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ABSTRACT
Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle accel-

eration in SNR shocks, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio,
microwave, X-rays, γ-rays). While very detailed numerical models of CR propagation exist, a quantitative
statistical analysis of such models has been so far hampered by the large computational effort that those models
require. Although statistical analyses have been carried out before using semi-analytical models (where the
computation is much faster), the evaluation of the results obtained from such models is difficult, as they nec-
essarily suffer from many simplifying assumptions, The main objective of this paper is to present a working
method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use
the GALPROP code, the most advanced of its kind, that uses astrophysical information, nuclear and particle
data as input to self-consistently predict CRs, γ-rays, synchrotron and other observables. We demonstrate that
a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (imple-
mented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code.
The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler,
studies also based on GALPROP.
Subject headings: astroparticle physics — diffusion — methods: statistical — cosmic rays — ISM: general —

Galaxy: general

1. INTRODUCTION
A large number of outstanding problems in physics and as-

trophysics are connected with studies of CRs and the diffuse
emissions (radio, microwave, X-rays, γ-rays) produced dur-
ing their propagation in interstellar space. These include: in-
direct searches for dark matter, the origin and propagation
of CR; particle acceleration in putative CR sources – such
as supernova remnants (SNRs) – and the interstellar medium
(ISM); CR in other galaxies and the role they play in galac-
tic evolution; studies of our local Galactic environment; CR
propagation in the heliosphere; and the origin of extragalactic
diffuse emissions.

The involved nature of these studies requires reliable and
detailed calculations. Our current knowledge of CR propaga-
tion in the Galaxy is based on a large body of observational
data together with substantial theoretical background: the lat-
est developments in CR acceleration and transport mecha-
nisms, detailed maps of the three-dimensional Galactic gas
distribution, detailed studies of the interstellar dust, radiation
field, and magnetic field, as well as up-to-date particle and
nuclear cross section data and codes. However, the number of
parameters in realistic models incorporating all of this infor-
mation is large, and using the available data to perform statis-
tical inference on the models’ free parameters is a highly non-
trivial task. So far, this has only been possible with analytical
or semi-analytical models where the computation is fast (e.g.,
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Donato et al. 2002; Maurin et al. 2001, 2002, 2010; Putze
et al. 2010a). But, such models necessarily require many sim-
plified assumptions to allow the problem to be analytically
tractable and to reduce the computational load, making the
estimation of the confidence level of their results difficult.
More realistic treatments using the analytic approach lead to a
growing complexity of the formulae, thus removing any com-
putational advantage over the purely numerical approach (see,
e.g., Strong et al. 2007).

The GALPROP7 code is the most advanced of its kind.
GALPROP uses astronomical information and other data as
input to self-consistently predict CRs, γ-rays, synchrotron
and other observables. The code provides a full numerical
calculation of the CR spectra and intensities, together with the
diffuse emissions associated with the CRs interacting with the
interstellar gas, radiation, and magnetic fields. In this paper
we introduce the methodology for a complete, fully numerical
inference for propagation models parameters, using represen-
tative CR data in a Bayesian statistical framework. We give
results from a global analysis of CR isotope data, obtained by
using GALPROP to predict CR spectra and a modified ver-
sion of the SuperBayeS code8 to carry out the statistical anal-
ysis. We demonstrate that improvements to the GALPROP
code, including parallelization, coupled with highly efficient
sampling techniques and Bayesian methods now allow a fully
numerical exploration of the parameter space of the most re-
alistic models incorporating CRs, γ-rays, etc., as well as ex-
perimental and theoretical uncertainties.

The fully Bayesian approach to the problem of deriving
constraints for CR propagation models parameters has several
advantages. Firstly, the higher efficiency of Bayesian meth-
ods allows us to carry out a global statistical analysis of the
whole parameter space, rather than be limited to scanning a
reduced number of dimensions at the time. This is impor-

7 http://galprop.stanford.edu
8 http://superbayes.org
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tant in order to be able to fit simultaneously all relevant CR
parameters and to explore degeneracies. Secondly, we can
marginalize (i.e., integrate over) the parameters one is not in-
terested in at almost no additional computational costs, thus
obtaining probability distributions for the parameters of inter-
est that fully account for correlations in the global parameter
space. Thirdly, our method returns not only a global best fit
point, but also statistically well-defined errors on the parame-
ters, which is one of the most important achievements of this
work. Finally, we are able to include in our analysis a large
number of “nuisance” parameters (such as modulation poten-
tials and experimental error rescaling parameters, see below
for details) that mitigate the impact of potential systematic er-
rors in the data and/or in the theoretical model, thus making
our fits much more robust. Bayesian inference however re-
quires to choose priors for the parameters involved. This is
done very carefully in the present work, and we demonstrate
below that our results do not depend strongly on the choice
of priors, which again is an hallmark of a robust statistical
analysis.

2. COSMIC-RAY PROPAGATION IN THE GALAXY
Here we provide a brief overview of CR production and

propagation, more information can be found in a recent review
by Strong et al. (2007).

The sources of CRs are believed to be supernovae (SNe)
and SNRs, superbubbles, pulsars, compact objects in close
binary systems, and stellar winds. Observations of X-ray
and γ-ray emission from these objects reveal the presence
of energetic particles, thus testifying to efficient acceleration
processes in their neighborhood. Particles accelerated near
the sources propagate tens of millions years in the interstel-
lar medium (ISM) while their initial spectra and composition
change. The destruction of primary nuclei via spallation gives
rise to secondary nuclei and isotopes that are rare in nature,
antiprotons, and charged and neutral pions that decay produc-
ing secondary positrons, electrons, and γ-rays.

Modeling CR propagation in the ISM includes the solu-
tion of the partial differential equation describing the transport
with a given source distribution and boundary conditions for
all CR species. The diffusion-convection equation, sometimes
incorporating diffusive reacceleration in the ISM, is used for
the transport process and has proven to be remarkably suc-
cessful despite its relative simplicity. For CR nuclei, relevant
processes during propagation include nuclear spallation, pro-
duction of secondary particles, radioactive decay, electron K-
capture and stripping, with the energy losses due to ionization
and Coulomb scattering. For the propagation of CR electrons
and positrons, spallation, radioactive decay, etc., are not rele-
vant, while the energy losses are due to ionization, Coulomb
scattering, bremsstrahlung (with the neutral and ionized gas),
inverse Compton (IC) scattering, and synchrotron emission.

Measurements of stable and radioactive secondary CR nu-
clei yield the basic information necessary to probe large-scale
Galactic properties, such as the diffusion coefficient and halo
size, the Alfvén velocity and/or the convection velocity, as
well as the mechanisms and sites of CR acceleration. Know-
ing the number density of primary nuclei from satellite and
balloon observations, the production cross-sections from ac-
celerator experiments, and the gas distribution from astro-
nomical observations, the production rate of secondary nuclei
can be calculated within the context of a given propagation
model. Stable secondary CR nuclei (e.g., 5B) can be used
to determine ratio of halo size to the diffusion coefficient,

while the observed abundance of radioactive CR isotopes
(10
4 Be, 26

13Al, 36
17Cl, 54

25Mn) allows the separate determination
of halo size and diffusion coefficient (e.g., Ptuskin & Soutoul
1998; Strong & Moskalenko 1998; Webber & Soutoul 1998;
Moskalenko et al. 2001). However, the interpretation of the
sharp peaks observed in the secondary to primary CR nuclei
ratios (e.g., 5B/6C, [21Sc+22Ti+23V]/26Fe) at relatively low
energies, ∼ 1-few GeV/nucleon, is model-dependent.

