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ABSTRACT
Bayesian model selection is a tool for deciding whether the introduction of a new parameter

is warranted by the data. I argue that the usual sampling statistic significance tests for a null

hypothesis can be misleading, since they do not take into account the information gained

through the data, when updating the prior distribution to the posterior. In contrast, Bayesian

model selection offers a quantitative implementation of Occam’s razor.

I introduce the Savage–Dickey density ratio, a computationally quick method to determine

the Bayes factor of two nested models and hence perform model selection. As an illustration, I

consider three key parameters for our understanding of the cosmological concordance model.

By using Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data complemented by other

cosmological measurements, I show that a non-scale-invariant spectral index of perturbations

is favoured for any sensible choice of prior. It is also found that a flat universe is favoured

with odds of 29:1 over non-flat models, and that there is strong evidence against a cold dark

matter isocurvature component to the initial conditions which is totally (anti)correlated with

the adiabatic mode (odds of about 2000:1), but that this is strongly dependent on the prior

adopted.

These results are contrasted with the analysis of WMAP 1-year data, which were not infor-

mative enough to allow a conclusion as to the status of the spectral index. In a companion

paper, a new technique to forecast the Bayes factor of a future observation is presented.

Key words: methods: data analysis – methods: statistical – cosmic microwave background –

cosmological parameters.

1 I N T RO D U C T I O N

In the epoch of precision cosmology, we often face the problem of

deciding whether or not cosmological data support the introduction

of a new quantity in our model. For instance, we might ask whether

it is necessary to consider a running of the spectral index, an extra

isocurvature mode, or a non-constant dark energy equation of state.

The status of such additional parameters is uncertain, as often sam-

pling (frequentist) statistics significance tests do not allow them to

be ruled out with high confidence. There is a large body of work1

that addresses the difficulties arising from the use of p-values (sig-

nificance level) in assessing the need for a new parameter. Many

weaknesses of significance tests are clarified, and some even over-

come, by adopting a Bayesian approach to testing. In this work,

we take the viewpoint of Bayesian model selection to determine

whether a parameter is needed in the light of the data at hand.

The key quantity for Bayesian model comparison is the marginal

likelihood, or evidence, whose calculation and interpretation is at-

�E-mail: rxt@astro.ox.ac.uk
1 A good starting point is the collection of references available from the

website of David R. Anderson, Department of Fishery and Wildlife Biology,

Colorado State University.

tracting increasing attention in cosmology and astrophysics (Drell,

Loredo & Wasserman 2000; Saini, Weller & Bridle 2004; Lazarides,

de Austri & Trotta 2004; Beltran et al. 2005; Kunz, Trotta &

Parkinson 2006; Trotta 2007c), after it was introduced in the cos-

mological context by Jaffe (1996) and Slosar et al. (2003). The

marginal likelihood has proved useful in other contexts, as well,

for instance consistency checks between data sets (Hobson, Bridle

& Lahav 2002; Marshall, Rajguru & Slosar 2006), the detection

of galaxy clusters via the Sunayev–Zel’dovich effect (Hobson &

McLachlan 2003) and neutrino emissions from type II supernovae

(Loredo & Lamb 2002). In this paper we use the Savage–Dickey

density ratio (SDDR) for an efficient computation of marginal like-

lihoods ratios (Bayes factor), while in a companion paper (Trotta

2007a) we present a new method to forecast the Bayes factor proba-

bility distribution of a future observation, called PPOD (for ‘Predic-

tive Posterior Odds Distribution’).2 We then illustrate applications to

some important parameters of current cosmological model building.

This paper is organized as follows: we review the basics of

Bayesian model comparison in Section 2 and we introduce the

2 The method was called ExPO for ‘Expected Posterior Odds’ in a previous

version of this work (Trotta, unpublished, astro-ph/0504022v1). I am grateful

to Tom Loredo for suggesting the new, more appropriate name.
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SDDR for the computation of the Bayes factor between two nested

models. Section 3 is devoted to the application of model selection

to three central parameters of the cosmological concordance model:

the spectral tilt of scalar perturbations, the spatial curvature of the

Universe and a totally (anti)correlated isocurvature cold dark matter

(CDM) contribution to the initial conditions. We discuss our results

and summarize our conclusions in Section 4.

Some complementary material is presented in the appendices. An

explicit illustration of Lindley’s paradox is given in Appendix A,

the mathematical derivation of the SDDR is presented in Appendix

B while a series of benchmark tests for the accuracy of the SDDR

are carried out in Appendix C.

2 BAY E S I A N M O D E L C O M PA R I S O N

In this section, we first briefly review the basics of Bayesian infer-

ence and model comparison and introduce our notation. We then

present the SDDR for a quick computation of the Bayes factor of

two nested models.

2.1 Bayes factor

Bayesian inference (see e.g. Jaynes 2003; MacKay 2003) is based

on Bayes’ theorem, which is a consequence of the product rule of

probability theory:

p(θ | d, M) = p(d | θ, M)π (θ | M)

p(d | M)
. (1)

On the left-hand side, the posterior probability for the parameters θ

given the data d under a model M is proportional to the likelihood

p(d | θ , M), times the prior probability distribution function (PDF),

π (θ | M), which encodes our state of knowledge before seeing the

data. In the context of model comparison it is more useful to think

of π (θ | M) as an integral part of the model specification, defining

the prior available parameter space under the model M. The normal-

ization constant in the denominator of (1) is the marginal likelihood
for the model M (sometimes also called the ‘evidence’) given by

p(d | M) =
∫

�

p(d | θ, M)π (θ | M) dθ, (2)

where � designates the parameter space under model M. In general,

θ denotes a multidimensional vector of parameters and d a collection

of measurements (data covariance matrix, etc.), but to avoid clut-

tering the notation we will stick to the simple symbols introduced

above.

Consider two competing models M0 and M1 and ask what is the

posterior probability of each model given the data d. By Bayes’

theorem we have

p(Mi | d) ∝ p(d | Mi )π (Mi ) (i = 0, 1), (3)

where p(d | Mi ) is the marginal likelihood for Mi and π (Mi ) is the

prior probability of the ith model before we see the data. The ratio

of the likelihoods for the two competing models is called the Bayes
factor:

B01 ≡ p(d | M0)

p(d | M1)
, (4)

which is the same as the ratio of the posterior probabilities of the

two models in the usual case when the prior is presumed to be non-

committal about the alternatives and therefore π (M0) = π (M1) =
1/2. The Bayes factor can be interpreted as an automatic Occam’s

razor, which disfavours complex models involving many parameters

Table 1. Jeffreys’ scale for the strength of evidence when comparing two

models, M0 versus M1, with our convention for denoting the different levels

of evidence. The probability column refers to the posterior probability of

the favoured model, assuming non-committal priors on the two competing

models, that is, π (M0) = π (M1) = 1/2 and that the two models exhaust the

model space, p(M0|d) + p(M1| d) = 1.

| ln B01 | Odds Probability Notes

<1.0 �3 : 1 < 0.750 Inconclusive

1.0 ∼3 : 1 0.750 Positive evidence

2.5 ∼12 : 1 0.923 Moderate evidence

5.0 ∼150 : 1 0.993 Strong evidence

(see e.g. MacKay 2003, for details). A Bayes factor B01 > 1 favours

model M0 and in terms of betting odds it would prefer M0 over M1

with odds of B01 against 1. The reverse is true for B01 < 1.

