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ABSTRACT. Based on the ideas of Cuntz and Quillen, we give a simple construction of cyclic homol-
ogy of unital algebras in terms of the noncommutative de Rham complex and a certain differential
similar to the equivariant de Rham differential. We describe the Connes exact sequence in this setting.

We define equivariant Deligne cohomology and construct, for each n ≥ 1, a natural map from cyclic
homology of an algebra to the GLn-equivariant Deligne cohomology of the variety of n-dimensional
representations of that algebra. The bridge between cyclic homology and equivariant Deligne co-
homology is provided by extended cyclic homology, which we define and compute here, based on the
extended noncommutative de Rham complex introduced previously by the authors.
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1. INTRODUCTION

1.1. There are several definitions of cyclic homology. The original definition, due to A. Connes
[Con] (see also Tsygan [Tsy1]), works for algebras over fields of characteristic zero and is based
on a cyclic version of the Hochschild complex. Another definition that involves a double complex
and that works in arbitrary characteristic is due to Loday and Quillen [LQ] (motivated by Tsygan
[Tsy1]). This definition may be reformulated in terms of a slightly different (b,B)-complex, where
b and B are the Hochschild and the Connes differentials, respectively. There is yet another defi-
nition of cyclic homology as a certain nonabelian derived functor, due to Feigin and Tsygan [FT].
All the above definitions are known to be equivalent (see, e.g., [Lo]), and each one has certain
advantages.

In this paper, we give one more definition of (reduced) cyclic homology for unital algebras
over fields of characteristic zero (more generally, over commutative rings k containing Q, when
the algebra is k-split). Our approach is partly motivated by a well known analogy, that goes
back to Rinehart [Ri], between the Connes differential B and the familiar de Rham differential on
differential forms. In the case of commutative algebras, this analogy can be made precise (see,
e.g., [Lo, §3.4]). In the general case of not necessarily commutative algebras, Karoubi [Kar82,
p. 383], and independently Connes (implicitly in [Con, §II]), introduced a certain complex of
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noncommutative differential forms noncommutative de Rham complex, that comes equipped with a
natural differential d, the Karoubi-de Rham differential. The cohomology of the noncommutative
de Rham complex is not directly related to cyclic homology, however. A precise relation between
the two is given by the so-called Connes-Karoubi theorem ([Con, p. 334, Theorem 34], [Kar87,
Théorème 2.15]); see also (4.1.2) below.

In our approach, cyclic homology is constructed directly in terms of the noncommutative de
Rham complex so that the Karoubi-de Rham differential d literally replaces the Connes differential
B. There is also another differential involved in the construction, a counterpart of the Hochschild
differential b. This new differential i, introduced first in [CBEG, §2.8, §3.1], anti-commutes with d
(while b does not anti-commute with d) and is, we believe, more closely related to geometry than
b. Specifically, for every (not necessarily commutative) algebra A, there is a canonical derivation
∆ : A→ A⊗A given by the formula ∆(a) := 1⊗ a− a⊗ 1. The differential i may be thought of as
a contraction operation of noncommutative differential forms with the derivation ∆; see op. cit.,
[GS, Lemma 3.5.1.(i)], and Section 5 below for more details.

Using our construction, we obtain a simple proof of the exact sequence (4.1.2) that does not
require double complexes (as Karoubi’s proof in [Kar87, §2] does; although Connes’ proof in [Con,
§I.4, II.1–4] does not use double complexes, the construction there of S involves a cup product of
cycles and appears more technically involved than our construction).

There are two additional features of the construction of cyclic homology given in this paper
which, we believe, are especially appealing. The first one is its close analogy with equivariant co-
homology. A well known result of Goodwillie [Go] says that the cyclic homology of (the de Rham
DG algebra of) a manifold X is isomorphic to the S1-equivariant cohomology of L(X), the cor-
responding free loop space. The role of the extended noncommutative de Rham complex, introduced
in §5 below, is somewhat analogous to that of the equivariant de Rham complex of the free loop
space. Specifically, our extended noncommutative de Rham complex comes equipped with a pair
of anti-commuting differentials, the Karoubi-de Rham differential d and a differential it which is
analogous to the S1-equivariant differential. Cyclic homology is then related to the cohomology
of the extended noncommutative de Rham complex via a map, which we call the ‘Tsygan map’,
that intertwines the differentials b and B, respectively, in the standard (b,B)-complex with the dif-
ferentials it and d, respectively, in the extended noncommutative de Rham complex. The Tsygan
map may be viewed as a noncommutative analogue of multiplication by the function exp(t).

The second feature of our construction is its obvious similarity with truncated de Rham com-
plexes. The latter show up in the standard description of cyclic homology of the coordinate ring
of an algebraic variety. Thus, our construction provides an analogous description in the noncom-
mutative setting. Some of the above mentioned analogies can be made precise via the notion of
representation functor and equivariant Deligne cohomology. This will be discussed in §8.

1.2. Layout of the paper. In §2, we introduce the noncommutative de Rham complex and dis-
cuss harmonic decomposition, a powerful technical tool discovered by Cuntz and Quillen [CQ1],
[CQ2].

In §3, we give our new construction of cyclic homology, as well as similar constructions for
periodic and negative cyclic homology. We then use harmonic decomposition to prove that our
construction and the standard one are equivalent.

Section 4 is devoted to the Connes exact sequence. We show how to construct such a sequence
entirely within our approach. We also establish the equivalence with the standard construction.

Section 5 contains some of the most important results of the paper. We introduce the extended
noncommutative de Rham complex and define extended cyclic homology. Extended cyclic homol-
ogy groups come equipped with an additional ‘weight grading.’ We show that the positive weight
part is isomorphic to the Karoubi-de Rham homology, while the negative weight part reduces to
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the usual cyclic homology. A key role in proving these results is played by the Tsygan map. We
have arrived at the definition of the Tsygan map by analyzing Tsygan’s construction [Tsy2] (that
construction was motivated, in turn, by our results in [GS]).

Section 6 is devoted to the proof of Theorem 5.3.10, which is perhaps the most difficult result of
the paper. In §7, we discuss ‘extended versions’ of periodic and negative cyclic homology.

In the last section we relate our results to geometry. We begin by introducing equivariant Deligne
cohomology, an equivariant counterpart of Deligne cohomology, i.e., of the cohomology theory
based on truncated algebraic de Rham complexes. The equivariant Deligne cohomology theory
that we define appears to be new.

Next, we give a short review of some standard constructions related to the representation func-
tor. Recall that, associated with a (not necessarily commutative) algebra A and an integer n ≥ 1,
there is an affine scheme RepnA parametrizing n-dimensional representations of A, cf. [CBEG].
This scheme comes equipped with a natural action of the algebraic group GLn, by base change
transformations. An important application of our approach is a construction of a canonical map
from the cyclic homology of A to the equivariant Deligne cohomology of the scheme RepnA. We
should point out that considering equivariant (as opposed to ordinary) cohomology of represen-
tation schemes is, in a sense, the only natural thing to do. Indeed, two representations of the
algebra A are equivalent if and only they belong to the same GLn-orbit in RepnA. Thus, the object
which is most relevant here is the quotient stack RepnA/GLn rather than the scheme RepnA itself.
The GLn-equivariant Deligne cohomology of the scheme RepnA may be viewed as the ordinary
Deligne cohomology of the stack RepnA/GLn.

In the special case where n = 1 and A is the coordinate ring of a smooth affine algebraic variety
X , one has Rep1A = X . In this case, our construction reduces to, and provides a more explicit
form of, the well known isomorphism between cyclic homology of the coordinate ring and Deligne
cohomology of X , cf. [Lo, §3.6].

A different relation between cyclic homology of an algebra and its representation schemes is
studied in the recent paper by Berest, Khachatryan, and A. Ramadoss [BKR]. It does not consider
equivariant cohomology, however.

1.3. Acknowledgements. We are very much indebted to Boris Tsygan for his kind explanations
of the construction in [Tsy2], which inspired the present work.

The first author was supported in part by the NSF grant DMS-1001677. The second author is
a five-year fellow of the American Institute of Mathematics, and was partially supported by the
ARRA-funded NSF grant DMS-0900233.

2. NONCOMMUTATIVE DIFFERENTIAL FORMS

2.1. The Karoubi-de Rham complex. Fix k, a unital commutative Q-algebra, and put ⊗ = ⊗k.
Throughout the paper, we fix a unital associative algebra A over the ground ring k satisfying

the additional assumption that the natural map k → A is a k-split injection, i.e., there exists a
k-module direct sum decomposition A = k⊕A, where A = A/k. This assumption trivially holds
if k is a field.

From A one constructs ([Kar82, p. 383], [Con, p. 314]1) the dg algebra (ΩA, d) of noncommutative
differential forms. By definition, ΩA is the k-algebra generated by symbols a ∈ A and d a, a ∈ A,
subject to the relations

a · b = ab, d(ab) = a · d b+ (d a) · b.
The differential is then the derivation defined by d(a) = d a and d(d a) = 0. It evidently has square
zero. The grading is given by |a| = 0, | d a| = 1 for nonzero a ∈ A.

1In this reference, Connes refers to the earlier papers [Arv, Kar82], but they seem to discuss only commutative
differential forms.
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Since d kills k ⊂ Ω0A, it descends to the reduced complex, ΩA, defined by ΩA := ΩA/k.
As explained in [CQ1, §1], one has a canonical isomorphism of left A-modules

A⊗A⊗n ∼→ ΩnA, a0 ⊗ a1 ⊗ · · · ⊗ an 7→ a0 da1 da2 · · · dan, a0 ∈ A, a1, . . . , an ∈ A. (2.1.1)

From this and the assumption that k ↪→ A is split it follows that (ΩA, d) is acyclic; see [CQ1, §1].
For every graded algebra B and graded vector subspace V ⊆ B, let [V, V ] denote the linear

span of (super)commutators [v1, v2], v1, v2 ∈ V . Following Karoubi [Kar87, 1.3, 1.24], define the
noncommutative de Rham complex of A and its reduced version by

DRA := ΩA/[ΩA, ΩA], and DRA := (DRA)/k = ΩA/[ΩA, ΩA].

We write f\ for the image of an element f ∈ ΩA under the natural projection ΩA� DRA.
The differential d on ΩA descends to DRA. Let HDn(A) and HDn(A) denote the n-th homology

of (DRA, d) and (DRA, d), respectively. We will call these the Karoubi-de Rham homology and its
reduced version.

As noticed by Karoubi [Kar82, p. 30] (and also implicit in Connes’ work), the Hochschild dif-
ferential on ΩA (or on ΩA) is given by the formula

b(α da) = (−1)n−1[α, a], α ∈ ΩnA, a ∈ A, and b |Ω0A = 0. (2.1.2)

A crucial role below will also be played by another map i : ΩA→ ΩA, defined by

i(a0 da1 · · · dan) =

n∑
`=1

(−1)(`−1)(n−1)+1[a`, da`+1 · · · dana0 da1 · · · da`−1] ∈ [A,Ωn−1A]. (2.1.3)

It is straightforward to check that the map i vanishes on [ΩA,ΩA] and hence descends to a well
defined map i : DR

q
A→ Ω

q−1A. It follows that i2 = 0. In addition, one can check that d i + i d = 0.
The map i was first introduced in [CBEG, Lemma 3.1.1.(ii)]. A more conceptual definition of

this map (see §5) was discovered in [GS, Lemma 3.5.1.(i)]. From that definition the above stated
properties become immediate consequences of noncommutative calculus ([GS, Lemma 3.5.1.(ii)]).

2.2. Harmonic decomposition. Since the algebra A is fixed throughout the paper, we will often
use simplified notation Ω = ΩA, Ω = ΩA, DR = DRA, etc.

Following [Kar87], define the Karoubi operator as

κ : Ω→ Ω, κ(α da) = (−1)|α| daα, α ∈ Ω, a ∈ A; κ|
Ω

0 = 0. (2.2.1)

The Karoubi operator is related to the operators b and d by [Kar87, CQ1]

b d + d b = Id−κ. (2.2.2)

According to [CQ2, §2], there is a direct sum decomposition

Ω = PΩ⊕ P⊥Ω, PΩ := ker(Id−κ)2, P⊥Ω := im(Id−κ)2.

Let P and P⊥ denote the projections onto the first and second summands of this decomposition,
respectively, which we will call the harmonic and antiharmonic parts.

It follows from (2.2.2) that κ commutes with d and b. Hence, harmonic decomposition is stable
under κ, b, and d, and it induces a similar decomposition on H(Ω, b) and H(Ω, d).

Let N be the grading operator on Ω, defined by N |Ωn = n · Id. With the above notation, formula
(2.1.3) may be rewritten in the form [GS, Proposition 5.1.1]

i|Ωn = (Id +κ+ · · ·+ κn−1) b |ΩnA = b NP |Ωn . (2.2.3)

This is straightforward to check explicitly from (2.1.2), (2.1.3), and (2.2.1).
Finally, following [CQ2], one defines the Connes differential by

B |Ωn := (Id +κ+ · · ·+ κn) d |Ωn = N dP |Ωn . (2.2.4)
4



The above formulas show that the operators i and B respect harmonic decomposition and one
has

i d = b N dP = b B, and d i = d b NP = N d bP = B b .

Thus, the equations d i + i d = 0 and B b + b B = 0 are equivalent.
The next lemma collects various technical properties of harmonic decomposition which will be

used in various proofs (but not in the statements) in subsequent sections.

Lemma 2.2.5. One has

P [Ω,Ω] = P b Ω = iΩ (2.2.6)

P⊥[Ω,Ω] = P⊥Ω (2.2.7)

P⊥ d Ω = (Id−κ) d Ω = [d Ω, d Ω] (2.2.8)

P⊥ b Ω = (Id−κ) b Ω. (2.2.9)

Proof. Given a κ-action on a vector space V , let V κ = ker(Id−κ)|V denote the spaces of κ-invariants.
If the κ-action on V has finite order then V = V κ ⊕ (Id−κ)V ; in particular, the operator (Id−κ)2

acts on V by zero if and only if V = V κ.
It was observed in [Kar87, Lemme 2.12] that κ has finite order on d Ω and Ω/ b Ω. It follows that

κ has finite order also on Ω/ d Ω ∼= d Ω and on b Ω = b(Ω/ b Ω). Each of these spaces is κ-stable.
The first equation in (2.2.8) and equation (2.2.9) follow. Similarly, we deduce that the operator
Id−κ annihilates PΩ/P b Ω, i.e., (Id−κ)PΩ ⊂ bPΩ.

Formula (2.2.1) readily implies the second equation in (2.2.8); it shows also that (Id−κ)Ω =

[dA,Ω]. Similarly, from formula (2.1.2) we get that b Ω = [A,Ω]. Thus we obtain (cf. [CQ2]):

[Ω,Ω] = [A,Ω] + [dA,Ω] = b Ω + (Id−κ)Ω. (2.2.10)

Applying P to this equation and using the inclusion (Id−κ)PΩ ⊂ bPΩ proved above, we deduce
the first equation in (2.2.6). The second equation in (2.2.6) is clear from (2.2.3).

Finally, since Id−κ is invertible on P⊥Ω, formula (2.2.10) shows that P⊥Ω ⊆ (Id−κ)Ω ⊆ [Ω,Ω].
This yields the inclusion P⊥Ω ⊆ P⊥[Ω,Ω]. The opposite inclusion is obvious, proving (2.2.7). �

3. MAIN CONSTRUCTIONS

3.1. Construction of Hochschild and cyclic homology. Let ΩA((u)) be the space of formal Laurent
series with coefficients in ΩA. We assign the variable u degree −2, so that the total degree of an
element f ∈ Ω

p
A · u−r equals |f | = p+ 2r. Thus, each of the differentials uB and b has degree −1.

Standard constructions of various versions of cyclic homology involve the k[u]-modules k[[u]] ⊂
k((u)) and R := k((u))/uk[[u]]. Specifically, reduced relative (to k) Hochschild and cyclic homology
of A are defined as follows

HH q(A) = H(ΩA, b), HC q(A) = H(ΩA⊗R, b−uB), (3.1.1)

HCperq (A) = H(ΩA((u)), b−uB), HC−q (A) = H(ΩA[[u]], b−uB). (3.1.2)

A central result of this article is

Theorem 3.1.3. For a k-algebra A satisfying our standing assumptions, one has canonical isomorphisms:

HH q(A) ∼→ ker(i : DR
q
→ Ω

q−1
). (3.1.4)

HC q(A) ∼→ ker(i : DR
q
/ dDR

q−1 → Ω
q−1
/ dΩ

q−2
). (3.1.5)

Here, the first isomorphism is induced by the map Ω→ DR, f 7→ f\ and the second isomorphism is induced
by the map Ω⊗R→ DR,

∑
k≥0 fku

−k 7→ (f0)\.
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Isomorphism (3.1.4) has been already established in [GS, Theorem 4.1.1]. However, we will
reproduce the proof, since most of the intermediate steps will also be used in the proof of (3.1.5).

