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A dynamic competition model for an oppressive government opposed by rebels is proposed, based on coupled
differential equations with constant coefficients. Depending on their values, the model allows scenarios represent-
ing a stable, oppressive government and violent regime change. With constant coefficients, there can be no limit
cycles. However, cycles emerge if rebels and governments switch characteristics after a revolution, if resources
change hands and rebel motivations switch from grievance to greed. This mechanism is proposed as an explanation
for the establishment of a new repressive regime after the overthrow of a similar regime.
Journal of the Operational Research Society (2015) 66(11), 1939–1947. doi:10.1057/jors.2015.28
Published online 22 April 2015

Keywords: conflict analysis; simulation; system dynamics

The online version of this article is available Open Access

1. Introduction

It is an unfortunate truth that many governments are oppressive.
Throughout recorded history, powerful minorities have
exploited the wealth of larger communities by force (Lundahl,
1997). The penalty for objection is typically severe, with legal
niceties, such as ‘treason’, and ‘crime against the state’ used to
exaggerate the offence and euphemisms such as ‘execution’
providing cover for acts of murder designed to ensure retention
of power. This behaviour is widespread, and many modern
regimes would still commit almost any crime to retain power
(Rummel, 1994). Economic inequality, suppression of rights
and marginalisation of religious or ethnic groups often result in
continual unrest. However, oppressive governments are
depressingly stable. Collapse can follow from the economic
failure of a kleptocratic regime (Gasiorowski, 1995), or the
increasingly erratic behaviour of a tyrant (Gladd, 2002). The
end is often at the hand of small, determined groups, who seize
power following the decay of the regime. However, these acts
have mainly not improved the lot of the majority, with
successful revolutionaries often developing an equally oppres-
sive rule (Weede and Muller, 1997). This cycle is driven by
greed (Collier and Hoeffler, 2004), and simply involves the
replacement of one kleptocracy with another (Grossman, 1999).
Recent world events have attracted considerable interest,

leading to the development of mathematical models designed
to analyse the progress of insurgencies (Blank et al, 2008;
Kaplan et al, 2010; Atkinson et al, 2012; Toft and Zhukov,
2012; MacKay, 2014). Similar approaches have been
developed for domestic conflicts, including civil war
(Garrison, 2008; Zhukov, 2013), guerrilla war (Dietchman,

1962; Intriligator and Brito, 1988) and protest, coercion and
revolution (Tsebelis and Sprague, 1989). The majority use a
differential formulation and are inspired by combat modelling
or population biology. However, with the main exception of a
three-party model by Feichtinger and Forst (1996), the outcome
is usually a choice between either party winning or a stalemate.
Here, we focus on the often-ignored cyclic outcome of

revolution. We avoid considering individual motivations,
because these have been considered elsewhere (Tullock,
1971). Instead, we direct our attention to the dynamics of the
conflict itself. Such assumptions are highly restrictive, but do at
least allow the development of a model that can highlight a
truism: cycles of repression are common, because it is easier to
take over an existing kleptocracy than to establish a new one.
We choose a simple differential model with few coefficients,
concentrating on aspects of the struggle that might prevent or
allow regime change: popular support, resources and weapons.
We do not attempt to simulate a particular event, but merely
develop a model that appears to display the correct behaviour.
At the least, this should describe three scenarios: stable points
(representing an established, oppressive government), abrupt
changes in stability (regime change), and limit cycles (a return
to oppression). The model is introduced in Section 2, and phase
plane analysis is presented in Section 3. The conditions
representing stable and unstable regimes are discussed in
Section 4, and cyclic regime change is described in Section 5.
The assumptions of the model and possible extensions are
discussed in Section 6 and conclusions are drawn in Section 7.

2. Dynamic model

A common feature of struggles for liberation is how small a
fraction of the population is involved. The majority is inactive,
and unless there is a fully blown civil war its number is
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relatively stable. We therefore ignore this overall population
and assume that the competition is between two sub-groups,
government (G) and rebels (R). Both are drawn from the
population. Since the government has access to resources, its
forces are assumed to be mercenaries. A reasonable description
for their growth is one whose rate is proportional to current
strength, since this will dwindle as resources are exhausted. In
contrast, rebel forces grow spontaneously due to anger with the
regime. There may be many triggers for anti-government
feeling; here we simply assume a background of dissent, and
model rebel recruitment as a constant rate. To limit the span of
the competition, we also assume that recruitment follows the
logistic law. In the absence of interaction, the time dependence
of the forces may then be described as:

