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Hubbard-like Hamiltonians are widely used to describe on-site Coulomb interactions in magnetic
and strongly-correlated solids, but there is much confusion in the literature about the form these
Hamiltonians should take for shells of p and d orbitals. This paper derives the most general s, p and
d orbital Hubbard-like Hamiltonians consistent with the relevant symmetries, and presents them
in ways convenient for practical calculations. We use the full configuration interaction method to
study p and d orbital dimers and compare results obtained using the correct Hamiltonian and the
collinear and vector Stoner Hamiltonians. The Stoner Hamiltonians can fail to describe properly
the nature of the ground state, the time evolution of excited states, and the electronic heat capacity.

PACS numbers: 31.15.aq, 31.15.xh, 31.10.+z

I. INTRODUCTION

The starting point for any electronic structure calculation
is the Hamiltonian that describes the dynamics of the
electrons. Correlated electron problems are often formu-
lated using Hamiltonians that involve only a small num-
ber of localized atomic-like orbitals and use an effective
Coulomb interaction between electrons that is assumed
to be short ranged, and thus confined to within atomic
sites. However, there is widespread variation in the liter-
ature over the form chosen for these Hamiltonians, and
they often do not retain the correct symmetry proper-
ties. Here we derive the most general Hamiltonians of
this type that are rotationally invariant and describe elec-
trons populating s, p and d orbitals.

Despite often missing terms, multi-orbital Hamiltonians
with on-site Coulomb interactions have been used suc-
cessfully to describe strong correlation effects in sys-
tems with narrow bands near the Fermi energy. Ap-
plications include studies of metal-insulator transitions1,
colossal magnetoresistant manganites2, and d band su-
perconductors such as copper oxides3 and iron pnictides4.
The Hubbard Hamiltonian has also been used to sim-
ulate graphene5,6, where both theory and experiment
have found magnetic ordering in nanoscale structures7,8.
However, the lack of consistency in the forms used for

the Hamiltonians is problematic. Indeed, according to
Dagotto2, “the discussions in the current literature re-
garding this issue are somewhat confusing”.
The Hubbard Hamiltonian9 is both the simplest and best
known Hamiltonian of the form we are considering, and
is valid for electrons in s orbitals. Hubbard was not the
first to arrive at this form; two years earlier, in 1961,
Anderson wrote down a very similar Hamiltonian10 for
electrons in s orbitals with on-site Coulomb interactions.
Furthermore, in the appendix of the same paper, the
Hamiltonian was extended to two orbitals, introducing
the on-site exchange interaction, J . Unfortunately, this
extra term is not rotationally invariant in spin space.
In 1966, Roth11 also considered two orbitals and two pa-
rameters, producing a Hamiltonian that is rotationally
invariant in spin space. In 1969 Caroli et al.12 corrected
Anderson’s Hamiltonian for two orbitals, again making it
rotationally invariant in spin space. However, the Hamil-
tonians of Roth and Caroli et al. do not satisfy rota-
tional invariance in orbital space. This was corrected by
Dworin and Narath in 197013, who produced a Hamilto-
nian that is rotationally invariant in both spin and orbital
space. They generalized the multi-orbital Hamiltonian to
include all 5 d orbitals, although they only included two
parameters: the on-site Hartree integral, U , and the on-
site exchange integral, J .
The next contribution to the multi-orbital Hamiltonian



2

was by Lyon-Caen and Cyrot14, who in 1975 considered
a two-orbital Hamiltonian for the eg d orbitals. They
introduced U0 − U = 2J , where U0 = Vαα,αα is the self-
interaction term, U = Vαβ,αβ is the on-site Hartree in-
tegral, and J = Vαβ,βα is the on-site exchange integral,
important for linking these parameters. Here V is the
Coulomb interaction between electrons, and α and β are
indices for atomic orbitals. Lyon-Caen and Cyrot also

included the pair excitation, Jĉ†I1,↑ĉ
†
I1,↓ĉI2,↓ĉI2,↑, where

ĉ† and ĉ are fermionic creation and annihilation opera-
tors. The new term moves a pair of electrons from a
completely occupied orbital, 2, on site I, to a completely
unoccupied orbital, 1, on site I. Such double excitations
are common in the literature15–18.
In 1978, Castellani et al.19 wrote down the three-orbital
Hamiltonian for the t2g d orbitals20 in a very clear and
concise way: its form is exactly what we find here for p
orbital symmetry. They too make note of the equation
U0 − U = 2J and include the double excitation terms.
The next major contribution was by Oleś and Stollhoff21,
who introduced a d orbital Hamiltonian with three inde-
pendent parameters. The third parameter, ∆J , repre-
sents the difference between the t2g and the eg d orbital
exchange interactions; they estimated ∆J to be 0.15J .
In our discussion of d orbitals we adopt their notation.
Unfortunately, their Hamiltonian is not rotationally in-
variant in orbital space.
In 1989, Nolting et al.22 referenced the Hamiltonian pro-
posed by Oleś and Stollhoff but discarded the double ex-
citation terms and ignored the ∆J term. Their Hamilto-
nian will be called the vector Stoner Hamiltonian in this
paper. Since then, most papers have used a Hamiltonian
similar to that of Nolting et al., with only two parame-
ters; see for example references 23–25. The vector Stoner
Hamiltonian is often simplified by replacing the rotation-
ally invariant moment-squared operator, m̂2 = m̂ ·m̂, by
m̂2
z, yielding the collinear Stoner Hamiltonian.

The multi-orbital Hamiltonians derived here consist
of one-particle hopping (inter-site) integrals and two-
electron on-site Coulomb interactions. The on-site
Coulomb interactions for s, p and d orbital symmetries
are presented in a clear tensor notation, as well as in
terms of physically meaningful, rotationally invariant (in
both orbital and spin space), operators that include all
of the terms from the previous papers as well as addi-
tional terms of the same order of magnitude that have
not been previously considered. The d orbital Hamil-
tonian presented in section II D corrects the d orbital
Hamiltonian proposed by Oles̀ and Stollhoff21 by restor-
ing full rotational invariance in orbital space. For an
s orbital Hamiltonian, the on-site Coulomb interactions
may be described using one independent parameter. Two
independent parameters are required for p orbital sym-
metry, and three for d orbital symmetry. Furthermore,
the method presented can be extended to f and g orbital
symmetry and generalized to atoms with valence orbitals
of multiple different angular momenta.
The use of a restricted basis set and the neglect of the

two-electron inter-site Coulomb interactions means that
screening effects are missing. Thus, even though the pa-
rameters that define the s, p and d Hamiltonians appear
as bare on-site Coulomb integrals, screened Coulomb in-
tegrals should be used when modelling real systems; this
significantly reduces the values of the parameters.

Although it is possible to find the on-site Coulomb inte-
grals using tables of Slater-Condon parameters26,27 or the
closed forms for the integrals of products of three spheri-
cal harmonics found by Gaunt28 and Racah29, the point
of this paper is to remove that layer of obscurity and
present model Hamiltonians written in a succinct form
with clear physical meaning. The Slater-Condon param-
eters and Gaunt integrals were not used in the deriva-
tions of the on-site Coulomb interaction Hamiltonians
presented here; however, they did provide an indepen-
dent check to confirm that the tensorial forms derived
here are correct. The link between the spherical har-
monics Coulomb integrals, the Slater-Condon parameters
and the Racah parameters is explained clearly in30. The
transformation to cubic harmonics is straightforward; an
example of which has been included for the p-orbitals in
Section II C.

We note that Rudzikas31 has derived rotationally invari-
ant Hamiltonians for p and d orbital atoms. However, his
derivation is different from ours and his d orbital Hamil-
tonian is partially expressed in terms of tensors; the form
we present in this paper is written in terms of physically
meaningful operators.

