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Summary 1 

Large-scale reference data sets of human genetic variation are critical for the medical 2 

and functional interpretation of DNA sequence changes. Here we describe the 3 

aggregation and analysis of high-quality exome (protein-coding region) sequence data 4 

for 60,706 individuals of diverse ethnicities. The resulting catalogue of human genetic 5 

diversity has unprecedented resolution, with an average of one variant every eight bases 6 

of coding sequence and the presence of widespread mutational recurrence. The deep 7 

catalogue of variation provided by the Exome Aggregation Consortium (ExAC) can be 8 

used to calculate objective metrics of pathogenicity for sequence variants, and to identify 9 

genes subject to strong selection against various classes of mutation; we identify 3,230 10 

genes with near-complete depletion of truncating variants, 79% of which have no 11 

currently established human disease phenotype. Finally, we show that these data can be 12 

used for the efficient filtering of candidate disease-causing variants, and for the 13 

discovery of human “knockout” variants in protein-coding genes. 14 

	  15 
Background 16 

Over the last five years, the widespread availability of high-throughput DNA sequencing 17 

technologies has permitted the sequencing of the whole genomes or exomes (the 18 

protein-coding regions of genomes) of over half a million humans. In theory, these data 19 

represent a powerful source of information about the global patterns of human genetic 20 

variation, but in practice, are difficult to access for practical, logistical, and ethical 21 

reasons; in addition, the inconsistent processing complicates variant-calling pipelines 22 

used by different groups. Current publicly available datasets of human DNA sequence 23 

variation contain only a small fraction of all sequenced samples: the Exome Variant 24 

Server, created as part of the NHLBI Exome Sequencing Project (ESP)1, contains 25 

frequency information spanning 6,503 exomes; and the 1000 Genomes (1000G) Project, 26 

which includes individual-level genotype data from whole-genome and exome sequence 27 

data for 2,504 individuals2. 28 

 29 
Databases of genetic variation are important for our understanding of human population 30 

history and biology1–5, but also provide critical resources for the clinical interpretation of 31 

variants observed in patients suffering from rare Mendelian diseases6,7. The filtering of 32 

candidate variants by frequency in unselected individuals is a key step in any pipeline for 33 

the discovery of causal variants in Mendelian disease patients, and the efficacy of such 34 
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filtering depends on both the size and the ancestral diversity of the available reference 1 

data.  2 

 3 

Here, we describe the joint variant calling and analysis of high-quality variant calls 4 

across 60,706 human exomes, assembled by the Exome Aggregation Consortium 5 

(ExAC; exac.broadinstitute.org). This call set exceeds previously available exome-wide 6 

variant databases by nearly an order of magnitude, providing unprecedented resolution 7 

for the analysis of very low-frequency genetic variants. We demonstrate the application 8 

of this data set to the analysis of patterns of genetic variation including the discovery of 9 

widespread mutational recurrence, the inference of gene-level constraint against 10 

truncating variation, the clinical interpretation of variation in Mendelian disease genes, 11 

and the discovery of human “knockout” variants in protein-coding genes. 12 

 13 

Variant discovery and quality control 14 

Details of the variant calling process are provided in Supplementary Information. Briefly, 15 

we assembled approximately 1 petabyte of raw sequencing data (FASTQ files) from 16 

91,796 individual exomes drawn from a wide range of primarily disease-focused 17 

consortia (Supplementary Information Table 2). We processed these exomes through a 18 

single informatic pipeline and performed joint variant calling of single nucleotide variants 19 

(SNVs) and short insertions and deletions (indels) across all samples using a new 20 

version of the Genome Analysis Toolkit (GATK) HaplotypeCaller pipeline 21 

[Supplementary Information Section 1.3; Banks et al., in preparation]. At each site, 22 

sequence information from all individuals was used to assess the evidence for the 23 

presence of a variant in each individual. We also performed systematic analysis of copy 24 

number variation across these individuals [Ruderfer et al., to be co-submitted]. 25 

 26 

We leveraged a variety of sources of internal and external validation data to calibrate 27 

filters and evaluate the quality of filtered variants (Supplementary Information Table 6). 28 

