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We consider a simple supersymmetric grand unified model which naturally solves the strong
CP and µ problems via a Peccei-Quinn symmetry and leads to the standard realization of hybrid
inflation. We show that the Peccei-Quinn field of this model can act as a curvaton. In contrast
to the standard curvaton hypothesis, both the inflaton and the curvaton contribute to the total
curvature perturbation. The model predicts the existence of an isocurvature perturbation too which
has mixed correlation with the adiabatic one. The cold dark matter of the universe is mostly
constituted by axions, which are produced at the QCD phase transition, plus a small amount
of lightest sparticles. The predictions of the model are confronted with the first-year Wilkinson
microwave anisotropy probe and other cosmic microwave background radiation data. We analyze
in detail two representative choices of parameters for our model and derive bounds on the curvaton
contribution to the adiabatic perturbation. We find that, for the choice which provides the best
fitting of the data, the curvaton contribution to the amplitude of the adiabatic perturbation must be
smaller than about 67% and the amplitude of the partial curvature perturbation from the curvaton
smaller than 43.2 × 10−5 (both at 95% confidence level). The best-fit power spectra are dominated
by the adiabatic part of the inflaton contribution. We use Bayesian model comparison to show
that this choice of parameters is disfavored with respect to the pure inflaton scale-invariant case
with odds of about 50 to 1. For the second choice of parameters examined, the adiabatic mode
is dominated by the curvaton, but this choice is strongly disfavored relative to the pure inflaton
scale-invariant case (with odds of about 107 to 1). We conclude that in the present framework the
perturbations must be dominated by the adiabatic component from the inflaton.

PACS numbers: 12.10.-g,12.60.Jv,98.80.Cq

I. INTRODUCTION

Inflation, which was originally proposed [1] as a so-
lution to the outstanding problems of standard big bang
cosmology and the problem of unwanted relics, is in good
agreement with the recent measurements [2, 3] on the
angular power spectrum of the cosmic microwave back-
ground radiation (CMBR). Moreover, inflation is now es-
tablished as the most likely origin of the primordial den-
sity perturbation from which structure formation in the
universe proceeded [4]. According to the usual assump-
tion [4, 5], this perturbation is generated solely by the
slowly rolling inflaton field of the usual one-field infla-
tionary models and, thus, is expected to be purely adi-
abatic. However, although adiabatic perturbations are
perfectly consistent with the present data, the presence
of a significant isocurvature density perturbation cannot
be excluded [3, 6]. In one-field inflation, the perturba-
tions are almost Gaussian, in agreement with the current
upper bounds on non-Gaussianity from the CMBR data,
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which though cannot exclude the presence of appreciable
non-Gaussianity (for a review, see e.g. Ref. [7]).

Lately, the alternative possibility [8, 9] that the adia-
batic density perturbations originate from the inflation-
ary perturbations of some light “curvaton” field different
from the inflaton has attracted much attention. The cur-
vaton density perturbations can lead [9, 10], after curva-
ton decay, to isocurvature perturbations in the densities
of the various components of the cosmic fluid. In the sim-
plest case, the residual isocurvature perturbations are ei-
ther fully correlated or fully anti-correlated with the adi-
abatic density perturbation. In general models, however,
the correlation can be mixed (see e.g. Ref. [11]). In the
curvaton scenario, significant non-Gaussianity may also
appear. The main reason for advocating the curvaton
hypothesis is that it makes [12] the task of constructing
viable models of inflation much easier, since it liberates
us from the very restrictive requirement that the inflaton
is responsible for the curvature perturbations.

In a recent paper [11], a simple extension [13] of the
minimal supersymmetric standard model (MSSM) which
naturally and simultaneously solves the strong CP and µ
problems via a Peccei-Quinn (PQ) [14] and a continuous
R symmetry was considered within the general frame-
work of the standard supersymmetric (SUSY) version
[15, 16] of hybrid inflation [17]. It was shown that, in this
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model, the PQ field, which breaks spontaneously the PQ
symmetry, can successfully act as a curvaton generating
the total curvature perturbation in the universe in ac-
cordance with the cosmic background explorer (COBE)
measurements [18]. The (intermediate) PQ scale is gen-
erated by invoking supergravity (SUGRA) and the PQ
field corresponds to a flat direction in field space lifted
by non-renormalizable interactions. Moreover, the µ pa-
rameter of MSSM is generated [19] from the PQ scale.

We feel that the standard curvaton hypothesis [8, 9],
which insists that the total curvature perturbation origi-
nates solely from the curvaton, can also be quite restric-
tive and not so natural. Indeed, in accordance to this
hypothesis, one needs to impose [12] an upper bound on
the inflationary scale in order to ensure that the pertur-
bation from the inflaton is negligible. This bound can be
quite strong especially if the slow-roll parameter ǫ (see
e.g. Ref. [5]) happens to be very small, which holds in
many cases. In generic models, one would expect that
all the scalar fields which are essentially massless during
inflation contribute to the total curvature perturbation.
So, in the presence a PQ field, which can be kept [11]
light during the relevant part of inflation, it is natural to
assume that the adiabatic density perturbation is partly
due to this field and partly to the inflaton.

There is yet another reason for abandoning the strict
curvaton hypothesis. The recent measurements on the
CMBR by the Wilkinson microwave anisotropy probe
(WMAP) satellite [2] have considerably strengthened
[3, 6, 20] the bound on the isocurvature perturbation
which was obtained [21, 22] by using the pre-WMAP
CMBR data. As a consequence, the viability of many
curvaton models is in doubt. However, allowing a sig-
nificant part of the total curvature perturbation in the
universe to originate from the inflaton, we can hopefully
relax the tension between these models and the present
WMAP data without losing the main advantage of the
curvaton hypothesis, which is that it facilitate the con-
struction of viable inflationary models (see Ref. [23] for
recent investigations of this possibility).

The PQ curvaton model of Ref. [11] predicts an isocur-
vature perturbation of mixed correlation with the cur-
vature perturbation. The extended set of pre-WMAP
CMBR and other data which was used [11] to restrict the
isocurvature perturbation in the model of Ref. [11] led to
the exclusion of a major part of the available parameter
space. Including the more restrictive recent WMAP mea-
surements, the allowed parameter space will certainly be
further reduced. It is, moreover, quite possible that the
model is even totally excluded by these new data. So,
the departure from the strict curvaton hypothesis may
prove to be vital for this particular curvaton scheme.

In this paper, we will extend the PQ curvaton model of
Ref. [11] by embedding it into the concrete SUSY grand
unified theory (GUT) model studied in Ref. [24], which
is based on the left-right (LR) symmetric gauge group
GLR = SU(3)c × SU(2)L × SU(2)R × U(1)B−L. This
model leads [24] naturally to standard SUSY hybrid in-

flation [15, 16]. After the end of inflation, the inflaton
performs damped oscillations about the SUSY vacuum
and eventually decays into right handed neutrino super-
fields reheating the universe. The subsequent decay of
these superfields to a lepton and an electroweak Higgs
superfield generates [25] a primordial lepton asymmetry
[26] which is then partly converted into baryon asym-
metry by non-perturbative electroweak sphaleron effects.
The observed baryon asymmetry of the universe (BAU)
can then be easily reproduced [24] in accord with the
data on neutrino masses and mixing. At reheating, grav-
itinos are also produced thermally. They decay in the
late universe leading to lightest sparticles (LSPs), which
contribute to the cold dark matter (CDM) in the uni-
verse. For simplicity, we assume that this is the only
source of relic LSPs neglecting their direct thermal pro-
duction. Due to the presence of the PQ symmetry, our
model contains axions which come into play at the QCD
phase transition and can also contribute to CDM.

The PQ field of our model can acquire a super-horizon
spectrum of perturbations from inflation provided that
it is effectively massless during the relevant part of in-
flation. It can thus act as curvaton contributing to the
total curvature perturbation together with the inflaton.
We study the evolution of the PQ field during and after
inflation by including corrections [15, 27, 28] to the PQ
potential which originate from the SUSY breaking in the
early universe caused by the presence of a finite energy
density. We assume that these corrections are (some-
what) suppressed, which is [29] indeed the case if specific
Kähler potentials are used.

The requirement that the PQ field is essentially mass-
less during inflation yields [11], for given values of the
other parameters, an upper bound on the possible values
of this field at the end of inflation. Moreover, it im-
plies that, as inflation terminates, the PQ field emerges
[11] with negligible velocity. There is also a lower bound
on the value of the PQ field at the end of inflation be-
low which the classical equation of motion during infla-
tion for the mean value of this field in a region of fixed
size somewhat bigger than the size of the de Sitter hori-
zon ceases [11] to be valid. This is due to the fact that
the quantum perturbations of the PQ field from inflation
overshadow its classical kinetic energy density. We will
exclude this quantum regime since the calculation of the
spectral index of the partial curvature perturbation from
the curvaton field in this regime is not so clear.

The values of the PQ field at the end of inflation which
are not excluded by the above considerations can be clas-
sified according to whether they lead to the PQ vacua
or the trivial (false) vacuum. We find that, generically,
there exist two separate bands of such values leading to
the correct (PQ) vacua. One of them lies at relatively low
values of the curvaton field at the end of inflation, while
the other lies at values which are considerably higher. In
all other cases, the system ends up in the wrong (trivial)
vacuum and thus the corresponding values of the PQ field
at the end of inflation must be excluded. Our numerical
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findings show that the (approximate) COBE constraint
on the CMBR can be satisfied only within the upper al-
lowed band. This constraint receives contributions not
only from the curvature perturbation but also from the
isocurvature one and the cross correlation of the two.
Note, however, that this constraint is quite approximate
and can be considered only as an indicative criterion.

The amplitude and spectral index of the partial cur-
vature perturbation from the inflaton are calculated by
employing the analysis of Ref. [5] slightly modified to al-
low for the possibility that the slow-roll conditions are
violated and, thus, hybrid inflation ends before reach-
ing the instability point on the inflationary trajectory.
The partial curvature perturbation from the curvaton is
treated in a more accurate way than in Ref. [11]. In par-
ticular, the evolution during inflation of the perturbation
acquired by the PQ field from inflation when our present
horizon scale crossed outside the inflationary horizon is
considered. It is described by the classical equation of
motion for this field in the slow-roll approximation. Solv-
ing this equation, we can find the perturbation in the
value of the curvaton field at the end of inflation. This
same calculation yields the spectral index for the cur-
vaton too. For any given value of the PQ field at the
termination of inflation, we take the perturbed value too
and follow the subsequent evolution of both these fields
until the time of the curvaton decay. This yields the
amplitude of the partial curvature perturbation from the
curvaton. The total curvature perturbation is then given
by the appropriate weighted sum of these two uncorre-
lated perturbations.

As mentioned already, the baryons and the LSPs in
our model originate from reheating. They thus inherit
the partial curvature perturbation of the oscillating and
decaying inflaton, which is different from the total curva-
ture perturbation due to the presence of the curvaton. As
a consequence, the baryons and LSPs acquire an isocur-
vature perturbation of mixed correlation with the total
curvature perturbation. The CDM in our model contains
also axions carrying an isocurvature perturbation which
is uncorrelated with the perturbations from the inflaton
and the curvaton. The amplitude and spectral index of
this isocurvature perturbation is evaluated by following
the analysis of Ref. [11]. We see that, in our model, the
correlation of the total adiabatic and isocurvature per-
turbations is mixed.

For given values of all the other independent param-
eters, we take a grid of values of the curvaton field at
the end of inflation and the amplitude of partial curva-
ture perturbation from the inflaton which cover the up-
per or the lower allowed band. We calculate the total
CMBR angular power spectrum for each point in this
grid. The predictions from each band are confronted
with the CMBR temperature (TT) and temperature-
polarization (TE) cross correlation angular power spectra
from the first-year WMAP observations [2] as well as the
CMBR data on smaller scales from the arcminute cosmol-
ogy bolometer array receiver (ACBAR) [30, 31] and the

cosmic background imager (CBI) [32] experiments. We
then study the implications of the resulting restrictions
on the various parameters of the model. We also em-
ploy Bayesian model testing to compare our model with
the standard pure inflaton single-field inflationary model
with scale-invariant perturbations. We are particularly
interested to see whether the data favor the presence of
a non-vanishing curvaton contribution to the adiabatic
perturbation.

The paper is organized as follows. In Sec. II, we outline
the salient features of our LR SUSY GUT model which
solves the strong CP and µ problems via a PQ symme-
try and leads to the standard version of SUSY hybrid
inflation. The evolution of the PQ field during and af-
ter inflation as well as its final decay into light particles
are sketched in Sec. III. Section IV is devoted to the
evaluation of the total curvature perturbation which, in
our case, is partly due to the inflaton and partly to the
curvaton. In Sec. V, we estimate the isocurvature per-
turbations in the relic density of the baryons, the LSPs
and the axions. The total CMBR angular power spec-
trum predicted by our model is discussed in Sec. VI. Our
numerical calculation and results are presented and dis-
cussed in Sec. VII, and our conclusions are summarized
in Sec. VIII. Finally, in the Appendix, we review some
useful concepts and results from Bayesian statistics.

II. THE LEFT-RIGHT SUSY GUT MODEL

We will adopt here the SUSY GUT model of Ref. [24]
(see also Ref. [33]) which is based on the LR symmet-
ric gauge group GLR. The SU(2)L doublet left handed
quark and lepton superfields are denoted by qi and li
respectively, whereas the SU(2)R doublet antiquark and
antilepton superfields by qc

i and lci respectively (i=1,2,3
is the family index). The electroweak Higgs super-
field h belongs to a bidoublet (2, 2)0 representation of
SU(2)L × SU(2)R × U(1)B−L.

The breaking of GLR to the standard model (SM)
gauge group GSM, at a superheavy scale M ∼ 1016 GeV,
is achieved through the superpotential

δW1 = κS(lcH l̄cH − M2), (1)

where lcH , l̄cH is a conjugate pair of SU(2)R doublet left
handed Higgs superfields with B − L charges equal to
1,−1 respectively, and S is a gauge singlet left handed
superfield. The dimensionless coupling constant κ and
the mass parameter M can be made real and positive by
suitable rephasing of the fields. The SUSY minima of
the scalar potential lie on the D-flat direction lcH = l̄c∗H at
〈S〉 = 0, |〈lcH〉| = |〈l̄cH〉| = M .

