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Stability of Ballooning Flux Tubes in Tokamak Plasmas
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Tokamak stability to, potentially explosive, “ballooning” displacements of elliptical magnetic flux
tubes is examined in large aspect ratio equilibrium. Above a critical pressure gradient the energy
stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes
(metastability). Above a higher pressure gradient, the linear stability boundary, such tubes are
linearly and nonlinearly unstable. The flux tube displacement can be of the order of the pres-
sure gradient scale length. Plasma transport from displaced flux tubes may result in rapid loss of
confinement.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Fast magnetohydrodynamic (MHD) instabilities limit
the pressure in magnetically confined fusion plasmas.
The limit is observed to be one of two kinds, either a soft

limit where the instability limits the pressure to a criti-
cal profile or, a hard limit where the instability rapidly
destroys confinement and releases enough stored energy
to take the system well below the critical pressure pro-
file. Sometimes the instability terminates the discharge
entirely [1]. There are also two kinds of MHD instabil-
ity: large scale kink instabilities and small scale, field
aligned ballooning instabilities [2]. It is often supposed
that ballooning instabilities provide a soft limit, espe-
cially near the plasma edge [3]. Some observations of the
pressure profile evolution in the pedestal, a steep pres-
sure gradient region at the edge of some tokamak dis-
charges, are consistent with a soft ballooning limit [4].
However Edge Localised Modes (ELMs), instabilities of
the pedestal, cause an explosive eruption of multiple fine
scale flux tubes and a rapid loss of edge confinement [5].
This suggests that ballooning instabilities can sometimes
provide a hard limit to edge confinement.

In this paper we argue that without dissipation the
nonlinear consequence of ballooning modes is the erup-
tion of elliptical magnetic flux tubes. Certainly such
erupting tubes are the long time limit of the weakly non-
linear theory developed in [6, 7]. The explosive dynamics
and meta-stability of such tubes in a one dimensional line
tied gravitational equilibria were studied in [8]. Here we
examine the energetics and final states of erupting flux
tubes in a simple large aspect ratio tokamak with nearly
circular flux surfaces. The equilibrium contains a region
of steep pressure gradient, a transport barrier, where the
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pressure gradient is of order the critical gradient for linear
stability. We adopt this equilibrium since it yields a sim-
ple nonlinear generalization of the s−α linear ballooning
model of [9] and so illustrates the essential nonlinear dy-
namics. Nonetheless it is a reasonable model of internal
transport barriers that are seen in many tokamaks [13].
It may also have qualitative relevance to the observed
filamentary eruptions in ELMs [5].

II. EQUILIBRIUM AND EQUATIONS

We represent the tokamak equilibrium in flux coordi-
nates: φ the toroidal angle, r a radius like variable that
is constant on a magnetic surface and θ a poloidal angle
chosen to make the field lines “straight” – see [10, 11].
Thus we choose r(∇r × ∇θ) = R0∇φ where R0 is the
cylindrical radius of the magnetic axis. Then

B0 = −B̄0R0{f(r)∇r ×∇S}, (1)

where B̄0 is a constant, S = φ − q(r)(θ − θ0(r)), q(r) is
the safety factor and θ0(r) is an arbitrary function of r.
The tokamak is large aspect ratio (i.e. r/R0 = ǫ ≪ 1)
and low beta p0(r) ∼ O(ǫ2B̄2

0). The transport barrier is a
narrow region of steep pressure gradient (rp′

0
∼ O(p0/ǫ))

of width ∼ ǫr centred around a surface r = rp – see
Fig. (1). The equilibrium is obtained from an expansion
in ǫ (as in [11]).
We consider a highly elliptical flux tube with r ≫

∆r ∼ δ2 ≫ ∆S ∼ δ1 whose centre originates from the
field line on the flux surface labelled by r0 and S = 0.
The field lines in the tube are displaced along the sur-
face S = 0 with shape given by r = r(θ, r0, t) where
r(t = 0) = r0 – see Fig. (2).
In principle we could consider motion along any S

surface defined by any function θ0(r) – we restrict our-
selves to the choice θ0(r) = 0. This is the choice for the
most linearly unstable motions. The tube wraps around
the torus many times and we consider r(θ, r0, t) on the
domain −∞ < θ < ∞. We ignore the fact that the
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FIG. 1: Profile of safety factor, q, (solid line, left hand
axis) and of normalized pressure, βα/a = 2µ0R0q

2p0(r)/B
2

0a,
(dashed line, right hand axis) for the internal transport bar-
rier (where a is the plasma minor radius).

