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Abstract 

 

A dynamic competition model for an oppressive government opposed by rebels is proposed, 

based on coupled differential equations with constant coefficients. Depending on their values, the 

model allows scenarios representing a stable, oppressive government and violent regime change. 

With constant coefficients, there can be no limit cycles. However, cycles emerge if rebels and 

governments switch characteristics after a revolution, if resources change hands and rebel 

motivations switch from grievance to greed. This mechanism is proposed as an explanation for 

the establishment of a new repressive regime after the overthrow of a similar regime. 
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1. Introduction 

 

It is an unfortunate truth that many governments are oppressive. Throughout recorded history, 

powerful minorities have exploited the wealth of larger communities by force (Lundahl, 1997). 

The penalty for objection is typically severe, with legal niceties such as ‘treason’, and ‘crime 

against the state’ used to exaggerate the offence and euphemisms such as ‘execution’ providing 

cover for acts of murder designed to ensure retention of power. This behaviour is widespread, 

and many modern regimes would still commit almost any crime to retain power (Rummel, 1994). 

Economic inequality, suppression of rights and marginalization of religious or ethnic groups 

often result in continual unrest. However, oppressive governments are depressingly stable. 

Collapse can follow from the economic failure of a kleptocratic regime (Gasiorowski, 1995), or 

the increasingly erratic behaviour of a tyrant (Gladd, 2002). The end is often at the hand of small, 

determined groups, who seize power following the decay of the regime. However, these acts have 

mainly not improved the lot of the majority, with successful revolutionaries often developing an 

equally oppressive rule (Weede, 1997). This cycle is driven by greed (Collier, 2004), and simply 

involves the replacement of one kleptocracy with another (Grossman, 1999). 

 

Recent world events have attracted considerable interest, leading to the development of 

mathematical models designed to analyse the progress of insurgencies (Blank, 2008; Kaplan, 

2010; Atkinson, 2012; Toft, 2012; MacKay, 2013). Similar approaches have been developed for 

domestic conflicts, including civil war (Garrison, 2008; Zhukov, 2013), guerrilla war 

(Dietchman, 1962; Intrilligator, 1988) and protest, coercion and revolution (Tsebelis, 1989). The 

majority use a differential formulation and are inspired by combat modelling or population 
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biology. However, with the main exception of a three-party model by Feichtinger (1996), the 

outcome is usually a choice between either party winning or a stalemate. 

 

Here, we focus on the often-ignored cyclic outcome of revolution. We avoid considering 

individual motivations, because these have been considered elsewhere (Tullock, 1971). Instead, 

we direct our attention to the dynamics of the conflict itself. Such assumptions are highly 

restrictive, but do at least allow the development of a model that can highlight a truism: cycles of 

repression are common, because it is easier to take over an existing kleptocracy than to establish 

a new one. We choose a simple differential model with few coefficients, concentrating on aspects 

of the struggle that might prevent or allow regime change: popular support, resources and 

weapons. We do not attempt to simulate a particular event, but merely develop a model that 

appears to display the correct behaviour. At the least, this should describe three scenarios: stable 

points (representing an established, oppressive government), abrupt changes in stability (regime 

change), and limit cycles (a return to oppression). The model is introduced in Section 2, and 

phase plane analysis is presented in Section 3. The conditions representing stable and unstable 

regimes are discussed in Section 4, and cyclic regime change is described in Section 5. The 

assumptions of the model and possible extensions are discussed in Section 6, and conclusions are 

drawn in Section 7. 
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2. Dynamic model 

 

A common feature of struggles for liberation is how small a fraction of the population is 

involved. The majority is inactive, and unless there is a fully blown civil war its number is 

relatively stable. We therefore ignore this overall population, and assume that the competition is 

between two sub-groups, government (G) and rebels (R). Both are drawn from the population. 

Since the government has access to resources, its forces are assumed to be mercenaries. A 

reasonable description for their growth is one whose rate is proportional to current strength, since 

this will dwindle as resources are exhausted. In contrast, rebel forces grow spontaneously due to 

anger with the regime. There may be many triggers for anti-government feeling; here we simply 

assume a background of dissent, and model rebel recruitment as a constant rate. To limit the span 

of the competition, we also assume that recruitment follows the logistic law. In the absence of 

interaction, the time dependence of the forces may then be described as: 

 

dG/dt = g2G(1 - G) 

dR/dt = r1(1 - R). 