It is usual to consider the logarithm of the Bayes factor, for which

the so-called ‘Jeffreys’ scale’ gives empirically calibrated levels

of significance for the strength of evidence (Jeffreys 1961; Kass

& Raftery 1995), |ln B01| >1; >2.5; >5.0. Different authors use

different conventions to qualify the Jeffreys’ levels of strength of

evidence. In this work we will use the convention summarized in

Table 1 – often in the literature one deems odds above |ln B01| = 5 to

be ‘decisive’, but we prefer to avoid the use of the term because of the

strong connotation of finality that it carries with it. If we assume that

the two competing models are exhaustive, that is, that p(M0| d) +
p(M1| d) = 1 and a non-committal prior π (M0) = π (M1) = 1/2, we

can relate the strength of evidence to the posterior probability of the

models,

p(M0 | d) = B01

B01 + 1
,

p(M1 | d) = 1

B01 + 1
. (5)

This probability is indicated in the third column of Table 1.

The subject of hypothesis testing has received an enormous

amount of attention in the past, and the controversy on the sub-

ject is far from being resolved among statisticians. An illustration

of the difference between Bayesian model selection and frequentist

hypothesis testing is given in Appendix A, where Lindley’s para-

dox is worked out with the help of a simple example. There it is

shown that the Bayesian approach has the advantage of taking into

account the information provided by the data, which is ignored by

frequentist hypothesis testing.

Evaluating the marginal likelihood integral of equation (2) is in

general a computationally demanding task for multidimensional pa-

rameter spaces. Thermodynamic integration is often the method of

choice, whose computational burden can become fairly large, as

it depends heavily on the dimensionality of the parameter space

and on the characteristic of the likelihood function. In certain cos-

mological applications, thermodynamic integration can require up

to 100 times more likelihood evaluation than parameter estimation

(Beltran et al. 2005). An elegant algorithm called ‘nested sampling’

has been recently put forward by Skilling (2004), and implemented

in the cosmological context by Bassett, Corasaniti & Kunz (2004)

and Mukherjee, Parkinson & Liddle (2006). While nested sampling

reduces the number of likelihood evaluations to the same order of

magnitude as for parameter estimation, in the cosmological con-

text this does not necessarily imply that the computing time can be

reduced accordingly, see Mukherjee et al. (2006) for details.
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2.2 The Savage–Dickey density ratio

Here we investigate the performance of the Savage–Dickey density

ratio (SDDR), whose use is very promising in terms of reducing

the computational effort needed to calculate the Bayes factor of

two nested models, as we show below (for other possibilities, see

e.g. DiCiccio et al. 1997).

Suppose we wish to compare a two-parameters model M1 with a

restricted submodel M0 with only one free parameter, ψ , and with

fixed ω = ω� (for simplicity of notation we take a two-parameters

case, but the calculations carry over trivially in the multidimensional

case). Assume further that the prior is separable (which is usually

the case in cosmology), that is, that

π (ω, ψ | M1) = π (ω | M1)π (ψ | M0). (6)

Then the Bayes factor B01 of equation (4) can be written as (see

Appendix B)

B01 = p(ω | d, M1)

π (ω | M1)

∣∣∣∣
ω=ω�

(SDDR). (7)

This expression goes back to Dickey (1971), who attributed it to L. J.

Savage, and is therefore called Savage–Dickey density ratio (SDDR,

see also Verdinelli & Wasserman 1995, and references therein).

Thanks to the SDDR, the evaluation of the Bayes factor of two

nested models only requires the properly normalized value of the

marginal posterior at ω = ω� under the extended model M1, which is

a by-product of parameter inference. We note that the derivation of

(7) does not involve any assumption about the posterior distribution,

and in particular about its normality.

For a Gaussian prior centred on ω� with s.d. �ω and a Gaussian

likelihood3 with mean μ̂ and width σ̂ , equation (7) gives

ln B01(β, λ) = 1

2
ln(1 + β−2) − λ2

2(1 + β2)
, (8)

where we have introduced the number of sigma discrepancy λ =
|μ̂ − ω�|/σ̂ and the volume reduction factor β = σ̂ /�ω (see Ap-

pendix A for details). For strongly informative data, β−1 � 1 and

in terms of the information content I = −ln β � 0, equation (8) is

approximated by

ln B01 ≈ I − λ2/2 (informative data). (9)

The two terms on the right-hand side pull the Bayes factor in oppo-

site directions: a large information content I signals a large volume of

wasted parameter space under the prior, and acts as an Occam’s razor

term favouring the simpler model, while a large λ favours the more

complex model because of the mismatch between the measured and

the predicted value of the extra parameter. Evidence against the

simpler model scales as λ2, while evidence in its favour only ac-

cumulates as I = − ln β. Furthermore, for strong odds against the

simpler model (λ � 1) the prior choice becomes irrelevant unless

I � λ, a situation which gives rise to Lindley’s paradox (see

Appendix A). For the case where λ � 1, that is, the prediction of the

simpler model is confirmed by the observation, the odds in favour

of the simpler model are determined by the information content I,
and therefore by the prior choice.

The use of the SDDR for nested models has several advantages.

A first important point is the analytical insight equation (7) gives

into the working of model selection for two nested models, which

we have briefly sketched above. Priors on the common parameters

3 Notice that μ̂ and σ̂ are referred to the likelihood, not the posterior PDF.

on both models are unimportant, as they factor out when computing

the Bayes factor. The only relevant scales in the problem are the

quantities λ and β, see equation (9), with the latter controlled by the

prior width on the extra parameter. The volume effect arising from a

change in the prior (e.g. when enlarging the prior range) can be easily

estimated from the SDDR expression, without recomputing the pos-

terior. Usually, the posterior PDF in equation (7) will be obtained by

Monte Carlo Markov Chain (MCMC) techniques. In this case, even a

change in the variables, or a more restrictive prior can usually be ap-

plied by simply posterior reweighting the MCMC samples without

recomputing them. Secondly, the SDDR can be applied to existing

MCMC chains, and therefore the model selection question can be

dealt with easily after the parameter estimation step has already been

performed. Finally, Appendix C demonstrates that in the benchmark

Gaussian likelihood scenario the SDDR gives accurate results out

to λ � 3. For larger value of λ the performance of the method is

hindered by the fact that it becomes very difficult with conventional

MCMC methods to obtain samples far out into the tails of the pos-

terior. One could argue however that the most interesting regime for

model comparison is precisely where the SDDR can yield accurate

answers. This is also the region where most of the model selection

questions in cosmology currently lie. Finally, often a high numerical

accuracy in the Bayes factor does not seem to be central for most

model comparison questions, especially in view of the fact that the

uncertainty in the result can be strongly dominated by the prior range

one assumes. This suggests that a quick and computationally inex-

pensive method such as the SDDR might be helpful in assessing the

model comparison outcome for a broad range of priors. We there-

fore advocate the use of SDDR method for model selection questions

involving nested models with moderate discrepancies between the

prediction of the simple model and the posterior result, λ � 3. We

now turn to the demonstration of the method on current cosmological

observations.