Proof of Theorem 3.1.3. First of all, from harmonic decomposition for Ω and [Ω,Ω], respectively, us-
ing equation (2.2.7), we see that the projection Ω � PΩ induces an isomorphism Ω/[Ω,Ω] ∼→
PΩ/P [Ω,Ω]. Further, equation (2.2.6) yields PΩ/ bPΩ = PΩ/P [Ω,Ω]. Also, the map i annihilates
the space P⊥Ω, by (2.2.3). Thus, we obtain a commutative diagram

PΩ/ bPΩ

b N ''

PΩ/P [Ω,Ω]

i
��

Ω/[Ω,Ω] DR

i
��

PΩ �
� // Ω.

(3.1.6)

We see from the diagram that the assignment f 7→ f\ maps the space H(PΩ, b) = ker(b :

PΩ/ bPΩ→ PΩ) isomorphically onto the space ker(i : DR→ Ω).
Next, since (Ω, d) is acyclic, it follows that its harmonic and anti-harmonic parts, (PΩ, d) and

(P⊥Ω, d), are acyclic as well. Hence also (PΩ,B) is acyclic, by (2.2.4). Cuntz and Quillen observed
in [CQ2] that this implies that the cohomology of all of the complexes appearing in (3.1.1)–(3.1.2)
are not affected by the replacement of the space Ω by its harmonic part PΩ. Specifically, it follows
from the above, using equations (2.2.2) and (2.2.4), that the following complexes are acyclic:

(P⊥Ω, b), (P⊥Ω((u)), b−uB), (P⊥Ω[[u]], b−uB), (P⊥Ω⊗R, b−uB).

Thus, the assignment f 7→ f\ gives an isomorphism H(P⊥Ω, b) ∼→ 0, and (3.1.4) follows.
To proceed further, we need the following result of Cuntz and Quillen, [CQ2, Proposition 3.1].

Lemma 3.1.7. The projection modulo u−1 and im(B) induces an isomorphism

HC q(A) = H q(Ω⊗R, b−uB) ∼→ H q(Ω/B Ω, b),
∑

k≥0 fk · u
−k 7→ f0 mod B Ω. (3.1.8)

Proof. Introduce an increasing filtration on Ω⊗R as follows:

Fj(PΩ⊗R) := PΩ⊗ (u−jk[[u]]/uk[[u]]) = PΩ⊗ Span(u−j , u−j+1, . . . , u−1, 1).

The fact that the complex (PΩ⊗R, B) is acyclic implies that the standard spectral sequence asso-
ciated to our filtration collapses at the second page to H(PΩ/BPΩ, b). We conclude that the map∑

k≥0 fk ·u−k 7→ f0 yields an isomorphism H(PΩ⊗R, b−uB) ∼→ H(PΩ/BPΩ, b), of harmonic
components. The same map also gives an isomorphismH(P⊥Ω⊗R, b−uB) ∼→ H(P⊥Ω/BP⊥Ω, b),
of anti-harmonic components. Since B(P⊥Ω) = 0, the second cohomology group is H(P⊥Ω, b) =
0, so these cohomology groups vanish. �

Remark 3.1.9. As pointed out to us, an alternative proof of the theorem can be given as follows: as
mentioned in the proof of Lemma 2.2.5, Karoubi observed that κ has finite order on the quotient
Ω/ b Ω. Therefore, the κ-invariants and coinvariants in Ω/ b Ω are isomorphic. Hence, the maps
i : DR

q
→ (Ω

q−1
)κ and b : DR

q
→ (Ω

q−1
)κ are identified, up to scaling. Then, the operator i can be

replaced by b in the proof, and one can deduce (3.1.4) as in the proof of [Kar87, Lemme 2.12] (see
also [Lo, p. 85]).
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The isomorphism in (3.1.5) is now obtained as a composition:

HC(A) = H(PΩ/BPΩ, b) by the proof of Lemma 3.1.7

=
{f ∈ PΩ | b f ∈ BPΩ}

bPΩ + BPΩ

= ker(b : PΩ/(bPΩ + BPΩ)→ PΩ/BPΩ)

= ker
(
i : (PΩ/ iPΩ)/ d(PΩ/ iPΩ)→ PΩ/ dPΩ

)
by (2.2.3)–(2.2.4)

= ker(i : DR / dDR→ Ω/ dΩ), by (3.1.6). �

3.2. Negative and periodic cyclic homology. Following [GS], we consider the bicomplex (Ω((u)),
u d, i), where each of the differentials u d and i has degree −1. The result below provides an inter-
pretation of periodic, negative, and ordinary cyclic homology in terms of the noncommutative de
Rham complex (in the latter case, this differs from the description of the previous section).

Note that the space [dΩ, dΩ] ⊆ Ω is annihilated by each of the differentials d and i. We view it
also as a subspace of Ω[[u]] (and Ω((u))), as constant terms in u.

Theorem 3.2.1. There are natural isomorphisms

HCperq (A) ∼= H q(Ω((u)), i− u d) (3.2.2)

HC−q (A) ∼= H q(Ω[[u]], i− u d)/[dΩ, dΩ] (3.2.3)

HC q(A) ∼= H q(Ω⊗R, i− u d)/[dΩ, dΩ]. (3.2.4)

In the case of (3.2.3), the [dΩ, dΩ] includes intoH q(Ω[[u]], i−u d) via the aforementioned inclusion
into Ω[[u]] as constant terms in u. As we will see in the proof of the theorem, the target coincides
with the antiharmonic part of H q(Ω[[u]], i− u d), and hence the inclusion is canonically split.

In (3.2.4), the inclusion of [dΩ, dΩ] into H q(Ω ⊗ R, i − u d) is more complicated, but can also be
given explicitly (in the proof of the theorem, we will see that the target is the antiharmonic part,
so this inclusion is also canonically split). The inclusion in question is defined as follows.

Observe first that the map d̄ : Ω/ d Ω→ d Ω, induced by d, is an isomorphism since the complex
(Ω, d) is acyclic. Write d̄−1 : d Ω ∼→ Ω/ d Ω for an inverse isomorphism. Further, let d̃−1 : d Ω → Ω

be a lift of d̄−1. In other words, we fix an arbitrary (set-theoretic) section, d̃−1, of the surjection
d : Ω � d Ω.

With the above notation, the inclusion used in (3.2.4) is given by

[dΩ, dΩ] ↪→ H q(Ω⊗R, i− u d), f 7→ (Id−u−1d̃−1i)−1d̃−1f.

One can show that this formula makes sense and the result is independent of the choice of a section
d̃−1, in a manner similar to the proof of Proposition 5.7.1 below.

In discussing Connes sequences involving these groups below, we will not use (3.2.4) but rather
the description of (3.1.5). Isomorphism (3.2.2) was already proved in [GS, Theorem 4.2.2]; we
included it in the above theorem for completeness only. For a related discussion of negative cyclic
homology see also [GS].

Proof of (3.2.3) and (3.2.4). We first deal with (3.2.3). Similarly to the arguments in the proof of
Theorem 3.1.3,

HC−(A) = H(Ω[[u]], b−uB) = H(PΩ[[u]], b−uB) = H(PΩ[[u]], i− u d).

Now, thanks to equation (2.2.8), we have embeddings [dΩ, dΩ] ∼→ P⊥ d Ω ↪→ P⊥Ω ↪→ P⊥Ω[[u]].
To complete the proof, it suffices to show that the composite embedding yields a quasi-isomorphism
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of complexes
[dΩ, dΩ]→ (P⊥Ω[[u]], i− u d), (3.2.5)

where the LHS is considered as a complex with zero differential.
To this end, we observe that the operator i vanishes on P⊥Ω and the complex (Ω, d) is acyclic.

Therefore, we find

H q(P⊥Ω[[u]], i− u d) = H q(P⊥Ω[[u]],−u d) ∼= dP⊥Ω
q
.

The term on the right equals [dΩ, dΩ] by (2.2.8), proving that (3.2.5) is a quasi-isomorphism.
For the isomorphism (3.2.4), we can apply the same argument as above to conclude that

HC(A) = H(PΩ⊗R, b−uB) = H(PΩ⊗R, i− u d).

Then, since i vanishes on P⊥Ω and the complex (P⊥Ω, d) is acyclic, we obtain

H(P⊥Ω⊗R, d) = P⊥Ω/u d(u−1P⊥Ω) ∼= P⊥Ω/ dP⊥Ω
d̄
∼→ dP⊥Ω ∼= [dΩ, dΩ].

Finally, note that the resulting isomorphism H(P⊥Ω ⊗ R, d) ∼= [dΩ, dΩ] is indeed inverted by
the claimed formula (Id−u−1d̃−1i)−1d̃−1, provided the chosen section d̃−1 respects harmonic de-
composition (or at least preserves antiharmonic forms). In fact, in this case, since i is zero on
antiharmonic forms, the resulting map reduces to d̃−1 = P⊥d̃−1. On the other hand, as observed
above, the formula does not actually depend on the choice of d̃−1. �

4. THE CONNES EXACT SEQUENCE

4.1. Connes exact sequence via noncommutative differential forms. We now construct a version
of Connes’ exact sequence, involving reduced homology groups, using the interpretation for cyclic
and Hochschild homology provided by Theorem 3.1.3. As pointed out in §1.1, the proof is simpler
than those of Karoubi and Connes, and unlike the former, does not involve double complexes.

Theorem 4.1.1. There is an exact sequence,

0→ HDn(A)
S2−→ HCn(A)

B−→ HHn+1(A)
I−→ HCn+1(A)

S1−→ HDn−1(A)→ 0, (4.1.2)

where the maps S2, B, I , and S1 are defined by the following assignments:

S2f\ = f\, Bf\ = (df)\, If\ = f\, S1(f\) = (d̄−1 i f\)\. (4.1.3)

Note here that the map B : HCn(A) → HHn−1(A) is distinguished by its font from the dif-
ferential B on Ω and Ω. We let S := S2 ◦S1 : HCn(A) → HCn−2(A). This is the standard pe-
riodicity map which splices the above exact sequence into the more familiar Connes’ long exact
sequence. The exact sequence of Theorem 4.1.1 incorporates additional information, implying that
HD q(A) = ker(B) (the Connes-Karoubi theorem).

We now prove that the above maps are well-defined. We will prove that they coincide with
the usual definitions in §4.2, and give a direct proof of exactness (using the right hand sides of
(3.1.4)–(3.1.5) as definitions) in §4.3.

The map S2 is obtained from the clearly well-defined map ker(d |DR)/ d DR → DR / dDR; we
need to check that the image is contained in the kernel of i. Indeed, if (df)\ = 0, then d i f\ =

− i(df)\ = 0, and hence i f\ ∈ dΩ, as required.
We now show that B is well-defined. First note that, if f\ ∈ DR / dDR, then (df)\ ∈ DR makes

sense independently of the choice of representative element f ∈ Ω. Next, if i f\ ∈ dΩ, then i(df)\ =

− d i f\ = 0, so (df)\ ∈ DR defines a class in Hochschild homology.
It is immediate that I is well-defined.
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To prove that S1 is well defined, we compute

d̄−1 i d DR = d̄−1 d i DR = (i DR + d Ω)/ d Ω.

Since i DR ⊆ [A,Ω], by (2.1.3), the right most term above projects to zero in DR / d DR. It follows
that the formula for S1 gives a well defined map S1 : HC(A) → DR / d DR. It remains to check
that dS1(f) = 0 for every f ∈ DR such that i f ∈ d Ω. Indeed, dS1(f) = d(d̄−1 if)\ = (if)\ = 0,
since i DR ⊆ [A,Ω]. �

4.2. Comparison of maps in (4.1.2) with the usual definitions. We now show that the maps in
(4.1.2) coincide with the usual ones up to nonzero integer multiples depending on degree (i.e., a
nonvanishing expression involving the aforementioned degree operator N). We will make use of
the fact that every homology class can be represented by a harmonic cycle.

Here and later on we will make use of the notation f0 for the constant term in u of an element
f ∈ Ω((u)) (or f ∈ Ω[[u]]).

4.2.1. The map B. If f is a harmonic cycle with respect to the usual definition of Hochschild or
cyclic homology, then (2.2.3) implies that B f = N df . Since the usual B is essentially defined
by applying B and our version is defined by applying d, this shows that the difference is post-
composition with N, which is nonvanishing since d has de Rham degree 1.

4.2.2. The map I . The map I is defined by leaving the harmonic cycle representing a homology
class unchanged, and mapping it from one complex to another (throwing out the coefficients of
u>0 in the case of I acting on the usual definition of cyclic homology). Since the isomorphisms
from ordinary versions to our versions of Hochschild and cyclic homology also leave the harmonic
cycles unchanged, we obtain the desired compatibility.

4.2.3. The maps S1 and S2. Let us consider S1. Suppose that f ∈ Ω((u))/uΩ[[u]] is a harmonic cycle
of degree n + 1, i.e., |f | = n + 1 under the total degree in which |Ωj | = j and |u| = −2. The usual
periodicity operation is f 7→ u · f . We need to show that i(f0)\ = d((uf)0)\. Since (i − u d)f = 0,
this is immediate.

Regarding the map S2, we only need to observe that the usual formula for S2 is uniquely de-
termined by the fact that the part mapping to a coefficient of u0 is the obvious map (leaving har-
monic cycles unchanged). (To obtain the coefficients of u<0, we can use the usual periodicity map
S = S2 ◦S1, which is multiplication by u. Then, our construction yields the explicit formula d̄−1 i
for this operation, by the previous paragraph.)

4.3. Direct proof of exactness. Since we showed that the maps in (4.1.2) are compatible with the
isomorphisms between the new versions of cyclic and Hochschild homology and the usual ones,
exactness follows from the usual construction of (4.1.2) by a commutative diagram of short exact
sequences of the complexes computing Hochschild and cyclic homologies (cf. [Lo]).

Nonetheless, here we will prove exactness directly using our formulas (3.1.4)–(3.1.5).
Injectivity of S2: By definition, HD(A) ⊆ DR / dDR.
im(S2) = ker(B): By definition, the cycles in ker(B) are represented by f\ ∈ DR

n such that
d f\ = 0 and i f\ ∈ dΩ. The second condition is equivalent to d i f\ = 0, which follows from the first
condition. We deduce that ker(B) = HDn(A), as desired.

im(B) = ker(I): The cycles in ker(I) are those elements f\ ∈ DR
n such that i f\ = 0 and f\ ∈

dDR
n−1. Given the second condition, we can assume f = dg. Then i(dg)\ = i d g\ = 0 holds if and

only if i g\ ∈ dΩ, i.e., g\ ∈ HCn−1(A). Conversely, it is clear that im(B) ⊆ ker(I). We conclude that
ker(I) = im(B).
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im(I) = ker(S1): Every cycle in ker(S1) is represented by a harmonic element f\ ∈ DR such that
i f\ ∈ d [Ω,Ω]. By (2.2.6), P [Ω,Ω] = iΩ. We deduce that

i f\ = P i f\ ∈ P d [Ω,Ω] = dP [Ω,Ω] = d iΩ = i dΩ.

It follows that one can find g, h ∈ Ω such that i(g\) = 0 and f\ = g\ + dh\. Thus, in HC(A), we
obtain f\ mod d DR = I(g\), as desired.

Surjectivity of S1: Every class in HD(A) is represented by a harmonic element f ∈ Ω such that
d f\ = 0. This means that df ∈ P [Ω,Ω] = iΩ, thanks to (2.2.6). Thus, there exists g ∈ Ω such that,
in HD(A), we obtain f\ = d̄−1i(g) = S1(g\), as desired.

4.4. Connes’ exact sequences for periodic and negative cyclic homology. Now, using Theorem
3.2.1 (for periodic and negative cyclic homology) as well as Theorem 3.1.3 (for Hochschild and
ordinary cyclic homology), we construct versions of Connes’ exact sequences involving periodic
and negative cyclic homology.

It will be convenient below to introduce, for each n = 0, 1, . . . , the following space of degree n
elements in Ω[[u]]:

Zn(A) := {f ∈ (Ω[[u]])n | (i− u d)f is independent of u} (4.4.1)

= {f = fn + ufn+2 + u2fn+4 + . . .
∣∣ f j ∈ Ω

j
, df j = i(f j+2), ∀j = n, n+ 2, . . .}.

We observe that, for every element f = fn + ufn+2 + u2fn+4 + . . . ∈ Zn(A), in DR
n+1, one has

d(fn)\ = (i(fn+2))\ = 0. Therefore, the assignment sending f = fn + ufn+2 + u2fn+4 + . . . to
(fn)\ ∈ DR

n gives a well defined map I ′ : Z(A) → {α ∈ DR | dα = 0}. In particular, one has an
induced map

I ′HD : Z(A) → HD(A) = {α ∈ DR | dα = 0}/ d DR .

Next, it is clear from the definition that, for f = fn+ufn+2+u2fn+4+. . . ∈ Zn(A), the condition
(i − u d)f = 0 is equivalent to i(fn) = 0. Also, since iΩ projects to zero in DR, the map I ′ sends
the subspace (i− u d)Ω[[u]] ⊆ Z(A) of boundaries to zero. Hence, using (3.1.4), we deduce that the
map I ′ gives a well defined morphism

I ′HH : H q(Ω[[u]], i− u d) → HH q(A).

