Pierce & Bellio (2006)

conclude that, to error of order Op(n
−1), both R̄(ψ) and R(ψ) induce the same orderings of datasets

for evidence against the null hypothesis, and they conclude that, to this order of error, ideal frequentist
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p-values can be based on the distribution of R(ψ).

We now generalize our preceding results by considering hypothesis testing for ψ based on a test

statistic T̄ (ψ) = η1/2(T̄1 + T̄2) + Op(n
−1), where, as before, T̄1 = T1 = −λ1rlr, and T̄2 is assumed to

be of the form T̄2 = ξrstlrslt − ξrslrls + ς = T2 + ς, with ξrst and ξrs of order O(n−2) and the constant

ς assumed to be of order O(n−1). Therefore, T̄ (ψ) = T (ψ) + η1/2ς + O(n−1). We provide illustrations

which demonstrate how statistics constructed from adjusted profile likelihood may be expressed in this

form below.

Since T̄ (ψ) only differs, to the second-order being considered, from T (ψ) by a constant, the condition

for T̄ (ψ) to be stable to error of order O(n−1) is the same as the condition for T (ψ), namely ξrs1 =
1
2λ

1rλ1s.

Note that the first three cumulants of T̄ (ψ) = T (ψ) + η1/2ς +O(n−1) are κ̄1 = κ1 + η1/2ς +O(n−1),

κ̄2 = κ2 + O(n−1), κ̄3 = κ3 + O(n−1), where κ1, κ2, and κ3 are as described before for T (ψ), and the

fourth- and higher-order cumulants of T̄ (ψ) are of order O(n−1) or smaller.

Consider now two versions of T̄ (ψ), say T (ψ) + η1/2ς + O(n−1) and T̆ (ψ) + η1/2ς̆ + O(n−1). The

preceding Cornish-Fisher argument for comparing p-values shows that the p-values from the two test

statistics differ by order Op(n
−1) provided

{η1/2(T̆2 + ς̆ − T2 − ς)− 1
6(κ̆3 − κ3)ηT 2

1 } − {(κ̆1 + η1/2ς̆ − κ1 − η1/2ς)− 1
6(κ̆3 − κ3)} = Op(n

−1).

The crucial point is that the terms involving ς and ς̆ cancel from the left side of this expression,

irrespective of their values, so the previous conditions (5.1) and (5.2) continue to specify necessary and

sufficient conditions for the two test statistics to yield p-values that differ by order Op(n
−1).

We now provide three further examples which illustrate these results.

Example 9. Signed root likelihood ratio statistic constructed from adjusted profile likelihood. For the

signed root likelihood ratio statistic constructed from the adjusted profile likelihood, R̄(ψ), standard

calculations show that ξrst
R̄

= ξrstR , ξrs
R̄

= ξrsR , ςR̄ = η−1β1. It follows that, to error of order Op(n
−1),

R̄(ψ) and R(ψ) produce the same p-values, as noted by Pierce & Bellio (2006).

Example 10. Wald statistic with observed information constructed from adjusted profile likelihood.

For the pivot TAWO(ψ) = (ψ̄ − ψ){−M̄11(ψ̄)}1/2, we have ξrstAWO = ξrstWO = ξrstR , ξrsAWO = ξrsWO, and

ςAWO = η−1β1. Then, since, as we have shown, to error of order Op(n
−1), TWO(ψ) and R(ψ) produce

the same p-values, it follows that TAWO(ψ) and R(ψ) produce the same p-values to that order of error

as well.

Example 11. Score statistic with observed information constructed from adjusted profile likelihood.

For the statistic TASO(ψ) = M̄1(ψ){−M̄11(ψ̄)}1/2, we have ξrstASO = ξrstSO = ξrstR , ξrsASO = ξrsSO, and

ςASO = η−1β1. Since, to error of order Op(n
−1), TSO(ψ) and R(ψ) produce the same p-values, it follows

that TASO(ψ) and R(ψ) produce the same p-values to that order of error as well.

