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Abstract: We perform a comprehensive exploration of the Constrained MSSM parameter space

employing a Markov Chain Monte Carlo technique and a Bayesian analysis. We compute superpart-

ner masses and other collider observables, as well as a cold dark matter abundance, and compare

them with experimental data. We include uncertainties arising from theoretical approximations

as well as from residual experimental errors of relevant Standard Model parameters. We delineate

probability distributions of the CMSSM parameters, the collider and cosmological observables as

well as a dark matter direct detection cross section. The 68% probability intervals of the CMSSM

parameters are: 0.52 TeV < m1/2 < 1.26 TeV, m0 < 2.10 TeV, −0.34 TeV < A0 < 2.41 TeV

and 38.5 < tanβ < 54.6. Generally, large fractions of high probability ranges of the superpartner

masses will be probed at the LHC. For example, we find that the probability of mg̃ < 2.7 TeV

is 78%, of mq̃R
< 2.5 TeV is 85% and of mχ±

1

< 0.8 TeV is 65%. As regards the other observ-

ables, for example at 68% probability we find 3.5 × 10−9 < BR(Bs → µ+µ−) < 1.7 × 10−8,

1.9× 10−10 < δaSUSY
µ < 9.9× 10−10 and 1× 10−10 pb < σSI

p < 1× 10−8 pb for direct WIMP detec-

tion. We highlight a complementarity between LHC and WIMP dark matter searches in exploring

the CMSSM parameter space. We further expose a number of correlations among the observables,

in particular between BR(Bs → µ+µ−) and BR(B̄ → Xsγ) or σSI
p . Once SUSY is discovered, this

and other correlations may prove helpful in distinguishing the CMSSM from other supersymmetric

models. We investigate the robustness of our results in terms of the assumed ranges of CMSSM

parameters and the effect of the (g − 2)µ anomaly which shows some tension with the other ob-

servables. We find that the results for m0, and the observables which strongly depend on it, are

sensitive to our assumptions, while our conclusions for the other variables are robust.

Keywords: Supersymmetric Effective Theories, Cosmology of Theories beyond the SM,

Dark Matter.

http://arXiv.org/abs/hep-ph/0602028v3
mailto:rruiz@delta.ft.uam.es
mailto:rxt@astro.ox.ac.uk
mailto:L.Roszkowski@sheffield.ac.uk
http://jhep.sissa.it/stdsearch?keywords=Supersymmetric_Effective_Theories+Cosmology_of_Theories beyond_the_SM+Dark_Matter
http://jhep.sissa.it/stdsearch?keywords=Supersymmetric_Effective_Theories+Cosmology_of_Theories beyond_the_SM+Dark_Matter


Contents

1. Introduction 1

2. Bayesian statistics and the CMSSM 4

2.1 Parameters and probabilities 4

2.2 The choice of prior probabilities 6

3. Collider and cosmological observables 8

3.1 Constructing the likelihood for the CMSSM 8

3.2 Inputs for SM quantities 10

3.3 Derived observables 11

4. Results 19

4.1 High probability regions for parameters and superpartners masses 20

4.2 High probability regions for other observables 25

4.3 Mean quality of fit 28

4.4 Direct detection of DM 30

4.5 Correlations among observables 34

4.6 Sensitivity to (g − 2)µ 37

5. Summary and conclusions 41

A. Markov chain Monte Carlo algorithm 42

A.1 Sampling 42

A.2 Convergence 44

1. Introduction

Two of the most challenging questions facing particle physics today are the instability of

the Higgs mass against radiative corrections (known as the “fine–tuning problem”) and

the nature of dark matter (DM). Unlike in the Standard Model (SM), both find plausible

solutions in the framework of weak scale softly broken supersymmetry (SUSY). Firstly,

the fine–tuning problem is addressed via the cancellation of quadratic divergences in the

radiative corrections to the Higgs mass. Secondly, assuming R–parity, the lightest super-

symmetric particle (LSP) is a leading weakly interactive massive particle (WIMP) candi-

date for cold DM (CDM). On the other hand, despite these and other attractive features,

without a reference to grand unified theories (GUTs), low energy SUSY models suffer from

the lack of predictivity due to a large number of free parameters (e.g., over 120 in the

– 1 –



Minimal Supersymmetric Standard Model (MSSM)), most of which arise from the SUSY

breaking sector. At present, experimental constraints on superpartner masses from direct

SUSY searches at LEP and the Tevatron remain fairly mild, although a dramatic improve-

ment is expected once the LHC comes into operation in 2007. Indirect limits from bounds

on CP–violation and flavor changing neutral currents are generally much stronger (except

for the 2nd–3rd generation mixings) but even these can be evaded, for example if SUSY

breaking is “universal”.

The MSSM with one particularly popular choice of universal boundary conditions at

the grand unification scale is called the Constrained Minimal Supersymmetric Standard

Model (CMSSM) [1]. The CMSSM is defined in terms of five free parameters: common

scalar (m0), gaugino (m1/2) and tri–linear (A0) mass parameters (all specified at the GUT

scale) plus the ratio tanβ of Higgs vacuum expectation values and sign(µ), where µ is the

Higgs/higgsino mass parameter whose square is computed from the conditions of radiative

electroweak symmetry breaking (EWSB). The economy of parameters in this scheme makes

it a useful tool for exploring SUSY phenomenology. In addition to experimental limits on

Higgs and superpartner masses, and strong bounds on SUSY contributions to BR(B̄ →
Xsγ) and the anomalous magnetic moment of the muon (g − 2)µ, a very strong constraint

limiting the mass parameters of the model from above is provided by the relic abundance

of the LSP. Within the CMSSM the neutral LSP is the (bino–like) lightest neutralino [2,

3, 1].1 It is well known that recent precise determinations of the relic density ΩCDMh
2

of non–baryonic CDM obtained by combining WMAP data with other observations of

cosmic microwave background (CMB) anisotropies and large scale structure data, provide

an important and often tight constraint on the CMSSM parameter space.

It is worth remembering that the CMSSM is not the only viable and economical frame-

work providing well defined and strongly constrained ranges of parameters. A virtue of

the CMSSM lies in the particularly simple boundary conditions at the unification scale

and, as a result, in a minimal number of parameters. A drawback is that the CMSSM,

as a framework, is not broad enough to accommodate a richer structure of GUT–scale

physics, in particular a non–minimal flavor structure and many realistic fermion family

patterns. One attractive and well studied model is the MSSM with boundary conditions

at the unification scale imposed by consistency with a minimal SO(10) GUT model [7, 8].

The most popular approach to exploring and delimiting viable regions of the parameter

space of the CMSSM and other SUSY models has been a usual method of evaluating the

goodness–of–fit of points scanned using fixed grids [9]. Such scans have the advantage of

pre–determining the ranges and step size for each parameter and thus of being able to

control exactly which points in the parameter space will be probed. On the other hand,

the method has several strong limitations. Firstly, the number of points required scales as

1When the CMSSM is extended to include an axionic sector, a natural candidate for the LSP and CDM

is an axino [4], the fermionic partner of the axion. Likewise, when the CMSSM is coupled to supergravity,

a gravitino, the fermionic partner of the graviton, arises as a possible choice for the LSP and CDM. (For

some recent work see, e.g., [5, 6].) In contrast to the neutralino, in both of these cases R–parity does not

have to be conserved to provide a solution to the DM problem because of their very strongly suppressed

interactions to ordinary matter.

– 2 –



kN , where N is the number of the model’s parameters and k the number of points for each

of them. Therefore this approach becomes highly inefficient for exploring with sufficient

resolution parameter spaces of even modest dimensionality, say N > 3. Secondly, narrow

“wedges” and similar features of parameter space can easily be missed by not setting a

fine enough resolution (which, on the other hand, are likely to be completely unnecessary

outside such special regions). Thirdly, extra sources of uncertainties (e.g., those due to the

lack of precise knowledge of SM parameter values) and relevant external information (e.g.,

about the parameter range) are difficult to accommodate.

In contrast, Bayesian statistics formalism linked to a Markov Chain Monte Carlo

(MCMC) method of exploring a multi–dimensional parameter space offer several advan-

tages. In the Bayesian context, the required computational power scales very favorably

with the dimensionality of parameter space, N . The details depend on the problem un-

der consideration, but roughly the number of points needed scales approximately linearly

with N . Secondly, it is straightforward to include in the analysis all sources of uncertainty

that are present in the highly complex problem of comparing theoretical predictions with

current collider and cosmological measurements. For instance, our imperfect knowledge of

the relevant SM parameters has an impact on our statistical conclusions (i.e., inferences)

about the values of the quantities of interest, in our case the CMSSM parameters. This

source of uncertainty can fully and easily be accounted for in Bayesian statistics. Thirdly,

probability distributions can be computed for any function of the CMSSM parameters, and

in particular for all interesting physical observables.

The MCMC approach has been widely used in several branches of science with much

success and is gaining popularity in the astrophysics and cosmology community. (For some

recent applications, see e.g. [10] for cosmological data analysis, [11] in the astrophysical

context, and e.g. [12] for a general introduction to Bayesian methods.) Within the context

of softly broken low energy SUSY, limited random (not MCMC) scans were first inter-

pretted in the language of statistical analysis in [13] in the MSSM with diagonal flavor

mass entries, and in the CMSSM in [14, 15]. The MCMC method was first applied to the

CMSSM in [16] (with some modifications) and more recently in [17, 18].

In the present work, we employ the MCMC algorithm to explore the parameter space

of the CMSSM. The model is constrained with data coming from present collider data and

cosmological observations of the CDM abundance. We compute the W boson pole mass

MW , sin2 θeff, Higgs and superpartner masses, BR(B̄ → Xsγ), the anomalous magnetic

moment of the muon (g − 2)µ, BR(Bs → µ+µ−) and Ωχh
2, and compare them with

current experimental data. We also compute a spin–independent dark matter WIMP elastic

scattering cross section on a free proton, σSI
p , but we do not enforce upper experimental

limits because of the uncertainties in the structure of the Galactic halo as well as in the

values of some hadronic matrix elements entering the computation of σSI
p . We shall see

that the current experimental limit lies just above the high–probability regions of parameter

space.

Our analysis goes beyond other recent works in several aspects. We include both

experimental and theoretical uncertainties in treating relevant SM quantities. Instead of

applying a sharp cut at experimental limits, we smear them out by incorporating theoretical
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and experimental uncertainties. Furthermore, we improve the accuracy of CMSSM pre-

dictions for the neutralino relic abundance by including previously neglected dependence

on the remaining uncertainty in the fine structure constant. Our analysis covers larger

values of m0 than in [17], thus allowing us to explore the focus point (FP) region [19]. We

present inferences on the high probability regions for the CMSSM parameters and super-

partner masses, and for the other observables listed above. We emphasize that, in some

cases, inferences on the favored intervals of some parameters do depend on the assumed

prior ranges, while in the other the inferred high–probability regions are fairly robust. As

we will see, this often affects resulting conclusions about prospects for SUSY discovery at

the LHC or in DM searches. We point out the difference between posterior probability

(Bayesian statistics) and the quality–of–fit statistics, and emphasize that a discrepancy

between the two methods can be only resolved with better data.

The paper is organized as follows. In section 2 we briefly review some elements of

Bayesian statistics and the MCMC method, and introduce our 8–dimensional parameter

space which we explore in the following. In section 3 we describe the current collider and

astrophysical data used in the analysis to put constraints on the CMSSM. We present

and discuss our results in section 4. In section 5 we summarize our main findings and

conclusions.

2. Bayesian statistics and the CMSSM

In this section we introduce some basic concepts of the Bayesian statistics and apply them

to the CMSSM.

2.1 Parameters and probabilities

We are interested in delineating high probability regions of the CMSSM parameter space.

We fix sign(µ) = +1 throughout (see below) and denote the remaining four free CMSSM

parameters by the set

θ = (m0,m1/2, A0, tan β). (2.1)

In most of previous analyses, the values of the SM parameters, such as the top quark mass,

which strongly influences some of the CMSSM predictions, have been fixed at their central

values. However, the statistical uncertainty associated with our imperfect knowledge of the

values of relevant SM parameters must be taken into account in order to obtain correct

statistical conclusions on the regions of high probability for the CMSSM parameters. This

can easily be done in a Bayesian framework by introducing a set ψ of so–called “nuisance

parameters”. For the purpose of this analysis the most relevant ones are

ψ = (Mt,mb(mb)
MS , αem(MZ)MS , αs(MZ)MS), (2.2)

where Mt is the pole top quark mass, mb(mb)
MS is the bottom quark mass at mb, while

αem(MZ)MS and αs(MZ)MS are the electromagnetic and the strong coupling constants at

the Z pole mass MZ . The last three parameters are evaluated in the MS scheme.
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The set of parameters θ and ψ form an 8–dimensional set η of our “basis parameters”

η = (θ, ψ). (2.3)

In the following, we shall specify a set ξ of several collider and cosmological observables

which we call “derived variables”,

ξ = (ξ1, ξ2, . . . , ξm). (2.4)

Their values depend on the CMSSM and SM parameters η sampled in our MCMC analysis,

ξ(η). Some of the observables will be used to compare CMSSM predictions with experi-

mental set of data d which is currently available either in the form of positive measurements

or as limits.