We define

HD
′
(A) := im[I ′HD : Z(A)→ HD(A)]

HH′(A) := im[I ′HH : H q(Ω[[u]], i− u d) → HH(A)]. (4.4.2)

Theorem 4.4.3. There is a commutative diagram with exact rows,

0 → HH′n

J
��

// HHn
B− //

I
��

HC−n+1
S− // HC−n−1

I− //

p−

��

HH′n−1 → 0

J
��

0 → HD
′
n� _

��

p2 // HCn
B′ // HC−n+1

p− //

I−

��

HCper
n+1

·u
= HCper

n−1

p1 // HD
′
n−1 → 0
� _

��
0 → HDn

S2 // HCn
B // HHn+1

I // HCn+1
S1 //

��
p

HDn−1 → 0

(4.4.4)

10



The maps in the diagram are defined by the assignments

p2f\ = f\, B−(f\) = df, B′(f\) = df, S−(f) = uf, p−(f) = f,

I−(f) = (f0)\, p1(f) = (f0)\, Jf\ = f\, p = p2 ◦p1.

Let us explain why all the maps above are well-defined. For B−, it is immediate that B− = B′I ,
so it is enough to show that B′ is well-defined. To this end, let f ∈ Ω satisfy i f\ ∈ dΩ. Then,
(i − u d) df = 0, so that df indeed defines a class in negative cyclic homology. We then need to
show that d [Ω,Ω] ⊆ (i− u d)Ω[[u]] + [dΩ, dΩ]. To prove this, we write [Ω,Ω] = P [Ω,Ω] + P⊥[Ω,Ω].
We know that P [Ω,Ω] = iΩ, by (2.2.6). Further, we compute

P⊥[Ω,Ω]
(2.2.10)

= P⊥ b Ω + P⊥(Id−κ)Ω
(2.2.9)

= (Id−κ) b Ω + (Id−κ)P⊥Ω ⊂ (Id−κ)Ω = [dA,Ω].

Thus, we have proved the inclusion we need: [Ω,Ω] ⊂ iΩ + [d Ω,Ω].
It is immediate that S− is well-defined. To show that p− is well-defined, we only need to show

that the space [dΩ, dΩ] is contained in the image of the differential i − u d, on Ω((u)). This follows
from the fact that i[Ω, dΩ] = 0.

For the map I−, we observe that this map is induced by the map (4.4.2). This makes sense since
the map I ′ annihilates the space [d Ω, d Ω] ⊆ Z(A).

Finally, it is immediate that p1 and J are well-defined, and that the diagram commutes.

4.5. Comparison of the maps in (4.4.4) with the usual definitions. The fact that B− and B′ co-
incide with the usual definitions is the same as the reason we gave for B in §4.2: these maps
take harmonic representatives f to df under our definitions, and to B f in the usual definitions,
which differ by a scalar depending on degree. Similarly, for I− and J , these maps leave harmonic
representatives unchanged.

The fact that the periodicity map S− is compatible with our isomorphism is obvious, since it is
defined by multiplication by u in both cases.

Finally, the maps p and p−, like the case of the maps of type I , send harmonic cycles to the
classes represented by the same harmonic cycles (in the case of p, taking the coefficients of u≤0

or u0).

4.6. Direct proof of exactness in diagram (4.4.4).

4.6.1. The middle row of (4.4.4). Injectivity of p2: This is clear from construction (or from injectivity
of S2).

im(p2) = ker(B′): The cycles in ker(B′) are represented by f\ ∈ HC(A) such that df = (i−u d)g+

h for some g ∈ Ω[[u]] and some h ∈ [dΩ, dΩ]. Restricting to harmonic f and g, by (2.2.8) we can also
set h = 0. Then, (i − u d)(f + ug) = i f\ ∈ dΩ. So ker(B′) ⊆ im(p2). For the opposite inclusion, if
f ∈ Z(A), then (i− u d)f = i(f0)\ ∈ d Ω. Thus, df0 = (i− u d)u−1(f0 − f), so (f0)\ ∈ ker(B′).

im(B′) = ker(p−): The elements in ker(p−) are represented by harmonic elements f ∈ Ω[[u]] such
that f = (i− u d)g where g ∈ Ω((u)) is harmonic. Replacing f with f − (i− u d)

∑
j≥0 gju

j , we can
assume that gj = 0 for j ≥ 0. Then, f = f0 = dg−1, and i(g−1)\ ∈ dΩ. Hence, (g−1)\ ∈ HC(A) and
f = B′(g−1)\. Therefore, ker(p−) ⊆ im(B′). For the opposite inclusion, suppose that f ∈ im(B′).
That is, there exists h ∈ Ω satisfying f = dh and ih\ ∈ dΩ. Now, we can set g−1 := h, and
inductively we can choose g−j for j > 1 such that d g−j = ig1−j for all j > 1. We deduce that
−(i− u d)g = dh = f . Therefore, im(B′) ⊆ ker(p−).
u im(p−) = ker(p1): Elements of ker(p1) are f ∈ Ω((u)) such that f0 ∈ dΩ+[Ω,Ω] and (i−u d)f =

0. We claim first that fj ∈ dΩ + [Ω,Ω] for all j ≤ 0. Indeed, dfj = i(fj+1)\ for j < 0. So, if
11



fj+1 ∈ dΩ + [Ω,Ω], then dfj = i(fj+1)\ ∈ i dΩ = d iΩ ⊆ d [Ω,Ω]. By acyclicity of (Ω, d), we conclude
that fj ∈ dΩ + [Ω,Ω] as well, so by induction, we conclude the desired result.

Suppose further that f is harmonic. Then, f0 ∈ dPΩ + iPΩ since P [Ω,Ω] = iPΩ, by (2.2.6).
Writing f0 = dg + ih\, we conclude that f ′ := f + (i − u d)(u−1g − h) satisfies f ′0 = 0, and
f ′j ∈ dΩ + [Ω,Ω] for j < 0. Applying the same reasoning to uf ′, we eventually conclude that f is
homologous to a harmonic cycle f̃ ∈ uPΩ[[u]]. Therefore, f ∈ u · im(p−).

The converse containment, u · im(p−) ⊆ ker(p1), is obvious.
Surjectivity of p1: Suppose that f ∈ Z(A). Then (i − u d)f = i(f0)\ ∈ d Ω. As observed above,

setting g0 = f0, we can choose g−j for j ≥ 1 such that d g−j = ig1−j for all j ≥ 1. Set h := g+(f−f0).
Then, (i − u d)h = −u df0 − i(f0)\ + (u df0 + i(f0)\) = 0. Since (h0)\ = (f0)\, we conclude that
(f0)\ = p1(h) is in the image of p1.

4.6.2. The top row of (4.4.4). The first map is tautologically injective.
ker(B−) = HH′(A): Assume that f is harmonic and i f\ = 0, and suppose that f\ ∈ HH(A)

satisfies df = (i− u d)g for some harmonic g ∈ Ω[[u]]. Then, (i− u d)(f − ug) = 0, so f\ ∈ HH′n(A).
Thus ker(B−) ⊆ HH′(A). Conversely, if f ∈ ker(i − u d) ⊆ Ω[[u]], then df0 = (i − u d)(f − f0), so
(f0)\ ∈ ker(B−).

im(B−) = ker(S−): The kernel of S− is represented by elements of the form u−1(i−u d)g, where
g ∈ PΩ[[u]] satisfies i(g0)\ = 0. Up to coboundary, this is the same as elements d g0 such that
i(g0)\ = 0, i.e., the image of B−. Conversely, if i(g0)\ = 0, then B−(g0)\ = d g0 = −u−1(i− u d)(g0)
is in the kernel of S−.

im(S−) = ker(I−): The kernel of I− is represented by elements f ∈ Ω[[u]] such that f0 ∈ [Ω,Ω]. If
we assume that f is harmonic, then f0 ∈ bPΩ = iPΩ, see (2.2.6). Write f0 = i g\ for some g. Then,
f − (i − u d)g ∈ uΩ[[u]]. Hence, the class of f is in the image of S−. Conversely, it is clear that the
image of S− maps to zero under I−.

Surjectivity of I−: This is immediate from the definition of HH′(A).

5. EXTENDED KAROUBI-DE RHAM COMPLEX AND CYCLIC HOMOLOGY

In this section, we will consider, following [GS], an “extended” version, DRtA, of the noncom-
mutative de Rham complex. One of the reasons for introducing such an extended version is that it
maps naturally to the equivariant (as opposed to the ordinary) de Rham complex of representation
varieties of the algebra in question, see §8.

Another important feature of DRt is that it comes equipped with natural anti-commuting dif-
ferentials d and it. We will show that the homology of the complex (DRtA ⊗ R, it−u d) captures
both the cyclic homology HC(A) and the Karoubi-de Rham homology HD(A) at the same time.

5.1. Extended noncommutative de Rham complex. Let B ∗k C denote the free product of unital
algebras B and C over k. Define

Ωt = ΩtA := Ω(A ∗k k[t])/(dt) ∼= ΩA ∗k k[t], (5.1.1)

where (dt) denotes the two-sided ideal generated by the element dt. For all p and q, let Ωp,q
t ⊆ Ωt

denote the subspace of de Rham degree p and degree q in t (note that this notation differs from
that of [GS]). The isomorphism on the right of (5.1.1) respects the bigradings.

Next, we define the commutator quotient

DRt = DRtA := Ωt/[Ωt,Ωt], DRt =
⊕

p,q DRp,q
t where DRp,q

t = (Ωp,q
t )\.
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As observed in [GS], for each q ≥ 1, there is a canonical isomorphism DR
q,q
t
∼= Ω⊗q/(Z/q). This

yields a direct sum decomposition

DRt =
⊕

q≥0 DR
q,q
t
∼= DR ⊕ Ω ⊕ Ω⊗2/(Z/2) ⊕ · · · . (5.1.2)

In particular, there is a canonical isomorphism ι : DR
q,1
t = (tΩ

q
)\

∼→ Ω
q.

One has a natural differential d : Ω
q,q
t → Ω

q+1,q
t that restricts to the ordinary Karoubi-de Rham

differential on Ω, and kills t. One also has a derivation d
dt : Ωp, q

t → DRp, q−1
t that kills Ω ⊂ Ωt and

sends t to 1. These maps descend to DRt.
There are also reduced versions of all the above. In particular, Ωt = ΩtA := Ωt/k[t] and DRt =

DRtA := Ωt/[Ωt,Ωt] = DRt /k[t]. Further, we put DR
+
t := ⊕q>0 DR

q,q
= (tΩt)\ ⊆ DRt.

Lemma 5.1.3. The complex (DR
+
t , d) is acyclic.

Proof. From (5.1.2), we see that DR+
t = Ω ⊕ Ω⊗2/(Z/2) ⊕ · · · . Now, H(Ω, d) ∼= k, spanned by

the natural inclusion k ⊆ Ω. Taking coinvariants with respect to the cyclic group Z/q is exact for
all q ≥ 1, thanks to our assumption that k ⊇ Q. Hence, H(DR+

t , d) =
⊕

q≥1 k
⊗q, spanned by

the inclusions k⊗q ∼= k · (tq)\ ⊆ DR+
t . The result now follows from the long exact sequence on

homology associated to the short exact sequence 0→ t · k[t]→ DR+
t → DR

+
t → 0. �

As an immediate consequence of Lemma 5.1.3 we obtain

Corollary 5.1.4. The natural projection DRt � DRt /DR
+
t = DR, modulo t, induces an isomorphism

H(DRt, d) ∼→ H(DR, d), of cohomology.

5.2. Following [GS], we observe that the derivation (− ad t) of the algebra A∗k k[t] naturally gives
rise to a contraction operation it : Ωp,q

t → Ωp−1,q+1
t . By definition, the map it is the (super) deriva-

tion of the algebra Ωt that acts on generators by

it : t 7→ 0, Ω0 = A 7→ 0, Ω1 ⊃ dA 3 da 7→ [a, t] ∀a ∈ A.
One checks that i2t = 0 and that it descends to a map it : DRt → DRt. The operations it and it

also descend to the corresponding reduced versions.
We are now able to give, following [GS], a more conceptual definition of the map i : DR

q → Ω
q−1

that was introduced in §2 using an explicit formula (2.1.3). Specifically, one easily checks that

i = ι ◦ it, as maps DR
q
= DR

q,0
t −→ Ω

q−1 = DR
q−1,1
t . (5.2.1)

It follows immediately that the differentials d and it (hence, also it) commute with d
dt , and that

the differentials d and it, on DRt, anti-commute (see [CBEG] and [GS] for the latter fact).

5.3. The Tsygan map. Let DR
∧
t

q
= DR

∧
t (A)

q
:=
∏
q≥0 DR

q,q
t be the t-adic completion of DRt. We

define the Tsygan map as a k-linear map E : Ω→ DR
∧
t

q
given, for any a0, a1, . . . , an ∈ A, by

E(a0 da1 · · · dan) =
∑

k0,...,kn≥0

1

(k0 + · · ·+ kn + n)!
(a0t

k0 da1t
k1 · · · dantkn)\. (5.3.1)

The map E|Ωn may be viewed as a noncommutative analogue of multiplication by 1
n! exp(t). To

explain this, we view the algebra Ω ⊗ k[t] as a quotient of the algebra Ω ∗k k[t] by the two-sided
ideal generated by [t,Ω]. Thus, one has the natural algebra homomorphism Ωt → Ω[t] that ‘makes
the variable t central.’ This homomorphism clearly descends to a linear map DRt → DR[t]. The
latter map can further be extended, by continuity, to a map ct : DR

∧
t → DR[[t]], between the

corresponding t-adic completions. Then, one has
13



Lemma 5.3.2. For every f ∈ Ω
n, in DR[[t]] we have: ct ◦E(f) = 1

n! · exp(t) f\.

Proof. Given positive integers k and n, let Pn(k) denote the number of partitions k0 + · · ·+ kn = k,
of k into n + 1 parts. That number is given by the formula Pn(k) = (k+n)!

k!n! . Using this and the
definition of the map E, for every f = a0 da1 · · · dan ∈ Ω

n, we compute

ct ◦E(f) =
∑

k0,...,kn≥0

1

(k0 + · · ·+ kn + n)!
· ct((a0t

k0 da1t
k1 · · · dantkn)\)

∑
k0,...,kn≥0

1

(k0 + · · ·+ kn + n)!
· tk0+...+kn (a0 da1 · · · dan)\ =

∑
k≥0

Pn(k)
1

(k + n)!
· tk f\

=
∑
k≥0

(k + n)!

k!n!

1

(k + n)!
· tk f\ =

∑
k≥0

1

k!n!
· tk f\ =

1

n!
· exp(t) f\. �

Theorem 5.3.3. The map E has the properties:

(i) d
dt
◦E = E; (ii) E ◦ B = d ◦E; (iii) E ◦ b = it ◦E. (5.3.4)

This theorem will be proved in §5.4.

Remark 5.3.5. We have arrived at the definition of the map E by analyzing a construction of Tsygan
[Tsy2] (that construction was, in its turn, motivated by our results [GS]). In particular, equations
(5.3.4)(ii)–(iii) are an adaptation of the main result of [Tsy2]. It is likely that a proof of these equa-
tions, which is more conceptual than the one given in §5.4 below, can be extracted from [Tsy2],
although the arguments in op. cit. are written in the setting of the standard (i.e., commutative)
equivariant cochain complex rather than the extended noncommutative de Rham complex. How-
ever, such a noncommutative adaptation of the argument of [Tsy2] would be less direct since it
would have to go through an auxiliary, much larger, complex Ω(ΩA) (this would allow one to
write an analogue of E as an exponential of a certain contraction map on this larger complex and
to apply the noncommutative calculus developed in [TT]).

Remark 5.3.6. One can use (5.3.4)(i) to find the coefficients of the map E in the summation (5.3.1).
Although one might expect that these coefficients should be 1

degt!
, inspecting the LHS of (5.3.4)(i)

more carefully one sees that it must be 1
(degt + degDR)! as indicated.

Remark 5.3.7. Restricting equations (5.3.4)(ii)–(iii) to the harmonic part of Ω and using the chain
map N!, defined as N!|Ωn = n! Id, one obtains E|PΩ N! ◦ d = d ◦E|PΩ N! and E|PΩ N! ◦ i = it ◦E|PΩ N!.

Curiously, we do not know if there is any explicit formula, without using harmonic decompo-
sition, for a map E′ : Ω → DR

∧
t which satisfies E′ ◦ d = d ◦E′ and E′ ◦ i = it ◦E′. (To define such a

map using harmonic decomposition, one could set E′ = E N!P .)
Perhaps this is related to the fact that (the antiharmonic part of) the bicomplex (Ω, d, i) is some-

what badly behaved, i.e., the homologies of (Ω ⊗ R, i − u d) and (Ω[[u]], i − u d) pick up the huge
extra factor [d Ω, d Ω] (see Theorem 3.2.1). On the other hand, we will see in §5.5 and §7 below that
the homologies of (DRt⊗R, it−u d) and (DRt[[u]], it−u d) are nicely expressible in terms of ordi-
nary cyclic and Karoubi-de Rham homology. This suggests that the bicomplex (DRt, it, d) should
indeed be more closely related to (Ω, b,B) than to (Ω, i, d).