The interesting feature here is that although R̄(ψ), TAWO(ψ), and TASO(ψ) differ from one another

by non-constant terms of order Op(n
−1/2) in general, they all produce the same p-values to error of

order Op(n
−1).

8. Vector-valued interest parameter

Consider again the partition θ = (ψ, φ), but now allow for the possibility that the interest pa-

rameter ψ is vector-valued, having dimension q. The likelihood ratio statistic W (ψ) is routinely used
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for hypothesis testing about ψ. The asymptotic distribution of W (ψ) is chi-squared with q degrees of

freedom. Indeed, for regular problems, the χ2
q-approximation to the distribution of W (ψ) has error of

order O(n−1), and moreover, the mean of W (ψ) has the expansion E{W (ψ)} = q(1 + n−1ω) +O(n−2),

where ω ≡ ω(θ) is of order O(1). Lawley (1956), Barndorff-Nielsen & Cox (1984), and Bickel & Ghosh

(1990) showed that W (ψ) is distributed as (1+n−1ω)χ2
q to error of order O(n−2): the Bartlett-corrected

statistic W (ψ)/(1 + n−1ω) is distributed as χ2
q to error of order O(n−2). Further, W (ψ) is stable, as

described by the next Theorem.

Theorem 4 The unconditional and conditional distributions of W (ψ) agree to error of order O(n−3/2),

given the ancillary statistic A.

Proof. By applying identical arguments to the conditional distribution of Y given A, we have that

E̊{W (ψ)} = q(1 + n−1ω̊) + O(n−2), where ω̊ is of order O(1) given A, and that W (ψ) is conditionally

distributed as (1 + n−1ω̊)χ2
q to error of order O(n−2) given A. Barndorff-Nielsen & Cox (1984) showed

that ω̊ = ω+Op(n
−1/2), and hence it follows that W (ψ) is stable to error of order O(n−3/2). Extending

the arguments of McCullagh (1987, Section 8.4) to the nuisance parameter case, this result that ω̊ =

ω + Op(n
−1/2) continues to hold provided the conditioning statistic A is a second-order local ancillary

statistic. �

Inference based on an approximation to the marginal distribution of W (ψ) accurate to error of

order O(n−3/2) will therefore automatically respect conditioning on the ancillary statistic to that same

order.

Bickel & Ghosh (1990) explicitly recommended that the Bartlett adjustment factor (1 + n−1ω) be

estimated by simulation, which may be done by either fixing θ = θ̂ or θ = θ̃, so that inference is based

on a χ2
q approximation to the sampling distribution of, say, W (ψ)/{1 + n−1ω(θ̃)}. Alternatively, the

entire distribution of W (ψ) may be approximated by simulation at either of these parameter values:

such an approximation is, however, likely to be computationally more expensive than estimation of just

the Bartlett adjustment factor. In view of the stability result above, these inference procedures not

only provide p-values that are uniformly distributed to error of order Op(n
−3/2) (actually, the error is

of order Op(n
−2) - see Barndorff-Nielsen & Hall, 1988), but these p-values are uniformly distributed

conditionally to the same order of error.

DiCiccio & Stern (1994b) demonstrated the efficacy of Bartlett correction for likelihood ratio statis-

tics based on adjusted profile likelihoods. They showed that E{W̄ (ψ)} = q(1 + n−1ω̄) + O(n−2) and

that W̄ (ψ) is distributed as (1 +n−1ω̄)χ2
q to error of order O(n−2). Moreover, their calculations can be

applied to the conditional distribution of Y given A to show that these results also hold conditionally,

as for W (ψ).

Theorem 5 The unconditional and conditional distributions of W̄ (ψ) agree to order O(n−3/2), given

the ancillary statistic A.