dG
dt

¼g2G 1 -Gð Þ

dR
dt

¼r1 1 -Rð Þ ð1Þ

Here g2 and r1 are constants representing the effectiveness of
government and rebel recruitment and the terms 1−G and 1−R
set the carrying capacity of each side to unity. In reality, values
of GC (limited by government budgets) and RC (limited by the
pool of potential activists) might be expected, with RC≫GC.
However, models with non-unity carrying capacity can be
placed in the form above by appropriate scaling of variables.
Note that these assumptions do not imply thatG and R represent
fractions of the total population. Instead, they are fractions of a
maximum likely strength that is in each case less than the total.
These equations have the well-known solutions for initial
conditions G=G0 and R=R0 at t= 0 of

G ¼ G0

G0 + 1 -G0ð Þ exp - g2tð Þf g
R ¼1 + R0 - 1ð Þ exp - r1tð Þ ð2Þ

Both tend to unity when t tends to infinity. However, when
G0 and R0 are small and comparable, and g2 and r1 are also
comparable, G increases much more slowly than R. This
difference admits the possibility of revolution, since it implies
that a strong government may be drowned by a tide of rebellion
if the tide rises fast enough.
The main purpose of any interaction is for each side to

eliminate the other. This process can again be described using
differential equations. One example is the quadratic attrition
model:

dG
dt

¼ - r3RG

dR
dt

¼ - g3GR ð3Þ

Here g3 and r3 are constants representing the effectiveness of
government and rebel weapons or their willingness to use them,

and the interaction describes the rate of removal of each side.
These equations are the ‘area-fire’ combat model of Lanchester
(1916) and the lesser-known Osipov (Helmbold and Rehm,
1995), which have been extensively studied (Taylor, 1983).
Dividing them together leads to dG/dR= r3/g3, which may be
integrated from initial conditions G=G0 and R=R0 at t= 0 to
yield the ‘linear’ law g3(G0−G)= r3(R0−R). This result
suggests that R may be reduced to zero, with G having a
positive remnant, provided g3G0> r3R0. Equation (3) may then
be integrated separately; provided g3G0≠r3R0, the result is:

G ¼ G0 g3G0 - r3R0ð Þ
g3G0 - r3R0 exp - g3G0 - r3R0ð Þt½ �f g

R ¼ R0 r3R0 - g3G0ð Þ
r3R0 - g3G0 exp - r3R0 - g3G0ð Þt½ �f g ð4Þ

If g3G0> r3R0, the upper exponential will decay to zero,
while the lower one will grow. As a result, G will tend to
G0− r3R0/g3, while R will tend to zero. Under these circum-
stances we would expect the government to eliminate any
opposition. Other attrition models such as the ‘aimed-fire’
model (which has dG/dt=− r3R and dR/dt=− g3G) and the
‘mixed’ model (dG/dt=− r3R and dR/dt=− g3RG) exist.
The second model is appropriate for guerrilla combat, when
the government is visible to the rebels, but the rebels must be
hunted down (Dietchman, 1962). However, it may be less
appropriate during the end-stage of a revolution, when the
reverse might be true. We therefore ignore these alternatives.
The full model combines recruitment and attrition. For

generality, we assume the equations:

dG
dt

¼ g1 + g2Gð Þ 1 -Gð Þ - r3RG

dR
dt

¼ r1 + r2Rð Þ 1 -Rð Þ - g3GR ð5Þ

For reasons that will become clear, we have allowed both
populations to recruit by both processes, so that g1 and r1 refer
to spontaneous recruitment driven by popular support, and g2
and r2 to active recruitment driven by resources; g3 and r3 refer
to weapon capability as before. The two sides can then
be characterised by coefficient vectors g ¼ g1; g2; g3ð Þ and

r ¼ r1; r2; r3ð Þ; with all elements positive. However, an oppres-
sive government will typically have little popular support, so
g1≈0, while rebels will have few resources, so r2≈0.
Equation (5) can be written in the form dG/dt= fG(G, R) and

dR/dt= fR(G, R) and are analogous to the Lotka–Volterra
equations (Vandermeer and Goldberg, 2013). However, the
inclusion of g1 and r1 means that the equations are not in the
standard Kolmogorov form dG/dt=G fg(G, R) and dR/dt=R
fr(G, R). Note that the model is not predator–prey type, as
assumed by Tsebelis and Sprague (1989), but competition-type.
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If there is a biological analogue, the relation between the
population and the government is clearly host–parasite.
Although the population may be unaware until too late, its
relation with the rebels is also host–parasite, and the competi-
tion is between two parasites to exploit the host.
Solutions may always be obtained numerically. For example,