The p and d symmetry Hamiltonians are described in
Section II (see Appendix B for full derivations) and com-
pared with the vector Stoner Hamiltonian. In Section
III we show the ground state results for both our Hamil-
tonian and the vector Stoner Hamiltonian for p and d
orbital dimers. We find that, although the results are of-
ten similar, there are important qualitative and quanti-
tative differences. In Section IV we show the differences
that emerge when evolving a starting state for a p or-
bital dimer under our Hamiltonian and the vector Stoner
Hamiltonian. We also calculate a thermodynamic prop-
erty, the electronic heat capacity of a p orbital dimer,
and obtain significantly different results when using our
Hamiltonian and the vector Stoner Hamiltonian. The
eigenstates of all Hamiltonians are found using the full
configuration interaction (FCI) method as implemented
in the HANDE code32.

II. THEORY

A. General form of the Hamiltonian

We start with the general many-body Hamiltonian of
electrons in a solid, expressed in second-quantized form
using a basis of localized one-electron orbitals and ig-
noring terms that do not include electronic degrees of
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freedom33:

Ĥ =
∑
IαJβ

∑
σ

tIαJβ ĉ
†
Iα,σ ĉJβ,σ

+
∑
IJKL

∑
αβχγ

∑
σξ

VIαJβ,KχLγ ĉ
†
Iα,σ ĉ

†
Jβ,ξ ĉLγ,ξ ĉKχ,σ.

(1)

Here ĉ†Iα,σ and ĉIα,σ are creation and annihilation op-
erators, respectively, for an electron in orbital α on site
I with spin σ. Upper case Roman letters such as I, J ,
K and L refer to atomic sites, the lower case Greek let-
ters α, β, χ and γ represent localized orbitals, and σ and
ζ indicate spin (either up or down). The one-electron
contributions to the Hamiltonian are encapsulated in the
tIαJβ term that includes the electronic kinetic energy and
electron-nuclear interaction. The electron-electron inter-
action terms are represented by the Coulomb matrix el-
ements VIαJβ,KχLγ .
We now make two approximations: we only retain
electron-electron Coulomb interactions on-site and we re-
strict the basis to a minimal set of localized angular mo-
mentum orbitals. Thus we have just one s orbital per site
for the s-symmetry Hamiltonian, three p orbitals per site
for the p-symmetry Hamiltonian, and five d orbitals per
site for the d-symmetry Hamiltonian. The Hamiltonian
can then be written as follows:

Ĥ ≈
∑
IαJβ

∑
σ

tIαJβ ĉ
†
Iα,σ ĉJβ,σ

+
1

2

∑
I

∑
αβχγ

∑
σξ

V Iαβ,χγ ĉ
†
Iα,σ ĉ

†
Iβ,ξ ĉIγ,ξ ĉIχ,σ, (2)

where V Iαβ,χγ = VIαIβ,IχIγ . To improve readability, from
this point onwards we drop the site index, I, from the
Coulomb integrals and creation and annihilation opera-
tors as we shall always be referring to on-site Coulomb
interactions.
The on-site Coulomb interaction, Vαβ,χγ , is a rotation-
ally invariant tensor if the atomic-like orbitals are angu-
lar momentum eigenstates. To demonstrate this we note
that applying the rotation operator R̂ to an atomic-like
orbital φα of angular momentum ` gives

R̂|φα〉 =
∑
β

|φβ〉d`βα(R), (3)

where d`βα(R) is the (2`+1)× (2`+1) matrix that corre-

sponds to the rotation R̂ in the irreducible representation
of angular momentum `. By making the change of vari-
able x = R̂r and x′ = R̂r′, it is straightforward to show
that

Vαβ,χγ =

∫
drdr′

φ∗ασ(r)φ∗βσ′(r
′)φχσ(r)φγσ′(r

′)

|r− r′| ,

=
(
d`α′α(R)

)∗ (
d`β′β(R)

)∗
Vα′β′,χ′γ′d

`
χ′χ(R)d`γ′γ(R),

(4)

which demonstrates that Vαβ,χγ is indeed a rotationally
invariant tensor.

B. The one band Hubbard model: s orbital
symmetry

The Hubbard Hamiltonian is applicable only to one band
models where the one orbital per atom has s symmetry.
This gives a simple form for the on-site Coulomb inter-
action tensor, U0 = Vαα,αα; as there is only one type of
orbital, there is only one matrix element. We can use this
result to simplify the Coulomb interaction part of Eq. (2)
and express it in terms of the electron number operator or
the magnetic moment vector operator, defined as follows:

n̂ =
∑
αζ

ĉ†α,ζ ĉα,ζ , (5)

m̂ =
∑
αζζ′

ĉ†α,ζσζζ′ ĉα,ζ′ , (6)

σζζ′ = (σxζζ′ , σ
y
ζζ′ , σ

z
ζζ′),

where σ are the Pauli spin matrices and the sum over α
has only one term as there is only one spatial orbital for
the s case. Hence

1

2

∑
αβχγ

∑
σξ

Vαβ,χγ ĉ
†
α,σ ĉ

†
β,ξ ĉγ,ξ ĉχ,σ =

1

2
U0 : n̂2 :, (7)

or, equivalently,

1

2

∑
αβχγ

∑
σξ

Vαβ,χγ ĉ
†
α,σ ĉ

†
β,ξ ĉγ,ξ ĉχ,σ = −1

6
U0 : m̂2 :, (8)

where we have use the normal ordering operator, ::, to
remove self interactions. The action of this operator is to
rearrange the creation and annihilation operators such
that all the creation operators are on the left, without
adding the anticommutator terms that would be required
to leave the product of operators unaltered; if the rear-
rangement requires an odd number of flips, the normal
ordering also introduces a sign change. For example

: n̂2 : =
∑
αβσζ

: ĉ†α,ζ ĉα,ζ ĉ
†
β,σ ĉβ,σ :,

=
∑
αβσζ

ĉ†α,ζ ĉ
†
β,σ ĉβ,σ ĉα,ζ . (9)

If the normal ordering operator is not used in Eqs. (7)
and (8) then additional one electron terms have to be
subtracted to remove the self interaction.
The mean-field form of this Hamiltonian has been in-
cluded in Appendix A 1.

C. The multi-orbital model Hamiltonian: p orbital
symmetry

Consider the case where the local orbitals, α, β, χ and γ
appearing in Eq. (4) are real cubic harmonic p orbitals
with angular dependence x/r, y/r, and z/r. In this case
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the rotation matrices, d`α′α(R), are simply 3 × 3 Carte-
sian rotation matrices. This makes Vαβ,χγ a rotationally
invariant fourth-rank Cartesian tensor, the general form
of which is34,

Vαβ,χγ = Uδαχδβγ + Jδαγδβχ + J ′δαβδχγ , (10)

where U = Vαβ,αβ , J = Vαβ,βα and J ′ = Vαα,ββ , with
α 6= β. By examination of the integral in Eq. (4), we
note that the Coulomb tensor has an additional symme-
try when the orbitals are real (as are the cubic harmonic p
orbitals), namely Vαβ,χγ = Vχβ,αγ and Vαβ,χγ = Vαγ,χβ ,
and hence J must be equal to J ′. Thus we find

Vαβ,χγ = Uδαχδβγ + J (δαγδβχ + δαβδχγ) . (11)

This recovers the well known equation U0 = U + 2J ,
where U0 = Vαα,αα

14,19, and shows that the most gen-
eral cubic p orbital interaction Hamiltonian is defined by
exactly two independent parameters35. In Appendix B 1
we give a full derivation of Eq. (11) using representation
theory.
In passing we observe that symmetric fourth-rank
isotropic tensors can be found in other areas of physics,
such as the stiffness tensor in isotropic elasticity theory36

Ciklm = λδikδlm + µ(δilδkm + δimδkl), (12)

where λ is the Lamé coefficient and µ is the shear mod-
ulus.
Transforming Eq. (11) into a basis of complex spherical
harmonic p orbitals with angular dependence of the form
Y`m(θ, φ) is straightforward. We write Vmm′′,m′m′′′ =∑
αβχγ l

∗
mαl

∗
m′′βlm′χlm′′′γVαβ,χγ , where lmα is defined by

psphm =
∑
α

lmαpα, (13)

and has the following values

[lmα] =

 1√
2
− i√

2
0

0 0 1
− 1√

2
− i√

2
0

 . (14)