FIG. 2: Elliptical (orange) flux tube with ∆r ∼ δ2 ≫ ∆S ∼ δ1
sliding along (blue) surface S = 0 parting surrounding (black)
field lines. Note the tube’s displacement is larger on the large
R part of the flux surfaces – the tube balloons. The magnetic
shear (s = rq′/q) causes the twist and narrowing of the tube
on the inside.

S = 0 surface intersects itself as θ increases since we
assume that the perturbations are sufficiently localised
in θ to avoid self intersection of the flux tube. The
plasma is taken to be perfectly conducting – i.e. the
plasma is frozen to the field. Thus the field lines must
remain attached to their original surfaces and therefore
r = r(θ, r0, t) → r0 as |θ| → ∞. The derivation of the
equation of motion here follows the treatment for a gen-
eral equilibrium of a magnetically confined plasma in Ap-
pendix B of [12]. The exact shape of the tube will not
be needed but we do assume that δ1 is sufficiently small
that we can treat the field and pressure outside the tube
as unperturbed. This requires δ21 ≪ δ32/ξ where ξ is the
radial displacement of the flux tube.
We denote the field inside the tube to be Bin =

Bin(θ, r0, t). The motion of the tube is assumed to
be slow compared to the (sound) time to equalise pres-
sure along the tube and thus the pressure in the tube is
pin(θ, r0, t) = p0(r0). The pressure forces across the tube
in the direction of ∇S are formally large (∼ p0/δ1) and
therefore the total pressure inside the tube must equal
the total pressure just outside the tube. Thus:

B2

in(θ, r0, t) = B2

0
(θ, r) + 2µ0[p0(r) − p0(r0)], (2)

where we have assumed that the field and pressure out-
side the tube are unperturbed. The force, F⊥ pushing the

field line along S in the direction e⊥ = (∇S × B0)/B0

is:

F⊥ =
1

µ0

[

Bin ·∇Bin −∇

(

B2

in

2
+ µ0pin

)]

· e⊥

=
1

µ0

[Bin ·∇Bin −B0 ·∇B0] · e⊥. (3)

The second expression follows from Eq. (2) and the un-
perturbed equilibrium relation ∇

(

B2

0
/2 + µ0p0

)

= B0 ·
∇B0. The expression in Eq. (3) is a generalised form
of Archimedes principle where the net force is the curva-
ture force of the tube minus the curvature force of the
tube it has displaced. F⊥ can in general be expressed
in terms of r(θ, r0, t) and its first and second derivatives
with respect to θ at constant r0 – see Appendix B of [12].
Thus the force on each field line is determined indepen-
dently. The equilibrium states of the field line satisfy
F⊥(r(θ, r0, t)) = 0. We model the dynamics of the tube
by a simple drag evolution with v = ve⊥, F⊥ = νv · e⊥
and v = −R0f

∂r
∂t
. The actual dynamics of the tube

are clearly more complicated but the equilibrium states
must, of course, satisfy F⊥(r(θ, r0, t)) = 0. After some
algebra we obtain from Eq. (3) the evolution equation for
each field line (r(θ, r0, t)) in our simple large aspect ratio
model:

ν′
(

∂r

∂t

)

[

1 + (α sin θ − sθ)2
]

= F ′
⊥(r(θ, r0, t)) =

(βα(r0)− βα(r)) [cos θ + sin θ(sθ − α sin θ)]

+

(

∂

∂θ

)

r0

(

[

1 + (α sin θ − sθ)2)
]

(

∂r

∂θ

)

r0

)

−
1

2

(

∂r

∂θ

)2

r0

(

∂

∂r

)

θ

(α sin θ − sθ)2 (4)

where ν′ = νµ0

q2R2

0

B2

0

, F ′
⊥ = F⊥µ0

qR2

0
r

B2

0

, s = rq′(r)/q(r)

and βα(r) = 2µ0R0q
2p0(r)/B̄

2

0
and α(r) = −dβα(r)/dr.