Figure 1a shows the results obtained for g ¼ 0; 1; 10ð Þ,
r ¼ 0:1; 0; 5ð Þ; with G0= 1 and R0= 0.5. Here, the govern-
ment easily defeats the rebels, and in addition is able to restore
its forces. However, the steady inflow of rebel recruits stops the
government force rising back to unity, and also prevents the
complete annihilation of the rebels. Approximate solutions can
also be obtained. For example, if g1= 0, r2= 0, R≪1 andG≈1,
Equation (5) may be approximated as dG/dt≈ g2(1−G)− r3R
and dR/dt≈ r1− g3R. For the initial conditions of G=G0 and
R=R0, we then get:

R ¼A +B exp - g3tð Þ
G ¼C +D exp - g3tð Þ + G0 - C +Dð Þf g exp - g2tð Þ ð6Þ

Where A= r1/g3, B=R0− r1/g3, C= 1− r1r3/g2g3 and D=
(g3r3R0− r1r3)/(g3

2− g2g3). The steady-state levels must then be
R= r1/g3 (here, 0.01) and G= 1− r1r3/g2g3 (0.95). These values
are not functions of the initial conditions. Many parameter
choices give similar results, with the government re-establishing
control. However, some give a different outcome. For example,
Figure 1b shows results for g ¼ 0; 1; 10ð Þ, r ¼ 1; 0; 5ð Þ;
G0=1 and R0=0.5. The only change from Figure 1a is a large
increase in the rebel recruitment term r1. However, the effect is
dramatic: the government is annihilated, and the rebel force rises
to unity. Clearly, the possibility of a revolution is inherent in the
equations. However, systematic investigation is needed to estab-
lish when it can occur.

3. Phase plane analysis

Non-linear coupled differential equations are often analysed
on a plane whose axes are the two variables. Here, dG/dt> 0
when G= 0, and dG/dt< 0 when G= 1; similarly, dR/dt> 0
when R= 0, and dR/dt< 0 when R= 1. Consequently, only the
region bounded by G= 0, G= 1, R= 0 and R= 1 need be
considered, as solutions starting in this region must remain
inside it. Null isoclines are obtained when dG/dt=0 or dR/dt=0,
or when

R ¼ g1 + g2Gð Þ 1 -Gð Þ
r3G

G ¼ r1 + r2Rð Þ 1 -Rð Þ
g3R

ð7Þ

Equation (7) are smooth curves and points of equilibrium
with co-ordinates (Ge, Re) are obtained where they intersect.

For Re, this leads to the quartic equation:

c1c2 - c3ð ÞR4
e + b1c2 + c1b2 - b3ð ÞR3

e

+ a1c2 + b1b2 + c1a2 - a3ð ÞR2
e

+ a1b2 + b1a2ð ÞRe + a1a2 ¼ 0 ð8Þ

Here a1= g2r1, b1= g1g3 + g2(r2− r1), c1=− g2r2, a2=− r1,
b2= g3 + r1− r2, c2= r2, a3= g3r1r3, b3= g3(r2− r1)r3 and
c3=− g3r2r3. Generally, there will be four roots. However, a
special case is obtained when g1= 0 and r2= 0. In this case, the
quartic reduces to the cubic:

Re - 1ð Þ g3r3R
2
e - g2 g3 + r1ð ÞRe + g2r1

� � ¼ 0 (9)

One solution is Re= 1 and Ge= 0, which corresponds to a
rebel win accompanied by government annihilation as shown in
Figure 1b. The others are the roots of the bracketed quadratic:

Re ¼
fg2 g3 + r1ð Þ ± p½ðg22 g3 + r1ð Þ2 - 4g2g3r1r3Þ�g

2g3r3
(10)

Figure 1 Example time-variation of government (full line) and
rebel (dashed line) forces, with (a) government and (b) rebels
winning.
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When r1 is small, the smaller root approximates to Re≈ r1/g3
and Ge≈ 1− r1r3/g2g3, the steady state values of Equation (6).
Consequently, a second state has the Government firmly in
control, but with an undercurrent of rebel activity as in
Figure 1a. The character of the third state will become
clear later. Repeated roots are obtained when g2

