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a b s t r a c t

Habitat loss is the greatest threat to biodiversity and rapid, human-forced climate change
is likely to exacerbate this. Here we present the first global assessment of current and
potential future impacts on biodiversity of a habitat loss and fragmentation–climate change
(HLF–CC) interaction. A recent meta-analysis demonstrated that the negative impacts of
habitat loss and fragmentation have been disproportionately severe in areas with high
temperatures in the warmest month and declining rainfall, although impacts also varied
across vegetation types. We compiled an integrated global database of past, current and
future climate variables and past vegetation loss to identify ecoregions where (i) past
climate change is most likely to have exacerbated the impacts of HLF, and (ii) forecasted
climate change is most likely to exacerbate the impacts of HLF in the future. We found that
recent climate change is likely (probability>66%) to have exacerbated the impacts ofHLF in
120 (18.5%) ecoregions. Impacted ecoregions are disproportionately biodiverse, containing
over half (54.1%) of all known terrestrial amphibian, bird, mammal, and reptile species.
Forecasts from theRCP8.5 emissions scenario suggest that nearly half of ecoregions globally
(n = 283, 43.5%) will become impacted during the 21st century. To minimize ongoing and
future HLF–CC impacts on biodiversity, ecoregions where impacts are most likely must
become priorities for proactive conservation actions that avoid loss of native vegetation
(e.g., protected area establishment). Highly degraded ecoregions where impacts are most
likely should be priorities for restoration and candidates for unconventional conservation
actions (e.g. translocation of species).

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Significance statement 1

This is the first global analysis that spatially assesses where biodiversity is most at risk from an interaction between 2

habitat loss and climate change. We find that interaction impacts as a result of observed climate changes and habitat 3

clearance to date are likely in 120 (18.5%) ecoregions. These affected ecoregions contain > half of all terrestrial amphibian, 4

bird, mammal, and reptile species. Forecasted climatic changes over the 21st century puts almost half of all ecoregions at- 5

risk. Understanding where the interaction between these two stressors will most impact biodiversity is critical for assessing 6

risk and allocating conservation resources. We identify where proactively undertaking conservation activities nowwill help 7

prevent the synergistic impacts between climate change and habitat loss in the future. 8
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1. Introduction1

Human-forced climate change and ongoing environmental degradation leading to habitat loss and fragmentation2

threaten the future of the world’s biodiversity (Thomas et al., 2004; Hoffmann et al., 2010). The synergy between different3

threatening processes, whereby the presence of one exacerbates the effects of another, has been implicated in past4

biodiversity declines and extinction events (Lorenzen et al., 2011), yet little is known about how and where the interaction5

between habitat loss and fragmentation and climate change (hereafter, HLF–CC interaction) will impact ecosystems or6

species (Brook et al., 2008). This knowledge gap limits the identification of effective conservation responses in regions that7

have experienced, are experiencing, or are expected to experience both.Q28

Previous spatial ecosystem assessments that have considered climate change have focussed on assessing the varying9

dimensions of potential exposure to climatic changes, including the temporal pace of climate change (Loarie et al., 2009),10

the degree of difference between past, current and predicted future climates (Ponce-Reyes et al., 2012;Watson et al., 2013),11

or the novelty of new climatic environments (Williams et al., 2007). These studies are important first-step assessments12

that identify those locations where climate change is likely to be most significant and raise awareness about its range of13

potential impacts. However, little attention has so far been given to potential interactions between climatic changes and14

othermajor anthropogenic processes that threaten biodiversity (Mantyka-Pringle et al., 2012;Watson and Segan, 2013). This15

is problematic because it is well established that most species that are imperilled or in a state of decline are simultaneously16

impacted by a range of threatening processes (Hilton-Taylor et al., 2009), with the predominant stressor being direct habitat17

loss and fragmentation (Brook et al., 2008; Hilton-Taylor et al., 2009).18

The direct impacts of habitat loss and fragmentation (HLF) on biodiversity have been extensively documented and include19