The solar modulation of the CRs during their propagation
in the heliosphere significantly modifies the interstellar spec-
tra below ∼ 20 GeV/nucleon. The modulated spectra are the
actual ones measured by balloon-borne and spacecraft instru-
ments. Modulation models are based on the solution of the
Parker (1965) equation (e.g., see reviews by Potgieter 1998;
Heber et al. 2006). The particle transport to the inner helio-
sphere is mainly determined by spatial diffusion, convection
with the solar wind, drifts, and adiabatic cooling. Realistic
time-dependent three-dimensional hydrodynamic models in-
corporating these effects have been developed (e.g., Florinski
et al. 2003; Langner et al. 2006; Potgieter & Langner 2004).
The often-used method of Gleeson & Axford (1968), the so-
called “force-field” approximation, employs a single parame-
ter – the “modulation potential” – to characterize the strength
of the modulation effect on the CR spectra as it varies over the
solar cycle. The force-field approximation has no predictive
power as the modulation potential depends on the assumed in-
terstellar spectrum of CR species. However, it can be a useful
low-energy parameterization for a given interstellar spectrum.

Closely connected with the CR propagation is the produc-
tion of the Galactic diffuse γ-ray emission. This is com-
prised of three components: π0-decay, bremsstrahlung, and
IC. Cosmic-ray nuclei interacting inelastically with the inter-
stellar gas produce π0s that decay to γ-rays. The CR elec-
trons and positrons interact with the interstellar gas and pro-
duce bremsstrahlung, and with the interstellar radiation field
(ISRF) via IC scattering producing γ-rays. Since the γ-rays
are undeflected by magnetic fields and absorption in the ISM
is negligible (Moskalenko et al. 2006), they provide the infor-
mation necessary to directly probe CR spectra and intensities
in distant locations (see Moskalenko et al. 2004, for a review).
However, the interpretation of such observations is compli-
cated since the observed γ-ray intensities are the line-of-sight
integral of a sum of the three components of the diffuse Galac-
tic γ-ray emission, an isotropic component (often described as
“extragalactic”, but this not completely certain), unresolved
sources, together with instrumental background(s). Proper
modeling of the diffuse γ-ray emission, including the disen-
tanglement of the different components, requires well devel-
oped models for the ISRF and gas densities, together with the
CR propagation (see, e.g., Strong et al. 2000, 2004). For re-
cent measurements of the diffuse γ-ray emission by the Fermi
Large Area Telescope (LAT), see Abdo et al. (2009a,d, 2010).
Global CR-related properties of the Milky Way galaxy are cal-
culated in Strong et al. (2010).

3. GALPROP CODE
The GALPROP project began in late 1996 and has now 15

years of development behind it. The key concept underlying
the GALPROP code is that various kinds of data, e.g., direct
CR measurements including primary and secondary nuclei,
electrons and positrons, γ-rays, synchrotron radiation, and so
forth, are all related to the same astrophysical components of
the Galaxy and hence have to be modeled self-consistently.
The code, originally written in FORTRAN90, was made pub-
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lic in 1998. A version rewritten in C++ was produced in 2001,
and the most recent public version 54 was recently released
(Vladimirov et al. 2010). The code is available from the ded-
icated website where a facility for users to run the code via
online forms in a web-browser is also provided9.

The GALPROP code solves the CR transport equation with
a given source distribution and boundary conditions for all CR
species. This includes a galactic wind (convection), diffusive
reacceleration in the ISM, energy losses, nuclear fragmenta-
tion, radioactive decay, and production of secondary particles
and isotopes:

∂ψ

∂t
= q(r, p) +∇ · (Dxx∇ψ −Vψ) +

∂

∂p
p2Dpp

∂

∂p

1

p2
ψ

− ∂

∂p

[
ṗψ − p

3
(∇ ·V)ψ

]
− 1

τf
ψ − 1

τr
ψ , (1)

where ψ = ψ(r, p, t) is the density per unit of total parti-
cle momentum, ψ(p)dp = 4πp2f(p) in terms of phase-space
density f(p), q(r, p) is the source term, Dxx is the spatial
diffusion coefficient, V is the convection velocity, reaccel-
eration is described as diffusion in momentum space and is
determined by the coefficient Dpp, ṗ ≡ dp/dt is the momen-
tum loss rate, τf is the time scale for fragmentation, and τr
is the time scale for radioactive decay. The numerical solu-
tion of the transport equation is based on a Crank-Nicholson
(Press et al. 1992) implicit second-order scheme. The spa-
tial boundary conditions assume free particle escape, e.g.,
ψ(Rh, z, p) = ψ(R,±zh, p) = 0, where Rh and zh are the
boundaries for a cylindrically symmetric geometry.

Since the grid involves a 3D (R, z, p) or 4D (x, y, z, p)
problem (spatial variables plus momentum) “operator split-
ting” is used to handle the implicit solution. For a given
halo size the diffusion coefficient, as a function of momen-
tum and the reacceleration or convection parameters, is de-
termined from secondary/primary ratios. If reacceleration is
included, the momentum-space diffusion coefficient Dpp is
related to the spatial coefficient Dxx (= βD0ρ

δ) (Berezinskii
et al. 1990; Seo & Ptuskin 1994):

DppDxx =
4p2v2

Alf

3δ(4− δ2)(4− δ)w
, (2)

where w characterizes the level of turbulence (we take w =
1 since only the quantity v2

Alf/w is relevant), and δ = 1/3
for a Kolmogorov spectrum of interstellar turbulence or δ =
1/2 for a Kraichnan cascade (but can also be arbitrary), ρ ≡
pc/Ze is the magnetic rigidity where p is momentum and Ze
is the charge, D0 is a constant, and β = v/c. Non-linear
wave damping (Ptuskin et al. 2006) can also be included via
specifying parameters in the configuration galdef file.

Production of secondary positrons and electrons is calcu-
lated as described in Moskalenko & Strong (1998) with a
correction by Kelner et al. (2006). Secondary pion produc-
tion is calculated using the formalism by Dermer (1986b,a),
which combines isobaric (Stecker 1970) and scaling (Bad-
hwar et al. 1977; Stephens & Badhwar 1981) models of the
reaction, as described in Moskalenko & Strong (1998), or
using a parameterization developed by Kamae et al. (2005).
Bremsstrahlung is calculated as described in Strong et al.
(2000). The IC scattering is treated using the appropriate

9 http://galprop.stanford.edu/webrun

formalism for an anisotropic radiation field developed by
Moskalenko & Strong (2000) using the full spatial and an-
gular distribution of the ISRF calculated using the FRaNKIE
code (Porter & Strong 2005; Porter et al. 2008).

The distribution of Galactic CR sources is based on Fermi-
LAT γ-ray data. For this study, we use fCR(R) =
(R/R0)αe−β(R−R0), i.e., normalized to 1 at R = R0, where
α = 1.25, and β = 3.56. The profile is flattened for the outer
Galaxy compared to earlier parameterizations used, as sug-
gested from recent Fermi studies of the 2nd Galactic quadrant
(Tibaldo et al. 2009).

The γ-rays are calculated using the propagated CR distribu-
tions, including a contribution from secondary particles such
as positrons and electrons from inelastic processes in the ISM
that increases the γ-ray flux at MeV energies (Strong et al.
2004; Porter et al. 2008). Gas-related γ-ray intensities (π0-
decay, bremsstrahlung) are computed from the emissivities as
a function of (R, z,Eγ) using the column densities of H I and
H2 for galactocentric annuli based on recent 21-cm and CO
survey data with a more accurate assignment of the gas to the
Galactocentric rings than earlier versions. The synchrotron
emission is computed using the Galactic magnetic field model
that can be chosen from among various models taken from
the literature, suitably parameterized to allow fitting to the
observations. The line-of-sight integration of the correspond-
ing emissivities with the distributions of gas, ISRF, and mag-
netic field yields γ-ray and synchrotron skymaps. Spectra of
all species on the chosen grid and the γ-ray and synchrotron
skymaps are output in standard astronomical formats for di-
rect comparison with data, e.g., HEALPix10 (Górski et al.
2005), Fermi-LAT MapCube format for use with LAT Sci-
ence Tools software11, etc.