The model also contains two extra gauge singlet left
handed superfields N and N̄ for solving [13] the µ prob-
lem of MSSM via a PQ symmetry [14], which also solves
the strong CP problem. They have the following super-
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potential couplings:

δW2 =
λN2N̄2

2mP
+

βN2h2

2mP
, (2)

where λ and β are dimensionless parameters, which can
be made real and positive by an appropriate redefinition
of the phases of the superfields and mP ≃ 2.44×1018 GeV
is the reduced Planck mass.

In addition to GLR, the model possesses three global
U(1) symmetries, namely an anomalous PQ symmetry
U(1)PQ, a non-anomalous R symmetry U(1)R, and the
baryon number symmetry U(1)B. The PQ and R charges
of the various superfields are

PQ : qc, lc, S, lcH , l̄cH(0), h, N̄(1), q, l, N(−1);

R : h, lcH , l̄cH , N̄(0), q, qc, l, lc, N(1/2), S(1). (3)

Note that global continuous symmetries such as our PQ
and R symmetry can effectively arise [34] from the rich
discrete symmetry groups encountered in many compact-
ified string theories (see e.g. Ref. [35]).

It is well known that the superpotential in Eq. (1) leads
[15, 16] naturally to the standard SUSY realization of
hybrid inflation [17]. In particular, the scalar potential
which is derived from it possesses a built-in classically
flat valley of minima at lcH = l̄cH = 0 and for |S| greater
than a critical (instability) value Sc = M . This val-
ley can serve as inflationary path. Indeed, the constant
tree-level potential energy density κ2M4 on this path can
cause exponential expansion of the universe. Moreover,
since this constant energy density breaks SUSY, there are
important radiative corrections [16] which provide a log-
arithmic slope along the inflationary trajectory necessary
for driving the system towards the vacua.

It should be noted that the SUSY GUT model con-
sidered here does not predict the existence of topological
defects such as magnetic monopoles or cosmic strings.
In the opposite case, these defects would have been co-
piously produced [36] at the end of hybrid inflation.
The overproduction of magnetic monopoles, in partic-
ular, would have led to a cosmological catastrophe and a
modification [36, 37] of the standard realization of SUSY
hybrid inflation would be needed to avoid this problem.
This happens in higher gauge groups such as the Pati-
Salam group, which predicts the existence of monopoles
carrying two units of Dirac magnetic charge [38]. Cosmic
strings, on the other hand, which are generically present
in many GUT models [39, 40], would contribute to the
cosmological perturbations leading [41] to extra restric-
tions on the parameters of the model. The reason that
our model does not predict cosmic strings is that the
GLR breaking is achieved by a conjugate pair of SU(2)R

doublets with B − L = 1,−1 which also break the Z2

subgroup of U(1)B−L. This Z2, which does not belong
to GSM, would have been left unbroken if, alternatively,
we had used a pair of SU(2)R triplets with B−L = 2,−2
for this breaking. This would have led to the presence of
Z2 cosmic strings (compare with the Z2 cosmic strings
encountered in the SO(10) GUT model of Ref. [39]).

The part of the tree-level scalar potential which is rel-
evant for the PQ symmetry breaking is derived from the
superpotential coupling λN2N̄2/2mP in Eq. (2) and, af-
ter soft SUSY breaking mediated by minimal supergrav-
ity (SUGRA), is given by [13]

VPQ =
1

2
m2

3/2φ
2

(

1 − |A|λφ2

8m3/2mP
+

λ2φ4

16m2
3/2m

2
P

)

, (4)

where m3/2 ∼ 1 TeV is the gravitino mass and A is the
dimensionless coefficient of the soft SUSY breaking term
corresponding to the superpotential term λN2N̄2/2mP.
Here, the phases α, ϕ and ϕ̄ of A, N and N̄ are taken to
satisfy the relation α + 2ϕ + 2ϕ̄ = π and |N |, |N̄ | are as-
sumed equal, which minimizes the potential. Moreover,
rotating N on the real axis by an appropriate R transfor-
mation, we defined the canonically normalized real scalar
PQ field φ = 2N . For |A| > 4, this potential has a local
minimum at φ = 0 and absolute minima at

〈φ〉2 ≡ f2
a =

2

3λ

(

|A| +
√

|A|2 − 12
)

m3/2mP (5)

with fa (> 0) being the axion decay constant, i.e. the
symmetry breaking scale of U(1)PQ. Substituting this
vacuum expectation value (VEV) into the superpotential
coupling βN2h2/2mP in Eq. (2), we obtain a µ term with

µ =
βf2

a

4mP
∼ m3/2, (6)

as desired [19]. Note that the potential VPQ in Eq. (4)
should be shifted [11] by adding to it the constant

V0 =
1

108λ

(

|A| +
√

|A|2 − 12
)

×
[

|A|
(

|A| +
√

|A|2 − 12
)

− 24
]

m3
3/2mP, (7)

so that it vanishes at its absolute minima.

III. THE PQ FIELD IN THE EARLY UNIVERSE

In the early universe, the PQ potential can acquire
sizable corrections from the SUSY breaking caused by
the presence of a finite energy density [15, 27, 28]. In
particular, during inflation and the subsequent inflaton
oscillations, SUSY breaking is transmitted to the PQ sys-
tem via its coupling to the inflaton given by the SUGRA
scalar potential. The resulting corrections, whose scale
is set by the Hubble parameter H , dominate over the
contributions from hidden sector SUSY breaking as long
as H ≫ m3/2. For simplicity, we will ignore the A term
type corrections [28]. To leading order, we then just ob-
tain a correction δm2

φ to the mass2 of the curvaton. For

a general Kähler potential, δm2
φ ∼ H2 with either sign
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possible. However, for specific (no-scale like) Kähler po-
tentials, it might be (partially) cancelled [29]. Assuming
that δm2

φ > 0, we write

δm2
φ = γ2H2, (8)

where γ can have different values during inflation and in-
flaton oscillations. Actually, we must assume that, dur-
ing inflation, γ ≪ 1 so that the PQ field qualifies as
an effectively massless field which acquires perturbations
from inflation and thus can act as curvaton. Fortunately,
the cancellation of δm2

φ during inflation can, in principle,

be “naturally” arranged to be exact (see fourth paper in
Ref. [29]). So, for simplicity, we could take γ = 0 during
inflation. On the other hand, large values of γ after the
end of inflation would generically lead [42] to a drastic
reduction of the density fraction of the PQ field, which
thus again would become unable to play the role of cur-
vaton. In view of the fact that, in contrast to the case of
inflation, it is not so easy to achieve exact cancellation
of δm2

φ during inflaton oscillations, we will only assume
that, after the termination of inflation, γ is somewhat
suppressed, say ∼ 0.1 (or smaller).

After reheating, the universe is radiation dominated
and, thus, H ≃ 1/2t ≤ 1/2treh = Γinfl/2, where t is the
cosmic time and treh = Γ−1

infl the time at reheating with
Γinfl being the inflaton decay width. It is easily seen
that, in this case, H ≪ m3/2 as a consequence of the

gravitino constraint (Treh . 109 GeV) [43] on the reheat
temperature Treh, which is given by [5]

Treh =

(

45

2π2g∗

)
1
4

(ΓinflmP)
1
2 , (9)

where g∗ is the effective number of degrees of freedom
(g∗ = 228.75 for the MSSM spectrum). Thus, the SUSY
breaking effects from the finite energy density in the uni-
verse are subdominant compared to the hidden sector
SUSY breaking effects, whose scale is set by m3/2.

The PQ potential can acquire temperature corrections
too. During the era of inflaton oscillations, they origi-
nate from the new radiation [44] which emerges from the
decaying inflaton. It has been shown [11], however, that
these corrections are overshadowed by the SUGRA ones
which, in the latest stages of this era, are, in turn, over-
shadowed by the terms from hidden sector SUSY break-
ing. After reheating, the temperature corrections are less
important than the ones from the hidden sector as argued
in Refs. [37] and [45]. So, the temperature corrections to
the PQ potential can be ignored throughout.

We see that, in the early universe, the effective scalar
potential for the PQ field can be taken to be

V eff
PQ = VPQ +

1

2
γ2H2φ2 + V0. (10)

The full effective scalar potential V which is relevant for
our analysis here is obtained by adding to V eff

PQ the poten-

tial for standard SUSY hybrid inflation (see e.g. Ref. [5]).

The evolution of the field φ is generally governed by
the classical equation of motion

φ̈ + 3Hφ̇ + V ′ = 0, (11)

where overdots and primes denote derivation with respect
to the cosmic time t and the PQ field φ respectively. In
particular, Eq. (11) describes [46] the evolution during
inflation of the mean value of φ in a comoving region
larger than the inflationary horizon. Actually, this equa-
tion starts to be valid a short time after this region crosses
outside the de Sitter horizon. The mean value of φ, how-
ever, in a region of fixed size somewhat bigger than the
(almost) constant size of the de Sitter horizon satisfies
[47] this equation during inflation provided that it ex-
ceeds a certain value φQ given by

V ′ ∼ 3H3
infl

2π
, (12)

where Hinfl is the almost constant Hubble parameter dur-
ing inflation. Therefore, if we require that the value φf

(considered positive without loss of generality) which is
taken at the end of inflation by the mean φ in a region of
fixed size somewhat bigger than H−1

infl exceeds φQ, we can
be sure [11] that the classical evolution equation holds for
this mean field until the end of inflation. For values of
the mean φ in a region of fixed size somewhat bigger than
H−1

infl which are smaller than about φQ, the random walk
executed [48] by this mean field due to the quantum per-
turbations from inflation cannot be neglected and may
overshadow [47] its classical motion. Thus, in this case,
the classical equation of motion during inflation for this
mean φ ceases to be valid. For reasons to be discussed
later, we will not consider in our analysis values of φf

which lie in the quantum regime, i.e. which are smaller
than φQ (see Secs. IV and VII A). It should be pointed
out in passing that the requirement of complete random-
ization of the mean φ in a region of fixed size somewhat
bigger than H−1

infl as a consequence of its quantum pertur-
bations from inflation implies [49] an even more stringent
bound on this mean φ given by V . H4

infl.
Moreover, as explained in the next section, we will have

to study only values of φf for which φ is a slowly rolling
field during the relevant part of inflation (i.e. during
at least the last 50 − 60 e-foldings). It has been shown
[11] that, in this case, the PQ field φ emerges at the
end of inflation with negligible velocity (i.e. derivative
with respect to cosmic time). Its subsequent evolution
during the matter dominated era of damped inflaton os-
cillations is given by Eqs. (10) and (11) with H = 2/3t.
One finds [11] that, depending on the value of φf , the PQ
system eventually enters into a phase of damped oscilla-
tions about either the trivial (local) minimum of VPQ at
φ = 0 or one of its PQ (absolute) minima at φ = ±fa.
Of course, values of φf leading to the trivial minimum
must be excluded.

The damped oscillations of the PQ field continue even
after reheating, where H becomes equal to 1/2t. Finally,
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this field decays via the second coupling in the superpo-
tential of Eq. (2) into a pair of Higgsinos provided that
their mass µ does not exceed half of the mass of the PQ
field (see Ref. [11])

mφ =
m3/2√

3

(

|A|2 − 12
)

1
4

(

|A| +
(

|A|2 − 12
)

1
2

)

1
2

, (13)

which is independent of the parameter λ. The decay time
of the PQ field is tφ = Γ−1

φ , where Γφ is its decay width,

which has been found [11] to be given by

Γφ =
β2f2

a

8πm2
P

mφ. (14)

Note that the coherently oscillating PQ field could evap-
orate [50] as a result of scattering with particles in the
thermal bath before it decays into Higgsinos. However,
one can show [11] that, in the model under discussion
here, this does not happen.

IV. THE CURVATURE PERTURBATION

We will consider here only values of φf for which the
PQ field φ is effectively massless, i.e. V ′′ ≤ H2, dur-
ing (at least) the last 50 − 60 inflationary e-foldings so
that it receives a super-horizon spectrum of perturbations
from inflation and can act as curvaton. This requirement
also guarantees that φ is slowly rolling during the rele-
vant part of inflation. The perturbation δφ then evolves
at subsequent times and, when φ settles into damped
quadratic oscillations about the PQ vacua, yields a sta-
ble perturbation in the energy density of this field. Af-
ter the PQ field decays, this perturbation is transferred
to radiation, thereby contributing to the total curvature
perturbation. On the other hand, the radiation, which
originates from the inflaton decay, could carry a curva-
ture perturbation prior to the curvaton decay too. It
actually inherits the curvature perturbation of the infla-
ton. Contrary to the standard curvaton hypothesis [8],
we make here the more natural assumption that this per-
turbation is non-zero and, thus, also contributes to the
total curvature perturbation.

The scalar part of the metric perturbation for a flat
universe can be written (using the notation of Ref. [51]),
in all generality, as follows (for reviews of the gauge
invariant theory of cosmological perturbations, see e.g.
Ref. [52]):

δgµνdxµdxν = −2Adt2 + 2aB,idtdxi

+a2 (2Cδij + E,ij) dxidxj , (15)

where µ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3. Here, x0 = t is
the physical time, xi (i = 1, 2, 3) are the comoving spatial
coordinates, Y,i ≡ ∂Y/∂xi (i = 1, 2, 3) and δij denotes
the Kronecker delta. The dimensionless parameter a is
the scale factor of the universe, which is normalized to

unity at the present cosmic time. We define the following
gauge invariant quantities:

ζ ≡ C − H
δρ

ρ̇
, (16)

Rrad ≡ −C − H(B − a2v), (17)

Φ ≡ −C − H
(

B − a2Ė
)

. (18)

Here, ρ = −T 0
0 is the total energy density in the uni-

verse with T ν
µ being the energy momentum tensor, δρ =

−δT 0
0 is the total density perturbation, and v describes

the spatial perturbation in the 4-velocity uµ of an ob-
server comoving with the total fluid, i.e. v,i ≡ −δui/u0.
The variable ζ represents the curvature perturbation on
hypersurfaces of uniform density, Rrad is the curvature
perturbation in the (total matter) comoving gauge (up
to the sign), while Φ is the Bardeen potential, which is
the curvature perturbation (up to the sign) in the lon-
gitudinal gauge. These three quantities are related by

ζ = −Rrad − 2ρ

9(ρ + p)

(

k

Ha

)2

Φ, (19)

where we have used the time-time component of the Ein-
stein equation and p is the total pressure of the universe
(i.e. Tij = pδij). On super-horizon scales, k ≪ Ha, the
second term on the right hand side of this equation is
negligible, and we thus have ζ = −Rrad.