extinction, decreased population abundance, reduced genetic diversity, lower reproductive success, lower dispersal ability,20

increased vulnerability to stochastic events, increased susceptibility to invasive species, simplified trophic structure and21

altered interspecies interactions (Fahrig, 2003; Fischer and Lindenmayer, 2007). Although already a widely distributed22

threat, HLF will continue to be a major pressure on species and ecosystem into the future (Newbold et al., 2015). There are23

several means by which rapid human-forced climate change may exacerbate or limit a species’ ability to cope with HLF. For24

example, climate change induced behavioural changes have been implicated in reduced levels of individual fitness (Arponen25

et al., 2005), which may limit a species’ ability to endure further habitat disruption. Climate change may also increase the26

distance a species needs to travel to locate suitable habitat in the event of future disturbance or loss (Williams et al., 2007).27

Climate change is also expected to increase the frequency and intensity of extreme events, such as heat waves, which28

may push populations already diminished by HLF over a tipping point as has been observed in some avian communities29

(McKechnie and Wolf, 2010).30

Habitat loss and fragmentation may also limit or prevent species’ adaptive responses to climate change, again resulting31

in more severe impacts. Species’ adaptive responses to climate change are generally limited to three response mechanisms:32

a shift in range, a behavioural or physical change, and altered phenology (temporal shift in activity) (Bellard et al., 2012).33

Habitat loss and fragmentation may prevent or impair these responses. For example, habitat loss compromises a species’34

capacity for rapid dispersal or refugial retreat (Brook et al., 2008; Opdam and Wascher, 2004), while fragmentation may35

hinder a species’ ability to track shifts in suitable environmental conditions or access remaining suitable habitat (Cushman,36

2006). Habitat loss may also destroy microrefugia, localized climatically suitable areas in otherwise unsuitable landscapes,37

which provide species the opportunity to survive during unfavourable climate periods and locations from which to re-38

colonize when conditions become more suitable (Dobrowski, 2011; Scherrer and Körner, 2011). Even when there are no39

physical barriers to dispersal, a species’ ability to navigate fragmented landscapes to seek out suitable areas may be lower40

than in intact landscapes due to reluctance to traverse unsuitable land cover types, leaving suitable habitat unoccupied41

because of a species failure to locate it (Opdam and Wascher, 2004). Populations whose range has been extensively lost or42

degraded may also lack the adaptive capacity (e.g. phenotypic plasticity or micro-evolution) to adapt to climate change43

in-situ because both their genetic and phenotypic diversity may have been reduced by declines in population size or44

connectivity (Jump and Peñuelas, 2005).45

While it is clear that there are numerousmechanisms by which climate change and habitat loss and fragmentation could46

plausibly interact to magnify biodiversity impacts, few studies have documented HLF–CC impacts directly or examined47

how general or widespread they might be. Recently, however, Mantyka-Pringle et al. (2012) used a meta-analytic approach48

to detect adverse biodiversity impacts attributable to an HLF–CC interaction. Using a global assessment of 168 published49

data sets that examined the impacts of HLF on multiple taxa, they modelled the likelihood of observing a negative impact50

on biodiversity (decline in density, richness, diversity or probability of occurrence) due to HLF as a function of current51

climate and observed climate change (Mantyka-Pringle et al., 2012). They showed that negative impacts associated with52

HLF were more likely in landscapes with two key climatic determinants, (i) current high maximum temperatures and53

(ii) declining precipitation, and that the strength of the impact varied across different vegetation types but, with the54

exception of arthropods, varied little across taxa (Mantyka-Pringle et al., 2012). This is an important study because for the55

first time it enables the spatial assessment, and hence preliminary risk assessment, of where the HLF–CC interaction is most56

likely to impact biodiversity.57

Here, we apply themodels derived in theMantyka-Pringle et al. (2012)meta-analysis to an integrated set of global spatial58

data comprising vegetation loss, current climate, observed climate change, and forecasted climate change (using RCP 4.559

and 8.5 scenarios to both 2055 and 2090 IPCC, 2013) to identify ecoregions where an HLF–CC interaction is most likely to60
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(1) have already impacted biodiversity, and (2) cause biodiversity impacts in the future as a result of future HLF and/or 1

climate changes. Understanding where HLF–CC interactions will most impact biodiversity is an important step towards 2

effectively allocating conservation resources aimed at preventing ongoing biodiversity loss. 3