Cross-sections are based on the extensive LANL database,
nuclear codes, and parameterizations (Mashnik et al. 2004).
The most important isotopic production cross-sections (2H,
3H, 3He, Li, Be, B, Al, Cl, Sc, Ti, V, and Mn) are calcu-
lated using our fits to major production channels (Moskalenko
& Mashnik 2003; Moskalenko et al. 2003). Other cross-
sections are calculated using phenomenological approxima-
tions by Webber et al. (2003) and/or Silberberg et al. (1998)
renormalized to the data where they exist. The nuclear reac-
tion network is built using the Nuclear Data Sheets.

The GALPROP code computes a complete network of pri-
mary, secondary and tertiary CRs production starting from in-
put source abundances. Starting with the heaviest primary nu-
cleus considered (e.g. 64Ni) the propagation solution is used
to compute the source term for its spallation products A − 1,
A − 2 and so forth, which are then propagated in turn, and
so on down to protons, secondary electrons and positrons,
and antiprotons. To account for some special β−-decay cases
(e.g., 10Be→10B) the whole loop is repeated twice. GAL-
PROP includes K-capture and electron stripping processes as
well as knock-on electrons. The inelastically scattered pro-
tons and antiprotons are treated as separate components (sec-
ondary protons, tertiary antiprotons). In this way secondaries,
tertiaries, etc., are included. Primary electrons are treated sep-
arately.

Further details on improvements to the code, including par-
allelization and other optimizations, improvements in line-of-
sight integration routines, and so forth, can be found at the

10 http://healpix.jpl.nasa.gov
11 http://fermi.gsfc.nasa.gov/ssc/data/analysis
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aforementioned website.

4. METHODOLOGY
4.1. Bayesian Inference

The goal of this paper is to determine constraints on the
propagation model parameters (introduced below) from ob-
served CR spectra and we adopt a Bayesian approach to pa-
rameter inference (see e.g. Trotta 2008, for further details).
Bayesian inference is based on the posterior probability dis-
tribution function (pdf) for the parameters, which updates our
state of knowledge from the prior by taking into account the
information contained in the likelihood. A recent application
to CR propagation models is given in Maurin et al. (2010) and
Putze et al. (2010a). Denoting by Θ the vector of parameters
one is interested in constraining, and by D the available ob-
servations, Bayes Theorem reads

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
, (3)

where P (Θ|D) is the posterior distribution on the parame-
ters (after the observations have been taken into account),
P (D|Θ) = L(Θ) is the likelihood function (when consid-
ered as a function of Θ for the observed data D) and P (Θ) is
the prior distribution, which encompasses our state of knowl-
edge about the value of the parameters before we have seen
the data. Finally, the quantity in the denominator of eq. (3)
is the Bayesian evidence (or model likelihood), a normaliz-
ing constant that does not depend on Θ and can be neglected
when interested in parameter inference. The evidence is ob-
tained by computing the average of the likelihood under the
prior (so that the r.h.s. of eq. [3] is properly normalized),

P (D) =

∫
P (D|Θ)P (Θ)dΘ. (4)

The evidence is the prime quantity for Bayesian model com-
parison, which aims at establishing which of the available
models is the “best” one, i.e., the one that fits the data best
while being the most economical in terms of parameters, thus
giving a quantitative implementation of Occam’s razor (see,
e.g., Trotta 2007). The evidence can also be used to assess
the constraining power of the data (Trotta et al. 2008) and
to carry out consistency checks between observables (Feroz
et al. 2009).

Together with the model, the priors for the parameters
which enter Bayes’ theorem, eq. (3), must be specified. Priors
should summarize our state of knowledge and/or our theoreti-
cal prejudice about the parameters before we consider the new
data, and for the parameter inference step the prior for a new
observation might be taken to be the posterior from a previous
measurement (for model comparison issues the prior is better
understood in a different way, see Trotta 2008).

The problem is then fully specified once we give the like-
lihood function for the observations (see section 4.4 below).
The posterior distribution P (Θ|D) is determined numerically
by drawing samples from it and Markov Chain Monte Carlo
(MCMC) techniques can be used for this purpose. In this pa-
per we use both Metropolis-Hastings MCMC and the Multi-
Nest algorithm, which implements nested sampling and pro-
vides a higher efficiency, guarantees a better exploration of
degeneracies and multimodal posteriors, and computes the
Bayesian evidence as well (which is difficult to extract from
MCMC methods).

4.2. Propagation Model Parameters
As a test case for this study we choose the diffusion-

reacceleration model, which has been used in a number of
studies utilizing the GALPROP code (e.g., Moskalenko et al.
2002; Strong et al. 2004; Ptuskin et al. 2006; Abdo et al.
2009a, and references therein). The source distribution is
specified in Section 3.

In this model the spatial diffusion coefficient is given by

Dxx = βD0

(
ρ

ρ0

)δ
(5)

where D0 is a free normalization at the fixed rigidity ρ0 =
4×103 MV. The power-law index is δ = 1/3 for Kolmogorov
diffusion (see Section 3), but we take it as a free parameter for
the purposes of this study. Fitting the B/C ratio below 1 GeV
in reacceleration models is known to require large values of
vAlf. In these models, a break in the injection spectra is re-
quired to compensate for the large bump in the propagated
spectra at low energies/nucleon. Therefore, the CR injection
spectrum is modeled as a broken power-law, with index below
(−ν1) and above (−ν2) the break as free parameters, but with
the location of the break fixed at a rigidity 104 MV. The other
free model parameters are vAlf, the halo size zh, and the nor-
malization of the propagated CR proton spectrum at 100 GeV
Np, for a total of 7 free model parameters, as summarized in
Table 1. Other models discussed in the literature may be able
to reproduce the B/C ratio without a break in the injection
spectra, but the present paper is mainly intended as a presen-
tation of the method and we defer a comprehensive study of
different possibilities to a forthcoming paper.

The nuclear chain used starts at 28Si and proceeds down to
protons. The source abundances of nuclei 6 ≥ Z ≥ 14 have
an important influence on the B/C and 10Be/9Be ratios used
in this study. In our analysis, they are fixed at values deter-
mined for ACE data at a few 100 MeV/nucleon (Moskalenko
et al. 2008), but the values are assumed to hold also at the
GALPROP normalization energy of 100 GeV/nucleon. The
adopted relative source abundances of the most abundant iso-
topes (for particle flux in cm−2 s−1 (MeV/nucleon)−1) are:
4He: 7.199 × 104 , 12C: 2819, 14N: 182.8, 16O: 3822, 20Ne:
312.5, 22Ne: 100.1, 23Na: 22.84, 24Mg: 658.1, 25Mg: 82.5,
26Mg: 104.7, 27Al: 76.42, 28Si: 725.7. These values are rela-
tive to the proton normalization Np for a proton source abun-
dance 1.06×106, but this is only formal since the antiprotons,
secondary positrons and gamma rays were computed from an
independent fit to proton and He data. Np is used only to nor-
malize C and O to the data, via the ratios given above (other
data like N are not used explicitly).