Using Eq. (16), the total curvature perturbation [53]
in the flat slicing gauge (defined by setting C = E = 0
in Eq. (15)) is given by

ζ =
δρ

3(ρ + p)
. (20)

After the curvaton decay, it becomes [10]

ζ = (1 − f)ζi + fζc, (21)

where ζi = δρr/4ρr and ζc = δρφ/3ρφ are the partial cur-
vature perturbations on spatial hypersurfaces of constant
curvature from the inflaton and the curvaton respectively
at the curvaton decay with ρr and ρφ being the radiation
and φ energy densities respectively, and δρr and δρφ the
corresponding perturbations. Also,

f =
3ρφ

3ρφ + 4ρr
(22)

evaluated at the time of the curvaton decay. Here, we
assume that the amplitude of the oscillating φ has been
sufficiently reduced so that the potential can be approx-
imately considered as quadratic. Actually, as shown in
Ref. [42], this must necessarily happen before the curva-
ton decays. The oscillating curvaton field then behaves
like pressureless matter and ζc = 2δφ0/3φ0, where φ0 is
the amplitude of the oscillations and δφ0 the perturba-
tion in this amplitude originating from the perturbation
δφf in the value φf of φ at the end of inflation.
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The comoving curvature perturbation Rrad, for super-
horizon scales, is given by

Rrad = (1 − f)Ai

(

k

H0

)νi

âi + fAc

(

k

H0

)νc

âc, (23)

where k is the comoving (present physical) wave num-
ber, H0 is the present value of the Hubble parameter
and âi, âc are independent normalized Gaussian random
variables. Also, Ai and Ac are, respectively, the ampli-
tudes of −ζi and −ζc at the present horizon scale (i.e. at
k = H0), and νi and νc are the spectral tilts of the infla-
ton and curvaton respectively, which are related to the
corresponding spectral indices ni and nc by ni = 1 + 2νi

and nc = 1 + 2νc. We do not consider running of the
spectral indices, since this is negligible in our model.

The amplitude Ai of the partial curvature perturbation
from the inflaton is found [24] to be

Ai =

(

2NQ

3

)
1
2
(

M

mP

)2

x−1
Q y−1

Q Λ(x2
Q)−1 (24)

with

Λ(z) = (z + 1) ln(1 + z−1) + (z − 1) ln(1 − z−1) , (25)

y2
Q =

∫ x2
Q

x2
f

dz

z
Λ(z)−1, yQ ≥ 0 . (26)

Here, NQ is the number of e-foldings suffered by our
present horizon scale during inflation, xQ = SQ/M with
SQ being the value of |S| when our present horizon scale
crosses outside the inflationary horizon, and xf = Sf/M
with Sf being the value of |S| at the end of inflation.

In our model, the slow-roll parameters for the inflaton
as functions of |S| are given by [5]

ǫi =

(

κ2mP

8π2M

)2

zΛ(z)2, (27)

ηi = 2
( κmP

4πM

)2 [

(3z + 1) ln(1 + z−1)

+(3z − 1) ln(1 − z−1)
]

, (28)

where z = x2 with x = |S|/M . In the presence of the
curvaton, however, one can show that the slow-roll con-
ditions (for γ → 0) take the form ǫ, |ηi| ≤ 1, where

ǫ ≡ − Ḣ

H2
= ǫi + ǫc (29)

with

ǫc =
1

2
m2

P

(

V ′

V

)2

, (30)

and xf is given by the value of x for which these condi-
tions are saturated. Actually, as it turns out, xf corre-
sponds to ηi = −1. For κ ≪ 1, the slow-roll conditions
are violated only extremely close to the critical point at
x = 1 (|S| = Sc). So, inflation continues practically until
this point is reaches and, following Ref. [24], we can put
xf = 1 in Eq. (26). However, for larger values of the
parameter κ, inflation can terminate well before reaching
the instability point.

Finally, κ, NQ are given by [5]

κ =
2π
√

NQ

yQ
M

mP
, (31)

NQ ≃ 55.9 +
2

3
ln

κ
1
2 M

1015 GeV
+

1

3
ln

Treh

109 GeV
(32)

(for H0 ≃ 72 km sec−1 Mpc−1). The spectral index for
the inflaton is ni = 1− 6ǫ + 2ηi (for γ → 0), where ǫ and
ηi are evaluated at the time when our present horizon
scale crosses outside the inflationary horizon. Note that
ǫ enters in this formula, not ǫi as in the case of pure infla-
ton. However, ǫc is normally much smaller than ǫi which,
in turn, is negligible compared to |ηi|. As a consequence,
ni ≃ 1 + 2ηi.

We now calculate the amplitude Ac of the partial cur-
vature perturbation from the curvaton φ. This originates
from the perturbation δφ∗ = (H∗/2π)âc acquired by φ
from inflation when our present horizon scale crosses out-
side the de Sitter horizon (H∗ is the inflationary Hubble
parameter at that moment). In order to find the evo-
lution of this perturbation during the subsequent part
of inflation and estimate its value δφf at the end of in-
flation, we must consider the equation of motion for φ
during inflation (see Eq. (11)). In the slow-roll approx-
imation, which is assumed to hold for the curvaton too,
this equation reads

3Hφ̇ + V ′ = 0. (33)

Taking a small perturbation δφ of φ, Eq. (33) gives

3Hδφ̇ + 3H ′δφφ̇ + V ′′δφ = 0. (34)

Substituting φ̇ from Eq. (33) and using the Friedmann
equation 3H2m2

P = V , Eq. (34) becomes

δφ̇ + H(−ǫc + ηc)δφ = 0, (35)

where

ηc = m2
P

V ′′

V
. (36)

Integration of Eq. (35) from the cosmic time t∗ when
our present horizon scale crossed outside the inflationary
horizon until the end of inflation (at time tf ) yields

δφf =
H∗

2π
âc exp

∫ NQ

0

(ǫc − ηc)dN, (37)
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where we used the relation dN = −Hdt for the num-
ber of e-foldings N(k) = NQ + ln(H0/k) suffered by the
scale which corresponds to the comoving wave number k
during hybrid inflation.

For each value φf (> 0) of the curvaton field at the end
of inflation, we construct the perturbed field φf + δφf .
We then follow the evolution of φf and φf + δφf until
the time tφ of the curvaton decay and evaluate the value
of δρφ/ρφ at this time. The amplitude Ac of the partial
curvature perturbation from the curvaton is given by

Ac âc =
1

3

δρφ

ρφ
. (38)

We have found numerically that the perturbation δφ0 in
the amplitude of the oscillating curvaton at tφ is propor-
tional to δφf . So ζc has the same spectral tilt as δφf ,
which can be found from Eq. (37):

νc ≡
d lnAc

d ln k
= −ǫ − ǫc + ηc, (39)

where we used the relation d ln k = Hdt, and ǫ, ǫc and
ηc are evaluated at t∗. (Note that a similar formula has
been derived in the first paper in Ref. [9], but without
the −ǫc term in the right hand side.) The spectral index
for the curvaton is then nc = 1 − 2ǫ − 2ǫc + 2ηc which,
in most cases, reduces to nc ≃ 1 + 2ηc since we typically
have ǫi, ǫc ≪ |ηc|.

It should be pointed out that, in deriving Eq. (39),
we assume that, during inflation, the mean value of φ
in any region of fixed size (somewhat bigger than) H−1

infl
is initially the same and follows the classical equation
of motion (Eq. (11)). This mean field sets the (initial)
value of the mean φ in any comoving region at the time
this region exits the de Sitter horizon. Thus, if it satis-
fies the above requirements, we can be sure that, at any
given time during inflation, the resulting mean φ in each
comoving region that already exited the horizon is prac-
tically independent from the size of this region. So the
mean φ in a fixed region of size H−1

infl or in any comov-
ing volume (after horizon exit) is described by the same
(single-valued) function of the cosmic time and evolves
classically (in fact, it rolls down slowly in our case). The
derivation with respect to time of the logarithm of the
amplitude of δφf , which is given by Eq. (37), is then
straightforward leading to Eq. (39). On the contrary, if
the mean field in a fixed region of size somewhat big-
ger than H−1

infl executes a random walk with step of am-
plitude Hinfl/2π per Hubble time, the calculation of the
spectral tilt becomes less clear. So, we decided to exclude
the quantum regime (i.e. the region φf < φQ) from our
analysis (see Sec. VII A). It is true, however, that it is by
no means necessary to avoid the random walk behavior
at all times during inflation. Indeed, only cosmological
scales corresponding to a few e-foldings after the exit of
our present horizon scale from the de Sitter horizon are
relevant. For simplicity though, we exclude all the quan-
tum regime so that no random motion of the mean φ in a
region of size H−1

infl is encountered during inflation. This,
as we will see, has no influence on our results.

V. THE ISOCURVATURE PERTURBATION

After the termination of inflation, the inflaton per-
forms damped oscillations about the SUSY vacuum and
eventually decays into light particles reheating the uni-
verse. At reheating, gravitinos are thermally produced
besides other particles. They only decay, though, well
after the big bang nucleosynthesis (BBN) since they have
very weak couplings. Each decaying gravitino yields one
sparticle subsequently turning into the LSP, which is sta-
ble. These LSPs survive until the present time contribut-
ing to the relic abundance of CDM in the universe. For
simplicity, we assume that the thermally produced LSPs
can be neglected, which holds in many cases. So, all
the relic LSPs come solely from the decaying gravitinos.
Baryons can be produced via a primordial leptogenesis
[26] which can occur [25] at reheating.

We see that both the LSPs and the baryons origi-
nate from reheating. Their partial curvature perturba-
tions, ζLSP and ζB respectively, should thus coincide with
the partial curvature perturbation of the radiation which
emerges from the inflaton decay, i.e.

ζLSP = ζB = ζi. (40)

The isocurvature perturbation of the LSPs and the
baryons is then given by

SLSP+B ≡ 3(ζLSP+B − ζ) = 3f(ζi − ζc), (41)

where ζLSP+B = ζLSP = ζB is the partial curvature
perturbation of the LSPs and the baryons and we used
Eq. (21). Here, we assume that the curvature perturba-
tion in radiation (ζγ) practically coincides with the total
curvature perturbation. This corresponds to a negligible
neutrino isocurvature perturbation, which is [10] the case
provided that, as in our model, leptogenesis takes place
well before the curvaton decays or dominates the energy
density. Applying the definitions which follow Eq. (23),
Eq. (41) takes the form

SLSP+B = −3fAi

(

k

H0

)νi

âi + 3fAc

(

k

H0

)νc

âc. (42)

Our model contains axions which can also contribute to
the CDM of the universe. They are produced at the QCD
phase transition, which occurs well after the curvaton
decay. They carry an isocurvature perturbation, which is
completely uncorrelated with the curvature perturbation
and can be written as

Sa = Aa

(

k

H0

)νa

âa, (43)

where Aa is its amplitude at the present horizon scale,
νa is the corresponding spectral tilt (yielding the spectral
index na = 1 + 2νa) and âa is a normalized Gaussian
random variable which is independent from âi and âc.

The amplitude Aa is given by [11]

Aa =
H∗

π|θ|φ∗

, (44)
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where θ is the so-called initial misalignment angle, i.e.
the phase of the complex PQ field during (and at the
end of) inflation and φ∗ is the value of φ at t∗. In our
case, the angle θ lies [11] in the interval [−π/6, π/6] with
all values in it being equally probable. It is determined
by considering the total CDM abundance ΩCDMh2 which,
in our model, is the sum of the relic abundance [54]

ΩLSPh2 ≃ 0.0074
( mLSP

200 GeV

)

(

Treh

109 GeV

)

(45)

of the LSPs coming from the gravitino decays and the
relic axion abundance [55]

Ωah2 ≃ θ2

(

fa

1012 GeV

)1.175

. (46)

Here Ωj = ρj/ρc with ρj being the present energy density
of the jth species and ρc the present critical energy den-
sity of the universe. Furthermore, mLSP is the LSP mass
and H0 = 100h km sec−1 Mpc−1 the present Hubble pa-
rameter. In the numerical calculation of M and the am-
plitudes Ac and Aa for given Ai and φf (see Secs. VII A
and VII B), we will fix h ≃ 0.72, which is its best-fit
value from the Hubble space telescope (HST) [56]. (In
the full Monte Carlo (MC) CMBR analysis, however, we
do allow h to vary as detailed in Sec. VII D 1.) This ap-
proximation has very little influence on the accuracy of
the results (see the remarks at the end of Sec. VII B).
Note that, in deriving the estimate for Ωah2 in Eq. (46),
we applied the simplifying assumptions of Ref. [11].

The spectral tilt νa is evaluated by observing that the
potential of the axion field remains flat until the QCD
transition is reached. So, there is no evolution of θ and
its perturbation δθ = (H∗/2πφ∗)âa after crossing outside
the inflationary horizon and until the onset of axion os-
cillations. The axion isocurvature perturbation, which is
[11] equal to 2δθ/θ, depends on the scale only through
H∗/φ∗. We find

νa = −ǫ +
mP

φ∗

V ′

V
mP = −ǫ +

mP

φ∗

√
2ǫc, (47)

where Eqs. (30) and (33) were used, and the slow-roll
parameters ǫ and ǫc are evaluated at t∗. In view of the
fact that ǫ is normally negligible, Eq. (47) reduces to
νa ≃ mP

√
2ǫc/φ∗ and na ≃ 1 + 2mP

√
2ǫc/φ∗.

Combining Eqs. (42) and (43), we find that the total
isocurvature perturbation is [11]

Srad =
ΩLSP+B

Ωm
SLSP+B +

Ωa

Ωm
Sa, (48)

where we used the definitions ΩLSP+B ≡ ΩLSP + ΩB and
Ωm ≡ ρm/ρc = ΩLSP+B + Ωa with ρm being the total
matter density at present.

VI. THE CMBR POWER SPECTRUM

In order to calculate the expected total CMBR an-
gular power spectrum Cℓ in our model, we must first

specify the various contributions to the amplitude of the
total adiabatic and isocurvature perturbation as well as
the cross correlation between these two perturbations.
In the following, all the amplitudes are referred to the
pivot scale kP, for which we use the customary value
kP = 0.05 Mpc−1 [57]. We thus define the amplitudes
of the partial curvature perturbations from the inflaton
(AP,i) and the curvaton (AP,c), and the amplitude of the
isocurvature perturbation in the axions (AP,a) at k = kP:

AP,i = Ai

(

kP

H0

)νi

, AP,c = Ac

(

kP

H0

)νc

,

AP,a = Aa

(

kP

H0

)νa

, (49)

where the amplitudes Ai, Ac and Aa at k = H0 are given
in Eqs. (24), (38) and (44) respectively.

