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Abstract: In predictive control, a quadratic program (QP) needs to be solved at each sampling
instant. We present a new warm-start strategy to solve a QP with an interior-point method
whose data is slightly perturbed from the previous QP. In this strategy, an initial guess of the
unknown variables in the perturbed problem is determined from the computed solution of the
previous problem. We demonstrate the effectiveness of our warm-start strategy to a number of
online benchmark problems. Numerical results indicate that the proposed technique depends
upon the size of perturbation and it leads to a reduction of 30–74% in floating point operations
compared to a cold-start interior-point method.
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1. INTRODUCTION

This paper describes a new warm-start strategy in an
interior-point method (IPM) when solving a quadratic
programming (QP) problem. In predictive control, at
each sampling instant with the given state information,
a QP problem is solved to obtain a sequence of inputs
and only the first input is applied to the plant. This
process is repeated at every sample instant with a new
state estimate. We consider the scenario in which one QP
problem has been solved by an IPM at the previous time
instant, and we need to solve a slightly perturbed QP from
the preceding QP at the current time instant. The strategy
in which the information gained in solving the previous
problem is used in choosing a starting point in an IPM is
known as a warm-start strategy.

After the publication of the seminal paper by Karmarker
(1984), interior-point methods have proven to be an ef-
ficient way of solving linear, quadratic, and nonlinear
programming problems compared to active set methods,
especially for large scale problems. However, they cannot
easily exploit the solution of the preceding problem in
warm-starting like active set methods can (Wright, 1997;
Gondzio and Grothey, 2008). A warm-start of an IPM
with the solution of the preceding problem, if it is close
to the boundary of the feasible region, usually leads to
the blocking of the search direction, which means that the
steplength becomes very small, and the next iterate will
be very close to the previous one. In the last decade, a
number of attempts have been made to improve warm-
start strategies in IPMs. Yildirim and Wright (2002) and
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John and Yildirim (2008) discuss warm-start strategies
for linear programming (LP) problems. In Yildirim and
Wright (2002), a worst case estimate on the number of
IPM iterations required to converge to a solution of a
perturbed LP from the warm-start starting point is deter-
mined. Their estimate mainly depends on the size of per-
turbation and on the conditioning of the original problem.
John and Yildirim (2008) has implemented several warm-
start strategies in IPMs for LP problems. They concluded
that most of the strategies are effective in reducing the
computational time for smaller perturbations. Recently, a
new unblocking strategy was proposed by Gondzio and
Grothey (2008). This is based on sensitivity analysis of
the search direction with respect to the current point.
Numerical tests show that, on average 50–60% of the com-
putations can be saved on a range of LP and QP problems
varying from small scale to large scale problems when this
unblocking strategy is combined with other warm-start
strategies.

In recent years, attempts have been made to use predictive
control in fast processes with a short sampling time. To
reduce the computational efforts new techniques have
emerged. In Bemporad, Morari, Dua, and Pistikopoulos
(2002), a large number of QPs are solved off-line for all
possible initial states of the plant, and then an explicit
function is formed using the solutions of the QPs. This
approach is generally applicable to small-scale problems.
Ferreau, Bock, and Diehl (2008) proposed a warm-start
strategy based on an active set method that uses the ideas
from parametric optimization. This strategy exploits the
solution of the previous QP under the assumption that the
active set does not change much from one QP to the next
one. Furthermore, a premature termination is described



to meet the requirements of real-time implementations.
However, in some cases this early termination may lead
to infeasibility. In Wang and Boyd (2010), warm-starting
and early termination of the QP problem is proposed. In
warm-starting, the initialization of the QP problem is done
using the predictions made in the previous step. The early
termination significantly reduces the computations, but on
the other hand it may lead to state equation violations.

In each iteration of an IPM, a linear system of equations
needs to be solved to find the search direction. This linear
system becomes increasingly ill-conditioned as the solution
is approached. The linear system is either solved by direct
or iterative methods. A well-conditioned approximation of
this linear system is proposed by Shahzad, Kerrigan, and
Constantinides (2010), in which an approximate search
direction is calculated to reduce the computations by
an iterative method. In this paper we have extended
that work to design a warm-start strategy in an IPM.
The main contribution of this paper is to present a
new warm-start strategy in an IPM, which is not only
computationally efficient, but also possesses the following
important characteristics:

• the linear systems appearing in this approach are
well-conditioned even at the later stages of the IPM,

• no matrix triple product is required to compute the
Hessian matrix, and

• it is more effective than a cold-start IPM when
there are few changes in active constraints from the
preceding QP to the perturbed QP.