3 A P P L I C AT I O N TO C O S M O L O G I C A L
PA R A M E T E R S

In this section we apply the Bayesian model selection tool-

box presented above to three cosmological parameters which

are central for our understanding of the cosmological concor-

dance model: the spectral index of scalar (adiabatic) perturba-

tions, the spatial curvature of the Universe and an isocurva-

ture CDM component to the initial conditions for cosmological

perturbations.

3.1 Parameter space and cosmological data

We use the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year

temperature and polarization data (Hinshaw et al. 2006; Page et al.

2006) supplemented by small-scale cosmic microwave background

(CMB) measurements (Kuo et al. 2004; Readhead et al. 2004). We

add the Hubble Space Telescope (HST) measurement of the Hub-

ble constant H0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001)

and the Sloan Digital Sky Survey (SDSS) data on the matter power

spectrum on linear (k < 0.1 h−1 Mpc) scales (Tegmark et al. 2004).

Furthermore, we shall also consider the supernovae luminosity dis-

tance measurements (Riess et al. 2004). We denote all of the data

sets but WMAP as ‘external’ for simplicity of notation. We are also

interested in assessing the changes in the model comparison out-

come in going from WMAP 1-year to WMAP 3-year data. We shall

therefore compare our results using the 3-year WMAP data with the

first-year WMAP data release (Bennett et al. 2003; Hinshaw et al.
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Table 2. Summary of model comparison results from WMAP data combined with small-scale CMB measurements, SDDS, HST and SNIa data. WMAP3+ext

refers to WMAP 3-year data release, WMAP1 + ext to WMAP first-year data. The most spectacular improvement from WMAP1 to WMAP3 is the moderate

evidence against a scale-invariant spectral index. Errors in the Bayes factor are obtained by computing the variance of the SDDR estimate from five subchains

(see Appendix C for details). The ‘estimate’ column gives the value obtained by employing the Gaussian approximation to the likelihood, equation (A9) for a

Gaussian prior or equation (A10) for a flat prior.

Data ln B01 from SDDR Odds in favour Probability Comment

(numerical) (estimate) of simpler model of simpler model

Spectral index: nS = 1 versus 0.8 � nS � 1.2 (Gaussian)

WMAP3+ext −2.86 ± 0.28 −3.00 1 to 17 0.05 Moderate evidence for non-scale invariance

WMAP1+ext 0.68 ± 0.04 0.71 2 to 1 0.66 Inconclusive result

Spatial curvature: �κ = 0 versus −1.0 � �κ � 1 (flat)

WMAP3+ext 3.37 ± 0.05 3.25 29 to 1 0.97 Moderate evidence for a flat universe

WMAP1+ext 2.70 ± 0.09 2.68 15 to 1 0.94 Moderate evidence for a flat universe

Adiabaticity: f iso = 0 versus −100 � f iso � 100 (flat)

WMAP3+ext 7.62 ± 0.02 7.63 2050 to 1 0.9995 Strong evidence for adiabatic conditions

WMAP1+ext 7.50 ± 0.03 7.53 1800 to 1 0.9994 Strong evidence for adiabatic conditions

2003; Verde et al. 2003), complemented by the ‘external’ data sets

described above.4

We make use of the publicly available codes CAMB and COSMOMC

(Lewis & Bridle 2002) to compute the CMB and matter power

spectra and to construct MCMCs in parameter space. The Monte

Carlo (MC) is performed using ‘normal parameters’ (Kosowsky,

Milosavljevic & Jimenez 2002), in order to minimize non-

Gaussianity in the posterior PDF. In particular, we sample uniformly

over the physical baryon and CDM densities, ωb ≡ �b h2 and ωc ≡
�c h2, expressed in units of 1.88 × 10−29 g cm−3; the ratio of the an-

gular diameter distance to the sound horizon at decoupling, �, the

optical depth to reionization τr (assuming sudden reionization) and

the logarithm of the adiabatic amplitude for the primordial fluctua-

tions, ln 1010 AS. When combining the matter power spectrum with

CMB data, we marginalize analytically over a bias b considered

as an additional nuisance parameter. Throughout we assume three

massless neutrino families and no massive neutrinos (for constraints

on these quantities, see instead e.g. Bowen et al. 2002; Lesgourgues

& Pastor 2006; Spergel et al. 2006), we fix the primordial Helium

mass fraction to the value predicted by big bang nucleosynthesis

(see e.g. Trotta & Hansen 2004) and we neglect the contribution of

gravitational waves to the CMB power spectrum.

3.2 Model selection from current data

The scalar spectral index

As a first application we consider the scalar spectral index for adia-

batic perturbations, nS. We compare the evidence in favour of a scale-

invariant index (M0 : nS = 1), also called an Harrison–Zel’dovich

(HZ) spectrum, with a more general model of single-field inflation,

in which we do not require the spectral index to be scale invariant,

M1 : nS 	= 1. The latter case is called for brevity ‘generic inflation’.

Within the framework of slow-roll inflation, the prior allowed

range for the spectral index can be estimated by considering that

nS = 1 − 6ε + 2η, where η and ε are the slow-roll parameters. If

we assume that ε is negligible, then nS = 1 + 2η. If the slow-roll

conditions are to be fulfilled, η � 1, then we must have |η| � 0.1,

4 A more detailed discussion on the WMAP first-year data model comparison

result and the power of the external data sets can be found in the original

version of the present work, Trotta (unpublished, astro-ph/0504022v1).

which gives 0.8 � nS � 1.2. Hence we take a Gaussian prior on nS

with mean μ = 1.0 and width σ = 0.2.

The result of the model comparison is shown in Table 2. When

employing WMAP 1-year data, the model comparison yields an in-

conclusive result (ln B01 = 0.68 ± 0.04), but the new, lower value

for nS from the WMAP 3-year data, enhanced by the small-scale

CMB measurements and SDDS matter power spectrum data, does

yield moderate evidence for a non-scale-invariant spectral index

(ln B01 = −2.86 ± 0.28), with odds of about 17:1, or a posterior

probability of a scale-invariant index of 5 per cent, when compared

to the above alternative generic inflation model. This is a conse-

quence of both the shift of the peak of the posterior to nS = 0.95

and a reduction of its spread when using WMAP 3-year data, which

places the scale-invariant value of nS = 1 at about 3.3σ away from

the posterior’s peak (see however the discussion about possible sys-

tematic effects in Parkinson, Mukherjee & Liddle 2006). In Table 2

we also give the resulting value of the Bayes factor obtained by

using the SDDR formula and a Gaussian approximation to the pos-

terior, see equation (A9). Since the marginalized posterior for nS is

very well approximated by a Gaussian, we find a very good agree-

ment between this crude estimate and the numerical result using

the actual shape of the posterior, with a discrepancy of the order of

5 per cent. This supports the idea that for reasonably Gaussian PDFs

using a Gaussian approximation to the SDDR might be a good way

of obtaining a first estimate of the Bayes factor for nested models.