The result of applying this transformation is

Vmm′′,m′m′′′ =Uδmm′δm′′m′′′ + Jδmm′′′δm′′m′

+ (−1)m+m′Jδ−mm′′δ−m′m′′′ , (15)

where m, m′, m′′ and m′′′ are spherical harmonics indices
going from −1 to +1, U = V10,10, and J = V10,01.
Using Eq. (11) as a convenient starting point, it is
straightforward to rewrite the on-site Coulomb Hamil-
tonian in terms of rotationally invariant operators:31

1

2

∑
αβχγ

∑
σξ

Vαβ,χγ ĉ
†
α,σ ĉ

†
β,ξ ĉγ,ξ ĉχ,σ

=
1

2

(
(U − J) : n̂2 : −J : m̂2 : −J : L2 :

)
, (16)

where the vector angular momentum operator for p or-
bitals on site I is defined to be

L̂ = i
∑
αβσ

(ε1βα, ε2βα, ε3βα)ĉ†α,σ ĉβ,σ, (17)

and εµβα is the three-dimensional Levi-Civita symbol.
An equivalent expression is

1

2

∑
αβχγ

∑
σζ

Vαβ,χγ ĉ
†
α,σ ĉ

†
β,ζ ĉγ,ζ ĉχ,σ

=
1

2

((
U − 1

2
J

)
: n̂2 : −1

2
J : m̂2 :

+ J
∑
αβ

: (n̂αβ)
2

:

)
, (18)

where the final term corresponds to on-site electron
hopping37,

n̂αβ =
∑
σ

ĉ†α,σ ĉβ,σ. (19)

Eq. (16) embodies Hund’s rules for an atom. By mak-

ing the substitution m̂ = 2Ŝ, we see that the spin is
maximized first (prefactor −2J) and then the angular
momentum is maximized (prefactor − 1

2J).

The mean-field form of the above p orbital Hamiltonian
is given in Appendix A 2.

D. The multi-orbital model Hamiltonian: d orbital
symmetry

The on-site Coulomb interaction for cubic harmonic d
orbitals can be expressed as

Vαβ,χγ =
1

2

(
Uδαχδβγ

+

(
J +

5

2
∆J

)
(δαγδβχ + δαβδγχ)

− 48∆J
∑
abdt

ξαabξβbdξχdtξγta

)
, (20)
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where ξ is a five-component vector of traceless symmetric
3× 3 transformation matrices defined as follows

[ξ1ab] =

 −
1

2
√
3

0 0

0 − 1
2
√
3

0

0 0 1√
3

 ,

[ξ2ab] =

 0 0 1
2

0 0 0
1
2 0 0

 ,

[ξ3ab] =

 0 0 0
0 0 1

2
0 1

2 0

 ,

[ξ4ab] =

 0 1
2 0

1
2 0 0
0 0 0

 ,

[ξ5ab] =

 1
2 0 0
0 − 1

2 0
0 0 0

 . (21)

We use the convention that index numbers (1, 2, 3, 4, 5)
correspond to the d orbitals (3z2−r2, zx, yz, xy, x2−y2).
See Appendix B 2 for a derivation of Eq. (21) using rep-
resentation theory. We have chosen U to be the Hartree
term between the t2g orbitals, J to be the average of the
exchange integral between the eg and t2g orbitals, and
∆J to be the difference between the exchange integrals
for eg and t2g. That is, U = V(zx)(yz),(zx)(yz), J =
1
2

(
V(zx)(yz),(yz)(zx) + V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2)

)
,

and ∆J = V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2) −
V(zx)(yz),(yz)(zx). This choice of parameters is the

same as was used by Oleś and Stollhoff21; Eq. (20)
generalizes their result and restores rotational invariance
in orbital space. Note that, in the mean field, the on-site
block of the density matrix in a cubic solid is diagonal;
this will cause the mean-field version of Eq. 22) to reduce
to that of Oleś and Stollhoff21. However the presence
of interfaces, vacancies or interstitials will break the
cubic symmetry make the on-site blocks of the density
matrix non-diagonal. Therefore the use of the complete
Hamiltonian is recommended in mean-field calculations
for systems that do not have cubic symmetry.
Rewriting Eq. (20) in terms of rotationally invariant op-
erators gives

V̂tot =
1

2

[(
U − 1

2
J + 5∆J

)
: n̂2 : −1

2
(J − 6∆J) : m̂2 :

+ (J − 6∆J)
∑
αβ

: (n̂αβ)
2

: +
2

3
∆J : Q̂2 :

]
, (22)

where Q̂2 is the on-site quadrupole operator squared.
The quadrupole operator for a single electron is defined
as

Q̂µν =
1

2

(
L̂µL̂ν + L̂νL̂µ

)
− 1

3
δµνL̂

2. (23)

The quadrupole operator for a system of many electrons
is obtained by summing the operators for each electron.

Since each term in the sum acts on the coordinates of
one electron only, the operators L̂µ and L̂ν appearing in
that term measure the angular momentum of one elec-
tron only, not the whole system. More detail on the Q̂2

operator is included in Appendix C. Eq. (22) is similar
in form to that found in Rudzikas31, the difference being
that our Hamiltonian is expressed in terms of physically
meaningful operators.
The mean-field form of this Hamiltonian is given in Ap-
pendix A 3.

E. Comparison with the Stoner Hamiltonian

The Stoner Hamiltonian for p and d orbital atoms, as
generally defined in the literature, has the following form
for the on-site Coulomb interaction:25

V̂Stoner =
1

2

(
U − 1

2
J

)
: n̂2 : −1

4
J : m̂2

z :, (24)

where J , in this many-body context, is the Stoner pa-
rameter, I. However, in the mean field, the Stoner pa-
rameter should not be taken to be equal to J due to the
self-interaction error; see reference38. This form clearly
breaks rotational symmetry in spin space, which can be
restored by substituting : m̂2

z : with : m̂2 :

V̂m̂2 Stoner =
1

2

(
U − 1

2
J

)
: n̂2 : −1

4
J : m̂2 : . (25)

In this paper we will compare our Hamiltonians, Eqs. (18)
and (22), with Eq. (25), which we shall call the vector
or m̂2 Stoner Hamiltonian. By starting with the vector
Stoner Hamiltonian and working backwards, it is possible
to find the corresponding tensorial form of the Coulomb
interaction:

V m̂2 Stoner
αβ,χγ = Uδαχδβγ + Jδαγδβχ. (26)

This is very similar to the tensorial form for the p-case
Coulomb interaction, Eq. (11), except that it is missing
a term, Jδαβδγχ. The lack of this term means that the
vector Stoner Hamiltonian does not respect the symme-
try between pairs αχ and βγ evident from the form of

the integral in Eq. (4), i.e., V m̂2 Stoner
χβ,αγ 6= V m̂2 Stoner

αβ,χγ . As
we shall see later, this omission changes the computed
results.

III. GROUND STATE RESULTS

A. Simulation setup

Here we investigate the eigenstates of dimers using both
our Hamiltonians, Eqs. (18) and (22), and the vector
Stoner Hamiltonian, Eq. (25). We employ a restricted
basis with a single set of s, p and d orbitals for the s, p
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and d Hamiltonians respectively. We perform FCI cal-
culations using the HANDE32 computer program to find
exact eigenstates of the model Hamiltonians. The Lanc-
zos algorithm was used to calculate the lowest 40 wave-
functions for our Hamiltonian, more than sufficient to
find the correct ground state wavefunction, while the full
spectrum was calculated for the vector Stoner Hamilto-
nian.
The single particle contribution to the Hamiltonian for
all models (the hopping matrix) is defined for a dimer
aligned along the z-axis: in this case it is only non-zero
between orbitals of the same type, whether on the same
site or on different sites. The sigma hopping integral,
|tσ|, was set to 1 to define the energy scale. The other
hopping matrix elements follow the canonical relations
suggested by Andersen39, and we use the values of Paxton
and Finnis40: ppσ : ppπ = 2 : −1 for p orbitals, and
ddσ : ddπ : ddδ = −6 : 4 : −1 for d orbitals.
The directionally averaged magnetic correlation between
the two sites has been calculated for the ground state.
If positive it shows that the atoms are ferromagnetically
correlated (spins parallel on both sites) and if it is neg-
ative it shows that the atoms are antiferromagnetically
correlated (spins antiparallel between sites). The correla-
tion between components of spin projected onto a direc-
tion described by angles θ and φ, in spherical coordinates,
is defined as follows

Cθφ = 〈: m̂1
θφm̂

2
θφ :〉, (27)

where the :: is the normal ordering operator, used to
remove self-interaction, and

m̂I
θφ =

∑
αξξ′

σθφξξ′ ĉ
†
Iα,ξ ĉIα,ξ′ , (28)

σθφξξ′ = σzξξ′ cos θ + σxξξ′ sin θ cosφ+ σyξξ′ sin θ sinφ.