2(g3 + r1)
2

− 4g2g3r1r3= 0, which requires:

r1 ¼ g3
g2

� �
2r3 - g2 ± 2

p
r3 r3 - g2ð Þ½ �

n o
(11)

Repeated roots can never be obtained if r3< g2, because the
required value of r1 is complex. However, if r3> g2, we would
expect a change in equilibria when r1 reaches a critical value.
Standard techniques are used to analyse the nature of any

equilibrium point (Ge, Re). Lyapunov’s indirect method
involves linearising the equations in the vicinity. Introducing
new variables ΔG=G−Ge and ΔR=R−Re, where ΔG and
ΔR are small, the resulting equations can be written as dΔ=dt ¼
JΔ:HereΔ is the column vector (ΔG,ΔR) and J is the Jacobian
matrix:

J11 ¼ ∂fG
∂G

���
Ge;Reð Þ

¼ g2 - g1 - 2g2Ge - r3Re

J12 ¼ ∂fG
∂R

��� Ge;Reð Þ ¼ - r3Ge

J21 ¼ ∂fR
∂G

��� Ge;Reð Þ ¼ - g3Re

J22 ¼ ∂fR
∂R

��� Ge;Reð Þ ¼ r2 - r1 - 2r2Re - g3Ge ð12Þ

Now, J will have eigenvalues λ1 and λ2 and eigenvectors V1

and V2; and a solution for initial conditions Δ0 at t= 0 can
always be written in terms of these eigenvalues and eigenvec-
tors. An arbitrary perturbationΔ0 will then decay to zero (so the
equilibrium is stable) if both λ1 and λ2 have negative real parts.
Other possibilities can be classified as follows. The eigenvalues
are λ1,2= {Tr±√[Tr2− 4Det]}/2, where Tr= J11 + J22 is
the trace of J and Det= J11J22− J12J21 is its determinant.
The eigenvalues will therefore be complex if the discriminant
Tr2− 4Det is negative. In this case, the trajectories will be
spirals that tend towards or away from the equilibrium. If the
discriminant is positive, simpler nodes are obtained. If Det< 0,
the discriminant must be real, and the eigenvalues of opposite
sign, so the equilibrium is a saddle. If Det> 0, the eigenvalues
must have the same sign. If Tr> 0, both must be positive, and
the equilibrium is an unstable focus. If Tr< 0, both must be
negative and the equilibrium is a stable focus.
Alternative behaviour can arise in the form of limit cycles,

whose existence or absence can be established using the
Poincaré–Bendixson and Bendixson–Dulac theorems. In the
notation here, the latter requires identification of a differentiable
function h such that ∂(hfG)/∂G+ ∂(hfR)/∂R has the same sign
(≠0) in a simply connected region. A suitable function here is

h=G− 1R− 1, which leads to:

∂ hfGð Þ
∂G

+
∂ hfRð Þ
∂R

¼ -
g1=G + g2G + r1=R + r2Rð Þ

GR
(13)

Since the coefficients are all positive, the right-hand side is
always negative in the first quadrant, so there can be no limit
cycles in this region, whatever the coefficient values.

4. Stable and unstable regimes

We now present numerical examples. To begin with, we
assume g ¼ 0; 1; 10ð Þ to represent a government with no

popular support, but plentiful resources and weapons. Similarly,
we assume r ¼ 0:2; 0; 5ð Þ to represent rebels with modest
support, no resources and a weaker arsenal. The thick lines in
Figure 2a are the null isoclines, while the discrete points
indicate equilibria. The isoclines are straight for the government
and hyperbolic for the rebels. Trajectories must cross
the government isocline vertically, and the rebel isocline
horizontally. There are three equilibria in the region, Point A at
(0, 1), and B and C at the two solutions to Equation (5).
Lyapunov analysis shows that A and C are stable foci, while B
is a saddle point. The thin lines in Figure 2b show representative