(1) 

Here g2 and r1 are constants representing the effectiveness of government and rebel recruitment 

and the terms 1 - G and 1 - R set the carrying capacity of each side to unity. In reality, values of 

GC (limited by government budgets) and RC (limited by the pool of potential activists) might be 

expected, with RC >> GC. However, models with non-unity carrying capacity can be placed in the 

form above by appropriate scaling of variables. Note that these assumptions do not imply that G 

and R represent fractions of the total population. Instead, they are fractions of a maximum likely 
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strength that is in each case less than the total. These equations have the well-known solutions for 

initial conditions G = G0 and R = R0 at t = 0 of: 

 

G = G0/{G0 + (1 - G0) exp(-g2t)} 

R = 1 + (R0 - 1) exp(-r1t) 

(2) 

Both tend to unity when t tends to infinity. However, when G0 and R0 are small and comparable, 

and g2 and r1 are also comparable, G increases much more slowly than R.  This difference admits 

the possibility of revolution, since it implies that a strong government may be drowned by a tide 

of rebellion if the tide rises fast enough. 

 

The main purpose of any interaction is for each side to eliminate the other. This process can again 

be described using differential equations. One example is the quadratic attrition model: 

 

dG/dt = -r3RG 

dR/dt = -g3GR 

(3) 

Here g3 and r3 are constants representing the effectiveness of government and rebel weapons or 

their willingness to use them, and the interaction describes the rate of removal of each side. These 

equations are the ‘area-fire’ combat model of Lanchester (1916) and the lesser-known Osipov 

(Helmbold, 1995), which have been extensively studied (Taylor, 1983). Dividing them together 

leads to dG/dR = r3/g3, which may be integrated from initial conditions G = G0 and R = R0 at t = 0 

to yield the ‘linear’ law g3(G0 - G ) = r3(R0 - R). This result suggests that R may be reduced to 
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zero, with G having a positive remnant, provided g3G0 > r3R0. Equations 3 may then be integrated 

separately; provided g3G0 ≠ r3R0 the result is: 

 

G = G0(g3G0 - r3R0)/{g3G0 - r3R0 exp[-(g3G0 - r3R0)t]} 

R = R0(r3R0 - g3G0)/{r3R0 - g3G0 exp[-(r3R0 - g3G0)t]} 

(4) 

If g3G0 > r3R0, the upper exponential will decay to zero, while the lower one will grow. As a 

result, G will tend to G0 - r3R0/g3, while R will tend to zero. Under these circumstances we would 

expect the government to eliminate any opposition. Other attrition models such as the ‘aimed-

fire’ model (which has dG/dt = -r3R and dR/dt = -g3G) and the ‘mixed’ model (dG/dt = -r3R and 

dR/dt = -g3RG) exist. The second model is appropriate for guerrilla combat, when the 

government is visible to the rebels, but the rebels must be hunted down (Dietchman, 1962). 

However, it may be less appropriate during the end-stage of a revolution, when the reverse might 

be true. We therefore ignore these alternatives. 

 

The full model combines recruitment and attrition. For generality, we assume the equations: 

 

dG/dt = (g1 + g2G)(1 - G) - r3RG 

dR/dt = (r1 + r2R)(1 - R)  - g3GR 

(5) 

For reasons that will become clear, we have allowed both populations to recruit by both 

processes, so that g1 and r1 refer to spontaneous recruitment driven by popular support, and g2 and 

r2 to active recruitment driven by resources; g3 and r3 refer to weapon capability as before. The 
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two sides can then be characterised by coefficient vectors g = (g1, g2, g3) and r = (r1, r2, r3), with 

all elements positive. However, an oppressive government will typically have little popular 

support, so g1 ≈ 0, while rebels will have few resources, so r2 ≈ 0. 

 

Equations 5 can be written in the form dG/dt = fG(G, R) and dR/dt = fR(G, R) and are analogous 

to the Lotka-Volterra equations (Vandermeer, 2013). However, the inclusion of g1 and r1 means 

that the equations are not in the standard Kolmogorov form dG/dt = G fg(G, R) and dR/dt = R 

fr(G, R). Note that the model is not predator-prey type, as assumed by Tsebelis (1989), but 

competition-type. If there is a biological analogue, the relation between the population and the 

government is clearly host-parasite. Although the population may be unaware until too late, its 

relation with the rebels is also host-parasite, and the competition is between two parasites to 

exploit the host. 