The magnetic correlation averaged over solid angle is

Cavg =
1

3
〈: m̂1.m̂2 :〉. (29)

B. Ground state: p orbital dimer

The ground states of our Hamiltonian and the vector
Stoner Hamiltonian have been found to be rather similar
for 2, 6 and 10 electrons split over the p orbital dimer,
but qualitatively different for 4 and 8 electrons. The mag-
netic correlation between the two atoms for 4 electrons is
shown in Fig. 1. The symmetries of the wavefunctions41

are indicated on the graph by the notation 2S+1Λ±u/g: the

± is only used for Lz = 0 (i.e. Σ states) and corresponds
to the sign change after a reflection in a plane parallel
to the axis of the dimer; the u/g term refers to ungerade
(odd) and gerade (even) and corresponds to a reflection
through the midpoint of the dimer; Λ is the symbol cor-
responding to the total value for Lz (e.g. Lz = 1 is Π,
Lz = 2 is ∆, Lz = 3 is Φ, Lz = 4 is Γ); and S is the

2 4 6 8 10
U/|t|

0.5

1.0

1.5

2.0

2.5

J/
|t|

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

13 〈:m̂
1 .m̂

2
:〉

FIG. 1: The magnetic correlation between two p-shell
atoms, each with 2 electrons, for a large range of

parameters U/|t| and J/|t|, where t is the sigma bond
hopping. The different regions of the graph are labeled
by the symmetry of the ground state. The top graph is
generated from our Hamiltonian and the bottom from

the vector Stoner Hamiltonian. The bottom graph has a
region with symmetry 3Σ−g extending a long way up the
J axis, which is not present in the ground state of our
Hamiltonian. The bottom graph also includes a region
with two degenerate states with symmetries 1∆g and

1Σ+
g ; this degeneracy is broken when our Hamiltonian is

used.

total spin. The differences between the ground states
of our Hamiltonian and the vector Stoner Hamiltonian
shown in Fig. 1 are as follows: the ground-state wave-
function of the vector Stoner Hamiltonian has a region
with 3Σ−g symmetry extending far up the J axis, which

is not present for our Hamiltonian; the region with 1∆g

symmetry is doubly degenerate for our Hamiltonian, as
total Lz = ±2, whereas for the Stoner Hamiltonian it is
triply degenerate, as it is also degenerate with the state
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of symmetry 1Σ+
g (this state appears at a higher energy

for our Hamiltonian).

C. Ground state: d orbital dimer

The ground states of our Hamiltonian and vector Stoner
Hamiltonian have been found to be rather similar for 2, 4,
6, 14, and 18 electrons split over the d orbital dimer when
∆J is small. The simulations for 10 electrons were not
carried out as they are too computationally expensive.
Qualitative differences were found for 8 and 12 electrons;
for an example see Fig. 2, which shows the magnetic cor-
relation between two atoms in the ground state of the
d-shell dimer with 6 electrons per atom. From Fig. 2 we
see that the results for our Hamiltonian with ∆J/|t| = 0.0
(top graph) and with a small value of ∆J/|t| = 0.1 (mid-
dle graph) are qualitatively different from those for the
vector Stoner Hamiltonian (bottom graph). The vector
Stoner Hamiltonian makes the 1Γg and 1Σ+

g states de-
generate, which is not the case for our Hamiltonian. The
largest differences are between the ∆J/|t| = 0.1 graph
and the vector Stoner Hamiltonian: new regions with
symmetry 1Σ+

g , 3Φg and 5Σ−g appear, and the region with

symmetry 3Σ−g almost disappears. This shows that the
inclusion of the quadrupole term in Eq. (22) can make a
qualitative difference to the ground state.

IV. EXCITED STATE RESULTS

Differences between our Hamiltonian and the vector
Stoner Hamiltonian are also observed for excited states.
Here we present three examples, one demonstrating ex-
plicitly the effect of the pair hopping, one showing more
general differences in the excited states through a cal-
culation of the electronic heat capacity as a function of
temperature, and one showing a difference in the spin
dynamics of a collinear and a non-collinear Hamiltonian.
The full spectrum of eigenstates was calculated for all of
these examples.

A. Pair hopping

The pair hopping term, J
∑
αβσσ′ ĉ

†
α,σ ĉ

†
α,σ′ ĉβ,σ′ ĉβ,σ =

J
∑
αβ : (n̂αβ)

2
:, is found in both our p and d or-

bital Hamiltonians, but is absent from the vector Stoner
Hamiltonian. To demonstrate the effect of the pair hop-
ping term we initialize the wavefunction in a state with
two electrons in the x orbital on site 1 of a p-atom dimer.
Figure 3 shows the evolution of the wavefunction in time
using our Hamiltonian and the vector Stoner Hamilto-
nian, with U = 5.0|t| and J = 0.7|t|. For our Hamilto-
nian the pair of electrons in orbital x on atom 1 hops to
the y and z orbitals on atom 1 (mediated by the pair hop-
ping term) as well as between the two atoms (mediated

2 4 6 8 10
U/|t|

0.5

1.0

1.5

2.0

2.5

J/
|t|

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

13 〈:m̂
1 .m̂

2
:〉

2 4 6 8 10
U/|t|

0.5

1.0

1.5

2.0

2.5

J/
|t|

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

13 〈:m̂
1 .m̂

2
:〉

2 4 6 8 10
U/|t|

0.5

1.0

1.5

2.0

2.5

J/
|t|

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

13 〈:m̂
1 .m̂

2
:〉

FIG. 2: The magnetic correlation between two d-shell
atoms, each with 6 electrons, for a large range of

parameters U/|t| and J/|t|, where t is the sigma bond
hopping. The different regions of the graph are labeled
by the symmetry of the ground state. The top graph is

generated using our d-shell Hamiltonian with
∆J/|t| = 0.0; the middle graph is generated using our

Hamiltonian with a small value of ∆J/|t| = 0.1; and the
bottom graph is generated using the vector Stoner

Hamiltonian.
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0 2 4 6 8 10 12 14 16
time(h̄/|t|)

0.0

0.5

1.0

1.5

2.0
〈n̂

Iα
〉

1x
1y
1z
2x
2y
2z

0 2 4 6 8 10 12 14 16
time(h̄/|t|)

0.0

0.5

1.0

1.5

2.0

〈n̂
Iα
〉

1x
1y
1z
2x
2y
2z

FIG. 3: The time evolution under our Hamiltonian
(top) and the vector Stoner Hamiltonian (bottom) of a
starting state with two electrons in 1x, the x orbital on

atom 1, of a p-atom dimer with U = 5.0|t| and
J = 0.7|t|. We see that the two electrons in 1x are able
to hop into 1y and 1z when the wavefunction is evolved
using our Hamiltonian but not when it is evolved using

the vector Stoner Hamiltonian.

by the single electron hopping term). The result is that
there is a finite probability of finding the pair of electrons
in any of the x, y and z orbitals on either atom. However,
for the vector Stoner Hamiltonian, the two electrons in
the x orbital on site 1 are unable to hop into the y and
z orbitals on atom 1; they are only able to hop to the x
orbital on atom 2. This means tha there is no possibility
of observing the pair of electrons in the y or z orbitals
on either atom.