2. Results 4

2.1. Current interaction risk 5

Our results indicate that HLF–CC impacts on biodiversity as a result of climatic change during the 20th centurywere likely 6

(probability> 66%) in 120 (18.5%) ecoregions, and very likely (>90% probability) in 12 (1.8%) ecoregions (Fig. 1). A negative 7

impact was ‘‘as likely as not’’ (probability 33%–66%) in 475 (73.1%) ecoregions assessed, and unlikely (probability < 33%) Q3 8

in only 55 (8.5%) ecoregions. A weak, but significant, negative correlation was found between Emodified and the probability 9

of HLF–CC impacts across all ecoregions (Pearson’s r(648) = �0.20, p < 0.01), suggesting that many of the ecoregions 10

most sensitive to HLF–CC impacts may not yet have been impacted because they are currently relatively intact. Impacted 11

ecoregions were also disproportionately biodiverse (Wilcoxon rank-sum test w = 45 979, p < 0.01). Median richness of 12

four taxa (amphibians, birds, mammals, reptiles) in the ecoregions where impacts were likely was 527 (IQR 351-719) (cf. 13

global median, 406 (IQR 307-630)) (SI Text). 14

Rainforests, savannas, shrublands and wetlands were the most vulnerable vegetation types, with HLF–CC impacts 15

likely in nearly half (45.3%) of rainforests, a third (33.3%) of savanna, almost a third (29.3%) of shrublands and all (100%) 16

wetland ecoregions. Rainforest and savanna ecoregions account for 29.8% of ecoregions globally, but represented 63.3% of all 17

ecoregions that are likely to have been impacted (Fig. 2, Fig S2). Rainforests alone accounted for over a third of all ecoregions 18

identified where HLF–CC impacts as a result of past climate change were likely (Fig. S2). In contrast, HLF–CC impacts were 19

least likely in forest and woodland ecoregions, which together account for 60.1% of ecoregions considered in the analysis, 20

but only 16.7% of ecoregions where impacts are likely (Fig. 2, Fig. S2). 21

2.2. Forecasted interaction risk 22

Median GCM forecasts based on the RCP 4.5 scenario suggested that the number of ecoregions where impacts are likely 23

will decrease slightly to 113 (17.4%) in 2055, from 120 (18.4%) today, before increasing to 122 (18.7%) in 2090 (Figs. S3 and 24

S4). While median forecasts from the higher emissions RCP 8.5 also predicted a decrease in 2055 to 111 (17.0%), the RCP 25

8.5 scenario departed markedly from the RCP 4.5 scenario in 2090, where it was suggested that the number of ecoregions 26

where impacts are likely will increase to 170 (26.1%) (Table S2, Figs. S5 and S6). 27

All forecasts suggested a substantial shift in the composition of vegetation types most likely to be impacted. Savanna, 28

wetlands, and to a lesser extent forests, became more vulnerable, while HLF–CC impacts were forecasted to be less likely in 29

rainforests, woodlands and shrublands (Fig. 3, Fig. S2). By 2055, median GCM forecasts indicated that savanna and wetland 30

ecoregions will account for all ecoregions where impacts are very likely (>90% probability) (Fig. 3). The reduction in the 31

likelihood of HLF–CC impacts in woodlands was robust to choice of RCP and future assessment period, with all woodland 32

ecoregions classified as unlikely to experience impacts in both future time periods and in both RCP4.5 and RCP8.5 (Fig. 3). 33