Figure 2 (a) Example null isoclines and equilibrium states and
(b) phase portraits for a government in power, with minor unrest.
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trajectories, starting from the perimeter. Trajectories clearly
skirt the unstable equilibrium point B, and end only at the stable
equilibria A and C. Those ending at C with the government
dominating are shown as full lines, while those ending at A with
the rebels dominant are dashed. In this example, the govern-
ment remains in control except when the rebels initially out-
number them (an unrealistic situation), so these parameters
represent a stable, oppressive government. Points A and C
correspond to states of competitive exclusion in a biological
model. However, in this case, the equations would be in
Kolmogorov form, with r1 zero and r2 non-zero. Both isoclines
would then be straight, and the state with government dominant
would also have the rebels extinct, eliminating any possibility
for future revolution. Thus, the coefficient r1 allows perpetual
opposition.
Other parameter combinations can result in stalemate. How-

ever, because stalemates have been considered extensively
elsewhere (MacKay, 2014), we focus here on exclusion
scenarios, and particularly on the effect of r1 in altering
the outcome. For example, Figure 3a shows results for
g ¼ 0; 1; 10ð Þ and r ¼ 0:5; 0; 5ð Þ: Here all parameters are

unchanged, except r1, which has increased. As a result, the rebel
isocline has risen, points B and C have moved closer together,
and the phase portrait has fewer full-line trajectories. The net
effect is to imply weaker government control. A similar effect is
obtained if g2 and g3 are reduced (which corresponds to decay
of the regime), but this time it is the government isocline that
alters, by reducing its slope.
Equation (11) implies that points B and C will coincide at a

critical value of r1, and then become complex conjugates. For the
previous parameters, the smaller solution is r1=0.557. Figure 3b
shows the results when g ¼ 0; 1; 10ð Þ and r ¼ 0:7; 0; 5ð Þ; so r1
is well above this value. There are now no intersections of the
isoclines. Although an equilibrium point is shown, it is only the
real part of a complex conjugate pair. As a result, the phase
portrait only contains dashed-line trajectories ending at the rebel
win condition. Consequently, the government will always lose
control, the condition for revolution.
At this point we note that assignment of government

characteristics to G and rebel characteristics to R is arbitrary.
G and R are just the current government and rebels, and the
situation might one day be reversed, with R in power and G
seeking it. In that case, more relevant titles for the two sides
might be green and red. However, transfer of power from R toG
can take place by exactly the same mechanism.

5. Cyclic regime change

We now consider the modifications needed to allow cyclic
regime change. Since our constant–coefficient model forbids
cycles, the answer must lie in changes in behaviour. Beha-
vioural variations are well known in biology, and competition
equations have been made more realistic, by allowing switching
of a predator between prey, or prey between habitats. Often, this
behaviour is modelled using sigmoidal functions, which can
switch a coefficient on or off depending on the size of the
population. Switching might be expected in human behaviour,
and sigmoidal functions have already been used in a conflict
model (Feichtinger and Forst, 1996). Here, the variations
depend on choices made after a revolution. More precisely,
since the goal of most rebels will have simply been to remove
the government, they will depend on the decisions of the rebel
leaders.
Almost certainly, successful rebels will seize the resources

and weapons of the previous regime. Depending on the degree
of temporary disorder, they may re-employ many of its
mercenaries. When order is restored, the leaders may be
tempted to enjoy the lifestyle of the previous regime, and
indeed this may have been their aim all along. If this is the
case, the grievance of the majority will be rapidly displaced by
the greed of an opportunistic minority. However, this enhanced
lifestyle is necessarily exploitative. If, to maintain it, the rebels
deploy their new assets against the larger population, they will
sooner or later lose its support. Similarly, the deposed govern-
ment will immediately lose its resources. However, either it or a

Figure 3 Example null isoclines (thick, full lines), equilibrium
states (points) and phase portraits (thin, full and dashed lines) for a
government initially in power, with (a) major unrest and (b) rebels
gaining power.
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similarly disenchanted group may after a while acquire popular
support and the weapons needed to mount another revolution. If
these changes occur, each competitor will after a time assume
the characteristics of the other. However, the switching char-
acteristics cannot simply be a function of the current state. For
example, while it is in power, a government is likely to retain its
assets until it falls. However, when attempting to regain power,
it will not recover them until it succeeds. Consequently,
switching cannot involve mere reversal of history; hysteresis
must be involved.
A suitable algorithm may be constructed as follows. When-

ever a new stable state is reached (defined by G or R appro-
aching unity to within a threshold dT), generate new coefficient
vectors g

new
and rnew from old vectors g

old
and rold following

g
new

¼ rold, rnew ¼ g
old
. Figure 4 shows the phase portrait

starting at Point 1= (1, 0.2), assuming initial coefficient vectors
g ¼ 0; 1; 10ð Þ, r ¼ 0:7; 0; 5ð Þ and dT= 10− 6. Here G is in