We adjusted the standard GATK variant site filtering8 to increase the number of singleton 29 

variants that pass this filter, while maintaining a singleton transmission rate of 50.49%, 30 

very near the expected 50%, within sequenced trios. We then used the remaining 31 

passing variants to assess depth and genotype quality filters compared to >10,000 32 

samples that had been directly genotyped using SNP arrays (Illumina HumanExome) 33 

and achieved 97-99% heterozygous concordance, consistent with known error rates for 34 
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rare variants in chip-based genotyping9. Relative to a “platinum standard” genome 1 

sequenced using five different technologies10, we achieved sensitivity of 99.8% and false 2 

discovery rates of 0.13% for single nucleotide variants (SNVs), and corresponding rates 3 

of 95.1% and 1.95% for insertions and deletions (indels).  4 

 5 

In order to generate allele frequencies based on independent observations without 6 

enrichment of Mendelian disease alleles, we restricted the final release data set to 7 

unrelated adults with high-quality sequence data and without severe pediatric disease; 8 

full details of the filtering process are described in the Supplementary Information. After 9 

filtering, the final ExAC data set comprises 60,706 individuals (Figure 1a). To identify the 10 

ancestry of each ExAC sample, we performed principal component analysis (PCA) on 11 

5,400 common SNVs with high coverage across all of the exome capture technologies11 12 

represented in ExAC. This PCA allows us to distinguish the major axes of geographic 13 

ancestry within the ExAC sample, and to identify population clusters corresponding to 14 

individuals of European, African, South Asian, East Asian, and admixed American 15 

(hereafter Latino) ancestry (Figure 1b; Supplementary Information Table 3). We further 16 

separated Europeans into individuals of Finnish and non-Finnish ancestry given the 17 

enrichment of this bottlenecked population; the term “European” hereafter refers to non-18 

Finnish European individuals. 19 

 20 

We identified 10,195,872 candidate sequence variants in ExAC. We further applied 21 

stringent depth and site/genotype quality filters to define a subset of 7,404,909 high 22 

quality (HQ) variants, including 317,381 indels (Supplementary Information Table 6), 23 

corresponding to one variant for every 8 bp within the exome calling intervals. The 24 

majority of these are very low-frequency variants absent from previous smaller call sets 25 

(Figure 1c): of the HQ variants, 99% have a frequency of <1%, 54% are singletons 26 

(variants seen only once in the data set), and 72% are absent from both 1000G and 27 

ESP. 28 

  29 

However, the density of variation in ExAC is not uniform across the genome, and the 30 

observation of variants depends on factors such as mutational properties and selective 31 

pressures. In the ~45M well covered (80% of individuals with a minimum of 10X 32 

coverage) positions in ExAC, there are ~18M possible synonymous variants, of which 33 

we observe 1.4M (7.5%). However, we observe 313K out of 499K (62.8%) of possible 34 
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CpG transitions (C to T variants, where the following base is G), while only observing 1 

294K out of 9.3M transversions (3.1%) and 802K out of 8.9M other transitions (9%). A 2 

similar pattern is observed for missense and nonsense variants, with lower proportions 3 

due to selective pressures (Figure 1D). Of 123,629 HQ indels called in coding exons, 4 

117,242 (95%) have length -6 to +6, with shorter deletions being the most common 5 

(Figure 1E). Frameshifts are found in smaller numbers and are more likely to be 6 

singletons than in-frame indels (Figure 1F), reflecting the influence of purifying selection. 7 

 8 

 9 

Patterns of protein-coding variation revealed by large samples 10 

The unprecedented density of protein-coding sequence variation in ExAC reveals a 11 

number of properties of human genetic variation undetectable in smaller data sets. For 12 

instance, 7.9% of HQ sites in ExAC are multiallelic (multiple different sequence variants 13 

observed at the same site), close to the Poisson expectation of 8.3% given the observed 14 

density of variation, and far higher than observed in previous data sets - 0.48% in 1000 15 