Special handling is required to treat the solar modulation of
the propagated CR spectra, for which we introduce an extra
nuisance parameter for each of the data set we consider. The
motivation and choice of the Gaussian priors, with mean and
standard deviation as given in Table 1, is described in Sec-
tion 4.3. In addition, we also introduce a set of parameters τ
designed to mitigate the possibility that the fit be dominated
by undetected systematic errors in the data, as explained in
detail in the next section. Overall, we thus fit a total of 16
free parameters, including 7 model parameter, 4 modulation
parameters, and 5 observational variance rescaling factors.
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TABLE 1
SUMMARY OF INPUT PARAMETERS AND PRIOR RANGES

Quantity Symbol Prior range Prior type

DIFFUSION MODEL PARAMETERS Θ

Diffusion coefficienta (1028 cm2 s−1) D0 [1, 12] Uniform
Rigidity power law index δ [0.1, 1.0] Uniform
Alfvén speed (km s−1) vAlf [0, 50] Uniform
Diffusion zone height (kpc) zh [1.0, 10.0] Uniform
Nucleus injection index below 104 MV ν1 [1.50, 2.20] Uniform
Nucleus injection index above 104 MV ν2 [2.05, 2.50] Uniform
Proton normalization (10−9 cm2 sr−1s−1MeV−1) Np [2, 8] Uniform

EXPERIMENTAL NUISANCE PARAMETERS

Modulation parameters φ (MV) Gaussian priorb

HEAO-3 mHEAO-3 [420, 780] N (600, 60)
ACE mACE [175, 475] N (325, 50)
CREAM mCREAM [420, 780] N (600, 50)
ISOMAX mISOMAX [370, 490] N (430, 20)
ATIC-2 mISOMAX 0 Fixed (no modulation)

Variance rescaling parameters (j = 1, . . . , 5) log τj [−1.5, 0.0] Uniform on log τj
a At ρ = 4× 103 MV.
b We use the notationN (µ, σ) to indicate a Gaussian distribution of mean µ and standard deviation σ.

4.3. Cosmic Ray Data and Modulation
For demonstration of the method we use the most accurate

CR data sets available preferably taken near solar minimum12.
The B/C ratio is well-measured by a number of space-

and balloon-borne missions. The HEAO-3 data (Engelmann
et al. 1990) remain the most accurate to date in the energy
range 0.6–35 GeV/nucleon and have been recently confirmed
by PAMELA (R. Sparvoli, private comm.). At higher ener-
gies, from 30 GeV/nucleon – 1 TeV/nucleon, we use ATIC-2
(Panov et al. 2008) and CREAM-1 data (Ahn et al. 2008). At
low energies, the Voyagers 1 and 2 (Lukasiak et al. 1999),
Ulysses (Duvernois et al. 1996), and ACE (de Nolfo et al.
2006) data agree with each other, while the ACE data (50–
200 MeV/nucleon) have the smallest statistical error. There-
fore, we use the ACE measurements corresponding to the so-
lar minimum conditions (George et al. 2009).

The 10Be/9Be ratio is most accurately measured (70–145
MeV/nucleon) by ACE (Yanasak et al. 2001), which we in-
clude in our fit. Those measurements are in agreement with
Voyagers 1 and 2 (Lukasiak et al. 1999), and Ulysses (Con-
nell 1998) data. At higher energies (per nucleon) there are
only two data points by ISOMAX (Hams et al. 2004) with
very large error bars, which we however include in the fit.

We also use the carbon and oxygen spectra as measured
by ACE at the solar minimum (George et al. 2009) and by
HEAO-3 (Engelmann et al. 1990).

As mentioned above, a very important issue is the treat-
ment of the heliospheric modulation. We fit to the CR data in
the whole energy range from some 10 MeV/nucleon to TeV
energies. However, a comparison of calculated CR spectra,
the elemental and isotopic ratios with low-energy data (be-
low ∼20 GeV/nucleon) measured inside the heliosphere re-
quires care as the calculated spectra depend significantly on
the treatment of the heliospheric modulation. As mentioned
in section 2, the modulation can be realistically treated with
full 3-dimensional models, but application of such models
to the current study does not seem feasible since the num-
ber of free parameters and the computing requirements would

12 Most of the data are obtained via the database maintained at
http://www.mpe.mpg.de/∼aws/propagate.html

considerably increase. Currently, it is only possible to use
a simple force-field approximation (Gleeson & Axford 1968),
which is characterized with the value of the modulation poten-
tial. However, directly using the modulation potentials from
different experiments is problematic because they cannot be
interpreted independently from the experiments themselves.
The derived values depend on the choices of interstellar spec-
tra used for their analyses, which differ from experiment to
experiment (and are sometimes not provided).

To deal with this type of uncertainty, instead of fixing a col-
lection of a priori values for the modulation potential, we al-
low some flexibility to the fits and include the modulation po-
tentials as free nuisance parameters in our inference, with one
free parameter per experiment (i.e, ACE, HEAO-3, ISOMAX
and CREAM-1). To avoid unphysical/implausible values, we
adopt Gaussian priors with mean and standard deviation as
given in Table 1, which are motivated by the estimated ball-
park values of the modulation by the experimentalists. Notice
that no modulation parameter is given for ATIC-2 as we only
use high-energy data for that experiment and modulation is
not relevant.

4.4. The Likelihood Function
For a given set of the CR model parameters Θ and the mod-

ulation potential parameters φ (where φ = {φ1, . . . , φ4}, with
a different choice of the modulation potential for each data set
employed) we can compute via GALPROP the ensuing CR
spectrum, as a function of energy, ΦX(E,Θ, φ) for species
X . Assuming Gaussian noise on the observations, we take
the likelihood function for each observation of species X at
energy Ei to be of the form

P (Φ̂ijX |Θ, φ) = (6)

1√
2πσij

exp

−1

2

(
ΦX(Ei,Θ, φ)− Φ̂ijX

)2

σ2
ij

 ,

where ΦX(Ei,Θ, φ) is the prediction from the CR propaga-
tion model for species X at energy Ei, Φ̂ijX is the measured

http://www.mpe.mpg.de/~aws/propagate.html
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spectrum, and σij is the reported standard deviation. The
sub/superscript i runs through the data points within each of
the data sets j. We assume bins to be independent, so that the
full likelihood function is given by the product of terms of the
form given above:

P (D|Θ, φ) =

5∏
j=1

Nj∏
i=1

P (Φ̂ijX |Θ, φ) (7)

However, a careful analysis of a plot of the data points for
each CR species reveals that there are fairly strong discrepan-
cies between different data sets. This might point to either an
underestimation of the actual experimental error bars or to un-
detected systematic errors between data sets. If some or all of
the reported error bars are significantly underestimated, this
would lead to a handful of data points incorrectly dominating
the global fit, introducing systematic bias in the reconstructed
value of the parameters. To mitigate against undetected sys-
tematics, we follow the procedure described in, e.g., Barnes
et al. (2003). For each data set we introduce in the likelihood
a parameter τj (j = 1, . . . , 5), whose function is to rescale
the variance of the data points in order to account for possible
systematic uncertainties. Therefore, eq. (6) is modified:

P (Φ̂ijX |Θ, φ, τ) = (8)

√
τj√

2πσij
exp

−1

2

(
ΦX(Ei,Θ, φ)− Φ̂ijX

)2

σ2
ij/τj

 ,

The role of the set of parameters τ = {τ1, . . . , τ5}, which we
call “error bar rescaling parameters”, is to allow for the pos-
sibility that the error bars reported by each of the experiments
underestimate the true noise. We then add τ to the set of pa-
rameters Θ and sample over it, too, thus allowing the data
themselves to decide whether there are systematic discrepan-
cies in the reported error bars. A value τj < 1 means that the
data prefer a systematically larger value for the errors for data
set j. Notice that τj not only appears in the exponential of the
Gaussian in Eq. (8), but also in the pre-factor, which, being
proportional to√τj , ensures that τj never attains a value arbi-
trarily close to 0 (implying infinite error bars). Furthermore,
the variance scaling parameter τ also takes care of all aspects
of the model that are not captured by the reported experimen-
tal error: this includes also theoretical errors (i.e., the model
not being completely correct), errors in the cross section nor-
malizations, etc.