Eq. (4) is a nonlinear generalisation of the s − α model
of [9]. We define the “energy” functional, E(r, r0) =
∫∞

−∞
Bin · dr where the integral is taken along the per-

turbed field line.[12] Note E(r, r0) is formally infinite but
we can make it finite by subtracting the unperturbed
value ∆E(r, r0) = E(r, r0) − E(r0, r0). Drag evolution
takes the flux tube to minima of the energy ∆E(r, r0)
– see [12]. The equilibrium states are stationary points
of the variation of ∆E(r, r0) with respect to r(θ, r0, t) at
fixed r0 [12]. The relative energy for our model is:

∆E(r, r0) =

∫ ∞

−∞

dθ

[

1

2

(

∂r

∂θ

)2

r0

(

1 + (α sin θ − sθ)2
)

]

− (5)

∫ ∞

−∞

dθ
[

A(r, r0) cos θ + B(r, r0)θ sin θ − C(r, r0) sin
2 θ
]

where the integral is at fixed r0 and the energy coeffi-
cients are A(r, r0) =

∫ r

r0
(βα(r

′) − βα(r0))dr
′, B(r, r0) =

∫ r

r0
(βα(r

′) − βα(r0))s(r
′)dr′ and C(r, r0) = 1

2
(βα(r) −

βα(r0))
2.
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FIG. 3: s-α diagram illustrating the linear instability bound-
ary. The equilibrium chosen here follows the trajectory of the
dash-dotted line as r0 is increased. No surfaces are linearly
unstable.

III. LINEARLY STABLE CASE

We investigate a case where we choose profiles of
α(r) and s(r) that yield an internal transport barrier:
α(r) = α0sech

2 ((r − rα)/ǫp), s(r) = (s0 + s1)/2 +
((s1 − s0)/2) tanh ((r − rs)/ǫp). Linearising Eq. (4) with
r = ξ(θ, r0, t) + r0 with ξα′, ξs′ ≪ 1 we obtain grow-
ing eigenmodes if the local values of α(r0) and s(r0) lie
in the unstable region of the s-α diagram – see Fig. (3)
[9]. We take an initial equilibrium with no linearly un-
stable field lines with α0 = 0.28, s0 = 0.05, s1 = 0.3,
ra = 0.7, rs = 0.72, ǫp = 0.1. As r0 is increased the
equilibrium traces out the dash-dotted line in Fig. (3) in
the direction indicated by the arrows. Clearly no surfaces
(field lines) are linearly unstable and all infinitesimal per-
turbations decay. Nonetheless finite perturbations can
grow. For example in Fig. (4) we show the drag evolution
(r = r(θ, r0, t) using Eq. (4)) of the field line r0 = 0.61
with two finite initial displacements.

The larger initial displacement evolves to a finite dis-
placed stable equilibrium. The smaller initial displace-
ment decays to the linearly stable unperturbed state
r = r0 (Fig. (4)). There are three equilibrium states
of this field line that can be found by solving the equa-
tion F ′

⊥ = 0 (see Eq. (4)) by a simple shooting method.
These are: the linearly stable unperturbed state r = r0
with relative energy ∆E = 0; an unstable equilibrium
state, r = rcrit(θ, r0), between the two initial conditions
shown at t = 0 in Fig. (4) with ∆E = 1.09×10−4 and; the
stable equilibrium state, r = rsat(θ, r0) that is the final
state of the larger perturbation with ∆E = −0.8× 10−4.
Clearly the unperturbed state is meta-stable since a finite
perturbation triggers evolution to a lower energy state.

Not all the field lines have lower energy equilibrium
states. We have examined the F ′

⊥ = 0 solutions for
0.4 < r0 < 0.8. For 0.474 < r0 < 0.680 there are
three equilibrium solutions but outside this region the
only equilibrium solution is the unperturbed state. All
displaced solutions are even in θ and have their maxi-
mum displacement at θ = 0 which we denote rmax. In
Fig. (5) we plot ∆E for the three solutions and in Fig. (6)
we plot both ∆ = (βα(r0)−βα(rmax)/(2ǫpα0) (solid and
dash-dotted lines, left-hand axis) and rmax (dashed and
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FIG. 4: The upper plot shows the shape of the field line at
different times, r = r(θ, r0, t) for r0 = 0.61. The solid lines
start with the initial condition just greater than the unstable
equilibrium state rcrit and evolve upwards. The dash-dotted
lines start with the initial condition just less than the unstable
equilibrium state rcrit and evolve downwards. The final state
of this evolution is the unperturbed field line. The lower plot
shows the time evolution of maximum value along the field
line rmax(t) = r(0, r0, t). Again, the solid (dash-dotted) line
starts with the initial condition just greater (just less) than
the unstable equilibrium state rcrit.
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FIG. 5: . Relative energy, ∆E , evaluated from Eq.(6) for
three equilibrium solutions, F ′

