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ABSTRACT

Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle acceleration
in supernova remnant shocks rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio,
microwave, X-rays, γ -rays). While very detailed numerical models of CR propagation exist, a quantitative statistical
analysis of such models has been so far hampered by the large computational effort that those models require.
Although statistical analyses have been carried out before using semi-analytical models (where the computation
is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer
from many simplifying assumptions. The main objective of this paper is to present a working method for a full
Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code,
the most advanced of its kind, which uses astrophysical information, and nuclear and particle data as inputs to self-
consistently predict CRs, γ -rays, synchrotron, and other observables. We demonstrate that a full Bayesian analysis
is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code)
despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found
in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.
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1. INTRODUCTION

A large number of outstanding problems in physics and astro-
physics are connected with studies of cosmic rays (CRs) and the
diffuse emissions (radio, microwave, X-rays, γ -rays) produced
during their propagation in interstellar space. These include: in-
direct searches for dark matter, the origin and propagation of
CR; particle acceleration in putative CR sources—such as su-
pernova remnants (SNRs)—and the interstellar medium (ISM);
CR in other galaxies and the role they play in galactic evolution;
studies of our local Galactic environment; CR propagation in the
heliosphere; and the origin of extragalactic diffuse emissions.

The involved nature of these studies requires reliable and
detailed calculations. Our current knowledge of CR propagation
in the Galaxy is based on a large body of observational data
together with substantial theoretical background: the latest
developments in CR acceleration and transport mechanisms,
detailed maps of the three-dimensional Galactic gas distribution,
detailed studies of the interstellar dust, radiation field, and
magnetic field, as well as up-to-date particle and nuclear cross
section data and codes. However, the number of parameters in
realistic models incorporating all of this information is large,
and using the available data to perform statistical inference on
the models’ free parameters is a highly non-trivial task. So far,
this has only been possible with analytical or semi-analytical
models where the computation is fast (e.g., Donato et al. 2002;
Maurin et al. 2001, 2002, 2010; Putze et al. 2010). But, such
models necessarily require many simplified assumptions to
allow the problem to be analytically tractable and to reduce
the computational load, making the estimation of the confidence
level of their results difficult. More realistic treatments using the
analytic approach lead to a growing complexity of the formulae,

thus removing any computational advantage over the purely
numerical approach (see, e.g., Strong et al. 2007).

The GALPROP7 code is the most advanced of its kind.
GALPROP uses astronomical information and other data as
inputs to self-consistently predict CRs, γ -rays, synchrotron,
and other observables. The code provides a full numerical
calculation of the CR spectra and intensities, together with
the diffuse emissions associated with the CRs interacting with
the interstellar gas, radiation, and magnetic fields. In this
paper, we introduce the methodology for a complete, fully
numerical inference for propagation models parameters, using
representative CR data in a Bayesian statistical framework.
We give results from a global analysis of CR isotope data,
obtained by using GALPROP to predict CR spectra and a
modified version of the SuperBayeS code8 to carry out the
statistical analysis. We demonstrate that improvements to the
GALPROP code, including parallelization, coupled with highly
efficient sampling techniques and Bayesian methods now allow
a fully numerical exploration of the parameter space of the
most realistic models incorporating CRs, γ -rays, etc., as well as
experimental and theoretical uncertainties.

The fully Bayesian approach to the problem of deriving
constraints for CR model parameters has several advantages.
First, the higher efficiency of Bayesian methods allows us to
carry out a global statistical analysis of the whole parameter
space, rather than be limited to scanning a reduced number of
dimensions at the time. This is important in order to be able
to fit simultaneously all relevant CR parameters and to explore
degeneracies. Second, we can marginalize (i.e., integrate over)

7 http://galprop.stanford.edu
8 http://superbayes.org

1

http://dx.doi.org/10.1088/0004-637X/729/2/106
http://galprop.stanford.edu
http://superbayes.org


The Astrophysical Journal, 729:106 (16pp), 2011 March 10 Trotta et al.

the parameters one is not interested in at almost no additional
computational costs, thus obtaining probability distributions for
the parameters of interest that fully account for correlations in
the global parameter space. Third, our method returns not only a
global best-fit point, but also statistically well-defined errors on
the parameters, which is one of the most important achievements
of this work. Finally, we are able to include in our analysis a large
number of “nuisance” parameters (such as modulation potentials
and experimental error rescaling parameters, see below for
details) that mitigate the impact of potential systematic errors
in the data and/or in the theoretical model, thus making our
fits much more robust. Bayesian inference however requires us
to choose priors for the parameters involved. This is done very
carefully in the present work, and we demonstrate below that
our results do not depend strongly on the choice of priors, which
again is a hallmark of a robust statistical analysis.

2. COSMIC-RAY PROPAGATION IN THE GALAXY

Here, we provide a brief overview of CR production and
propagation; more information can be found in a recent review
by Strong et al. (2007).

The sources of CRs are believed to be supernovae (SNe) and
SNRs, superbubbles, pulsars, compact objects in close binary
systems, and stellar winds. Observations of X-ray and γ -ray
emission from these objects reveal the presence of energetic
particles, thus testifying to efficient acceleration processes
in their neighborhood. Particles accelerated near the sources
propagate tens of millions years in the ISM while their initial
spectra and composition change. The destruction of primary
nuclei via spallation gives rise to secondary nuclei and isotopes
that are rare in nature, antiprotons, and charged and neutral
pions that decay producing secondary positrons, electrons, and
γ -rays.

Modeling CR propagation in the ISM includes the solution
of the partial differential equation describing the transport with
a given source distribution and boundary conditions for all CR
species. The diffusion–convection equation, sometimes incor-
porating diffusive reacceleration in the ISM, is used for the trans-
port process and has proven to be remarkably successful despite
its relative simplicity. For CR nuclei, relevant processes during
propagation include nuclear spallation, production of secondary
particles, radioactive decay, electron K-capture and stripping,
with the energy losses due to ionization and Coulomb scattering.
For the propagation of CR electrons and positrons, spallation,
radioactive decay, etc., are not relevant, while the energy losses
are due to ionization, Coulomb scattering, bremsstrahlung (with
the neutral and ionized gas), inverse Compton (IC) scattering,
and synchrotron emission.

Measurements of stable and radioactive secondary CR nu-
clei yield the basic information necessary to probe large-scale
Galactic properties, such as the diffusion coefficient and halo
size, the Alfvén velocity and/or the convection velocity, as well
as the mechanisms and sites of CR acceleration. Knowing the
number density of primary nuclei from satellite and balloon ob-
servations, the production cross sections from accelerator exper-
iments, and the gas distribution from astronomical observations,
the production rate of secondary nuclei can be calculated within
the context of a given propagation model. Stable secondary CR
nuclei (e.g., 5B) can be used to determine the ratio of the halo
size to the diffusion coefficient, while the observed abundance
of radioactive CR isotopes (10

4 Be, 26
13Al, 36

17Cl, 54
25Mn) allows the

separate determination of halo size and diffusion coefficient
(e.g., Ptuskin & Soutoul 1998; Strong & Moskalenko 1998;

Webber & Soutoul 1998; Moskalenko et al. 2001). However,
the interpretation of the sharp peaks observed in the secondary
to primary CR nuclei ratios (e.g., 5B/6C, [21Sc+22Ti+23V]/26Fe)
at relatively low energies, ∼1–few GeV nucleon−1, is model de-
pendent.