4.5. Choice of Priors
The full posterior distribution for the CR propagation model

parameters Θ, the variance rescaling parameters τ and the
modulation parameters φ is given by

P (Θ, φ, τ, |D) ∝ P (D|Θ, φ, τ)P (Θ)P (τ)P (φ), (9)

where the likelihood P (D|Θ, τ, φ) is given by Eq. (7) and (8).
The priors P (Θ), P (φ) and P (τ) in Eq. (9) are specified

as follows. We take the prior on a set of model parameters,
P (Θ), to be uniform on Θ with ranges as given in Table 1.
As shown below, the posterior is reasonably well constrained
and close to Gaussian for Θ, hence we expect our results to
be fairly independent of the prior choice.

This conclusion is strengthened by the inspection of the
profile likelihood, which is obtained from our samples by
maximizing the value of the likelihood along the hidden di-
mensions rather then integrating over the posterior. The pro-
file likelihood statistics is independent of the priors, provided
the parameter space has been sampled with sufficient resolu-
tion, and thus it constitutes a cross-check for the presence of
large volume effects coming from the priors. Such volume
effects are typically important when the priors play a major
role in the inference, while they are usually negligible when
the posterior is dominated by the likelihood (in which case
the prior influence is minimal, see e.g. Trotta et al. 2008, for
an illustration). We have found the profile likelihood to be in
excellent agreement with the posterior pdf presented below,
and therefore we do not consider it further in our results be-
low. This means that the prior influence is small, and our re-
sults can be considered to be robust with respect to reasonable
changes in priors.

Regarding the modulation parameters, we adopt a Gaussian
prior on each of them, informed by the values reported by
each experiment (see Table 1), in order to avoid physically
implausible values. The description of the experimental CR
data sets can be found in Section 4.3.

The τj are scaling parameters in the likelihood, and thus the
appropriate prior is given by the Jeffreys’ prior, which is uni-
form on log τj (see Barnes et al. 2003 or Jaynes & Bretthorst
2003 for a justification). Therefore, we adopt the proper prior

P (log τj) =

{
2/3 for for − 3/2 ≤ log τj ≤ 0

0 otherwise (10)

that corresponds to a prior on τj of the form

P (τj) ∝ τ−1
j . (11)

The inclusion in our analysis of the nuisance parameters
φ and τ (which are then marginalized over, see Eq. [17])
has two main effects on our inference about the CR param-
eters of interest, Θ. Firstly, it increases the robustness of our
fit, since the nuisance parameters account for potential sys-
tematic effects in the data (τ ) and approximately capture the
impact of solar modulation on the measurements (φ). Sec-
ondly, it makes our CR constraints more conservative, since
our marginalized errors on Θ fully account for all possible
values of the nuisance parameters compatible with the data.

4.6. Sampling Algorithm
A powerful and efficient alternative to classical MCMC

methods has emerged in the last few years in the form of
the so-called “nested sampling” algorithm, invented by John
Skilling (Skilling 2004, 2006; Feroz & Hobson 2008; Feroz
et al. 2009). Although the original motivation for nested sam-
pling was to compute the evidence integral of eq. (4), the re-
cent development of the MultiNest algorithm (Feroz & Hob-
son 2008; Feroz et al. 2009) has delivered an extremely pow-
erful and versatile algorithm that has been demonstrated to
be able to deal with extremely complex likelihood surfaces in
hundreds of dimensions exhibiting multiple peaks.

As samples from the posterior are generated as a by-product
of the evidence computation, nested sampling can also be
used to obtain parameter constraints in the same run as com-
puting the Bayesian evidence. In addition, multi-modal nested
sampling exhibits an efficiency that is almost independent of
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the dimensionality of the parameter space being explored,
thus beating the “curse of dimensionality”.

The essential element of nested sampling is that the multi-
dimensional evidence integral is recast into a 1-dimensional
integral. This is accomplished by defining the prior volume
X as dX ≡ P (Θ)dΘ so that

X(λ) =

∫
L(Θ)>λ

P (Θ)dΘ (12)

where the integral is over the parameter space enclosed by the
iso-likelihood contour L(Θ) = λ. So X(λ) gives the volume
of parameter space above a certain level λ of the likelihood.
Then the Bayesian evidence, Eq. (4), can be written as

P (D) =

∫ 1

0

L(X)dX, (13)

where L(X) is the inverse of Eq. (12). Samples from L(X)
can be obtained by drawing uniformly samples from the likeli-
hood volume within the iso-contour surface defined by λ. The
1-dimensional integral of Eq. (13) can be obtained by simple
quadrature, thus

P (D) ≈
∑
i

L(Xi)Wi, (14)

where the weights are Wi = 1
2 (Xi−1 −Xi+1), (see Skilling

2004, 2006; Feroz & Hobson 2008; Feroz et al. 2009;
Mukherjee et al. 2006, for details). It has been shown in the
context of CMB data analysis in cosmology and in supersym-
metry phenomenology studies that this technique reduces the
number of likelihood evaluations by over an order of magni-
tude with respect to conventional MCMC.

In this paper we adopt the publicly available MultiNest al-
gorithm (Feroz & Hobson 2008), as implemented in the Su-
perBayeS code (Trotta et al. 2008; Ruiz de Austri et al. 2006),
that we have interfaced with the GALPROP code. First,
we performed an exploratory scan with MultiNest, adopting
4000 live points in our 16-dimensional parameter space, with
the aim of scouting the structure and degeneracy directions of
the posterior distribution. An important chracteristic of Multi-
Nest, which sets it apart from conventional MCMC methods,
is its ability to sample reliably from multi-modal distributions.
Therefore, it is highly desirable to employ MultiNest to per-
form scans of parameter spaces that have not been investi-
gated before, as MultiNest will make it less likely to miss im-
portant substructure in the probability distribution when the
latter is multi-modal.

Our exploratory MultiNest scan gathered ∼ 105 samples
from the posterior, with an overall efficiency of about 10%
and a total computational effort of ≈ 13 CPU years. This
initial scan revealed a well behaved, unimodal distribution
over the prior ranges given in Table 1. We then computed
the parameter-set covariance matrix and adopted this as a
Gaussian proposal distribution for a conventional Metropolis-
Hastings MCMC scan. Since the proposal distribution was
well matched to the posterior, our MCMC scan reached an ef-
ficiency of∼ 15%, and we built 10 parallel chains with 14000
samples each (after burn-in), for a total of 1.4× 105 samples.
We checked that the Gelman & Rubin mixing criterion (Gel-
man & Rubin 1992) is satisfied for all of our parameters (i.e.,
R � 0.1, where R is the inter-chain variance divided by the
intra-chain variance).

We verified that the posterior distribution obtained with
MCMC was in excellent agreement with the one obtained
from MultiNest, which validates our results as the two sam-
pling schemes are completely different. The results presented
in this paper are obtained from the MCMC run, which allows
for slightly smoother posterior distributions as it contains 40%
more samples than the MultiNest scan13.