 

Solutions may always be obtained numerically. For example, Figure 1a shows the results 

obtained for g = (0, 1, 10), r = (0.1, 0, 5), with G0 = 1 and R0 = 0.5. Here, the government easily 

defeats the rebels, and in addition is able to restore its forces. However, the steady inflow of rebel 

recruits stops the government force rising back to unity, and also prevents the complete 

annihilation of the rebels. Approximate solutions can also be obtained. For example, if g1 = 0, r2 = 

0, R << 1 and G ≈ 1, Equations 5 may be approximated as dG/dt ≈ g2(1 - G) - r3R and dR/dt ≈ r1  - 

g3R. For the initial conditions of G = G0, R = R0 we then get: 

 

R = A + B exp(-g3t) 

G = C + D exp(-g3t) + {G0 - (C + D)} exp(-g2t) 
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(6) 

Where A = r1/g3, B = R0 - r1/g3, C = 1 - r1r3/g2g3 and D = (g3r3R0 - r1r3)/(g3
2 - g2g3). The steady-state 

levels must then be R = r1/g3 (here, 0.01) and G = 1 - r1r3/g2g3 (0.95). These values are not 

functions of the initial conditions. Many parameter choices give similar results, with the 

government re-establishing control. However, some give a different outcome. For example, 

Figure 1b shows results for g = (0, 1, 10), r = (1, 0, 5), G0 = 1 and R0 = 0.5. The only change from 

Figure 1a is a large increase in the rebel recruitment term r1. However, the effect is dramatic: the 

government is annihilated, and the rebel force rises to unity. Clearly, the possibility of a 

revolution is inherent in the equations. However, systematic investigation is needed to establish 

when it can occur.
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3. Phase plane analysis 

 

Non-linear coupled differential equations are often analysed on a plane whose axes are the two 

variables. Here, dG/dt > 0 when G = 0, and dG/dt < 0 when G = 1; similarly, dR/dt > 0 when R = 

0, and dR/dt < 0 when R = 1. Consequently, only the region bounded by G = 0, G = 1, R = 0 and 

R = 1 need be considered, as solutions starting in this region must remain inside it. Null isoclines 

are obtained when dG/dt = 0 or dR/dt = 0, or when: 

 

R =  (g1 + g2G)(1 - G)/r3G 

G =  (r1 + r2R)(1 - R)/g3R 

(7) 

Equations 7 are smooth curves, and points of equilibrium with co-ordinates (Ge, Re) are obtained 

where they intersect. For Re, this leads to the quartic equation: 

 

(c1c2 - c3)Re
4 + (b1c2 + c1b2 - b3)Re

3 + (a1c2 + b1b2 + c1a2 - a3)Re
2 + (a1b2 + b1a2)Re + a1a2 = 0 

(8) 

Here a1 = g2r1, b1 = g1g3 + g2(r2 - r1), c1 = -g2r2 , a2 = -r1, b2 = g3 + r1 - r2, c2 = r2, a3 = g3r1r3, b3 = g3(r2 

- r1)r3 and c3 = -g3r2r3. Generally, there will be four roots. However, a special case is obtained 

when g1 = 0 and r2 = 0. In this case, the quartic reduces to the cubic: 

 

(Re - 1){g3r3Re
2 - g2(g3 + r1)Re + g2r1} = 0 

(9) 
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One solution is Re = 1 and Ge = 0, which corresponds to a rebel win accompanied by government 

annihilation as shown in Figure 1b. The others are the roots of the bracketed quadratic: 

 

Re = {g2(g3 + r1) ± √[(g2
2(g3 + r1)2 - 4g2g3r1r3]}/2g3r3 

(10) 

When r1 is small, the smaller root approximates to Re ≈ r1/g3 and Ge ≈ 1 - r1r3/g2g3, the steady state 

values of Equations 6. Consequently, a second state has the Government firmly in control, but 

with an undercurrent of rebel activity as in Figure 1a. The character of the third state will become 

clear later. Repeated roots are obtained when g2
2(g3 + r1)2 - 4g2g3r1r3 = 0, which requires: 

 

r1 = (g3/g2){2r3 - g2 ± 2√[r3(r3 - g2)]} 

(11) 

Repeated roots can never be obtained if r3 < g2, because the required value of r1 is complex. 