Assessing the temporal trajectory of ecoregion vulnerability shows that the total number of ecoregions that are currently 34

at-risk of HLF–CC impacts or will become at-risk (>66%) to HLF–CC impacts in future ranged from 153 (23.5%), using the 35

most optimistic emissions forecast, to 283 (43.5%) in the least optimistic emissions forecast (Fig. 4). Impacted ecoregions 36

weremore species rich than ecoregions globally in both themost and least optimistic scenarios (RCP 4.5: median richness of 37

impacted ecoregions = 486,median richness of ecoregions globally = 406,Wilcoxon rank-sum testw = 55 054, p < 0.05; 38

RCP8.5: median richness of impacted ecoregions = 489, w = 103 016, p < 0.01) (SI Text). 39

Variability in the number of at-risk ecoregions was primarily driven by variation in the number of ecoregions classified 40

as low-risk today that were forecasted to be at-risk in the future, which ranged from 33 (5.1%) ecoregions in the most 41

optimistic forecast to 163 (25.1%) in the least optimistic forecast (Fig. 4). In contrast, we found little variation in the 42

number of ecoregions forecasted to be at-risk in both time periods or to transition from at-risk today to low-risk in the 43

future (Fig. 4). Overlaying loss of native vegetation onto ecoregional transition states we find that the majority (60%) of 44

ecoregions identified as At-risk ! At-risk are relatively intact today, while ecoregions identified as either At-risk ! 45

Low-risk or Low-risk ! At-risk were almost equally distributed between relatively intact and modified (Fig. 5). Q4 46

3. Discussion 47

This is the first global assessment of where an interaction between habitat loss and fragmentation and climate change 48

(HLF–CC interaction) is most likely to have impacted biodiversity in the recent past and to forecast where these impacts are 49

most likely to occur in future. We find that HLF–CC impacts are likely (>66% probability) to have occurred in 120 (18.5%) 50

ecoregions as a result of climate changes that have occurred in the 20th century, while as many as 283 (43.5%) ecoregions 51

may become impacted over the course of the 21st century. In interpreting the management implications of our results, we 52

make a broad distinction between ecoregions where HLF–CC impacts are likely that have already experienced extensive 53
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Fig. 1. Likelihood that observed climate change has exacerbated the impact of habitat loss and fragmentation on biodiversity at ecoregional scale based
on (a) raw probability, and (b) confidence intervals following IPCC (2013). Probability of HLF–CC interactions was assessed as a function of five parameters
using vegetation type-specific model average coefficients from Mantyka-Pringle et al. (2012). Ecoregions in white were excluded from the assessment
because they did not conform to the selected broad vegetation categories or because they were not sufficiently covered by climate data.

clearing of native vegetation (hotspots for probable past HLF–CC impacts and thus candidates for restoration management1

actions) and those in which native vegetation remains largely intact (hotspots for potential future HLF–CC impacts if habitat2

is degraded and thus candidates for protection management actions). Relative priorities within these groups can be refined3

with respect to how biodiversity vulnerability to HLF–CC impacts is likely to change as a result of forecasted climate4

change.5

We identify 66 relatively intact ecoregions where climate change to date is likely to exacerbate biodiversity losses if6

their intactness is compromised. By the end of the century, our models suggest that forecasted climate changes will result7

in a ⇠50% increase in the number of ecoregions in this risk category to 92. These are ecoregions where the impact of8

future HLF on biodiversity will be magnified by climate change. Ensuring the continued intactness of native vegetation9

in these ecoregions should become a conservation priority. Increasing the protected area coverage is the most obvious10

management strategy to limit HLF–CC impacts, as protected areas are often a good mechanism to maintain vegetation11

integrity (Andam et al., 2008) and is consistent with the Convention on Biological Diversity (CBD) Aichi Targets (CBD, 2011).12

Other regional strategies include the introduction and acceptance of conservation-compatible development (Woinarski,13