The solar modulation of the CRs during their propagation in
the heliosphere significantly modifies the interstellar spectra be-
low ∼20 GeV nucleon−1. The modulated spectra are the actual
ones measured by balloon-borne and spacecraft instruments.
Modulation models are based on the solution of the Parker
(1965) equation (e.g., see reviews by Potgieter 1998; Heber
et al. 2006). The particle transport to the inner heliosphere is
mainly determined by spatial diffusion, convection with the so-
lar wind, drifts, and adiabatic cooling. Realistic time-dependent
three-dimensional hydrodynamic models incorporating these ef-
fects have been developed (e.g., Florinski et al. 2003; Langner
et al. 2006; Potgieter & Langner 2004). The often-used method
of Gleeson & Axford (1968), the so-called force-field approx-
imation, employs a single parameter—the “modulation poten-
tial”—to characterize the strength of the modulation effect on
the CR spectra as it varies over the solar cycle. The force-field
approximation has no predictive power as the modulation poten-
tial depends on the assumed interstellar spectrum of CR species.
However, it can be a useful low-energy parameterization for a
given interstellar spectrum.

Closely connected with the CR propagation is the production
of the Galactic diffuse γ -ray emission. This is comprised of
three components: π0-decay, bremsstrahlung, and IC. CR nu-
clei interacting inelastically with the interstellar gas produce π0s
that decay to γ -rays. The CR electrons and positrons interact
with the interstellar gas and produce bremsstrahlung, and with
the interstellar radiation field (ISRF) via IC scattering producing
γ -rays. Since the γ -rays are undeflected by magnetic fields and
absorption in the ISM is negligible (Moskalenko et al. 2006),
they provide the information necessary to directly probe CR
spectra and intensities in distant locations (see Moskalenko et al.
2004 for a review). However, the interpretation of such observa-
tions is complicated since the observed γ -ray intensities are the
line-of-sight integral of the sum of the three components of the
diffuse Galactic γ -ray emission, an isotropic component (often
described as “extragalactic,” but this not completely certain),
unresolved sources, together with instrumental background(s).
Proper modeling of the diffuse γ -ray emission, including the
disentanglement of the different components, requires well-
developed models for the ISRF and gas densities, together with
the CR propagation (see, e.g., Strong et al. 2000, 2004). For
recent measurements of the diffuse γ -ray emission by the Fermi
Large Area Telescope (LAT), see Abdo et al. (2009a, 2009c,
2010). Global CR-related properties of the Milky Way galaxy
are calculated in Strong et al. (2010).

3. GALPROP CODE

The GALPROP project began in late 1996 and has now
15 years of development behind it. The key concept underlying
the GALPROP code is that various kinds of data, e.g., direct
CR measurements including primary and secondary nuclei,
electrons and positrons, γ -rays, synchrotron radiation, and so
forth are all related to the same astrophysical components of
the Galaxy and hence have to be modeled self-consistently. The
code, originally written in FORTRAN90, was made public in
1998. A version rewritten in C++ was produced in 2001, and the
most recent public version 54 was recently released (Vladimirov
et al. 2010). The code is available from the dedicated Web site
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where a facility for users to run the code via online forms in a
Web browser is also provided.9

The GALPROP code solves the CR transport equation with
a given source distribution and boundary conditions for all CR
species. This includes a galactic wind (convection), diffusive
reacceleration in the ISM, energy losses, nuclear fragmentation,
radioactive decay, and production of secondary particles and
isotopes:

∂ψ

∂t
= q(r, p) + ∇ · (Dxx∇ψ − Vψ) +

∂

∂p
p2Dpp

∂

∂p

1

p2
ψ

− ∂

∂p

[
ṗψ − p

3
(∇ · V)ψ

]
− 1

τf

ψ − 1

τr

ψ , (1)

where ψ = ψ(r, p, t) is the density per unit of total particle
momentum, ψ(p)dp = 4πp2f (p) in terms of phase-space
density f (p), q(r, p) is the source term, Dxx is the spatial
diffusion coefficient, V is the convection velocity, reacceleration
is described as diffusion in momentum space and is determined
by the coefficient Dpp, ṗ ≡ dp/dt is the momentum loss
rate, τf is the timescale for fragmentation, and τr is the
timescale for radioactive decay. The numerical solution of
the transport equation is based on a Crank–Nicholson (Press
et al. 1992) implicit second-order scheme. The spatial boundary
conditions assume free particle escape, e.g., ψ(Rh, z, p) =
ψ(R,±zh, p) = 0, where Rh and zh are the boundaries for
a cylindrically symmetric geometry.

Since the grid involves a three-dimensional (R, z, p) or a four-
dimensional (x, y, z, p) problem (spatial variables plus momen-
tum), “operator splitting” is used to handle the implicit solution.
For a given halo size the diffusion coefficient, as a function of
momentum and the reacceleration or convection parameters, is
determined from secondary/primary ratios. If reacceleration is
included, the momentum–space diffusion coefficient Dpp is re-
lated to the spatial coefficient Dxx (= βD0ρ

δ) (Berezinskii et al.
1990; Seo & Ptuskin 1994):

DppDxx = 4p2v2
Alf

3δ(4 − δ2)(4 − δ)w
, (2)

where w characterizes the level of turbulence (we take w = 1
since only the quantity v2

Alf/w is relevant), δ = 1/3 for a
Kolmogorov spectrum of interstellar turbulence or δ = 1/2
for a Kraichnan cascade (but can also be arbitrary), ρ ≡ pc/Ze
is the magnetic rigidity where p is the momentum and Ze is
the charge, D0 is a constant, and β = v/c. Nonlinear wave
damping (Ptuskin et al. 2006) can also be included via specifying
parameters in the configuration galdef file.

Production of secondary positrons and electrons is calculated
as described in Moskalenko & Strong (1998) with a correction
by Kelner et al. (2006). Secondary pion production is calculated
using the formalism by Dermer (1986a, 1986b), which combines
isobaric (Stecker 1970) and scaling (Badhwar et al. 1977;
Stephens & Badhwar 1981) models of the reaction, as described
in Moskalenko & Strong (1998), or using a parameterization
developed by Kamae et al. (2005). Bremsstrahlung is calculated
as described in Strong et al. (2000). The IC scattering is treated
using the appropriate formalism for an anisotropic radiation
field developed by Moskalenko & Strong (2000) using the full
spatial and angular distribution of the ISRF calculated using the
FRaNKIE code (Porter & Strong 2005; Porter et al. 2008).

9 http://galprop.stanford.edu/webrun

The distribution of Galactic CR sources is based on
Fermi–LAT gamma-ray data, which differs slightly from the
pulsar distribution of Lorimer (2004) used, e.g., in Strong et al.
(2010). For this study, we use fCR(R) = (R/R0)αe−β(R−R0), i.e.,
normalized to 1 at R = R0, where α = 1.25 and β = 3.56.

The γ -rays are calculated using the propagated CR distribu-
tions, including a contribution from secondary particles such
as positrons and electrons from inelastic processes in the ISM
that increases the γ -ray flux at MeV energies (Strong et al.
2004; Porter et al. 2008). Gas-related γ -ray intensities (π0-
decay, bremsstrahlung) are computed from the emissivities as a
function of (R, z,Eγ ) using the column densities of H i and H2
for galactocentric annuli based on recent 21 cm and CO survey
data with a more accurate assignment of the gas to the Galacto-
centric rings than earlier versions. The synchrotron emission is
computed using the Galactic magnetic field model that can be
chosen from among various models taken from the literature,
suitably parameterized to allow fitting to the observations. The
line-of-sight integration of the corresponding emissivities with
the distributions of gas, ISRF, and magnetic field yields γ -ray
and synchrotron skymaps. Spectra of all species on the chosen
grid and the γ -ray and synchrotron skymaps are output in stan-
dard astronomical formats for direct comparison with data, e.g.,
HEALPix10 (Górski et al. 2005), Fermi-LAT MapCube format
for use with LAT Science Tools software,11 etc.

Cross sections are based on the extensive LANL database,
nuclear codes, and parameterizations (Mashnik et al. 2004).
The most important isotopic production cross sections (2H,
3H, 3He, Li, Be, B, Al, Cl, Sc, Ti, V, and Mn) are calculated
using our fits to major production channels (Moskalenko &
Mashnik 2003; Moskalenko et al. 2003). Other cross sections are
calculated using phenomenological approximations by Webber
et al. (2003) and/or Silberberg et al. (1998) renormalized to
the data where they exist. The nuclear reaction network is built
using the Nuclear Data Sheets.