From Eq. (23), we find that the amplitude squared of
the adiabatic perturbation at the pivot scale is given by

R2 = 〈RradRrad〉 = R2
i + R2

c , (50)

where Rrad is evaluated at k = kP, and the inflaton
(R2

i ) and curvaton (R2
c) contributions to this amplitude

squared are

R2
i = (1 − f)2A2

P,i and R2
c = f2A2

P,c. (51)

The curvaton fractional contribution to the amplitude of
the adiabatic perturbation is defined as follows:

F ad
c =

Rc

R
. (52)

The amplitude squared of the isocurvature perturba-
tion at kP is found from Eq. (48) to be

S2 = 〈SradSrad〉 = S2
i + S2

c + S2
a, (53)

where

S2
i = 9f2

(

ΩLSP+B

Ωm

)2

A2
P,i,

S2
c = 9f2

(

ΩLSP+B

Ωm

)2

A2
P,c and S2

a =

(

Ωa

Ωm

)2

A2
P,a

(54)
are, respectively, the inflaton, curvaton and axion contri-
butions to this amplitude squared.

The cross correlation between the adiabatic and isocur-
vature perturbation at the pivot scale kP is

C = 〈RradSrad〉 = Ci + Cc, (55)

where

Ci = −RiSi and Cc = RcSc (56)
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are the contributions from the inflaton and the curvaton
respectively. Observe that the axions do not contribute
to the cross correlation (and the amplitude of the adia-
batic perturbation). Also, note that the isocurvature per-
turbation from the inflaton is fully anti-correlated with
the corresponding adiabatic perturbation, whereas the
isocurvature perturbation from the curvaton is fully cor-
related with the adiabatic perturbation from it. So the
overall correlation is mixed. It is thus useful to define [22]
the dimensionless cross correlation cos∆ as a measure of
the correlation between adiabatic and isocurvature per-
turbations and the entropy-to-adiabatic ratio B at kP:

cos∆ =
C

RS
and B =

S

R
. (57)

The total CMBR angular power spectrum is given, in
the notation of Ref. [51], by the superposition

Cℓ = Cad
ℓ + C is

ℓ + Ccc
ℓ , (58)

where

Cad
ℓ = R2

i C
ad,ni

ℓ + R2
cC

ad,nc

ℓ , (59)

C is
ℓ = S2

i C is,ni

ℓ + S2
c C is,nc

ℓ + S2
aC is,na

ℓ , (60)

Ccc
ℓ = CiC

cc,ni

ℓ + CcC
cc,nc

ℓ . (61)

The above relations hold for the TT, E-polarization (EE)
and TE cross correlation angular power spectra.

The TT power spectrum on large angular scales (i.e.
for ℓ . 20), can be approximated by (see e.g. Ref. [51])

CTT
ℓ =

2π2

25

[

(R2
i + 4S2

i − 4Ci)f(ni, ℓ)

+(R2
c + 4S2

c − 4Cc)f(nc, ℓ)

+4S2
af(na, ℓ)

]

, (62)

where

f(n, ℓ) = (η0kP)1−n Γ(3 − n)Γ(ℓ − 1
2 + n

2 )

23−nΓ2(2 − n
2 )Γ(ℓ + 5

2 − n
2 )

(63)

with η0 = 2H−1
0 ≃ 8.33 × 103 Mpc being the value of

conformal time in the present (matter dominated) uni-
verse. The derivation of Eq. (62) assumes that the uni-
verse is completely matter dominated at the moment of
recombination, and further neglects the late integrated
Sachs-Wolfe (ISW) effect from the cosmological constant.
Therefore this expression is accurate to about 10 − 20%
and gives an order of magnitude estimate only. For scale-
invariant spectra, f(n = 1, ℓ) = 1/πℓ(ℓ + 1) and the
Sachs-Wolfe (SW) plateau is flat. Notice from Eq. (62)
that a positively correlated perturbation (as the pertur-
bation from the curvaton) displays less power on large

angular scales, because the cross correlation term sub-
tracts power and can partially cancel the isocurvature
contribution. On the contrary, a negatively correlated
perturbation (such as the one from the inflaton) presents
larger power on the COBE scales and, therefore, can be
more easily constrained. The COBE measurements give
[58] the following central value for ℓ = 10:

ℓ(ℓ + 1)CTT
ℓ /2π

∣

∣

ℓ=10
≈ 1.05 × 10−10. (64)

We will apply this COBE constraint with CTT
ℓ evalu-

ated from Eq. (62) only as an indicative (approximate)
criterion to get a first rough feeling on the possible com-
patibility of our model with the data.

VII. NUMERICAL CALCULATIONS AND

RESULTS

A. The cosmological evolution of φ

We are now ready to proceed to the numerical study of
the evolution of the PQ field during and after inflation.
To this end, we fix the parameter κ in the superpotential
δW1 in Eq. (1) for standard hybrid inflation. Then, for
any given value of the amplitude Ai of the partial curva-
ture perturbation from the inflaton, we solve Eqs. (24),
(31) and (32), where xf is the solution of ηi = −1 with
ηi given by Eq. (28) and Treh, which enters Eq. (32), is
taken equal to 109 GeV by saturating the gravitino bound
[43]. We thus determine the mass parameter M , which is
the magnitude of the VEV breaking the GLR symmetry.
Subsequently, we find the (almost constant) inflationary

Hubble parameter Hinfl = κM2/
√

3mP. The parameters
M and Hinfl as functions of the amplitude Ai are shown
in Figs. 1 and 2 respectively for κ = 3× 10−3 (solid line)
or 3×10−2 (dashed line). Note that much smaller values
of κ would be considered unnatural. On the other hand,
much bigger κ’s would push inflation to higher values
of the inflaton field, where SUGRA corrections become
important and may ruin [15] inflation.

For any given Ai, we chose a value φf of φ at the end of
inflation, which takes place at cosmic time tf = 2/3Hinfl.
We then solve the classical equation of motion for φ dur-
ing inflation in the slow-roll approximation going back-
wards in time (t ≤ tf ) by taking m3/2 = 300 GeV (which
is [59] approximately its minimal value in the constrained
MSSM with Yukawa unification [60]), |A| = 5 and a fixed
value for λ (∼ 10−4) in the PQ potential. Note that much
bigger values of |A| (recall that |A| > 4) or much smaller
values of λ would not only be unnatural, but also would
lead to an enhancement of the axion decay constant fa

(see Eq. (5)) and thus require unnaturally small misalign-
ment angles θ to achieve the observed total CDM abun-
dance (see Eq. (46)). On the other hand, much bigger
values of λ would reduce fa leading to an unacceptably
small CDM abundance. Finally, the parameter γ during
inflation is put equal to zero for simplicity (see Sec. III).
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FIG. 1: The mass parameter M versus Ai for κ = 3 × 10−3

(solid line) or 3 × 10−2 (dashed line).

We find that, as we move backwards in time, the value
of φ increases and becomes infinite at a certain moment.
Also, the number of e-foldings elapsed from this moment
of time until the end of inflation is finite providing an
upper bound Nmax on the number of e-foldings which is
compatible with our boundary condition φ = φf at tf .

In order to get a (rough) understanding of this be-
havior, we approximate the derivative of the potential V
with respect to φ by V ′ ≃ 3λ2φ5/16m2

P, which holds for
φ → ∞. The slow-roll equation for φ during inflation can
then be solved analytically and yields

φ ≃ φf
(

1 +
λ2φ4

f

4m2
PHinfl

∆t
)

1
4

, (65)

where ∆t = t − tf ≤ 0. It is obvious from this equation
that, as ∆t → ∆tmin ≡ −4m2

PHinfl/λ2φ4
f , φ → ∞. This

implies that the maximal number of e-foldings which is
allowed for a given value of φf is Nmax ≃ −Hinfl∆tmin =
4m2

PH2
infl/λ2φ4

f . Needless to say that no approximation

for V ′ is used when we actually calculate Nmax.
It is clear that we must first impose the requirement

that Nmax ≥ NQ. The time t∗ at which our present
horizon scale crosses outside the inflationary horizon can
then be determined from NQ = Hinfl(tf − t∗). Further-
more, we demand that, at t∗, V ′′ ≤ H2

infl, which ensures
that this inequality holds for all times between t∗ and
tf . This condition, thus, guarantees that the PQ field is
effectively massless during the relevant part of inflation
and can act as curvaton. It also provides us with an a

posteriori justification of the validity of the slow-roll ap-
proximation used and ensures that the velocity of φ at
the end of inflation is negligible. This masslessness re-
quirement yields an upper bound on φf for every given
Ai and fixed values of κ and λ. The excluded region in
the Ai − φf plane for fixed κ and λ is represented as a

108

109

1010

1011

1012

0 1 2 3 4 5 6

H
in

fl 
[G

eV
]

Ai [10-5]

FIG. 2: The inflationary Hubble parameter Hinfl versus Ai

for κ = 3 × 10−3 (solid line) or 3 × 10−2 (dashed line).

red/dark shaded area in the upper part of this plane. In
Figs. 3 and 4, we show this upper red/dark shaded area
for κ = 3× 10−3, λ = 10−4 (model A) and κ = 3× 10−2,
λ = 10−4 (model B) respectively. The lower red/dark
shaded area in the Ai−φf plane corresponds to the quan-
tum regime and is also excluded for the reasons explained
at the end of Sec. IV (see Figs. 3 and 4). This also ensures
that, at any given instant of time during inflation, φ has
practically the same mean value in all comoving volumes
(which crossed outside the horizon). So, during inflation,
φ can be simply considered as a function of time only.

We start from any given value of φf at tf which is not
excluded by the above considerations and assume van-
ishing time derivative of φ at tf . As explained above,
this is a good approximation provided that φf does not
belong to the upper red/dark shaded area in the Ai −φf

plane (see Figs. 3 and 4). Moreover, we find numerically
that the subsequent evolution of φ remains practically
unchanged if we take a small non-vanishing value of φ̇
at tf . Under these initial conditions at tf , we follow the
evolution of the field at subsequent times (t ≥ tf ) by
solving the classical equation of motion in Eq. (11) with
H = 2/(3t) for tf ≤ t ≤ treh and H = 1/(2(t − treh/4))
for treh ≤ t ≤ tφ. In the latter expression for H , we sub-
tracted treh/4 from t in order to achieve continuity of H
at t = treh. The time of reheating treh is calculated by us-
ing Eq. (9) with g∗ = 228.75 and the curvaton decay time
tφ is found by employing Eq. (14) with β from Eq. (6),
where µ is taken equal to 300 GeV, which is smaller than
half the curvaton mass (see Eq. (13)) so that the decay of
φ to Higgsinos is not blocked kinematically. The param-
eter γ in the effective PQ potential of Eq. (10) is taken
equal to 0.1 after the end of inflation (see Sec. III). We
find that, for fixed κ and λ, there exist two bands in the
Ai − φf plane which lead to the desired PQ vacua at tφ.
They are depicted as an upper and a lower green/lightly
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FIG. 3: The two green/lightly shaded bands in the Ai − φf

plane which lead to the PQ vacua at tφ for κ = 3 × 10−3,
λ = 10−4 (model A). The white (not shaded) areas lead
to the trivial vacuum and are thus excluded. The upper
red/dark shaded area is excluded by the requirement that,
at t∗, V ′′ ≤ H2

infl, while the lower one corresponds to the
quantum regime. The blue/solid line shows the values of Ai,
φf which approximately reproduce the correct value of the
CMBR large scale temperature anisotropy, as measured by
COBE (see Sec. VIIC for details).

shaded band (see Figs. 3 and 4). The white (not shaded)
areas in the Ai −φf plane lead to the false (trivial) min-
imum at φ = 0 and thus must be excluded. Note that,
for all relevant κ’s and λ’s, the quantum regime over-
laps (at most) with the lower green/lightly shaded band
only. However, as we will see later, this band is anyway
excluded by the data in all cases, the reason being that
it predicts an unacceptably large isocurvature perturba-
tion. So, the a priori exclusion of the quantum regime
does not affect our results in any essential way.

Besides models A and B (we summarize the corre-
sponding parameter values in Table I), which will be used
as our main examples in this presentation, we have also
studied three extra pairs of values of κ and λ, namely
κ = 10−3 and λ = 10−4, κ = 10−2 and λ = 10−4, and
κ = 3 × 10−2 and λ = 3 × 10−4 (see below). In the first
two cases, the behavior was found to be quite close to
the behavior of model A as depicted in Fig. 3, while the
latter case behaves similarly to the model B (see Fig. 4).

B. The calculation of Cℓ

For any fixed pair of values for κ and λ, we take a
grid of values of Ai and φf which span the correspond-
ing upper or lower green/lightly shaded band. For each
point on this grid, we consider φf and its perturbed value,
which is found by adding to φf the amplitude of δφf

from Eq. (37). We then follow the subsequent evolution

FIG. 4: The two green/lightly shaded bands in the Ai − φf

plane which lead to the PQ vacua at tφ for κ = 3 × 10−2,
λ = 10−4 (model B). The notation is the same as in Fig. 3.

Eq. Model A Model B

κ (1) 3 × 10−3 3 × 10−2

λ (2) 10−4

m3/2 (4) 300 GeV

|A| (4) 5

µ (6) 300 GeV

γ (8) 0 (0.l) during (after) inflation

Treh (9) 109 GeV

mLSP (45) 200 GeV

TABLE I: Summary of the fixed model parameters for the
two representative cases presented in the text, called model
A and B. The equation where each parameter first appears is
also indicated.

of both these fields until the time tφ of the curvaton de-
cay, where we evaluate the amplitude of δρφ/ρφ. The
amplitude Ac of the partial curvature perturbation from
the curvaton is then given by Eq. (38).