⊥ = 0, of Eq.(4). The dotted
line is the unperturbed energy, the dashed line is the unsta-
ble displaced equilibrium energy (∆E(rcrit, r0)) and the solid
line is the displaced stable equilibrium energy (∆E(rsat, r0)).
The stable displaced equilibrium is the lowest energy state for
0.593 < r0 < 0.679.

dotted lines, right-hand axis). ∆ measures the fraction
of pressure profile crossed by the ballooning flux tube.
Clearly for 0.593 < r0 < 0.678 the lowest energy state is
a displaced state (the solid black line in Fig. (5)) – these
states can be reached by giving the field line a perturba-
tion with more than the energy of the unstable positive
energy equilibrium state (the dashed line in Fig. (5))

Finally, we have also calculated the nonlinear states in
a linearly unstable profile. For a linearly unstable field-
line there are two lower energy flux tube equilibria, one
displaced outwards and one inwards.
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FIG. 6: A measure of the ballooning displacement ∆ =
(βα(r0) − βα(rmax)/(2ǫpα0) for the two perturbed equilib-
rium states (left-hand axis). Field lines in the displaced lower
energy equilibrium can cross a substantial fraction of the pres-
sure profile (solid line) – for example the r0 = 0.61 field line
balloons across about 73% of the pressure profile. The unsta-
ble equilibrium is shown by the dash-dotted line. The rmax

for the saturated field lines is shown as the dashed line (right-
hand axis) and the rmax for the unstable equilibria are shown
as the dotted line. Note that for 0.56 < r0 < 0.68 the field
lines “overtake” i.e. rmax(r

1

0) > rmax(r
2

0) if r
1

0 < r20 .

IV. DISCUSSION

The drag evolution model that we have used to produce
the time dependent shape of the flux tube is an approxi-
mation to the real non-linear dynamics of the flux tube.
However, this model is likely to capture the key features,
such as the explosive nature of the evolution which is seen
in Fig. (4)). The flux tube has been assumed to have an
elliptical shape in this calculation. This is based on the
shape of the mildly nonlinear flux tubes [6–8] and phys-
ical intuition. Specifically the elliptical shape minimizes
the stabilizing sideway motion of field lines outside the
erupting flux tube. Overtaking may alter the assumed
elliptical flux tube cross section (see Fig. (6)). Further
work is needed to understand the cross section shape and
its evolution.
The flux tubes have been modelled with a perfectly

conducting plasma. This is a reasonable assumption
since the eruption is likely to take place on a fast
timescale. Once the flux tubes have reached their sat-
urated states then other, slower timescale, processes will
become important. For example resistive field line re-
connection is likely to occur at large θ as it does in re-
sistive ballooning modes [14]. There is also likely to be
cross field transport of heat from the tube to the sur-
rounding plasma around rmax given the large gradient
of temperature. This would effectively connect the high
pressure region to the low pressure region via a conduit
(“hosepipe”) along the flux tube – perhaps causing rapid
loss of confinement locally. The balance of the dissipative
processes will determine the longer timescale evolution of
the flux tube and ultimately how it disconnects from or
returns to, its original location.

ELMs may be an obvious application of the ideas in
this paper. However, the s−αmodel developed here may
be too geometrically simplistic. We instead note that
the explosive eruption of ballooning modes have been
observed in TFTR shots with internal transport barri-
ers [15]. A slowly evolving n = 1 kink mode arises first
and then a toroidally localized ballooning mode (with
n ∼ 10 − 20) appears. These ballooning modes may
eventually disrupt the plasma. We have demonstrated
with the model above that flux tubes can erupt connect-
ing plasma inside the transport barrier to outside the
transport barrier. This is likely to disrupt the transport
barrier and thereby the plasma. A quantitative compar-
ison with data is beyond the scope of this work. There
is, clearly, much to understand.
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