In order to keep the computational cost within reasonable
limits, we carry out our MultiNest and MCMC runs assum-
ing a relatively coarse spatial and energy/nucleon grid for the
CR propagation. For each point in parameter space, we adopt
δz = 0.2 kpc, δR = 1 kpc, and δE = 1.4. With these pa-
rameters, one likelihood evaluation takes approximately 15 s
on an 8-way 2.4 GHz Opteron CPU machine. We then repro-
cessed the MCMC samples using importance sampling, de-
creasing the spacing of the spatial grid by a factor of 2 in each
direction while increasing the energy resolution to δE = 1.1.
The computational cost per likelihood evaluation is increased
by a factor of ∼ 20, but allows a more precise computation
of the CR spectra. The statistical distribution is adjusted ac-
cordingly, thus obtaining a posterior distribution that is close
to what would have been obtained by running the scan at the
higher resolution initially. The advantage of using posterior
sampling in this context is that the resampling of the points
can be done in a massively parallel way (using 800 CPUs, the
resampling step takes only a few hours). Although the best-
fit point shifts somewhat after importance sampling, we have
verified that the bulk of our probability distributions remain
stable. We therefore conclude that the results presented here
are robust with respect to increases in the spatial and energy
resolution of the scan.

4.7. Parameter Inference from Posterior Samples

Once a sequence {Θ(0),Θ(1), . . . ,Θ(M)} of samples from
the posterior pdf has been gathered, obtaining Monte Carlo
estimates of expectations for any function of the parameters
is straightforward. For example, the posterior mean is given
by (〈·〉 denotes the expectation value with respect to the pos-
terior)

〈Θ〉 ≈
∫
P (Θ|D)ΘdΘ =

1

M

M−1∑
t=0

Θ(t), (15)

where the second equality follows because the samples Θ(t)

are generated from the posterior by construction. In general,
the expectation value of any function of the parameters f(Θ)
is obtained as

〈f(Θ)〉 ≈ 1

M

M−1∑
t=0

f(Θ(t)). (16)

It is useful to summarize the results of the inference by giving
the 1-dimensional marginal probability for the jth element of
Θ, Θj , obtained by integrating out all other parameters from
the posterior:

13 The resulting chain of samples (including their statistical weight and
likelihood) is provided as Supplementary Material, allowing the reader to
make their own analysis, for example to investigate particular parameter cor-
relations.
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P (Θj |D) =

∫
P (Θ|D)dΘ1 . . . dΘj−1dΘj+1 . . . dΘn,

(17)
where P (Θj |D) is the marginal posterior for the parameter
Θj . From the posterior samples (obtained either by MCMC or
MultiNest) it is straightforward to obtain and plot the marginal
posterior on the left-hand-side of Eq. (17): since samples are
drawn from the full posterior by construction, their density
reflects the value of P (Θ|D). It is then sufficient to divide
the range of Θj into a series of bins and count the number
of samples falling within each bin, ignoring the coordinates
values Θi (for i 6= j). The 2-dimensional posterior is defined
in an analogous fashion. The 1-dimensional, 2-tail symmetric
α% credible region is given by the interval (for the parameter
of interest) within α% of where the samples are found, ob-
tained in such a way that a fraction (1− α)/2 of the samples
are outside the interval on either side. In the case of a 1-tail
upper (lower) limit, we report the value of the quantity below
(above) where α% of the samples are found.

5. RESULTS
5.1. Cosmic-Ray Propagation Model Parameter Constraints

In Figures 1, 2 we show 1-dimensional marginalized poste-
rior probabilities for the propagation and nuisance parameters
of the model. The red cross represents the best fit, the ver-
tical thin line the posterior mean, and the horizontal bar the
68% and 95% error ranges (yellow/blue, respectively). Two-
dimensional constraints on some parameter combinations are
presented in Figure 3. The best-fit point and posterior ranges
are summarized in Table 2. For reference the galdef parame-
ter definition files with the best-fit parameter values presented
in this study are available as Supplementary Material to this
paper. These give precise definitions of the model used, which
can be reproduced as required. The final MCMC chains from
which Figures 1-3 were produced are also available.

We see that δ and vAlf are quite well constrained, with the
posterior mean δ = 0.31±0.02 being very close to the canoni-
cal value of 1/3 for Kolmogorov diffusion. The Alfvén speed,
vAlf = 38.4±2.1 km s−1, is higher than in earlier studies, but
this is dictated by the fit to the ACE data on the B/C ratio at
low energies. The posterior intervals on the values of D0 and
zh are fairly large, D0 = (8.32 ± 1.46) × 1028 cm2 s−1 and
zh = 5.4 ± 1.4 kpc. The typical value of 4 kpc adopted in
many studies is at the lower end of the viable range, but still
within the 95% interval, zh ∈ [3.2, 8.6] kpc. We can see from
the D0 vs. zh panel in Fig. 3 that the diffusion coefficient and
the halo size are positively correlated, as expected.

Other parameters exhibit less pronounced correlations. The
injection indexes ν1 and ν2 are tightly constrained and almost
uncorrelated (Figure 3), but this reflects the fact that the posi-
tion of the injection spectral break is fixed in this analysis, so
that the indices are determined by δ and vAlf with their narrow
ranges. The value of the injection index ν2 = 2.38 ± 0.04
provides a consistency check as the value of the sum ν2 + δ
should be close to the spectral indices of directly measured
carbon and oxygen spectra ∼2.70, and indeed we find that
ν2 + δ = 2.69 ± 0.05. Comparison to the value of the in-
jection index ν1 = 1.92 ± 0.04 shows that the spectral break
required is 0.46± 0.05. The pdf for the spectral break is plot-
ted in the bottom-right panel of Fig. 1. While at face value the
break appears very statistically significant, it has be be kept in
mind that the value found is dependent on the break energy,

which was fixed in this analysis. Future analyses will allow
more freedom in the form of the spectrum.

5.2. Comparison with Our Previous Results
In general, there is remarkable agreement between the “by-

eye” fitting in the past (e.g., Strong & Moskalenko 1998,
2001; Moskalenko et al. 2002; Ptuskin et al. 2006) and the
parameter constraints found using the refined Bayesian infer-
ence analysis described in this paper. The posterior mean val-
ues of the diffusion coefficient D0 = (8.32 ± 1.46) × 1028

cm2 s−1 at 4 GV and the Alfvén speed vAlf = 38.4 ± 2.1
km s−1 are also in fair agreement with earlier estimates of
5.73 × 1028 cm2 s−1 and 36 km s−1 (Ptuskin et al. 2006),
respectively. The posterior mean halo size is 5.4 ± 1.4 kpc,
also in agreement with our earlier estimated range zh = 4− 6
kpc (Strong & Moskalenko 2001), although our best-fit value
of zh = 3.9 kpc is somewhat lower, due to the degeneracy
between D0 and zh. However, the well-defined posterior in-
tervals produced by the present study are significantly more
valuable than just the best fit values themselves as they pro-
vide an estimate of associated theoretical uncertainties and
may point to a potential inconsistency between different types
of data.