The central quantity which constitutes the basis of all probabilistic inferences is the

posterior probability density function (pdf) p(η|d) for the basis parameters η. The posterior

pdf represents our state of knowledge about the parameters η after we have taken the data

into consideration (hence the name). Using Bayes’ theorem, the posterior pdf is given by

p(η|d) =
p(d|ξ)π(η)

p(d)
. (2.5)

On the rhs of Eq. (2.5), the quantity p(d|ξ), taken as a function of d for a given η, and

hence a given ξ(η), is called a “sampling distribution”. It represents the probability of

reproducing the data d for a fixed value of ξ(η). Considered instead as a function of ξ for

fixed data d, p(d|ξ) is called the likelihood (where the dependence of ξ on η is understood).

The likelihood supplies the information provided by the data. In section 3.1 we explain in

detail how it is constructed in our analysis. The quantity π(η) denotes a prior probability

density function (hereafter called simply a prior) which encodes our state of knowledge

about the values of the parameters in η before we see the data. The state of knowledge is

then updated to the posterior via the likelihood. Finally, the quantity in the denominator is

called evidence or model likelihood. In the context of this analysis it is only a normalization

constant, independent of η, and therefore will be dropped in the following. For further

details about the terminology of Bayesian statistics, see e.g., [20, 12].

Since in this work we are not interested in the nuisance parameters ψ themselves, at

the end we simply marginalize over them by integrating p(η|d) over their values. This

procedure gives a posterior pdf for the interesting CMSSM parameters θ which takes full

account of the uncertainties in ψ

p(θ|d) =

∫
p(θ, ψ|d) d4ψ. (2.6)

Note that all pdf’s should normally be normalized so that the total probability is unity.

However, for the parameter estimation procedure presented here only the relative posterior

pdf’s are relevant, and in the following we shall plot pdf’s normalized in such a way that

their maximum value is one. In practice, we will present pdf’s for only one or two variables

at the time, with the remaining ones integrated over. We will introduce and discuss several

of them in Section 4 where we present our results.
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The purpose of the MCMC exploration of parameter space is to obtain a series of points

(called a “chain”), whose density distribution is proportional to the posterior pdf on the rhs

of Eq. (2.5). Further details about the MCMC procedure are given in appendix A. From

the samples in the chain, it is straightforward to obtain all pdf’s of interest by plotting

histograms of the number of samples as a function of the parameter values that one wants

to examine. In particular, one does not need to carry out the marginalization integral in

Eq. (2.6) explicitly. It is sufficient to ignore the coordinates of the samples in parameter

space along the marginalized directions. This is one more major advantage of the MCMC

method.

Another useful feature is that from the posterior pdf p(η|d) we can obtain the posterior

pdf for any function f of basis parameters, using the fact that

p(f, η|d) = p(f |η, d)p(η|d) = δ(f(η) − f)p(η|d), (2.7)

where δ(x) denotes the delta–function. Therefore for every sample in the MC chain, one

simply computes f(η) and the resulting density of points in the (f, η) space is proportional

to the posterior pdf p(f, η|d). From this pdf one can then obtain by marginalization the

pdf for any subset of (f, η). In particular, if we take f(η) = ξ(η), we can then investigate

probability distributions for any combination of the basis and the derived parameters, as

well as their correlations. This is investigated in section 4.

Before we can proceed to delineating high probability regions in the CMSSM parameter

space, first we must choose our priors and specify the likelihood. This is the subject of the

next two sections.

2.2 The choice of prior probabilities

It is clear from the rhs of Eq. (2.5) that in the Bayesian approach the first step is to

specify the functional form of the prior pdf. This is equivalent to assigning a probability

measure to parameter space. The principle of indifference states that one should assign

equal probabilities to equal states of knowledge before seeing the data. In our case, the

basis parameters are location parameters over which it is appropriate to set a flat prior

π(η) =

{
const for ηmin < η < ηmax

0 otherwise,
(2.8)

where the constant is determined by the requirement that the prior integrates to probability

one. Since we assume no correlation of priors between the SM and the CMSSM parameters,

the joint prior can be written as

π(η) = π(θ)π(ψ). (2.9)

Flat priors are thus characterized by their ranges [ηmin, ηmax]. One alternative possibility

would be to employ a “naturalness” prior which gives more weight to points exhibiting less

fine–tuning [18].

Our SUSY and SM parameter priors are summarized in Table 1. In this work we

consider two initial ranges of CMSSM parameters. In one, which we call a “2 TeV range”,
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CMSSM parameters θ

“2 TeV range” “4 TeV range”

50 GeV < m0 < 2 TeV 50 GeV < m0 < 4 TeV

50 GeV < m1/2 < 2 TeV 50 GeV < m1/2 < 4 TeV

|A0| < 5 TeV |A0| < 7 TeV

2 < tan β < 62

SM (nuisance) parameters ψ

160 GeV < Mt < 190 GeV

4 GeV < mb(mb)
MS < 5 GeV

127.5 < 1/αem(MZ)MS < 128.5

0.10 < αs(MZ)MS < 0.13

Table 1: Initial ranges for our basis parameters η = (θ, ψ), with flat prior probability distributions

assumed.

we assume 50 GeV < m0,m1/2 < 2 TeV and |A0| < 5 TeV. This choice is motivated by

an expected LHC reach in exploring superpartner mass and by a general “naturalness”

argument of SUSY mass parameters to preferably lie within O(1 TeV). In the other case,

called a “4 TeV range”, we assume 50 GeV < m0,m1/2 < 4 TeV and |A0| < 7 TeV,

which goes far beyond the LHC reach. (The larger range will include the focus point

region, along with various uncertainties involved. We will discuss this point later.) We will

compare our findings for both ranges in order to see to what extent statistical conclusions

depend on our preconceived expectation that a SUSY signal might lie within reach of the

LHC (represented by the “2 TeV range”). Such a sensitivity test is essential to establish

the extent to which inferences depend on the initial range one chooses, i.e. on the prior.

The lower bounds on m0 and m1/2 come from the negative results of sparticle searches.

We allow a rather generous range for A0, in part to see to what extent this choice would

allow one to reduce [21] the impact of the cosmological constraint, which in the usually

explored case of A0 = 0 is very tight. For both sets we further assume 2 < tan β < 62.

The lower bound comes from negative Higgs searches [22]. Very large values of tan β ∼> 60

are in conflict with theoretical considerations, e.g. they would make it extremely difficult

to achieve radiative electroweak symmetry breaking [23]. Furthermore, at such large tan β

large uncertainties arise in the computation of the SUSY spectrum, leading to unreliable

predictions. On the other hand, since the SM nuisance parameters are well measured, it

turns out that their prior ranges are irrelevant for the outcome of the analysis.

Before closing this section, we comment that the necessity of choosing priors is often

(incorrectly) regarded as a limitation to the “objectivity” of the Bayesian approach. This

can be easily dispelled by noting that two scientists in the same state of knowledge before

seeing the data (i.e., who have assumed the same priors) will necessarily reach the same

conclusions. When the choice of priors makes a difference in drawing the final inference

(given by the posterior pdf), this is a “health warning” that the data is not informative

enough, e.g. the likelihood is not sufficiently peaked to override the assumed prior distri-

bution. In this case, the inference on the parameters must rely either on external relevant
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information in the form of the prior (e.g., a theoretical “naturalness criterion” investigated

in Ref. [18]), or of better and more constraining data. In the present study, this will be

the case for the parameter m0, as we discuss in section 4.1.

3. Collider and cosmological observables

In this section, we first define the likelihood function for the CMSSM. Next, we introduce

the data that we use for the nuisance parameters, and then proceed to describe electroweak

and dark matter observables. We give details about their calculation, the theoretical un-

certainties involved and the experimental errors in their determination.

3.1 Constructing the likelihood for the CMSSM

The likelihood is a key element of our analysis. It encodes the information from the ob-

servational data and therefore particular care must be taken in constructing it. In the

Bayesian framework it would be easy to incorporate the full likelihood functions from

various experimental measurements if they were available. However, even though the ac-

tual measurements contain much more useful information, most measurements in particle

physics experiments are presented only by the mean and the standard deviation, while

upper or lower exclusion bounds are usually given in terms of the 95% exclusion CL.

Uncertainties in the observable quantities can be split into two categories. The first is

an experimental uncertainty, the second is a theoretical one and is a consequence of making

some approximations (e.g., neglecting higher order loop corrections), a limited numerical

precision in the code, etc. In practice, the theoretical uncertainty can be modelled in a

Bayesian context by considering that our mapping from the basis parameters η to the

derived quantities ξ is imperfect: instead of an “exact” mapping ξ̂(η) we actually have

only an imperfect version ξ(η) which suffers from the sort of uncertainties outlined above.

The likelihood p(d|ξ) introduced in Eq. (2.5) can then be written as

p(d|ξ) =

∫
p(d|ξ̂)p(ξ̂|ξ)dmξ̂, (3.1)

where we have integrated out the true (and unknown) mapping. The pdf p(ξ̂|ξ) encodes

the estimated uncertainty of our mapping. Usually we only have (at best) an estimate

of the theoretical errors, which means that we only have information on the scale of the

associated uncertainty. This is described by a multi–normal distribution of a general form

p(ξ̂|ξ) =
1

(2π)m/2|C|1/2
exp

(
−1

2
(ξ − ξ̂)C−1(ξ − ξ̂)T

)
, (3.2)

where C is an m × m covariance matrix describing the error of the mapping (m being

the number of elements in ξ) and |C| denotes its determinant. If one assumes that the

theoretical errors τi (i = 1, . . . ,m) for the different quantities are uncorrelated then C

is diagonal, C = diag (τ1, . . . , τm). Furthermore, if the likelihood p(d|ξ̂) is also a multi–

dimensional Gaussian function with diagonal covariance matrix, then we have

p(d|ξ̂) =
1

(2π)m/2|D|1/2
exp

(
−1

2
(d− ξ̂)D−1(d− ξ̂)T

)
, (3.3)
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where D = diag (σ1, . . . , σm) and σi denotes the experimental standard error. In this

simple case Eq. (3.1) reduces to the usual rule of adding theoretical and experimental

errors in quadrature for each derived observable, i.e., the total error in each direction is

si =
√
σ2

i + τ2
i . This familiar result is a special case of the more general treatment given

above, which shows that in the Bayesian framework all sources of uncertainty specified in

the model can be fully taken into account in a systematic way.

In this work we model the likelihood of all observables for which there exists a positive

measurement by an uncorrelated, multi–dimensional Gaussian function. The experimental

means and standard deviations for SM quantities are summarized in Table 2 and will be

discussed in more detail in section 3.2. Since the SM quantities are at the same time input

quantities of our analysis, there are no theoretical uncertainties associated with them. In

Table 3 we display the experimental and theoretical errors for derived cosmological and

collider quantities, see section 3.3 for a further discussion.

For the quantities for which only lower or upper bounds are available (e.g., superpartner

masses or BR(Bs → µ+µ−)), a usual procedure is to simply discard points in the parameter

space for which such limits are violated at some confidence level (e.g., 1σ or 95%), essentially

using a step function as a likelihood. This procedure is not totally rigorous since it does not

take into account the amount of uncertainty associated with the theoretical error (denoted

by τ). In our analysis instead we use Eq. (3.1) to incorporate our estimate of the theoretical

uncertainty of the mapping in the limits that we use, as explained below.