Our findings are in broad agreement with Parkinson et al. (2006),

where it was found using nested sampling that a similar data com-

pilation as the one employed here gives ln B01 = −1.99 ± 0.26 for

the comparison between the HZ model and a generic inflationary

model with a flat prior between 0.8 � nS � 1.2. For such a flat prior,

we obtain, using the SDDR, ln B01 = −2.98 ± 0.28, where the dif-

ference with Parkinson et al. (2006) has to be ascribed to different

constraining power of the different data compilations used, rather

than to the methods for computing the Bayes factor. For a more

detailed discussion of a series of possible systematic effects which

might change the outcome of the model comparison, see section

IIIC in Parkinson et al. (2006).

The spatial curvature

We now turn to the issue of the geometry of spatial sections. We

evaluate the Bayes factor for �κ = 0 (flat universe) against a model
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with �κ 	= 0. As discussed above, we only need to specify the prior

distribution for the parameter of interest, namely �κ . We choose a

flat prior of width ��κ = 1.0 on each side of �κ = 0, for we know

that the universe is not empty (thus �κ < 1.0, setting aside the case

of � < 0) nor largely overclosed (therefore �κ � −1 is a reasonable

range, see Section 3.3 for further comments).

Cosmic microwave background data alone cannot strongly con-

strain �κ because of the fundamental geometrical degeneracy. Even

CMB and SDSS data together allow for a wide range of values for

the curvature parameter, which translates into approximately equal

odds for the curved and flat models. Adding SNIa observations

drastically reduces the range of the posterior, since their degener-

acy direction is almost orthogonal to the geometrical degeneracy

of the CMB. Further inclusion of the HST measurement for the

Hubble parameter narrows down the posterior range considerably,

since the handle on the value of the Hubble constant today breaks

the geometrical degeneracy. When all of the data (WMAP3 + ext)

are taken into account, we obtain for the Bayes factor ln B01 =
3.37 ± 0.05, favouring a flat universe model with moderate odds

of about 29 : 1 (see Table 2). This corresponds to a posterior prob-

ability for a flat universe of 97 per cent, for our particular choice

of prior. We notice the slight improvement in these odds from the

result obtained using WMAP1 + ext data, where the odds were

15 : 1, which is to be ascribed mainly to the inclusion of polarization

data that helps further tightening constraints around the geometrical

degeneracy.

The CDM isocurvature mode

The third case we consider is the possibility of a CDM isocurva-

ture contribution to the primordial perturbations. For a review of

the possible isocurvature modes and their observational signatures,

see, for example, Trotta (2004). Determining the type of initial con-

ditions is a central question for our understanding of the genera-

tion of perturbations, and has far reaching consequences for the

model building of the physical mechanisms which produced them.

Constraints on the isocurvature fraction have been derived in sev-

eral works, which considered different phenomenological mixtures

of adiabatic and isocurvature initial conditions (Pierpaoli, Garcia-

Bellido & Borgani 1999; Amendola et al. 2002; Trotta, Riazuelo &

Durrer 2001, 2003; Crotty et al. 2003; Valiviita & Muhonen 2003;

Beltran et al. 2004; Bucher et al. 2004; Kurki-Suonio, Muhonen &

Valiviita 2005; Moodley et al. 2004; Trotta & Durrer 2006). Two

recent studies making use of the latest CMB data (Bean, Dunkley &

Pierpaoli 2006; Keskitalo et al. 2006) obtain different conclusions as

to the level of isocurvature contribution. While both groups report a

lower best-fitting chi square for a model with a large (n ∼ 3) spectral

index for the CDM isocurvature component, they give a different

interpretation of the statistical significance of the improvement. It is

precisely in such a context that a model selection approach as the one

presented here might be helpful, in that it allows to account for the

Occam’s razor effect described above. The question of isocurvature

modes has been addressed from a model comparison perspective by

Beltran et al. (2005) and Trotta (2007b).

Since the goal of this work is not to present a detailed analysis of

isocurvature contributions, but rather to give a few illustrative appli-

cations of Bayesian model selection, we restrict our attention to the

comparison of a purely adiabatic model against a model containing

a CDM isocurvature mode totally correlated or anticorrelated. For

simplicity, we also take the isocurvature and adiabatic mode to share

the same spectral index, nS. This phenomenological set-up is close

to what one expects in some realizations of the curvaton scenario,

see, for example, Gordon & Lewis (2003), Lyth & Wands (2003)

and Lazarides et al. (2004). For an extended treatment including all

of the four different isocurvature modes, see Trotta (2007b).

We compare model M0, with adiabatic fluctuations only, with M1,

which has a totally (anti)correlated isocurvature fraction

fiso ≡ S
ζ

, (10)

where ζ is the primordial curvature perturbation and S the entropy

perturbation in the CDM component (see Lazarides et al. 2004;

Trotta 2004, for precise definitions). The sign of the parameter f iso

defines the type of correlation. We adopt the convention that a pos-

itive (negative) correlation, f iso > 0 (f iso < 0), corresponds to a

negative (positive) value of the adiabatic–isocurvature CMB corre-

lator power spectrum on large scales. We choose f iso as the relevant

parameter for model comparison because of its immediate physical

interpretation as an entropy-to-curvature ratio, but this is only one

among several possibilities.

In the absence of a specific model for the generation of the isocur-

vature component, there is no cogent physical motivation for setting

the prior on f iso. A generic argument is given by the requirement that

linear perturbation theory be valid, that is, ζ,S � 1. This however

does not translate into a prior on f iso, unless we specify a lower bound

for the curvature perturbation. In general, f iso is essentially a free

parameter, unless the theory has some built-in mechanism to set a

scale for the entropy amplitude. This however requires digging into

the details of specific realizations for the generation of the isocur-

vature component. For instance, the curvaton scenario predicts a

large f iso if the CDM is produced by curvaton decay and the cur-

vaton does not dominate the energy density, in which case | f iso| ∼
r−1 � 1, since the curvaton energy density at decay compared with

the total energy density is small, r ≡ρcurv/ρ tot � 1 (Gordon & Lewis

2003; Lyth & Wands 2003). Once the details of the curvaton decay

are formulated, it might be possible to argue for a theoretical lower

bound on r, which gives the prior range for the predicted values of

f iso.

In the absence of a compelling theoretical motivation for setting

the prior, we can still appeal to another piece of information which

is available to us before we actually see any data: the expected sen-

sitivity of the instrument. By assessing the possible outcomes of a

measurement given its forecasted noise levels we can limit the a

priori accessible parameter space for a specific observation on the

grounds that it is pointless to admit values which the experiment

will not be able to measure. For the case of f iso, there is a lower

limit to the a priori accessible range dictated by the fact that a small

isocurvature contribution is masked by the dominant adiabatic part.

Conversely, the upper range for f iso is reached when the adiabatic

part is hidden in the prevailing isocurvature mode. In order to quan-

tify those two bounds, we carry out a Fisher Matrix (FM) forecast

assuming noise levels appropriate for the measurement under con-

sideration, thus determining which regions of parameter space is

accessible to the observation. Such a prior is therefore motivated

by the expected sensitivity of the instrument, rather then by the-

ory. The prior range for a scale-free parameter thereby becomes a

computable quantity which depends on our prior knowledge of the

experimental apparatus and its noise levels.

We have performed an FM forecast in the (ζ, |S|) plane, whose

results are plotted in Fig. 1 for the WMAP expected sensitivity.