Next, we recall that the differentials B and b, as well as d and it, anti-commute. Therefore, thanks
to Theorem 5.3.3, the map E gives a morphism (Ω, B, b) → (DR

∧
t , d, it), of bicomplexes. This

induces maps H q
(Ω, b)→ H

q
(DR

∧
t , it) and H q

(Ω/B Ω, b)→ H
q
(DR

∧
t / d DR

∧
t , it) on homology.
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Observe that, since the differential it is homogeneous in t, each individual homology group of
the complexes (DRt, it) and (DRt / d DRt, it) has an additional grading

Hp(DRt, it) = ⊕q H(DRt, it)
p,q, and Hp(DRt / d DRt, it) = ⊕q H(DRt / d DRt, it)

p,q,

where p refers to the de Rham degree and q refers to degree in t. Therefore, the map E produces,
by separating degrees in t, an infinite collection {Eq, q = 0, 1, . . .} of maps

H
q
(Ω, b)

Eq−→ H
q
(DRt, it)

q,q, and H
q
(Ω/B Ω, b)

Eq−→ H(DRt / d DRt, it)
q,q. (5.3.8)

For q = 0, the above maps reduce to the maps f 7→ f\ and f mod (im B) 7→ f\ mod (im d).
Observe further that the map d

dt commutes with d and it, and hence it induces endomorphisms
of the complex (DRt, it) and (DRt / d DRt, it). On homology, this gives maps

H(DRt, it)
p, q d

dt−→ H(DRt, it)
p, q−1, and H(DRt / d DRt, it)

p, q d
dt−→ H(DRt / d DRt, it)

p, q−1.

It is clear from (5.3.4)(i) that the maps Eq, q ≥ 0, satisfy a chain of relations

dk

dtk
◦Eq = Eq−k, for every k ≤ q. (5.3.9)

Our second important result about the Tsygan map, that will be proved in section 6, reads

Theorem 5.3.10. Each of the maps in (5.3.8) is an isomorphism, for every q ≥ 0.

5.4. Proof of Theorem 5.3.3. Equation (5.3.4)(i) follows from the expansion

d
dt(t

k0a0t
k1 da1...t

kn dan) =
∑

j
kjt

k0a0...t
kj−1 daj−1t

kj−1 dajt
kj+1 · · · tkn dan,

generalizing the proof that d
dt exp(t) = exp(t), in terms of the expansion exp(t) =

∑
m≥0

1
m! t

m.
To prove (5.3.4)(ii), we compute

E ◦B(a0 da1 · · · dan) =
n∑
j=0

∑
k0,...,kn+1

1

(k0 + · · ·+ kn+1 + (n+ 1))!
(tk0 dajt

k1 daj+1 · · · tkn daj−1t
kn+1)\

=
∑

k0,...,kn

1

(k0 + · · ·+ kn + n)!
(da0t

k0 · · · dantkn)\ = d ◦E(a0 da1 · · · dan).

Here and below, the indices k0, . . . , kn+1 always run over all nonnegative integers.
To prove (5.3.4)(iii) we will use the identities, for every n ≥ 1:

∑
p,q≥0

tp [t, a] tq

(p+ q + n)!
=
∑
p,q≥0

tp+1atq − tpatq+1

(p+ q + n)!
= (taking k := p+ 1 and ` := q + 1)

=

∑
k,q≥0

tkatq

(k − 1 + q + n)!
−
∑
q≥0

atq

(q + n− 1)!

−
∑
p,`≥0

tpat`

(p+ `− 1 + n)!
−
∑
p≥0

tpa

(p+ n− 1)!


=
∑
p≥0

tpa

(p+ n− 1)!
−
∑
q≥0

atq

(q + n− 1)!
=
∑
j≥0

tja− atj

(j + n− 1)!
.
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Using the above formula, for every a0, . . . , an ∈ A, in Ωt, we find
n∑
j=1

∑
k0,...,kn

(−1)j

(k0 + · · ·+ kn + n)!
a0t

k0 da1t
k1 · · · daj−1t

kj−1 [t, aj ] t
kj daj+1t

kj+1 · · · dantkn

=
n∑
j=1

∑
k0,...,k̂j ,...,kn

(−1)j

(k0 + · · · k̂j · · ·+ kn + (n− 1))!

(
a0t

k0 da1t
k1 · · · daj−1t

kj−1aj daj+1t
kj+1 · · · dantkn

− a0t
k0 da1t

k1 · · · daj−1 ajt
kj−1 daj+1t

kj+1 · · · dantkn
)

(5.4.1)

=

n−1∑
j=1

 ∑
k0,...,k̂j ,...,kn

(−1)j

(k0 + · · · k̂j · · ·+ kn + (n− 1))!
a0t

k0 da1 · · · daj−1t
kj−1 d(ajaj+1)tkj+1 · · · dantkn


+

∑
k1,...,kn

1

(k1 + · · ·+ kn + (n− 1))!
(a0a1t

k1 da2t
k2 · · · dantkn + (−1)na0t

k1 da1t
k2 · · · dan−1t

knan).

Now, by cyclic symmetry, in DRt,

(a0t
k1 da1t

k2 · · · dan−1t
knan)\ = (ana0t

k1 da1t
k2 · · · dan−1t

kn)\.

Therefore, the image in DRt of the expression in the last two lines of (5.4.1) may be written as

E
(n−1∑
j=1

(−1)ja0 da1 · · · daj−1 d(ajaj+1) daj+2 · · · dan
)

+ E(a0a1 da2 · · · dan) + (−1)nE(ana0 da1 da2 · · · dan−1).

Further, the standard formula for the Hochschild differential written in terms of differential forms
[CQ1, formula (10)] reads:

b(a0 da1 · · · dan) =
n−1∑
j=1

(−1)ja0 da1 · · · daj−1 d(ajaj+1) daj+2 · · · dan

+ a0a1 da2 · · · dan + (−1)nana0 da1 da2 · · · dan−1.

Thus, combining everything together and using that the expression in the top line of (5.4.1)
equals it ◦E(a0 da1 · · · dan), we deduce that it ◦E(a0 da1 · · · dan) = E ◦ b(a0 da1 · · · dan). �

5.5. Extended cyclic homology. It will be convenient to introduce an additional parameter u,
and consider the k[u]-module DRt⊗R. We equip this module with two different gradings. The
first grading, referred to as homological grading, is defined by assigning the component DR

p,q
t ·u−r

homological degree ` = p+ 2r. Thus, the u variable has homological degree −2. The t parameter
has homological degree zero, so it does not contribute to the homological grading. The second
grading, referred to as internal grading, is defined by assigning the component DR

p,q
t ·u−r internal

degree p+ q + r.
On DRt⊗R, we have a pair of anti-commuting differentials, u d and it. Each of these differentials

has homological degree−1 and internal degree zero. We define EHC(A), the reduced extended cyclic
homology of A, as

EHC`(A) = H`(DRt⊗R, it−u d), (5.5.1)

where ` on the RHS stands for homological degree.
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Since the internal grading is preserved by both differentials, it provides a direct sum decompo-
sition of complexes,

DRt⊗R =
⊕

k (DRt⊗R)k, (DRt⊗R)k :=
⊕

p+q+r=k

DR
p,q ·u−r,

where, (DRt⊗R)k, the homogeneous component of internal degree k, is a subcomplex of DRt⊗R
with the inherited differential it−u d and inherited homological grading. We write wk : DRt⊗R→
(DRt⊗R)k for the projection to that homogeneous component.

For every integer m, we let

EHC`(A,m) := H`
(
(DRt⊗R, it−u d)`−m

)
.

Thus, one obtains a ‘weight decomposition’: EHC`(A) = ⊕m EHC`(A,m), for m ∈ Z.
Our main result about extended cyclic homology is the following theorem. Part (i) of the theo-

rem shows that the knowledge of the extended cyclic homology is equivalent to the knowledge of
both the usual cyclic homology and the Karoubi-de Rham homology.

Theorem 5.5.2. (i) One has a canonical k[u]-module isomorphism

EHC(A) ∼= (HD(A)⊗ u−1k[u−1])
⊕

HC(A)[t],

where the variable ‘u’ annihilates the second summand, and on HD(A)⊗u−1 restricts to the natural inclu-
sion HD(A) ↪→ HC(A) into the second summand in degree zero in t. Furthermore, the group EHC`(A,m)

vanishes for all m >
[
`
2

]
, and

EHC`(A,m) ∼=

{
HD`−2m(A) 0 < m ≤

[
`
2

]
,

HC`(A) m ≤ 0.
(5.5.3)

(ii) For every q ≥ 0, there are canonical graded space isomorphisms

H(DRt, it)
q,q ∼= HH q(A), (5.5.4)

H(DRt / d DRt, it)
q,q ∼= HC q(A). (5.5.5)

Remark 5.5.6. In the special case q = 0, using the identification in (5.2.1), the above becomes

H(DRt, it)
q,0 = ker(i : DR

q
→ Ω

q−1
) (5.5.7)

H(DRt / d DRt, it)
q,0 = ker

(
i : DR

q
/ dDR

q−1 → Ω
q−1
/ dΩ

q−2)
. (5.5.8)

Therefore, for q = 0, isomorphisms (5.5.4)–(5.5.5) may be equivalently rewritten as

ker(i : DR
q
→ Ω

q−1
) ∼= HH q(A),

ker
(
i : DR

q
/ dDR

q−1 → Ω
q−1
/ dΩ

q−2) ∼= HC q(A).

These are nothing but our isomorphisms (3.1.4)–(3.1.5). Thus, we see that Theorem 5.5.2(ii) incor-
porates Theorem 3.1.3, as the special case q = 0.

5.6. Theorem 5.3.10 implies Theorem 5.5.2. We consider part (ii) of Theorem 5.5.2 first. The proof
of this part involves the Tsygan map E in a crucial way.

In more detail, the Hochschild homology ofA is computed by the complex (Ω, b). Thus, the map
H(Ω, b) → H

q
(DRt, it)

q,q in (5.3.8), which is an isomorphism thanks to Theorem 5.3.10, provides
isomorphism (5.5.4). Similarly, in the cyclic homology case, we use Lemma 3.1.7. Thus, we define
isomorphism (5.5.5) to be the composite of the isomorphism HC q(A) ∼→ H

q
(Ω/B Ω, b), of Lemma

3.1.7, with the map Eq, where the latter is an isomorphism by Theorem 5.3.10.
For part (i), we first prove
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Proposition 5.6.1. (i) The assignments

πm :
∑

k≥0
fk · u−k 7→ fm mod (t), π− :

∑
k≥0

fk · u−k 7→ f0 mod (im d),

induce isomorphisms

πm : EHC`(A,m) ∼→ HD`−2m(A), m > 0; (5.6.2)

π− : EHC`(A,m) ∼→ H(DRt / d DRt, it)
`,−m, m ≤ 0. (5.6.3)

(ii) For every m ≤ 0, the following diagram commutes:

H`(Ω⊗R, b−uB)

Lemma 3.1.7 ∼=
��

H`(w`−m ◦ E)
// EHC`(A,m)

π−
��

H`(Ω/B Ω, b)
E−m // H(DRt / d DRt, it)

`,−m.

(5.6.4)

Proof. We view DRt⊗R as a bicomplex M of the form Mp,q = DR
p−q
t ·u−q. The differentials are

it : Mp,q → Mp−1,q and u d : Mp,q → Mp,q−1. We apply the spectral sequence associated with that
bicomplex, by taking cohomology with respect to u d first.

To compute the first page of the spectral sequence, we use the natural direct sum decomposition
DRt⊗R = DRt ⊕ u−1 DRt[u

−1]. For the cohomology of the first differential, this gives a direct
sum decomposition H(DRt⊗R, u d) = DRt / d DRt ⊕ u−1H(DRt, d)[u−1]. By Corollary 5.1.4, the
projection modulo t induces an isomorphism H(DRt, d) ∼→ H(DR, d). Therefore, the first page
of the spectral sequence takes the form E1 = DRt / d DRt ⊕ u−1H(DR, d)[u−1]. The differential
it : E1 → E1, on the first page, clearly increases degree in t by 1. Hence, this differential annihilates
the direct summand u−1H(DR, d)[u−1]. We conclude that the second page of the spectral sequence
reads H(DRt / d DRt, it) ⊕ u−1H(DR, d)[u−1], which is the right-hand side of the isomorphism of
the proposition. It is immediate to see that the spectral sequence collapses at the second page.
This proves part (i). Part (ii) follows directly from the formula for the map π−. �

To complete the proof of Theorem 5.5.2(i), we note that the group that appears in the upper left
corner of diagram (5.6.4) equals HC`(A), by (3.1.1). Thus, we may (and will) define isomorphism
(5.5.3) by combining isomorphisms (5.5.5) and those of Proposition 5.6.1 together.

We conclude that the proof of Theorem 5.5.2 would be complete once we prove Theorem 5.3.10.

Remark 5.6.5. An analogue involving the maps πm of the statement that diagram (5.6.4) commutes
will be given in Proposition 7.2.1(i) in §7.

5.7. It is possible to write a relatively explicit formula for the inverse of the isomorphisms (5.6.2)–
(5.6.3). To this end, recall first that the complex (DR

+
t , d) is acyclic, by Lemma 5.1.3. Therefore, the

Karoubi-de Rham differential d induces an isomorphism DR
+
t / d DR

+
t

∼→ d DR
+
t .

Let d̃−1 : d DR
+
t → DR

+
t be a (set-theoretic) section of the surjection d : DR

+
t � d DR

+
t (we use

the same notation as for the similar map in §3.2). The choice of d̃−1 will not affect anything below,
and we need it only to write formulas which are independent of this choice.

Proposition 5.7.1. The inverses of the isomorphisms (5.6.2) and (5.6.3) of Proposition 5.6.1 are induced
respectively by the maps

ker
(
d |DR

)
→ H(DRt⊗R, it−u d) and ker

(
it |DRt / d DRt

)
→ H(DRt⊗R, it−u d)

given by the assignments

f 7−→ um(Id−u−1d̃−1 it)
−1(f) and f 7−→ (Id−u−1d̃−1 it)

−1(f).

18



Remark 5.7.2. In view of (4.1.3), the map d̃−1 it on ker
(
it |DRt / d DRt

)
may be thought of as an ex-

tended analogue of the periodicity operator S. Via Theorem 5.3.10, it actually becomes S after
making the above identification.

Proof. The statement of the proposition is essentially a simple consequence of the construction of
differentials in the spectral sequence of a double complex. Below, we explain the case of the map
π−. The case of the maps πm, m > 0, is similar (and even easier).

Let ker(d it) be the kernel of the map d ◦ it : DRt → DRt. We claim first that d̃−1 it is a well-
defined set-theoretical endomorphism of ker(d it). To see this, observe that it(DRt) ⊂ DR

+
t . Hence,

thanks to acyclicity of the complex (DR
+
t , d), see Lemma 5.1.3, we deduce that an element x ∈ DRt

belongs to ker(d it) if and only if it x = d y, for some y ∈ DR
+
t . Thus, for such an x, the element

d̃−1 it x = d̃−1 d y is indeed well-defined. Furthermore, we compute d it(d̃−1 it x) = − it d(d̃−1 it x) =

−(it)
2(x) = 0. Thus, we have proved that d̃−1 it x ∈ ker(d it).

The operator d̃−1 it on ker(d it) has de Rham degree −2, and hence Id−u−1d̃−1 it is invertible.
Explicitly, an inverse is given, for every x ∈ ker(d it), by the formula (Id−u−1d̃−1 it)

−1(x) =∑
k≥0 u−k(d̃−1 it)

k(x), where the terms (d̃−1 it)
k(x) vanish for all k greater than half the de Rham

degree of x. Further, using that d d̃−1 = Id, we compute

(it−u d)(Id−u−1d̃−1 it)
−1 = (d d̃−1 it−u d)(Id−u−1d̃−1 it)

−1

= u d(u−1d̃−1 it− Id)(Id−u−1d̃−1 it)
−1 = −u d .

We see that for every z in the image of the map (Id−u−1d̃−1 it)
−1, the element (it−u d)(z) be-

longs to uDRt. It follows that z moduDRt[[u]] is a cycle in the complex (DRt⊗R, it−u d). Thus,
we have constructed the map

(Id−u−1d̃−1 it)
−1 : ker(d it) −→ H(DRt⊗R, it−u d).

Now, it is immediate from the above construction that the above constructed map is a right
inverse to the map π− in the sense that, for every x ∈ ker(d it), the class of the element x in
H(DRt / d DRt, it) equals π−(Id−u−1d̃−1 it)

−1(x). By definition, one has

H(DRt / d DRt, it) =
ker(d it)

ker d + im it
.

Therefore, for every x ∈ ker d + im it, we must have π−(Id−u−1d̃−1 it)
−1(x) = 0. Since π− is an

isomorphism, by Proposition 5.6.1, we deduce that the map (Id−u−1d̃−1 it)
−1 takes ker d + im it to

zero on homology. We conclude that the map given in Proposition 5.7.1 is well defined. Moreover,
it is a right inverse, and hence a two-sided inverse, to the isomorphism π−. �

6. PROOF OF THEOREM 5.3.10

6.1. First of all, thanks to equation (5.3.9), dq

dtq
◦Eq = E0. The maps E0 in (5.3.8) are isomorphisms by

Theorem 3.1.3 together with Lemma 3.1.7. It follows that, for every q ≥ 0, the map Eq is injective.
Therefore, we only have to show that Eq is surjective.