Proof. See Appendix. �

The operational consequences of this stability result are again straightforward. Similar stability

results hold for other test statistics that are asymptotically distributed as χ2
q , such as (ψ̄a − ψa)(ψ̄b −
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ψb)S̄ab and M̄a(ψ)M̄b(ψ)S̄ab, where S̄ab = −M̄ab(ψ̄) and (S̄ab) is the q × q matrix inverse of (S̄ab). The

marginal distribution function of such a statistic X typically has the expansion

Pr(X ≤ x) = Pr(χ2
q ≤ x) +

k∑
j=0

αjPr(χ
2
q+2j ≤ x) +O(n−3/2),

where the αj are functions of the λ’s and β’s and typically k = 3; see, for example, Harris (1985)

and Cordeiro & Ferrari (1991). The same manipulations of likelihood quantities that produce the

approximation to the marginal distribution of X can be applied to conditional likelihood quantities to

yield the expansion

Pr(X ≤ x | A) = Pr(χ2
q ≤ x) +

k∑
j=0

α̊jPr(χ
2
q+2j ≤ x) +Op(n

−3/2),

where the α̊j are functions of the λ̊’s and β̊’s. The preceding calculations that demonstrate the stability

of W̄ (ψ) can also be used to show that α̊j = αj +Op(n
−3/2), and it follows that X is stable to error of

order O(n−3/2).

9. Discussion

Focus here has been on inference on an interest parameter in the presence of a nuisance parameter

in ancillary statistic models. We have shown that commonly used, asymptotically standard normal,

likelihood-based pivots, including the signed root statistic R(ψ), are second-order stable. When applied

with such a pivot, procedures such as the parametric bootstrap, which approximate the marginal distri-

bution of the pivot to second-order, will achieve the same order of accuracy, O(n−1), in approximation

of the relevant exact conditional inference. Our motivation for the analysis here is as a preliminary

to full evaluation of the properties of such parametric bootstrap procedures as an alternative to more

awkward analytic approaches to approximation of exact conditional inference. In this regard, of im-

portance for future investigation will be analysis of large deviation properties of procedures based on

marginal simulation of a likelihood-based pivot. Analytic procedures, such as normal approximation

to R∗(ψ), or the approximation of Skovgaard (1996), confer large deviation protection, typically pro-

viding accurate approximation of the conditional distribution of the associated pivot far into its tails.

The requirement of such large deviation behaviour may be judged an important discriminant between

competing methodologies. Discussion of this and related issues is currently in preparation in DiCiccio

et al. (2014).

Pivots stable to third-order do, of course, exist: R∗(ψ) is distributed as standard normal to third-

order, conditionally on the ancillary statistic, and hence unconditionally as well. Second-order approx-

imation to an exact conditional inference through the bootstrap is seen (see, for example, DiCiccio &

Young, 2010; Young & Smith, 2005, Chapter 10) to give good results in practice in ancillary statistic

settings. Basing inference on a pivot stable to third-order seems unwarranted. In addition, ancillary

statistics are typically not unique and (see, for instance, McCullagh, 1992), different conditional infer-

ences will typically only agree to second-order, so it can be argued that third-order approximation to

an exact conditional inference is, in itself, unwarranted. By our analysis, inference based on second-

order (or higher-order) approximation of the marginal distribution of a pivot stable to second-order

approximates any conditional inference to O(n−1).
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Our study of uniqueness of p-values yielded simple conditions under which p-values derived from

different asymptotically standard normal pivots will agree to order Op(n
−1). In cases we have considered

where the conditions fail to be satisfied, a more detailed analysis shows that p-values agree only to an

actual order Op(n
−1/2).

A. Appendix

A.1 Proof of Lemma 2

The unconditional variance of T (ψ) is

var{T (ψ)} = E[{T (ψ)}2]− [E{T (ψ)}]2 = E[{T (ψ)}2] +O(n−1)

= ηE{T 2
1 + 2T1T2 +Op(n

−2)}+O(n−1)

= ηE{λ1rλ1slrls − 2λ1rξstulrlstlu + 2λ1rξstlrlslt +Op(n
−2)}+O(n−1)

= −η{λ1rλ1sλrs +O(n−2)}+O(n−1)

= 1 +O(n−1).