This paper is organized as follows. We start in Section 2
with an outline of the receding horizon regulator problem
with quadratic objective and linear constraints using a
discrete-time state space process. Further, a transforma-
tion to a QP is described. In Section 3, we describe the
procedure of an IPM used to solve a QP problem. In
Section 4, we describe a new warm-start strategy based
on an IPM. The computational complexity involved in
each IPM in terms of flops is presented in Section 5. In
Section 6, four benchmark problems are presented to show
the effectiveness of our proposed algorithm. Finally, some
conclusions are drawn.

Notation: For a matrix, A > 0 (≥ 0) means that A is pos-
itive (semi-positive) definite and for a vector, x < 0 (≤ 0)
means that each element of x is negative (non-positive).

For vectors x, y, we denote (x, y) :=
[
xT yT

]T
. The sym-

bol ⊗ represents the Kronecker product. 1n denotes a
vector of ones of length n.

2. PROBLEM DESCRIPTION

Consider a discrete-time linear time-invariant dynamic
system of the form

xi+1 = Axi + Bui, (1)

where xi ∈ R
n is the state vector and ui ∈ R

m is
the input vector at the ith time instant. Let x̄ = x0 ∈
R

n be the measurement or estimate of the state at the
current time instant. The objective is to find, over a finite
horizon of length N , a sequence of optimal control inputs
u0, . . . , uN−1 subject to equality constraints (1) and the
inequality constraints

ulb ≤ ui ≤ uub, i = 0, 1, . . . , N − 1, (2a)

Jixi + Eiui ≤ di, i = 0, 1, . . . , N − 1, (2b)

while minimizing the quadratic objective

xN
T PxN +

N−1∑

i=0

(
xi

T Qxi + uT
i Rui + 2xT

i Mui

)
(3)

with R > 0, Q − MR−1MT ≥ 0 and P ≥ 0, Ji ∈
R

l×n, Ei ∈ R
l×m, Q, P ∈ R

n×n, R ∈ R
m×m,M ∈ R

n×m.
Terminal constraints of the form JNxN ≤ dN are easily
included in (2b), because xN := AxN−1 + BuN−1.

To solve the above problem the vector of decision variables

is defined as θ :=
[
uT

0 uT
1 . . . uT

N−1

]T
.

The above problem can be converted to a QP problem,
which can be written in the form

min
θ

J (θ) :=
1

2
θT Hθ + θT h(x̄) s.t. Gθ ≤ g(x̄), (4)

where θ ∈ R
nd ,H ∈ R

nd×nd , G ∈ R
ni×nd with nd := mN

and ni := (2m + l)N is the number of inequality con-
straints. The matrices H,G and the vectors h(x̄), g(x̄) are
defined in Appendix A. To simplify notation in subsequent
sections the (x̄) is omitted from vectors h(x̄) and g(x̄).

3. INFEASIBLE INTERIOR-POINT METHOD

In this section we review the ideas in interior point meth-
ods (Wright, 1997). The Karush-Kuhn-Tucker (KKT) con-
ditions of (4) are

Hθ + GT φ + h = 0, (5a)

Gθ − g + s = 0, (5b)

ΦS1ni
= 0, φ, s ≥ 0, (5c)

where φ ∈ R
ni is called a dual variable, s ∈ R

ni is a vector
of slack variables, 1ni

∈ R
ni is a vector of ones and Φ, S are

diagonal matrices defined by Φ := diag(φ), S := diag(s).

In an IPM the optimal solution is obtained by solving
the nonlinear optimality conditions (5). The classical al-
gorithm to solve such equations is Newton’s method. This
is an iterative method in which at each iteration k, the
solution of a linear system of the following form is required
to find the search direction (∆θk,∆φk,∆sk):

[
H GT

G −W k

]

︸ ︷︷ ︸

Ak

[
∆θk

∆φk

]

=

[
rk
H

rk
L

]

︸ ︷︷ ︸

bk

, (6)

or equivalently,
(
H + GT (W k)−1G

)
∆θk = rk

H − GT (W k)−1rk
L (7)

where W k,∆sk,∆φk, rk
H , rk

L are defined in Appendix A.
We can split the matrix triple product in (7) according to

H + GT (W k)−1G := H + (W k
b )−1 + GT

c (W k
c )−1Gc, (8)

where W k
b ∈ R

nb×nb ,W k
c ∈ R

nc×nc , nb := 2mN and
nc := lN . W k

b ,W k
c , Gb, Gc are defined in Appendix A. The

above form of computing the Hessian matrix indicates that
there is no need to compute the matrix triple product if
we only have input bounds.