However, if r3 > g2, we would expect a change in equilibria when r1 reaches a critical value. 

 

Standard techniques are used to analyse the nature of any equilibrium point (Ge, Re). Lyapunov’s 

indirect method involves linearizing the equations in the vicinity. Introducing new variables ΔG = 

G - Ge and ΔR = R - Re, where ΔG and ΔR are small, the resulting equations can be written as 

dΔ/dt = J Δ.  Here Δ is the column vector (ΔG, ΔR) and J is the Jacobian matrix: 

 

J11 = ∂fG/∂G⎪(Ge, Re) = g2 - g1 - 2g2Ge - r3Re J12 = ∂fG/∂R⎪(Ge, Re) = -r3Ge 

J21 = ∂fR/∂G⎪(Ge, Re) = -g3Re J22 = ∂fR/∂R⎪(Ge, Re) = r2 - r1 - 2r2Re - g3Ge 

(12) 
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Now, J will have eigenvalues λ1 and λ2 and eigenvectors V1 and V2, and a solution for initial 

conditions Δ0 at t = 0 can always be written in terms of these eigenvalues and eigenvectors. An 

arbitrary perturbation Δ0 will then decay to zero (so the equilibrium is stable) if both λ1 and λ2 

have negative real parts. Other possibilities can be classified as follows. The eigenvalues are λ1,2 

= {Tr ± √[Tr2 - 4Det]}/2, where Tr = J11 + J22 is the trace of J and Det = J11J22 - J12J21 is its 

determinant. The eigenvalues will therefore be complex if the discriminant Tr2 - 4Det is negative. 

In this case the trajectories will be spirals that tend towards or away from the equilibrium. If the 

discriminant is positive, simpler nodes are obtained. If Det < 0, the discriminant must be real, and 

the eigenvalues of opposite sign, so the equilibrium is a saddle. If Det > 0, the eigenvalues must 

have the same sign. If Tr > 0, both must be positive, and the equilibrium is an unstable focus. If 

Tr < 0, both must be negative and the equilibrium is a stable focus. 

 

Alternative behaviour can arise in the form of limit cycles, whose existence or absence can be 

established using the Poincaré-Bendixson and Bendixson-Dulac theorems. In the notation here, 

the latter requires identification of a differentiable function h such that ∂(hfG)/∂G + ∂(hfR)/∂R has 

the same sign (≠ 0) in a simply connected region. A suitable function here is h = G-1R-1, which 

leads to: 

 

∂(hfG)/∂G + ∂(hfR)/∂R = -(g1/G + g2G + r1/R + r2R)/GR 

(13) 

Since the coefficients are all positive, the right-hand side is always negative in the first quadrant, 

so there can be no limit cycles in this region, whatever the coefficient values.
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4. Stable and unstable regimes 

 

We now present numerical examples. To begin with, we assume g = (0, 1, 10) to represent a 

government with no popular support, but plentiful resources and weapons. Similarly, we assume r 

= (0.2, 0, 5) to represent rebels with modest support, no resources, and a weaker arsenal. The 

thick lines in Figure 2a are the null isoclines, while the discrete points indicate equilibria. The 

isoclines are straight for the government and hyperbolic for the rebels. Trajectories must cross the 

government isocline vertically, and the rebel isocline horizontally. There are three equilibria in 

the region, Point A at (0, 1), and B and C at the two solutions to Equation 5. Lyapunov analysis 

shows that A and C are stable foci, while B is a saddle point. The thin lines in Figure 2b show 

representative trajectories, starting from the perimeter. Trajectories clearly skirt the unstable 

equilibrium point B, and end only at the stable equilibria A and C. Those ending at C with the 

government dominating are shown as full lines, while those ending at A with the rebels dominant 

are dashed. In this example, the government remains in control except when the rebels initially 

outnumber them (an unrealistic situation) so these parameters represent a stable, oppressive 

government. Points A and C correspond to states of competitive exclusion in a biological model. 

However, in this case, the equations would be in Kolmogorov form, with r1 zero and r2 non-zero. 

Both isoclines would then be straight, and the state with government dominant would also have 

the rebels extinct, eliminating any possibility for future revolution. Thus, the coefficient r1 allows 

perpetual opposition. 