2007) and payment for ecosystem service (PES) programs such as REDD+ that are aimed at ensuring natural systems are14

retained by offering compensation for the services they provide that would be lost if converted to other land uses (Miles15

and Kapos, 2008; Gullison et al., 2007).16
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Fig. 2. Present day confidence intervals for the likelihood of observed climate change exacerbating the impact of habitat loss and fragmentation (HLF). The
proportion of ecoregions in the confidence interval is indicated by the x-axis, and vegetation types along with the number of ecoregions in the vegetation
type listed in parenthesis on the y-axis. Probability of HLF–CC interactions was assessed as a function of five parameters using vegetation type-specific
model average coefficients from Mantyka-Pringle et al. (2012).

The ecoregion transition states that we developed to summarize expected changes in vulnerability (Figs. 4, 5) provide 1

additional information that will help aid prioritization of resources between ecoregions and to promote learning. The 41–50 2

(6.3%–7.7%) ecoregions identified as At-risk ! At-risk are the highest priority for preventing loss of native vegetation 3

because the impact of that loss is likely to be exacerbated by climate change. The majority of At-risk ! At-risk ecoregions 4

are currently relatively intact, which represents a clear opportunity to mitigate HLF–CC impacts in many of the ecoregions 5

that are persistently vulnerable. In contrast, the 367–497 (56.5%–76.5%) ecoregions where impacts are unlikely now and in 6

the future (Low-risk ! low-risk) are lower priorities for conservation action aimed at preventing HLF–CC impacts. 7

Targeting conservation action to minimize HLF–CC impacts in ecoregions expected to transition between risk states 8

(At-risk ! Low-risk and Low-risk ! At-risk) ismore nuanced. In At-risk ! Low-risk ecoregions climate forecasts indicate 9

the likelihood of HLF–CC impacts will decrease in the future. This suggests that clearing today will expose these ecoregions 10

to greater HLF–CC impacts than clearing in the future. Thus conservation action that delays (even if it does not ultimately 11

prevent) loss of native vegetation in these ecoregions may benefit biodiversity because loss at a later date is less likely to be 12

accompanied by HLF–CC impacts. In contrast, climate change is expected to increase the probability of HLF–CC impacts in 13

Low risk ! At-risk ecoregions, indicating alternative priorities in these ecoregions. The first is monitoring climatic changes 14

and re-assessing risk as new data become available.Where climate change increases risk as expected, prevention of loss and 15

restorationwill becomemore urgent priorities. Second, significant restoration efforts in highly degraded Low risk ! At-risk 16

ecoregions before climatic changes make HLF–CC impacts more likely may spare local biodiversity from the interaction 17

between the two drivers. 18

The ecoregion transition states may also serve as an additional resource to assess the efficacy of different conservation 19

interventions as tools to dealwithHLF–CC impacts (Figs. 4, 5). Ecoregionswhere the likelihoodofHLF–CC impacts is expected 20

to change most dramatically may offer a unique opportunity for observing and monitoring changes as they occur (Figs. S9 21

and S10). These ecoregions are also potential laboratories for adaptivemanagement experiments that could provide insights 22

into how best to deal with the challenges climate change poses for biodiversity in the 21st century (Pullin and Knight, 2009). 23

Several caveats should be acknowledged in this preliminary spatial assessment of the potential impacts from HLF–CC 24

interactions. First, impacts on individual species cannot be inferred from ecoregional vulnerability. The extent to which 25

individual species in the ecoregions identified herewill be impacted by the synergy between habitat loss and climate change 26

will to some degree bemediated by species’ ecological and biological traits (e.g., fecundity, population dynamics, behaviour, 27

interspecific interactions Murray et al., 2014). Understanding how individual species and systems will respond to HLF–CC 28

is thus likely to be more context specific and clearly warrants additional research attention. Second, while the evidence 29

base developed by Mantyka-Pringle et al. (2012) is an important step towards assessing broad trends across a range of 30

vegetation types, more research is needed to tease out the mechanisms of HLF–CC impacts and to resolve questions around 31

the direction andmagnitude of responses across different vegetation types and taxa. For example, their findings suggest that 32

additional warmingmay reduce the likelihood of HLF–CC impacts in rainforest, woodland and shrubland systems (Mantyka- 33