Correspondingly, the conditional variance of T (ψ) is

v̊ar{T (ψ)} = E̊[{T (ψ)}2]− [E̊{T (ψ)}]2 = E̊[{T (ψ)}2] +Op(n
−1)

= ηE̊{T 2
1 + 2T1T2 +Op(n

−2)}+Op(n
−1)

= ηE̊{λ1rλ1s̊lr̊ls − 2λ1rξstůlr (̊lst + ∆̊st)̊lu + 2λ1rξst̊lr̊ls̊lt +Op(n
−2)}+Op(n

−1)

= −η{λ1rλ1sλ̊rs − 2λ1rξstuλ̊ru∆̊st +Op(n
−2)}+Op(n

−1)

= −η{λ1rλ1s(λrs + ∆̊rs)− 2λ1rξstuλru∆̊st}+Op(n
−1)

= 1− η(λ1rλ1s∆̊rs − 2ξst1∆̊st) +Op(n
−1)

= 1− η{(λ1rλ1s − 2ξrs1)∆̊rs}+Op(n
−1).

It follows that v̊ar{T (ψ)} = var{T (ψ)}+Op(n
−1) provided ξrs1 = 1

2λ
1rλ1s. �

A.2 Proof of Lemma 3

The unconditional skewness of T (ψ) is

skew{T (ψ)} = E([T (ψ)− E{T (ψ)}]3) = E[{T (ψ)}3]− 3E[{T (ψ)}2]E{T (ψ)}+O(n−1)

= η3/2[E{(T1 + T2)3} − 3E{(T1 + T2)2}E(T1 + T2)] +O(n−1)

= η3/2[E{T 3
1 + 3T 2

1 T2 +Op(n
−5/2)} − 3E{T 2

1 +Op(n
−3/2)}E(T2)] +O(n−1)

= η3/2[E{−λ1rλ1sλ1tlrlslt + 3λ1rλ1s(ξtuvltulv − ξtultlu)lrls +Op(n
−5/2)}

− 3E{λ1rλ1slrls +Op(n
−3/2)}{ξrstλrs,t + ξrsλrs +Op(n

−3/2)}] +O(n−1)

= η3/2{E(−λ1rλ1sλ1tlrlslt + 3λ1rλ1sξtuvlrlsltulv − 3λ1rλ1sξtulrlsltlu

− 3λ1rλ1sξtuvlrlsλtu,v − 3λ1rλ1sξtulrlsλtu)}+O(n−1).

To continue the calculation, we make use of the following identities:

−E(lrlslt) = λrs,t + λrt,s + λst,r + λrst,

E(lrlsltulv) = −λrsλtu,v − λrvλtu,s − λsvλtu,r +O(n3/2),

E(lrlsltlu) = λrsλtu + λrtλsu + λruλst +O(n3/2).
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By using these identities, we obtain

skew{T (ψ)} = η3/2(3λ1rλ1sλ1tλrs,t + λ1rλ1sλ1tλrst

− 3λ11ξtuvλtu,v − 3λ1sξtu1λtu,s − 3λ1rξtu1λtu,r

− 3λ11ξtuλtu − 3ξ11 − 3ξ11

+ 3λ11ξtuvλtu,v + 3λ11ξtuλtu) +O(n−1)

= η3/2(λ1rλ1sλ1tλrst + 3λ1rλ1sλ1tλrs,t − 6ξrs1λ1tλrs,t − 6ξ11) +O(n−1).