An IPM in which an initial guess of θ satisfies the inequal-
ity constraints defined in (4) and φ, s > 0 is called a feasible



Algorithm 1 Infeasible Interior Point Method

Input:
• H,G, h, g
• Initial guess θ0, φ0 > 0, s0 > 0
• Tolerance ǫ > 0

Output: Optimal θ.
Algorithm:

1: Set k = 0 and compute µ0 := (φ0)T s0

ni
, e0

tol := ‖b0‖∞.

2: while µk > ǫ and ek
tol > ǫ do

3: Solve (7) for ∆θk with Cholesky factorization. Com-
pute ∆φk and ∆sk from (A.1) and (A.2).

4: Choose αk as the largest value in (0, 1] such that the
following conditions hold:

(θk, φk, sk) + αk(∆θk,∆φk,∆sk) ∈ N−∞(γ, β),

(φk + αk∆φk)(sk + αk∆sk)

ni

≤ (1 − 0.01αk)µk.

5: Compute (θk+1, φk+1, sk+1) := (θk, φk, sk) +
αk(∆θk,∆φk,∆sk).

6: Compute µk+1 := (φk+1)T sk+1

ni
, ek+1

tol := ‖bk+1‖∞.
7: Increment k by 1.
8: end while

IPM. An IPM for which only φ, s > 0 is called an infeasible
IPM. An infeasible IPM is described in Algorithm 1 for a
QP problem. This is an extension of the infeasible-path-
following IPM (Algorithm IPF) of (Wright, 1997, p. 110),
which was designed for a linear programming problem.
The central path neighbourhood N−∞(γ, β) is defined in
(Wright, 1997, p. 109).

4. δ–ACTIVE SET BASED INFEASIBLE
INTERIOR-POINT METHOD

In this subsection, we will briefly describe the δ–active set
based infeasible IPM proposed by Shahzad et al. (2010),
and extend that work to propose a warm-start strategy.
Note that if sk

i → 0 as k → ∞, then (5b) indicates that the
ith inequality constraint is active. Let N := {1, 2, . . . , ni}
and define a δ-active set N k

A(δ), depending upon the
parameter δ > 0, as

N k
A(δ) := {i ∈ N | 0 < wk

i < δ}, (9)

where wk
i :=

sk
i

φk
i

and a δ-inactive set as N k
A(δ) := N \

N k
I (δ). As the iteration number k of Algorithm 1 increases,

the values corresponding to the δ−inactive constraints of
the diagonal matrix W k become very large, while others
become very small. Note that if sk

i 9 0 as k → ∞ then

φk
i → 0, because µk = (φk)T sk

ni
→ 0 as k → ∞. Therefore,

wk
i → ∞ as k → ∞ for the constraints that are inactive at

the solution. As a result, the condition number of Ak and
the coefficient matrix of (7) becomes very large.

To avoid this ill-conditioning in the later stage of an IPM,
the following scheme is proposed by Shahzad et al. (2010).
Permute the matrix Ak according to the δ–active and
δ−inactive constraints as





H (Gk
1)T (Gk

2)T

Gk
1 −W k

1 0

Gk
2 0 −W k

2









∆θk

∆φk
1

∆φk
2



 =





rk
H

rk
L1

rk
L2



 , (10)

Algorithm 2 δ–active Infeasible Interior Point Method

Input:
• H,G, h, g
• Initial guess θ0, φ0 > 0, s0 > 0, kmax

• Select δ, αmin

• Tolerance ǫ > 0
Output: Optimal θ.
Algorithm:

1: Set k = 0 and compute µ0 := (φ0)T s0

ni
, e0

tol := ‖b0‖∞.

2: Compute V0 := GH−1, V := V0G
T .

3: while µk > ǫ and ek
tol > ǫ do

4: Compute δ–active set N k
A(δ).

5: Solve (11) for ∆φ̂k
1 with Cholesky factorization.

Compute ∆θ̂k from (12). Set ∆θk := ∆θ̂k, then
compute ∆φk and ∆sk from (A.1) and (A.2).

6: Choose αk as mentioned in Algorithm 1.
7: if (αk < αmin or k > kmax) then
8: Replace δ with 1.5δ and go to step 1.
9: end if

10: Compute (θk+1, φk+1, sk+1) := (θk, φk, sk) +
αk(∆θk,∆φk,∆sk).