As an illustration, let us consider a 1–dimensional case involving only one observable

ξ. A lower bound on the (exact) mapping ξ̂ can be described by the following likelihood

function (replacing d→ (σ, ξlim)):

p(σ, ξlim|ξ̂) =





1√
2πσ

for ξ̂ ≥ ξlim,

1√
2πσ

exp−(ξ̂ − ξlim)2

2σ2
for ξ̂ < ξlim,

(3.4)

where a Gaussian function has been used to model the drop of the likelihood function

below the experimental bound ξlim. As explained above, the theoretical uncertainty of the

mapping is described by a 1–dimensional Gaussian of standard deviation τ (see Eq. (3.3)

for m = 1). Then from the integral in Eq. (3.1) we obtain

p(σ, ξlim|θ, τ) =
1√

2π(σ2 + τ2)
exp

[
− (ξlim − ξ)2

2(σ2 + τ2)

]
[1 − Z(tlim)] + Z

(
ξlim − ξ

τ

)
, (3.5)

where ξ = ξ(θ) and we have defined

tlim ≡ σ

τ

ξlim − ξ√
σ2 + τ2

, Z(tlim) ≡ 1√
2π

∫
∞

tlim

dx exp(−x2/2). (3.6)

This form of the likelihood encodes the uncertainty associated with our imperfect

mapping, as described by τ . The effect of including the theoretical uncertainty is to smear

out the drop of the likelihood function: the scale of the drop goes from σ to
√
σ2 + τ2.

Unfortunately, experimental bounds are usually given in the form of the lower or upper 95%
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Figure 1: An illustration of the likelihood function p(σ, ξlim|θ, τ) used for a quantity for which only

a lower bound is available, including the theoretical uncertainty τ and setting the experimental error

σ = 0. The dashed green line is the sharp 95% CL bound (ξlim = 1), the solid red curve includes

the theoretical uncertainty of τ = 0.05 which smears out the limit.

confidence limit only, without the possibility of deriving a form of the likelihood analogous

to (3.5). In the absence of fuller information about the experimental value of σ, we can take

in (3.5) the limit σ ≪ τ and simply use the 95% CL bound as ξlim. This procedure leads

to the likelihood function plotted in Fig. 1, showing that the inclusion of the theoretical

uncertainty smears the 95% bound over the scale τ . This procedure is more conservative

than the usual method of simply rejecting all points below ξlim.

We use (3.5) as the likelihood function for all of the upper/lower bounds listed in

Table 4 along with our estimates of the corresponding theoretical uncertainty. We also

discard, i.e., assign zero likelihood to all unphysical points in parameter space, i.e., those

for which any of the masses becomes tachyonic or the conditions of EWSB are not satisfied.

We do the same for the cases where the lightest neutralino is not the LSP.

3.2 Inputs for SM quantities

As explained in section 2, the uncertainties coming from experimental errors in the SM pa-

rameters are incorporated through four nuisance parameters: Mt, mb(mb)
MS , αem(MZ)MS

and αs(MZ)MS . These quantities and their uncertainties are summarized in Table 2.

Note that for the running bottom quark mass mb(mb)
MS the range adopted in Table 2

is rather conservative. It arises from combining measurements from b̄b systems, b–flavored

hadrons and high–energy processes. More recently, a much more precise determination of

mb(mb)
MS = 4.19 ± 0.06 GeV has been obtained from a renormalization group improved
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Nuisance parameter Mean value Uncertainty Ref.

µ σ (exper.)

Mt 172.7 GeV 2.9 GeV [24]

mb(mb)
MS 4.24 GeV 0.11 GeV [25]

αs(MZ)MS 0.1186 0.002 [26]

1/αem(MZ)MS 127.958 0.048 [27]

Table 2: Experimental mean µ and standard deviation σ for the nuisance parameters used in the

analysis. For all these quantities we use a Gaussian likelihood function with the mean µ and the

standard deviation σ.

Derived observable Mean value Uncertainties Ref.

µ σ (exper.) τ (theor.)

MW 80.425 GeV 34 MeV 13 MeV [27]

sin2 θeff 0.23150 16 × 10−5 25 × 10−5 [27]

δaSUSY
µ × 1010 25.2 9.2 1 [30, 31]

BR(B̄ → Xsγ) × 104 3.39 0.30 0.30 [32]

Ωχh
2 0.119 0.009 0.1Ωχh

2 This work

Table 3: Summary of derived observables used in the analysis for which positive measurements

have been made. As explained in the text, for each quantity we use a likelihood function with

mean µ and standard deviation s =
√
σ2 + τ2, where σ is the experimental uncertainty and τ our

estimate of the theoretical uncertainty.

sum rule analysis [28]. As for the fine structure constant, the dominant error comes from

the hadronic contribution ∆αhad = 0.02758 ± 0.00035 [27]. Note that, because of this

uncertainty αem(MZ)MS is not as precisely known at the scale MZ as at zero momentum

transfer. Not included in the list of nuisance parameters are the pole mass of the Z boson

MZ = 91.1876(21) GeV, as well as the Fermi constant GF = 1.16637(1)×10−5 GeV−2 [26].

As one can see, they are now known with very high precision and we fix them at their central

values. Including them as nuisance parameters would not have any appreciable effect.

3.3 Derived observables

We now present the derived observables which in section 2.1 were denoted by a general

symbol ξ. In our analysis they are computed in terms of the CMSSM parameters: m0,

m1/2, A0, tan β, as well as the nuisance parameters discussed above.

In Table 3 we summarize the derived variables for which positive measurements have

been made while in Table 4 we list the ones for which currently only experimental bounds

exist. Lower bounds on sfermion masses have been obtained in the context of the MSSM

at LEP-II and Tevatron Run II. Below we comment on some of the entries and on our

procedure for their computation. Generally, to calculate Higgs and SUSY mass spectra

we use the package SOFTSUSY v1.9 [29] which employs 2–loop RGEs for couplings (both

gauge and Yukawa) as well as for gaugino and sfermion masses.

W gauge boson mass Intrinsic theoretical uncertainties coming from higher loop effects
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Derived observable Constraints Ref.

ξlim τ (theor.)

σSI
p UL WIMP mass dependent ∼ 100% [33]

BR(Bs → µ+µ−) UL 1.5 × 10−7 14% [32]

mh LL 114.4 GeV (91.0 GeV) 3 GeV [22]

ζ2
h UL f(mh) 3% [22]

mχ LL 50 GeV 5% [37] ([35, 36])

mχ±

1
LL 103.5 GeV (92.4 GeV) 5% [34] ([35, 36])

mẽR
LL 100 GeV (73 GeV) 5% [34] ([35, 36])

mµ̃R
LL 95 GeV (73 GeV) 5% [34] ([35, 36])

mτ̃1 LL 87 GeV (73 GeV) 5% [34] ([35, 36])

mν̃ LL 94 GeV (43 GeV) 5% [38] ([26])

mt̃1
LL 95 GeV (65 GeV) 5% [34] ([35])

mb̃1
LL 95 GeV (59 GeV) 5% [34] ([35])

mq̃ LL 318 GeV 5% [39]

mg̃ LL 233 GeV 5% [39]

Table 4: Summary of derived observables for which only limits exist, with UL = upper limit,

LL = lower limit (at ξlim (3.4), 95% CL, unless otherwise stated). The experimental limit on the

spin–independent cross section for a WIMP elastic scattering on a free proton σSI
p is not included

in the likelihood, as explained in the text. Since the precise form of the likelihood is not available,

we use the conservative procedure of including at least an estimated theoretical uncertainty τ . The

likelihood is then given by Eq. (3.5), in the limit where σ ≪ τ . The value in parenthesis indicates

the more conservative bound, see the text for details. Note that theoretical errors for scalar masses

are probably much larger in the focus point region, as discussed in the text.

to the W boson pole mass are estimated to be τ(MW ) = 13 MeV [40, 41]. The parametric

uncertainties are dominated by the experimental error of the top quark mass and by the

hadronic contribution to the shift of the fine structure constant. Both uncertainties are

fully taken into account (via ∆αhad) by marginalizing over Mt as a nuisance parameter.

We compute MW in the DR scheme (from gauge couplings relations), including full 1–loop

contributions [40].

Effective leptonic weak mixing angle The effective leptonic weak mixing angle sin2 θeff
receives SM and SUSY contributions. In our computation we include a full 1–loop SM and

full 1–loop universal Z–vertex supersymmetric corrections [40]. The net contribution of the

non–universal corrections is negligible [42]. Intrinsic theoretical uncertainties come from

higher–loop effects, which induce an uncertainty2 taken to be [40] τ(sin2 θeff) = 25 × 10−5.

Note that we treat αem(MZ)MS as a nuisance parameter but take MW and sin2 θeff as

derived quantities. This is because we use a parametrization in which the former (along

with MZ and GF ) are taken as inputs from which one can compute the latter and compare

with experiment.

2In Ref. [15] a smaller uncertainty is used (i.e., τ (sin2
θeff) = 12 × 10−5) as a result of including leading

two–loop supersymmetric corrections.
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The anomalous magnetic moment of the muon The final measurement of the

anomalous magnetic moment of the muon, aµ ≡ (g − 2)µ, by the Brookhaven E821 ex-

periment [30] aexp
µ = (11659208.0 ± 5.8)× 10−10 remains in an apparent disagreement with

SM predictions. The current SM theoretical value, based on e+e− low energy data, is [31]

aSM
µ = 11659182.8 ± 6.3had ± 3.5LBL ± 0.3QED+EW) × 10−10. The discrepancy between the

two, if confirmed, could be attributed to an additional contribution from loops involving

superpartners,

δaSUSY
µ = aexp

µ − aSM
µ = (25.2 ± 9.2) × 10−10, (3.7)

where the independent errors have been added in quadrature.

In calculating δaSUSY
µ we have taken into account the full one–loop SM+SUSY con-

tributions [43] and several two–loop corrections. The first class of two–loop corrections

comprises the leading one–loop diagrams with a photon in the second loop [44]. The sec-

ond class comprises diagrams with a closed loop of SM fermions or scalar fermions [45].

The last class comes from diagrams containing a closed chargino–neutralino loop [46]. As

a consequence, in the CMSSM parameter space the intrinsic uncertainties are estimated

to be τ(δaSUSY
µ ) = 1 × 10−10 [47]. The sign of the SUSY contribution to aµ is the same

as the sign of µ. Since the former is positive, throughout this analysis we have assumed

sign(µ) = +1.

Finally, we note that, the SM value evaluated using τ–data is aSM
µ = (11659201.8±6.3,

leading to only a 0.7σ deviation [48]. In light of this we do not feel it is justified to apply

a SM prediction based on combining the two sets of data. Secondly, there appears to be

potentially some discrepancy among different sets of e+e− which again may put the claimed

deviation (3.7) from the SM into question. Because of these outstanding problems, in

subsection 4.6 we will perform a separate analysis where we exclude aµ from the likelihood.

BR(B̄ → Xsγ) The current experimental world average value by the Heavy Flavour

Averaging Group (HFAG) is [32]

BR(B̄ → Xsγ)exp = (3.39+0.30
−0.27) × 10−4, (3.8)

which agrees rather well with the full NLO prediction of the SM [49]

BR(B̄ → Xsγ)SM = (3.70 ± 0.30) × 10−4. (3.9)

This clearly imposes an important constraint on any additional contributions. In the

CMSSM, the assumed universality of soft mass terms leads to a particularly simple flavor

structure in which no additional sources of flavor mixings beyond those due to the CKM

matrix are present, the framework known as minimal flavor violation (MFV). In this case

SUSY contributions arise from a loop involving the top quark and the charged Higgs boson

and one of the stop–chargino exchange. In a more general flavor mixing scenario additional

one–loop contributions arise due to gluino (or neutralino) and down–type squark exchange.

We compute SUSY contribution to BR(B̄ → Xsγ) following the procedure outlined

in Refs. [50, 51] where, in addition to full leading log corrections, large tan β–enhanced

terms arising from corrections coming from beyond the leading order (BLO) have been
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included.3 Furthermore, combined experimental constraints from BR(B̄ → Xsγ) and

BR(B → Xsl
+l−) imply that, baring highly non–standard scenarios [54], the sign of the

total amplitude for the decay B̄ → Xsγ has to be the same as that of the SM [55].

We assume no significant additional theoretical uncertainty beyond that coming from

the SM calculation. This can in part be justified by the fact that the overall SUSY

contribution to BR(B̄ → Xsγ) has to be small, as noted above. More importantly, we

estimate that most of the uncertainties due to SUSY contributions are due to remain-

ing uncertainties in the values of SM parameters, especially the top and bottom masses

which are accounted for in their treatment as nuisance parameters. Therefore we take

τ(BR(B̄ → Xsγ)) = 0.30 × 10−4.