power, but the coefficients are such that a revolution is
inevitable and the trajectory sweeps to (0, 1). Once R is in
power, however, it rapidly becomes oppressive itself and after a
while generates the conditions for a new revolution ending at
(1, 0). Each time a revolution occurs, those coming to power
make the same mistakes and the scenario repeats. The effect is
to generate a self-intersecting cycle between (1, 0) and (0, 1),
and alternative initial conditions such as Point 2 yield trajec-
tories that cross part of the cycle before joining it.
Changes to the parameters mainly affect the cycle time,

rather than the shape of the loop. The only chance of avoiding
this cycle is if successful revolutionaries are more egalitarian.
Instead of immediately adopting a lifestyle so luxurious that it
must be defended by force, they should share the proceeds of
victory. In doing so, they will reduce the grievance that leads to
revolution, and the temptation for future governments to
become oppressive. One possibility is a democracy, which has
mechanisms to avoid concentrated wealth and power. Unfortu-
nately, because the necessary choices are sub-optimal for those
in power, democracies are rare.

6. Discussion

In this section, we examine in more detail some key aspects of
the model. Particularly, we consider the assumptions that (i) the
government and rebels are both predators, (ii) the coefficients in
the differential equations are constant and (iii) switching
between rebel- and government-type behaviour is instanta-
neous. We also ask how the numerical values of the coefficients
might be established, and suggest possible directions for further
research.

(i) Predatory behaviour

The predatory nature of many regimes is well established, and
there is evidence that their number is increasing (Diamond,
2008). There is also strong evidence that many rebels are
predatory, that their aim is often loot seeking (Gates, 2002),
and that they may not even need a successful rebellion to set up
a parasitic internal economy (Suarez, 2000). In fact, Collier
(2000) considers rebellion to be a branch of criminal activity,
where the government and rebels both act as predators on
natural resource rents. Such behaviour is prevalent in regions
with gemstone or drugs wealth (Olsson, 2007), so that these are
often torn by civil war. Oil resources are intrinsically less
lootable and require capital-intensive infrastructure. However,
if this is available, revenue sharing with a client elite can extend
the longevity of kleptocratic regimes (Crespo Cuaresma et al,
2011). Finally, where regime change has recently occurred,
it has hardly ever led to democracy (Albrecht, 2004), and
competitive predatory activities are rampant in transition econo-
mies (Mehlum et al, 2003).

(ii) The nature of the differential equation coefficients

We have assumed that all the coefficients are constant before a
rebellion. Of course, this is an extreme simplification. For
example, insurgents often adopt terrorist tactics aimed at forcing
a disproportionate response and consequently enhancing popu-
lar support (Merari, 1993; Kydd and Walter, 2006). Such
effects are partly embedded in the existing model, so that strong
public sympathy may be indicated by a large value of the
coefficient r1. However, realism may be improved by making
r1 depend on the level of government killings, for example by
assuming that r1= r1a+ r1b(g3GR). Conversely, the government
may respond to rebel attacks by increasing repression (Gartner
and Regan, 1996). This effect might be incorporated by making
g3 depend on the level of rebel killings, for example by taking
g3= g3a+ g3b(r3RG). We have carried out simulations with
r1 and g3 modified as described, and find that the main effect
of r1b is to reduce the threshold value of r1a needed for a
rebellion, while the effect of g3b is to reduce the value of g3a
needed to prevent one.
Other possibilities include making each side respond to the

perceived situation. For example, it has been suggested that
attitudes to risk evolve in winner-takes-all games, so that the

Figure 4 Phase portrait for a cycle of revolutions following from
two different initial conditions.
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more a player has to lose, the more prone they are to high-risk
strategies. Government violence increasing with perceived
weakness might be incorporated by making g3 increase as
G reduces, as g3= g3a− g3aG. Note that if g3b> g3a, this implies
that g3 may become negative for sufficiently largeG. This effect
might correspond to a strong government releasing political
prisoners. In a similar way, rebel daring increasing asG reduces
might be modelled by assuming r3= r3a− r3aG. These assump-
tions do make a significant difference. For example, Figure 5
shows a phase-plane portrait for g2= 1, g3a= 10, g3b= 10.5,
r1= 0.2, r3a= 5 and r3b= 4. These parameters match Figure 2,
apart from the introduction of g3b and r3b. Their effect is to
convert the stable node at the government win condition into a
stable spiral, introducing the oscillations in coercion and
dissidence noted by Tsebelis and Sprague (1989). However, as
before, a revolution may still occur if r1 is large enough. Other
changes may yield entirely different results, because they add
extra non-linear terms to the equations. Existing equilibria may
change from stable to unstable, and additional equilibria or limit
cycles may be introduced. Consequently, any such alterations
must be studied carefully.