11: Compute µk+1 := (φk+1)T sk+1

ni
, ek+1

tol := ‖bk+1‖∞.
12: Increment k by 1.
13: end while

where

[
Gk

1

Gk
2

]

= UkG,

[
∆φk

1

∆φk
2

]

= Uk∆φk,

[
rk
L1

rk
L2

]

=

Ukrk
L, Uk ∈ R

ni×ni is a permutation matrix, W k
1 ∈

R
nk

a×nk
a ,W k

2 ∈ R
(ni−nk

a)×(ni−nk
a), ‖W k

1 ‖∞ < δ, and nk
a

represents the number of δ–active constraints.

Rather than solving (10), it is proposed that the following
approximate system be solved

(
Uk

1 V (Uk
1 )T + W k

1

)
∆φ̂k

1 = Uk
1 V0r

k
H − rk

L1
, (11)

where
∆θ̂k = H−1(rk

H − (Gk
1)T ∆φ̂k

1), (12)

V := GH−1GT , V0 := GH−1, Uk :=

[
Uk

1

Uk
2

]

and Uk
1 ∈

R
nk

a×ni . An IPM in which (11) is solved instead of (7)
is called a δ–active based IPM, and it is described in
Algorithm 2. It can be shown (Shahzad et al., 2010)
that the error in solving (11) converges to zero for large
values of k. Note that V and V0 are computed outside
the loop. In the LHS of (11), the matrix Uk

1 V (Uk
1 )T

can be formed by just picking the rows and columns
of V according to Uk

1 . In the RHS of (11), Uk
1 V0 can be

computed in a similar fashion. This means that no matrix
triple product is involved in computing the Hessian matrix
in this formulation.

4.1 Selection of δ

The computational cost of Algorithm 2 depends upon δ.
Furthermore, a small value of δ might lead to blocking
of the search direction, which means that αk becomes
too small, and the next iterate will be close to previous
one. To determine an appropriate value of δ, and to avoid
blocking, a scheme is proposed at line 8 of Algorithm 2.
Any small value of αmin can be used. We have used
αmin := 10−4, kmax := 30 in the numerical tests presented



Table 1. Computational cost of an IPM per
iteration.

Algorithm Flops

Algorithm 1 1

3
n3

d
+ 1

2
ncn2

d
+ 11

2
n2

d
+ 4ncnd

Algorithm 2 1

3
(nk

a)3 + 2(2nd + nc + ni + nk
a)nd + 5

2
(nk

a)2

in Section 6. δ computed for the first QP is used as
an initial guess for all other QPs. It is observed from
numerical experiments that δ selected in this way does not
change for all other QPs in the same benchmark problem.
This means that we are using one fixed value of δ in all QPs
in a benchmark problem. Note that in the computation of
N k

A(δ) if no such wk
i exists that satisfies (9) i.e. N k

A(δ) = ∅,
then we solve the unconstrained problem Hθ = −h to get
the optimal θ.

4.2 Warm-start

We consider the situation in which a QP (4) has been
solved by Algorithm 2 at the previous time instant for
a state estimate xold, and we have an optimal solution

θ∗ :=
[
(u∗

0)
T (u∗

1)
T . . . (u∗

N−1)
T
]T

. At the current time
instant, we have to solve a similar QP but with a different
state estimate xnew. This changes g(xold) to g(xnew) and
h(xold) to h(xnew), while H,G remains constant in the new
QP. In predictive control, we compute the future inputs
along with the current input based on the plant model. So

we initialize θ0 :=
[
(u∗

1)
T (u∗

2)
T . . . (u∗

N−1)
T (u∗

N−1)
T
]T

.
for the new QP. Inspired from the observation that the
active set does not change much from one QP to the next
in active set methods for short sampling periods (Ferreau
et al., 2007), we initialize φ0 and s0 such that the δ–active
constraints at the solution of the previous QP remains δ–
active in the first iteration of the new QP. Secondly, to
make the starting point well-centred and away from the
boundary of constraints to avoid blocking, we suggest to
make the pairwise products s0

i φ
0
i equal to each other.