Pringle et al., 2013). The finding for rainforests, for example, seems at odds with other work on the sensitivity of rainforests 34

to climate change and the interaction between those changes and clearing of native vegetation, which generally suggest 35

that clearing increases risk (Malhi et al., 2009; Corlett, 2011). Such differences highlight the need to generate testable 36
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Fig. 3. Forecasted change in ecoregion vulnerability to habitat loss and fragmentation–climate change (HLF–CC) interaction impacts. Solid black lines
indicate probability based on GCMmedian forecasts (IPCC, 2013). The width of the shaded band represents the variance in the proportion of ecoregions in
the probability class between the upper and lower boundGCM.Narrower shaded bands indicate greater GCMagreement. Probability of HLF–CC interactions
was assessed as a function of five parameters using vegetation type-specific model average coefficients from Mantyka-Pringle et al. (2012).

mechanistic hypotheses such that future research can better assign causality where HLF–CC interactions are associated1

with observed biodiversity impacts. Third, we also note that the (Mantyka-Pringle et al., 2012) meta-analysis was based on2

observed climatic changes during the 20th century, while changes in the 21st century are expected to be significantly larger.3

The magnitude of future climate change may thus fall outside the range used to establish the HLF–CC impact relationship in4

many regions.5

Despite these challenges, using an empirical evidence base to assess ecoregion vulnerability to HLF–CC impacts6

represents an important, data-driven advance in understanding the potential risks posed by both climate change and HLF.7

By accounting for the non-linearity in system responses to these two stressors, we are able to identify areas where the8
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Fig. 4. Forecasted change in ecoregion vulnerability to habitat loss and fragmentation–climate change (HLF–CC) interaction impacts. Transition states
were defined based on the ecoregion’s current and forecasted future vulnerability to HLF–CC impacts. We followed IPCC thresholds for what is ‘likely’
(defined as >66% probability): if the probability of HLF–CC impacts in the time period was <66% the ecoregion was classified as ‘low-risk’ and if HLF–CC
impacts were >66% the ecoregion was classified as ‘At-risk’. Likelihood of HLF–CC impacts was independently evaluated in each time period and then
combined to develop the transition state. For example, a transition state of ‘At-risk ! At-risk’ means that the probability of HLF–CC impacts is currently
>66% and is expected to stay >66% in the future time period.

biodiversity benefit of prevented loss or restoration of native vegetation aremore likely to bemagnified by the simultaneous 1

avoidance of the interaction with climate change. This is important for both efficiently prioritizing actions (Joseph et al., 2

2009; Evans et al., 2011) and evaluating their effectiveness (Andam et al., 2008), and is a critical step towards resolving the 3

longer-term uncertainties around future climate change, its effects on biodiversity, and how different conservation actions 4

can be targeted to address this challenge. 5

4. Methods 6

4.1. Ecoregional data 7

Following previous global analyses (e.g. Watson et al., 2013, Funk and Fa, 2010, Iwamura et al., 2010) we used the 8

global ecoregions (n = 825) identified by Olson et al. (2001) as the basis for our analysis. Ecoregions represent relevant 9

environmental and ecologically distinct spatial units at the global scale (Olson and Dinerstein, 2002) and are used by 10

international funding institutions and conservation organizations to guide global conservation investments, assessments 11

and actions (Watson et al., 2013; Funk and Fa, 2010). 12

We reclassified each ecoregion to match one of the seven broad vegetation types (forest, rainforest, savanna, shrubland, 13