10−3 10−2 10−1 100 101 102

kBT/|t|
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
V
/(

k B
N

a)

p orbital Hamiltonian
Stoner Hamiltonian

FIG. 4: The electronic heat capacity per atom of a
dimer with four electrons split over two p-shell atoms

with U = 5.0|t| and J = 0.7|t|. The solid line is
generated by solving our Hamiltonian exactly and the
dashed line by solving the vector Stoner Hamiltonian

exactly.

B. Heat capacity

The heat capacity is calculated from

CV
kBNa

=
1

Na(kBT )2
(
〈E2(T )〉 − 〈E(T )〉2

)
, (30)

where

〈En(T )〉 =

∑
i ε
n
i exp(− εi

kBT
)∑

i exp(− εi
kBT

)
, (31)

T is the temperature, kB is Boltzmann’s constant, εi is a
many-electron energy eigenvalue, and Na is the number
of atoms. The result for both Hamiltonians as a function
of temperature for four electrons split over two p-shell
atoms with U = 5.0|t| and J = 0.7|t| is shown in Fig-
ure 4. There is a qualitative difference between the re-
sults for our Hamiltonian (the solid line) and the vector
Stoner Hamiltonian (dashed line). The energies of the
eigenstates of our Hamiltonian are more spread out than
those of the Stoner Hamiltonian. This is due to the inclu-
sion of the pair hopping term, which causes states with
on-site paired electrons to rise in energy (by ∼ J/|t|).
The unphysical reduction of the heat capacity to zero as
the temperature tends to infinity is a consequence of the
use of a restricted basis set.

C. Spin dynamics

Here we show how the collinear Stoner Hamiltonian can
give rise to unphysical spin dynamics. We consider an
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Sz = +1 triplet with both electrons on one of the two
p orbital atoms, |Ψ〉 = |T+1〉. Written as linear com-
binations of two-electron Slater determinants, the three
states in the triplet are

|T+1〉 =
1√
2

(−|1x ↑ 1y ↑〉+ |2x ↑ 2y ↑〉) ,

|T−1〉 =
1√
2

(−|1x ↓ 1y ↓〉+ |2x ↓ 2y ↓〉) ,

|T0〉 =− 1√
2

(|1x ↓ 1y ↑〉+ |1x ↑ 1y ↓〉)

+
1√
2

(|2x ↓ 2y ↑〉+ |2x ↑ 2y ↓〉) . (32)

These states are simultaneously eigenstates of the
collinear Stoner Hamiltonian, the vector Stoner Hamil-
tonian, and our p-case Hamiltonian. They are degener-
ate, with eigenvalue U − J , for both our p-case Hamil-
tonian and for the vector Stoner Hamiltonian. For the
collinear Stoner Hamiltonian the states |T+1〉 and |T−1〉
have eigenvalue U − J whereas state |T0〉 has eigenvalue
U . This means that the degeneracy of this triplet is bro-
ken in the collinear Stoner Hamiltonian. We now rotate
|Ψ〉 in spin space so that the spins are aligned with the
x-axis, i.e. Sx = +1,

|Ψrot〉 =
1

2
(|T+1〉+ |T−1〉) +

1√
2
|T0〉. (33)

|Ψrot〉 is still an eigenstate, with eigenvalue U−J , of both
the vector Stoner Hamiltonian and our Hamiltonian, but
it is no longer an eigenstate of the collinear Stoner Hamil-
tonian. The wavefunction |Ψrot〉 evolves in time as

|Ψtot(τ)〉 = e−
iĤτ
h̄ |Ψtot(0)〉, (34)

=



e−
i(U−J)τ

h̄

(
1

2
(|T+1〉+ |T−1〉) +

e−
iJτ
h̄√
2
|T0〉

)
︸ ︷︷ ︸

collinear Stoner Hamiltonian

,

e−
i(U−J)τ

h̄

(
1

2
(|T+1〉+ |T−1〉) +

1√
2
|T0〉

)
︸ ︷︷ ︸

m̂2 Stoner and our Hamiltonian

,

where τ is time. If we take the expectation value of the
magnetic moment on each site using the collinear Stoner
Hamiltonian, we find

〈Ψrot(τ)|m̂1x|Ψrot(τ)〉 = 〈Ψrot(τ)|m̂2x|Ψrot(τ)〉 = cos

(
Jτ

h̄

)
,

〈Ψrot(τ)|m̂1y|Ψrot(τ)〉 = 〈Ψrot(τ)|m̂2y|Ψrot(τ)〉 = 0,

〈Ψrot(τ)|m̂1z|Ψrot(τ)〉 = 〈Ψrot(τ)|m̂2z|Ψrot(τ)〉 = 0.
(35)

In contrast, using the vector Stoner Hamiltonian or our
p-shell Hamiltonian, the expectation value of the mag-
netic moment is independent of time, equal to (1, 0, 0)
in vector format. This demonstrates that calculations
of spin dynamics using the collinear Stoner Hamiltonian
can give rise to unphysical oscillations of the magnetic
moments.

V. CONCLUSION

We have established the correct form of the multi-orbital
model Hamiltonian with on-site Coulomb interactions for
atoms with valence shells of s, p and d orbitals. The
methodology used may be extended to atoms with f and
g shells, and to atoms with valence orbitals of several
different angular momenta. The results presented show
that there are important differences between our p- and
d-shell Hamiltonians and the vector Stoner Hamiltonian.
The vector Stoner Hamiltonian misses both the pair hop-
ping term, which is present in our p and d orbital Hamil-
tonians, and the quadrupole term, which is present in our
d orbital Hamiltonian. The pair hopping term pushes
states with pairs of electrons up in energy, whereas the
magnetism term pulls states with local magnetic mo-
ments down in energy. The pair hopping term has the
largest effect on the ground state for p orbitals with 2
and 4 electrons per atom and for d orbitals with 4 and
6 electrons per atom, for J/|t| < 2. This is because the
number of possible determinants with paired electrons
on site is large for these filling factors and the low ly-
ing states can be separated based on this. At values of
J/|t| > 2 the magnetism becomes the dominant effect
upon the selection of the ground state and the difference
between the ground state of our Hamiltonian and that
of the vector Stoner Hamiltonian becomes small. How-
ever, the differences are rather more pronounced for the
excited states. This is evidenced by the hopping of pairs
of electrons between orbitals on the same site, which is
allowed by our Hamiltonian but not by the vector Stoner
Hamiltonian, and in differences in the electronic heat ca-
pacity as a function of temperature. We also find clear
evidence that the collinear Stoner Hamiltonian is inap-
propriate for use in describing spin dynamics as it breaks
rotational symmetry in spin space. We would expect sim-
ilar problems when using collinear time dependent DFT
simulations to model spin dynamics.
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Appendix A: Mean-field Hamiltonians

1. The one band Hubbard model: s orbital
symmetry

Application of the mean-field approximation42 to the on-
site Coulomb interaction part of the Hubbard Hamilto-
nian with s orbital symmetry, Eq. (7), yields the follow-
ing,

V̂MF =U0

(
〈n̂〉n̂−

∑
σζ

〈ĉ†σ ĉζ〉ĉ
†
ζ ĉσ

)
, (A1)

for which the total energy is

ECoulomb
MF =

1

2
U0

〈n̂〉2 −∑
σζ

〈ĉ†σ ĉζ〉〈ĉ
†
ζ ĉσ〉

 , (A2)

where the double counting correction has been included.
Equivalently, applying the mean-field approximation to
Eq. (8) yields the following,

V̂MF =
1

3
U0

(
2〈n̂〉n̂− 〈m̂〉.m̂−

∑
σζ

〈ĉ†σ ĉζ〉ĉ
†
ζ ĉσ

)
, (A3)

for which the total energy is

ECoulomb
MF =

1

6
U0

2〈n̂〉2 − 〈m̂〉2 −
∑
σζ

〈ĉ†σ ĉζ〉〈ĉ
†
ζ ĉσ〉

 ,

(A4)

where again the double counting correction has been in-
cluded.