Let N ∗
A(δ) denote the set of δ–active set at the solution of

the previous QP. Then w0 for the new QP is calculated as

w0
i :=

{
k1 δ for all i ∈ N ∗

A(δ)
1

k1
δ otherwise,

(13)

for a given 0 < k1 < 1. For a given µ0, we want

s0
i φ

0
i = µ0. (14)

Since s0
i = φ0

i w
0
i , from (14) we have

s0
i :=

√

w0
i µ0, φ0

i :=

√

µ0

w0
i

. (15)

5. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of Algorithms 1 and 2 are
measured in flops. The cost of each IPM per iteration
is given in Table 1. Note that only high-order terms are
mentioned in Table 1. However, all terms, including the
linear ones, are taken into account in the numerical results
presented in Section 6.

6. NUMERICAL RESULTS

In this section, we compare the performance of our pro-
posed Algorithm 2 with warm-start over the conventional

IPM as described in Algorithm 1 with cold-start. To
evaluate the performance, we consider four benchmark
problems, which are available online (Diehl and Ferreau,
2008). Each problem provides a sequence of neighbouring
QPs. The data corresponding to the size of each problem
is given in Table 2, where nQP denotes the number of QPs
and ∆t is the sampling time

6.1 Problem 1

This problem considers a system of nine masses connected
by springs. The objective is to regulate the system from a
perturbed state to a steady-state position. One end of the
chain is fixed to a wall, while the other end is free, and its
three velocity components are used as inputs. The inputs
are bounded below and above. Initially, a perturbation is
exerted to the chain by moving the free end with a given
constant velocity for 3 seconds. See Ferreau et al. (2008)
for more details.

Fig. 1(a) shows the performance of our proposed warm-
start strategy over conventional cold-start IPM. To see the
effect of initial state x on the computational cost of the
algorithm used and on the number of δ–active constraints,
we have plotted ‖h(x̄)‖2 in Fig. 1(b), because data for x
was not available in the collection of benchmark problems.
Note that h(x̄) := Dx̄, which implies ‖h(x̄)‖2 ∝ ‖x̄‖2.
The number of δ–active constraints, and the change in the
number of δ–active constraints are shown in Fig. 1(c) and
Fig. 1(d) respectively.

6.2 Problem 2

This is the same problem as Problem 1 with the only
difference that it has state constraints as well. The state
constraints are imposed in a way that the chain does not
hit the vertical wall. See Ferreau et al. (2008) for more
details. Results are shown in Fig. 2.

6.3 Problem 3

In this problem the objective is to control a direct injection
turbo charged Diesel engine. Inputs are the slew rates
of the exhaust gas recirculation (EGR) valve and the
position of the variable geometry turbocharger (VGT).
The inputs are bounded below and above, and states
constraints are also imposed. See Ferreau et al. (2007) for
more details. Results are shown in Fig. 3, which indicate
that a sharp increase in the initial state (Fig. 3(b)) leads
to a sharp increase in the change in number of δ–active
constraints (Fig. 3(d)), which results in a sudden increase
in the computational cost of Algorithm 1 and Algorithm 2
(Fig. 3(a)).

6.4 Problem 4

The problem of trajectory generation for the load move-
ment of a boom crane is considered. The inputs are
bounded and constraints on states are also considered. See
Arnold et al. (2007) for more details. Results are shown
in Fig. 4.

The computational advantage of our proposed warm-
start strategy (Algorithm 2) over conventional IPM (Al-
gorithm 1) is summarised in Table 4. Let θ∗1(t), θ∗2(t) be
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Fig. 1. (a) Comparison of computational cost of Algo-
rithm 1 with cold start and Algorithm 2 with warm-
start. (b) ‖h(x̄)‖2 indicates a measure corresponding
to x̄, because h(x̄) := Dx̄. (c) Number of δ–active
constraints in the last iteration of Algorithm 2 for each
QP. (d) Change in number of δ–active constraints in
the last iteration of Algorithm 2 for each QP.

Table 2. Data for benchmark problems.

Problem nQP ∆t n m N nd nb nc

1 101 0.2 57 3 80 240 480 0
2 101 0.2 57 3 80 240 480 709
3 600 0.05 2 2 10 20 40 40
4 921 0.1 4 1 57 57 72 160

Table 3. Parameters for Algorithm 2 for bench-
mark problems.

Problem δ µ0 k1

1 102 0.3 0.01
2 102 0.3 0.01
3 104 0.3 0.01
4 102 0.3 0.01

the solution of a QP at time t using Algorithms 1 and 2,
respectively. We define the maximum relative difference
between the solution of Algorithms 1 and 2 as

∆J ∗ := max
t∈[0,tf ]

|J (θ∗1(t)) − J (θ∗2(t))|

|J (θ∗1(t))|
× 100, (16)

where tf is the final time in simulation, and it is shown in
Table 4. This new strategy saves about 30–74% in com-
putations in the worst case, when we have a sudden large
change in the current state. The % in worst case is calcu-
lated as f1−f2

f1
×100, where fi := maxt∈[0,tf ] MflopsAlgoi

(t)

for i = 1, 2, MflopsAlgo1
and MflopsAlgo2

represent the
computational cost of Algorithm 1 and 2, respectively.