 

Other parameter combinations can result in stalemate. However, because stalemates have been 

considered extensively elsewhere (MacKay, 2013), we focus here on exclusion scenarios, and 
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particularly on the effect of r1 in altering the outcome. For example, Figure 3a shows results for g 

= (0, 1, 10) and r = (0.5, 0, 5). Here all parameters are unchanged, except r1, which has increased. 

As a result, the rebel isocline has risen, points B and C have moved closer together, and the phase 

portrait has fewer full-line trajectories. The net effect is to imply weaker government control. A 

similar effect is obtained if g2 and g3 are reduced (which corresponds to decay of the regime), but 

this time it is the government isocline that alters, by reducing its slope. 

 

Equation 11 implies that points B and C will coincide at a critical value of r1, and then become 

complex conjugates. For the previous parameters, the smaller solution is r1 = 0.557. Figure 3b 

shows the results when g = (0, 1, 10) and r = (0.7, 0, 5), so r1 is well above this value. There are 

now no intersections of the isoclines. Although an equilibrium point is shown, it is only the real 

part of a complex conjugate pair. As a result, the phase portrait only contains dashed-line 

trajectories ending at the rebel win condition. Consequently, the government will always lose 

control, the condition for revolution. 

 

At this point we note that assignment of government characteristics to G and rebel characteristics 

to R is arbitrary. G and R are just the current government and rebels, and the situation might one 

day be reversed, with R in power and G seeking it. In that case, more relevant titles for the two 

sides might be green and red. However, transfer of power from R to G can take place by exactly 

the same mechanism. 
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5. Cyclic regime change 

 

We now consider the modifications needed to allow cyclic regime change. Since our constant-

coefficient model forbids cycles, the answer must lie in changes in behaviour. Behavioural 

variations are well known in biology, and competition equations have been made more realistic, 

by allowing switching of a predator between prey, or prey between habitats. Often, this behaviour 

is modelled using sigmoidal functions, which can switch a coefficient on or off depending on the 

size of the population. Switching might be expected in human behaviour, and sigmoidal functions 

have already been used in a conflict model (Feichtinger, 1996). Here, the variations depend on 

choices made after a revolution. More precisely, since the goal of most rebels will have simply 

been to remove the government, they will depend on the decisions of the rebel leaders. 

 

Almost certainly, successful rebels will seize the resources and weapons of the previous regime. 

Depending on the degree of temporary disorder, they may re-employ many of its mercenaries. 

When order is restored, the leaders may be tempted to enjoy the lifestyle of the previous regime, 

and indeed this may have been their aim all along. If this is the case, the grievance of the majority 

will be rapidly displaced by the greed of an opportunistic minority. However, this enhanced 

lifestyle is necessarily exploitative. If, to maintain it, the rebels deploy their new assets against 

the larger population, they will sooner or later lose its support. Similarly, the deposed 

government will immediately lose its resources. However, either it or a similarly disenchanted 

group may after a while acquire popular support and the weapons needed to mount another 

revolution. If these changes occur, each competitor will after a time assume the characteristics of 

the other. However, the switching characteristics cannot simply be a function of the current state. 
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For example, while it is in power, a government is likely to retain its assets until it falls. 

However, when attempting to regain power, it will not recover them until it succeeds. 

Consequently, switching cannot involve mere reversal of history; hysteresis must be involved. 

 

A suitable algorithm may be constructed as follows. Whenever a new stable state is reached 

(defined by G or R approaching unity to within a threshold dT), generate new coefficient vectors 

gnew and rnew from old vectors gold and rold following gnew = rold, rnew = gold. Figure 4 shows the phase 

portrait starting at Point 1 = (1, 0.2), assuming initial coefficient vectors g = (0, 1, 10), r = (0.7, 0, 

5) and dT = 10-6. Here G is in power, but the coefficients are such that a revolution is inevitable 

and the trajectory sweeps to (0, 1). Once R is in power, however, it rapidly becomes oppressive 

itself and after a while generates the conditions for a new revolution ending at (1, 0). Each time a 

revolution occurs, those coming to power make the same mistakes and the scenario repeats. The 

effect is to generate a self-intersecting cycle between (1, 0) and (0, 1), and alternative initial 

conditions such as Point 2 yield trajectories that cross part of the cycle before joining it. 