To this end, we introduce a filtration on DRt by the degree in A: precisely, the degree ≤ m
part of the filtration is spanned by monomials in t, A, and dA with the elements of the latter two
appearing at mostm times. This descends to filtrations under the surjections Ωt � Ωt � DRt. The
differentials it and d preserve the resulting filtration. So we obtain a filtered bicomplex (DRt, d, it).

It is immediate to check that gr(DRt, d, it), the associated graded bicomplex, is naturally isomor-
phic to (DRtA

′, d, it), where A′ := A ⊕ k is the algebra with the trivial multiplication A · A = 0.
Let E′ denote the Tsygan map for the algebra A′. Clearly, one has that E′ = gr E.
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Thus, we have reduced the proof of the theorem to

Proposition 6.1.1. The maps (E′)q : H(ΩA′, b)→ H(DRtA
′, it)

q,q and (E′)q : H(ΩA′/B ΩA′, b)→
H(DRtA

′/ d DRtA
′, it)

q,q are both surjective for every q ≥ 0.

The rest of §6 is devoted to the proof of this proposition. The idea of the proof is to reduce the
result further to the special case where A = k (and to lift from cyclic tensors to ordinary tensors).
In this case, we compute the cohomology of the complexes (DRtA

′, it) and (DRtA
′/ d DRtA

′, it)
explicitly. More precisely, we will define, for each ` ≥ 1, a complex C` equipped with an action
of Z/`, the cyclic group. We identify the complex (DRtA

′, it) with
⊕

`≥1(C`)Z/`, a direct sum of
complexes of coinvariants of cyclic groups. We then compute explicitly the homology of each
complex C`. The computation is, however, quite technical; it will not be used elsewhere in the
paper.

6.2. Linear algebra lemmas. We begin with a few elementary lemmas from linear algebra.
Let V be a vector space over R equipped with a positive definite inner product 〈−,−〉 : V ×V →

R. Recall that a linear operator T : V → V is called positive if it is self-adjoint and 〈Tv, v〉 ≥ 0 for
all v ∈ V . For a positive operator T and v ∈ V , the equation 〈Tv, v〉 = 0 implies that Tv = 0.

Lemma 6.2.1. Suppose that T0, . . . , Tk are positive operators on vector spaces V0, . . . , Vk. Let T :=∑k
i=0 Id⊗i⊗Ti ⊗ Id⊗k−i. Then T is positive, and ker(T ) =

⊗k
i=0 ker(Ti).

Proof. Clearly each Id⊗i⊗Ti⊗Id⊗k−i is positive, and so the sum is positive. Since the kernel of T is
the space of vectors v such that 〈Tv, v〉 = 0, it is the intersection of the kernels of Id⊗i⊗Ti⊗ Id⊗k−i,
i.e.,

⊗k
i=0 ker(Ti). �

Lemma 6.2.2. Let B = (bij) ∈ Matn(R) be a symmetric n × n-matrix such that bii ≥
∑

j 6=i |bij | for all
i. Then B is positive. Assume, in addition, that the graph obtained from B with vertex set {1, . . . , n} and
edges between i and j if bij 6= 0 is connected. Then dim ker(B) ≤ 1. This kernel is nonzero if and only if:

• The equality bii =
∑

j 6=i |bij | holds for all i;
• There exist signs λi ∈ {1,−1} such that sign(bij) = −λiλj for all i 6= j.

Then the kernel is spanned by the vector (λ1, . . . , λn)>.

Here and below, we use the notation (λ1, . . . , λn)> =

λ1
...
λn

, where > stands for “transpose.”

Proof. Let v = (v1, . . . , vn)>. Then

〈Bv, v〉 =
∑
i<j

bij(v
2
i + 2vivj + v2

j ) +
∑
i

(bii −
∑
j 6=i

bij)v
2
i ≥ 0.

Hence B is positive. Now, suppose Bv = 0 and v 6= 0. Let i be such that |vi| ≥ |vj | for all j.
Then 0 = biivi +

∑
j 6=i bijvj and bii ≥

∑
j 6=i |bij | implies that the equality holds, and that |vj | = |vi|

whenever bij 6= 0. Now assume that the graph of B is connected. Then we conclude that |vi|
are all equal. Hence the equality bii =

∑
j 6=i |bij | holds for all i. Now, Bv = 0 if and only if

sign(bij) = −vi/vj whenever i 6= j. �

Remark 6.2.3. Lemma 6.2.2 can be significantly generalized: for arbitrary complex B which is not
necessarily symmetric, the condition bii ≥

∑
j 6=i |bij | guarantees that the real parts of all eigenval-

ues of B are nonnegative, and zero only for the zero eigenvalue. Let Q(B) be a directed graph
with vertex set {1, 2, . . . , n} such that there is an edge from vertex i to j whenever bij 6= 0 and
i 6= j. If the graph Q(B) is strongly connected (i.e., there exists a directed path from every vertex
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to every other vertex), then dim ker(B) ≤ 1 and it is nonzero if and only if bii =
∑

j 6=i |bij | for
all i and there exist complex numbers λ1, . . . , λn of absolute value 1 such that bij/|bij | = −λi/λj
whenever bij 6= 0. In this case the kernel is spanned by (λ1, . . . , λn)>.

Lemma 6.2.4. Suppose that (V
q
, d) is a complex of vector spaces with d : V

q → V
q+1. Suppose we are

given an operator h : V
q → V

q−1 such that

V = ker[h, d]
⊕

im[h, d], ker d = ker([h, d]|ker d)
⊕

im([h, d]|ker d).

(E.g., this holds if [h, d] acts semisimply on V or its base change to an algebraically closed field.) Then, the
inclusion (ker[h, d], d|ker[h,d])→ (V, d) is a quasi-isomorphism.

Proof. Since (V, d) = (ker[h, d], d|ker[h,d])
⊕

(im[h, d], d|im[h,d]) is a direct sum of complexes, we
only need to show that the second factor is acyclic. Since ker(d) = ker(d)|ker[h,d]⊕ker(d)|im[h,d], and
the first factor equals ker([h, d]|ker d), the assumption implies that ker(d)|im[h,d] = im([h, d]|ker d) =
im(dh|ker d). So every cycle in (im[h, d], d|im[h,d]) is a boundary. �

Remark 6.2.5. More generally, in Lemma 6.2.4 we could replace ker[h, d] and im[h, d] by ker[h, d]N

and im[h, d]N for every N ≥ 1. In particular, if N ≥ 1 is such that V =
⊕

i∈Z Vi is a graded vector
space with dimVi ≤ N for all i, then the conditions of the lemma will necessarily be satisfied with
this modification.

In particular, Lemma 6.2.4 applies when V
q is a finite-dimensional complex of rational vector

spaces and [h, d] is a positive operator.

6.3. An auxiliary complex. Our ultimate goal is to define a complex C` and compute its homol-
ogy, as well as that of a certain quotient C`/dsC`; here we begin, as an intermediate step, with a
somewhat simpler complex. Consider the supercommutative algebra S := k[s]/(s2), with s odd,
and the left S-module

M := Span(1, s, ti, sti, tis, stis | i ≥ 1) ⊂ k〈s, t〉/(s2).

Assign M the grading in which 1 is odd, s is even, and for all i ≥ 1, ti and stis are even and sti

and tis are odd. (In other words, we modify the natural grading from the algebra k〈s, t〉/(s2) ⊃M
by shifting the degree of the submodule S ⊂ M .) Moreover, equip M with the right S-module
structure ·R,

(f) ·R 1 = f, (f) ·R s = −fs,
which differs from the natural multiplication from the algebra k〈s, t〉/(s2) by a sign.

From now until the end of §6.7, we will use simplified notation⊗ = ⊗S . For convenience, equip
TSM with a partially defined multiplication,

(f1 ⊗ · · · ⊗ fi) · (g1 ⊗ · · · ⊗ gj) = f1 ⊗ · · · ⊗ fig1 ⊗ · · · ⊗ gj ,

where here fig1 is the multiplication in the ring k〈s, t〉/(s2) (not using ·R). This is defined when-
ever fig1 ∈M . Further, put 1m := 1⊗m = 1⊗ 1⊗ · · · ⊗ 1 (m factors).

For each ` ≥ 1, we define a triple, d̃s, ∂̃0, ∂̃1, of differentials on M⊗`, as follows. First, we set

d̃s : 1k 7→ s · 1k 7→ 0,

∂̃0(1k) :=
∑k−2

j=1
(−1)j−1(1j ⊗ t⊗ 1k−j−1),

∂̃0(s · 1k) :=
∑k−2

j=1
(1j ⊗ (st− ts)⊗ 1k−j−1),

∂̃1(1k) := 0, ∂̃1(s · 1k) := t⊗ 1k−1 + (−1)k1k−1 ⊗ t.
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Now, let d̃ stand for one of the three symbols d̃s, ∂̃0, ∂̃1. Then, using the above formulas, for
every m ≥ 1 and h0, . . . , hn ∈ {1k, s · 1k | k ≥ 1}, and i1, . . . , in ≥ 1, we define the corresponding
differential by the formula

d̃(h0t
i1h1 · · · tinhn) =

n∑
j=0

(−1)|h0t
i1h1···tij−1hj−1| · h0t

i1h1 · · · tij−1hj−1t
ij d̃(hj)t

ij+1 · · · tinhn.

The meaning of the above differentials is explained by Lemma 6.3.1 below (which we will not
actually need, but we will need the generalization in Lemma 6.8.1 below). This says that the
differentials d̃s and ∂̃0 + ∂̃1 may be obtained by transporting the natural differentials d and it by
means of an appropriate isomorphism. In more detail, let Aτ = A′τ = k⊕ k · τ be a k-algebra with
one generator τ such that τ2 = 0.

Lemma 6.3.1. The assignment

ζ : t 7→ t, sε · 1` 7→ τ ε (d τ)`−ε := τ ε d τ d τ . . . d τ︸ ︷︷ ︸
`− ε times

, ε ∈ {0, 1}, ` = 1, 2, . . .

yields an isomorphism of bicomplexes

ζ :
(⊕

`≥1
M⊗`, ds, ∂̃

0 + ∂̃1
)

∼→
(
Ωt(Aτ ), d, it

)
.

Sketch of Proof. The fact that the assignment of the lemma respects the differentials can be verified
directly. Further, isomorphism (2.1.1) shows that the set of elements of the form τ ε (d τ)`−ε is a
k-basis of Ω(Aτ ). Hence, this set combined with the set of words in the elements of the form
ti τ ε (d τ)`−ε, i ≥ 1, gives a k-basis of Ωt(Aτ ). It follows easily that the map ζ is a bijection. We
note that the direct summand M⊗` goes, via the bijection, to the subspace [Ωt(Aτ )](`) of Ωt(Aτ )
spanned by the words in which τ appears ` times. �

6.4. We will need to compute the homology of the complex (M⊗`, ∂̃0).

Lemma 6.4.1. A basis of H(M⊗`, ∂̃0) as a free k-module is given by elements of the form

sε0 ⊗ (st+ ts)⊗j0 ⊗ ti1sε1 ⊗ (st+ ts)⊗j1 ⊗ · · · ⊗ tiksεk ⊗ (st+ ts)⊗jk , (6.4.2)

for ε0, . . . , εk ∈ {0, 1}, j0, . . . , jk ≥ 0, and i1, . . . , ik ≥ 2.

Proof. We define an operation D̃ on M⊗` resembling a derivation which takes st and ts to 1
2s, t

to 1, and everything else to zero (such a map cannot actually be a derivation, because the Leibniz
rule on st is not satisfied). Precisely, we define

D̃(ti) = δi,1, D̃(sti) = 1
2δi,1s = D̃(tis), D̃(stis) = 0,

then write
D̃(1p ⊗ f ⊗ 1q) = (−1)p · 1p ⊗ D̃(f)⊗ 1q,

and finally put

D̃(f0t
i1f1 · · · tikfk) = D̃(f0t

i1f1)ti2f2 · · · tikfk + (−1)|f0t
i1 |f0t

i1D̃(f1t
i1f2 · · · tikfk),

where f0, . . . , fk ∈ TS〈1, s〉 ⊆ TSM (i.e., each of these elements can be taken to be either 1j for
some j, or s · 1j for some j).

Note that both D̃ and ∂̃0 preserve the subcomplexes which are homogeneous of fixed degrees
≥ 2 in t in specified tensor components: precisely, such a subcomplex is one where, in components
1 ≤ c1 < · · · < cp ≤ `, t appears with degrees d1, . . . , dp ≥ 2, and t appears with degree ≤ 1 in all
other components.
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We are going to show that the operator D
[ ]

:= [D̃, ∂̃0] is close to an isomorphism, and that its
kernel includes quasi-isomorphically into (M⊗`, ∂̃0). To this end, we will compute D

[ ]
explicitly.

By the observation from two paragraphs above, this computation reduces to the subspace
〈1, t, st, ts〉⊗m. More precisely, D

[ ]
satisfies the following rule which resembles the derivation con-

dition:

D
[ ]

(g1 ⊗ ti ⊗ g2) = D
[ ]

(g1)⊗ ti ⊗ g2 + g1 ⊗ ti ⊗D[ ]
(g2), ∀i ≥ 2, g1, g2 ∈ TSM. (6.4.3)

Moreover, it satisfies another rule which resembles an order-two differential operator condition:

D
[ ]

(g1 ⊗ t⊗ f ⊗ t⊗ g2) = D
[ ]

(g1 ⊗ t⊗ f)⊗ t⊗ g2

+ g1 ⊗ t⊗D[ ]
(f ⊗ t⊗ g2)− g1 ⊗ t⊗D[ ]

(f)⊗ t⊗ g2. (6.4.4)

This reduces the computation to the six equations

(1) D
[ ]

(1m) = m · 1m, (2) D
[ ]

(s · 1m) = ms · 1m,
(3) D

[ ]
(1m ⊗ t⊗ 1n) = (m+ n+ 1)(1m ⊗ t⊗ 1n),

(4) D
[ ]

(1m ⊗ st⊗ 1n) = (m+ n+
1

2
)1m ⊗ st⊗ 1n − 1

2

n∑
j=0

1m+j ⊗ ts⊗ 1n−j , (6.4.5)

(5) D
[ ]

(1m ⊗ ts⊗ 1n) = (m+ n+
1

2
) · 1m ⊗ ts⊗ 1n − 1

2

m∑
j=0

1m−j ⊗ st⊗ 1n+j ,

(6) D
[ ]

(s · 1m ⊗ t⊗ s · 1n) = (m+ n)s · 1m ⊗ t⊗ s · 1n − 1
2

∑
0≤j≤m+n

j 6=m

s · 1j ⊗ t⊗ s · 1m+n−j .

Next, we will show that D
[ ]

is positive and use this to compute its kernel. More precisely, let us
assume without loss of generality that k = Q (note that TSM is the tensor product of its Q-form
by k). We equip TSM with the inner product induced by the monomial basis

sε0 · 1j0 ⊗ ti1sε1 ⊗ 1j1 ⊗ · · · ⊗ tirsεr ⊗ 1jr , (6.4.6)

for all r ≥ 0 and ε0, . . . , εr ∈ {0, 1}, j0, . . . , jr ≥ 0, and i1, . . . , ir ≥ 1, i.e., the unique inner product
for which this basis is orthonormal.

Next, for each k ≥ 0, we fix i1, . . . , ik ≥ 2, j0, . . . , jk ≥ 0, and p0, . . . , pk ≥ 0 such that pr ≤ jr for
all r, and q0, . . . , qk ≥ 0 such that qr ≤ pr + 1 for all r. Then we define the D

[ ]
-invariant subspace,

Vk,i q,j q,p q,q q , spanned by elements of the form

f0 ⊗ ti1 ⊗ f1 ⊗ · · · ⊗ tik ⊗ fk,
where, for all r ∈ {0, . . . , k}, fr ∈ T jrS 〈1, t, st, ts〉, and it is homogeneous in s and t of degrees qr
and pr, respectively.

Claim 6.4.7. (a) The operator D
[ ]

is positive with kernel of dimension ≤ 1 on Vk,i q,j q,p q,q q .
(b) This kernel is nonzero if and only if pr = jr and qr ∈ {pr, pr + 1}, for all r. In this case it is

spanned by the element (6.4.2) for εr = qr − pr where r = 0, 1, . . . , k.

Proof. In view of Lemma 6.2.1 and (6.4.3), it suffices to prove (a) and (b) in the case that k = 0.
We then denote for simplicity j = j0, p = p0, and q = q0. The fact that D

[ ]
is self-adjoint here is

immediate from (6.4.4) and (6.4.5)(1)–(6). To show that it is positive, observe again from (6.4.4)–
(6.4.5)(5) that the symmetric matrix B = (bij) for D

[ ]
on V0,i q,j,p,q in the monomial basis of (6.4.6)

satisfies bii ≥
∑

j 6=i |bij | for all i. Equality holds for all i if and only if the condition of part (b)
is satisfied: p = j and q ∈ {p, p + 1}, i.e., in those formulas (6.4.5)(3)–(6) which arise, always
m = n = 0, and also (6.4.5)(2) does not arise (and neither (6.4.5)(1)).
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Observe that the (undirected) graph obtained from B, with vertex set 1, . . . ,dimV0,i q,j,p,q and
with edges between i and j if bij 6= 0, is connected. The claim then follows from Lemma 6.2.2. �

Now, we complete the proof of Lemma 6.4.1. We showed that D
[ ]

is positive with kernel
spanned by the elements (6.4.2). By Lemma 6.2.4, this implies that (TSM, ∂̃0) is quasi-isomorphic
to the subcomplex spanned by the given elements. It is easy to check that ∂̃0 has zero differential
restricted to this subcomplex, and that the elements appearing in (6.4.2) are linearly indepen-
dent. �

6.5. The complex C`. Write [s,m] := s · m − (−1)|m|m ·R s, for s ∈ S, m ∈ M⊗`. We keep the
notation⊗ = ⊗S and put C` := M⊗`/[S,M⊗`]. We introduce a triple ds, ∂0, and ∂1, of differentials
on C`, as follows.