Cosmological constraints on the dark matter density A combination of the recent

WMAP data [56] on the CMB anisotropies with other cosmological observations, such as

measurements of the matter power spectrum, leads to tight constraints on the cold dark

matter (CDM) relic abundance. The exact numerical value depends on a number of as-

sumptions about the underlying cosmology (e.g., the geometry of space, the adiabaticity of

initial conditions and a power–law, feature–free primordial power spectrum). It is impor-

tant to keep in mind that relaxing some or all of these assumptions can considerably weaken

the constraints. Furthermore, different combinations of data sets also lead to somewhat dif-

ferent values for the relic abundance. For definiteness, we have performed a re–analysis of

CMB data from the first year of WMAP observations [56], as well as from CBI [57], VSA [58]

and ACBAR [59], and combined them with the real–space power spectrum of galaxies from

the SLOAN galaxy redshift survey (SDSS) [60], restricted to scales over which the fluctu-

ations are assumed to be in the linear regime, i.e. for k < 0.1h−1 Mpc, with the Hubble

Space Telescope measurement [61] of the Hubble parameter H0 (H0 = 100h km/sec/Mpc),

and with the latest supernovae observations data [62]. Assuming a flat Universe ΛCDM

cosmology, the resulting constraint on the dark matter relic abundance – after marginaliz-

ing over all other relevant cosmological parameters – is well approximated by a Gaussian

function with a mean and standard deviation given by4

ΩCDMh
2 = 0.119 ± 0.009. (3.10)

We make use of this constraint and we assume that all the CDM is made up of stable

neutralinos, but we also enlarge the error to include a theoretical uncertainty in the com-

putation of ΩCDMh
2 (see below).

A precise determination of the neutralino relic abundance Ωχh
2 requires an accurate

treatment of the neutralino pair annihilation and coannihilation cross sections into all

SM particle final states. We employ exact expressions for neutralino pair annihilation

processes into all allowed final–state channels which have been computed in [63] and which

3An analogous and updated BLO–level analysis in the case of general flavor mixing has been performed

in Refs. [52, 53, 54] and shows in general a much larger difference between LO and BLO results than in

MFV.
4The central value is slightly different from ΩCDMh

2 = 0.113+0.008
−0.009 obtained by the WMAP team in [56]

because of the different combination of data employed.
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are valid both near and further away from resonances and thresholds. We further include

the neutralino coannihilation with the lightest chargino and next–to–lightest neutralino [64]

and with the lighter stau [65] with similar precision. We include all coannihilation channels,

including coannihilation with light stops [66]. We compute Ωχh
2 by solving the Boltzmann

equation numerically as in [67].

As is well known from fixed–grid scans, in the CMSSM the values of Ωχh
2 typically

exceeds the range given in (3.10), except in some rather special regions of the parameter

space. Firstly, at fairly small m1/2 and m0, the neutralino annihilation channel into SM

fermion/boson pairs via t/u–channel exchange of a superpartner opens up only a narrow

band consistent with ΩCDMh
2 (the “bulk” region) which however is largely excluded by

a lower bound on the Higgs mass and/or by a strong upper bound on allowed SUSY

contribution to BR(B̄ → Xsγ). Secondly, if the LSP and the next–to–LSP (NLSP) are

closely degenerate in mass, then the LSP coannihilations with NLSPs near freeze–out may

reduce the LSP relic density considerably. In the CMSSM, efficient coannihilation takes

place along the boundary dividing neutralino and lightest stau τ̃1 LSP regions. In addition,

at large A0 there are limited cases where the lightest stop is the NLSP and is almost

degenerate in mass with the LSP [66]. Thirdly, in some cases neutralino annihilation can

be enhanced via the process χχ→ f f̄ involving an s–channel Higgs or Z boson exchange.

At large tanβ ∼ 50 the most significant effect comes from the CP-odd Higgs A resonance

(around mA ≃ 2mχ, where mχ is the lightest neutralino mass), since the A couplings

to down–type fermions are enhanced at large tan β, and because, in contrast to heavy

scalar Higgs exchange, the process is not p–wave suppressed. Finally, at very large m0 of

a few TeV the rapidly decreasing µ2 (from large positive to negative values) causes the

higgsino component of the LSP to increase which, in a narrow focus point (FP) region (of

still positive µ2) allows Ωχh
2 to pass through the favored range (3.10), before becoming

too small.

The theoretical uncertainty involved in computing Ωχh
2 varies greatly depending on

the case. Errors come from computing the Higgs and superpartner mass spectrum at

finite (two–loop) order in RGEs, a scale dependence, finite numerical accuracy in solving

the Boltzmann equation, some residual uncertainties in computing the gauge couplings,

as well as potentially much larger errors in computing top and bottom Yukawa couplings

and Higgs widths. The choice of the scale at which one minimizes the effective potential

has a minor effect [17]. A numerical algorithm of solving the Boltzmann equation is very

accurate and in the bulk region has an estimated error of a few per cent [68, 63], which is

comparable with the observational error in (3.10).

In the bulk region where Ωχh
2 primarily depends on the t/u–channel exchange of slep-

tons, uncertainties in the calculation of the SUSY spectrum are O(1%) (for moderate values

of the CMSSM mass parameters, even at large tanβ) and therefore under control [69]. On

the other hand, the accuracy is much poorer in the regions of special cosmological in-

terest that have been mentioned above. In the coannihilation regions Ωχh
2 is sensitive

to e−∆m/T , where ∆m = mNLSP − mχ is the difference between the mass of the NLSP

mNLSP and mχ. Even a small variation of O(1%) in ∆m can lead to ∼ 30% variations in

Ωχh
2 [71]. This sort of error is inherent in current determinations of the mass of τ̃1 which
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is the NLSP in large parts of the (m1/2,m0) plane. Larger uncertainties arise if the NLSP

is the t̃1 since the shift in its mass 10% can lead to order–of–magnitude discrepancies in

the prediction of the relic density [69]. In the CP–odd Higgs resonance region one finds a

strong suppression of Ωχh
2 for broad ranges of m1/2 and m0. In the CMSSM this occurs

for large tan β where effects of the bottom Yukawa coupling hb on the RGE running are

important and reduce mA compared to the low tanβ regime. The relic density is further

suppressed by the enhancement of the coupling Abb̄ which is proportional to hb. Special

attention must also be paid to the computation of the Higgs boson width which receives

sizable radiative corrections. We include one–loop QCD corrections [70] as well as those

due to (QCD corrected) Yukawa vertices. Still, unknown two–loop corrections to hb may

cause an uncertainty of up to 30% [71]. In the FP region, a determination of µ is strongly

sensitive to two–loop corrections proportional to ht, whose computation requires special

care, and can lead to ∼ 100% errors in the computation of Ωχh
2 [71].

In addition to the theoretical errors discussed above, the value of Ωχh
2 depends on

the top and bottom masses, as well as αem(MZ)MS . In particular, we have found that

the seemingly small experimental error in αem(MZ)MS leads, indirectly, via its effect on

the SM gauge couplings g1,2, to a variation in Ωχh
2 of order 10%. All of these effects are

accounted for by our use of the nuisance parameters.

The error in the quantity Ωχh
2 can thus be very sensitive to which (co)annihilation

process is most efficient. This makes it difficult to evaluate the theoretical uncertainty in

Ωχh
2. Given the above discussion we estimate τ(Ωχh

2) = 10% in the bulk of the parameter

space although we are aware that in the FP region the error is almost certainly much larger.

We add this error in quadrature to the observational error σ(ΩCDMh
2) = 0.009 in (3.10)

and obtain the Gaussian with the following mean and standard deviation,

Ωχh
2 = 0.119 ±

√
(0.009)2 + (0.1Ωχh2)2 (3.11)

= 0.119 ± 0.009
√

1 + 1.75 (Ωχh2/0.119)2. (3.12)

Note that the theoretical uncertainty is of the same order as the uncertainty from current

cosmological determinations of ΩCDMh
2.

We now comment on some of the derived variables for which the 95% CL experimental

upper/lower limits have been presented in Table 4. We start, however, with the only

observable which is not included in the likelihood.

Direct detection of dark matter Assuming the Galactic DM halo is mostly made up of

neutralinos, it may be possible to directly detect them via their elastic scatterings off nuclei,

or indirectly via their annihilation products. Direct DM detection in SUSY frameworks

has been investigated by many authors [72]. The CDMS Collaboration (CDMS–II) has

recently improved their previous upper limit on the spin–independent dark matter WIMP

elastic scattering cross section on a free proton, σSI
p , down to some 2 × 10−7 pb (at low

WIMP mass) [73]. Comparable upper limits have also been set up by the Edelweiss–I [74]

and ZEPLIN–I [75] experiments.
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However, several questions regarding the properties of the DM halo (e.g., the existence

of clumps of DM and the value of the local halo mass density) remain unsettled. Recent

numerical N–body simulations of large structure formation have revealed a large number of

overdense regions surviving until today [76]. It is possible that an improved sensitivity of

the simulations will reveal further, and finer, clumpiness. The clumps may contain a sizable

fraction of the total dark matter halo, of the order of 10%. It is therefore not unlikely that

locally (at the Earth’s location) the DM density may be significantly different from the

usually assumed average value of ρχ = 0.3 GeV/cm3.

It is worth remembering that, in translating null experimental results for an elastic

WIMP–target cross section into upper limits on σSI
p , not only the local DM density enters

but also a WIMP velocity distribution. This is usually taken to be Maxwellian with a peak

at 220 km/sec with an estimated error of between 20 and 50 km/sec. While this leads

to an additional uncertainty in σSI
p , it is actually tiny compared with the uncertainty of

the actual WIMP density at the position of the Earth caused by cuspiness. In view of the

above discussion, in our opinion upper experimental limits on σSI
p should not be used to

constrain supersymmetric parameters with the same degree of reliability as from collider

searches.

In computing σSI
p in the CMSSM, we include full supersymmetric contributions which

have been derived by several groups [77, 78, 79, 80, 81]. σSI
p can be expressed as

σSI
p =

4

π
µ2

pf
2
p (3.13)

where µp = mpmχ/(mp + mχ) is the reduced mass of the WIMP–proton system. (For

spin–independent interactions of neutralinos, and more generally Majorana WIMPs, there

is no need to consider an analogous quantity on a free neutron since σSI
n = σSI

p .)

The coefficients fp,n can be expressed as [77]

fp

mp
=

∑

q=u,d,s

f
(p)
Tq

mq
fq +

2

27
f

(p)
TG

∑

q=c,b,t

fq

mq
+ ...

where f
(p)
TG = 1 − ∑

q=u,d,s f
(p)
Tq , and nuclear form factors f

(p)
Tq are defined via 〈p|mq q̄q|p〉 =

mpf
(p)
Tq (q = u, d, s), and analogously for the neutron. The masses and ratios Bq = 〈p|q̄q|p〉

of light constituent quarks in a nucleon come with some uncertainties. For definiteness,

we adopt the set of input parameter given in [80] and assume mu/md = 0.553 ± 0.043,

ms/md = 18.9 ± 0.8, and Bd/Bu = 0.73 ± 0.02, as well as

f
(p)
Tu = 0.020 ± 0.004, f

(p)
Td = 0.026 ± 0.005, f

(p)
Ts = 0.118 ± 0.062, (3.14)

f
(n)
Tu = 0.014 ± 0.003, f

(n)
Td = 0.036 ± 0.008, f

(n)
Ts = 0.118 ± 0.062, (3.15)

and for the parton density functions we employ the CTEQ6L set [82] evaluated at the

QCD scale defined by the averaged squark mass and neutralino mass Q ≈
√
M2

q̃ −m2
χ.

The nuclear form factors f
(p,n)
Ts come with a large error and these are the ones that provide

the dominant contribution to σSI
p . This has a rather significant impact on the size of

σSI
p [83], unless tan β is very small.
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BR(Bs → µ+µ−) The latest 95% CL experimental upper limits from the DØ Run II

and CDF Run II experiments at Fermilab are, respectively,

BR(Bs → µ+µ−) < 2.0 × 10−7 (CDF) [85], (3.16)

BR(Bs → µ+µ−) < 3.7 × 10−7 (DØ) [86]. (3.17)

A combined 95% CL limit is BR(Bs → µ+µ−) < 1.5×10−7 [87]. Ultimately, assuming the

integrated luminosity of 8 fb−1, a combined CDF and DØ limit is expected to reach some

2 × 10−8 [88] which is significantly above the SM prediction [89]

BR(Bs → µ+µ−)SM = (3.42 ± 0.54) × 10−9. (3.18)

We compute the SUSY contribution to BR(Bs → µ+µ−) by following a full one–

loop calculation of Ref. [90] which assumes MFV. Furthermore we include tan β enhanced

corrections to the bottom quark mass [91]. The parametric uncertainties are associated

with an error in the decay constant fBs
, which arises from lattice calculations, and an error

in the bottom quark mass [92]. The latter is accounted for by the MC procedure, while the

former is of order 10%. Unknown higher order corrections are of order 10% [93]. Therefore

we use a total theoretical error of 14%, obtained by adding the above uncertainties in

quadrature.