 

Changes to the parameters mainly affect the cycle time, rather than the shape of the loop. The 

only chance of avoiding this cycle is if successful revolutionaries are more egalitarian. Instead of 

immediately adopting a lifestyle so luxurious that it must be defended by force, they should share 

the proceeds of victory. In doing so, they will reduce the grievance that leads to revolution, and 

the temptation for future governments to become oppressive. One possibility is a democracy, 

which has mechanisms to avoid concentrated wealth and power. Unfortunately, because the 

necessary choices are sub-optimal for those in power, democracies are rare. 
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6. Discussion 

 

In this section, we examine in more detail some key aspects of the model. Particularly, we 

consider the assumptions that i) the government and rebels are both predators, ii) the coefficients 

in the differential equations are constant and iii) switching between rebel- and government-type 

behaviour is instantaneous. We also ask how the numerical values of the coefficients might be 

established, and suggest possible directions for further research. 

 

i) Predatory behaviour 

The predatory nature of many regimes is well established, and there is evidence that their number 

is increasing (Diamond, 2008). There is also strong evidence that many rebels are predatory, that 

their aim is often loot seeking (Gates, 2002), and that they may not even need a successful 

rebellion to set up a parasitic internal economy (Suarez, 2000). In fact, Collier (2000) considers 

rebellion to be a branch of criminal activity, where the government and rebels both act as 

predators on natural resource rents. Such behaviour is prevalent in regions with gemstone or 

drugs wealth (Olsson 2007), so that these are often torn by civil war. Oil resources are 

intrinsically less lootable and require capital-intensive infrastructure. However, if this is 

available, revenue sharing with a client elite can extend the longevity of kleptocratic regimes 

(Crespo Cuaresma, 2011). Finally, where regime change has recently occurred, it has hardly ever 

led to democracy (Albrecht, 2004), and competitive predatory activities are rampant in transition 

economies (Mehlum, 2003). 

 

ii) The nature of the differential equation coefficients 
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We have assumed that all the coefficients are constant before a rebellion. Of course, this is an 

extreme simplification. For example, insurgents often adopt terrorist tactics aimed at forcing a 

disproportionate response and consequently enhancing popular support (Merari, 1993; Kydd, 

2006). Such effects are partly embedded in the existing model, so that strong public sympathy 

may be indicated by a large value of the coefficient r1. However, realism may be improved by 

making r1 depend on the level of government killings, for example by assuming that r1 = r1a + 

r1b(g3GR). Conversely, the government may respond to rebel attacks by increasing repression 

(Gartner, 1996). This effect might be incorporated by making g3 depend on the level of rebel 

killings, for example by taking g3 = g3a + g3b(r3RG). We have carried out simulations with r1 and 

g3 modified as described, and find that the main effect of r1b is to reduce the threshold value of r1a 

needed for a rebellion, while the effect of g3b is to reduce the value of g3a needed to prevent one. 

 

Other possibilities include making each side respond to the perceived situation. For example, it 

has been suggested that attitudes to risk evolve in winner-takes-all games, so that the more a 

player has to lose, the more prone they are to high-risk strategies. Government violence 

increasing with perceived weakness might be incorporated by making g3 increase as G reduces, 

as g3 = g3a - g3aG. Note that if g3b > g3a, this implies that g3 may become negative for sufficiently 

large G. This effect might correspond to a strong government releasing political prisoners. In a 

similar way, rebel daring increasing as G reduces might be modelled by assuming r3 = r3a - r3aG. 

These assumptions do make a significant difference. For example, Figure 5 shows a phase-plane 

portrait for g2 = 1, g3a = 10, g3b = 10.5, r1 = 0.2, r3a = 5 and r3b = 4. These parameters match Figure 

2, apart from the introduction of g3b and r3b. Their effect is to convert the stable node at the 

government win condition into a stable spiral, introducing the oscillations in coercion and 
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dissidence noted by Tsebelis (1989). However, as before, a revolution may still occur if r1 is large 

enough. Other changes may yield entirely different results, because they add extra non-linear 

terms to the equations. Existing equilibria may change from stable to unstable, and additional 

equilibria or limit cycles may be introduced. Consequently, any such alterations must be studied 

carefully. 