2. The multi-orbital model Hamiltonian: p orbital
symmetry

Application of the mean-field approximation42 to the
model Hamiltonian with p orbital symmetry, Eq. (18),
yields the following,

V̂MF =

(
U − J

2

)
〈n̂〉n̂− J

2
〈m̂〉.m̂

+
∑
αβ

J

(
〈n̂αβ〉n̂βα + 〈n̂αβ〉n̂αβ

)

−
∑
αβσζ

(
U〈ĉ†ασ ĉβζ〉ĉ

†
βζ ĉασ + J〈ĉ†ασ ĉβζ〉ĉ

†
αζ ĉβσ

)
,

(A5)

for which the total energy is

ECoulomb
MF =

1

2

(
U − J

2

)
〈n̂〉2 − J

4
〈m̂〉2

+
∑
αβ

J

2

(
〈n̂αβ〉〈n̂βα〉+ 〈n̂αβ〉2

)
−
∑
αβσζ

(
U

2
〈ĉ†ασ ĉβζ〉〈ĉ

†
βζ ĉασ〉

+
J

2
〈ĉ†ασ ĉβζ〉〈ĉ

†
αζ ĉβσ〉

)
, (A6)

where the double counting correction has been included.

3. The multi-orbital model Hamiltonian: d-orbital
symmetry

Application of the mean-field approximation42 to the
model Hamiltonian with d-orbital symmetry, Eq. (22),
yields the following,

V̂MF =

(
U − 1

2
J + 2∆J

)
〈n̂〉n̂− J

2
〈m̂〉.m̂

+ (J − 6∆J)
∑
αβ

(
〈n̂αβ〉n̂βα + 〈n̂αβ〉n̂αβ

)
+

2

3
∆J

∑
µν

〈Q̂µν〉Q̂νµ

−
∑
αβσζ

(
U〈ĉ†ασ ĉβζ〉ĉ

†
βζ ĉασ + J〈ĉ†ασ ĉβζ〉ĉ

†
αζ ĉβσ

)
+ 48∆J

∑
αβγχσζ

∑
stuv

ξαstξβtuξχuvξγvs〈ĉ†ασ ĉγζ〉ĉ
†
βζ ĉχσ,

(A7)

for which the total energy is

ECoulomb
MF =

1

2

(
U − 1

2
J + 2∆J

)
〈n̂〉2 − J

4
〈m̂〉2

+
∑
αβ

J − 6∆J

2

(
〈n̂αβ〉〈n̂βα〉+ 〈n̂αβ〉2

)
+

1

3
∆J

∑
µν

〈Q̂µν〉〈Q̂νµ〉

−
∑
αβσζ

(
U

2
〈ĉ†ασ ĉβζ〉〈ĉ

†
βζ ĉασ〉

+
J

2
〈ĉ†ασ ĉβζ〉〈ĉ

†
αζ ĉβσ〉

)
+ 24∆J

∑
αβγχσζ

∑
stuv

ξαstξβtuξχuvξγvs

× 〈ĉ†ασ ĉγζ〉〈ĉ
†
βζ ĉχσ〉, (A8)

where the double counting correction has been included.
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Appendix B: Representation theory

1. p orbital symmetry

As a precursor to our treatment of the d case in Appendix
B 2, we use representation theory43 to derive Eq. (11) for
cubic harmonic p orbitals. First we define the follow-
ing irreducible objects: “0” is a scalar, “1” is a three-
dimensional vector, “2” is a 3 × 3 symmetric traceless
second-rank tensor, “3” is a third-rank tensor consisting
of three “2”s, and “4” is a fourth-rank tensor consisting of
three “3”s. The Coulomb interaction Vαβ,γδ transforms
as a tensor product of four “1”s, 1 ⊗ 1 ⊗ 1 ⊗ 1, but we
know also that it must be isotropic and that from the
above irreducible objects only the “0” is isotropic.
Objects such as 1 ⊗ 1, represented as Aij , may be ex-
panded just as in the addition of angular momentum:

1⊗ 1 = 0⊕ 1⊕ 2, (B1)

where “0” is a scalar, s =
∑
ij Aijδij , “1” is a vector,

vi =
∑
jk Ajkεijk, and “2” is a traceless symmetric ten-

sor, Mij = 1
2 (Aij + Aji) − 1

3δij(
∑
klAklδkl). The reader

may be more familiar with combinations of angular mo-
mentum. In the language of angular momentum, the
transformation properties of a tensor product of two ob-
jects of angular momentum with l = 1 are described by
a 9× 9 matrix, which is block diagonalisable into a 1× 1
matrix (which describes the transformations of an l = 0
object), a 3× 3 matrix (which describes the transforma-
tions of an l = 1 object), and a 5 × 5 matrix (which
describes the transformations of an l = 2 object). In the
angular momentum representation the matrix elements
are complex. Here we are using cubic harmonics and the
matrix elements are real. Similarly 1⊗ 1⊗ 1⊗ 1 may be
expanded out as:

1⊗ 1⊗ 1⊗ 1 = (1⊗ 1)⊗ (1⊗ 1),

= (0⊕ 1⊕ 2)⊗ (0⊕ 1⊕ 2),

= (0⊗ 0)⊕ (0⊗ 1)⊕ (0⊗ 2)⊕ (1⊗ 0)⊕ (1⊗ 1)

⊕ (1⊗ 2)⊕ (2⊗ 0)⊕ (2⊗ 1)⊕ (2⊗ 2). (B2)

The only isotropic, “0”, objects arise from 0⊗0, 1⊗1 and
2⊗ 2. A general isotropic three-dimensional fourth-rank
tensor, Tijkl, therefore has three independent scalars that
are found from symmetric and antisymmetric contrac-
tions of Tijkl. We are interested in the form of the p or-
bital on-site Coulomb interactions, Vαβ,χγ , which have an
additional symmetry, such that they remain unchanged
under exchange of α and χ and under exchange of β and
γ. We therefore only require the symmetric scalars that
arise from the 0 ⊗ 0 and 2 ⊗ 2 contractions to describe
Vαβ,χγ :

Vαβ,χγ = s0δαχδβγ + s2 (δαγδβχ + δαβδχγ) , (B3)

which is symmetric under exchange of α and χ or β and

γ; where

s0 =
∑
χγ

Vαβ,χγδαχδβγ ,

s2 =
∑
χγ

Vαβ,χγδαγδβχ =
∑
χβ

Vαβ,χγδαβδχγ . (B4)

This is equivalent to Eq. (11), where s0 = U and s2 = J .

2. d orbital symmetry

To find the isotropic five-dimensional fourth-rank tensor
that describes the on-site Coulomb interactions for d or-
bital symmetry, we find it convenient to map from a five-
dimensional fourth-rank tensor to a three-dimensional
eighth-rank tensor. We do this by replacing the five-
dimensional vector of d orbitals by the three-dimensional
traceless symmetric B matrix of the d orbitals:

B =

 2
3x

2 − 1
3

(
y2 + z2

)
xy xz

xy 2
3y

2 − 1
3

(
x2 + z2

)
yz

xz yz 2
3z

2 − 1
3

(
x2 + y2

)
 .