Genomes (ExAC calling intervals) and 0.43% in ESP.  16 

 17 

The size of ExAC also makes it possible to directly observe mutational recurrence: 18 

instances in which the same mutation has occurred multiple times independently 19 

throughout the history of the sequenced populations. For instance, among synonymous 20 

variants, a class of variation expected to have undergone minimal selection, 43% of 21 

validated de novo events identified in external datasets of 1,756 parent-offspring trios 22 

are also observed independently in our dataset (Figure 2a), indicating a separate origin 23 

for the same variant within the demographic history of the two samples. This proportion 24 

is much higher for transition variants at CpG sites, well established to be the most highly 25 

mutable sites in the human genome12: 87% of previously reported de novo CpG 26 

transitions at synonymous sites are observed in ExAC, indicating that our sample sizes 27 

are beginning to approach saturation of this class of variation. This saturation is 28 

detectable by a change in the discovery rate at subsets of the ExAC data set, beginning 29 

at around 20,000 individuals (Figure 2b), indicating that ExAC is the first human dataset 30 

large enough for this effect to be directly observed. 31 

 32 

Mutational recurrence has a marked effect on the frequency spectrum in the ExAC data, 33 

resulting in a depletion of singletons at sites with high mutation rates (Figure 2c). We 34 
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observe a correlation between singleton rates (the proportion of variants seen only once 1 

in ExAC) and site mutability inferred from sequence context13 (r = -0.98; p < 10-50; 2 

Extended Data Figure 4d): sites with low predicted mutability have a singleton rate of 3 

60%, compared to 20% for sites with the highest predicted rate (CpG transitions; Figure 4 

2C). Conversely, for synonymous variants, CpG variants are approximately twice as 5 

likely to rise to intermediate frequencies: 16% of CpG variants are found in at least 20 6 

copies in ExAC, compared to 8% of transversions and non-CpG transitions, suggesting 7 

that synonymous CpG transitions have on average two independent mutational origins in 8 

the ExAC sample. Recurrence at highly mutable sites can further be observed by 9 

examining the population sharing of doubleton synonymous variants (variants occurring 10 

in only two individuals in ExAC). For low-mutability mutations (especially transversions), 11 

these variants are more likely to be observed in a single population (representing a 12 

single mutational origin), while CpG transitions are more likely to be found in two 13 

separate populations (representing independent mutational events); as such, site 14 

mutability and probability of observation in two populations is significantly correlated (r = 15 

0.884; Figure 2d). 16 

 17 

We also explored the prevalence and functional impact of multinucleotide 18 

polymorphisms (MNPs), clusters of base substitutions on the same haplotype. We used 19 

a read-based phasing pipeline to assess all sites where multiple substitutions were 20 

observed within the same codon in at least one individual. We found 5,945 MNPs in 21 

ExAC (Extended Data Figure 3a), with an average of 23 per sample, where analysis of 22 

the underlying SNPs without correct haplotype phasing would result in altered 23 

interpretation. These include 647 instances where the effect of a protein-truncating 24 

variant (PTV) variant is eliminated by an adjacent SNP (rescued PTV) and 131 instances 25 

where underlying synonymous or missense variants result in PTV MNPs (gained PTV). 26 

We identified rescued PTV MNPs in MLH1 (where PTV variants are associated with 27 

autosomal dominant Lynch syndrome), and FANCA (autosomal recessive Fanconi 28 

anemia)14,15. We also identified an ExAC sample as a carrier for a gained PTV MNP in 29 

MUTYH, where homozygous PTV variants are known to cause MUTYH-associated 30 

polyposis16. Additionally our analysis revealed 10 MNPs that have previously been 31 

reported as disease causing mutations in HGMD (Supplementary Information Table 9), 32 

including a stop-gained MNP in COH1 which has previously been identified as a 33 
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recessive cause of Cohen syndrome17. We note that these variants would be missed by 1 

virtually all currently available variant calling and annotation pipelines. 2 

	  3 
Inferring variant deleteriousness and gene constraint 4 

Deleterious variants are expected to have lower allele frequencies than neutral ones, 5 

due to negative selection. This theoretical property has been demonstrated previously in 6 

human population sequencing data18,19 and here (Figure 1d, Figure 1e). This allows 7 

inference of the degree of natural selection against specific functional classes of 8 

variation: however, mutational recurrence as described above indicates that allele 9 

frequencies observed in ExAC-scale samples are also skewed by mutation rate, with 10 

more mutable sites less likely to be singletons (Figure 2c and Extended Data Figure 4d). 11 

Mutation rate is in turn non-uniformly distributed across functional classes - for instance, 12 

stop lost mutations can never occur at CpG dinucleotides (Extended Data Figure 4e). 13 