We use a grid equally spaced in the logarithm of the adiabatic

and isocurvature amplitudes, in the range 10−6 � ζ � 5 × 10−4

and 10−8 � |S| � 10−2. For each pair (ζ, |S|) the FM yields the
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Figure 1. The parameter space accessible a priori to WMAP in the (ζ, |S|)
plane is obtained by requiring better than 10 per cent accuracy on | f iso| in

the Fisher Matrix error forecast (open circles for the best case, crosses for

the worst case, depending on the fiducial values of τr , nS and on the sign of

the correlation). This translates into a prior accessible range 0.4 � | f iso|�
100 (diagonal, dashed lines), but only if ζ, |S | � 10−5. Models which

roughly satisfy the COBE measurement of the large-scale CMB anisotropies

(δT/T ≈ 10−5) lie on the blue/solid line and have positive (negative) corre-

lation left-hand side (right-hand side) of the cusp.

expected error on the amplitudes as well as on f iso. The expected

error however also depends on the fiducial values assumed for the

remaining cosmological parameters. In order to take this into ac-

count, at each point in the (ζ, |S|) grid we run 40 FM forecasts

changing the type of correlation [sign(S) = ±1], the spectral index

(nS = 0.8–1.2 with a step of 0.1) and the optical depth to reionization

(τr = 0.05–0.35 with a step of 0.1). The other parameters (θ , ωc, ωb)

are fixed to the concordance model values, since ζ, S are mostly

correlated with τr , nS and thus only the fiducial values assumed for

the latter two parameters have a strong impact on the predicted er-

rors of the amplitudes. We then select the best and worst outcome

for the expected error on f iso, in order to bracket the expected result

of the measurement independently on the fiducial value for τr , nS.

Notice that at no point we make use of real data. By requiring that

the expected error on f iso be of the order of 10 per cent or better,

we obtain the a priori accessible area in amplitude space for WMAP,

which is shown in Fig. 1.

It is apparent that f iso cannot be measured by WMAP if either

ζ or |S| are below about 10−5, in which case the signal is lost in

the detector noise. For amplitudes larger than 10−5, | f iso| = 1 is ac-

cessible to WMAP with high signal-to-noise ratio independently on

the value of τr , nS, while | f iso| ≈ 0.4 can be measured only in a

few cases for the most optimistic choice of parameters. As an aside,

we notice that if we restrict our attention to models which roughly

comply with the COBE measurement of the large-scale CMB power

(blue/solid lines in Fig. 1), then WMAP can only explore the sub-

space of anticorrelated isocurvature contribution (right-hand side of

the cusp) and only if ζ � 7 × 10−5. On the other end of the range,

we can see that | f iso| = 100 is about the largest value accessible to

WMAP, at least for ζ � 5 × 10−4, |S| � 10−2. There is a simple

physical reason for the asymmetry of the accessible range around

| f iso| = 1: a small isocurvature contribution can be overshadowed

by the adiabatic mode on large scales due to cosmic variance, but

a subdominant adiabatic mode is still detectable even in the pres-

ence of a much larger isocurvature part, because the first adiabatic

peak at � ≈ 200 sticks out from the rapidly decreasing isocurva-

ture power at that scale (at least if the spectral tilt is not very large,

as in our case). In conclusion, the values of | f iso| which WMAP
can potentially measure with high signal-to-noise ratio are approx-

imately bracketed by the range 0.4 � | f iso|� 100, assuming that

ζ � 10−5. Given the fact that most of the prior volume lies above

| f iso| = 1, we can take a flat prior on f iso centred around f iso = 0,

with a range −100 � f iso � 100, or � f iso = 100. As we shall see

below, it is this large range of a priori possible values compared

with the small posterior volume which heavily penalizes an isocur-

vature contribution due to the Occam’s razor behaviour of the Bayes

factor.

The marginalized posterior on f iso from WMAP3 + ext data gives

a 95 per cent interval −0.06 � f iso � 0.10, thus yielding only up-

per bounds on the CDM isocurvature fraction, in agreement with

previous works using a similar parameterization (see Trotta 2007b

for details). The spread of the posterior is of the order of 0.1, which

lies an order of magnitude below the level ( | f iso| = 1) at which an

isocurvature signal would have stand out clearly from the WMAP
noise. The Bayes factor corresponding to the above choice of prior

(−100 � f iso � 100) is given in Table 2, and with ln B01 = 7.62 it

corresponds to a probability of 0.9995 (or odds of 2050 to 1) for

purely adiabatic initial conditions. This is a consequence of the large

volume of wasted parameter space under the large prior used here,

and a fine example of automatic Occam’s razor built into the Bayes

factor. We notice that in order to obtain a model-neutral conclusion

(odds of 1 : 1) one would have to choose a prior width below 0.1,

that is, find a mechanism to strongly limit the available parameter

space for the isocurvature amplitude (Trotta 2007b). In other words,

the introduction of a new scale-free isocurvature amplitude is gener-

ically unwarranted by data, a feature already remarked by Lazarides

et al. (2004).

This result differs from the findings of Beltran et al. (2005), who

considered an isocurvature CDM admixture to the adiabatic mode

with arbitrary correlation and spectral tilt and concluded that there

is no strong evidence against mixed models (odds of about 3 : 1

in favour of the purely adiabatic model). While their set-up is not

identical to the one presented here and thus a direct comparison is

difficult, we believe that the key reason of the discrepancy can be

traced back to the different basis for the initial conditions param-

eter space. Instead of the isocurvature fraction f iso, Beltran et al.

(2005) employ the parameter α describing the fractional isocurva-

ture power, which is related to f iso by

α = f 2
iso

1 + f 2
iso

. (11)

The infinite range 0� | f iso| <∞ corresponds in this parametrization

to a compact interval [0..1) for α [or (−1..1) for
√

α], over which

they take a flat prior for the variable α (or
√

α). Flat priors over

α or
√

α correspond to the priors over | f iso| depicted in Fig. 2,

which cut away the region of parameter space where | f iso| � 1.

As a consequence, the Occam’s razor effect is suppressed and the

resulting odds in favour of the purely adiabatic model are much

smaller than in our case.

This example illustrates that model comparison results can de-

pend crucially on the underlying parameter space. We now turn to

discuss the dependence of our other results on the prior range one

chooses to adopt.
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Figure 2. Equivalent priors on | f iso| corresponding to the flat priors used in

Beltran et al. (2005) for the parameters α and
√

α. Both priors cut away the

parameter space | f iso| � 1, thus reducing the Occam’s razor effect caused

by a scale-free parameter. The odds in favour of the purely adiabatic model

thus become correspondingly smaller. Model comparison results can depend

crucially on the variables adopted.

Figure 3. Regions in the (I, λ) plane (shaded) where one of the competing

models is supported by positive (odds of 3 : 1), moderate (12 : 1) or strong

(odds larger than 150 : 1) evidence. The white region corresponds to an

inconclusive result (odds of about 1 : 1), while in the region I < 0 (dotted) the

posterior is dominated by the prior and the measurement is non-informative.

In the lower horizontal axis, I is given in base 10, that is, I = −log10 β, while

it is given in bits in the upper horizontal axis. The contours are computed

from the SDDR formula assuming a Gaussian likelihood and a Gaussian

prior. The location of the three parameters analysed in the text is shown by

diamonds (circles) for WMAP1+ ext data (WMAP3+ ext data). Choosing

a wider (narrower) prior range would shift the points horizontally to the

right-hand side (left-hand side) of the plot.