 

iii) The values of the differential equation coefficients 

We have assumed arbitrary recruitment and attrition coefficients. An important question is 

whether their values could be established for realistic situations. In combat modelling, 

considerable attention was paid to attrition from the start (see for example Helmbold’s translation 

of Osipov’s 1915 studies). Recent conventional battles have also been examined (Bracken, 1995), 

as have civil wars (Weiss, 1966). A key difficulty is lack of data. These are typically only 

available as final casualties, and even then often only for the winning side, making it difficult to 

model extended conflicts (Lucas, 2004). Recruitment has received less attention, although force 

requirements for military operations have been considered (Taylor, 1983), most recently for 

counterinsurgency (Goode, 2009). Military operations at least have the advantage that data is 

required for logistics or public accountability. However, in a rebellion, there is likely to be a 

reluctance to keep records on both sides. Government recruitment might be estimated from 

leaked payroll data, and security force casualties from news records. Rebel recruitment is by its 

nature clandestine, and the numbers of political prisoners and executions are generally withheld, 

although data may be available from monitors such as Human Rights Watch and Amnesty 

International. Some success has been achieved in matching dynamic theories to records of 

protests (Francisco, 1995); however, the gathering of suitable data is likely to be a promising 
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field for future research. 

 

iv) The nature of the switching algorithm 

We have assumed abrupt switching between rebel- and government-type behaviour following a 

successful revolution. Synchronous changes are clearly not likely. Seizure of weapons and 

regime assets will inevitably be rapid, so that switching of r2 and g2, and r3 and g3 might be 

expected immediately after a revolution. However, the larger population will take some time to 

understand the exact nature of any regime change. Even when it has, and the conclusion is 

unfavourable, appetite for a further revolution will certainly be low when one has just occurred. 

Thus, we would expect switching of the coefficients r1 and g1 to take place later. However, this 

refinement is likely to alter the shape of the limit cycle only near the points (1, 0) and (0, 1). 

Exact switching is also clearly implausible. Many of the actors will change; particularly, the new 

rebels will not correspond exactly to the old security forces. Some of the latter may be killed or 

imprisoned in acts of reprisal, while others may be hired into the new security forces. The new 

rebels are therefore likely to be a different set of opportunistic predators. As a result closed cycles 

will not be obtained, and the limit cycle in Figure 4 will become blurred. However, despite these 

details, it does seem reasonable that response switching is responsible for at least some of the 

repetitive dynamics of history. 

 

v) Possible extensions 

There are clearly many possible extensions to the model that could be incorporated, particularly 

to describe outside interference, foreign-imposed regime change and proxy war. Some might take 

the form of further functional responses. For example, International condemnation of the 
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government and subsequent denial of arms deliveries might appear as a reduction in g3 depending 

on government behaviour. Similarly, sympathy for the rebels materialising in external financial 

assistance or supply of weapons might be accounted for by increases in r2 and r3. Other changes 

might involve the addition of extra parties. The host or neutral population could be considered, 

together with foreign forces on either side. However, as population biologists and, in this context, 

Feichtinger (1996), have noted, the addition of even one extra species can again have a dramatic 

effect on stability and survival, and greatly complicate graphical presentation. Such extensions 

should therefore be attempted only when simpler models are thoroughly understood.
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7. Conclusions 

 

A differential model for rebellion against an oppressive government has been proposed. The 

coefficient values represent the three main aspects of the struggle: popular support, resources, and 

weapons. Depending on their values, the model allows scenarios that demonstrate stable 

oppressive government and its overthrow. With constant coefficients, limit cycles are not 

obtained. However, cycles emerge if rebels and failed regimes are allowed to alter their 

behaviour by exchanging coefficients after a successful revolution. These changes can be 

accounted for partly by seizure of regime assets and partly by changes in rebel motivation from 

grievance to greed. Effectively, therefore, they describe the hijacking of a revolution. 
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a)  

b)  

Figure 1. Example time-variation of government (full line) and rebel (dashed line) forces, 

with a) government and b) rebels winning.
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a)  

b)  

Figure 2. a) Example null isoclines and equilibrium states and b) phase portraits for a government 

in power, with minor unrest. 
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a)  

b)  

Figure 3. a) Example null isoclines (thick, full lines), equilibrium states (points) and phase 

portraits (thin, full and dashed lines) for a government initially in power, with a) major unrest and 

b) rebels gaining power. 
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Figure 4. Phase portrait for a cycle of revolutions following from two different initial conditions. 

 

 
Figure 5. Phase portrait for government in power, but with government and rebels both playing a 

reactive strategy depending on G. 