The definition of the differentials breaks up into two cases: the case of degree zero in t and the
case of positive degree in t, respectively. In the case of degree zero in t, we use the formulas

ds(1`) = s · 1`, ds(s · 1`) = 0,

∂0(1`) = 0, ∂0(s · 1`) = 0,

∂1(1`) = 0, ∂1(s · 1`) = (1 + (−1)`) ·
∑

0≤j≤`−1

1j · t · 1`−j .

In the case of positive degree in t, we observe that the differentials d̃s, ∂̃0 and ∂̃1 on M⊗`, in-
troduced in the previous section, descend to well defined differentials ds, ∂0, and ∂1, respectively,
modulo commutators with s. This gives the required differentials on C` = M⊗`/[S,M⊗`].

Let the cyclic group Z/` act onC` by cyclic permutations of tensor components using the Koszul
sign rule, in terms of the Z/2 grading above. We write (C`)Z/` for the corresponding space of Z/`-
coinvariants.

The next lemma is a ‘cyclic counterpart’ of Lemma 6.3.1 (which we will also not actually need).

Lemma 6.5.1. The map ζ, of Lemma 6.3.1, descends to an isomorphism of bicomplexes

ζ\ :
(⊕

`≥1
(C`)Z/`, ds, ∂

0 + ∂1
)

∼→ (DRtAτ , d, it).

Sketch of Proof. The argument is based on the following general result. Let A be an arbitrary al-
gebra, let V ⊂ A be a k-submodule, and consider α = a0 da1... dam and α′ = a′0 da′1... da

′
n for

arbitrary elements a0, a1, . . . , am, a
′
0, a
′
1, . . . , a

′
n ∈ V . Then, the following implication holds:

V · V = 0 ⇒
(
(dα) · t · β · t · α′ + (−1)|α|+|β|α · t · β · t · (dα′)

)
\

= 0, ∀β ∈ ΩtA. (6.5.2)

Now, equation V · V = 0 obviously holds in the case where A = Aτ and V = k · τ . Further, it is
straightforward to verify that the map ζ sends the k-submodule

⊕
` [S,M⊗`], of

⊕
`M

⊗`, onto the
k-submodule of Ωt(Aτ ) spanned by the elements of the form (dα)·t·β·t·α′+(−1)|α|+|β|α·t·β·t·(dα′),
which appear in (6.5.2).

Using this, and the cyclic symmetry of DRtAτ , one shows that the map ζ\ is well-defined. To
see it is a bijection, we first observe that DRtAτ can be presented as the quotient of ΩtAτ by the
above relation, for V = k · τ , along with the relation imposing cyclic symmetry. Then, the result
follows from the above observations and the fact that ζ is a bijection. �

6.6. We now compute the homology of the complexes (C`, ∂
0) and (C`/dsC`, ∂

0).

Lemma 6.6.1. (i) A basis for H(C`, ∂
0) as a free k-module consists of elements of the form

(st+ ts)⊗j0 ⊗ ti1sε1 ⊗ (st+ ts)⊗j1 ⊗ · · · ⊗ tiksεk ⊗ (st+ ts)⊗jk , (6.6.2)
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where i1, . . . , ik ≥ 2, j0, . . . , jk ≥ 0, and ε1, . . . , εk ∈ {0, 1}, together with the elements, for all k ∈
{0, . . . , `− 1}, and ε ∈ {0, 1},∑

1≤r≤k;j0,...,jk≥0:
j0+···+jk=`−k

(−1)(ε−1)(j0+j1+···+jr−1+r−1) ·1j0 ⊗ ts⊗· · ·⊗1jr−1⊗ tsε⊗· · ·⊗1jk−1
⊗ ts⊗1jk . (6.6.3)

(ii) A basis for H(C`/dsC`, ∂
0) as a free k-module consists of elements of the form

(st+ ts)⊗j0 ⊗ t⊗ (st+ ts)⊗j1 ⊗ tsε2 ⊗ (st+ ts)⊗j2 ⊗ · · · ⊗ tsεk ⊗ (st+ ts)⊗jk , (6.6.4)

where i1, . . . , ik ≥ 2, j0, . . . , jk ≥ 0, and ε2, . . . , εk ∈ {0, 1}, together with, for all k ∈ {0, . . . , `− 1}, the
element ∑

1≤r≤k;j0,...,jk≥0:
j0+···+jk=`−k

(−1)j0+j1+···+jr−1+r−1 · 1j0 ⊗ ts⊗ · · · ⊗ 1jr−1 ⊗ t⊗ · · · ⊗ 1jk−1
⊗ ts⊗ 1jk . (6.6.5)

See the next subsection for an explanation of formulas (6.6.3) and (6.6.5) (they will appear as the
associated graded expressions of (6.7.1) with respect to the increasing filtration by the degree in s,
i.e., the number of times s appears).

Proof. To prove part (i), we will use the proof of Lemma 6.4.1. The key step is to define a homotopy
D on C` similar to the operator D̃. As before, assume f1, . . . , fk ∈ TS〈1, s〉 ⊆ TSM . Then, for
i1, . . . , ik ≥ 1 and p1, p2 ≥ 0, define

D(1p1 ⊗ sεti1f1 · · · tik−1fk−1t
ik ⊗ 1p2) = D̃(1p1 ⊗ sεti1f1)ti2f2 · · · tik−1fk−1t

ik ⊗ 1p2

+ (−1)ε·deg(ti1f1···tik−1fk−1t
ik⊗1p2 ) · 1p1 ⊗ ti1D̃(f1 · · · tik−1fk−1t

ik ⊗ 1p2 ·R sε),

and so that D kills elements of degree zero in t (elements of the form (f1)\ with f1 as above). By
definition, D commutes with the Z/` action.

By the same argument as before, we can assume k = Q, and then [D, ∂0] is a positive operator
on C`, viewed as an inner product space with orthonormal basis

1j0 ⊗ ti1sε1 ⊗ 1j2 ⊗ · · · ⊗ tiksεk ⊗ 1jk , (6.6.6)

for ε1, . . . , εk ∈ {0, 1}, j0, . . . , jk ≥ 0, and i1, . . . , ik ≥ 1. The only difference comes in computing
the kernel, i.e., the statement of Claim 6.4.7(b) has to be modified (with the same proof, i.e., still
using Lemma 6.2.2). Here, we just have to add also the case where k = 0, p0 is arbitrary, and
q0 ∈ {p0, p0 +1}. One can verify that kernel in this case is spanned by the element (6.6.3) (note that
in this formula, there is a different parameter k, which need not be zero).

For part (ii), note that D commutes with ds, so it descends to an operator on C`/dsC`, which
we also denote (abusively) by D. Since [D, ∂0] is positive on C` and preserves dsC`, it is positive
on (dsC`)

⊥. Now, consider the composition (dsC`)
⊥ ↪→ C` � C`/dsC`, which is an isomorphism.

We claim that it commutes with the actions of [D, ∂0]. This will imply that [D, ∂0] is also positive
on C`/dsC`. The only subtlety here is that (dsC`)

⊥ is not preserved by D and ∂0. However, by
definition, the operators ∂0 and D on C`/dsC` are obtained from the projection C` � C`/dsC`, so
the claim follows.

As a result, (C`/dsC`, ∂
0) is quasi-isomorphic to the subcomplex spanned by the projection

of the subcomplex appearing in part (b) to C`/dsC`. This is evidently spanned by the elements
(6.6.4)–(6.6.5), since this is the collection of elements from (6.6.2)–(6.6.3) which do not project to
zero, and it is easy to see that these remaining elements (6.6.4)–(6.6.5) are linearly independent.
As before, the differential ∂0 is zero on this subcomplex, so the result follows. �
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6.7. We continue to keep the notation ⊗ = ⊗S . For each ` ≥ 1, q ≥ 0, and ε ∈ {0, 1}, we consider
the image in C` of the element

Υε
q,` :=

∑
k≥0, 1≤r≤k, i1,...,ik≥1, j0,...,jk≥0:

i1+···+ik=q, j0+···+jk=`−k

(−1)νε(j0,...,jr−1) ·1j0⊗ ti1s⊗ . . .⊗1jr−1⊗ tirsε⊗· · ·⊗1jk−1
⊗ tiks⊗1jk ,

(6.7.1)
where νε(j0, . . . , jr−1) := (ε− 1)(j0 + · · ·+ jr−1 + r − 1).

Lemma 6.7.2. (1) For all q ≥ 0 and all ε ∈ {0, 1}, we have that (∂0 + ∂1)Υε
q,` = 0.

(2) Using the notation of Lemma 6.6.1, one has
(i) The homology H(C`, ∂

0 + ∂1) is spanned by Υε
q,`, q ≥ 0, ε ∈ {0, 1}.

(ii) The homology H(C`/dsC`, ∂
0 + ∂1) is spanned by Υ0

q,`, q ≥ 0.

Proof. Part (1) is an explicit (and straightforward) computation, which we omit.
To prove (2), we introduce an ascending filtration on C` by the degree in s (a nonnegative

integer). This descends to a filtration on C`/dsC` as well. The differentials ∂0 and ∂1 respect the
filtration. The associated graded complexes are

grs(C`, ∂
0 + ∂1) = (grsC`, ∂

0) ∼= (C`, ∂
0), (6.7.3)

grs(C`/dsC`, ∂
0 + ∂1) = (grs(C`/dsC`), ∂

0) ∼= (C`/dsC`, ∂
0).

One has the standard spectral sequence associated with the filtered complex (C`, ∂
0 +∂1). From

the isomorphism in (6.7.3), we see that the first page of the spectral sequence is given by the
homology of the complex (C`/dsC`, ∂

0). This homology is described by Lemma 6.7.2. The second
page is obtained from the first page by taking the homology of the differential induced by ∂1.

We now prove (i); the proof of (ii) is similar. Since ∂0 and ∂1 are homogeneous of degree one in
t, we can prove the statement in each fixed degree q in t. Let C`,q ⊂ C` be the subset of elements
of degree q in t. The proof rests on comparing C`,q with the part of the complex (H(grsC`, ∂

0), ∂1)
in degree q + `.

Let (T `SM)q denote the part of T `SM of degree q in t, and (T `SM)′q the subspace spanned by
(6.4.2). Let C ′`,q ⊆ H(grsC`, ∂

0) be the subspace of degree q in t, which is spanned by the elements
(6.6.2)–(6.6.3). Let C ′` =

⊕
q≥0C

′
`,q. The differential ∂′ on C ′`, in terms of the basis (6.6.2)–(6.6.3),

is given by ∂′ = pr ◦∂1, where ∂1 is given by the usual formula on C`, and pr : C` → C ′` is the
orthogonal projection in the basis (6.6.6): more precisely, one first projects to ker(∂0) orthogonally
and then takes the quotient by im(∂0); equivalently, one projects orthogonally to the span of the
elements (6.6.2)–(6.6.3). The reason why this is the differential is that C ′` is obtained from C` as
the kernel of the positive operator [D, ∂0], and so the formula for ∂′ follows from the proof of
Lemma 6.2.4 (namely, from the fact that im([D, ∂0]), the orthogonal complement to the span of
(6.6.2)–(6.6.3), is an acyclic direct summand of the complex (C`, ∂

0)).
A key step is to construct a map ψ`, essentially multiplication by t⊗` with some constants, from

C`,q to C ′`,q+`, which commutes with the differential ds, and sends ∂0 + ∂1 to ∂′. The precise
definition of ψ` is given on (6.4.6) by

ψ`(s
ε0 · 1j0 ⊗ ti1sε1 ⊗ 1j1 ⊗ · · · ⊗ tiksεk ⊗ 1jk)

= ((j0 + 1)−1s)ε0 · (st+ ts)⊗j0 ⊗ ti1+1((j1 + 1)−1s)ε1 ⊗ (st+ ts)⊗j1⊗
· · · ⊗ tik+1((jk + 1)−1s)εk ⊗ (st+ ts)⊗jk . (6.7.4)

Claim 6.7.5. The map ψ` is an isomorphism C`,q → C ′`,q+` for all q ≥ 0 which intertwines ds with
ds and intertwines ∂0 + ∂1 on C` with ∂′ on C ′`.
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To prove the claim, one has to verify that ψ` is an isomorphism, that it preserves ds, and that it
sends ∂0 + ∂1 to ∂′. These facts all follow from straightforward explicit computations, which we
omit.

We now complete the proof of Lemma 6.7.2. We do this by induction on q. The base case is
where q < `. In this case, C ′`,q is already spanned by the elements grs Υε

q,`, q ≥ 0, ε ∈ {0, 1}, which
are exactly (6.6.3) up to nonzero constant factors, and, moreover, these elements are killed by ∂′.

For the inductive step, assume that, in degree q, H(C`, ∂
0 + ∂1) is spanned by the elements Υε

q,`

for ε ∈ {0, 1}. By Claim 6.7.5, this implies that, in degree q + `, H(C ′`, ∂
′) is spanned by ψ`(Υε

q,`).
We claim that

ψ`(Υ
ε
q,`) = grs Υε

q+`,`. (6.7.6)

Then, by the spectral sequence for (C`, ∂
0 + ∂1), this implies that the homology of (C`, ∂

0 + ∂1) in
degree q + ` is spanned by the classes Υε

q+`,`, completing the induction.
It remains to prove (6.7.6). Clearly, the RHS is given by restricting the sum in (6.7.1) to the

summands where k = `. In this case, each such summand is obtained from the summand of
element Υε

q,`. This proves (6.7.6). �

6.8. Proof of Proposition 6.1.1. The proof amounts to a generalization of the preceding material
from Aτ to A′. Here we revert to the notation ⊗ = ⊗k used before (and as we will use in the
remainder of the paper).

Below, we will use, for every p, q ≥ 0, a direct sum decomposition Ω
p,q
t A′ = ⊕`≥1 [Ω

p,q
t A′](`),

where [Ω
p,q
t A′](`) denotes the span of all elements in which A appears ` times. This induces a

similar decomposition DR
p,q
t A′ = ⊕`≥1 [DR

p,q
t A′](`). Also, let a superscript of q denote the degree

q part in t.
For each ` ≥ 1,we define a map ζ : A

⊗`⊗M⊗S` −→ [ΩtA
′](`) as follows. In positive degree in t,

the map is given, for every f1, . . . , f` ∈ {1, ti, tis | i ≥ 1} ⊂M not all equal to 1, and a1, . . . , a` ∈ A,
by the formula

(a1 ⊗ · · · ⊗ a`)⊗ (f1 ⊗S · · · ⊗S f`) 7→ (f1 ? a1)(f2 ? a2) · · · (f` ? a`),

where we put

1 ? a = da, ti ? a = tia, tis ? a = ti da, i ≥ 1.

In degree zero in t, we use the formulas

(a1 ⊗ · · · ⊗ a`)⊗ (1`) 7→ a1 da2 · · · da`, (a1 ⊗ · · · ⊗ a`)⊗ (s · 1`) 7→ da1 da2 · · · da`.

Recall next that the cyclic group Z/` acts on C` by cyclic permutations of tensor components
using the Koszul sign rule. We let Z/` act on A⊗` by ordinary cyclic permutations and we equip
A
⊗` ⊗ C` with Z/`-diagonal action. Further, we extend each of the three differentials d = ds, ∂

0,
and ∂1 on C` to the differentials dA := Id⊗d on A⊗` ⊗ C`, where Id : A

⊗` → A
⊗` is the identity.

Similarly, we extend the tilde versions d̃ to d̃A := Id⊗d̃ on A⊗`⊗M⊗S`. Finally, for every q ≥ 0, let
(A
⊗`⊗M⊗S`)q and (A

⊗`⊗C`)qZ/` be the homogeneous component ofA⊗`⊗M⊗S` and (A
⊗`⊗C`)Z/`

of degree q in t, respectively.

Lemma 6.8.1. For ` ≥ 1, (i) For every q ≥ 0, the map ζ induces isomorphisms of complexes(
(A
⊗` ⊗M⊗S`)q, ds,A

) ∼→ (
[Ω

q,q
t A′](`), d

)
, and

(
(A
⊗` ⊗ C`)qZ/`, ds,A

) ∼→ (
[DR

q,q
t A′](`), d

)
.
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(ii) For ε ∈ {0, 1} and ` ≥ 1, put Υε
` :=

∑
q≥0

1
(q+`−1)! · Υ

ε
q,`. Then, for every α ∈ A⊗`, the following

diagram commutes:(
(A
⊗` ⊗M⊗S`)0, ∂0

A + ∂1
A

)
ζ∼=
��

α⊗ sε·1` 7→ α⊗Υε` //
(∏

q≥0 (A
⊗` ⊗ C`)qZ/`, ∂

0
A + ∂1

A

)
ζ∼=
��(

[ΩA′](`), b
) E′ //

(∏
q≥0 [DR

q,q
t A′](`), it

)
.