The lightest MSSM Higgs boson mass A final LEP–II lower bound on the SM Higgs

mass is mHSM
> 114.4 GeV (95 % CL) [22]. The bound applies to the lightest Higgs boson

h in the MSSM if its coupling to the Z boson is SM–like, i.e. if ζ2
h ≡ g2

ZZh/g
2
ZZHSM

=

sin2(β − α) ≃ 1. This occurs in the decoupling regime where mA ≫ mZ . For arbitrary

values of mA, the LEP–II Collaboration has set 95% CL bounds on mh and mA as a

function of ζ2
h [22], with the lower bound of mh > 91 GeV for mh ∼ mA and ζ2

h ≪ 1 [22].

In this low–mass region we use a cubic spline to interpolate between some selected points in

mh and derive the corresponding 95% CL bound, which is then smeared with a theoretical

uncertainty τ of 3%. The intrinsic theoretical error in computing mh, after taking into

account effects of the renormalization scale dependence, in the CMSSM has been estimated

to be τ(mh) = 3 GeV [94, 95]. The parametric uncertainty coming from the errors in top

quark mass and the strong coupling constant are accounted for by taking them as nuisance

parameters.

As mentioned above, we compute the lightest Higgs mass following the SOFTSUSY v1.9

package [29], where full one–loop and leading two–loop corrections and two–loop effects on

the EWSB conditions are included.

Superpartner masses Below we comment on some limits on superpartner masses. Since

currently there is no information available on the likelihood function for sparticle masses,

we make use of the experimental error of 95% CL and of the likelihood given in Eq. (3.5).

The parametric uncertainties in the sparticle masses coming from the SM variables are

accounted for via the nuisance parameters. The authors of Ref. [69] have argued that the

theoretical uncertainties in the computation of SUSY masses are of order O(1%) except

in some special regions of the parameter space (such as the FP region) which require a
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separate treatment. Conservatively we take τ = 5% for each computed superpartner mass

and use it to smear out the 95% CL experimental lower limit on its mass, as explained in

section 3.1.

Neutralino LSP mass In the context of the CMSSM, LEP–II provides an absolute

lower bound on the mass of the lightest neutralino LSP χ1 (in this work denoted simply

by χ) [37]

mχ > 50 GeV. (3.19)

Chargino mass Chargino mass has been excluded up tomχ±

1
> 103.5 GeV [34], provided

that mν̃ > 300 GeV, where mν̃ stands for the lightest sneutrino mass which in the CMSSM

is ν̃τ . However, when the mass difference mχ±

1
−mχ . 3 GeV, as in the FP region, then

the bound is relaxed to mχ±

1
> 92.4 GeV [34]. The latter bound is also applied when

mν̃ < 300 GeV.

Slepton masses Combined slepton mass limits have been obtained by the LEP SUSY

working group [34]. The overall limits are

mẽR
> 100 GeV, mµ̃R

> 95 GeV, mτ̃1 > 87 GeV. (3.20)

These limits are valid provided that ml̃ − mχ > 10 GeV. Otherwise we apply the more

conservative bound ml̃R
> 73 GeV [35, 36].

For the sneutrino, in the context of the CMSSM, the DELPHI collaboration has ob-

tained the following limit [38]

mν̃ > 94 GeV, (3.21)

provided mν̃ −mχ > 10 GeV. Otherwise we apply mν̃ > 43 GeV [26].

Squark masses Combined limits on the lightest stop and sbottom masses from LEP–II

are [34]

mt̃1,b̃1
> 95 GeV, (3.22)

provided mt̃1,b̃1
−mχ > 10 GeV. Otherwise we apply the more conservative limits obtained

by the ALEPH Collaboration [35]

mt̃1
> 65 GeV and mb̃1

> 59 GeV. (3.23)

Finally, for the two first generations, the DØ Run II Collaboration obtained [39]

mq̃ > 318 GeV. (3.24)

4. Results

We now present the results of our study in terms of high relative posterior probability

regions for CMSSM parameters and superpartner masses (section 4.1) and the implications

for other observables (section 4.2). In section 4.3 we compare those results with the mean

quality of fit statistics, while in section 4.4 the prospects for direct detection of DM are
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presented. Correlations among observables are depicted in section 4.5, while section 4.6

is concerned with the influence that the measurement of the anomalous magnetic moment

has on our conclusions.

Our statistical inferences are drawn from multiple MC chains, which contain a total

of about 3× 105 to 4× 105 samples. For more details about our numerical implementation

of the MCMC algorithm, see appendix A.

4.1 High probability regions for parameters and superpartners masses

In the six panels of Fig. 2, we show the 2–dimensional posterior relative probability den-

sity functions p(θi, θj |d), where (θi, θj) = (m1/2,m0), (tan β,m0), (A0,m0), (A0,m1/2),

(tan β,m1/2) and (tan β,A0), for the “4 TeV range” case which we will treat as our de-

fault choice. In each panel all other basis parameters have been marginalized over. Redder

(darker) regions correspond to higher probability density. Inner and outer blue (dark) solid

contours delimit regions of 68% and 95% of the total probability, respectively. In all the

2–dimensional plots, the MC samples have been divided into 70×70 bins. Jagged contours

are a result of a finite resolution of the MC chains.

It is clear that the structure of the parameter space is rather complex. In particular,

in the left top and bottom panels at m1/2 ≃ 0.2 TeV we can see a narrow high–probability

funnel induced by the light Higgs boson resonance, which was also observed in the analysis

of Ref. [17]. The presence of such narrow wedges makes the exploration challenging for the

MCMC procedure, and much harder for a fixed–grid scan.

Values of m0 ∼< 2 TeV are favored, but larger values are definitely not excluded. In

particular, the 95% probability region extends up to the upper prior range for m0, a clear

sign that the data is not powerful enough to constrain this parameter sufficiently (we

comment further on this issue below). The most probable region in the (m1/2,m0) plane

is centered around the point

m1/2 ≃ 0.7 TeV, m0 ≃ 0.8 TeV. (4.1)

The region encompassing 68% of joint probability is roughly bounded by 0.5 TeV ∼< m1/2 ∼<
1.5 TeV, because of the efficiency of both the stau coannihilation and/or the pseudoscalar

resonance. A sharp probability drop above m1/2 ∼> 1.5 TeV, almost independent of m0, is

caused by a combination of the relic abundance and the δaSUSY
µ constraints. At smaller m0

the boundary bends because below it the neutralino is not the LSP. Large values of tan β

between about 45 and 55 are definitely more favored but smaller values are also allowed, in

particular for small m0 ∼< 0.5 TeV (upper right panel), as a consequence of the light Higgs

boson resonance.

The large m0 region, starting from the upper part of the 68% probability contour,

corresponds to a wide range of possible positions of the FP region. For each fixed choice

of parameters, the FP region consistent with the CDM abundance is actually very narrow,

but its position varies widely along m0 when we marginalize over all the other parameters.

We observe that A0 is largely uncorrelated with other variables, and its pdf presents

a strong peak around A0 ≃ 0.8 TeV. The high probability contours for A0 are well within
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Figure 2: The 2–dimensional probability densities in the planes spanned by the CMSSM pa-

rameters: m1/2, m0, A0 and tanβ for the “4 TeV range” analysis (see Table 1). The pdf’s are

normalized to unity at their peak. The inner (outer) blue solid contours delimit regions encom-

passing 68% and 95% of the total probability, respectively. All other parameters in each plane have

been marginalized over.

– 21 –



m
1/2

 (TeV) 

m
0 (

T
eV

)

0.5 1 1.5 2

0.5

1

1.5

2

tanβ

m
0 (

T
eV

)

10 20 30 40 50 60

0.5

1

1.5

2

Relative probability density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: The 2–dimensional relative probability densities as in Fig. 2 but for the “2 TeV range”

analysis and for the planes (m1/2,m0) and (tanβ,m0) only. Imposing a prior range m0 < 2 TeV

modifies substantially the inferences about the high probability regions for m0.

the prior range (|A0| < 7 TeV), which indicates that this constraint is robust with respect

to changes to the prior.

In order to examine the sensitivity of these results to the assumed ranges of CMSSM

parameters, i.e., the prior used, in Fig. 3 we plot the 2–dimensional pdf’s p(m1/2,m0|d)
and p(tanβ,m0|d) for the “2 TeV range”. This is similar to the prior used by the authors

of Ref. [17], and for this case we find a fairly good general agreement with their results.

However, several differences in the treatment of uncertainties, in the data employed and in

the accuracy of the theoretical predictions add up to appreciable differences in the details

of the results.5

It is important to stress that by imposing an upper prior range m0 < 2 TeV one cuts

away a large region of parameter space which is not excluded by the data (the FP region

at large m0, compare with the corresponding panels in Fig. 2). Therefore, inferences on

high probability regions for large m0 are different for the “2 TeV range” and the “4 TeV

range” cases. This means that current data is not informative enough to strongly constrain

the value of m0 independently of prior information, i.e. the prior range one chooses to use.

The main reason behind this is the presence of the FP region which so far has not been

investigated by MCMC techniques. On the other hand, results for the other CMSSM

parameters m1/2, tan β and A0 do not vary appreciably if one changes the prior ranges, as

we now discuss.

In Fig. 4 we show the posterior 1–dimensional pdf p(θi|d) for each of the CMSSM

parameters, with all the other basis parameters marginalized over. The 1–dimensional

pdf’s contain the complete statistical information about each of the CMSSM variables,

5For instance, in the analysis of Ref. [17] m0 as small as 1 TeV is allowed in the vicinity of the resonance

(compared to our m0 ∼
> 1.4 TeV) as a result of employing a less restrictive chargino mass bound of only

67.7 GeV.
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Figure 4: The 1–dimensional relative probability densities p(θi|d) for each of the CMSSM param-

eter, θi = m0, m1/2, A0 and tanβ. All other parameters have been marginalized over. The two

curves compare the results for two different prior ranges (see Table 1).

fully accounting for all sources of uncertainty included in the analysis. We plot results

for both the “2 TeV range” and the “4 TeV range” to facilitate the comparison between

the two. In the upper left panel, we note that the pdf’s for m0 ≤ 2 TeV are in excellent

agreement for both ranges, but above that value the posterior pdf for the “2 TeV range”

is sharply cut by the prior. On the contrary, the pdf for the “4 TeV range” extends all

the way to 4 TeV. Since the posterior does not drop to zero before reaching the prior

range of 4 TeV, it is likely that by allowing even larger values of m0 one would find non–

negligible probability densities even there. This is caused by a high sensitivity of the

position of the FP region along the m0 axis to the Yukawa couplings ht and hb. The
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“2 TeV range” “4 TeV range”

Parameter 68% region 95% region 68% region 95% region

m0 (TeV) < 1.36 < 1.88 < 2.10 < 3.66 TeV

m1/2 (TeV) (0.54, 1.20) (0.26, 1.48) (0.52, 1.26) (0.20, 1.61)

A0 (TeV) (−0.18, 2.01) (−1.44, 3.40) (−0.34, 2.41) (−1.95, 4.31)

tan β (44.1, 54.9) (16.0, 58.0) (38.5, 54.6) (13.6, 57.8)

Table 5: CMSSM parameter ranges corresponding to 68% and 95% of posterior probability (all

other parameters marginalized over) for the two different prior choices, the “2 TeV range” and the

“4 TeV range”.

effect is partially accommodated by treating the top and bottom masses in the nuisance

parameters. However, as explained in the discussion following Eq. (3.10), the computation

of µ and as a result of Ωχh
2 is highly uncertain in the FP region. At present this makes

it difficult to make a more definitive statement about the region m0 ∼> 2 TeV other than

that present data does not strongly constrain it. In fact, the upper 95% probability region

for the “4 TeV range” extends to m0 < 3.66 TeV. For smaller m0, the bulk of the pdf lies

around 0.5 TeV ∼< m0 ∼< 1.5 TeV.