The GALPROP code computes a complete network of pri-
mary, secondary, and tertiary CR production starting from input
source abundances. Starting with the heaviest primary nucleus
considered (e.g., 64Ni) the propagation solution is used to com-
pute the source term for its spallation products A−1, A−2, and
so forth, which are then propagated in turn, and so on down to
protons, secondary electrons and positrons, and antiprotons. To
account for some special β−-decay cases (e.g., 10Be→10B) the
whole loop is repeated twice. GALPROP includes K-capture
and electron stripping processes as well as knock-on electrons.
The inelastically scattered protons and antiprotons are treated as
separate components (secondary protons, tertiary antiprotons).
In this way secondaries, tertiaries, etc., are included. Primary
electrons are treated separately.

Further details on improvements to the code, including
parallelization and other optimizations, improvements in line-
of-sight integration routines, and so forth, can be found at the
aforementioned Web site.

4. METHODOLOGY

4.1. Bayesian Inference

The goal of this paper is to determine constraints on the propa-
gation model parameters (introduced below) from observed CR

10 http://healpix.jpl.nasa.gov
11 http://fermi.gsfc.nasa.gov/ssc/data/analysis
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spectra and we adopt a Bayesian approach to parameter infer-
ence (see, e.g., Trotta 2008 for further details). Bayesian infer-
ence is based on the posterior probability distribution function
(pdf) for the parameters, which updates our state of knowledge
from the prior by taking into account the information contained
in the likelihood. A recent application to CR propagation models
is given in Maurin et al. (2010) and Putze et al. (2010). Denoting
by Θ the vector of parameters one is interested in constraining
and by D the available observations, Bayes Theorem reads

P (Θ|D) = P (D|Θ)P (Θ)

P (D)
, (3)

where P (Θ|D) is the posterior distribution on the parameters
(after the observations have been taken into account), P (D|Θ) =
L(Θ) is the likelihood function (when considered as a function
of Θ for the observed data D), and P (Θ) is the prior distribution,
which encompasses our state of knowledge about the value of the
parameters before we have seen the data. Finally, the quantity
in the denominator of Equation (3) is the Bayesian evidence
(or model likelihood), a normalizing constant that does not
depend on Θ and can be neglected when interested in parameter
inference. The evidence is obtained by computing the average
of the likelihood under the prior (so that the right-hand side of
Equation (3) is properly normalized)

P (D) =
∫

P (D|Θ)P (Θ)dΘ. (4)

The evidence is the prime quantity for Bayesian model compar-
ison, which aims at establishing which of the available models
is the “best” one, i.e., the one that fits the data best while be-
ing the most economical in terms of parameters, thus giving a
quantitative implementation of Occam’s razor (see, e.g., Trotta
2007). The evidence can also be used to assess the constraining
power of the data (Trotta et al. 2008) and to carry out consistency
checks between observables (Feroz et al. 2009).

Together with the model, the priors for the parameters which
enter Bayes’ theorem, Equation (3), must be specified. Priors
should summarize our state of knowledge and/or our theoretical
prejudice about the parameters before we consider the new
data, and for the parameter inference step the prior for a new
observation might be taken to be the posterior from a previous
measurement (for model comparison issues the prior is better
understood in a different way; see Trotta 2008).

The problem is then fully specified once we give the like-
lihood function for the observations (see Section 4.4 below).
The posterior distribution P (Θ|D) is determined numerically
by drawing samples from it and Markov Chain Monte Carlo
(MCMC) techniques can be used for this purpose. In this paper,
we use both Metropolis–Hastings MCMC and the MultiNest
algorithm, which implements nested sampling and provides a
higher efficiency, guarantees a better exploration of degenera-
cies and multimodal posteriors, and computes the Bayesian ev-
idence as well (which is difficult to extract from MCMC meth-
ods).

4.2. Propagation Model Parameters

As a test case for this study, we choose the diffusion–
reacceleration model, which has been used in a number of
studies utilizing the GALPROP code (e.g., Moskalenko et al.
2002; Strong et al. 2004; Ptuskin et al. 2006; Abdo et al. 2009a,
and references therein). The source distribution is specified in
Section 3.

In this model, the spatial diffusion coefficient is given by

Dxx = βD0

(
ρ

ρ0

)δ

, (5)

where D0 is a free normalization at the fixed rigidity ρ0 =
4 × 103 MV. The power-law index is δ = 1/3 for Kolmogorov
diffusion (see Section 3), but we take it as a free parameter for
the purposes of this study. Fitting the B/C ratio below 1 GeV
in reacceleration models is known to require large values of
vAlf . In these models, a break in the injection spectra is required
to compensate for the large bump in the propagated spectra at
low energies/nucleon. Therefore, the CR injection spectrum is
modeled as a broken power law, with index below (−ν1) and
above (−ν2) the break as free parameters, but with the location
of the break fixed at a rigidity 104 MV. The other free model
parameters are vAlf , the halo size zh, and the normalization of
the propagated CR proton spectrum at 100 GeV Np, for a total of
seven free model parameters, as summarized in Table 1. Other
models discussed in the literature may be able to reproduce the
B/C ratio without a break in the injection spectra, but the present
paper is mainly intended as a presentation of the method and
we defer a comprehensive study of different possibilities to a
forthcoming paper.

The nuclear chain used starts at 28Si and proceeds down to
protons. The source abundances of nuclei 6 � Z � 14 have
an important influence on the B/C and 10Be/9Be ratios used in
this study. In our analysis, they are fixed at values determined
for ACE data at a few 100 MeV nucleon−1 (Moskalenko et al.
2008), but the values are assumed to hold also at the GALPROP
normalization energy of 100 GeV nucleon−1. The adopted
relative source abundances of the most abundant isotopes
(for particle flux in cm−2 s−1 (MeV nucleon−1)−1) are 4He:
7.199×104, 12C: 2819, 14N: 182.8, 16O: 3822, 20Ne: 312.5, 22Ne:
100.1, 23Na: 22.84, 24Mg: 658.1, 25Mg: 82.5, 26Mg: 104.7, 27Al:
76.42, and 28Si: 725.7. These values are relative to the proton
normalization Np for a proton source abundance 1.06 × 106, but
this is only formal since the antiprotons, secondary positrons,
and gamma rays were computed from an independent fit to
proton and He data. Np is used only to normalize C and O to the
data, via the ratios given above (other data like N are not used
explicitly).

Special handling is required to treat the solar modulation
of the propagated CR spectra, for which we introduce an
extra nuisance parameter for each of the data set we consider.
The motivation and choice of the Gaussian priors, with mean
and standard deviation as given in Table 1, is described in
Section 4.3. In addition, we also introduce a set of parameters τ
designed to mitigate the possibility that the fit be dominated by
undetected systematic errors in the data, as explained in detail in
the next section. Overall, we thus fit a total of 16 free parameters,
including 7 model parameters, 4 modulation parameters, and 5
observational variance rescaling factors.

4.3. Cosmic-ray Data and Modulation

For demonstration of the method we use the most accurate
CR data sets available preferably taken near solar minimum.12

The B/C ratio is well measured by a number of space- and
balloon-borne missions. The HEAO-3 data (Engelmann et al.
1990) remain the most accurate to date in the energy range

12 Most of the data are obtained via the database maintained at
http://www.mpe.mpg.de/∼aws/propagate.html.

4

http://www.mpe.mpg.de/~aws/propagate.html


The Astrophysical Journal, 729:106 (16pp), 2011 March 10 Trotta et al.