3.3 Dependence on the choice of prior

As described in detail in Appendix A, the Bayes factor is really

a function of two parameters, λ and the information content I =
−ln β, see equation (A9) for the case of a Gaussian prior and a

Gaussian likelihood in the parameter of interest. Fig. 3 shows con-

tours of | ln B01| = constant for constant = 1.0, 2.5, 5.0 in the (I,

λ) plane, as computed from equation (A9). The contours delimit

significant levels for the strength of evidence, as summarized in Ta-

ble 1. In the following, we will measure the information content I in

base-10 logarithm. For moderately informative data (I ≈ 1–2) the

measured mean has to lie at least about 4σ away from ω� in order

to robustly disfavour the simpler model (i.e. λ � 4). Conversely,

for λ � 3 highly informative data (I � 2) do favour the conclu-

sion that ω = ω�. In general, a large information content favours

the simpler model, because Occam’s razor penalizes the large vol-

ume of ‘wasted’ parameter space of the extended model. A large λ

disfavours exponentially the simpler model, in agreement with the

sampling theory result. The location on the plane of the three cases

discussed in the text (the scalar spectral index, the spatial curva-

ture and the CDM isocurvature component) is marked by diamonds

(circles) for WMAP1 + ext (WMAP3 + ext). Even though the in-

formative regions of Fig. 3 assume a Gaussian likelihood, they are

illustrative of the results one might obtain in real cases, and can

serve as a rough guide for the Bayes factor determination.

Another useful property of displaying the result of the model

comparison in the (I, λ) plane as in Fig. 3 is that the impact of

a change of prior can be easily estimated. A different choice of

prior will amount to a horizontal shift of the points in Fig. 3, at

least as long as I > 0 (i.e. posterior dominated by the likelihood).

Thus we can see that given the results with the priors used in this

paper, no other choice of priors for f iso or �κ within four orders of

magnitude will achieve a reversal of the conclusion regarding the

favoured model. At most, picking more restrictive priors (reflecting

more predictive theoretical models) would make the points for f iso

or �κ drift to the left-hand side of Fig. 3, eventually entering in

the white, inconclusive region I � 0.5. For the spectral index from

WMAP 3-year data, choosing a prior two orders of magnitude larger

than the one employed here, that is, −19 < nS < 20 would reverse

the conclusion of the model selection, favouring the model nS = 1

with odds of about 3 : 1. This choice of prior is however physically

unmotivated. On the other hand, reducing the prior by one order

of magnitude – that is, making it of the same order as the current

posterior width (I = 0) – would still not alter the conclusion that

nS = 1 is disfavoured with moderate odds.

The prior assignment is an irreducible feature of Bayesian model

selection, as it is clear from its presence in the denominator of equa-

tion (7). There is a vast literature which addresses the problem of

assigning prior probabilities (see footnote 1) in a way which re-

flects the state of knowledge before seeing the data. In applications

to model selection, it might be more useful to regard the prior as

expressing the available parameter space under the model, rather

then a state of knowledge before seeing the data, as argued in Kunz

et al. (2006). The underpinnings of the prior choice can be found

in our understanding of model-specific issues. In this work we have

offered two examples of priors stemming from theoretical moti-

vations: the prior on the scalar spectral index is a consequence of

assuming slow-roll inflation while the prior on the spatial curva-

ture comes from our knowledge that the Universe is not empty (and

therefore the curvature must be smaller than −1) nor overclosed (or

it would have recollapsed). This simple observations set the correct

scale for the prior on �κ , which is of the order of unity. On the other

hand, if one wanted to impose an inflation-motivated prior of width

� 1, then the information content of the data would go to 0 and

the outcome of the model selection would be non-informative. In

general, it is enough to have an order of magnitude estimate of the

a priori allowed range for the parameter of interest, since the loga-

rithm of the model likelihood is proportional to the logarithm of the

prior range. Furthermore, considerations of the type outlined above

can help assessing the impact of a prior change on the model com-

parison outcome. Often one will find that most ‘reasonable’ prior

choices will lead to qualitatively to the same conclusion, or else to

a non-committal result of the model comparison.

For essentially scale-free parameters, such as the adiabatic and

isocurvature amplitudes of our third application, model theoretical

considerations of the type employed by Lazarides et al. (2004) can
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lead to a limitation of the prior range. In the context of phenomeno-

logical model building, we have demonstrated that an analysis of

the a priori parameter space accessible to the instrument can be used

to define a prior encapsulating our expectations on the quality of the

data we will be able to gather.

An important caveat is the dependence of the Bayes factor on the

basis one adopts in parameter space, which sets the natural measure

on the parameters. A flat prior on θ does not correspond to a flat prior

on some other set α(θ ) obtained via a non-linear transformation,

since the two prior distributions are related via

π (θ | M) = π (α | M)

∣∣∣ dα(θ )

dθ

∣∣∣. (12)

As illustrated by the case of the isocurvature amplitude, this is espe-

cially relevant for parameters which can vary over many orders of

magnitudes. We put forward that the choice of the parameter basis

can be guided by our physical insight of the model under scrutiny

and our understanding of the observations. This principle would

suggest that one should adopt flat priors along ‘normal variables’

or principal components, because those are directly probed by the

data and usually can be interpreted in terms of physically relevant

and meaningful quantities. A general principle of consistency can

be invoked to select the most appropriate variable for cases where

many apparently equivalent choices are present (e.g. f iso, α or
√

α).

We leave further exploration of this very relevant issue to a future

publication.

4 C O N C L U S I O N S

We have argued that frequentist significance tests should be in-

terpreted carefully and in particular that Bayesian model selection

reasoning should be used to decide whether the introduction of a

parameter is warranted by data. The main strengths of the Bayesian

approach are that it does consider the information content of the data

and that it allows one to confirm predictions of a model, instead of

just disproving them as in the sampling theory approach.

We have investigated the use of the SDDR as a tool to compute

the Bayes factor of two nested models, at no extra computational

cost than the MC sampling of the parameter space. The technique is

likely to be accurate for cases where the estimated value of the extra

parameter under the larger model lies less than about 3σ away from

the predicted value under the simpler model, as shown in Appendix

C. In a companion paper (Trotta 2007a) a complementary technique

is introduced, called PPOD, which produces forecasts for the prob-

ability distribution of the Bayes factor from future experiments.

We have applied this Bayesian model selection point of view to

three central ingredients of present-day cosmological model build-

ing. Regarding the spectral index of scalar perturbations, we found

that WMAP 3-year data disfavour a scale-invariant spectral index

with moderate evidence, and that this result holds true for all rea-

sonable choices of priors. This is a significant change with respect

to the inconclusive result one obtained using the WMAP first-year

data release instead. We found that the odds in favour of a flat uni-

verse have doubled (from 15 : 1 to 29 : 1) in going from WMAP1

+ ext to WMAP3 + ext, and we have stressed that this conclusion

can only be obtained if the Hubble parameter is measured inde-

pendently or if supernovae luminosity distance measurements (or

other low-redshift rulers, such as baryonic acoustic oscillations, see

Eisenstein et al. (2005)) are employed. Finally, purely adiabatic ini-

tial conditions are strongly preferred to a mixed model containing a

totally (anti)correlated CDM isocurvature contribution (odds larger

than 1000 : 1), on the grounds of an Occam’s razor argument, that

the prior available parameter space is much larger than the small

surviving posterior volume. This is however crucially dependent on

the variable one chooses to impose flat priors on.