Constraints on the other CMSSM parameters are largely independent of the adopted

prior ranges. The bulk of the pdf for m1/2 lies around m1/2 ≈ 0.75 TeV, with the 68%

region within 0.52 TeV < m1/2 < 1.26 TeV, with again a narrow peak due to the light Higgs

resonance at smaller values. For the “4 TeV range” this narrow peak is more pronounced,

because in this case one integrates over a larger range for m0, compare with the upper left

panel of Fig. 2. In the lower left panel of Fig. 4, the peak around A0 ≃ 0.8 TeV is again

clearly visible and almost independent of the prior used. We notice that the 68% region is

bounded by −0.34 TeV < A0 < 2.41 TeV and thus A0 = 0 lies close to its boundary. This

is an interesting result (which can also be seen in Ref. [17]) in light of the fact that most

of fixed–grid scans (with a few exceptions [21, 96]) have assumed A0 = 0. Finally, in the

last panel, the 1–dimensional pdf for tanβ shows a preference for large values, with the

68% region given by 38.5 < tan β < 54.6. Regions containing 68% and 95% of posterior

probability for the CMSSM parameters are summarized in Table 5.

In Fig. 5 we show 1–dimensional pdf’s for several superpartners masses, and the cor-

responding 68% and 95% probability regions are given in Table 6. Note that the 95% CL

experimental bounds on the superpartner masses have been included in the likelihood (and

smeared out by corresponding theoretical uncertainties), as explained in section 3.1. The

masses of the gluino g̃, the lightest chargino χ±

1 and the LSP neutralino χ, which are

proportional mainly to m1/2, are basically the same for both prior ranges, in agreement

with the result for m1/2 displayed in Fig. 4. In contrast, the pdf’s for the masses of the

sfermions exhibit a sharp cutoff in the “2 TeV range” case, as a consequence of a basic

mass relation m2
f̃L,R

≃ m2
0 + cf̃L,R

m2
1/2. Therefore the prior cut on m0 for “2 TeV range”

impacts on the posterior probability distribution for the sfermions as well. Nevertheless,

for the squarks the relative probability peaks below some 2 TeV which is generally well

within the LHC reach. As a result, the integrated probability for mq̃R
< 2.5 TeV is 85%.
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Super– “2 TeV range” “4 TeV range”

partner 68% 95% 68% 95%

χ0
1 (0.22, 0.52) (0.10, 0.64) (0.22, 0.55) (0.07, 0.70)

χ±

1 (0.42, 0.98) (0.16, 1.20) (0.36, 1.00) (0.11, 1.25)

g̃ (1.27, 2.64) (0.70, 3.19) (1.25, 2.80) (0.54, 3.51)

ẽR (0.66, 1.69) (0.30, 1.97) (0.80, 2.93) (0.33, 3.85)

ν̃ (0.68, 1.49) (0.42, 1.76) (0.79, 2.63) (0.46, 3.57)

τ̃1 (0.36, 1.03) (0.23, 1.41) (0.42, 2.12) (0.25, 3.31)

q̃R (1.47, 2.61) (1.10, 3.11) (1.60, 3.50) (1.18, 4.49)

t̃1 (1.09, 2.04) (0.82, 2.48) (1.17, 2.44) (0.87, 3.22)

b̃1 (1.23, 2.26) (0.98, 2.74) (1.33, 2.79) (1.03, 3.66)

Table 6: Selected superpartner mass ranges (in TeV) containing 68% and 95% of posterior prob-

ability (all other parameters marginalized) for the two different prior choices, the “2 TeV range”

and the “4 TeV range”.

For comparison, we find mg̃ < 2.7 TeV with 78% probability and mχ±

1
< 0.8 TeV with 65%

probability. We will come come back to the issue of the posterior probability distribution

for the superpartners in subsection 4.6.

4.2 High probability regions for other observables

Our MCMC approach allows us to investigate the joint posterior probability distribution

between CMSSM parameters and the various observables, as explained in section 2.1. In

Figs. 6 – 9 we plot the joint pdf for Ωχh
2, δaSUSY

µ , BR(B̄ → Xsγ), BR(Bs → µ+µ−),

respectively, and m0, m1/2 and tan β (all other parameters in each panel are marginalized

over). All plots correspond to the “4 TeV range”. (See also column one in Table 9.) We

stress that the joint pdf is obtained by taking into account observational constraints from

all the derived variables, including the one plotted along the vertical axis.

In Fig. 6, the pdf peaks around m0 ≈ 1 TeV and Ωχh
2 ≈ 0.12, with all values of m0

up to 4 TeV compatible with the observed cosmological DM abundance. This is another

demonstration that the narrow “WMAP strips” – which appear when including only two

parameters of the CMSSM at a time (see, e.g., [97, 15]) – actually widen considerably to

cover a large region of parameter space when all the variables are taken simultaneously

into account. Not surprisingly therefore, we do not find a strong correlation between Ωχh
2

and the CMSSM parameters.

In the planes spanned by δaSUSY
µ and the CMSSM parameters (Fig. 7), we observe a

strong anti–correlation between δaSUSY
µ and bothm0 and m1/2. This is a simply a reflection

of the decreasing CMSSM contributions to δaSUSY
µ with increasing superpartner masses. In

general, the posterior distribution for δaSUSY
µ is quite skewed with respect to the likelihood,

which represents the experimental measurement. The posterior pdf tends to prefer values

of δaSUSY
µ close to zero. We comment further on this below.

For BR(B̄ → Xsγ), Fig. 8 shows a positive correlation with the masses, with the SM

value being reached in the asymptotic regime of large m1/2 and m0. We also see that the
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Figure 5: As in Fig. 4, but for the masses of several representative superpartners.

peak in the pdf is centered slightly below the experimental central value given in Eq. (3.8).

In Fig. 9 we show the 2–dimensional pdf for BR(Bs → µ+µ−) and m1/2, m0 and tan β.

As expected, the SUSY contribution decreases with increasing superpartner masses and

rapidly increases proportionally to tan6 β. Most of the high relative probability density lies

close to the SM prediction given in of Eq. (3.18) [89]. The 1–dimensional (2 tails) regions

encompassing 68% and 95% of probability are

3.5 × 10−9 < BR(Bs → µ+µ−) < 1.68 × 10−8 (68% region),

3.3 × 10−9 < BR(Bs → µ+µ−) < 7.50 × 10−8 (95% region).
(4.2)

The current CDF and DØ limits are thus only approaching the 95% probability region. The

68% (95%) region extends just below (well above) the Tevatron reach of about 2 × 10−8.
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Figure 6: The 2–dim relative probability density p(Ωχh
2, θi|d), where θi = m0, m1/2 and tanβ.

Note that the measured value of Ωχh
2, Eq. (3.10), has been included in computing the relative

probability density.
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Figure 7: As in Fig. 6, but for δaSUSY
µ . The measured value of δaSUSY

µ , Eq. (3.7), has been

included.

Note also that a positive measurement of the BR at the Tevatron would imply m0 ∼<
1.5 TeV and would thus strongly disfavor the FP region.

When combining many different constraints, it is possible that some combinations of

them might be in conflict with each other. This has been mentioned above for δaSUSY
µ ,

where we remarked that the posterior pdf tends to prefer a value close to zero. This is

further highlighted in Fig. 10 for a few representative cases. For each observable, we plot the

1–dimensional marginalized posterior pdf for the two prior ranges, along with the Gaussian

likelihood function used in the analysis. If all the observations agreed with each other and

in the absence of strong correlation among variables, we would expect the posterior pdf

and the likelihood to overlap. This is the case for example for the bottom mass mb(mb)
MS

and for Ωχh
2 (upper panels). In the latter case, the slightly skewed shape of the posterior

is due to our treatment of the theoretical uncertainty, which is larger for larger values of
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Figure 8: As in Fig. 6, but for BR(B̄ → Xsγ). The measured value of BR(B̄ → Xsγ), Eq. (3.8),

has been included.

m
0
 (TeV)

Lo
g 10

[B
R

(B
s −

>
µ+

µ−
)]

1 2 3 4

−8.5

−8

−7.5

−7

m
1/2

 (TeV) 
0.5 1 1.5 2

−8.5

−8

−7.5

−7

tanβ
20 40 60

−8.5

−8

−7.5

−7

Relative probability density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9: As in Fig. 6, but for BR(Bs → µ+µ−). The upper limit of BR(Bs → µ+µ−) < 1.5×10−7

has been included.

Ωχh
2. However, the posterior pdf for sin2 θeff and δaSUSY

µ show a tension with the likelihood

representing the experimental result. We see a “pull” in the posterior towards values of

sin2 θeff lower than the measured mean (about one standard deviation discrepancy). We

notice a similar situation for MW . This tension is even more pronounced for the SUSY

contribution to the anomalous magnetic moment of the muon δaSUSY
µ , whose posterior

pdf peaks at values close to zero, in contrast to the experimental measurement. This

is a sign of a tension between the various constraints used, with the other measurements

pulling the posterior pdf for δaSUSY
µ towards the SM value. This motivates us to investigate

the dependence of our results on the inclusion of the δaSUSY
µ measurement, which will be

presented in section 4.6.

4.3 Mean quality of fit

In Bayesian statistics, the posterior pdf represents our state of knowledge about the pa-
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Figure 10: An illustration of the tensions between different observables. While for mb(mb)
MS

and Ωχh
2 the likelihood and the posterior pdf agree very well (top panels), for sin2 θeff and δaSUSY

µ

(bottom panel) they exhibit a substantial discrepancy. The latter case is a clear sign that the other

constraints are strongly pulling away the posterior pdf from the value preferred by the anomalous

magnetic moment measurement.

rameters in the problem after we have seen the data and given our choice of priors, as we

have explained in some detail in section 2.1. It is important to remark that regions of high

posterior probability do not necessarily correspond to the best fitting points. The quality

of fit is defined in terms of an effective χ2, obtained from the likelihood as

χ2(θ) = −2 ln p (d|ξ(θ)) . (4.3)

We can easily imagine a situation where a tiny multi–dimensional region in parameter space
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– let us call it a “spike” – shows an excellent quality of fit. At the same time, there might

be another region where the quality of fit is slightly worse, but whose volume in parameter

space is much larger. The much larger volume of the latter region gives it a higher weight,

since it is more generic and hence less fine–tuned. In such a case, the posterior pdf would

show a strong peak in the large region, while for the spike it would be suppressed due to

its smallness. At the same time, the quality of fit statistics would show a stronger peak in

the spike. We emphasize that this is not a feature of the MCMC exploration of parameter

space, but rather a characteristics built into the Bayesian formalism. As a consequence,

our inferences automatically give more weight to regions of parameter space showing less

fine–tuning.

In the above scenario, an analysis performed using a fixed–grid scan and a quality of

fit statistics would reach potentially very different conclusions.6 It can be shown, however,

that both methods lead to the same conclusions if the data is informative enough, i.e., if

their constraining power is sufficient. Conversely, a discrepancy between the posterior pdf

and the quality of fit statistics is a useful indicator that the above mechanism is at work.

In order to carry out such a comparison, we compute the mean quality of fit in two

dimensions. This is obtained from the posterior pdf by adopting the effective χ2 defined in

Eq. (4.3) as a function of the parameters f(θ), as explained below Eq. (2.7), and plotting

it in the dimensions of interest in parameter space. In Fig. 11 we plot the mean quality

of fit in the same six panels for which we presented the posterior pdf in Fig. 2. The blue

(solid) contours are the same as in Fig. 2 and are displayed to facilitate the comparison

between the two quantities.

In some panels, the best fitting points (represented by dark red regions) are much

more localized then the high–probability pdf. For example in the (m1/2,m0) plane we find

the best quality of fit in the region m0,m1/2 ∼< 0.5 TeV. In the (tan β,m0) plane, on the

other hand, we observe that good fitting point exist for almost all values of tanβ, down

to tanβ ≈ 15. Comparing with the corresponding panel in Fig. 2, we conclude that the

strong preference for a large tanβ shown by the posterior pdf does not imply that all the

best fitting points lie in that region of parameter space. This issue can only be resolved

once better data becomes available.

4.4 Direct detection of DM

Predictions for σSI
p are usually determined as a function of the CMSSM parameters by

rigidly enforcing relevant constraints, e.g., 1 or 2σ ranges of Ωχh
2 or BR(B̄ → Xsγ),

etc. In our analysis, we present a posterior pdf which simultaneously accounts for all the

constraints and sources of uncertainties.