Table 1
Summary of Input Parameters and Prior Ranges

Quantity Symbol Prior Range Prior Type

Diffusion model parameters Θ
Diffusion coefficienta (1028 cm2 s−1) D0 [1, 12] Uniform
Rigidity power-law index δ [0.1, 1.0] Uniform
Alfvén speed (km s−1) vAlf [0, 50] Uniform
Diffusion zone height (kpc) zh [1.0, 10.0] Uniform
Nucleus injection index below 104 MV ν1 [1.50, 2.20] Uniform
Nucleus injection index above 104 MV ν2 [2.05, 2.50] Uniform
Proton normalization (10−9 cm2 sr−1 s−1 MeV−1) Np [2, 8] Uniform

Experimental nuisance parameters
Modulation parameters φ (MV) Gaussian priorb

HEAO-3 mHEAO-3 [420, 780] N (600, 60)
ACE mACE [175, 475] N (325, 50)
CREAM mCREAM [420, 780] N (600, 50)
ISOMAX mISOMAX [370, 490] N (430, 20)
ATIC-2 mATIC-2 0 Fixed (no modulation)

Variance rescaling parameters (j = 1, . . . , 5) log τj [−1.5, 0.0] Uniform on log τj

Notes.
a At ρ = 4 × 103 MV.
b We use the notation N (μ, σ ) to indicate a Gaussian distribution of mean μ and standard deviation σ .

0.6–35 GeV nucleon−1 and have been recently confirmed by
PAMELA (R. Sparvoli 2010, private communication). At higher
energies, from 30 GeV nucleon−1–1 TeV nucleon−1, we use
ATIC-2 (Panov et al. 2008) and CREAM-1 data (Ahn et al. 2008).
At low energies, the Voyager 1 and 2 (Lukasiak et al. 1999),
Ulysses (Duvernois et al. 1996), and ACE (de Nolfo et al. 2006)
data agree with each other, while the ACE data (50–200 MeV
nucleon−1) have the smallest statistical error. Therefore, we use
the ACE measurements corresponding to the solar minimum
conditions (George et al. 2009).

The 10Be/9Be ratio is most accurately measured (70–145 MeV
nucleon−1) by ACE (Yanasak et al. 2001), which we include in
our fit. Those measurements are in agreement with Voyager 1
and 2 (Lukasiak et al. 1999), and Ulysses (Connell 1998) data.
At higher energies (per nucleon), there are only two data points
by ISOMAX (Hams et al. 2004) with very large error bars, which
we also include in the fit.

We also use the carbon and oxygen spectra as measured by
ACE at the solar minimum (George et al. 2009) and by HEAO-3
(Engelmann et al. 1990).

As mentioned above, a very important issue is the treatment of
the heliospheric modulation. We fit to the CR data in the whole
energy range from some 10 MeV nucleon−1 to TeV energies.
However, a comparison of calculated CR spectra, the elemental
and isotopic ratios with low-energy data (below ∼ 20 GeV
nucleon−1) measured inside the heliosphere requires care as
the calculated spectra depend significantly on the treatment
of the heliospheric modulation. As mentioned in Section 2,
the modulation can be realistically treated with full three-
dimensional models, but application of such models to the
current study does not seem feasible since the number of free
parameters and the computing requirements would considerably
increase. Currently, it is only possible to use a simple force-field
approximation (Gleeson & Axford 1968), which is characterized
by the value of the modulation potential. However, directly
using the modulation potentials from different experiments is
problematic because they cannot be interpreted independently
from the experiments themselves. The derived values depend on
the choices of interstellar spectra used for their analyses, which
differ from experiment to experiment (and are sometimes not
provided).

To deal with this type of uncertainty, instead of fixing a
collection of a priori values to the modulation potential, we allow
some flexibility to the fits and include the modulation potentials
as free nuisance parameters in our inference, with one free
parameter per experiment (i.e., ACE, HEAO-3, ISOMAX, and
CREAM-1). To avoid unphysical/implausible values, we adopt
Gaussian priors with mean and standard deviation as given in
Table 1, which are motivated by the estimated ballpark values of
the modulation by the experimentalists. Note that no modulation
parameter is given for ATIC-2 as we only use high-energy data
for that experiment and modulation is not relevant.

4.4. The Likelihood Function

For a given set of the CR model parameters Θ and the
modulation potential parameters φ (where φ = {φ1, . . . , φ4},
with a different choice of the modulation potential for each
data set employed) we can compute via GALPROP the en-
suing CR spectrum, as a function of energy, ΦX(E, Θ, φ) for
species X. Assuming Gaussian noise on the observations, we
take the likelihood function for each observation of species X at
energy Ei to be of the form

P
(
Φ̂ij

X|Θ, φ
) = 1√

2πσij

exp

(
−1

2

(
ΦX(Ei, Θ, φ) − Φ̂ij

X

)2

σ 2
ij

)
,

(6)
where ΦX(Ei, Θ, φ) is the prediction from the CR propagation
model for species X at energy Ei, Φ̂ij

X is the measured spectrum,
and σij is the reported standard deviation. The sub/superscript
i runs through the data points within each of the data sets j.
We assume bins to be independent, so that the full likelihood
function is given by the product of the terms of the form given
above:

P (D|Θ, φ) =
5∏

j=1

Nj∏
i=1

P
(
Φ̂ij

X|Θ, φ
)
. (7)

However, a careful analysis of a plot of the data points for each
CR species reveals that there are fairly strong discrepancies
between different data sets. This might point to either an
underestimation of the actual experimental error bars or to
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undetected systematic errors between data sets. If some or all
of the reported error bars are significantly underestimated, this
would lead to a handful of data points incorrectly dominating the
global fit, introducing systematic bias in the reconstructed value
of the parameters. To mitigate against undetected systematics,
we follow the procedure described in, e.g., Barnes et al. (2003).
For each data set we introduce in the likelihood a parameter
τj (j = 1, . . . , 5), whose function is to rescale the variance
of the data points in order to account for possible systematic
uncertainties. Therefore, Equation (6) is modified:

P
(
Φ̂ij

X|Θ, φ, τ
)= √

τj√
2πσij

exp

⎛
⎜⎝−1

2

(
ΦX(Ei, Θ, φ) − Φ̂ij

X

)2

σ 2
ij /τj

⎞
⎟⎠.

(8)
The role of the set of parameters τ = {τ1, . . . , τ5}, which
we call “error bar rescaling parameters,” is to allow for the
possibility that the error bars reported by each of the experiments
underestimate the true noise. We then add τ to the set of
parameters Θ and sample over it, too, thus allowing the data
themselves to decide whether there are systematic discrepancies
in the reported error bars. A value τj < 1 means that the
data prefer a systematically larger value for the errors for
data set j. Note that τj not only appears in the exponential
of the Gaussian in Equation (8), but also in the pre-factor,
which, being proportional to

√
τj , ensures that τj never attains

a value arbitrarily close to 0 (implying infinite error bars).
Furthermore, the variance scaling parameters τ also take care
of all aspects of the model that are not captured by the reported
experimental error: this also includes theoretical errors (i.e., the
model not being completely correct), errors in the cross section
normalizations, etc.

4.5. Choice of Priors

The full posterior distribution for the CR propagation model
parameters Θ, the variance rescaling parameters τ , and the
modulation parameters φ is given by

P (Θ, φ, τ, |D) ∝ P (D|Θ, φ, τ )P (Θ)P (τ )P (φ), (9)

where the likelihood P (D|Θ, τ, φ) is given by Equations (7)
and (8).

The priors P (Θ), P (φ), and P (τ ) in Equation (9) are specified
as follows. We take the prior on a set of model parameters, P (Θ),
to be uniform on Θ with ranges as given in Table 1. As shown
below, the posterior is reasonably well constrained and close
to Gaussian for Θ, hence we expect our results to be fairly
independent of the prior choice.