(B5)
We refer to the elements of B as Bab, and use the sub-
scripts a, b, c, d, s, t, u and v as the indices for irre-
ducibles of rank 2 or higher. The transformation between
the irreducible Bab and the cubic harmonic d orbitals is

φασ(r) = Nd
∑
ab

ξαabBab
1

r2
Rd(r)S(σ), (B6)

where ξ is a traceless, symmetric transformation matrix,

defined in Eq. (21), Nd = 1
2

√
15
π is a normalisation factor,

Rd is the radial function for a cubic d orbital, and S is the
spin function. The orbital indices α, β, χ and γ run over
the five independent d orbitals, whereas the irreducible
indices a, b, c, d, s, t, u and v run over the three Cartesian
directions. The mapping between the five-dimensional
fourth-rank tensor and the three-dimensional eighth-rank
tensor is as follows

Vαβ,χγ =

∫
dr1dr2

φ∗ασ(r1)φ∗βσ′(r2)φχσ(r1)φγσ′(r2)

|r1 − r2|
,

=

∫
dr1dr2N

4
d |Rd(r1)/r21|2|Rd(r2)/r22|2

×
∑
abcd

∑
stuv ξ

∗
αabB

∗
abξ
∗
βcdB

∗
cdξχstBstξγuvBuv

|r1 − r2|
,

=
∑
abcd

∑
stuv

ξαabξβcdξχstξγuvVab,cd,st,uv, (B7)

where this equation defines the isotropic three-
dimensional eighth-rank tensor for the on-site Coulomb
integrals, Vab,cd,st,uv, and we have dropped the complex
conjugates on the ξ matrices as they are real. The B
matrix is a three-dimensional traceless symmetric “2”
and thus contains 5 independent terms. As we show
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below, it is possible to represent the isotropic three-
dimensional eighth-rank tensor as a list of quadruple Kro-
necker deltas, with 5 independent parameters in general
and 3 independent parameters for the on-site Coulomb
interactions. The isotropic three-dimensional eighth-
rank tensor is then converted back into an isotropic five-
dimensional fourth-rank tensor. For an independent ver-
ification of the form of the isotropic three-dimensional
eighth-rank tensor see Ref. 44.
The power of representation theory is that one can follow
an analogous procedure for shells of higher angular mo-
mentum, using a “3” to represent the seven f orbitals, a
“4” to represent the nine g orbitals, and so on. One
can also construct interaction Hamiltonians for atoms
with important valence orbitals of several different an-
gular momenta.
We now return to the case of a d shell and explain the
procedure used to find the general isotropic Coulomb
Hamiltonian in more detail. We start by represent-
ing the isotropic three-dimensional eighth-rank tensor,
Vab,cd,st,uv, as a 2 ⊗ 2 ⊗ 2 ⊗ 2. Proceeding as we did for
the p case, we write

2⊗ 2⊗ 2⊗ 2 = (2⊗ 2)⊗ (2⊗ 2),

2⊗ 2 = 0⊕ 1⊕ 2⊕ 3⊕ 4,

=⇒ 2⊗ 2⊗ 2⊗ 2 = (0⊕ 1⊕ 2⊕ 3⊕ 4)

⊗ (0⊕ 1⊕ 2⊕ 3⊕ 4). (B8)

The terms in Eq. (B8) that can generate a rank 0 (a
scalar) are 0⊗ 0, 1⊗ 1, 2⊗ 2, 3⊗ 3 and 4⊗ 4. This im-
plies that a general isotropic three-dimensional eighth-
rank tensor is defined by five independent parameters.
We know that, for Vαβ,χγ , there exists a symmetry be-
tween the pairs αχ and βγ. It follows that Vab,cd,st,uv has
a symmetry between the pairs (ab)(st) and (cd)(uv). We
therefore require only the even contractions, 0⊗ 0, 2⊗ 2
and 4 ⊗ 4, reducing the five parameters to three45; this
is the same number proposed in Chapter 4 of Ref. 35.
To get the scalars from Vab,cd,st,uv we have to contract
it. There are six possible contractions of Vab,cd,st,uv, out-
lined in Table I, of which only five are independent. Note
that one does not contract within the indices ab, cd, st or
uv because Bab is traceless, hence

∑
ab δabBab = 0. By

examining the diagrammatic contractions from Table I,
and maintaining the symmetry between the pairs (ab)(st)
and (cd)(uv), we conclude that the relevant contractions

are ∆2
ab,cd,st,uv,

(
∆1
ab,cd,st,uv + ∆3

ab,cd,st,uv

)
, ∆5

ab,cd,st,uv

and
(

∆4
ab,cd,st,uv + ∆6

ab,cd,st,uv

)
. This is evident because

switching two symmetry-related pairs [that is, switching
(ab) and (st) or (cd) and (su)] in diagram 1 yields dia-
gram 3. Similarly, switching two symmetry-related pairs
in diagram 4 yields diagram 6. We see that there are four
contractions but we have only three parameters. This
implies that out of these four contractions there are only
three linearly independent contractions.
We can now write down a general interaction Hamilto-
nian Vab,cd,st,uv as a linear combination of three Kro-

necker delta products, each multiplied by one of the three
independent coefficients:

Vab,cd,st,uv = c0∆2
ab,cd,st,uv

+ c1
(
∆1
ab,cd,st,uv + ∆3

ab,cd,st,uv

)
+ c2∆5

ab,cd,st,uv. (B9)

We find Vαβ,χγ by transforming this expression back to
the five-dimensional fourth-rank representation, as dic-
tated by Eq. (B7). For completeness we include all six of
the transformed contractions:∑

abcd

∑
stuv

∆1
ab,cd,st,uvξαabξβcdξχstξγuv =∑

abst

4ξαabξβbaξχstξγts = δαβδχγ ,∑
abcd

∑
stuv

∆2
ab,cd,st,uvξαabξβcdξχstξγuv =∑

abcd

4ξαabξχbaξβcdξγdc = δαχδβγ ,∑
abcd

∑
stuv

∆3
ab,cd,st,uvξαabξβcdξχstξγuv =∑

abcd

4ξαabξγbaξβcdξχdc = δαγδβχ,∑
abcd

∑
stuv

∆4
ab,cd,st,uvξαabξβcdξχstξγuv =∑

abdv

16ξαabξβbdξγdvξχva,∑
abcd

∑
stuv

∆5
ab,cd,st,uvξαabξβcdξχstξγuv =∑

abdt

16ξαabξβbdξχdtξγta,∑
abcd

∑
stuv

∆6
ab,cd,st,uvξαabξβcdξχstξγuv =∑

abdt

16ξαabξχbtξβtdξγda. (B10)

We find that the last three of the transformations of
the contractions, although rotationally invariant in or-
bital space, are not expressible in terms of Kronecker
deltas of α, β, χ and γ. This is to be expected as
there exist terms in Vαβ,χγ that are non-zero and have
more than two orbital indices, e.g. V(3z2−r2)(xy),(yz)(xz)

or V(3z2−r2)(xy),(xy)(x2−y2).
We can now write down Vαβ,χγ concisely,

Vαβ,χγ = Uδαχδβγ +

(
J +

5

2
∆J

)
(δαγδβχ + δαβδχγ)

− 48∆J
∑
abdt

ξαabξβbdξχdtξγta, (B11)

where we have defined U to be the Hartree term
between the t2g orbitals on-site, U = V(zx)(yz),(zx)(yz),
J to be the average of the exchange integral
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between the eg and t2g orbitals on-site, J =
1
2

(
V(zx)(yz),(yz)(zx) + V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2)

)
,

and ∆J to be the difference between the
exchange integrals for eg and t2g, ∆J =
V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2) − V(zx)(yz),(yz)(zx).
We could equally well have chosen to use the sum of
the fourth and sixth contractions instead of the fifth
contraction, although with different coefficients.

Appendix C: Angular momentum and quadrupole
operators

1. Angular momentum

The angular momentum operators are most naturally ex-
pressed in spherical polar coordinates, even when using
them to operate on cubic harmonics. Their forms are:

L̂x = i

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (C1)

L̂y = i

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
, (C2)

L̂z = −i ∂
∂φ
, (C3)

where we have set h̄ to 1 for simplicity. When applying
the above operators to the on-site cubic harmonic p or-
bitals (we have dropped the site index for clarity) it is
straightforward to show that

L̂µpj = i
∑
k

εµjkpk. (C4)

A general one particle operator Ô may be expressed in
terms of creation and annihilation operators as follows:

Ô =
∑
αβσσ′

〈φασ|Ô|φβσ′〉ĉ†ασ ĉβσ′ . (C5)

Substituting Eq. (C4) into Eq. (C5) yields

L̂µ = i
∑
αβσ

εµβαĉ
†
ασ ĉβσ, (C6)

where µ is a Cartesian direction and α and β are cubic
harmonic p orbitals (x, y or z). The d case is slightly
more complicated, but is greatly simplified by the use of
Eq. (B6). Applying the angular momentum operators to
the B matrix reveals that

L̂µ|Bjk〉 = i
∑
s

(εµjs|Bsk〉+ εµks|Bjs〉) , (C7)

with

L̂µ|φασ〉 = iNd
∑
jks

S(σ)
Rd(r)

r2
ξαjk (εµjs|Bsk〉+ εµks|Bjs〉) .