In Fig. 12 we plot the posterior pdf for the spin–independent elastic cross section σSI
p

and the CMSSM parameters m0, m1/2 and tanβ. In the left panel one can see three

well–separated high probability regions. One is centered at 0.8 TeV ∼< m0 ∼< 3 TeV and

σSI
p ≃ 10−10 pb, although values almost as large as 10−8 pb are also allowed. It comes from

6A direct comparison between a Bayesian and a fix–grid (frequentist) analysis would be difficult, since

the latter cannot easily handle nuisance parameters.
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Figure 11: The quality of fit in the planes spanned by the CMSSM parameters: m1/2, m0, A0 and

tanβ for the “4 TeV range” scan. This figure should be compared with Fig. 2 where the relative

2–dim joint relative probabilities are plotted for the same pairs of variables.

the bulk, the stau coannihilation and the pseudoscalar resonance regions. To the left, and

almost adjacent to it, there is a fairly narrow vertical band resulting from a light Higgs

resonance mentioned above. The last main region is at large m0 ∼> 2 TeV and almost

constant σSI
p ≃ 1.6× 10−8 pb which results from the FP region. Comparing with the right
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Figure 12: As in Fig. 6, but for σSI
p .

panel in Fig. 12 we can see that σSI
p from the FP region and the light Higgs resonance

are fairly independent of tan β while the bulk, coannihilation and resonance region requires

large tanβ. Finally, the middle panel is added for completeness and it closely resembles the

top panel of Fig. 13 (because mχ ≃ 0.4m1/2) where we present the 2–dimensional pdf for

σSI
p and mχ. For comparison, we also show current CDMS–II, Edelweiss–I and UKDMC

ZEPLIN–I 90% CL limits, but we stress that this constraint has not been used in the

likelihood.

The features discussed above are visible in Fig. 13 (top). Firstly, the biggest, banana–

shaped region of high probability (68% regions delimited by the internal solid, blue curve)

shows a well–defined anti–correlation between σSI
p and mχ. It comes from the bulk and

stau coannihilation region (larger σSI
p ) and from the A–resonance (smaller σSI

p ) at large

tan β. This region covers roughly the range 10−10 ∼< σSI
p ∼< 10−8 pb and 0.2 TeV ∼< mχ ∼<

0.7 TeV. In both cases the dominant contribution to σSI
p typically comes from a heavy

Higgs exchange.

Secondly, at small mχ ∼< 0.1 TeV we can again see a small vertical band of fairly low

relative probability density (∼< 0.2) at small σSI
p . This region is allowed by the light Higgs

resonance contribution to reducing Ωχh
2 at small m1/2. This region essentially never

features in usual fixed–grid scans, which do not smear out experimental bounds. This

region would also disappear with a fair improvement in the lower bound on mh.

Thirdly, we can see a well pronounced region of high relative probability at fairly con-

stant σSI
p ≃ 1.6 × 10−8 pb for mχ ∼< 0.42 TeV which at low mχ partly overlaps with the

previous region. At 95% this region extends up to mχ ∼< 0.72 TeV for fairly constant σSI
p .

This “high” σSI
p band is a result of the FP region, basically independently of tan β, as

discussed above. This result has to be interpreted carefully, since there are large uncer-

tainties associated with FP region, in particular with its location in the (m1/2,m0) plane

mentioned earlier. Hopefully, associated uncertainties in σSI
p are going to be much smaller

since it depends on low energy quantities like Higgs masses and the µ parameter. Despite

those outstanding questions, we believe that it is probably safe to expect that the FP will
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Figure 13: Top panel: the 2–dimensional relative probability density p(mχ, σ
SI
p |d), with the

contours containing 68% and 95% probability also marked. Bottom panel: the mean quality of fit

(likelihood) with the same 68% and 95% probability contours as in the top panel to facilitate the

comparison. Current 90% experimental upper limits are also shown.

be the first to be probed by DM search experiments.

Finally, after marginalizing over all other parameters, we obtain the following 1–
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Figure 14: The 2–dimensional relative probability density p(ξi, ξj |d) for the pairs of observables

marked along horizontal and vertical axes.

dimensional regions encompassing 68% and 95% of the total probability:

1.0 × 10−10 pb < σSI
p < 1.0 × 10−8 pb (68% region),

0.5 × 10−10 pb < σSI
p < 3.2 × 10−8 pb (95% region).

(4.4)

Currently running experiments (most notably CDMS–II but also Edelweiss–II and

ZEPLIN–II) should be able to reach down to a few ×10−8 pb, on the edge of exploring the

FP region. A future generation of “one–tonne” detectors are expected to reach down to

σSI
p ∼> 10−10 pb, thus exploring almost the whole 68% region and much of the 95% interval

as well.

As discussed in section 4.3, the posterior pdf may be rather different from the mean

quality of fit. In the bottom panel of Fig. 13 we plot the quality of fit (defined in Eq. (4.3))

for σSI
p and mχ. The best fit points are found in the region 0.1 TeV ∼< mχ ∼< 0.2 TeV and

1 × 10−10 pb ∼< σSI
p ∼< 3 × 10−9 pb, but other good fitting points (quality of fit about 0.4,

dark green regions) lie right near the top of the high probability region, at rather large

σSI
p .

4.5 Correlations among observables

We now proceed to examine various correlations among the observables discussed above.
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In the upper left panel of Fig. 14 we show the 2–dimensional pdf for BR(Bs → µ+µ−) and

δaSUSY
µ . We can clearly see a rather strong correlation between those two variables [98]

but, as pointed out above, the most probable ranges of both variables are on a low side. A

positive measurement of BR(Bs → µ+µ−) at the Tevatron (above some 2 × 10−8) would

lead to a very strong tension with the current result for δaSUSY
µ .

In the upper right panel of Fig. 14 we show the 2–dimensional pdf for BR(Bs → µ+µ−)

and σSI
p . We can see two high relative probability regions here showing an interesting

pattern. The one at smaller values of both variables comes from the coannihilation and

Higgs resonance regions and has been pointed out in [99]. In addition, the FP region

allows for a second “island” where σSI
p is not far below the current CDMS limit while

BR(Bs → µ+µ−) is very small, far below the reach of the Tevatron. Thus, because of the

FP region, a signal in measuring σSI
p in current generation of DM search detectors would

not necessarily imply a high probability of measuring BR(Bs → µ+µ−) at the Tevatron,

(or vice versa, contrary to the claim of [99]).

In the two bottom panels of Fig. 14 we show high probability regions for BR(Bs →
µ+µ−) and BR(B̄ → Xsγ), and for BR(B̄ → Xsγ) and σSI

p . In the first case, the high

relative probability region for BR(Bs → µ+µ−) lies at small values, just above the SM

prediction and corresponds to the BR(B̄ → Xsγ) around the central value, as noted

above. It may eventually be possible to verify this correlation experimentally. Finally

the variables BR(B̄ → Xsγ) and σSI
p show two separate peaks in the relative probability

density. Again, the peak at smaller σSI
p comes from the coannihilation and Higgs resonance

regions while the other one from the FP region. In principle, a measurement of σSI
p above

some 10−8 pb would point towards a range of BR(B̄ → Xsγ) above the current central

value. Unfortunately, until a full NLO SUSY contribution is available, error bars in the

latter quantity will remain at the level of some 10%, which would make it difficult to

confirm the FP origin of the σSI
p measurement.

In the four panels of Fig. 15 we plot in the (m1/2,m0) plane values of mh (upper left),

Ωχh
2 (upper right), δaSUSY

µ (lower left) and σSI
p (lower right). The points have been drawn

uniformly from our MC chains. To highlight the values of interest for the observables,

the range of the color scales has been reduced, and points with values above (below) the

scale have been plotted in red (blue). One can see that mh increases with increasing m1/2

or m0, as expected. In the region where m1/2 ∼< 1 TeV and/or m0 ∼< 2 TeV (roughly

the reach of the LHC) one predominantly finds mh ∼< 117 GeV (although larger values

are not excluded), which is encouraging for Higgs searches [100]. In all the panels, at

m1/2 ≃ 0.2 TeV, there is a vertical favored region due to a narrow light Higgs resonance

contribution to Ωχh
2. It is interesting that in the rest of the (m1/2,m0) plane one finds

that the WIMP relic density (upper right window) can take any value within about the

2σ range of (3.12). In other words, even though for each particular choice of the CMSSM

and nuisance SM parameters there are only a few narrow regions consistent with the DM

constraint (3.10), by performing the appropriate marginalization over all other parameters

it appears to be fairly easy to satisfy the WMAP value of the DM abundance at almost

any point in the (m1/2,m0) plane. This feature can also be seen in Fig. 6.
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Figure 15: Values of mh (upper left), Ωχh
2 (upper right), σSI

p (lower left) and δaSUSY
µ (lower

right) in the (m1/2,m0) plane for samples uniformly selected from our MC chains. While σSI
p and

δaSUSY
µ show a clear correlation with the values of (m1/2,m0), the CDM abundance Ωχh

2 can take

any value within the 2σ WMAP range in the plane. Narrow “WMAP strips” in the (m1/2,m0)

plane for fixed values of tanβ and A0 thus disappear when these parameters are allowed to vary

and all other parameters are correctly marginalized over.

The values of σSI
p (bottom left panel of Fig. 15) cover a large range but are generally

larger for smaller m1/2 and intermediate and large m0 (compare with Figs. 12 and 13

(top)), with the exception of the light Higgs boson resonance region at small m1/2. This

means that DM direct detection searches will in general explore the large m0 region of FP

first – an interesting complementarity with collider searches.

On the other hand, the claimed discrepancy between experiment and the SM value (3.7)

of the anomalous magnetic moment, when taken at face value, clearly points towards a

different region of m1/2 ∼< 0.8 TeV (at small m0) and m0 ∼< 1.5 TeV (at small m1/2), as can

be seen in the bottom right panel of Fig. 15. Thus, similarly to the case of BR(Bs → µ+µ−)

described above, a positive measurement of σSI
p in currently running DM detectors (above
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Figure 16: The 1–dimensional relative posterior pdf’s as in Fig. 4. The black solid (blue dotted)

line is for the analysis including (excluding) the measurement of the anomalous magnetic moment

of the muon, Eq. (3.7). Both cases assume the “4 TeV range” priors.

some 2 × 10−8 pb) would lead to a strong tension with the current result for δaSUSY
µ .

4.6 Sensitivity to (g − 2)µ

As we have shown above, the 2.7σ deviation of the anomalous magnetic moment of the

muon from the SM prediction appears to be in tension with some of the other observables.

To investigate to what extent our statistical inferences on superpartner masses rely on the

inclusion of δaSUSY
µ , in this section we present the posterior pdf’s obtained by dropping it

from the likelihood. To be as general as possible, we have adopted the “4 TeV range” of

the priors.

– 37 –



Figure 17: As in Fig. 5. The black solid (blue dotted) line is for the analysis including (excluding)

the measurement of the anomalous magnetic moment of the muon, Eq. (3.7). Both cases assume

the “4 TeV range” priors.

Fig. 16 compares the 1–dimensional marginalized posterior pdf p(θi|d), where θi = m0,

m1/2, A0 and tan β with and without the inclusion of δaSUSY
µ in the likelihood. If we drop

the anomalous magnetic moment measurement we loose essentially all constraint on m0,

whose pdf becomes flat above 1 TeV. The impact on m1/2 is very mild, with a slight shift

to larger values of the bulk of the pdf. There is also almost no change in the pdf’s for A0

and tan β. Intervals encompassing 68% and 95% of probability for the CMSSM parameters

are given in Table 7 (compare with Table 5).

The implications for several representative superpartner masses are presented in Fig. 17,

which should be compared with Fig. 5. The corresponding probability intervals are sum-

– 38 –



Figure 18: The probability for the superpartner masses to lie below a given mass. All other

parameters have been marginalized over.

marized in Table 8. One should remember that the dominant contribution to δaSUSY
µ comes

from the sneutrino–chargino exchange [101]. Since mν̃ depends much more strongly on m0

than on m1/2, while mχ±

1
is more dependent on m1/2, both soft parameters are affected

but m0 more strongly.

An experimental implication for the LHC is rather obvious. If the δaSUSY
µ anomaly

is not confirmed, the probability of finding sleptons and squarks will be reduced. This

can be see in Fig. 18 where we plot the total probability as a function of mass for several

superpartners. We show three cases: the “2 TeV range” (dotted red), as well as our

default “4 TeV range” case with (black solid) and without (dotted blue) the (g − 2)µ
constraint (3.7). It is clear that the total probability that the mass of squarks or sleptons
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“4 TeV range”, no (g − 2)µ
Parameter 68% region 95% region

m0 (TeV) < 2.87 < 3.85

m1/2 (TeV) (0.56, 1.38) (0.14, 1.73)

A0 (TeV) (−0.60, 2.89) (−2.46, 4.59)

tan β (28.2, 53.8) (10.2, 57.0)

Table 7: CMSSM parameter ranges corresponding to 68% and 95% of posterior probability (with

all other parameters marginalized over) for the “4 TeV range” but without the constraint from

(g − 2)µ. These ranges should be compared with Table 5.