This conclusion is strengthened by the inspection of the pro-
file likelihood, which is obtained from our samples by maxi-
mizing the value of the likelihood along the hidden dimensions
rather than integrating over the posterior. The profile likelihood
statistic is independent of the priors, provided the parameter
space has been sampled with sufficient resolution, and thus it
constitutes a cross-check for the presence of large volume ef-
fects coming from the priors. Such volume effects are typically
important when the priors play a major role in the inference,
while they are usually negligible when the posterior is dom-
inated by the likelihood (in which case the prior influence is
minimal; see, e.g., Trotta et al. 2008 for an illustration). We
have found the profile likelihood to be in excellent agreement
with the posterior pdf presented below, and therefore we do not
consider it further in our results below. This means that the prior

influence is small and our results can be considered to be robust
with respect to reasonable changes in priors.

Regarding the modulation parameters, we adopt a Gaussian
prior on each of them, informed by the values reported by
each experiment (see Table 1), in order to avoid physically
implausible values. The description of the experimental CR data
sets can be found in Section 4.3.

The τj are scaling parameters in the likelihood, and thus the
appropriate prior is given by the Jeffreys’ prior, which is uniform
on log τj (see Barnes et al. 2003 or Jaynes & Bretthorst 2003
for a justification). Therefore, we adopt the proper prior

P (log τj ) =
{

2/3 for − 3/2 � log τj � 0

0 otherwise
(10)

that corresponds to a prior on τj of the form

P (τj ) ∝ τ−1
j . (11)

The inclusion in our analysis of the nuisance parameters φ
and τ (which are then marginalized over; see Equation (17))
has two main effects on our inference about the CR parameters
of interest, Θ. First, it increases the robustness of our fit, since
the nuisance parameters account for potential systematic effects
in the data (τ ) and approximately capture the impact of solar
modulation on the measurements (φ). Second, it makes our CR
constraints more conservative, since our marginalized errors on
Θ fully account for all possible values of the nuisance parameters
compatible with the data.

4.6. Sampling Algorithm

A powerful and efficient alternative to classical MCMC
methods has emerged in the last few years in the form of the so-
called nested sampling algorithm, invented by John Skilling
(Skilling 2004, 2006; Feroz & Hobson 2008; Feroz et al.
2009). Although the original motivation for nested sampling
was to compute the evidence integral of Equation (4), the recent
development of the MultiNest algorithm (Feroz & Hobson 2008;
Feroz et al. 2009) has delivered an extremely powerful and
versatile algorithm that has been demonstrated to be able to
deal with extremely complex likelihood surfaces in hundreds of
dimensions exhibiting multiple peaks.

As samples from the posterior are generated as a by-product
of the evidence computation, nested sampling can also be used to
obtain parameter constraints in the same run as computing the
Bayesian evidence. In addition, multi-modal nested sampling
exhibits an efficiency that is almost independent of the dimen-
sionality of the parameter space being explored, thus beating
the “curse of dimensionality.”

The essential element of nested sampling is that the multi-
dimensional evidence integral is recast into a one-dimensional
integral. This is accomplished by defining the prior volume X
as dX ≡ P (Θ)dΘ so that

X(λ) =
∫
L(Θ)>λ

P (Θ)dΘ, (12)

where the integral is over the parameter space enclosed by the
iso-likelihood contour L(Θ) = λ. So X(λ) gives the volume of
parameter space above a certain level λ of the likelihood. Then
the Bayesian evidence, Equation (4), can be written as

P (D) =
∫ 1

0
L(X)dX, (13)

6
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where L(X) is the inverse of Equation (12). Samples from
L(X) can be obtained by uniformly drawing samples from the
likelihood volume within the iso-contour surface defined by λ.
The one-dimensional integral of Equation (13) can be obtained
by simple quadrature, thus

P (D) ≈
∑

i

L(Xi)Wi, (14)

where the weights are Wi = 1
2 (Xi−1 −Xi+1) (see Skilling 2004,

2006; Feroz & Hobson 2008; Feroz et al. 2009; Mukherjee et al.
2006, for details). It has been shown in the context of CMB data
analysis in cosmology and in supersymmetry phenomenology
studies that this technique reduces the number of likelihood
evaluations by over an order of magnitude with respect to
conventional MCMC.

In this paper, we adopt the publicly available MultiNest
algorithm (Feroz & Hobson 2008), as implemented in the
SuperBayeS code (Trotta et al. 2008; Ruiz de Austri et al. 2006),
that we have interfaced with the GALPROP code. First, we
performed an exploratory scan with MultiNest, adopting 4000
live points in our 16-dimensional parameter space, with the
aim of scouting the structure and degeneracy directions of the
posterior distribution. An important characteristic of MultiNest,
which sets it apart from conventional MCMC methods, is
its ability to sample reliably from multi-modal distributions.
Therefore, it is highly desirable to employ MultiNest to perform
scans of parameter spaces that have not been investigated
before, as MultiNest will make it less likely to miss important
substructure in the probability distribution when the latter is
multi-modal.

Our exploratory MultiNest scan gathered ∼105 samples from
the posterior, with an overall efficiency of about 10% and a
total computational effort of ≈13 CPU years. This initial scan
revealed a well-behaved, unimodal distribution over the prior
ranges given in Table 1. We then computed the parameter-set
covariance matrix and adopted this as a Gaussian proposal
distribution for a conventional Metropolis–Hastings MCMC
scan. Since the proposal distribution was well matched to the
posterior, our MCMC scan reached an efficiency of ∼15%, and
we built 10 parallel chains with 14,000 samples each (after
burn-in), for a total of 1.4 × 105 samples. We checked that the
Gelman & Rubin mixing criterion (Gelman & Rubin 1992) is
satisfied for all of our parameters (i.e., R 
 0.1, where R is the
inter-chain variance divided by the intra-chain variance).

We verified that the posterior distribution obtained with
MCMC was in excellent agreement with the one obtained from
MultiNest, which validates our results as the two sampling
schemes are completely different. The results presented in this
paper are obtained from the MCMC run, which allows for
slightly smoother posterior distributions as it contains 40% more
samples than the MultiNest scan.13

In order to keep the computational cost within reasonable
limits, we carry out our MultiNest and MCMC runs assuming
a relatively coarse spatial and energy/nucleon grid for the
CR propagation. For each point in parameter space, we adopt
δz = 0.2 kpc, δR = 1 kpc, and δE = 1.4. With these
parameters, one likelihood evaluation takes approximately 15 s
on an eight-way 2.4 GHz Opteron CPU machine. We then

13 The resulting chain of samples (including their statistical weight and
likelihood) is provided as a supplementary material (available in the online
journal), allowing the reader to make their own analysis, for example, to
investigate particular parameter correlations.

reprocessed the MCMC samples using importance sampling,
decreasing the spacing of the spatial grid by a factor of two
in each direction while increasing the energy resolution to
δE = 1.1. The computational cost per likelihood evaluation
is increased by a factor of ∼20, but allows a more precise
computation of the CR spectra. The statistical distribution is
adjusted accordingly, thus obtaining a posterior distribution that
is close to what would have been obtained by running the scan at
the higher resolution initially. The advantage of using posterior
sampling in this context is that the resampling of the points
can be done in a massively parallel way (using 800 CPUs, the
resampling step takes only a few hours). Although the best-
fit point shifts somewhat after importance sampling, we have
verified that the bulk of our probability distributions remain
stable. We therefore conclude that the results presented here
are robust with respect to increases in the spatial and energy
resolution of the scan.