5.3. Quality of Best-Fit model
We now assess the quality of our best-fit model. Define the

χ2 as

χ2 ≡
5∑
j=1

Nj∑
i=1

(
ΦX(Ei,Θ, φ)− Φ̂ijX

)2

σ2
ij/τj

, (18)

i.e., we compute the χ2 using the rescaled error bars for the
data points (notice that χ2 6= −2 logP (D|Θ, φ, τ), i.e. the χ2

is not minus twice the log-likelihood because of the pre-factor
containing τ appearing in Eq. [8]). There are N = 76 total
data points and M = 16 fitted parameters, including both the
modulation and the error rescaling parameters. Therefore the
number of degrees of freedom (dof) is 60, and for the best-
fit model we find χ2 = 69.3, which leads to a reduced chi-
squared χ2/dof = 68/60 = 1.15. This is not surprising,
since by construction the error bar rescaling parameters, τ ,
are adjusted dynamically during the global fit to achieve this.
A more detailed breakdown of the contribution to the total χ2

by data set is given in Table 3.
The predictions for the fitted CR spectra of the best-fit

model parameters are shown in Figures 4-6, including an er-
ror band delimiting the 68% and 95% probability regions. The
species shown are B/C and 10Be/9Be ratios, and the spectra of
carbon and oxygen. In each plot, we show the spectrum mod-
ulated with the potential corresponding to our best-fit param-
eters from our global fits for each of the data sets employed.
We also show the datasets, each with error bars enlarged by
the best-fit value of our scaling parameters, τ , as given in Ta-
ble 2. The yellow/blue band delimits regions of 68% and 95%
probability, and is modulated according to the potential given
in the each panel. We emphasize that the power of our statis-
tical technique is such that we can, for the first time, provide
not only a best fit model but also an error band with a well-
defined statistical meaning.

In order to better visualize the comparison of our best-fit
model to the fitted data, we plot in the bottom part of each
panel the best-fit residuals i.e., the difference between data
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FIG. 1.— 1D marginalized posterior pdf normalized to the peak for the diffusion model parameters, with uniform priors assumed over the parameter ranges
as in Table 1. The red cross represents the best fit, the vertical thin line the posterior mean, and the horizontal bar the 68% and 95% error ranges (yellow/blue,
respectively). The bottom-right panel shows the pdf for the spectral index break.

TABLE 2
SUMMARY OF CONSTRAINTS ON ALL PARAMETERS

Quantity Best fit Posterior mean and Posterior
value standard deviation 95% range

DIFFUSION MODEL PARAMETERS Θ

D0(1028 cm2 s−1) 6.59 8.32± 1.46 [5.45, 11.20]
δ 0.30 0.31± 0.02 [0.26, 0.35]
vAlf (km s−1) 39.2 38.4± 2.1 [34.2, 42.7]
zh (kpc) 3.9 5.4± 1.4 [3.2, 8.6]
ν1 1.91 1.92± 0.04 [1.84, 2.00]
ν2 2.40 2.38± 0.04 [2.29, 2.47]
Np (10−9 cm2 sr−1 s−1 MeV−1) 5.00 5.20± 0.48 [4.32, 6.23]

EXPERIMENTAL NUISANCE PARAMETERS

Modulation parameters φ (MV)
HEAO-3 693 690± 38 [613, 763]
ACE 357 354± 22 [311, 398]
CREAM 598 602± 49 [503, 697]
ISOMAX 416 430± 20 [391, 470]
ATIC-2 0 (fixed) N/A N/A

Variance rescaling parameters τ
HEAO-3 -0.60 −0.60± 0.10 [−0.82,−0.41]
ACE -0.12 N/A > −0.49 (1-tail)
CREAM 0.00 N/A > −0.53 (1-tail)
ISOMAX -0.21 N/A > −1.21 (1-tail)
ATIC-2 -0.24 N/A > −0.84 (1-tail)
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FIG. 2.— As in Figure 1 but for the nuisance parameters used in the analysis.
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FIG. 3.— 2D marginalized posterior probability distributions for some parameter combinations. The yellow and blue regions enclose 68 and 95% probability,
respectively. The encircled red cross is the best fit, the filled green dot the posterior mean.

and best-fit model, divided by the experimental error bar (en-
larged by the correct error scaling parameter):

Rij =
Φ̂ijX − ΦX(Ei,Θ, φ)

σij/
√
τj

. (19)

Visual inspection of the residuals for the B/C and the
10Be/9Be ratios (see Figures 4 and 5) shows that our best-fit
model gives an excellent fit to those data, with the distribu-
tion of the residuals approximately symmetric around 0. This
indicates that there is no systematic bias of our best-fit. The
contribution to the overall χ2 from those data sets is, if any-

thing, smaller than would be expected statistically: Table 3
indicates that each datum contributes about ∼ 0.3 units to the
χ2. This could point to a degree of overfitting, or to our er-
ror bar rescaling parameters being too small. However, the
origin of this slight overfitting becomes clear when one con-
siders the oxygen and carbon spectra, and their residuals (Fig-
ures 6). Residuals here are significantly larger, especially at
low energies, E < 3 GeV, and the average contribution to the
total χ2 by each datum is much larger, of order ∼ 1.4, see Ta-
ble 3. Therefore, the error bars on carbon and oxygen seem to
require enlargement in order for our model to provide a good
fit. Notice from the shape of the residuals in Fig. 6 that there
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FIG. 4.— B/C ratio for our best fit parameters (dashed curves). Each of the dashed curves has been modulated with the best-fit potential from our global fits,
with value given in the legend. We also plot the fitted datasets, each with error bars enlarged by the best-fit value of our scaling parameters, τ , as given in Table 2.
Color coding of each data set matches the color of the best-fit modulated curve with which it should be compared: ACE (solar minimum, George et al. 2009) with
Φ = 357 MV, CREAM (Ahn et al. 2008) with Φ = 598 MV, HEAO-3 (Engelmann et al. 1990) with Φ = 693 MV and ATIC (Panov et al. 2008) with Φ = 0
MV (no modulation), see the description of the data in the text. The yellow/blue error bands delimit regions of 68% and 95% probability, and are modulated
according to the potential given in each panel. The bottom of each panel shows the residuals of our best-fit model, defined in eq. (19).

TABLE 3
BREAKDOWN OF CONTRIBUTIONS TO THE TOTAL χ2 OF OUR BEST FIT BY DATA SET

CR Data sets Data points, n χ2 χ2/n

Oxygen HEAO-3, ACE 20 28.9 1.44
Carbon HEAO-3, ACE 21 29.5 1.40

B/C HEAO-3, ACE, ATIC-2, CREAM 29 8.9 0.30
10Be/9Be ACE, ISOMAX 6 2.0 0.33

All All 76 69.3 χ2/dof = 1.15

is no indication of systematic bias in our fit, i.e., the enlarge-
ment of the error bars does not come about because the model
cannot reproduce the data, rather, because the data themselves
seem to show an amount of scatter that is incompatible with
a smooth spectrum (unless the error bars are enlarged suffi-
ciently).

As a consequence, we can conclude that it is the carbon
and oxygen spectra that are driving the value of the error
bars rescaling parameters for HEAO-3 and ACE. Therefore,
the error bars are correspondingly enlarged in the B/C and

10Be/9Be spectra, since we are using one single error bar
rescaling parameter for each experiment. This results in much
smaller residuals for the latter spectra. Introducing a larger
number of error bar rescaling parameters, one for each exper-
iment and for each CR species, and fitting them independently
could resolve this issue. Then, the rescaling will be less im-
portant for B/C and 10Be/9Be, leading to tighter constraints
from those data sets.
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FIG. 5.— 10Be/9Be ratio for our best fit parameters, including error bands, as in Fig. 4. Color coding of each data set matches the color of the best-fit modulated
curve with which it should be compared: ACE (Yanasak et al. 2001) with Φ = 357 MV, ISOMAX (Hams et al. 2004) with Φ = 416 MV. We also plot the
unmodulated ratio for comparison.
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FIG. 6.— Carbon (top panels) and oxygen (bottom panels) spectra for our best fit parameters, including error bands and best-fit model residuals, as in Fig. 4.
Color coding of each data set matches the color of the best-fit modulated curve with which it should be compared: ACE (solar minimum, George et al. 2009)
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6. DISCUSSION
6.1. Implications for Antimatter and γ-rays