Sketch of proof. In the special case where A = k is a rank one free k-module, A′ = Aτ = k ⊕ kτ .
In this case, the isomorphisms of part (i) of the lemma, as well as fact that the map ζ respects the
differentials, reduce to Lemmas 6.3.1 and 6.5.1. The proof in the general case is similar. Note that
implication (6.5.2), used in the proof of Lemma 6.5.1, is applicable in the general case as well, since
in the algebra A′ it follows that A ·A = 0.

Finally, commutativity of the diagram of part (ii) is verified by direct computation using the
explicit formula for the Tsygan map and for the map ζ. We omit the details. �

Remark 6.8.2. In the special case A = Aτ , i.e., A = k, the commutative diagram of Lemma 6.8.1(ii)
reduces to the diagram:(

(M⊗S`)0, ∂̃0 + ∂̃1
)

ζ∼=
��

sε·1` 7→ Υε` //
(∏

q≥0 (C`)
q
Z/`, ∂

0 + ∂1
)

ζ\∼=
��(

[ΩAτ ](`), b
) E′ //

(∏
q≥0 [DR

q,q
t Aτ ](`), it

)
.

We remark that it is immediate from commutativity of this diagram that (∂0 + ∂1)Υε
` maps to

zero in (C`)Z/`. This way, one obtains the equation of Lemma 6.7.2(1), but only modulo cyclic
permutations.

Proposition 6.1.1 is a direct consequence of the above lemma and Lemma 6.7.2.

7. PERIODIC AND NEGATIVE EXTENDED CYCLIC HOMOLOGY

7.1. We define extended periodic and negative cyclic homology of A as follows

EHCper(A) := H(DRt((u)), it−u d), and EHC−(A) := H(DRt[[u]], it−u d).

Similarly, let us define versions using the t-adic completion, EHCper,∧ := H(DR
∧
t ((u)), it−u d) and

EHC−,∧(A) := H(DR
∧
t [[u]], it−u d).

Remark 7.1.1. The complexes above can be viewed as bicomplexes with differentials u d and it.
Each of the two differentials preserves ‘internal degree,’ defined as the sum of de Rham degree
and degree in t minus degree in u. Separating homogeneous components with respect to internal
degree gives decompositions of (DR

∧
t ((u)), it−u d) and (DR

∧
t [[u]], it−u d) into infinite products of

subcomplexes. (Unlike for (DRt⊗R, it−u d), the uncompleted versions here are not direct sums
of subcomplexes in each internal degree, which is why we restrict our attention in this section to
the t-adically completed versions, which are better behaved.)

Proposition 7.1.2. The projection (DR
∧
t ((u)), it−u d) � (DR((u)),−u d), modulo t, is a morphism of

complexes, inducing an isomorphism on homology EHCper,∧(A) ∼→ HD(A)((u)).
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Remark 7.1.3. The above isomorphism, as well as all other isomorphisms which appear in this
section, preserves the ‘homological grading,’ which is defined to be de Rham degree minus twice
the degree in u.

Proof of Proposition. Exactly as in the proof of Proposition 5.6.1, we can take homology first with
respect to u d and use a spectral sequence. This spectral sequence is obviously convergent on
each homogeneous component with respect to the internal degree, cf. Remark 7.1.1; moreover, it
collapses on the first page (the homology with respect to u d). �

Remark 7.1.4. One can similarly compute EHC−,∧(A). First of all, observe that there is a subcom-
plex isomorphic to kerHH(A)(B ◦ I) (recall (4.1.3) for the definitions of B and I), with zero differen-
tial, sitting in degree zero in both t and u; this maps isomorphically to a subspace of EHC−,∧(A)
since the differential lands only in the sum of elements of positive degree in t or in u. In other
words, there is a noncanonical splitting of kerHH(A)(B ◦ I) off of EHC−,∧(A) obtained by choosing
a closed vector space complement which contains everything which has positive degree in either
t and u. As in the literature, let us make the abuse of notation B := B ◦ I : HH(A) → HH(A) for
the induced differential on HH(A).

Claim 7.1.5. There is a natural exact sequence

0→
∏
q≥1

H(DRt / d DRt, it)
q,q

(d̃−1 it)q(HD(A))

d−→ EHC−,∧(A)

kerHH(A)(B)

π−→
∏
m≥1

um · kerHD(A)((d̃−1 it)
m+1)→ 0.

Here, the map d is induced by the obvious map d̄ : DR
∧
t / d DR

∧
t → DR

∧
t , and the map π mods

by the constant term in u and by positive degree in t. Further, (d̃−1 it)
q : HD(A)→ H(DRt / d DRt, it)

q,q
is the map considered in §5.7 (see the proof of Proposition 5.7.1). More explicitly, the map d̃−1 it in-
duces an endomorphism of H(DRt / d DRt, it) as follows. Given an element of H(DRt / d DRt, it),
one first lifts it to DRt, then applies it. After that, one applies d̃−1, and projects to DRt / d DRt,
which lands back in kerDRt / d DRt

(it). Finally, we precompose with the inclusion HD(A) ⊆ HC(A) ∼=
H(DRt / d DRt, it)

q,0 ⊆ H(DRt / d DRt, it).
By definition, (d̃−1 it)

m|HDk(A) = 0 when k < 2m. Thus, for fixed k and m > k/2 − 1, the
component um · kerHDk(A)((d̃−1 it)

m+1) of the above product is nothing but um ·HDk(A).
Further, using isomorphism (5.5.5), the short exact sequence of Claim 7.1.5 becomes

0→
∏
q≥1

HC(A) · tq

im(Sq+1)
−→ EHC−,∧(A)

kerHH(A)(B)
−→

∏
m≥1

um · kerHD(A)((S1S2)m+1) → 0, (7.1.6)

where we note that the q became q + 1 in the first factor since the periodicity operator S is acting
on HC(A) rather than on HD(A) = im(S1).

Proof of Claim 7.1.5. We use the spectral sequence for the bicomplex (DR
∧
t [[u]], u d, it), taking ho-

mology first with respect to u d. This yields the first page,

(u ·HD(A)[[u]] ⊕ ker
DR
∧
t
(d), 0⊕ it).

Using the isomorphism d : (DR
∧
t )+/ d(DR

∧
t )+ ∼→ d(DR

∧
t )+, which commutes with it, the second

page becomes

u ·HD(A)[[u]] ⊕ H>0(DR
∧
t / d DR

∧
t , it)/(d̃−1 it HD(A)) ⊕ kerHH(A)(d).

The terms on the left and right of the exact sequence of Claim 7.1.5 then appear on the (m+ 2)-nd
and (q + 1)-st pages. One sees that the spectral sequence converges to this, i.e., there are no other
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nontrivial differentials that appear. Therefore, the associated graded (where by this we mean an
infinite product of homogeneous components) of EHC−,∧(A) with respect to the t-adic filtration is
the above, and one can check that the maps in the exact sequence of Claim 7.1.5 induce the required
isomorphism on the level of associated graded, so the sequence there must be exact (with injective
first arrow and surjective third arrow). �

Remark 7.1.7. According to (5.5.2), Proposition 7.1.2, and (7.1.6), the extended versions of all cyclic
homology groups EHC(A),EHCper,∧(A), and EHC−,∧(A) are expressible in terms of the original
Connes sequence (4.1.2), and do not require HC−(A) or HCper(A), which use infinite series in their
definition. In other words, taking the extended version breaks the complex up into a direct prod-
uct of complexes only involving finite sums, i.e., elements of DRt[u, u

−1] (and via Theorem 5.3.10,
elements of Ω[u, u−1]), owing to the internal grading. As a consequence, the natural morphisms
we will describe in §8 from the various flavors of cyclic homology of A to the (equivariant) coho-
mology of the representation varieties of A all factor through (infinite products of) subquotients
of HC(A) and HH(A).

7.2. The result below describes the maps induced by E on the versions of cyclic homology.
Let π′ : EHC(A) � HD(A)⊗u−1k[u−1] ⊆ HD(A)⊗R be the map given by f =

∑
m≥0 fmu

−m 7→∑
m≥1 fmu

−m mod (t), cf. Proposition 5.6.1. Let EHC∧(A) = H(DR
∧
t ⊗R, it−u d) ∼= HC(A)[[t]] ⊕

u−1 HD(A)[u−1], and define π′ in the same way on it.

Proposition 7.2.1. (i) The composite map HC(A)
E−→ EHC∧(A)

π′−→ HD(A)⊗R can be expressed
as π′ ◦E =

∑
m≤1 u

−m · S1S
m−1.

(ii) The induced map HCper(A)→ EHCper,∧(A) ∼= HD(A)((u)) is
∑

m∈Z u
−m · p1u

m.
(iii) The induced map HC−(A) → EHC−,∧(A), in terms of (7.1.5), is the sum of I− to kerHH(A)(d)

with the map which is
∑

m≥1 u
m(p1u

−mp−) projected to the subspace of
∏
m≥1 u

m·kerHD(A)((d̃−1 it)
m+1),

and, restricted to the kernel of this map, maps to the zero fiber
∏
q≥1 H(DRt / d DRt, it)

q,q/ im((d̃−1 it)
q)

by
∑

q≥1 Eq ◦p ◦p−.

The proof is a direct consequence of formula (5.3.9), Propositions 5.6.1 and 7.1.2 and Remark 7.1.4.

7.3. Extended version of the Connes exact sequence. There is an extended analogue of diagram
(4.4.4). One can obtain this diagram by applying E to the diagram of short exact sequences of
complexes that induce (4.4.4) (in the usual proof). This yields

0 // DR
∧
t [[u]]

·u // DR
∧
t [[u]] //

��

DR
∧
t

//

��

0

0 // DR
∧
t [[u]]

·u //

��

DR
∧
t ((u)) //

·u−1

��

DR
∧
t ⊗R // 0

0 // DR
∧
t

// DR
∧
t ⊗R

·u // DR
∧
t ⊗R // 0.

This induces the diagram (4.4.4) of short exact sequences, with E put in front of every nonzero
term and t-adic completions taken everywhere, where EHH, EHH′, EHD, and EHD′ are given by:
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EHH(A) := H(DRt, it), EHH′(A) :=
⊕
q≥0

[(d̃−1 it)
q(kerDR(d)) ∩ ker(it)] ⊆ EHH(A),

EHD(A) := HD(A)[u−1] ⊕
⊕
q≥1

ker(d : H(DRt / d DRt, it)→ H(DRt, it)),

EHD′(A) := HD(A)[u−1] ⊕
⊕
q≥1

(d̃−1 it)
q(HD(A)) ⊆ EHD(A),

and the t-adically completed versions are obtained by replacing DRt with DR
∧
t , and the direct

sums above by direct products. Then, E maps (4.4.4) commutatively onto the resulting diagram.

Remark 7.3.1. By Theorem 5.3.10, one has isomorphisms Eq : HH(A) ∼→ EHH(A)
q,q, q ≥ 0. We

deduce that EHH′(A)
q,0 ∼= kerHH(A)(B) = I−1(imS), where S : HC(A)→ HC(A) is the periodicity

operator. Then one obtains:

EHH(A) ∼= HH(A)[t] ⊇ EHH′(A) ∼= ⊕q≥0 I
−1(im(Sq+1)) · tq,

EHD(A) ∼= HD(A)[u−1]
⊕
tHD(A)[t] ⊇ EHD′(A) ∼= HD(A)[u−1]

⊕
(⊕q≥1 im(S1S2)q · tq) .

The t-adically completed versions of EHH(A),EHH′(A), EHD(A), and EHD′(A) are all obtained
by t-adically completing the above formulas (replacing sums by products and polynomials in t by
power series in t).

Remark 7.3.2. One can explicitly compute the extended, t-adically completed version of (4.4.4) in
terms of the preceding remark along with (5.5.2), Proposition 7.1.2, and (7.1.6), and verify that the
rows are exact using only exactness of (4.4.4). We describe just the horizontal maps in these terms:

The bottom row:
ES2: This is the identity on u−1 HD(A)[u−1] and the inclusion S2 on HD(A)[[t]] ⊆ HC(A)[[t]],

preserving degree in t.
EB : EHC∧(A) ∼= u−1 HD(A)[u−1] ⊕ HC(A)[[t]] → EHH∧(A) ∼= HH(A)[[t]] is zero on the first

factor of the source and B on the second factor.
EI : EHH∧(A) ∼= HH(A)[[t]]→ EHC∧(A) = u−1 HD(A)[u−1]⊕HC(A)[[t]] is zero on the first factor

of the target, and I on the second factor of the target.
ES1 is the tautological map (preserving the degree in t).
The middle row:
EB′ : EHC∧(A)→ EHC−,∧(A): in terms of (7.1.5), this kills u−1 HD[u−1], maps by B on HC(A)

in degree q = 0 of t, and for positive degree q ≥ 1 in t, it is the projection HC(A) � HC/ imSq+1 ⊆
EHC−,∧(A) by (7.1.5).
Ep− : EHC−,∧(A) → EHCper,∧(A) projects onto kerHH(A)(B) ⊕

∏
m≥1 u

m kerHD(A)(S1S2)m+1,
and then applies I to the first factor and the natural inclusion on the second factor into uHD[[u]],
preserving degree in u.
Ep1 is the identity on HD(A)[u−1] and sends um HD(A) to the factor for q = m by the map

SmS2u
−mtm.

Ep2 is the tautological inclusion (preserving degree in t).
The first row:
The first map is the tautological inclusion.
EB− maps HH(A) via B to kerHH(A)(B) in degree q = 0 of t, and in higher degrees q ≥ 1 maps

HH(A) to HC(A) via I and projects to HC(A)/ imSq+1.
ES− applies t · S to HC(A)tq/ imSq+1 for q ≥ 1, increasing degree in t by one. Modulo these

factors (the kernel of the sequence (7.1.5)), it multiplies by u: on the quotient of (7.1.5) these are
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the inclusions kerHD(A)(S1S2)m+1 ⊆ kerHD(A)(S1S2)m+2, and on kerHH(A)(B) this is the natural
map kerHH(A)(B) → kerHD(A)(S1S2) (this follows because kerHH(A)(B) = kerDR(d) ∩ kerDR(it), so
projecting mod d DR we land in kerHD(A)(S1S2) ⊆ kerHD(A)(S1S2)2).
EI− is the identity on kerHH(A)(B) = I−1 im(S) and applies B to the kernel of (7.1.5), which

gives a well-defined map to HH(A) since B ◦Sq = 0 for q ≥ 1. The image of the latter map is
the subspace ker(I) = im(B) of EHH′∧(A) =

⊕
q≥0 I

−1 imSq+1. Then, on the quotient (7.1.5),
EI− applies (S1S2)mu−m to um ker(S1S2)m+1 for m ≥ 1, which gives a well-defined map to
HH(A)/ ker(I) ∼= im(I) ⊆ HC(A), with image equal to imHD(A)(S1S2)m ∩ kerHD(A)(S1S2), which is
im(Sm+1) ∩ ker(S) = im(Sm+1) ∩ im(I) as a subspace of im(I) ⊆ HC(A).

8. THE REPRESENTATION FUNCTOR AND EQUIVARIANT DELIGNE COHOMOLOGY

8.1. Equivariant Deligne cohomology. Let X be an affine2 variety equipped with an action of a
connected reductive algebraic group G with Lie algebra g. Let act : g→ Vect(X) be the infinitesi-
mal action and let Ω1

X be the space of Kähler differentials onX . Thus, the algebra ΩX = ∧k[X](Ω
1
X)

of algebraic differential forms on X acquires a natural structure of g-module. One also has a nat-
ural g-action on k[g], a polynomial algebra, induced by the adjoint g-action on g itself. We let g act
diagonally on the algebra ΩX [g] := ΩX ⊗ k[g].

Recall that the Cartan model of the equivariant (algebraic) de Rham complex of X is defined as(
(ΩX [g])g, dX −ig

)
. (8.1.1)

where dX is the de Rham differential on X and ig is the equivariant differential, given by

ig(d f)(x) = act(x)(f), ig|Ω0
X

= 0 = ig|k[g].

By analogy with cyclic homology, we introduce three new versions of the Cartan model, all
equipped with the differential ig − u dX , where u is an extra parameter:

CCper
g (X) := (ΩX [g])g((u)), CCg(X) := (ΩX [g])g ⊗R, CC−g (X) := (ΩX [g])g[[u]]. (8.1.2)

Remark 8.1.3. The complex (CCper
g (X), ig − u dX) is isomorphic, up to sign in the differential, to

the standard version (8.1.1) tensored by k((u)), via the map g∗ ∼→ u−1g∗, g 7→ u−1g.