We thus obtain a mapping of the values of φf which are
allowed for any given value of Ai onto the corresponding
values of the amplitude Ac of the partial curvature per-
turbation from the curvaton, which is the relevant vari-
able for the calculation of the CMBR power spectrum.
For the MC analysis (see Sec. VII D), we therefore use
Ai and Ac as base parameters describing the initial con-
ditions and limit our grid to values of Ai smaller than
6 × 10−5 (since larger values would overpredict the tem-
perature power of the SW plateau). The spectral indices
ni and nc for each point of this grid are found by using
Eqs. (27) and (28) applied at x = xQ, and Eqs. (30), (36)
and (39) applied at t∗. The fraction f in Eq. (22) is also
evaluated at tφ.
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The amplitude Aa of the isocurvature perturbation in
the axions is calculated from Eq. (44) with the initial
misalignment angle θ evaluated, for any given value of
the total CDM abundance ΩCDMh2 = ΩLSPh2 + Ωah2,
by using Eqs. (45) and (46) with mLSP = 200 GeV. This
value of mLSP corresponds [59], in the constrained MSSM
with Yukawa unification [60], roughly to the value of m3/2

(= 300 GeV) chosen here. Note that, for our choice of
parameters, the LSP relic abundance is fixed (≃ 0.0074).
The spectral index for axions in each point of the grid is
found by using Eq. (47).

In summary, for any fixed pair of values for κ and λ,
we take a grid in the variables Ai and φf covering the up-
per or lower green/lightly shaded band and numerically
map φf into the corresponding value of the amplitude
Ac (which, of course, depends on Ai too). For any value
of ΩBh2 and Ωah2, we then calculate the amplitudes
squared of the adiabatic and isocurvature perturbations
using Eqs. (50), (51) and Eqs. (53), (54) respectively, the
cross correlation amplitude from Eqs. (55), (56) and the
total CMBR temperature and polarization power spectra
via Eqs. (58)−(61). The curvaton fractional contribution
to the adiabatic amplitude F ad

c , the dimensionless cross
correlation cos∆ and the entropy-to-adiabatic ratio B
are found from Eqs. (52) and (57). For the MC analysis
(see Sec. VII D), we need to be able to sample the Ai−Ac

space in any point as the chains evolve. Therefore, we
perform a 2-dimensional (2D) interpolation between the
points on the grid using a bicubic spline. A little care
is needed regarding the present value of the Hubble pa-
rameter, which enters the computation of the mass scale
M and thus Hinfl for given amplitude Ai via its impact
on NQ (note that the first term in the right hand side of
Eq. (32) depends on H0). As a consequence, the values of
the amplitudes Ac and Aa will also depend on the value of
H0. However, we have found numerically that changing
the value of H0 around H0 = 72 km sec−1 Mpc−1 within
the HST 1σ margin (i.e. by ±8 km sec−1 Mpc−1) has an
impact less than about 3% on the computed quantities.
Therefore, in the computation of M and of the ampli-
tudes Ac and Aa, we fix the present Hubble parameter
to the HST central value H0 = 72 km sec−1 Mpc−1 [56].
Clearly, we do allow H0 to vary in the MC analysis (see
below). In particular, the dependence on H0 of the am-
plitudes AP,i, AP,c and AP,a at the pivot scale kP (see
Eq. (49)) is taken into account.

C. A toy model for the CMBR

Before deploying the full MC machinery to derive
quantitative constraints on the various parameters of our
model, it is instructive to consider a toy model for the
pre-WMAP CMBR data which allows us to understand
the salient qualitative features of the parameter space of
our initial conditions. This approach has the great advan-
tage of offering a much more transparent understanding
of the parameter constraints beyond the black box of the

numerical MC study.
A first rough idea about the viability of our model

can be obtained by using the approximate expressions
in Eqs. (62) and (63) for the temperature SW plateau
and requiring that the COBE constraint in Eq. (64)
is fulfilled. To this end, we take ΩBh2 = 0.0224 and
ΩCDMh2 = 0.1126, which are the best-fit values from the
WMAP measurements [2]. (Note that, for this choice of
parameters, the axions constitute about 93% of the CDM
in the universe.) We find that the COBE constraint can-
not be satisfied in the lower green/lightly shaded band
in the Ai − φf plane for any pair of values for κ and λ.
The reason is that the relatively low values of φf in this
band imply small values for φ∗ too. The amplitude Aa

then turns out to be quite large as can easily be seen
from Eq. (44). This fact combined with the sizable relic
abundance of the axions leads to large values of Sa (see
Eq. (54)), which yield an unacceptably large contribu-
tion to the right hand side of Eq. (62). In the upper
green/lightly shaded band in the Ai − φf plane, on the
contrary, the COBE constraint is generally easily satis-
fied. The resulting solution is depicted by a blue/solid
line (see Figs. 3 and 4).

We are further interested in deriving ball-park esti-
mates for the values of Ai, Ac. To this goal, we again
approximate the SW temperature plateau by the expres-
sion in Eq. (62). As mentioned, this formula neglects the
effect of the cosmological constant Λ (late ISW term),
but our present purpose is to build an extremely simpli-
fied toy model, not to include all contributions which are
fully taken into account in the MC analysis below. There-
fore, we take one single datum, namely the COBE con-
straint in Eq. (64), which describes the height of the SW
plateau, along with its variance ℓ(ℓ+1)∆CTT

ℓ /2π
∣

∣

ℓ=10
≈

0.2 × 10−10 [58]. Furthermore, we drop altogether the
dependence of Eq. (62) on the spectral indices by taking
all perturbations to be scale invariant, since the value of
the indices predicted by our model is anyway very close
to unity (see Sec. VII D 2). We need a second datum
to be able to constrain two free parameters (Ai and Ac)
and this is given by the height of the first adiabatic peak
as measured by BOOMERANG [61]. In the analysis of
Ref. [62], this yields ℓ(ℓ + 1)CTT

ℓ /2π
∣

∣

ℓ=212
≈ 5.4× 10−10

with error ℓ(ℓ + 1)∆CTT
ℓ /2π

∣

∣

ℓ=212
≈ 0.54 × 10−10. We

model the theoretical CMBR spectrum at the level of the
first adiabatic peak by retaining the adiabatic contribu-
tion only, since the isocurvature temperature spectrum
drops very fast beyond the SW plateau. Thus the pre-
diction of our toy PQ model for the height of the first
peak is given by

CTT,PQ
212 ≈ ∆H

25

(

R2
i + R2

c

)

, (66)

where the constant factor ∆H ≈ 6.5 approximates the
ratio of the first peak height to the SW plateau for the
adiabatic temperature spectrum of the standard ΛCDM
model. Once again, this expression is very crude and does
not account for changes in h, ΩΛ (≡ ρΛ/ρc with ρΛ being
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FIG. 5: Posterior marginalized pdf (normalized at peak value)
for the amplitudes Ai, Ac from our toy model for two choices
of priors: flat priors (top panels), and Jeffreys’ priors (bottom
panels). The black line is for model A (upper green/lightly
shaded band in Fig. 3) and the cyan/light gray line for model
B (upper green/lightly shaded band in Fig. 4). The con-
straints on Ai, Ac in model B and on Ai in model A as well
as the upper limit on Ac in model A are robust with respect
to the choice of priors. Compare the top panels with Fig. 6,
which shows the results of the full MC analysis (with flat
non-informative priors).

the dark energy density), Ωm, ΩB or τr (optical depth
to the reionization epoch), all of which affect the relative
height of the peak to the plateau, but it is sufficient for
our present goal. In summary, the likelihood function
L(Ai, Ac) of our toy model is given by

− 2 lnL(Ai, Ac) ≈
(

CTT,PQ
10 (Ai, Ac) − CTT

10

∆CTT
10

)2

(67)

+

(

CTT,PQ
212 (Ai, Ac) − CTT

212

∆CTT
212

)2

,

where CTT,PQ
10 can be found from Eq. (62). The posterior

(see Appendix for definitions) is then

P(Ai, Ac) ∝ L(Ai, Ac)π(Ai)π(Ac). (68)

We adopt non-informative flat priors on the amplitudes
Ai, Ac, so that π(Ai) = π(Ac) = constant. An al-
ternative choice is Jeffreys’ prior, which is of the form
π(Ai) = 1/Ai, π(Ac) = 1/Ac corresponding to a flat
prior on log Ai, log Ac. This prior implies that we do not
have any idea on the scale of Ai, Ac before seeing the
data and thus represents a quite extreme choice of prior.

In Fig. 5, we present the posterior marginalized prob-
ability distribution functions (pdf’s) for Ai, Ac from our
toy model for the two choices of priors above. We ob-
serve that there is a qualitative difference between the
results for the upper green/lightly shaded band in Fig. 3
and 4 of model A and B. For model B, both the inflaton

FIG. 6: 1-dimensional (1D) marginalized posterior distribu-
tion for the two cases considered here: model A (black solid
line) and model B (cyan/light gray solid line) with only the
upper green/lightly shaded bands of Figs. 3 and 4 included.
The red/medium gray line is for the standard pure inflaton
single-field inflationary case with Harrison-Zel’dovich (HZ)
spectrum (ni = 1.00 fixed), plotted here for comparison.
We plot non-smoothed histograms corresponding to top-hat
binnings to show the resolution of our curves. Model A is
quite close to the pure inflaton case, except that the curva-
ton contribution helps in reducing the reionization redshift zr.
Model B displays a preference for non-zero curvaton contri-
bution, a still lower zr and larger relic abundance of baryons
(ωB = ΩBh2) and CDM (ωCDM = ΩCDMh2). Its quality of
fit is however poorer (see Sec. VIID 3 for details). We also
display as dotted smoothed curves the values of the mean
posterior. All the curves are normalized at their peak value.

and the curvaton amplitude are well determined even in
our over-simplified toy model. From the plot, we read off
that Ai ≈ 2.3×10−5, Ac ≈ 70×10−5. As a consequence,
the choice of prior hardly matters, as we would expect in
a situation where the posterior is dominated by the like-
lihood. As for model A, we obtain that Ai ≈ 4.9× 10−5,
but we can only place upper limits on the value of Ac.
Since, in this case, Ac is not a well-determined param-
eter, the details of its posterior pdf do depend on the
prior. Nevertheless, it is apparent that the upper limit
is robust, and we can deduce that Ai <∼ 50× 10−5. These
numbers have to be taken only as ball-park estimates,
and this is why we do not bother to attach errors to
them. However, the comparison of Fig. 5 with Fig. 6,
which shows the results of the quantitative MC analysis
including WMAP and other recent CMBR data and all
the other cosmological parameters, displays an astonish-
ing agreement between the results of the above toy model
and of the full MC analysis. The rather precise match
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of the two results is actually the fortuitous outcome of
the cancellation between two opposite effects. On the
one hand, the MC analysis compared to the toy model
employs much more precise data, which reduce the error
on the constraints, but, on the other hand, it also in-
tegrates over the cosmological parameter space (totally
ignored in the toy model), which enlarges the error on
the marginalized quantities.

From the study of the above toy model, we can thus
draw two conclusions. First, the height of the first adia-
batic peak to the large scale SW plateau is the key quan-
tity to constraining – with at least order of magnitude
accuracy – the curvaton to inflaton contribution in the
PQ model. Clearly, quantitatively reliable bounds need
the inclusion of the detailed effect of the cosmological
parameters on the shape of the power spectra (see next
section). Second, we have seen that the constraints on
the inflaton and curvaton amplitudes are robust with re-
spect to two different choices of (non-informative) priors.
For this reason, we will, from now on, adopt a flat prior
on Ai, Ac, which will be used both for the extraction
of the constraints on the parameters (see Sec. VII D 2)
and for the purpose of Bayesian model comparison (see
Sec. VII D 3).

D. The Monte Carlo CMBR analysis

1. The setup

We now proceed to describe the setup of the full nu-
merical analysis confronting the predictions of our PQ
model with the CMBR data. We constrain the rele-
vant parameters of our model by constructing Markov
chains using a modified version of the publicly available
Markov chain MC package cosmomc [63] as described in
Ref. [64]. As discussed in Sec. VI, the total CMBR an-
gular power spectrum is given by a (anti-)correlated su-
perposition of adiabatic and isocurvature CMBR modes
(see Eq. (58)). The adiabatic and isocurvature CMBR
transfer functions are computed in two successive calls
similarly to the technique employed in Ref. [65]. For
fixed values of κ and λ, the initial conditions are com-
pletely specified by Ai and φf , or equivalently by the
values of Ai and Ac as explained in Sec. VII B. The
MC sampling takes as free parameters the amplitudes Ai

and Ac, the physical baryon and axion densities in the
present universe ωB ≡ ΩBh2 and ωa ≡ Ωah2 in units of
1.88×10−29 g/cm

3
, the present value of the dimensionless

Hubble parameter h = H0/100 km sec−1 Mpc−1, and
the redshift zr at which the reionization fraction is a
half (assuming sudden reionization). All other derived
quantities are computed from the above parameter set,
as detailed in Sec. VII B. In particular, the derived pa-
rameters R2

i , R2
c , F ad

c , S2
i , S2

c , S2
a, Ci, Cc are obtained

from Eqs. (51), (52), (54) and (56).
For our choice of mLSP and Treh, we have ΩLSPh2 ≈

0.0074 = constant, and the total CDM abundance is

ωCDM ≡ ΩCDMh2 = ΩLSPh2+Ωah2. Our analysis consid-
ers flat cosmologies only, thus the cosmological constant
energy density ΩΛ (in units of the critical energy density)
is a derived parameter, i.e. ΩΛ = 1 − (ωCDM + ωB)/h2.
We assume three massless neutrino families and no mas-
sive neutrinos (for constraints on these quantities, see
e.g. Ref. [66]). We neglect the contribution of gravita-
tional waves to the spectrum, since the tensor to scalar
amplitude ratio at the SW plateau is proportional to ǫi,
which is completely negligible in our case. In summary,
for a fixed choice of κ and λ, our parameter space is six
dimensional:

θ = {ωB, ωa, h, zr, Ai, Ac} . (69)

We compare the predicted CMBR temperature and po-
larization power spectra to the WMAP first-year data [2]
(temperature and polarization) with the routine for com-
puting the likelihood supplied by the WMAP team [67].
At a smaller angular scale, we add the CBI [32] and the
decorrelated ACBAR [30, 31] band powers as well. We
then run N = 20 Markov chains starting from randomly
chosen points in the parameter space. We take particu-
lar care in ensuring that the starting points are spread
over a wide range in the Ai − Ac plane. We then check
that all chains have converged to the same region of pa-
rameter space. This indicates that this region is indeed
a global minimum (at least for the range explored by the
chains). This is the main reason for using a relatively
large number of chains, since the danger that the chains
are stuck in a local minimum is great when exploring
mixed isocurvature initial conditions (see e.g. Ref. [21]).
A preliminary run is needed to estimate the covariance
matrix, which is then diagonalized and used to perform a
final run until each chain contains M = 30, 000 samples.
The mixing of the chains is checked using the Gelman
and Rubin criterion [68], for which we require that the
ratio of the variance of the mean to the mean of the vari-
ance among the chains is R < 0.1 for all parameters. The
parameter inference is performed on the merged chains,
which contain around 5 × 105 samples after the burn-in
has been discarded.