wetland, woodland and other) used in themeta-analysis ofMantyka-Pringle et al. (2012) (Table S1, Fig. S1).Mantyka-Pringle 14
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Fig. 5. Ecoregional intactness and forecasted trajectory of vulnerability to habitat loss and fragmentation–climate change (HLF–CC) interaction impacts.
Colours indicate relative priority with respect to avoiding HLF–CC interaction impacts and are based on the trajectory of ecoregion vulnerability to HLF–CC
interaction impacts outlined in Fig. 4. Future vulnerability assessed using the forecasted climate in 2090 based on RCP 8.5. Panels indicate likely focus of
management activities, based on ecoregion intactness, (a) protection of relatively intact ecoregions, or (b) restoration in highly ecoregions. Ecoregionswere
classified as relatively intact or highly degraded with respect to the global median for modification (Emodified = 28.4%). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

et al. (2012) classified a broad group of vegetation types as ‘‘other’’, including salt marshes, meadows, pastures, coastal sage1

scrub and coastal dunes. Given the diversity within this group, and the consequent diversity anticipated in their responses2

to climate change and HLF, we excluded all of these ecoregions (n = 109) from our analysis. We also followed Iwamura3

et al. (2010) and excluded ecoregions that were not fully covered by all climate data sets (n = 64) as well as the ‘Rock and4

Ice’ and ‘Lake’ ecoregions (n = 2), leaving 650 ecoregions for analysis (Fig. S1).5

4.2. Vegetation assessment within ecoregions6

Following previous studies (e.g. Watson et al., 2013), we used a conservative measure of the degree of degradation7

in an ecoregion by quantifying the proportion of areas where native vegetation had been totally transformed through8

agricultural development or urbanization. This was achieved using the GlobCover version 2.1 dataset, a global land cover9

classification model at ⇠300 m spatial resolution (Arino et al., 2008). The GlobCover dataset defines 65 land cover types10

categorized into Cultivated Terrestrial Areas and Managed Areas, Natural and Semi-natural Terrestrial Vegetation, Natural11

and Semi-natural Aquatic Vegetation, Artificial Surfaces and Associated Areas, and Inland Water Bodies. All areas classified12

as Cultivated Terrestrial Areas andManaged Lands, Artificial Surfaces and Associated Areas, were treated as ‘modified’ cover13

types, with all other cover types defined as ‘intact’. We calculated both the total area and modified area of each ecoregion14

to determine the proportion of native vegetation lost in each (Emodified). We used the global median for ecoregional loss of15

native vegetation (Emodified = 28.4%) to categorize ecoregions as either highly degraded (Emodified > 28.4%) or relatively16

intact (Emodified < 28.4%).17

4.3. Climate data18

The Mantyka-Pringle et al. (2012) meta-analysis found that four climate variables could be used to assess where the19

impacts of HLF were most likely to be exacerbated by climate change; (1) Tmax—maximum temperature of warmest month,20

(2) 1P—change in precipitation, (3) 1T—change in temperature, and (4) Pmin—precipitation in the driest month. While all21

four variables were identified as important, highmaximum temperatures in thewarmestmonth and declining precipitation22

(Mantyka-Pringle et al., 2012) were the most influential.23
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Like Mantyka-Pringle et al. (2012), we derived the current climate variables (Tmax, Pmin) from the WorldClim database 1

at ⇠1 km2 resolution, which provides an average over the period from 1950 to 2000 (Hijmans et al., 2005). Also 2

following Mantyka-Pringle et al. (2012) we calculated the observed change in climate variables (1P2010, 1T2010; negative 3

values indicate declines) from the Climatic Research Unit (CRU) time-series version 3.20 observed climate database at the 4