In the light of these findings, it seems to us that model compar-

ison tools offer complementary insight in what the data can tell us

about the plausibility of theoretical speculations regarding cosmo-

logical parameters, and can provide useful guidance in the quest of

a cosmological concordance model.
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A P P E N D I X A : A N I L L U S T R AT I O N
O F L I N D L E Y ’ S PA R A D OX

Lindley’s paradox describes a situation where frequentist signifi-

cance tests and Bayesian model selection procedures give contra-

dictory results. As we demonstrate below, it arises because the infor-

mation content of the data is neglected in the frequentist approach.

Let us consider the toy example of a measurement of a Gaussian

distributed quantity, ω, by drawing n independent and identically

distributed samples with known s.d. σ . Then the likelihood function

is the normal distribution

p(μ̂, σ̂ | ω) = Nμ̂σ̂ (ω), (A1)

where μ̂ is the estimated mean and σ̂ = σ/
√

n its uncertainty.

From the point of view of frequentist statistics, a significance test

is performed on the null hypothesis H0 : ω = ω�. We define λ as

dimensionless number which indicates ‘how many sigma away’ is

our estimate of the mean, μ̂, from its value under H0 in units of the

estimated s.d.:

λ ≡ |μ̂ − ω�|
σ̂

. (A2)

This ‘number of sigma’ difference is interpreted as a measure of the

confidence with which one can reject H0. The ‘p-value’,∫ ∞

λ

p(μ̂, σ̂ | ω) dω, (A3)

is compared to a number α, called the ‘significance level’ of the

test and the hypothesis H0 is rejected at the 1 − α confidence

level if p-value < α. If we pick a (fixed) confidence level, say α =
0.05, then the frequentist significance test rejects the null hypothesis

if

Z (λ) ≡ 1√
2π

∫ ∞

λ

exp

(
− t2

2

)
dt � α/2. (A4)

(for a two-tailed test). For α = 0.05 the equality in equation (A4)

holds for λ = 1.96. In other words, sampling statistics reject the null

hypothesis at the 95 per cent confidence level if the measured mean

is more than λ = 1.96σ away from the predicted ω� under H0.

This conclusion can be in strong disagreement with the Bayesian

evaluation of the Bayes factor, that is, a value ω� rejected under a

frequentist test can on the contrary be favoured by Bayesian model

comparison (Lindley 1957). In the Bayesian model comparison ap-

proach, the two competing models are M0, with no free parameters,

in which the value of ω is fixed to ω = ω�, and model M1, with one

free parameter ω 	= ω�. Under M1, our prior belief before seeing the

data on the probability distribution of ω is explicitly represented by

the prior PDF π (ω). This prior PDF is then updated to the posterior

via Bayes theorem,5 equation (1).

A formal measure of the information gain obtained through the

data is the cross-entropy between prior and posterior, the Kullback–

Leibler divergence

DKL(p, π ) =
∫

p(θ | d) ln
p(θ | d)

π (θ )
dθ. (A5)

For a Gaussian prior of s.d. �ω centred on ω� and a Gaussian

likelihood with mean μ̂ and s.d. σ̂ , the information gain is given

by

DKL + 1

2
= − ln β + 1

2
β2(λ2 − 1), (A6)

where we have defined

β ≡ σ̂ /�ω, (A7)

the factor by which the accessible parameter space under M1 is

reduced after the arrival of the data (remember that σ̂ is the s.d. of

the likelihood). For totally uninformative data, β = 1 and λ = 0,

and thus DKL = 0. Unless λ � 1 (in which case the null hypothesis

is rejected with many sigma and there is hardly any need for model

comparison) we can usually neglect the second term on the right-

hand side of equation (A6). We are therefore led to define a simpler

measure of the information content of the data, I, as

I ≡ − ln β. (A8)

The choice of the logarithm base is only a matter of convenience,

and this sets the units in which the entropy is measured. Had we

chosen base-2 logarithm instead, the information would have been

measured in bits. In Fig. 3, the choice of using the base-10 logarithm

for the bottom horizontal axis means that I describes the order of

magnitude by which our prior knowledge has improved after the

arrival of the data.

5 Notice that, after applying Bayes theorem, the posterior probability is at-

tached to the parameter ω itself, not to the estimator μ̂ as in sampling theory.

In the Bayesian framework we only deal with observed data, never with

properties of estimators based on a (fictional) infinite replication of the data.

In cosmology one only has one realization of the Universe and there is not

even the conceptual possibility of reproducing the data ad infinitum and

therefore the Bayesian standpoint seems better suited to such a situation.
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Figure A1. Illustration of Lindley’s paradox. Sampling statistics hypothesis

testing rejects the hypothesis that ω = ω� with 95 per cent confidence in all

three cases (coloured curves) illustrated in the top panel (λ = 1.96 in all

cases). Bayesian model selection does take into account the information

content of the data I, and correctly favours the simpler model (predicting

that ω = ω�) for informative data (right-hand vertical line in the bottom

panel, I = 2 expressed in base-10 logarithm), with odds of 14 : 1 (for a

Gaussain prior, dotted black line). Using a flat prior of the same width (solid

black line) instead reduces ln B01 by a geometric factor ln (2/π )/2 = 0.22

in the informative (I � 1) regime. Notice that for non-informative data

(I � 0) the Bayes factor reverts to equal odds for the two models.

We now compute the Bayes factor B01 in favour of model M0

from equation (7), using again the above Gaussian prior, obtaining

B01(β, λ) =
√

1 + β−2 exp

[
− λ2

2(1 + β2)

]
. (A9)

The model comparison result thus depends not only on λ, but also

on the quantity β, which is proportional to the volume occupied

by the posterior in parameter space and describes the information

gain in going from prior to posterior. If instead of a Gaussian prior

one takes a flat prior around ω� of width 2�ω (the factor of 2 being

chosen to facilitate the comparison with the case of a Gaussian prior

of s.d. �ω) one obtains instead

B01(β, λ) =
√

2

π
β−1 exp

(
−λ2

2

)
× [Z (λ − β−1) − Z (λ + β−1)]−1, (A10)

where the function Z(y) is defined in (A4), a consequence of the

top-hat prior. For β−1 � λ, the posterior is well localized within

the boundaries of the prior and the term in square brackets in (A10)

tends to 1.

In order to clarify the role of the information content and the dif-

ference with frequentist hypothesis testing, consider the following

example (see Fig. A1). For a fixed choice of prior width �ω, imag-

ine performing three different measurements, each with a different

value of β (i.e. with different information content I) but with out-

comes such that λ is the same in all three cases. This is depicted in

the top panel of Fig. A1, where the likelihood mean is λ = 1.96σ

away from ω� for all three cases. Under sampling statistics, all three

measurements equally reject the null hypothesis, that ω = ω�, at

the 95 per cent confidence level. And yet common sense clearly

tells us that this cannot be the right conclusion in all three cases.