As motivated above, we use flat top-hat priors on the
base parameters

ωB, ωa, zr, Ai, Ac. (70)

The limits of the top-hat prior do not matter for param-
eter estimation purposes, as long as we check that the
posterior density is negligible near these limits. However,
the prior range of the accessible parameter space plays an
important role in computing the Bayes factor for model
testing (see Sec. VII D 3). We limit the maximum range
of the present dimensionless Hubble parameter h by im-
posing a top-hat prior 0.40 < h < 1.00 and we use the
result of the HST measurement [56]

LHST ∝ exp

(

h − h0

2σ

)2

, (71)
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param model A (upper band) model B (upper band)

best fit 1D 68% c.i. best fit 1D 68% c.i.

ωB 0.024 0.024 ± 0.002 0.026 0.026 ± 0.002

ωa 0.109 0.110 ± 0.034 0.117 0.121 ± 0.040

H0 72.4 72.2+11.5
−9.8 64.2 63.4+11.0

−9.2

zr 13.3 13.3+8.1
−9.3 10.4 10.5+7.7

−6.5

Ai [10−5] 5.1 5.1 ± 0.5 3.1 3.1 ± 0.4

Ac [10−5] 20.3 < 37.9 (43.2) 62.0 62.8 ± 10.4

− ln L∗ 721.2 732.6

TABLE II: Best-fit parameter values and sample means with
1σ confidence intervals (c.i.) for the 1D marginalized distri-
bution for the upper band of models A and B. We indicate
upper limits only when the parameter is not constrained from
below, in which case the first number corresponds to the 68%
c.i. (1 tail) and the number in parenthesis to the 95% c.i. of
the parameter. The present Hubble parameter H0 is given in
km sec−1 Mpc−1. Finally, L∗ is the best-fit likelihood (see
Appendix). For comparison, the Harrison-Zel’dovich (HZ)
pure inflaton model has − ln L∗ = 721.7.

where h0 = 0.72 and σ = 0.08, by multiplying the likeli-
hood function for the CMBR data by the above Gaussian
likelihood.

Parameter constraints will be rather insensitive to the
details of the prior distribution whenever the posterior
is dominated by the likelihood. As we have seen from
our toy model, the broad lines of the constraints for the
PQ model are indeed robust with respect to the choice of
non-informative priors. We will see below that the priors
do play an important role in Bayesian model comparison.

2. Parameter constraints

In the Appendix, we summarize some concepts and re-
sults from Bayesian statistics which will be useful in the
following analysis (see e.g. Refs. [69] and [70] for reviews
and details). We first consider the upper green/lightly
shaded band of models A and B. In Tables II and III,
we present the best-fit values and parameter constraints
obtained from the MC chains for our base and derived pa-
rameters respectively. The 1-dimensional (1D) marginal-
ized posterior distributions for the base and most of the
derived parameters are plotted, respectively, in Figs. 6
and 7, while the 2D contours of the posterior for Ai, Ac

and the adiabatic amplitudes squared R2
i , R2

c are dis-
played in Fig. 8.

In the upper (green/lightly shaded) band of model
A, the adiabatic amplitude from the inflaton dominates
with only a modest contribution (∼ 10% in amplitude
squared) to the adiabatic amplitude from the curvaton
and an even smaller curvaton isocurvature amplitude and
cross correlator. Note that the axion isocurvature ampli-
tude is negligible in this case. Due to the small value

param model A (upper band) model B (upper band)

best fit 1D 68% c.i. best fit 1D 68% c.i.

R2
i [10−10] 20.4 21.0+6.2

−4.2 7.8 7.7 ± 2.2

R2
c [10−10] 2.5 < 10.9 (14.0) 14.8 15.3+6.3

−4.9

S2
i [10−10] 0.06 0.05 ± 0.04 0.015 0.015 ± 0.006

S2
c [10−10] 1.2 < 5.0 (7.1) 6.6 6.6+3.2

−2.1

S2
a [10−10] 0.4 0.4 ± 0.1 6.4 6.3 ± 1.6

Ci [10−10] −1.1 −1.0+0.6
−0.5 −0.3 −0.3 ± 0.1

Cc [10−10] 1.8 < 6.9 (9.5) 9.9 10.0+3.6
−2.3

cos ∆ 0.08 0.0+0.5
−0.2 0.55 0.56 ± 0.10

B 0.08 < 0.45 (0.52) 0.76 0.75 ± 14

F ad
c 0.34 < 0.60 (0.67) 0.81 0.81 ± 0.07

f 0.08 0.07+0.02
−0.05 0.06 0.062 ± 0.004

ni 0.988 − 0.982 −

nc 1.011 − 1.003 −

na 1.002 − 1.000 −

TABLE III: As in Table II, but for the derived parameters.
We do not give c.i. for the spectral indices since the variation
in their value is less than 10−3.

of the parameter f , the inflaton part of the isocurva-
ture amplitude squared (correlator) is suppressed rela-
tive to the corresponding part of the adiabatic amplitude
squared by more than two orders (one order) of magni-
tude. As a consequence, the power spectra are domi-
nated by the adiabatic part of the inflaton contribution.
Moreover, on large scales, we find that the sum of the
adiabatic, isocurvature and correlation parts of the total
power spectrum coming from the curvaton almost cancels
out, since the contribution from the curvaton correlator
is negative. We can easily verify the behavior just de-
scribed with the help of Fig. 9, where we plot the best-fit
power spectra for model A (upper band) divided into
the inflaton, curvaton and axion contributions to their
adiabatic, isocurvature and correlator parts. The qual-
ity of the fit, as expressed by the maximum likelihood
value − lnL∗ = 721.2, is slightly better than for the
pure inflaton Harrison-Zel’dovich (HZ) case, which has
− lnL∗ = 721.7 (see, however, our remarks below regard-
ing model comparison). This is not surprising since the
curvaton contribution turns out to play a modest role in
this model. In particular, the CMBR data put an upper
bound on the allowed value of the curvaton amplitude,
which is Ac < 43.2 × 10−5 at 95% confidence level (c.l.).
The total temperature power on large scales is slightly
larger than the pure adiabatic part – the net effect is to
increase the height of the SW plateau compared to the
height of the first adiabatic peak. This mimics the im-
pact of a larger optical depth (and thus of a larger zr),
and explains why model A shows a preference for a later
reionization than in the pure inflaton case. The TE spec-



17

FIG. 7: As in Fig. 6, but for (most of) the derived parame-
ters (the HZ pure inflaton model is not included here). The
adiabatic amplitude in model B is dominated by the curvaton
(F ad

c ≈ 0.8).
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FIG. 8: Contours containing 68% and 95% of the probability
for the joint posterior pdf for the upper band of models A and
B (same notation as in Fig. 6). The base primordial param-
eters Ai, Ac are displayed in the left panel, while the right
panel shows the derived adiabatic amplitudes squared from
the inflaton (R2

i ) and the curvaton (R2
c). Model B prefers a

non-vanishing curvaton contribution to the adiabatic ampli-
tude, but its quality of fit is poorer (see text for details).

trum is dominated by the inflaton adiabatic part, but on
large scales the curvaton and axion contributions give a
net power increase. This effect helps in better fitting the
“reionization bump” (i.e. the power increase for ℓ <∼ 10
due to reionization) at low multipoles reducing the need
for a rather early reionization.

The upper (green/lightly shaded) band of model B ex-
hibits a preference for a non-vanishing curvaton ampli-
tude with very high significance (Ac = 62.8 ± 10.4) as
one can also see from Fig. 8. In this case, the best-fit
spectrum is a superposition of a dominant curvaton adi-

FIG. 9: Best-fit TT (upper panel) and TE (lower panel) power
spectra for the upper band of model A (parameters as in Ta-
ble II). The line codes are: red/dark gray for the inflaton,
green/medium gray for the curvaton, and yellow/light gray
for the axion contributions; dotted for the adiabatic, long–
dashed for the isocurvature, and short–dashed for the corre-
lator parts. The total power corresponds to the blue/solid
line. In the upper panel, the correlator parts are given in
absolute value. Note though that the inflaton correlator con-
tribution has to be added (negative correlation), while the
curvaton one has to be subtracted (positive correlation) to
obtain the total power.

abatic part and an inflaton adiabatic contribution which
is around 50% of the former in amplitude squared (see
Table III and Fig. 10). This time, the isocurvature cur-
vaton part is sizable on large scales, where however it
is again cancelled by the correlator. The large value of
κ yields a larger H∗ (see Fig. 2) and thus pushes up
the axion isocurvature contribution (see Eq. (44)), which
again adds power to the SW plateau. As in model A
(upper band), the isocurvature and correlator inflaton
parts are negligibly small. For the best-fit parameters,
the total power in temperature in the COBE region is
in better agreement with the data, being slightly smaller
than for model A (upper band), thereby fitting better
the low-multipole region of the spectrum. However, the
overall quality of the fit is worse (− lnL∗ = 732.6) be-
cause the model does not reproduce with enough preci-
sion the shape of the first acoustic peak. We illustrate
this in Fig. 11, where we compare the two best-fit spec-
tra for models A and B (upper bands). The WMAP
data around the first temperature peak are of such a
good quality that they can discriminate between the two
models thanks to the slightly different shape of the peak.
The reason why the curvaton/inflaton mixture does not
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FIG. 10: Best-fit power spectra for the upper band of model
B. The base parameters are according to Table II, and the
notation is as in Fig. 9.

fit accurately enough the first temperature peak in model
B is twofold. First, the isocurvature and correlator con-
tributions are still sizable in the region of the first peak
rise (ℓ ∼ 100), and this increases slightly the total power
in this part of the spectrum. Second, the curvaton and
inflaton have two slightly different spectral indices (see
Table III), and the resulting tilts of the spectra are there-
fore mismatched. As for the TE spectrum, the isocur-
vature axion part plays an important role in reproduc-
ing the reionization bump. Furthermore, model B (up-
per band) shows a preference for a rather high baryon
abundance (ωB ≈ 0.026), which is in strong tension with
the value indicated by BBN together with observations
of the light elements abundance, which typically yields
ωB ≈ 0.020± 0.002 [71].

Fig. 12 shows the 1D marginalized constraints on
the dimensionless correlator cos∆ and the entropy-to-
adiabatic ratio B, while Fig. 13 gives the 2D joint con-
straints for these two parameters. In model A (upper
band), the dominance of the inflaton and the low ampli-
tudes of the correlator modes result in a value of the effec-
tive correlation cos∆ roughly centered around zero. As
discussed above, the entropy contributions play a mod-
est role in model A (upper band), and correspondingly
we obtain the upper limit B <∼ 0.5 (at 95% c.l., 1 tail).
In model B (upper band), the large amplitude of the
curvaton correlator determines a positive total correla-
tion cos∆ ≈ 0.5. Together, the curvaton and axion
isocurvature amplitudes constitute a significant fraction
of the total amplitude, so that the entropy-to-adiabatic
ratio is much larger than zero (B ≈ 0.75). In summary,

FIG. 11: Cumulative difference between model B and model
A (upper bands) of the quantity χ2/2 ≡ − ln L∗ for the
WMAP TT (green/dotted line in the top panel) and TE data
(blue/dashed line in the bottom panel) in units given on the
left vertical axes. Their sum is given in the top panel by
the thick black solid line. In the top panel, we superimpose
the two corresponding best-fit TT spectra for model A (thin
black line) and model B (thin cyan/light gray line) with units
on the right vertical axis. In the bottom panel, we superim-
pose the two TE spectra (same notation). To compute the
χ2 difference as a function of the multipole ℓ, we use only
the diagonal elements of the data covariance matrix (for the
MC analysis, we, of course, included also the off-diagonal el-
ements, which however contribute only a few percent). We
also plot the binned WMAP TT (top panel) and TE (bottom
panel) errorbars, as a guide to the eye to appreciate the dis-
criminative power of the WMAP data, especially around the
first acoustic peak in the temperature spectrum. Model B is
a better fit to the TT SW plateau, since its power there is
smaller, but its TE spectrum in this region fits the WMAP
data worse. Model B cannot reproduce the overall shape of
the first acoustic peak in temperature with enough accuracy,
and its goodness-of-fit is correspondingly worse.

model B (upper band) shows a complex superposition of
modes with a subtly balanced contribution of adiabatic
and isocurvature components.

We have also performed a MC analysis for the lower
green/lightly shaded band in Fig. 3 of model A. As ex-
pected from the arguments given above, the quality of the
best fit is poor (− lnL∗ = 793.4) as one can see from Ta-
ble IV and Fig. 14, because the small value of φ∗ for this
band gives rise to a large axion contribution according
to Eqs. (44), (49) and (54). Furthermore, the curvaton
amplitude Ac turns out to be much larger than the am-
plitude Ai from the inflaton. This can be understood by
observing that, in contrast to Ai, the amplitude Ac from
the curvaton can be large and still give a small positive
or even a negative contribution to the total power in the
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FIG. 12: As in Fig. 6, but for the dimensionless correlator
cos ∆ and the entropy-to-adiabatic ratio B evaluated at the
pivot scale kP (see Eq. (57)). (The HZ pure inflaton model
is not included.) The sharp drop for B <∼ 0.11 encountered in
model A is a numerical feature due to the lower boundaries
of our MC run. The curve must accordingly be interpreted as
indicating an upper limit only, which is given in Table III.

co
s∆

B
0 0.5 1 1.5

−1

−0.5

0

0.5

1

FIG. 13: Contours containing 68% and 95% of the probability
for the joint posterior pdf for the upper band of models A and
B for the entropy-to-adiabatic ratio B and the dimensionless
correlator cos ∆ (same notation as in Fig. 8).