(iii) The values of the differential equation coefficients

We have assumed arbitrary recruitment and attrition coeffi-
cients. An important question is whether their values could be
established for realistic situations. In combat modelling, con-
siderable attention was paid to attrition from the start (see eg
Helmbold’s translation of Osipov’s 1915 studies). Recent
conventional battles have also been examined (Bracken, 1995),
as have civil wars (Weiss, 1966). A key difficulty is lack of data.
These are typically only available as final casualties, and even
then often only for the winning side, making it difficult to model
extended conflicts (Lucas and Dinges, 2004). Recruitment has
received less attention, although force requirements for military
operations have been considered (Taylor, 1983), most recently
for counter-insurgency (Goode, 2009). Military operations at

least have the advantage that data are required for logistics or
public accountability. However, in a rebellion, there is likely to
be a reluctance to keep records on both sides. Government
recruitment might be estimated from leaked payroll data, and
security force casualties from news records. Rebel recruitment
is by its nature clandestine, and the numbers of political
prisoners and executions are generally withheld, although data
may be available from monitors such as Human Rights Watch
and Amnesty International. Some success has been achieved in
matching dynamic theories to records of protests (Francisco,
1995); however, the gathering of suitable data is likely to be a
promising field for future research.

(iv) The nature of the switching algorithm

We have assumed abrupt switching between rebel- and
government-type behaviour following a successful revolution.
Synchronous changes are clearly not likely. Seizure of weapons
and regime assets will inevitably be rapid, so that switching of
r2 and g2, and r3 and g3 might be expected immediately after a
revolution. However, the larger population will take some time
to understand the exact nature of any regime change. Even
when it has, and the conclusion is unfavourable, appetite for a
further revolution will certainly be low when one has just
occurred. Thus, we would expect switching of the coefficients
r1 and g1 to take place later. However, this refinement is likely
to alter the shape of the limit cycle only near the points (1, 0)
and (0, 1). Exact switching is also clearly implausible. Many of
the actors will change; particularly, the new rebels will not
correspond exactly to the old security forces. Some of the latter
may be killed or imprisoned in acts of reprisal, while others may
be hired into the new security forces. The new rebels are
therefore likely to be a different set of opportunistic predators.
As a result, closed cycles will not be obtained and the limit
cycle in Figure 4 will become blurred. However, despite these
details, it does seem reasonable that response switching is
responsible for at least some of the repetitive dynamics of
history.

(v) Possible extensions

There are clearly many possible extensions to the model that
could be incorporated, particularly to describe outside inter-
ference, foreign-imposed regime change and proxy war. Some
might take the form of further functional responses. For
example, International condemnation of the government and
subsequent denial of arms deliveries might appear as a reduc-
tion in g3 depending on government behaviour. Similarly,
sympathy for the rebels materialising in external financial
assistance or supply of weapons might be accounted for by
increases in r2 and r3. Other changes might involve the addition
of extra parties. The host or neutral population could be
considered, together with foreign forces on either side. How-
ever, as population biologists and, in this context, Feichtinger
and Forst (1996) have noted, the addition of even one extra

Figure 5 Phase portrait for government in power, but with
government and rebels both playing a reactive strategy depending
on G.
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species can again have a dramatic effect on stability and
survival, and greatly complicate graphical presentation. Such
extensions should therefore be attempted only when simpler
models are thoroughly understood.

7. Conclusions

A differential model for rebellion against an oppressive govern-
ment has been proposed. The coefficient values represent the
three main aspects of the struggle: popular support, resources
and weapons. Depending on their values, the model allows
scenarios that demonstrate stable oppressive government and its
overthrow. With constant coefficients, limit cycles are not
obtained. However, cycles emerge if rebels and failed regimes
are allowed to alter their behaviour by exchanging coefficients
after a successful revolution. These changes can be accounted
for partly by seizure of regime assets and partly by changes in
rebel motivation from grievance to greed. Effectively, therefore,
they describe the hijacking of a revolution.
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