4.7. Parameter Inference from Posterior Samples

Once a sequence {Θ(0), Θ(1), . . . , Θ(M−1)} of samples from
the posterior pdf has been gathered, obtaining Monte Carlo
estimates of expectations for any function of the parameters is
straightforward. For example, the posterior mean is given by
(〈·〉 denotes the expectation value with respect to the posterior)

〈Θ〉 =
∫

P (Θ|D)ΘdΘ ≈ 1

M

M−1∑
t=0

Θ(t), (15)

where the second equality follows because the samples Θ(t) are
generated from the posterior by construction. In general, the
expectation value of any function of the parameters f (Θ) is
obtained as

〈f (Θ)〉 ≈ 1

M

M−1∑
t=0

f (Θ(t)). (16)

It is useful to summarize the results of the inference by giving
the one-dimensional marginal probability for the jth element of
Θ, Θj , obtained by integrating out all other parameters from the
posterior:

P (Θj |D) =
∫

P (Θ|D)dΘ1 . . . dΘj−1dΘj+1 . . . dΘn, (17)

where P (Θj |D) is the marginal posterior for the parameter
Θj . From the posterior samples (obtained either by MCMC or
MultiNest) it is straightforward to obtain and plot the marginal
posterior on the left-hand side of Equation (17): since samples
are drawn from the full posterior by construction, their density
reflects the value of P (Θ|D). It is then sufficient to divide the
range of Θj into a series of bins and count the number of
samples falling within each bin, ignoring the coordinates values
Θi (for i 
= j ). The two-dimensional posterior is defined in
an analogous fashion. The one-dimensional, two-tail symmetric
α% credible region is given by the interval (for the parameter of
interest) within which α% of the samples are found, obtained in
such a way that a fraction (1 − α)/2 of the samples are outside
the interval on either side. In the case of a one-tail upper (lower)
limit, we report the value of the quantity below (above) where
α% of the samples are found.
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Figure 1. One-dimensional marginalized posterior pdf normalized to the peak for the diffusion model parameters, with uniform priors assumed over the parameter
ranges as in Table 1. The red cross represents the best fit, the vertical thin line the posterior mean, and the horizontal bar the 68% and 95% error ranges (yellow/blue,
respectively). The bottom right panel shows the pdf for the spectral index break.

(A color version of this figure is available in the online journal.)

5. RESULTS

5.1. Cosmic-ray Propagation Model Parameter Constraints

In Figures 1 and 2, we show one-dimensional marginalized
posterior probabilities for the propagation and nuisance param-
eters of the model. The red cross represents the best fit, the
vertical thin line the posterior mean, and the horizontal bar the
68% and 95% error ranges (yellow/blue, respectively). Two-
dimensional constraints on some parameter combinations are
presented in Figure 3. The best-fit point and posterior ranges
are summarized in Table 2. For reference the galdef parameter
definition files with the best-fit parameter values presented in
this study are available as a supplementary material to this pa-
per. These give precise definitions of the model used, which can
be reproduced as required. The final MCMC chains from which
Figures 1–3 were produced are also available.

We see that δ and vAlf are quite well constrained, with
the posterior mean δ = 0.31 ± 0.02 being very close to the
canonical value of 1/3 for Kolmogorov diffusion. The Alfvén
speed, vAlf = 38.4±2.1 km s−1, is higher than in earlier studies,
but this is dictated by the fit to the ACE data on the B/C ratio
at low energies. The posterior intervals on the values of D0 and
zh are fairly large, D0 = (8.32 ± 1.46) × 1028 cm2 s−1 and
zh = 5.4 ± 1.4 kpc. The typical value of 4 kpc adopted in many
studies is at the lower end of the viable range, but still within
the 95% interval, zh ∈ [3.2, 8.6] kpc. We can see from the D0
versus zh panel in Figure 3 that the diffusion coefficient and the
halo size are positively correlated, as expected.

Other parameters exhibit less pronounced correlations. The
injection indexes ν1 and ν2 are tightly constrained and almost
uncorrelated (Figure 3), but this reflects the fact that the position
of the injection spectral break is fixed in this analysis, so that the
indices are determined by δ and vAlf with their narrow ranges.
The value of the injection index ν2 = 2.38 ± 0.04 provides a
consistency check as the value of the sum ν2 + δ should be close
to the spectral indices of directly measured carbon and oxygen
spectra ∼2.70, and indeed we find that ν2 + δ = 2.69 ± 0.05.
Comparison to the value of the injection index ν1 = 1.92±0.04
shows that the spectral break required is 0.46 ± 0.05. The pdf
for the spectral break is plotted in the bottom right panel of
Figure 1. While at face value the break appears very statistically
significant, it has to be kept in mind that the value found is
dependent on the break energy, which was fixed in this analysis.
Future analyses will allow more freedom in the form of the
spectrum.

5.2. Comparison with Our Previous Results

In general, there is remarkable agreement between the “by-
eye” fitting in the past (e.g., Strong & Moskalenko 1998, 2001;
Moskalenko et al. 2002; Ptuskin et al. 2006) and the parameter
constraints found using the refined Bayesian inference analysis
described in this paper. The posterior mean values of the diffu-
sion coefficient D0 = (8.32±1.46)×1028 cm2 s−1 at 4 GV and
the Alfvén speed vAlf = 38.4±2.1 km s−1 are also in fair agree-
ment with earlier estimates of 5.73×1028 cm2 s−1 and 36 km s−1

8
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Figure 2. Same as Figure 1, but for the nuisance parameters used in the analysis.

(A color version of this figure is available in the online journal.)

Table 2
Summary of Constraints on All Parameters

Quantity Best-fit Posterior Mean and Posterior
Value Standard Deviation 95% Range

Diffusion model parameters Θ
D0(1028 cm2 s−1) 6.59 8.32 ± 1.46 [5.45, 11.20]
δ 0.30 0.31 ± 0.02 [0.26, 0.35]
vAlf (km s−1) 39.2 38.4 ± 2.1 [34.2, 42.7]
zh (kpc) 3.9 5.4 ± 1.4 [3.2, 8.6]
ν1 1.91 1.92 ± 0.04 [1.84, 2.00]
ν2 2.40 2.38 ± 0.04 [2.29, 2.47]
Np (10−9 cm2 sr−1 s−1 MeV−1) 5.00 5.20 ± 0.48 [4.32, 6.23]

Experimental nuisance parameters
Modulation parameters φ (MV)

HEAO-3 693 690 ± 38 [613, 763]
ACE 357 354 ± 22 [311, 398]
CREAM 598 602 ± 49 [503, 697]
ISOMAX 416 430 ± 20 [391, 470]
ATIC-2 0 (fixed) N/A N/A

Variance rescaling parameters τ

HEAO-3 −0.60 −0.60 ± 0.10 [−0.82,−0.41]
ACE −0.12 N/A >−0.49 (1-tail)
CREAM 0.00 N/A >−0.53 (1-tail)
ISOMAX −0.21 N/A >−1.21 (1-tail)
ATIC-2 −0.24 N/A >−0.84 (1-tail)

(Ptuskin et al. 2006), respectively. The posterior mean halo size
is 5.4 ± 1.4 kpc, also in agreement with our earlier estimated
range zh = 4–6 kpc (Strong & Moskalenko 2001), although our
best-fit value of zh = 3.9 kpc is somewhat lower, due to the
degeneracy between D0 and zh. However, the well-defined pos-

terior intervals produced by the present study are significantly
more valuable than just the best-fit values themselves as they
provide an estimate of associated theoretical uncertainties and
may point to a potential inconsistency between different types of
data.
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Figure 3. Two-dimensional marginalized posterior probability distributions for some parameter combinations. The yellow and blue regions enclose 68% and 95%
probability, respectively. The encircled red cross is the best fit, the filled green dot the posterior mean.

(A color version of this figure is available in the online journal.)

5.3. Quality of Best-fit Model

We now assess the quality of our best-fit model. Define the
χ2 as

χ2 ≡
5∑

j=1

Nj∑
i=1

(
ΦX(Ei, Θ, φ) − Φ̂ij

X

)2

σ 2
ij /τj

, (18)

i.e., we compute the χ2 using the rescaled error bars for the
data points (note that the χ2 
= −2 log P (D|Θ, φ, τ ), i.e., the
χ2 is not minus twice the log-likelihood because of the pre-
factor containing τappearing in Equation (8)). There are N = 76
total data points and M = 16 fitted parameters, including both
the modulation and the error rescaling parameters. Therefore,
the number of degrees of freedom (dof) is 60, and for the
best-fit model we find χ2 = 69.3, which leads to a reduced
chi-squared χ2/dof = 68/60 = 1.15. This is not surprising,
since by construction the error bar rescaling parameters, τ , are
adjusted dynamically during the global fit to achieve this. A
more detailed breakdown of the contribution to the total χ2 by
data set is given in Table 3.