SW plateau because the curvaton correlation is positive
and thus subtracts power from large scales. This is im-
portant since, in this case, the axion contribution to the
plateau is very large leaving little room for other contri-
butions, while, at smaller scales, the axion isocurvature
spectrum becomes negligible and the total temperature
spectrum must necessarily be dominated by either the
curvaton or the inflaton adiabatic contribution. So one
of the two amplitudes Ai or Ac has to be large enough
and, as we saw, this can happen only for Ac. There-
fore, at smaller scales, the spectrum is dominated by the
curvaton adiabatic part. The best-fit inflaton amplitude
Ai, on the other hand, corresponds to the lower limit
of our parameter space as one can see from Table IV.
The reason is that the inflaton contribution to the power
spectra is always positive with an unsuppressed (by fac-
tors of f or (ΩLSP + ΩB)/Ωm) adiabatic part. Thus the
inflaton amplitude Ai must be very small in order not
to overpredict the large-scale power. Furthermore, the
TE spectrum has a very pronounced reionization bump,
which results from a rather early reionization epoch and
the large axion isocurvature contribution.

The lower band of model B is totally incapable of pro-

param model A (lower band) model B (lower band)

ωB 0.029 0.080

ωa 0.171 0.010⋆

H0 50.1 100.0⋆

zr 19.4 30.0⋆

Ai [10−5] 0.10⋆ 0.41

Ac [10−5] 75.0 300.0⋆

R2
i [10−10] 0.001 0.14

R2
c [10−10] 33.25 134.1

S2
i [10−10] ∼ 10−4 0.002

S2
c [10−10] 9.05 971.4

S2
a [10−10] 14.37 5512.1

Ci [10−10] 0.003 0.02

Cc [10−10] 17.35 360.9

cos ∆ 0.62 0.39

B 0.84 6.95

F ad
c 1.00 1.00

f 0.077 0.39

ni 0.986 0.982

nc 1.000 1.000

na 1.000 1.000

− ln L∗ 793.4 3014.6

TABLE IV: Best-fit parameter values for the lower band of
models A and B. An asterisk indicates that the corresponding
parameter has reached the limit of our top-hat prior in the
MC run, H0 is again in km sec−1 Mpc−1 and L∗ is the best-fit
likelihood. Note that, due to the large value of ΩΛ = 0.91 and
the small value of Ωm in the best fit of model B (lower band),
the approximation used in deriving Eq. (62) is no longer valid.

ducing a spectrum in reasonable agreement with the data
(see Table IV). For values of Ai, Ac corresponding to this
band, the axion contribution is huge and gives tempera-
ture fluctuations at large angular scales which are a few
orders of magnitude larger than what is observed (see
Fig. 15).

Regarding the issue of non-Gaussianity, we note that
our parameter f , defined in Eq. (22), is ≫ 10−2. There-
fore, non-Gaussianity from the curvaton partial curva-
ture perturbation is well within the current bounds from
WMAP [72] (see Ref. [10]). Actually, the values of f
in our model are high enough to ensure that this state-
ment remains true even in the limit of pure curvaton.
Moreover, the non-Gaussianity of the isocurvature per-
turbation in the axions is also negligible. This is because
the perturbation δθ = H∗/2πφ∗ acquired during inflation
by the initial misalignment angle θ (see e.g. Ref. [11]) is
always much smaller than θ. As a consequence, terms
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FIG. 14: Best-fit power spectra for the lower band of model
A. The base parameters are according to Table IV, and the
notation is as in Fig. 9.

which are second order in this perturbation can be safely
neglected (see Ref. [73]). Finally, the non-Gaussian com-
ponent from the inflaton is also negligibly small.

We have performed two other MC runs with the same
value for λ = 10−4 as in model A and κ slightly larger or
smaller, i.e. κ = 10−2 or κ = 10−3, recovering a behavior
which is qualitatively similar to the behavior of model
A. We have thus chosen to present our results for this
particular value of κ (= 3 × 10−3) as representative of
the behavior of this class of models. We have also tried a
slightly larger value of λ (= 3× 10−4) for the same value
of κ = 3 × 10−2 as in model B, and found a behavior
qualitatively similar to model B.

3. Bayesian model comparison

So far we have been concerned with the problem of
deriving parameter constraints from the data, given an
underlying model for the generation of the primordial
fluctuations. Models A and B (upper bands) actually
both belong to a continuous class of models (belonging
to our PQ model) which is parameterized by κ and λ.
However, since in this work we have chosen to fix the
values of κ and λ, we may as well consider models A and
B (upper bands) as two discrete disconnected models.
The question is then to compare these two models with
the standard pure inflaton HZ model and decide which
of these three models is most favored by data. It should
be stressed that model comparison (or model testing) is
a different issue than parameter extraction, and indeed it

FIG. 15: Best-fit power spectra for the lower band of model
B. The base parameters are according to Table IV, and the
notation is as in Fig. 9.

represents a further step in Bayesian inference. In fact, it
can very well be that model testing arrives at a different
conclusion than parameter estimation. Indeed, it can be
that the estimated value of a parameter under a model
M1 is far from the null value predicted by model M2, but
M1 is disfavored against M2 by Bayesian model testing,
a fact sometimes called “Bartlett’s paradox” [74]. This
is exactly the case for Ac in model B (upper band) com-
pared to the pure inflaton model with flat spectrum of
perturbations, as we will show below.

Sampling statistics (i.e. the frequentist approach to
parameter estimation) uses the notion of the goodness-
of-fit test to assess the viability of a model without the
need of specifying an alternative hypothesis. This usu-
ally reduces to the χ2 statistics for the observed data,
presuming the model under consideration, M, is true.
M is then rejected if the value of the goodness-of-fit falls
above a certain threshold in the tail of the distribution.
If we take this criterion at face value and use the χ2

statistics for the WMAP data, the best-fit pure inflaton
ΛCDM model with ni 6= 1 having χ2 = 1431 for ν = 1342
degrees of freedom (see last paper in Ref. [2]) would be
rejected with a type I error (i.e. probability of falsely re-
jecting a true model) of about 5%. Notice that this does
not mean, as sometimes stated, that “the probability of
the model is 5%”. We will see below that Bayesian model
comparison is more informative and can give useful guid-
ance for model building.

It is clear that models with a very poor best fit can be
discarded simply by inspection. An extreme example is
certainly the lower band of model B presented above.
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FIG. 16: Illustration of the Laplace approximation to the
(non-normalized) posterior used to compute the model evi-
dence. For our base parameters, we plot the logarithm of
the 1D marginalized posterior from the MC samples (crosses
corresponding to the histograms in Fig. 6) along with the
corresponding Laplace approximation (solid smooth lines) of
Eq. (A9) for the upper bands of model A (black) and model
B (cyan/light gray). Clearly, the Laplace approximation is
very good for model B, and of acceptable quality for model
A. All the curves are normalized to zero at their peak value.
In particular, Ac is a rather non-Gaussian direction for model
A (upper band), since the posterior from the MC samples
only gives an upper limit on this parameter.

The goodness-of-fit for the lower band of model A is
also very poor, even though this is not readily distin-
guishable from Fig. 14 due to the logarithmic scale. In
fact, the best-fit point has − lnL∗ = 793.4, compared to
− lnL∗ = 721.2 for the upper band of this model. Again,
we can dismiss the lower band without further analy-
sis. However, we need a more powerful tool if we are to
decide, on the basis of the available data, between the
viability of our PQ model as opposed to the pure infla-
ton HZ model. Bayesian inference offers a natural tool
for model comparison in the form of the evidence in fa-
vor of the model (see Appendix for details and precise
definitions).

We thus compute the Bayes factor for models A and
B (upper bands), comparing each of them to the scale-
invariant (i.e. ni = 1.00) pure inflaton model, which we
call in the following the HZ inflation model. We approxi-
mate the integrals involved in the evaluation of the Bayes
factor by using the Laplace approximation (see Eq. (A9)).
We must first check that a multi-dimensional Gaussian
is a reasonable approximation to the actual shape of our
(non-normalized) posterior pdf. This is shown in Fig. 16,
where we plot the logarithm of the 1D marginalized non-

normalized posterior from the MC samples along with the
corresponding Laplace approximation. For model B (up-
per band), the Gaussian approximation is quite accurate
along all directions, while for model A (upper band) we
notice that Ac is a rather non-Gaussian direction, which
is not surprising since this model only gives upper bounds
on the amplitude Ac. However, inspection of the figure
does seem to support the view that it is reasonably ac-
curate to use the Laplace approximation to compute the
model evidence. Another qualitative criterion is the sim-
ilarity of the marginalized 1D posterior and the mean
posterior. If the posterior is a multi-dimensional Gaus-
sian, then the two curves coincide (see e.g. Ref. [64]).
From Fig. 6, we can indeed confirm that the two curves
are very similar, again strengthening the conclusion that
the Laplace approximation is legitimate in our case, more
so for model B.

We first compare the upper band of model B (M1

in the notation used in the Appendix) against the HZ
inflationary case (M2), and compute the Bayes factor
B12 in favor of model B (upper band). The term L12

(see Eq. (A13)) is just the difference of the best-fit log-
likelihoods yielding L12 = −10.9, and clearly disfavors
model B (upper band), whose fit is worse. The term C12

(see Eq. (A14)) describes the ratio of the occupied vol-
umes in parameter space by the posterior pdf’s of the
two models times a factor taking into account the dif-
ferent dimensionality of the two parameter spaces and is
found to be C12 = 3.0. Further considerations are needed
to evaluate F12 (see Eq. (A15)), the term which reflects
the prior available volume of parameter space under each
model. In the present case, we do not need to specify the
top-hat range of the priors on the parameters which are
common to both model B (upper band) and the HZ in-
flation model. This is because, whatever prior belief we
hold about the possible range for these parameters, it will
be the same for both models. The parameters common
to both models are ωB, ωCDM, h, zr and Ai. In the PQ
model, the prior range for the CDM abundance actually
applies to the axion component of CDM only, but the
difference, which is caused by the presence in the uni-
verse of the LSPs, is very small and insignificant for our
considerations here. Also, we could actually assign to the
inflaton amplitude Ai two different prior ranges for the
PQ and the HZ inflation models if we had any reason to
believe that the ranges can be significantly different in
the two cases. Here we take the view that Ai is essen-
tially a free parameter in both models, and thus whatever
prior range we assign to it will cancel out from F12. As a
consequence, the only prior range which does not cancel
out from F12 is the one for the extra parameter of our
PQ model, i.e. Ac. So we have

F12 = ln
1

∆Ac
, (72)

where ∆Ac is the top-hat prior range of Ac for the PQ
model which is allowed in model B (upper band). The
bounds of the prior on Ac correspond to the limits on



22

model A model B

(upper band) (upper band)

versus HZ versus HZ

L12 0.5 −10.9

C12 4.8 3.0

F12 −9.2 −9.2

ln B12 −3.9 −17.1

posterior odds 1 : 50 1 : 107

TABLE V: Results of the Bayes factors analysis for comparing
the PQ models A and B (upper bands) to the HZ inflation
model. When considering CMBR data only, the odds are in
favor of the HZ model against the PQ models. In particular,
model B (upper band) is very strongly disfavored.

Ac in the upper band of model B. The lower limit is of
no importance, since we can simply set it equal to zero.
The upper limit is achieved on the boundary of the upper
band, which gives Amax

c ≈ 0.1. From these considerations
and writing Ac in units of 10−5 (which are the same units
used in the covariance matrix), we have ∆Ac ≈ 104, and
thus F12 = −9.2. Putting everything together, we find
lnB12 = −17.1 and thus the Bayes factor disfavors model
B (upper band) against the HZ inflation model with odds
of about 107 against 1. Notice that the reason for such
high odds comes partly from the worse quality of fit of
model B (upper band), and partly from an “Occam’s
razor” penalty of the PQ model, because it introduces
a new scale in the problem (the curvaton amplitude Ac)
which has a very wide prior range. We comment further
on this aspect below.

We now compute the Bayes factor for the upper band
of model A (M1) against the HZ inflation model (M2).
As mentioned above, in this case we expect the Laplace
approximation to be less accurate, because Ac is now a
non-Gaussian direction. The term L12 is now slightly in
favor of model A (upper band), since its fit is marginally
better than the one of the HZ inflation model, giving
L12 = 0.5. From the covariance matrices of the two
models, we obtain C12 = 4.8, while the same reason-
ing as above gives again a very small value for F12 as
a consequence of the large allowed prior range of Ac, i.e.
F12 = −9.2. This last term again heavily penalizes the
PQ model, resulting in lnB12 = −3.9, or odds of 50 : 1
against the PQ model A (upper band). The Laplace ap-
proximation is however likely to underestimate the actual
volume occupied by the likelihood function in parameter
space, due to the fact that Ac is a rather non-Gaussian
direction for model A. As a consequence, the above odds
can be interpreted as an upper limit for the evidence
against model A. We summarize these results on the PQ
models A and B (upper bands) in Table V.

One must be very careful when interpreting the above
results for the evidence. In fact, the HZ inflationary
model, which we used for the comparison, is a natural

benchmark model as far as the CMBR data are con-
cerned. However, one must keep in mind that the PQ
model which we describe in this work addresses many
fundamental issues which lie outside the scope of the phe-
nomenological HZ inflation model, such as the strong CP
and µ problems of MSSM, the generation of the observed
BAU and the nature of the CDM in the universe. Our ap-
proach was to consider fundamental (SUSY GUT) mod-
els of particle physics within the cosmological framework
by merging together requirements and constraints both
from the particle physics and the cosmology side. In gen-
eral, it is clear that any viable particle physics model has
many free parameters about which little or no experimen-
tal information is available at the moment, such as the
parameters of the electroweak Higgs sector, the sparticle
mass spectrum or the boundary conditions from super-
gravity which also determine the radiative electroweak
symmetry breaking. Nevertheless, we do have some indi-
cation about their order of magnitude by applying crite-
ria of simplicity, naturalness and elegance to our funda-
mental theories. At this stage, the exquisite cosmologi-
cal data nowadays at our disposal can provide significant
constraints on the parameter space of the model. Our ev-
idence calculation, in fact, takes into account only a part
of our knowledge (i.e. the CMBR data) neglecting all the
other issues which are addressed at a fundamental level
by our model. It seems fair to say that, on the whole (i.e.
considering both cosmology and particle physics), the PQ
model presented in this work aims at a broader explana-
tory power than a phenomenological inflation model. We
thus conclude from our analysis that the present CMBR
data can strongly disfavor certain regions of parameter
space, as it is the case for model B. In this case, we
found robust evidence that a mixture of curvaton and
inflaton contributions to the cosmological perturbations
is in disagreement with the present CMBR data. On
the other hand, the odds against model A should be re-
garded while keeping in mind the above considerations.
In conclusion, it seems to us that, at the present stage,
we cannot reject the possibility of a subdominant cur-
vaton contribution to predominantly inflaton-dominated
adiabatic perturbations.