Similar reasoning shows that the conditional skewness of T (ψ) is

˚skew{T (ψ)} = η3/2[E̊{−λ1rλ1sλ1tlrlslt + 3λ1rλ1sξtuvlrlsltulv − 3λ1rλ1sξtulrlsltlu

− 3λ1rλ1sξtuvlrlsλtu,v − 3λ1rλ1sξtulrlsλtu +Op(n
−5/2)}] +Op(n

−1)

= η3/2[E̊{−λ1rλ1sλ1t̊lr̊ls̊lt + 3λ1rλ1sξtuv̊lr̊ls(̊ltu + ∆̊tu)̊lv − 3λ1rλ1sξtůlr̊ls̊lt̊lu

− 3λ1rλ1sξtuv̊lr̊lsλtu,v − 3λ1rλ1sξtůlr̊lsλtu}] +Op(n
−1)

= η3/2{E̊(−λ1rλ1sλ1t̊lr̊ls̊lt + 3λ1rλ1sξtuv̊lr̊ls̊ltůlv − 3λ1rλ1sξtůlr̊ls̊lt̊lu

− 3λ1rλ1sξtuv̊lr̊lsλtu,v − 3λ1rλ1sξtůlr̊lsλtu)}+Op(n
−1).

Now we use the following identities:

−E̊(̊lr̊ls̊lt) = λ̊rs,t + λ̊rt,s + λ̊st,r + λ̊rst

= λrs,t + λrt,s + λst,r + λrst +Op(n
1/2)

= λr,s,t +Op(n
1/2)

= −E(lrlslt) +Op(n
1/2),

E̊(̊lr̊ls̊ltůlv) = −λ̊rsλ̊tu,v − λ̊rvλ̊tu,s − λ̊svλ̊tu,r +Op(n
3/2)

= −λrsλtu,v − λrvλtu,s − λsvλtu,r +Op(n
3/2)

= E(lrlsltulv) +Op(n
3/2),

E̊(̊lr̊ls̊lt̊lu) = λ̊rsλ̊tu + λ̊rtλ̊su + λ̊ruλ̊st +Op(n
3/2)

= λrsλtu + λrtλsu + λruλst +Op(n
3/2)

= E(lrlsltlu) +Op(n
3/2).

By using these identities in the preceding expression for ˚skew{T (ψ)}, it is apparent that ˚skew{T (ψ)} =

skew{T (ψ)} + Op(n
−1), and hence, the conditional third cumulant agrees with the unconditional one

to error of order Op(n
−1), as required. �

A.3 Proof of Theorem 5

To establish the stability of W̄ (ψ) to error of order O(n−3/2), we need only show that E̊{W̄ (ψ)} =

E{W̄ (ψ)} + Op(n
−3/2). For full generality, the previous notation, which is applicable when ψ is a

scalar, must be extended. In the expressions that follow, it is assumed that subscripts and superscripts

a, b, . . . have the range 1, . . . , q, while r, s, . . . range over 1, . . . , d. Let (ηab) be the q × q matrix inverse

of (−λab), let τ rs = ηabλ
arλbs, and let νrs = λrs + τ rs. In addition, let Ba(ψ) = ∂B(ψ)/∂ψa, Bab(ψ) =



18 THOMAS J. DICICCIO, TODD A. KUFFNER, G. ALASTAIR YOUNG AND RUSSELL ZARETZKI

∂2B(ψ)/∂ψa∂ψb, βa = E{Ba(ψ)}, βab = E{Bab(ψ)}, ba = Ba(ψ)− βa, bab = Bab(ψ)− βab, and so forth.

The constants βa, βab etc. are assumed to be of order O(1) and the variables ba, bab etc. are assumed to

be of order Op(n
−1/2). Finally, it is assumed that the joint cumulants of nba, nbab, lr, lrs, and so forth

are of order O(n).

DiCiccio & Stern (1994b) showed that

W̄ (ψ) = W (ψ)− 2λarβalr − 2λarbalr + 2λarλstβalrslt − λarλsuλtvβaλrstlulv
+ λarλbsβablrls − λabβaβb +Op(n

−3/2),

and it follows that

E{W̄ (ψ)} = E{W (ψ)} − 2λarE(balr) + λarλstβa(2λrs,t + λrst)− λab(βab + βaβb) +O(n−3/2)