We also use our best-fit model to calculate secondary an-
tiprotons, electrons, positrons, and diffuse γ-rays which were
not fitted, but provide a useful consistency check. For this
calculation the spectra of CR protons and He were adjusted
to the BESS data (Sanuki et al. 2000). Secondary antiprotons
were calculated using the same formalism as in Moskalenko
et al. (2002). Calculation of secondary electrons, positrons,
and diffuse γ-rays is described in Sec. 3. The spectra of sec-
ondaries are shown in Figs. 7-9. The primary electron injec-
tion spectrum is based on fitting to pre-Fermi electron data
(conventional model, Strong et al. 2004; Ptuskin et al. 2006),
and is parameterized as a broken power law with indices
1.6/2.5 below/above 4 GeV and a steepening (index 5) above
2 TeV, and normalized to the Fermi data at 25 GeV (Acker-
mann et al. 2010). The plot for the CR electron and positron
spectrum is shown separately in Fig. 7 and compared to rele-
vant measurements, while the plot for total leptons (electrons
plus positrons) is displayed in the left panel of Fig. 8. Even
though the total electron and diffuse emission data were not
fitted, they agree well with our best-fit model predictions. The
positron fraction, shown in the right panel of Fig. 8, does not
agree with the PAMELA data (Adriani et al. 2009), but this
was expected since secondary positron production in the gen-
eral ISM is not capable of producing an abundance that rises
with energy.

Antiprotons, shown in Fig. 9, also not fitted, present an in-
teresting example where the intensity at a few GeV is sig-
nificantly underpredicted by the reacceleration models. As
has been already shown (Moskalenko et al. 2002, 2003), the
antiproton flux measurements by BESS taken during the last
solar minimum, 1995–1997 (Orito et al. 2000), are inconsis-
tent with reacceleration models at the 40% level at about 2
GeV, while the stated measurement uncertainties in this en-
ergy range are 20%. The reacceleration models considered are
conventional models, based on local CR measurements, Kol-
mogorov diffusion, and uniform CR source spectra through-
out the Galaxy. Models without reacceleration that can re-
produce the antiproton flux, however, fall short of explaining
the low-energy decrease in the secondary/primary nuclei ra-
tio. To be consistent with both, the introduction of breaks
in the diffusion coefficient and the injection spectrum is re-
quired, which may suggest new phenomena in particle ac-
celeration and propagation. An inclusion of a local primary
component at low energies, possibly associated with the Lo-
cal Bubble, can reconcile the data (Moskalenko et al. 2003).

Figure 9 shows that the reacceleration model underpro-
duces antiprotons in the GeV range by ∼30% also compared
to the PAMELA data taken during the current solar mini-
mum (Adriani et al. 2010). On the other hand, high-energy
PAMELA data agree well with the predictions, which may
suggest that the excess over the model predictions at low ener-
gies can be associated with the solar modulation. Since reac-
celeration is also most important below a few GeV, at present
it does not appear possible to distinguish these effects. How-
ever, a more systematic analysis which includes evaluation of
other propagation models may help and will be carried out in
a future work.

6.2. Comparison with other Analyses
Most other analyses have used analytical propagation mod-

els, in particular Donato et al. (2002) and Maurin et al. (2002).
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FIG. 9.— Antiproton spectrum for our best-fit CR parameters, with three
different representative solar modulation potentials together with recent data.
Note that the error band has not been modulated. The modulated curve for
Φ=500 MV is most appropriate for the BESS 1995–1997 flight (Orito et al.
2000) and PAMELA current solar minimum data (Adriani et al. 2010), while
the BESS-Polar flight of 2004 (Abe et al. 2008) corresponds to the higher
level of solar activity. The data shown here have not been fitted.

The most recent reported results from this approach are in
Maurin et al. (2010) and Putze et al. (2010a), which used
χ2 and MCMC techniques to analyze a wide range of semi-
analytical models. The nearest case to ours is their diffu-
sion/reacceleration model where they found δ = 0.23− 0.24,
vAlf = 70 − 80 km s−1 and zh = 4 − 6 kpc. Better fits
are found with convection included as well, with a smaller
vAlf, but this requires a very large δ = 0.8 − 0.9. In con-
trast, we find a more plausible range of values for the diffu-
sion/reaccleration model (however we do not consider con-
vection here).

We also note that they assume an injection spectrum that
is a single power-law in rigidity, which also includes a factor
of βηS , ∼βηSρ−ν (Putze et al. 2010b). In the case of pro-
ton and He injection spectra in the reacceleration model (their
Model II) they use ηS ≈ 1. This is equivalent to our break in
the injection spectrum provided the diffusion coefficient has a
form Eq. (5). For heavier nuclei, C to Fe, their injection spec-
trum has ηS ≈ 2, which compensates for the large values of
the vAlf in their fits. Therefore, their best fit parameters (e.g.,
vAlf) are not equivalent to ours and are dependent on a partic-
ular choice of the injection spectrum. Their conclusion that
they do not need a break in the injection spectrum is thus sig-
nificantly overstated as they need an ad hoc factor βηS with
index ηS different for different groups of nuclei.

7. CONCLUSIONS
For the first time, we have shown that a full Bayesian anal-

ysis is possible using both MCMC and nested sampling de-
spite the heavy computational demands of a numerical propa-
gation code. Furthermore, our analysis also returns the value
of the Bayesian evidence, which could be used to rank dif-
ferent propagation models in terms of their performance in
explaining the data. While we have not investigated this pos-
sibility here, we leave this topic for a dedicated discussion in
a forthcoming publication.

The present study provides not just best-fit values for the
propagation parameters but, more importantly, associated un-
certainties which fully account for correlations among param-
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valid. Note that these data have not been fitted.

eters, as well as for experimental and theoretical uncertain-
ties. Such error estimates have been fully propagated to the
predicted CRs spectra from the model, thus providing an es-
timate of the residual uncertainty on the predictions (after fit-
ting), which can be used to assess, e.g., potential inconsisten-
cies between different types of data or for model selection. An
important conclusion is that the parameter ranges derived in
this study are consistent with previous, less systematic analy-
ses.

A valuable test made possible by our technique is the con-
sistency check of the calculated spectra of other CR species,
antiprotons, electrons, and positrons with data. Total elec-
trons agree with the Fermi-LAT spectrum within the system-
atic uncertainties, see Fig. 10. The calculated spectrum of the
Galactic diffuse emission for the mid-latitude range is also in
a good agreement with the observations by the Fermi-LAT.
The antiprotons are under-predicted, which is a general fea-
ture of reacceleration models as we have shown before. The
positron fraction is inconsistent with a purely secondary ori-
gin of positrons above 1 GeV, confirming the excess above
10 GeV attributed to sources of primary positrons. On the
other hand, the predicted positron spectrum is consistent with
earlier experiments given their large error bars. We await pub-
lication of PAMELA positron data for further model compar-
ison.

Because of the pioneering nature of our approach, we have
concentrated on just one particular type of model with reac-
celeration and a power-law diffusion coefficient. Other prop-
agation modes, e.g., convection, are not considered here. Fu-
ture work will consider these, together with constraints from
antiprotons, positrons, and γ-rays.
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APPENDIX

A. SUPPLEMENTARY MATERIAL

The Supplementary Material accompanying this paper contains the following files, which can be used to reproduce the results
presented in the paper.

• Galprop chains.tar.gz: Upon unpacking, this archive contains the 10 MCMC chains used in the paper, and one .info file
detailing what information is contained in the chains.

• The folder BestFitSpectra contains datafiles with the best-fit spectra from our paper. The files and their contents are
described in an accompanying README file.

• Galprop definition files are supplied for the best-fit parameter values as well as for the posterior mean values (as per
Table 2).
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