Indeed, the Bayes factor, equation (A9) or (A10), correctly recov-

ers the intuitive result (bottom panel of Fig. A1): the measurement

with the larger error (β = 1/5, or I = 0.7, expressed in base-10

logarithm) corresponds to the least informative data, and the Bayes

factor slightly disfavours the simpler model (ln B01 = −0.2, or odds

of about 5 : 4 against M0 and p(M0| d) = 0.44). For β = 1/20 or

I = 1.3 (moderately informative data), evidence starts to accumu-

late in favour of M0 (ln B01 = 1.08, odds of 3 : 1 in favour and

p(M0| d) = 0.75). For very informative data, β = 1/100, I = 2,

Bayesian reasoning correctly deduces that the simpler M0 should

be favoured (ln B01 = 2.68, odds of 14 : 1 in favour of M0 and a

posterior probability p(M0| d) = 0.94). The above numbers are for a

Gaussian prior, but those conclusion are largely independent of the

choice of a Gaussian or of a flat prior, provided the bulk of the prior

volume is the same (compare the dotted and solid line in the bottom

panel of Fig. A1 for a Gaussian and a flat prior, respectively).

This illustration shows that the Bayes factor can correctly favour

models which would be rejected with high confidence by hypothe-

sis testing in a sampling theory approach. While in sampling theory

one is only able to disprove models by rejecting hypothesis, it is

important to highlight that the Bayesian evidence can and does ac-

cumulate in favour of simpler models, scaling as 1/β. While it is

easier to disprove ω = ω�, since model rejection is exponential with

λ, the Bayesian approach allows to evaluate what the data have to

say in favour of a hypothesis, as well.

In summary, quoting the number of sigma away from ω� (the λ

parameter) is not always an informative statement to decide whether

or not a parameter ω differs from ω�. Answering this question is a

model comparison issue, which requires the evaluation of the Bayes

factor.

A P P E N D I X B : D E R I VAT I O N O F T H E S D D R

The Bayes factor B01 of equation (2) can be evaluated by computing

the integrals

p(M0 | d) =
∫

dψπ0(ψ)p(d|ψ, ω�), (B1)

p(M1 | d) =
∫

dψdωπ1(ψ, ω)p(d|ψ, ω) ≡ q. (B2)

Here π0(ψ) denotes the prior over ψ in model M0, and π 1(ψ , ω)

the prior over (ψ , ω) under model M1. Note that, since the models

are nested, the likelihood function for M0 is just a slice at constant

ω = ω� of the likelihood function in model M1, p(d | ψ , ω).

Now multiply and divide B01 by the number p(ω� | d) ≡ p(ω =
ω� | d, M1), which is the marginalized posterior for ω under M1

evaluated at ω�, and using that p(ω� | d) = p(ω�, ψ | d)/p(ψ | ω�, d)

at all points ψ , we obtain

B01 = p(ω� | d)

∫
dψ

π0(ψ)p(d | ψ, ω�)p(ψ | ω�, d)

qp(ω�, ψ | d)
(B3)

= p(ω� | d)

∫
dψ

π0(ψ)p(ψ | ω�, d)

π1(ω�, ψ)
, (B4)

where in the second equality we have used the definition of posterior,

namely that p(ω�, ψ | d) = p(d | ω�, ψ)π1(ω�, ψ)/q. Up to this

point we have not made any assumption nor approximation. We

now assume that the prior satisfies

π1(ψ | ω�) = π0(ψ), (B5)

C© 2007 The Author. Journal compilation C© 2007 RAS, MNRAS 378, 72–82

 at Im
perial C

ollege L
ondon on January 12, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


82 R. Trotta

which always holds in the (usual in cosmology) case of separable

priors, that is,

π1(ω, ψ) = π1(ω)π0(ψ). (B6)

Under this assumption, and since p(ψ | ω�, d) in (B4) is the normal-

ized marginal posterior, equation (B4) simplifies to the SDDR given

in equation (7).

A P P E N D I X C : B E N C H M A R K T E S T S
F O R T H E S D D R

In order to explore the accuracy of the SDDR, we have tested its

performance for the benchmark case of a Gaussian likelihood. A

D-dimensional likelihood is generated by choosing a random D-

dimensional, diagonal covariance matrix. The correlations can be

set to 0 without loss of generality since in the Gaussian case it

is always possible to rotate to the principal axis of the covariance

ellipse. The mean of the likelihood is set to 0 for the last D − 1

dimensions, while for the first parameter (the one we are interested

in testing) the mean is chosen to lie λσ 1 away from 0, where λ is

selected below and σ 2
1 is the covariance along direction 1. We then

compare the two following nested models: M0 predicts that the first

parameter θ 1 = 0, while M1 has a Gaussian prior centred around 0

and of width � w = σ 1/β, where β is fixed.

The posterior is then reconstructed using a MCMC algorithm and

the Bayes factor computed using the SDDR. The results are shown in

Fig. C1 as a function of the number of samples for parameter spaces

of dimension D = 5, 10, 20 and for λ = 1, 2, 3. We have fixed β = 0.2

throughout (changing the value of β only rescales the Bayes factor

without affecting the accuracy, as long as β < 1, i.e. for informative

data). The errors on the Bayes factor are computed as in the text

using a bootstrap technique: the full sample set is divided in R =
5 subsets, then the mean and s.d. of the SDDR are computed from

those subsets. The error thus only reflect the statistical noise within

the chain and it does not take into account a possible systematic

underexploration of the tails of the likelihood.

It is clear that the SDDR performs extremely well for λ � 2

while it becomes less accurate for λ = 3. This is because it is rather

difficult to explore regions further out in the tails of the distribution

using conventional MCMC methods. For λ > 3 it becomes very

unpractical to obtain sufficient samples in the tail. For models that

lie less than about 3σ away from each other, the SDDR gives a

satisfactory accuracy in the model comparison result at no extra cost

than the parameter estimation step, requiring less than 105 samples.

Furthermore, the scaling with the dimensionality of the parameter

space appears to be rather favourable, and the error increases only

mildly from D = 5 to 20 at a given number of samples.

Figure C1. Benchmark test for the SDDR formula for a Gaussian likelihood

and prior, for parameter spaces of dimensionality D. The horizontal, dotted

lines give the exact value. The SDDR performs extremely well for comparing

models lying λ < 3σ away from each other. In this case, less than 105

samples are required to achieve a satisfactory agreement with the exact

result. For λ � 4 the tails of the likelihood are not sufficiently explored

to apply the SDDR. The missing points for λ = 3 indicate that the given

number of samples are insufficient to achieve coverage of the simpler model

prediction.

Clearly, for likelihoods that are close to Gaussian, the approxi-

mations (A9) and (A10) can still give a useful order of magnitude

estimate of the result. Finally, we stress that in the regime where

the SDDR works well (λ � 3) its accuracy is not limited by the as-

sumption of normality of the likelihood, but only by the efficiency

and accuracy of the MCMC reconstruction of the posterior. Par-

ticular care must be exercised in exploring accurately distributions

presenting heavier tails than Gaussians, and further work is required

to extend the MCMC sampling to the regime λ � 4. In this case,

sampling at a higher temperature could help in obtaining sufficient

samples in the tail, an issue whose exploration we leave for future

work.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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