We corrected for mutation rates (Supplementary Information) by creating a mutability-14 

adjusted proportion singleton (MAPS) metric. This metric reflects (as expected) strong 15 

selection against predicted PTVs, as well as missense variants predicted by 16 

conservation-based methods to be deleterious (Figure 2e).  17 

 18 

The deep ascertainment of rare variation in ExAC also allows us to infer the extent of 19 

selection against variant categories on a per-gene basis by examining the proportion of 20 

variation that is missing compared to expectations under random mutation. Conceptually 21 

similar approaches have been applied to smaller exome datasets13,20 but have been 22 

underpowered, particularly for the analysis of depletion of PTVs. We compared the 23 

observed number of rare (MAF <0.1%) variants per gene to an expected number derived 24 

from a selection neutral, sequence-context based mutational model13. The model 25 

performs extremely well in predicting the number of synonymous variants, which should 26 

be under minimal purifying selection, per gene (r = 0.98; Extended Data Figure 5). 27 

 28 

We quantified deviation from expectation with a Z score13, which for synonymous 29 

variants is centered at zero, but has distributions that are significantly shifted towards 30 

higher values (greater constraint) for both missense and PTVs (Wilcoxon p < 10-50 for 31 

both). To reduce confounding by coding sequence length for PTVs, we also developed 32 

an expectation-maximization algorithm (Supplementary Information Section 4.4) using 33 

the observed and expected PTV counts within each gene to separate genes into three 34 
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general categories: null (observed ≈ expected), recessive (observed ≤50% of expected), 1 

and haploinsufficient (observed <10% of expected). This metric – the probability of being 2 

loss-of-function (LoF) intolerant (pLI) – separates genes of sufficient length into LoF 3 

intolerant (pLI ≥0.9, n=3,230) or LoF tolerant (pLI ≤0.1, n=10,374) categories. pLI is less 4 

correlated with coding sequence length (r = 0.17 as compared to 0.57 for the PTV Z 5 

score), outperforms the PTV Z score as an intolerance metric (Supplementary 6 

Information Table 11), and reveals the expected contrast between gene lists (Figure 3b). 7 

pLI is also positively correlated with a gene product’s number of physical interaction 8 

partners (p < 10-41). The most constrained pathways (highest median pLI for the genes in 9 

the pathway) are core biological processes (spliceosome, ribosome, and proteasome 10 

components; KS test p < 10-6 for all) while olfactory receptors are among the least 11 

constrained pathways (KS test p < 10-16), demonstrated in Figure 3b and consistent with 12 

previous work5,21–23. 13 

 14 

Critically, we note that LoF-intolerant genes include virtually all known severe 15 

haploinsufficient human disease genes (Figure 3b), but that 79% of LoF-intolerant genes 16 

have not yet been assigned a human disease phenotype despite the clear evidence for 17 

extreme selective constraint (Supplementary Information 4.11). These likely represent 18 

either undiscovered severe dominant disease genes, or genes in which loss of a single 19 

copy results in embryonic lethality.  20 

 21 

The most highly constrained missense (top 25% missense Z scores) and PTV (pLI ≥0.9) 22 

genes show higher expression levels and broader tissue expression than the least 23 

constrained genes24 (Figure 3c). These most highly constrained genes are also depleted 24 

for eQTLs (p < 10-9 for missense and PTV; Figure 3d), yet are enriched within genome-25 

wide significant trait-associated loci (χ2 p < 10-14, Figure 3e). Intuitively, genes intolerant 26 

of PTV variation are dosage sensitive: natural selection does not tolerate a 50% deficit in 27 

expression due to the loss of single allele. It is therefore unsurprising that these genes 28 

are also depleted of common genetic variants that have a large enough effect on 29 

expression to be detected as eQTLs with current limited sample sizes. However, smaller 30 

changes in the expression of these genes, through weaker eQTLs or functional variants, 31 

are more likely to contribute to medically relevant phenotypes. Therefore, highly 32 

constrained genes are dosage-sensitive, expressed more broadly across tissues (as 33 

expected for core cellular processes), and are enriched for medically relevant variation. 34 
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 1 

Finally, we investigated how these constraint metrics would stratify mutational classes 2 

according to their frequency spectrum, corrected for mutability as in the previous section 3 

(Figure 3f). The effect was most dramatic when considering stop-gained variants in the 4 