Super– “4 TeV range”, no (g − 2)µ
partner 68% 95%

χ0
1 (0.23, 0.60) (0.57, 0.76)

χ±

1 (0.33, 1.10) (0.11, 1.31)

g̃ (1.36, 3.05) (0.42, 3.79)

ẽR (1.12, 3.48) (0.40, 3.95)

ν̃ (1.11, 3.18) (0.56, 3.75)

τ̃1 (0.61, 2.71) (0.32, 3.58)

q̃R (2.08, 4.00) (1.43, 4.75)

t̃1 (1.47, 2.76) (1.00, 3.48)

b̃1 (1.70, 3.19) (1.21, 3.95)

Table 8: Selected superpartner mass ranges (in TeV) containing 68% and 95% of posterior prob-

ability (with all other parameters marginalized) for the “4 TeV range” but without the constraint

from (g − 2)µ. These intervals should be compared with Table 6.

Observable “4 TeV range”, with (g − 2)µ “4 TeV range”, w/o (g − 2)µ
68% 95% 68% 95%

Ωχh
2 (0.107, 0.138) (0.946, 0.157) (0.107, 0.138) (0.949, 0.158)

δaSUSY
µ × 1010 (1.9, 9.9) (0.8, 17.1) N/A N/A

BR(Bs → µ+µ−) × 109 (3.5, 16.8) (3.3, 75.0) (3.5, 8.5) (3.3, 41.0)

BR(B̄ → Xsγ) × 104 (2.93, 3.44) (2.62, 3.61) (3.08, 3.49) (2.77, 3.62)

σSI
p ( pb × 1010) (1, 100) (0.5, 320) (0.8, 117) (0.3, 208)

Table 9: Intervals encompassing 68% and 95% of posterior probability for selected observables

(with all other parameters marginalized). The two columns compare results for the “4 TeV range”

with (left column) and without (right column) inclusion of the constraint from (g − 2)µ.

lies below a certain value depends rather strongly on the choice priors and/or the (g − 2)µ
constraint. On the other hand, this is not the case for the gauginos. By comparing Tables 8

and 6 it would seem that the upper bound of the 95% interval does not change much for

the squark and gluino masses. However, this is probably a manifestation of the upper cut

induced around 4 TeV by the prior, and therefore should not be taken as a robust result

of the inference, analogously to what has been discussed above for m0.
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In Table 9 we summarize the effect of the (g − 2)µ constraint on some of our other

observables. While the relic abundance is unaffected, BR(Bs → µ+µ−) and σSI
p get shifted

to lower values as a consequence of a less constrained m0 when the (g − 2)µ anomaly is

discarded.

5. Summary and conclusions

In this work we performed a detailed investigation of the CMSSM parameter space using

a MCMC method and analyzed our results in terms of Bayesian statistics. The power

and flexibility of the approach allowed us to probe many previously unexplored ranges

of parameters. Furthermore, we were able to improve on previous analyses in several

important aspects. We fully incorporated the effects of remaining uncertainties in relevant

SM parameters (including αem(MZ)MS), which are usually fixed to their central values.

We incorporated often neglected theoretical uncertainties in computing mass spectra and

observables. Finally, we improved upon the usual practice of applying sharp experimental

limits and (typically) 1σ uncertainties by smearing them out.

By carefully constructing the likelihood function we constrained the CMSSM param-

eters by comparing several collider and astrophysical observables (except for σSI
p ) with

the available data. For all these variables we computed the posterior probability density

functions – our main tool in analyzing our findings – in terms of which we delimited the fa-

vored regions of the CMSSM parameters, and further derived the ranges of the observables

themselves that are favored by a combination of currently available data. We emphasized

the difference between the posterior probability density and the quality of fit statistics.

The latter is formulated in terms of an average effective χ2, and is akin to what is used in

fixed–grid scans. For example, we concluded that the strong preference for a large tan β

shown by the posterior pdf does not imply that all the best fitting points lie in that region

of parameter space. This issue can only be resolved by acquiring better data.

We explored in detail the robustness and sensitivity of our results to the assumed

initial ranges of CMSSM and SM parameters (priors). To this end we compared our

findings for the default “4 TeV range” prior (which include the somewhat uncertain FP

region) extending above the LHC reach, with the more restrictive “2 TeV range” prior.

We emphasized that much care must be exercised in interpreting our inferences whenever

boundaries of high probability regions lie close to the prior ranges. This applies mainly to

m0, and to the superpartner masses that primarily depend on it, while all other variables

appear robust to a change in the range of the priors.

We furthermore examined various correlations among the relevant observables. Some

have been pointed out before, e.g., between BR(Bs → µ+µ−) and δaSUSY
µ or σSI

p (the last

one showing a new feature due to the presence of the FP region). A more subtle correlation

between BR(B̄ → Xsγ) and BR(Bs → µ+µ−) emerged, which may eventually be tested

experimentally. We note that at present none of the observables appear to be in conflict

with observations or with each other, with the possible exception of (g−2)µ. In particular,

the cosmological constraint on Ωχh
2 appears less severe than what has been previously

thought.
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Our findings in the CMSSM strongly support the idea of low energy SUSY, although of

course they do not disfavor other possibilities, like split SUSY [102]. Quantitatively, at 68%

probability, we have found 0.52 TeV < m1/2 < 1.26 TeV, m0 < 2.10 TeV, −0.34 TeV <

A0 < 2.41 TeV and 38.5 < tan β < 54.6. The corresponding ranges of superpartner masses

are given in column two of Table 6. A significant fraction of the 68% probability ranges of

superpartner masses falls within the LHC reach, and typically outside the Tevatron reach.

The same applies to BR(Bs → µ+µ−) for which most favored CMSSM values are not far

above the SM prediction. On the other hand, a positive measurement of BR(Bs → µ+µ−)

at the Tevatron would strongly disfavor large m0, including the focus point region. The

WIMP DM direct detection elastic scattering cross section σSI
p shows a wide spread of

values (below today’s limits) at around 10−9±1 pb and a strong anti–correlation with mχ.

In addition, a relatively large σSI
p ≃ 1.6 × 10−8 pb, fairly independent of mχ, appears to

be a feature of the FP region (despite large theoretical uncertainties) and will probably be

the first to be tested in direct detection experiments.

The (g− 2)µ anomaly still remaining the subject of some controversy, we re–examined

its impact on the CMSSM parameter space. We showed the inference to be substantial

on m0, and any superpartner masses that primarily depend on it, while much less so with

the other CMSSM parameters. The chance for the LHC to detect superpartners reduces

somewhat but still remains strong.
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A. Markov chain Monte Carlo algorithm

A.1 Sampling

The purpose of the Markov Chain Monte Carlo (MCMC) algorithm is to construct a

sequence of points in parameter space (called “a chain”) whose density is proportional

to the posterior pdf of Eq. (2.5). Once such a chain has been produced, the posterior

probability for a given region of parameter space (a bin) is obtained by simply counting

the number of samples within that region. Marginalization over nuisance parameters (see

7Available from cosmologist.info.
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Eq. (2.6)) is trivial: the coordinates of the parameters that one is not interested in are

simply ignored when counting the samples.

Several algorithms are available to construct Markov chains, which are more or less

suited to the structure of the parameter space under consideration, see e.g. [103] for an

introductory review and references therein. We make use of the Metropolis algorithm: from

a starting point in parameter space η0 with associated posterior probability p0, a candidate

point ηc for the next sample is proposed by sampling it from a transition probability

T (η0, ηc). The candidate sample is then accepted with probability

α = min

(
pc

p0
, 1

)
, (A.1)

where pc = p(ηc|d). Notice that all steps for which the candidate sample has a better

probability than the previous one are accepted. If the candidate point is accepted, it

becomes the new starting point, and another candidate is drawn. Otherwise the chain

stays at the previous point (which is thus counted twice) and a new attempt is made from

there. It can be shown that the sequence of samples η0, η1, . . . , ηt, . . . constructed this way

converges to the target distribution p(η|d) for t→ ∞.

The transition probability T (ηt, ηt+1) must be symmetric in its arguments (so called

“detailed balance”), a sufficient condition which ensures that the Markov chain constructed

this way is sampling from the target probability distribution. In our case, the transition

probability is given by the following prescription, which we found strikes a good balance

between efficiency and robustness of the exploration. At each step, we alternatively update

the value of the CMSSM parameters θ or of the nuisance parameters ψ. In general, all of

the components of either θ or ψ are updated at each step. The candidate point is proposed

along the direction w, where the vector w is restricted to either one of the two subspaces

(CMSSM or nuisance parameters) and it is given by

w = A · u. (A.2)

Here, A is a random rotation matrix which is restricted to a given subspace and which is

renewed every 4 steps. The components of u are initially chosen as a guess of the typical

spread of the posterior distribution along each direction of parameter space. The results of

a preliminary MCMC run are then used to estimate the covariance matrix for the posterior

pdf, whose eigenvectors give directions of approximate degeneracies in the parameter space.

In the final run, w is built analogously as above, but this time by a random rotation in

the space spanned by the projections of the eigenvectors of the covariance matrix. This

procedure aims at aligning the directions of the proposals to degeneracy lines in parameter

space, thus improving the efficiency of the MCMC walk.

Along the direction defined by w, the width of the step is chosen by multiplying |w|
by a scaling factor s and a factor r drawn from the distribution

p(r) ∝ 2

3
rn−1 exp(−nr2/2) +

1

3
exp(−r), (A.3)

with n = 4 and s = 2.4. The first term on the rhs of the proposal distribution (A.3) tends

to make the chain move away from r = 0 for n > 1, while the second term increases the
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probability near the origin. Thus this distribution tends to be robust even in situations

where the target pdf is strongly non–Gaussian. The above choices for the proposal distri-

bution and for the parameters n, s are mostly a matter of trial–and–error. Our updating

procedure follows closely the recommendations of [104]. Notice that since our choice of the

step direction and size do not depend on ηt, ηt+1 at any moment, the condition of detailed

balance for the transition probability holds true.

A.2 Convergence

We start N = 12 or N = 16 chains in randomly chosen points of parameters space (within

the boundary specified by our prior range), making sure that they lie well apart from each

other in order to maximise the initial variance. A certain number of samples have to be

discarded at the beginning of the chain, since the chain requires some time to equilibrate

around the target distribution. This “burn–in period” is assessed by inspecting the evo-

lution of the probability as a function of the number of samples. We find that discarding

103 initial samples is more than sufficient.

The acceptance rate is defined as the percentage of accepted proposals. For the runs

using the covariance matrix the typical acceptance rate is in the range 2 − 3%. This is

rather low, compared to optimal cases where the acceptance rate is typically an order of

magnitude larger. The reason for this is the configuration of the posterior pdf in multi–

dimensional parameter space, which is strongly non–Gaussian and presents a challenging

combination of wide regions and narrow wedges of high probability. There is no optimal

strategy in this case, but we are confident that our chains have appropriately sampled the

whole parameter space. We performed extensive checks by comparing runs obtained with

and without the covariance matrix in order to make sure that the efficiency gain did not

come at the expenses of a reduced sampling ability.

Mixing and convergence of the chains is assessed with the Gelman & Rubin R–

statistics [105]. This represents the variance of the means divided by the mean of the

variances between different chains. The usual criterion is that R − 1 ∼< 0.2, but to be

conservative we require that for our chains R − 1 < 0.05 for all parameters (this means

that our convergence criteria are more stringent).

Typically we run in parallel two sets of N = 12 or N = 16 chains, until each chain

within the set has reached 3 × 104 or 4 × 104 samples8 (the exact numbers depending on

the computing power available and on the convergence status). We check that each run

has converged using the criterion outlined above, and we then perform consistency checks

between the two runs. The final inferences are obtained after merging the two sets of

chains together. At this final stage, the Gelman and Rubin criterion is again satisfied by

the merged set consisting of 24 ≤ N ≤ 32 chains, containing a total number of samples in

the range of 0.7 × 106 to 1.3 × 106.

8Since each sample is obtained with a typical acceptance rate of 3%, this means that each chain requires

O(106) likelihood evaluations, each of which takes about 1–2 sec on our machines.
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