We define the homological grading CCg(X) = ⊕n CCn
g (X) by placing the space (Ωp

X ⊗ k[g])g · u−r
in degree n = p+2r, for every p and r. Thus, the tensor factor k[g], is assigned homological degree
zero, and u has homological degree |u| = −2. Each of the differentials u dX and ig, and hence also
ig−u dX , has homological degree (−1). We define equivariant Deligne cohomology, which will serve
as the natural receptacle of cyclic homology under the representation functor, by

DH
q
g (X) := H(CC

q
g(X), ig − u d).

Periodic and negative versions are defined in an obvious way.
Similarly to §5.5, we also introduce an internal grading CCg(X) = ⊕k∈Z CCg(X)k, by assigning

the space (Ωp
X ⊗ kq[g])g · u−r internal degree p + q + r, for every p, q, and r. Here, we use the

notation kq[g] for the space of degree q homogeneous polynomials on g. Each of the differentials
u dX and ig preserves the internal grading. Therefore, the complex (CCg(X), ig − u dX) breaks up
into a direct sum over all k ∈ Z of the subcomplexes (CCg(X)k, ig − u dX).

For ` ≥ 0 and m ∈ Z, we define the weight m component of DH`
g (X), cf. §5.5, by

DH
`
g (X,m) := H`(CCg(X)`−m, ig − u dX).

2It is possible to generalize everything below to the case of not necessarily affine varieties by replacing the space of
global differential forms on X by the sheaf of differential forms.
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The natural multiplication in the algebra ΩX((u)) ⊗ k[g] induces a canonical (k[g]g)[u]-module
structure on the equivariant Deligne cohomology. The module structure and the gradings are
related by

(kq[g]g)ur
⊗ DH

`
g (X,m) −→ DH

`−2r
g (X,m− q − r), ∀q, r ≥ 0. (8.1.4)

There is also an algebra structure on the equivariant Deligne cohomology, similar to the one on
the ordinary Deligne cohomology. In the equivariant case, the product is defined by the formula
ω · ω′ = ω ∪ u−1(ig − u dX)ω′. Here u−1(ig − u dX)ω′ should be computed by first lifting ω′ to
(ΩX [g])g ⊗ k((u)), then after performing the operation, projecting back to (ΩX [g])g ⊗ R. Compare
this with [Lo, §3.6.2] regarding usual Deligne cohomology. (Note that, when ω′ is a cocycle, i.e.,
(ig − u dX)ω′ = 0 in CC

q
g(X), then the above formula can be rewritten as ω ∪ − dX ω

′
0, where ω′0 is

the constant term in u of ω′.) The algebra structure will not play a role below.
Equivariant Deligne cohomology is functorial with respect to G-equivariant maps.

Example 8.1.5. If g acts trivially onX , we obtain CCg(X) ∼= (ΩX⊗R, u d)⊗k[g]g. The cohomology
of the first term on the RHS is

H(ΩX ⊗R, u d) ∼= ΩX/ d ΩX
⊕ (

HDR(X)⊗ u−1 · k[u−1]
)
.

We find that the group DH`
g (X,m) vanishes for m >

[
`
2

]
, and

DH
`
g (X,m) =



( ⊕
1≤j≤[`/2]

H`−2j
DR (X)⊗ kj−m[g]g

) ⊕ (
Ω`
X/ d Ω`−1

X ⊗ k−m[g]g
)
, m ≤ 0

⊕
m≤j≤[`/2]

H`−2j
DR (X)⊗ kj−m[g]g , 0 < m ≤

[
`
2

]
.

In total degree `, we therefore obtain DH`
g (X) ∼= DH

`
(X)⊗ k[g]g, where we write

DH
`
(X) :=

⊕
1≤j≤[`/2]

H`−2j
DR (X)

⊕
Ω`
X/ d Ω`−1

X

for the even or odd-degree part of the usual Deligne cohomology of X for the integer `+ 1 shifted
down in degree by one. The Deligne cohomology is denoted DH̃(X,Z(n+ 1)) in [Lo, §3.6].

Example 8.1.6. Let p : X → Y be a principal G-bundle on an affine variety Y , the latter being
viewed as aG-variety with the trivialG-action. Then, analogously to the case of usual equivariant
cohomology, there is a canonical isomorphism

DH
q
g (X) ∼= DH

q
(Y ).

To prove this, one observes first that a G-bundle on an affine variety admits an algebraic con-
nection. Using a connection, one shows that the pull-back morphism p∗ : ΩY → ΩX induces an
isomorphism k[X]⊗k[Y ] ΩY

∼→ H(ΩX [g], ig). Taking G-invariants on each side and using that G is
connected and reductive, we deduce an isomorphism ΩY = (k[X] ⊗k[Y ] ΩY )g ∼→ H((ΩX [g])g, ig).
The required isomorphism DH

q
g (X) ∼= DH

q
(Y ) then follows from the spectral sequence of a dou-

ble complex, by taking homology of the differential ig first.

8.2. The representation functor. Associated with an algebra A and n ≥ 1, there is an affine
scheme RepnA that parametrizes n-dimensional representations ofA. Its closed points are algebra
homomorphisms ρ : A→ Matn(k), a 7→ ρ(a). The scheme RepnA comes equipped with a natural
action of GLn, the general linear group, by base change transformations. We write gln = Lie GLn
for the corresponding Lie algebra.
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Below, we will use simplified notation: Repn = RepnA, DRt = DRtA, etc. The connection
between DRt and the GLn-equivariant de Rham complex of Repn is through the evaluation map,
which is a ‘tautological’ homomorphism of algebras,

ev : A→ (k[Repn]⊗Matn(k))gln , a 7→ (ρ 7→ ρ(a)).

The above can be defined scheme-theoretically by extending this functorially to representations
with coefficients in arbitrary k-algebras; see, e.g., [Gi, §12].

The evaluation map extends uniquely to a homomorphism of dg algebras,

ev : ΩA→ (ΩRepn ⊗Matn(k))gln , ev(da) = d ev(a).

Finally, to extend this to ΩtA, let ev(t) : gln → Matn(k) be the identity map, viewed as a linear
function on gln valued in Matn(k), i.e., as an element of the algebra k[gln]⊗Matn(k). Put together,
we obtain a dg algebra map ev : ΩtA→ (ΩRepn [gln]⊗Matn(k))gln . Further, taking a trace gives a
chain of maps

ΩtA
ev // (ΩRepn [gln]⊗Matn(k))gln

Id⊗trace // (ΩRepn [gln]⊗ k)gln = (ΩRepn [gln])gln .

The resulting composite map descends to a linear map

tr ◦ ev : DRt −→ (ΩRepn [gln])gln .

Then, it is not difficult to verify

Theorem 8.2.1 ([GS], Theorem 6.2.5). For all n ≥ 1, the map tr ◦ ev induces a map of bicomplexes

tr ◦ ev : (DRt, d, it) −→
(
(ΩRepn [gln])gln , dRepn , igln

)
.

8.3. From cyclic to equivariant Deligne cohomology. Let us define reduced versions of the previ-
ous equivariant complexes and cohomology groups of X by replacing ΩX by ΩX = ΩX/k (where
k ⊆ ΩX are the scalars in degree zero), and leaving everything else the same. We will put lines
over everything to denote the reduced versions.

By Theorem 8.2.1 and construction, we deduce that the map tr ◦ ev induces, for all n ≥ 1, a
canonical morphism of k[gln]gln [u]-modules:

EHC(A) = H(DRt⊗R, it−u d) −→ DHgln(Repn) = H
(
(ΩRepn [gln])gln⊗R, igln−u dRepn

)
. (8.3.1)

The main result of this section is an analogue of the above for the usual cyclic homology:

Theorem 8.3.2. (i) For every n ≥ 1, one has canonical maps given by the composition

Ψmq : HC q(A)
w q−m ◦E

// EHC q(A,m)
tr ◦ ev

// DH
q
gln

(Repn,m), m ∈ Z.

(ii) For m = 0 and every ` ≥ 0, the composite map

Ψ′` : ker(i : DR
`
/ d DR

`−1→ Ω
`−1
/ d Ω

`−2
)

(3.1.5)
HC`(A)

Ψ0
` // DH

q
gln

(Repn, 0)

is given by the explicit formula

Ψ′`(f) = 1
`!

∑
0≤j≤[`/2]

u−j · tr ◦ ev ◦ (d̃−1 it)
j(f). (8.3.3)

Remark 8.3.4. (1) In the above formula, tr ◦ ev ◦ (d̃−1 it)
j(f) ∈ Ω

`−2j
Repn
⊗kj [gln]. Thus, the sum in the

RHS of (8.3.3) a priori lives in(⊕
1≤j≤b`/2c u

−j · Ω`−2j
Repn

⊗ kj [gln]
⊕

Ω
`
Repn

/ d Ω
`−1
Repn

)gln
.
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One checks further that this sum is, in fact, annihilated by the differential igln −u dRepn , and hence
gives a well defined class in DH

q
gln

(Repn, 0).
(2) Note that formula (8.3.3), unlike the definition of the map Ψmq in the general case of an

arbitrary m, does not involve the Tsygan map E.

Proof of Theorem 8.3.2. Part (i) follows from (8.3.1), by separating individual homogeneous compo-
nents and using isomorphism (5.5.3). To prove (ii), we use diagram (5.6.4) and Proposition 5.7.1.
In more detail, we consider the sequence of maps

ker(i : DR
`
/ dDR

`−1 → Ω
`−1
/ dΩ

`−2
)

(3.1.5)
H`(Ω⊗R, b−uB)

(3.1.8)
H`(Ω/B Ω, b) (8.3.5)

E0

∼=
// H(DRt / d DRt, it)

`,0 η // H`
(
(DRt, it−u d)`

) tr ◦ ev
// DH

`
gln

(Repn, 0),

where the map η is given by the formula η = (Id−u−1d̃−1 it)
−1 =

∑
j u
−j · (d̃−1 it)

j .

Observe first that, for f ∈ Ω
`, the component of E(f) of degree zero in t equals 1

`! · f\ (one can
see this either directly from formula (5.3.1) or from Lemma 5.3.2). Therefore, the restriction of the
map E0 to H`(Ω/B Ω, b) is essentially the map f 7→ 1

`! · f\. It follows that the composition of the
first four isomorphisms in (8.3.5) is the isomorphism from (5.5.8) times 1

`! . We deduce that the
composite of all the maps in (8.3.5) equals the map given by formula (8.3.3).

On the other hand, the map η provides, thanks to Proposition 5.7.1, an inverse to the isomor-
phism EHC`(A, 0) ∼→ H(DRt / d DRt, it)

`,0, in (5.5.3). Therefore, from the commutativity of dia-
gram (5.6.4) we deduce that the composite of the second, third, and fourth maps in (8.3.5) is equal
to the map w` ◦E : H`(Ω⊗ R, b−uB) → EHC`(A, 0). We conclude that the composite of the last
four maps in (8.3.5) equals the map Ψ0

` , completing the proof. �

One can also restrict the map (8.3.1) to the Karoubi-de Rham cohomology HD(A) ⊆ HC(A) and
EHD(A) ⊆ EHC(A). This will land in DHcl,gln(Repn(A)), the cohomology of the complex

CCcl,gln(Repn) :=
(
Ω
gln
cl,Repn

⊕
(ΩRepn ⊗ k[gln]+)gln ⊗R, igln −u dRepn

)
,

where Ω
gln
cl,Repn

denotes the subspace of closed forms and k[gln]+ ⊂ k[gln] denotes the augmenta-

tion ideal. Let CC
∧
cl,gln

(Repn) be the corresponding k[gln]+-adic completion.

Corollary 8.3.6. By restriction, we obtain maps

EHD(A)→ H(CCcl,gln(Repn)), and HD(A)→ H(CC
∧
cl,gln

(Repn)). �

Remark 8.3.7. There are also ‘periodic’ and ‘negative’ versions of the above constructions, which
produce maps

EHCper,∧(A)→ H(CC
per,∧
gln

(RepnA)) ∼= Hgln(RepnA)((u)), EHC−,∧(A)→ H(CC
−,∧
gln

(RepnA)).

Composing with E, we obtain maps

HCper(A)→ H(CC
per,∧
gln

(RepnA))((u)), HC−(A)→ H(CC
−,∧
gln

(RepnA)).

Moreover, we obtain commutative diagrams of commutative squares with exact rows, from
(4.4.4) to the version with E in front of all groups (and with t-adic completions), to the commuta-
tive square connecting the k[gln]+-adic completed versions of the above equivariant cohomology
groups (and versions one can similarly define analogous to HH′,HH, and HD

′; note that the equi-
variant analogue of HD, DHcl,g(Repn), was defined above).
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8.4. Special cases. The case of n = 1: If n = 1, then GL1 is a 1-dimensional torus, and k[gl1] ∼=
k[t]. Furthermore, since the algebra Mat1(k) is commutative, the evaluation map for ΩtA may be
factored as a composition

ΩtA
f 7→f\ // // DRt

ct // DR[t]
ev⊗ Idk[t] // Ω

q
Rep1 A

[t]⊗Mat1(k),

where ct is the map that makes t a central variable, cf. Lemma 5.3.2. Given f ∈ ΩA, we will use
simplified notation f̄ := tr ◦ ev(f\) ∈ ΩRep1 A. Thus, using the formula of Lemma 5.3.2 and the
fact that the trace map yields an algebra isomorphism tr : Mat1(k) ∼→ k, we deduce

tr ◦ ev ◦E(f) = 1
k! · f̄ exp(t), ∀ f ∈ Ω

k
A. (8.4.1)

One can use the above formula to obtain an explicit description of the map of Theorem 8.3.2
in the special case that n = 1 and m = 0. To this end, observe first that the group GL1 acts
trivially on the scheme Rep1A. Therefore, we are in the setting of Example 8.1.5. According to the
isomorphism given there, in the special case where g = gl1 andm = 0, Theorem 8.3.2 yields a map

Ψ0
` : HC`(A) → DH

`
(Rep1, 0) = Ω

`
Rep1 A

/ d Ω
`−1
Rep1 A

⊕ (
⊕j≥1H

`−2j(Rep1A) tj u−j
)

(8.4.2)

To compute this map explicitly, we plug formula (8.4.1) for the map E into (8.3.1) and separate
the relevant homogeneous components. Then, one finds that the map (8.4.2) is given, for every∑

0≤j≤[`/2] f`−2j u
−j representing a class in HC`(A) = H`(ΩA⊗R, b−uB), by the formula∑

0≤j≤[`/2]

f`−2j u
−j 7→

∑
0≤j≤[`/2]

1

(`− 2j)!(`− 2j)!
· f̄`−2j t

j u−j , f`−2j ∈ Ω
`−2j

A. (8.4.3)

Next, letAab := A/([A,A]) be the abelianization ofA, a quotient of the algebraA by the two-sided
ideal generated by the set [A,A]. A well known construction in the theory of cyclic homology of
commutative algebras produces a map

HC`(Aab) = H`(ΩAab ⊗R, b−uB) →
⊕

j≥1 H
`−2j(SpecAab)

⊕
Ω
`
SpecAab

/ d Ω
`−1
SpecAab

.

Specifically, according to [Lo, Proposition 2.3.7], this map is defined by the assignment

Ψclassical
` :

∑
0≤j≤[`/2]

f`−2j u
−j 7→

⊕
0≤j≤[`/2]

1

(`− 2j)!
· f̄`−2j . (8.4.4)

Let ab : A→ Aab be the abelianization homomorphism and write HC(ab) : HC(A)→ HC(Aab)
for the induced map on cyclic homology. The abelianization map HC(ab) clearly intertwines the
Tsygan maps for the algebras A and Aab, respectively. Note further that Hilbert’s Nullstellensatz
yields canonical isomorphisms Rep1A = Rep1Aab = SpecAab. With these observations in mind,
comparing formulas (8.4.3) and (8.4.4) yields the comparison result

Corollary 8.4.5. One has N! ◦Ψ0q = Ψclassicalq ◦ HC(ab), where N! is the map that acts by scalar multipli-
cation by k! in de Rham degree k.

Restricting the map (8.4.2) to HD`(A) via the embedding S2 from the Connes exact sequence,
cf. Theorem 4.1.1, we obtain a map

Ψ0
` ◦S2 : HD`(A) −→

⊕
j≥0H

`−2j(Rep1A). (8.4.6)

Remark 8.4.7. In the case where A is a smooth commutative algebra the map Ψclassical
` is known to

be an isomorphism, see [Lo, Theorem 3.4.12]. It follows that, in this case, each of the maps (8.4.2)
and (8.4.6) is an isomorphism as well.
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Restriction of gln to scalars: For general n ≥ 1, the subalgebra of scalar matrices gl1 ⊆ gln still
acts trivially on RepnA. Thus, restricting the general construction to gl1 produces a map

HC`(A) → Ω
`
Repn A

/ d Ω
`−1
Repn A

⊕ (
⊕j≥1H

`−2j(RepnA)
)
. (8.4.8)

There is also a comparison result, similar to Corollary 8.4.5, saying that the map (8.4.8) is equal,
up to a twist by the automorphism N!, to the composition of the evaluation map

HC`(A) → HC`(k[RepnA]⊗Matn(k)) ∼= HC`(k[RepnA])

with isomorphism Ψclassical.
If we don’t restrict to scalars, the maps HC(A) → DHgln(RepnA) should capture finer informa-

tion, having to do with the equivariant geometry of the representation scheme.
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