On a more phenomenological level, our treatment of
the evidence highlights a generic feature of any model
which introduces a second (or several) scale-free param-
eter(s) to describe an extra non-adiabatic component,
namely that Occam’s razor of Bayesian model compari-
son will always penalize such a model with respect to the
pure inflaton single-field HZ inflationary model by assign-
ing to it a very small F12 term. This reflects the fact that
the extra amplitude parameter (describing an isocurva-
ture contribution) can a priori assume any value at all,
and therefore there is no hard-wired justification why its
value should be smaller than 10−5, or indeed close to but
different from zero. So, from a Bayesian point of view, it
is certainly unjustified to increase the model’s complex-
ity to achieve only a minuscule gain (if any at all) on
the quality of fit. Traditionally, most attention has been
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devoted to the maximum likelihood value as the crite-
rion to judge whether a certain new parameter is useful
or not. But, from the point of view of model building
and Bayesian model testing, restricting the prior volume
of parameter space could end up to be as useful, for an
inflationary model which would predict the value of Ai

to be in the ball-park of 10−5 would have very favorable
posterior odds against a model in which Ai is essentially
a free parameter.

Finally, the example of model B (upper band) above
strikingly illustrates that Bayesian “credible intervals”
cannot be interpreted as “significance levels”, for, just
by looking at the constraints on the amplitude Ac for
the upper band of model B, one could have (erroneously)
deduced a 6σ detection of a non-zero curvaton ampli-
tude. Clearly, from the poor quality of the best fit
(− lnL∗ = 732.6), it would have been immediately obvi-
ous, without the need of computing the Bayes factor, that
this particular model could not be favored by data. How-
ever, the conceptual point remains: the question whether
a certain parameter value differs from the null reference
value cannot be answered by looking at the confidence in-
tervals (c.i.), but must be tackled by proper model com-
parison procedures. While this point is certainly clear to
data analysts working in the field, it seems appropriate
to stress it once more in view of a widespread misinter-
pretation of this concept.

VIII. CONCLUSIONS

We considered a simple and concrete SUSY GUT
model which automatically and naturally solves the
strong CP and µ problems of MSSM via a PQ and a
continuous R symmetry. This model also leads to the
standard SUSY realization of hybrid inflation. The PQ
field of this model, which corresponds to a flat direction
in field space lifted by non-renormalizable interactions,
can act as curvaton contributing together with the infla-
ton to the total curvature perturbation in the universe.
In contrast to the standard curvaton hypothesis, we did
not suppress the contribution from the inflaton.

The CDM in the universe predicted by this model con-
sists predominantly of axions which are produced at the
QCD phase transition. It also contains LSPs originat-
ing from the gravitinos which were thermally produced
at reheating and decayed well after BBN. For simplicity,
we assumed that there are no thermally produced LSPs
in the model. The baryons, which are generated via a
primordial leptogenesis occurring at reheating, as well
as the LSPs inherit the partial curvature perturbation
of the inflaton. This is different from the total curvature
perturbation, which receives a contribution from the cur-
vaton too. Therefore, the baryons and LSPs carry also
an isocurvature perturbation, whose correlation with the
total curvature perturbation is mixed. The axions, as
usual, contribute only to the isocurvature perturbation.
The resulting total isocurvature perturbation has mixed

correlation with the adiabatic one.
Most of the parameters of the model but two were

chosen by using criteria of naturalness and simplicity.
We considered two representative cases for the two re-
maining parameters, κ and λ, and compared the pre-
dictions with the first-year WMAP observations and
other CMBR measurements. We found that, in one of
the two cases (model B), the curvaton and axions con-
tributions to the CMBR power spectra are important,
and that this leads to a significant disagreement with
the data. In fact, Bayesian model comparison disfa-
vors this case as compared to the scale-invariant pure
inflaton model with odds of 107 against 1. The other
possibility which we studied (model A) predicts a pre-
dominantly adiabatic power spectrum from the inflaton,
where the curvaton and axions contributions are sub-
dominant. We derived upper bounds for the amplitude
of the partial curvature perturbation from the curvaton
in this case (Ac <∼ 43.2 × 10−5 at 95% c.l.), and noticed
that the interplay of the non-inflaton contributions re-
sults in a later reionization redshift (zr = 13.3+8.1

−9.3 at
68% c.l.). Even though the best-fit likelihood for this
case (− lnL∗ = 721.2) is better than in the pure inflaton
HZ case, evaluation of the evidence under the Laplace ap-
proximation gives odds of about 50 to 1 against model A
compared to the pure inflaton HZ case. These odds must
be interpreted with caution, since they do not take into
account the fact that the PQ model aims at a more fun-
damental explanatory power and that it addresses many
particle physics issues which are outside the scope of in-
flationary models.

In summary, we have shown that certain regions of the
parameter space (κ ≈ 3× 10−2 and 10−4 <∼λ<∼ 3× 10−4)
can be excluded on the grounds of present-day CMBR
observations. Quantitative bounds on the allowed val-
ues of κ and λ could be derived by treating them as free
parameters in the MC analysis, an exploration left for
future work. Our approach – embedding particle physics
model building in the cosmological framework – pursued
the issue of merging together fundamental theories and
cosmological constraints in a realistic and viable model
for the generation of the cosmological perturbations. It is
encouraging that modern cosmological observations are
now informative enough as to give useful and robust guid-
ance along this path.
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APPENDIX A: BAYESIAN INFERENCE: A

PRIMER

1. Bayesian parameter estimation

Bayesian inference is based on Bayes’ theorem, which is
nothing more than rewriting the definition of conditional
probability:

P(A|B) =
P(B|A)P(A)

P(B)
(Bayes’ theorem). (A1)

In order to clarify the meaning of this relation, let us
write θ (a vector of d parameters under a model M) for
A and D (the data at hand) for B, obtaining

P(θ|D,M) =
L(D|θ,M)π(θ,M)

∫

Ω L(D|θ,M)π(θ,M)dθ

=
L(D|θ,M)π(θ,M)

P(D|M)
, (A2)

where Ω designates the parameter space (of dimension-
ality d) under model M. This equation relates the pos-

terior probability P(θ|D,M) for the parameters θ of the
model M given the data D to the likelihood function

L(D|θ,M) if the prior probability distribution function

π(θ,M) for the parameters under the model is known.
The latter is called “prior” for short. The quantity in
the denominator is independent of θ and is called the
evidence of the data for the model M [69]. The evidence
is the central quantity for model comparison, as we ex-
plain below, but, in the context of parameter estimation
within a model, it is just an overall multiplicative con-
stant which does not matter. In short,

posterior =
likelihood × prior

evidence
. (A3)

The prior distribution contains all the knowledge about
the parameters before observing the data, i.e. our phys-
ical understanding of the model, our insight into the ex-
perimental setup and its performance, and in short all our
prior scientific experience. This information is then up-
dated via Bayes’ theorem to the posterior distribution by
multiplying the prior with the likelihood function which
contains the information coming from the data. The pos-
terior probability is the base for inference about θ. The
most probable value for the parameters is the one for
which the posterior probability is largest.

Bayes’ postulate states that, in the absence of other
arguments, the prior probability should be assumed to
be equal for all values of the parameters over a certain
range (θmin ≤ θ ≤ θmax). This is called a “flat prior”,

i.e.

π(θ,M) = [H(θ − θmin)H(θmax − θ)]

d
∏

j=1

1

∆θj
, (A4)

where H is the Heaviside step function and ∆θj ≡
θmax,j − θmin,j > 0, ∀ j. Clearly, a flat prior on θ does
not correspond to a flat prior on some other set α(θ)
obtained via a non-linear transformation, since the two
prior distributions are related via

π(θ,M) = π(α,M)
dα(θ)

dθ
. (A5)

A recurrent criticism is that the final inference depends
on the prior which one chooses to use. However, in a
situation in which the data exhibit a clear preference
for a certain value for a parameter, the posterior is ef-
fectively dominated by the likelihood, and the choice of
prior will not matter much. This is currently the case, as
far as the CMBR is concerned, for high “signal to noise”
parameters such as the baryon density. Constraints on
other parameters such as the curvaton amplitude Ac in
model A (upper band) of our PQ scenario are likely to
depend slightly on the details of the chosen prior distri-
bution. In other words, constraints on parameters which
are not clearly determined will suffer from a certain de-
gree of subjectivity, depending on what prior π(θ,M)
we choose on the right hand side of Eq. (A2). This fact
should be interpreted as a warning, telling us that the
data are not powerful enough to clearly single out the
parameter under consideration.

2. Bayes factors

Let us consider two competing models M1 and M2

and ask what is the posterior probability of each model
given the data D. By Bayes’ theorem we have

P(Mi|D) ∝ P(D|Mi)π(Mi) (i = 1, 2), (A6)

where P(D|Mi) is the evidence of the data under model
Mi and π(Mi) is the prior probability of the ith model
before we see the data. The ratio of the posterior odds
for the two competing models is called Bayes factor [75]:

B12 ≡ P(M1|D)

P(M2|D)
. (A7)

Usually, we do not hold any prior beliefs about the two
models and therefore π(M1) = π(M2) = 1/2, so that the
Bayes factor reduces to the ratio of the evidences. The
Bayes factor can be interpreted as an automatic Occam’s
razor, which disfavors complex models involving many
parameters (see Ref. [69] for details) as we discuss below
and demonstrate in the text.
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The evidence in favor of M can be evaluated by per-
forming the integral

P(D|M) =

∫

Ω

L(D|θ,M)π(θ,M)dθ

=

∫

Ω

P̄(θ|D,M)dθ, (A8)

where P̄(θ|D,M) designates the non-normalized poste-
rior probability (i.e. the numerator in the right hand side
of Eq. (A2)). Computing the above integral from the MC
samples is difficult, since there will be very few or no sam-
ples in the tails of the likelihood. There are however a
number of approximate methods which can be applied
[76]. Most of them rely on the fact that, for a large
number of data points, the likelihood function will tend
to be a multi-dimensional Gaussian distribution. One
simple approximation is then to expand the logarithm of
the non-normalized posterior to second order around its
peak, which (for flat prior) occurs at the best-fit param-
eter choice θ∗, where the likelihood is maximized. We
obtain

ln
P̄(θ|D,M)

P̄(θ∗|D,M)
≈ −1

2
(θ − θ∗)

T
C

−1(θ − θ∗), (A9)

where C is the covariance matrix of the model M eval-
uated at the best-fit point, which can be estimated from
the MC samples. This is called Laplace approximation
and can be expected to give sensible results if the non-
normalized posterior is reasonably well described by the
multi-dimensional Gaussian Eq. (A9). It is then straight-
forward to evaluate the evidence by using the approxi-
mate form in Eq. (A9) for the non-normalized posterior,
obtaining

P(D|M) =

∫

Ω

P̄(θ|D,M)dθ

≈ (2π)
d
2 P̄(θ∗|D,M)

√
detC. (A10)

For flat separable priors of the form in Eq. (A4) we can

simply write, abbreviating ∆θ ≡
∏d

j=1 ∆θj ,

P̄(θ∗|D,M) = L(D|θ∗,M)
1

∆θ
, (A11)

an expression which is still approximately correct even
if we used non-flat priors, and interpret ∆θj as the typ-
ical width of the prior pdf (say the standard deviation
along the direction of the jth parameter for a Gaussian
distributed prior). For a Gaussian prior, it is easy to de-
rive an exact expression analogous to Eq. (A11), but for
simplicity we will stick to the above form.

For the logarithm of the Bayes factor in the Laplace
approximation, we finally obtain the following handy ex-
pression:

lnB12 ≈ L12 + C12 + F12, (A12)

where we have defined

L12 ≡ ln
L(D|θ(1)

∗ ,M1)

L(D|θ(2)
∗ ,M2)

, (A13)

C12 ≡ 1

2

(

ln
[

(2π)d(1)−d(2)
]

+ ln
detC(1)

detC(2)

)

,(A14)

F12 ≡ ln
∆θ

(2)

∆θ
(1)

, (A15)

where quantities referring to the model Mi (i = 1, 2)
are indicated by a superscript (i). The term L12 is the
logarithm of the ratio of the best-fit likelihoods. From a
frequentist point of view, this quantity is approximately
χ2 distributed, and thus it is common practice to apply
to it a goodness-of-fit test to assess whether the extra
parameters have produced a “significant” increase of the
quality of fit. If the model M1 contains more parameters
than the model M2, then M1 should show an improved
fit to the data, i.e. we should have L12 > 0, unless the
extra parameters are useless, in which case L12 = 0. In
any case, a goodness-of-fit test alone does not say any-
thing about the structure of the parameter space for the
model under consideration, since it is limited to the max-
imum likelihood point. But Bayesian evidence does con-
tain two further pieces of information, C12 and F12, which
taken together are sometimes referred to as “Occam’s
factor”. Here we prefer to consider these terms sepa-
rately to help distinguishing their different origin. The
term C12 describes the structure of the posterior shape
in the Gaussian approximation. Since the determinant is
the product of the eigenvalues of the covariance matrix,
which represent the standard deviations squared along
the corresponding eigenvectors in the parameter space of
the model, it follows that if M1 has a narrower posterior
than M2, then C12 < 0, thereby disfavoring M1. This
apparent contradiction (how can a model with smaller
errors display a smaller evidence?) is resolved when we
take into account the term F12, which describes the prior
available parameter space under each model. The sum
of the terms C12 and F12 thus disfavors the model with
the largest volume of “wasted” parameter space when the
data arrive. A more complex model M1 – having a large
number of parameters and thus a large volume of prior
accessible parameter space – will naturally fit the data
better due to its flexibility, i.e. we will have L12 > 0, but
it will be penalized for introducing extra dimensions in
parameter space, i.e. the sum C12 +F12 will be negative.
In summary, the Bayes factor tends to select the model
which exhibits an optimal trade-off between simplicity
and quality of fit.

It should be clear that the choice of priors plays an
important role in Bayesian model comparison (testing)
via its impact on the term F12. In particular, prior pdf’s
used in evaluating the Bayes factor must be proper, i.e.
normalizable, so that we can impose the normalization
condition

∫

Ω

π(θ,M)dθ = 1. (A16)
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Although generally a strong dependence on the choice of
priors is regarded as suspicious, in this case, we should
consider the role of F12 as a way to implement a priori

model features into the Bayes factor, as we show in the
text of the paper.
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