7. CONCLUSIONS

We have presented a new warm-start strategy based on an
interior-point method to solve a sequence of QPs arising in
predictive control. The proposed scheme is implemented
on a number of benchmark problems, in which each
new QP data is perturbed from the previous QP data.
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Fig. 2. (a) Comparison of computational cost of Algo-
rithm 1 with cold start and Algorithm 2 with warm-
start. (b) ‖h(x̄)‖2 indicates a measure corresponding
to x̄, because h(x̄) := Dx̄. (c) Number of δ–active
constraints in the last iteration of Algorithm 2 for each
QP. (d) Change in number of δ–active constraints in
the last iteration of Algorithm 2 for each QP.
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Fig. 3. (a) Comparison of computational cost of Algo-
rithm 1 with cold start and Algorithm 2 with warm-
start. (b) ‖h(x̄)‖2 indicates a measure corresponding
to x̄, because h(x̄) := Dx̄. (c) Number of δ–active
constraints in the last iteration of Algorithm 2 for each
QP. (d) Change in number of δ–active constraints in
the last iteration of Algorithm 2 for each QP.

Numerical results indicate that the proposed warm-start
strategy depends upon the size of perturbation. We have
achieved a reduction in computational cost of about 30–
74% in the worst case, when compared to a cold-start
interior-point method.

The proposed warm-start technique can also be used to a
wider class of problems, in which it is necessary to solve a
sequence of neighbouring QPs to get a solution.
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Fig. 4. (a) Comparison of computational cost of Algo-
rithm 1 with cold start and Algorithm 2 with warm-
start. (b) ‖h(x̄)‖2 indicates a measure corresponding
to x̄, because h(x̄) := Dx̄. (c) Number of δ–active
constraints in the last iteration of Algorithm 2 for each
QP. (d) Change in number of δ–active constraints in
the last iteration of Algorithm 2 for each QP.

Table 4. Reduction in computational cost of
Algorithm 2 with warm-start over Algorithm 1
with cold start in solving benchmark problems.

Problem Worst case ∆J ∗

(%) (%)

1 73.6 1.6 × 10−2

2 64.2 3.6 × 10−3

3 31.6 8.8 × 10−4

4 43.3 6.3 × 10−2
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Appendix A. DEFINITION OF MATRICES AND
VECTORS

H := 2
(
Ψ + ΓT ΩΓ

)
+ ΓT Π + ΠT Γ,

h(x̄) := Dx̄,

where

Ψ := IN ⊗ R,D := 2
[(

ΓT Ω + ΠT
)
Φ + M̄

]
,

Φ :=








A

A2

...
AN








, Γ :=







B 0 · · · 0 0
AB B · · · 0 0
...

...
. . .

...
...

AN−1B AN−2B · · · AB B







,

Ω :=

[
IN−1 ⊗ Q 0

0 P

]

,Π :=

[
0 IN−1 ⊗ M
0 0

]

,

M̄ := [M 0 · · · 0] ∈ R
n×nd .

G :=

[
Gb

Gc

]

, g(x̄) :=

[
gb

gc(x̄)

]

,W k :=

[
W k

b 0
0 W k

c

]

,

where

Gb :=

[
Ind

−Ind

]

, gb :=

[
1nd

uub

−1nd
ulb

]

,

Gc :=







J0B + E0 0 · · · 0
J1AB J1B + E1 · · · 0

...
...

. . .
...

JN−1A
N−1B JN−1A

N−2B · · · JN−1B + EN−1







gc(x) :=






d0 − J0Ax
...

dN−1 − JN−1A
Nx




 .

W k := (Φk)−1Sk,

∆φk := (Sk)−1
(
Φkrk

G + rk
S + ΦkG∆θk

)
, (A.1)

∆sk := (Φk)−1
(
rk
S − Sk∆φk

)
, (A.2)

where

rk
G := Gθk − d + sk, rk

S := −ΦkSk1ni
,

rk
H :=−

(
Hθk + FT νk + GT φk

)
,

rk
L := rk

G − (Φk)−1(rk
S + σµk1ni

).