The predictions for the fitted CR spectra of the best-fit model
parameters are shown in Figures 4–6, including an error band
delimiting the 68% and 95% probability regions. The species
shown are B/C and 10Be/9Be ratios, and the spectra of carbon
and oxygen. In each plot, we show the spectrum modulated with
the potential corresponding to our best-fit parameters from our
global fits for each of the data sets employed. We also show
the data sets, each with error bars enlarged by the best-fit value
of our scaling parameters, τ , as given in Table 2. The yellow/
blue band delimits regions of 68% and 95% probability, and is
modulated according to the potential given in the each panel.
We emphasize that the power of our statistical technique is
such that we can, for the first time, provide not only a best-
fit model but also an error band with a well-defined statistical
meaning.

In order to better visualize the comparison of our best-fit
model to the fitted data, we plot in the bottom part of each panel
the best-fit residuals, i.e., the difference between data and best-
fit model, divided by the experimental error bar (enlarged by the
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Figure 4. B/C ratio for our best-fit parameters (dashed curves). Each of the dashed curves has been modulated with the best-fit potential from our global fits, with
values given in the legend. We also plot the fitted data sets, each with error bars enlarged by the best-fit value of our scaling parameters, τ , as given in Table 2.
Color coding of each data set matches the color of the best-fit modulated curve with which it should be compared: ACE (solar minimum; George et al. 2009) with
Φ = 357 MV, CREAM (Ahn et al. 2008) with Φ = 598 MV, HEAO-3 (Engelmann et al. 1990) with Φ = 693 MV, and ATIC (Panov et al. 2008) with Φ = 0 MV (no
modulation); see the description of the data in the text. The yellow/blue error bands delimit regions of 68% and 95% probability, and are modulated according to the
potential given in each panel. The bottom of each panel shows the residuals of our best-fit model, defined in Equation (19).

(A color version of this figure is available in the online journal.)

Table 3
Breakdown of Contributions to the Total χ2 of Our Best Fit by Data Set

CR Data Sets Data Points, n χ2 χ2/n

Oxygen HEAO-3, ACE 20 28.9 1.44
Carbon HEAO-3, ACE 21 29.5 1.40
B/C HEAO-3, ACE, ATIC-2, CREAM 29 8.9 0.30
10Be/9Be ACE, ISOMAX 6 2.0 0.33

All All 76 69.3 χ2/dof = 1.15

correct error scaling parameter):

Rij = Φ̂ij

X − ΦX(Ei, Θ, φ)

σij /
√

τj

. (19)

Visual inspection of the residuals for the B/C and the
10Be/9Be ratios (see Figures 4 and 5) shows that our best-fit
model gives an excellent fit to those data, with the distribution of
the residuals approximately symmetric around 0. This indicates
that there is no systematic bias in our best fit. The contribution
to the overall χ2 from those data sets is, if anything, smaller
than would be expected statistically: Table 3 indicates that each
datum contributes about ∼0.3 units to the χ2. This could point
to a degree of overfitting, or to our error bar rescaling parameters

being too small. However, the origin of this slight overfitting be-
comes clear when one considers the oxygen and carbon spectra,
and their residuals (Figures 6). Residuals here are significantly
larger, especially at low energies, E < 3 GeV, and the average
contribution to the total χ2 by each datum is much larger, of
order ∼1.4; see Table 3. Therefore, the error bars on carbon
and oxygen seem to require enlargement in order for our model
to provide a good fit. Note from the shape of the residuals in
Figure 6 that there is no indication of systematic bias in our
fit, i.e., the enlargement of the error bars does not come about
because the model cannot reproduce the data, rather, because
the data themselves seem to show an amount of scatter that is
incompatible with a smooth spectrum (unless the error bars are
enlarged sufficiently).
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Figure 5. 10Be/9Be ratio for our best-fit parameters, including error bands, as in Figure 4. Color coding of each data set matches the color of the best-fit modulated
curve with which it should be compared: ACE (Yanasak et al. 2001) with Φ = 357 MV, ISOMAX (Hams et al. 2004) with Φ = 416 MV. We also plot the unmodulated
ratio for comparison.

(A color version of this figure is available in the online journal.)
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Figure 6. Carbon (top panels) and oxygen (bottom panels) spectra for our best-fit parameters, including error bands and best-fit model residuals, as in Figure 4.
Color coding of each data set matches the color of the best-fit modulated curve with which it should be compared: ACE (solar minimum; George et al. 2009) with
Φ = 357 MV, HEAO-3 (Engelmann et al. 1990) with Φ = 693 MV. We also plot the unmodulated spectrum for comparison.

(A color version of this figure is available in the online journal.)

As a consequence, we can conclude that it is the carbon
and oxygen spectra that are driving the value of the error bars
rescaling parameters for HEAO-3 and ACE. Therefore, the error
bars are correspondingly enlarged in the B/C and 10Be/9Be
spectra, since we are using one single error bar rescaling
parameter for each experiment. This results in much smaller

residuals for the latter spectra. Introducing a larger number of
error bar rescaling parameters, one for each experiment and for
each CR species, and fitting them independently could resolve
this issue. Then, the rescaling will be less important for B/C
and 10Be/9Be, leading to tighter constraints from those data
sets.

12



The Astrophysical Journal, 729:106 (16pp), 2011 March 10 Trotta et al.

AMS (’98)

ATIC−2 (’02−’03)

E
3
 x

 J
 (

c
m

−
2
 s

−
1
 s

r−
1
 M

e
V

2
)

E (MeV)

10
5

10
4

10
3

10
2

10

1
10

2
10

3
10

4
10

5
10

6
10

7

Φ=0 MeV

Φ=500 MeV

Φ=1000 MeV

AMS (’98)

CAPRICE (’94)

HEAT (’00)

E
3
 x

 J
 (

c
m

−
2
 s

−
1
 s

r−
1
 M

e
V

2
)

E (MeV)

10
5

10
4

10
3

10
2

10

1
10

2
10

3
10

4
10

5
10

6
10

7

Φ=0 MeV

Φ=500 MeV

Φ=1000 MeV

Figure 7. Electron (left panel) and positron (right panel) spectra for our best-fit parameters, with three choices of modulation. As for the antiproton spectrum and diffuse
γ -rays, electron and positron spectra have not been used in the fit, therefore the lines should be interpreted as predictions from our model. We show experimental data
on each quantity as well: electrons—AMS-01 (Alcaraz et al. 2000), ATIC-2 (Chang et al. 2008), HESS (Aharonian et al. 2008, 2009), positrons—AMS-01 (Aguilar
et al. 2007), CAPRICE (Boezio et al. 2000), and HEAT (Beatty et al. 2004). The dates in the legend for the data sets give the years when the corresponding data were
collected.

(A color version of this figure is available in the online journal.)
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Figure 8. Left panel: total leptons (positrons plus electrons) spectrum for our best-fit CR parameters, with three choices of modulation potential. We also show the
data from Fermi-LAT (a sum of electrons and positrons; Abdo et al. 2009b; Ackermann et al. 2010). Right panel: corresponding positron fraction, with the same three
choices of solar modulation potential. We show experimental data from PAMELA (Adriani et al. 2009), AMS01 (Aguilar et al. 2007), CAPRICE (Boezio et al. 2000),
and HEAT (Beatty et al. 2004). These data sets have not been fitted in the analysis.

(A color version of this figure is available in the online journal.)