LoF-intolerant set of genes. For missense variants, the missense Z score offers 5 

information additional to Polyphen2 and CADD classifications, indicating that gene-level 6 

measures of constraint offer additional information to variant-level metrics in assessing 7 

potential pathogenicity. 8 

 9 

ExAC improves variant interpretation in Mendelian disease 10 

We assessed the value of ExAC as a reference dataset for clinical sequencing 11 

approaches, which typically prioritize or filter potentially deleterious variants based on 12 

functional consequence and allele frequency6. To simulate a Mendelian variant analysis, 13 

we filtered variants in 100 ExAC exomes per continental population against ESP (the 14 

previous default reference data set for clinical analysis) or the remainder of ExAC, 15 

removing variants present at ≥0.1% allele frequency, a filter recommended for dominant 16 

disease variant discovery6. Filtering on ExAC reduced the number of candidate protein-17 

altering variants by 7-fold compared to ESP, and was most powerful when the highest 18 

allele frequency in any one population (“popmax”) was used rather than average 19 

(“global”) allele frequency (Figure 4a). ESP is not well-powered to filter at 0.1% AF 20 

without removing many genuinely rare variants, as AF estimates based on low allele 21 

counts are both upward-biased and imprecise (Figure 4b). We thus expect that ExAC 22 

will provide a very substantial boost in the power and accuracy of variant filtering in 23 

Mendelian disease projects. 24 

 25 

Previous large-scale sequencing studies have repeatedly shown that some purported 26 

Mendelian disease-causing genetic variants are implausibly common in the population25–27 
27. The average ExAC participant harbors ~53 variants reported as disease-causing in 28 

two widely-used databases of disease-causing variants (Supplementary Information 29 

Section 5.2). Most (~41) of these are high-quality genotypes but with implausibly high 30 

(>1%) AF in at least one population. We therefore hypothesized that most of the 31 

supposed burden of Mendelian disease alleles per person is due not to genotyping error, 32 

but rather to misclassification in databases. 33 

 34 
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We manually curated the evidence of pathogenicity for 192 previously reported 1 

pathogenic variants with allele frequency >1% either globally or in South Asian or Latino 2 

individuals, populations that are underrepresented in previous reference databases. 3 

Nine variants had sufficient data to support disease association, typically with either mild 4 

or incompletely penetrant disease effects; the remainder either had insufficient evidence 5 

for pathogenicity, no claim of pathogenicity, or were benign traits (Supplementary 6 

Information Section 5.3). 163 were reclassified as benign or likely benign following 7 

American College of Medical Genetics guidelines28. Supporting functional data were 8 

reported for 18 of these variants, highlighting the need to review cautiously even variants 9 

with experimental support. 10 

 11 

We also sought phenotypic data for a subset of ExAC participants homozygous for 12 

reported severe recessive disease variants, again enabling reclassification of some 13 

variants as benign. North American Indian Childhood Cirrhosis is a recessive disease of 14 

cirrhotic liver failure during childhood requiring liver transplant for survival to adulthood, 15 

previously reported to be caused by CIRH1A p.R565W29. ExAC contains 222 16 

heterozygous and 4 homozygous Latin American individuals, with a population allele 17 

frequency of 1.92%. The 4 homozygotes had no history of liver disease according to 18 

available phenotype data, and recontact with additional phenotyping in two individuals 19 

revealed normal liver function (Supplementary Information Table 15). Thus, despite the 20 

rigorous linkage and Sanger sequencing efforts that led to the original report of 21 

pathogenicity, the ExAC data demonstrate that this variant is not a fully penetrant cause 22 

of severe disease, a reminder of the importance of well-matched reference populations. 23 

 24 

The above curation efforts confirm the importance of allele frequency filtering in analysis 25 

of candidate disease variants. However, literature and database errors are prevalent 26 

even at lower allele frequencies: the average ExAC exome contains 0.89 reportedly 27 

Mendelian variants in well-characterized dominant disease genes30 at <1% popmax AF 28 

and 0.20 at <0.1% popmax AF. This inflation likely results from a combination of false 29 

reports of pathogenicity and incomplete penetrance, as we show for PRNP in the 30 

accompanying work [Minikel et al, submitted]. The abundance of rare functional variation 31 

in many disease genes in ExAC is a reminder that such variants should not be assumed 32 

to be causal or highly penetrant without careful segregation or case-control analysis28,7.  33 