= E{W (ψ)}+ λarλstβa(2λrs,t + λrst)− 2λarβa/r + λab(βab − βaβb) +O(n−3/2),

where βa/r = ∂βa/∂θ
r. For calculating E{W̄ (ψ)}, we assume that B(ψ) is a function of Y and ψ only,

so, in particular, it does not depend on φ. Thus, differentiation of the identity βa = E{Ba(ψ)} yields

βa/b = E(balb)+βab and βa/i = E(bali) for i = q+1, . . . , d. It follows that λarE(balr) = λarβa/r−λabβab.
To calculate E̊{W (ψ)}, some care is required about the conditional properties of Ba(ψ), Bab(ψ),

and so forth. The quantities β̊a = E̊{Ba(ψ)}, β̊ab = E̊{Bab(ψ)}, etc. are assumed to be of order Op(1),

while b̊a = Ba(ψ) − β̊a, b̊ab = Bab(ψ) − β̊ab, etc. are assumed to be of order Op(n
−1/2). Finally, it is

assumed that the joint conditional cumulants of n̊ba, n̊bab, l̊r, l̊rs, and so forth are of order Op(n).

Under the preceding assumptions, it is possible to determine the orders of the differences β̊a − βa
and β̊ab − βab. Since E(β̊a) = E[E̊{Ba(ψ)}] = E{Ba(ψ)} = βa and var(β̊a) = var[E̊{Ba(ψ)}] =

var{Ba(ψ)} − E[v̊ar{Ba(ψ)}] = O(n−1) − E{v̊ar(̊ba)} = O(n−1) − E{Op(n−1)} = O(n−1), it follows

that β̊a = βa + Op(n
−1/2). A similar argument shows that β̊ab = βab + Op(n

−1/2). We assume that

differentiation of the identity β̊a = βa +Op(n
−1/2) yields β̊a/r = βa/r +Op(n

−1/2).

Now, define δ̊a = β̊a − βa, so that δ̊a is a function of θ and A of order Op(n
−1/2). Furthermore,

ba = Ba(ψ)− βa = Ba(ψ)− β̊a + δ̊a = b̊a + δ̊a. To calculate E̊{W̄ (ψ)}, we observe that

W̄ (ψ) = W (ψ)− 2λarβalr − 2λarbalr + 2λarλstβalrslt − λarλsuλtvβaλrstlulv
+ λarλbsβablrls − λabβaβb +Op(n

−3/2)

= W (ψ)− 2λarβålr − 2λar (̊ba + δ̊a)̊lr + 2λarλstβa(̊lrs + ∆̊rs)̊lt − λarλsuλtvβaλrst̊lůlv
+ λarλbsβab̊lr̊ls − λabβaβb +Op(n

−3/2),

and thus

E̊{W̄ (ψ)} = E̊{W (ψ)} − 2λar̊bålr + 2λarλstβaλ̊rs,t + λarλsuλtvβaλrstλ̊uv

− λarλbsβabλ̊rs − λabβaβb +Op(n
−3/2).

Barndorff-Nielsen & Cox (1984) showed that E̊{W (ψ)} = E{W (ψ)} + Op(n
−3/2) ; recall that λ̊rs =

λrs +Op(n
1/2) and λ̊rs,t = λrs,t +Op(n

1/2). Then, λruλstλ̊ut = λrs +Op(n
−3/2), and

E̊{W̄ (ψ)} = E{W (ψ)}+ λarλstβa(2λrs,t + λrst)− 2λarE̊(̊bålr)− λab(βab + βaβb) +Op(n
−3/2).
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Now, using the result that λarE̊(̊bålr) = λarβ̊a/r − λabβ̊ab = λarβa/r − λabβab +Op(n
−3/2), which holds

since β̊a/r = βa/r +Op(n
−1/2) and β̊ab = βab +Op(n

−1/2), we have

E̊{W̄ (ψ)} = E{W (ψ)}+ λarλstβa(2λrs,t + λrst)− 2λarβa/r + λab(βab − βaβb) +Op(n
−3/2)

= E{W̄ (ψ)}+Op(n
−3/2),

as required. �
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