6. DISCUSSION

6.1. Implications for Antimatter and γ -rays

We also use our best-fit model to calculate secondary an-
tiprotons, electrons, positrons, and diffuse γ -rays which were
not fitted, but provide a useful consistency check. For this cal-
culation the spectra of CR protons and He were adjusted to the
BESS data (Sanuki et al. 2000). Secondary antiprotons were
calculated using the same formalism as in Moskalenko et al.
(2002). Calculation of secondary electrons, positrons, and dif-
fuse γ -rays is described in Section 3. The spectra of secondaries
are shown in Figures 7–9. The primary electron injection spec-
trum is based on fitting to pre-Fermi electron data (conventional
model; Strong et al. 2004; Ptuskin et al. 2006) and is parame-
terized as a broken power law with indices 1.6/2.5 below/above

4 GeV and a steepening (index 5) above 2 TeV, and normalized to
the Fermi data at 25 GeV (Ackermann et al. 2010). The plot for
the CR electron and positron spectrum is shown separately in
Figure 7 and compared to relevant measurements, while the
plot for total leptons (electrons plus positrons) is displayed in
the left panel of Figure 8. Even though the total electron and
diffuse emission data were not fitted, they agree well with our
best-fit model predictions. The positron fraction, shown in the
right panel of Figure 8, does not agree with the PAMELA data
(Adriani et al. 2009), but this was expected since secondary
positron production in the general ISM is not capable of pro-
ducing an abundance that rises with energy.

Antiprotons, shown in Figure 9, also not fitted, present an
interesting example where the intensity at a few GeV is sig-
nificantly underpredicted by the reacceleration models. As has
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Figure 9. Antiproton spectrum for our best-fit CR parameters, with three
different representative solar modulation potentials together with recent data.
Note that the error band has not been modulated. The modulated curve for
Φ = 500 MV is most appropriate for the BESS 1995–1997 flight (Orito et al.
2000) and PAMELA current solar minimum data (Adriani et al. 2010), while the
BESS-Polar flight of 2004 (Abe et al. 2008) corresponds to the higher level of
solar activity. The data shown here have not been fitted.

(A color version of this figure is available in the online journal.)

been already shown (Moskalenko et al. 2002, 2003), the an-
tiproton flux measurements by BESS taken during the last solar
minimum, 1995–1997 (Orito et al. 2000), are inconsistent with
reacceleration models at the 40% level at about 2 GeV, while the
stated measurement uncertainties in this energy range are 20%.
The reacceleration models considered are conventional mod-
els, based on local CR measurements, Kolmogorov diffusion,
and uniform CR source spectra throughout the Galaxy. Models
without reacceleration that can reproduce the antiproton flux,
however, fall short of explaining the low-energy decrease in the
secondary/primary nuclei ratio. To be consistent with both, the
introduction of breaks in the diffusion coefficient and the injec-
tion spectrum is required, which may suggest new phenomena
in particle acceleration and propagation. Inclusion of a local
primary component at low energies, possibly associated with
the Local Bubble, could reconcile the data (Moskalenko et al.
2003).

Figure 9 shows that the reacceleration model underproduces
antiprotons in the GeV range by ∼ 30% also compared to the
PAMELA data taken during the current solar minimum (Adriani
et al. 2010). On the other hand, high-energy PAMELA data agree
well with the predictions, which may suggest that the excess over
the model predictions at low energies can be associated with the
solar modulation. Since reacceleration is also most important
below a few GeV, at present it does not appear possible to
distinguish these effects. However, a more systematic analysis
which includes evaluation of other propagation models may help
and will be carried out in a future work.

6.2. Comparison with Other Analyses

Most other analyses have used analytical propagation models,
in particular Donato et al. (2002) and Maurin et al. (2002). The
most recent reported results from this approach are in Maurin
et al. (2010) and Putze et al. (2010), which used χ2 and MCMC
techniques to analyze a wide range of semi-analytical models.
The nearest case to ours is their diffusion/reacceleration model
where they found δ = 0.23–0.24, vAlf = 70–80 km s−1, and

Figure 10. Diffuse γ -ray spectra for 10◦ � |b| � 20◦ for our best-fit CR
parameters compared with Fermi-LAT data for the same region of sky. The
Fermi-LAT data along with the unidentified background and source components
are taken from Abdo et al. (2009a). The red hatched area represents the
systematic uncertainty in the spectrum of the diffuse emission, as given in
Abdo et al. (2009a). Note that our best-fit model corresponds closely to that
used in Abdo et al. (2009a) to derive the unidentified background and source
components. Therefore, the addition of our model to these components is valid.
Note that these data have not been fitted.

(A color version of this figure is available in the online journal.)

zh = 4–6 kpc. Better fits are found with convection included
as well, with a smaller vAlf , but this requires a very large
δ = 0.8–0.9. In contrast, we find a more plausible range of
values for the diffusion/reaccleration model (however, we do
not consider convection here).

We also note that they assume an injection spectrum that
is a single power law in rigidity, which also includes a factor
of βηS , ∼ βηS ρ−ν (Putze et al. 2010). In the case of proton
and He injection spectra in the reacceleration model (their
Model II) they use ηS ≈ 1. This is equivalent to our break in
the injection spectrum provided the diffusion coefficient has the
form of Equation (5). For heavier nuclei, C to Fe, their injection
spectrum has ηS ≈ 2, which compensates for the large values
of the vAlf in their fits. Therefore, their best-fit parameters (e.g.,
vAlf) are not equivalent to ours and are dependent on a particular
choice of the injection spectrum. Their conclusion that they do
not need a break in the injection spectrum is thus significantly
overstated as they need an ad hoc factor βηS with index ηS

different for different groups of nuclei.

7. CONCLUSIONS

For the first time, we have shown that a full Bayesian analysis
is possible using both MCMC and nested sampling despite the
heavy computational demands of a numerical propagation code.
Furthermore, our analysis also returns the value of the Bayesian
evidence, which could be used to rank different propagation
models in terms of their performance in explaining the data.
While we have not investigated this possibility here, we leave
this topic to a dedicated discussion in a forthcoming publication.

The present study provides not just best-fit values for the
propagation parameters but, more importantly, associated un-
certainties which fully account for correlations among param-
eters, as well as for experimental and theoretical uncertainties.
Such error estimates have been fully propagated to the predicted
CR spectra from the model, thus providing an estimate of the

14



The Astrophysical Journal, 729:106 (16pp), 2011 March 10 Trotta et al.

residual uncertainty on the predictions (after fitting), which can
be used to assess, e.g., potential inconsistencies between differ-
ent types of data or for model selection. An important conclusion
is that the parameter ranges derived in this study are consistent
with previous, less systematic analyses.

A valuable test made possible by our technique is the
consistency check of the calculated spectra of other CR species,
antiprotons, electrons, and positrons with data. Total electrons
agree with the Fermi-LAT spectrum within the systematic
uncertainties; see Figure 10. The calculated spectrum of the
Galactic diffuse emission for the mid-latitude range is also
in a good agreement with the observations by the Fermi-
LAT. The antiprotons are underpredicted, which is a general
feature of the reacceleration models as we have shown before.
The positron fraction is inconsistent with a purely secondary
origin of positrons above 1 GeV, confirming the excess above
10 GeV attributed to sources of primary positrons. On the other
hand, the predicted positron spectrum is consistent with earlier
experiments given their large error bars. We await publication
of PAMELA positron data for further model comparison.

Because of the pioneering nature of our approach, we have
concentrated on just one particular type of model with reacceler-
ation and a power-law diffusion coefficient. Other propagation
modes, e.g., convection, are not considered here. Future work
will consider these, together with constraints from antiprotons,
positrons, and γ -rays.
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APPENDIX

SUPPLEMENTARY MATERIAL

The supplementary material accompanying this paper con-
tains the following files, which can be used to reproduce the
results presented in the paper.

1. Galprop_chains.tar.gz. Upon unpacking, this archive con-
tains the 10 MCMC chains used in the paper, and one .info
file detailing what information is contained in the chains.

2. The folder BestFitSpectra contains datafiles with the best-
fit spectra from our paper. The files and their contents are
described in an accompanying README file.

3. Galprop definition files are supplied for the best-fit param-
eter values as well as for the posterior mean values (as per
Table 2).
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