(C8)

By finding the expectation value and substituting into
Eq. (C5) we obtain

L̂µ = 4i
∑
jkm

∑
αβσ

εµmkξαkjξβjmĉ
†
ασ ĉβσ. (C9)

2. Quadrupole operator

We define the quadrupole operator for a single electron
as

Q̂µν =
1

2

(
L̂µL̂ν + L̂νL̂µ

)
− 1

3
δµνL̂

2. (C10)

Here we interpret L̂µ and L̂ν in Eq. (C10) as compo-
nents of the angular momentum of a single electron.
The quadrupole operator for a system of N electrons
is then a sum over contributions from each electron:
Q̂µν =

∑N
i=1 Q̂µν(i). This makes Q̂µν a one-electron

operator, respresented in second quantization as a lin-
ear combination of strings of one creation operator and
one annihilation operator. Squaring and tracing the one-
electron tensor operator Q̂µν yields a two-electron oper-

ator Q̂2 =
∑
µν Q̂µνQ̂νµ.

To find the form of this operator, we start by applying the
single electron version of Q̂µν to the B matrix, making

use of Eq. (C7). Starting with L̂µL̂ν

L̂µL̂ν |Bjk〉 = iL̂µ
∑
s

(ενjs|Bsk〉+ ενks|Bjs〉) ,

= (i)2
∑
ss′

(
ενjs (εµss′ |Bs′k〉+ εµks′ |Bss′〉)

+ ενks (εµjs′ |Bs′s〉+ εµss′ |Bjs′〉)
)
,

= (−1)

(
δjµ|Bνk〉+ δkµ|Bjν〉 − 2δνµ|Bjk〉

+
∑
ss′

(ενjsεµks′ + ενksεµjs′) |Bss′〉
)
, (C11)

L̂νL̂µ|Bjk〉 = (−1)

(
δjν |Bµk〉+ δkν |Bjµ〉 − 2δµν |Bjk〉

+
∑
ss′

(εµjsενks′ + εµksενjs′) |Bss′〉
)
, (C12)

where the last equation was found by exchanging µ and
ν in the previous equation. Following the same process,
the final term in Eq. (C10) becomes∑

ν

L̂νL̂ν |Bjk〉 = 6|Bjk〉, (C13)

This is not a surprising result as the B matrix contains
linear combinations of spherical harmonics |l, lz〉 with l =

2, and L̂2|l, lz〉 = l(l + 1)|l, lz〉. Combining Eqs. (C11),
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(C12) and (C13) we find

Q̂µν |Bjk〉 = −
(

1

2
(δµj |Bνk〉+ δkµ|Bjν〉

+δjν |Bµk〉+ δkν |Bjµ〉)

+
∑
ss′

(ενjsεµks′ + ενksεµjs′) |Bss′〉
)
. (C14)

Equation (C5) yields the corresponding operator for a
system of many electrons:

Q̂µν = −
∑
αβσ

(
2
∑
k

(
ξανkξβkµ + ξαµkξβkν

)
+ 4

∑
mnjk

ξαmnξβjkενjmεµkn

)
ĉ†ασ ĉβσ. (C15)

We now define the normal ordered quadrupole squared
as

: Q̂2 :=
∑
µν

: Q̂µνQ̂νµ : . (C16)

By substituting Eq. (C15) into Eq. (C16) and dropping
the site index for clarity, one obtains the following simple
formula for the quadrupole squared operator:

: Q̂2 : =
∑

αβγχσσ′

(
− 3δαχδβγ + 9

(
δαγδβχ + δαβδχγ

)
− 72

∑
stuv

ξαstξβtuξχuvξγvs

)
ĉ†ασ ĉ

†
βσ′ ĉγσ′ ĉχσ. (C17)

3. The quadrupole operator squared and the
on-site Coulomb integrals

The quadrupole operator is of interest to us because one
of the terms in the d-shell on-site Coulomb interaction
can be represented in terms of Q̂2. This term is:

− 48∆J
∑

αβχγσσ′

∑
stuv

ξαstξβtuξχuvξγvsĉ
†
ασ ĉ
†
βσ′ ĉγσ′ ĉχσ,

(C18)
which is proportional to the final term in Eq. (C17). The
other terms in Eq. (C17) also exist elsewhere in the d-
shell on-site interaction Hamiltonian, so introducing an
explicit Q̂2 term is straightforward:

−48∆J
∑

αβχγσσ′

∑
stuv

ξαstξβtuξχuvξγvsĉ
†
ασ ĉ
†
βσ′ ĉγσ′ ĉχσ

=
2

3
∆J : Q̂2 : +2∆J

∑
αβσσ′

ĉ†ασ ĉ
†
βσ′ ĉβσ′ ĉασ

− 6∆J
∑
αβσσ′

(ĉ†ασ ĉ
†
βσ′ ĉασ′ ĉβσ + ĉ†ασ ĉ

†
ασ′ ĉβσ′ ĉβσ)

=
2

3
∆J : Q̂2 : +2∆J : n̂2 : +3∆J(: n̂2 : + : m̂2 :)

− 6∆J
∑
αβ

:
(
n̂αβ

)2
: . (C19)
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1.

3.

2.

4.

5. 6.

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

∆1
ab,cd,st,uv = δadδbcδsvδtu + δacδbdδsvδtu + δadδbcδsuδtv + δacδbdδsuδtv

1.

3.

2.

4.

5. 6.

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

∆2
ab,cd,st,uv = δatδbsδcvδdu + δasδbtδcvδdu + δatδbsδcuδdv + δasδbtδcuδdv

1.

3.

2.

4.

5. 6.

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

∆3
ab,cd,st,uv = δavδbuδctδds + δauδbvδctδds + δavδbuδcsδdt + δauδbvδcsδdt

1.

3.

2.

4.

5. 6.

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

∆4
ab,cd,st,uv = δatδbdδcvδsu + δadδbtδcvδsu + δatδbcδdvδsu + δacδbtδdvδsu+

δatδbdδcuδsv + δadδbtδcuδsv + δatδbcδduδsv + δacδbtδduδsv+
δasδbdδcvδtu + δadδbsδcvδtu + δasδbcδdvδtu + δacδbsδdvδtu+
δasδbdδcuδtv + δadδbsδcuδtv + δasδbcδduδtv + δacδbsδduδtv

1.

3.

2.

4.

5. 6.

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd∆5
ab,cd,st,uv = δavδbdδctδsu + δadδbvδctδsu + δavδbcδdtδsu + δacδbvδdtδsu+

δauδbdδctδsv + δadδbuδctδsv + δauδbcδdtδsv + δacδbuδdtδsv+
δavδbdδcsδtu + δadδbvδcsδtu + δavδbcδdsδtu + δacδbvδdsδtu+
δauδbdδcsδtv + δadδbuδcsδtv + δauδbcδdsδtv + δacδbuδdsδtv

1.

3.

2.

4.

5. 6.

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd

ab

st uv

cd ab

st uv

cd ∆6
ab,cd,st,uv = δavδbtδcuδds + δatδbvδcuδds + δauδbtδcvδds + δatδbuδcvδds+

δavδbsδcuδdt + δasδbvδcuδdt + δauδbsδcvδdt + δasδbuδcvδdt+
δavδbtδcsδdu + δatδbvδcsδdu + δavδbsδctδdu + δasδbvδctδdu+
δauδbtδcsδdv + δatδbuδcsδdv + δauδbsδctδdv + δasδbuδctδdv

TABLE I: Table to show the node contractions for a d shell. Every contraction is represented both diagrammatically
and mathematically.
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