University of East Anglia (1901–2010) (Mitchell and Jones, 2005) as the difference between the mean in the most recent 5

period (1981–2010) and the earliest period available (1901–1930). 6

To assess future climate conditions, we used Representative Concentration Pathways (RCP) 4.5 and 8.5 and the ensemble 7

median forecast from 26 general circulation models (GCMs) in two future time periods 2046–2065 and 2081–2100 (Girvetz 8

et al., 2009). RCP 4.5 is an intermediate emission scenario that is based on stricter climate policy and low energy use going 9

forward, in which CO2 emissions begin declining by 2040 and total radiative forcing of all human greenhouse gas emissions 10

stabilize just after 2100. RCP8.5 is a higher range emission scenario consistent with high population growth, no climate 11

policy change, and continued reliance on fossil fuels (Van Vuuren et al., 2011). Ensemble forecasts were used because they 12

show better large scale agreement with observed data (Meehl et al., 2007), have been used for global studies (Loarie et al., 13

2009), and have been suggested to be more appropriate for biological risk assessments (Fordham et al., 2011). Change 14

in precipitation and temperature in each time period (1T2055, 1T2090, 1P2055, 1P2090) was calculated by subtracting the 15

mean annual value in the earliest period available (1901–1930) from the value forecasted in the future time period (2055, 16

2090; negative values indicate declines). In addition to the ensemble median forecast we also considered upper (1T2055U , 17

1T2090U , 1P2055U , 1P2090U ) and lower (1T2055L, 1T2090L, 1P2055L, 1P2090L) bound GCM forecasts for change in precipitation 18

and temperature to assess the likelihood of HLF–CC impacts against the range of possible future conditions. Upper bound 19

estimates (worst case scenario) were derived by using the minimum forecast for precipitation (driest) and the maximum 20

forecast for temperature (warmest) from any of 26 GCMs in both future time periods. Lower bound estimates (best case 21

scenario)were derived by using the highest precipitation forecast (wettest) andminimum forecast for temperature (coolest) 22

from any of 26 GCMs in both future time periods. 23

4.4. Analysis 24

We evaluated the probability of observing a negative HLF–CC impact on biodiversity by applying vegetation type- 25

specificmodel average coefficients derived as part of theMantyka-Pringle (2014) study (Mantyka-Pringle pers comm) to our Q5 26

integrated vegetation and climate datasets. When no single model is clearly superior (AIC weight > 0.9), the use of model 27

average coefficients can reduce model selection bias and is preferable to selecting the best model for inference (Burnham 28

and Anderson, 2002).We used themean values for each variable (Tmax, Pmin, Emodified, 1P2010,1T2010,1T2055,1T2090,1P2055, Q6 29

1P2090) within each ecoregion for analyses. Following Mantyka-Pringle (2014) we standardized each predictor variable to 30

have a mean of zero and standard deviation of one. 31

We first evaluated current levels of risk based on current conditions (Tmax, Pmin, Emodified) and observed climate change 32

(1P2010,1T2010).We then forecasted risk in two future time periods (2055, 2090) by using forecasted change in temperature 33

and precipitation (1T2055, 1T2090, 1P2055, 1P2090). We characterize the forecasted probability of observing HLF–CC impacts 34

in an ecoregion following the most recent Intergovernmental Panel on Climate Change (IPCC) report; ‘‘Unlikely’’ (<33% 35

probability), ‘‘About as likely as not’’ (33%–66%), ‘‘Likely’’ (>66%), and ‘‘Very likely’’ (>90% probability) (IPCC, 2013). 36

Temporal change in ecoregion vulnerability was assessed by defining transition states with respect to the current 37

likelihood of HLF–CC impacts and likelihood in a future period (2055 or 2090). We simplified the categories used above 38

and classified an ecoregion as ‘‘At-risk’’ in the time period if the probability of HLF–CC impacts was >66%, and ‘‘Low-risk’’ 39

if the probability was <66%. Classification from the two time periods was combined to develop the vulnerability trajectory 40

for each ecoregion, referred to as its transition state. For example, a transition state of ‘At-risk ! At-risk’ means that the 41

probability ofHLF–CC impacts is currently>66% and is expected to stay>66% in the future timeperiod. Four transition states 42

were possible with respect to any future time period, (1) At-risk ! At-risk, (2) At-risk ! Low-risk, (3) Low-risk ! At-risk 43

and (4) Low-risk ! Low-risk. 44
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