 34 
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 13 

Impact of rare protein-truncating variants 1 

We investigated the distribution of PTVs, variants predicted to disrupt protein-coding 2 

genes through the introduction of a stop codon or frameshift or the disruption of an 3 

essential splice site; such variants are expected to be enriched for complete loss-of-4 

function of the impacted genes. Naturally-occurring PTVs in humans provide a model for 5 

the functional impact of gene inactivation, and have been used to identify many genes in 6 

which LoF causes severe disease31, as well as rare cases where LoF is protective 7 

against disease32.  8 

 9 

Among the 7,404,909 HQ variants in ExAC, we found 179,774 high-confidence PTVs (as 10 

defined in Supplementary Information Section 6), 121,309 of which are singletons. This 11 

corresponds to an average of 85 heterozygous and 35 homozygous PTVs per individual 12 

(Figure 5a). The diverse nature of the cohort enables the discovery of substantial 13 

numbers of novel PTVs: out of 58,435 PTVs with an allele count greater than one, 14 

33,625 occur in only one population. However, while PTVs as a category are extremely 15 

rare, the majority of the PTVs found in any one person are common, and each individual 16 

has only ~2 singleton PTVs, of which 0.14 are found in PTV-constrained genes (pLI 17 

>0.9). The site frequency spectrum of these variants across the populations represented 18 

in ExAC recapitulates known aspects of demographic models, including an increase in 19 

intermediate-frequency (1%-5%) PTVs in Finland33 and relatively common (>0.1%) PTVs 20 

in Africans (Figure 5b).  21 

 22 

Using a sub-sampling approach, we show that the discovery of both heterozygous 23 

(Figure 5c) and homozygous (Figure 5d) PTVs scales very differently across human 24 

populations, with implications for the design of large-scale sequencing studies for the 25 

ascertainment of human “knockouts” described below. 26 

 27 

Discussion 28 

Here we describe the generation and analysis of the most comprehensive catalogue of 29 

human protein-coding genetic variation to date, incorporating high-quality exome 30 

sequencing data from 60,706 individuals of diverse geographic ancestry. The resulting 31 

call set provides unprecedented resolution for the analysis of very low-frequency protein-32 

coding variants in human populations, as well as a powerful resource for the clinical 33 

interpretation of genetic variants observed in disease patients. The complete frequency 34 
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and annotation data from this call-set has been made freely available through a public 1 

website [exac.broadinstitute.org]. 2 

 3 

The very large sample size of ExAC also provides opportunities for a high-resolution 4 

analysis of the sensitivity of human genes to functional variation. While previous sample 5 

sizes have been adequately powered for the assessment of gene-level intolerance to 6 

missense variation13,20, ExAC provides for the first time sufficient power to investigate 7 

genic intolerance to PTVs, highlighting 2,557 LoF-intolerant genes for which human 8 

disease phenotypes have not yet been identified. These unassociated genes are likely to 9 

fall into two main categories: those that cause severe haploinsufficient disease that has 10 

not yet been genetically characterized, and those where heterozygous inactivation 11 

results in embryonic lethality. In the accompanying work [Ruderfer et al., to be co-12 

submitted] we show that ExAC similarly provides power to identify genes intolerant of 13 

copy number variation. Quantification of genic intolerance to both classes of variation will 14 

provided added power to disease studies.   15 
 16 

The ExAC resource provides the largest database to date for the estimation of allele 17 

frequency for protein-coding genetic variants, providing a powerful filter for analysis of 18 

candidate pathogenic variants in severe Mendelian diseases. Frequency data from ESP1 19 

have been widely used for this purpose, but those data are limited by population 20 

diversity and by resolution at allele frequencies ≤0.1%. ExAC therefore provides 21 

substantially improved power for Mendelian analyses, although it is still limited in power 22 

at lower allele frequencies, emphasizing the need for more sophisticated pathogenic 23 

variant filtering strategies alongside on-going data aggregation efforts. ExAC also 24 

highlights an unexpected tolerance of many disease genes to functional variation, and 25 

reveals that the literature and public databases contain an inflated number of reportedly 26 

pathogenic variants across the frequency spectrum, indicating a need for stringent 27 

criteria for assertions of pathogenicity. 28 
 29 

Finally, we show that different populations confer different advantages in the discovery 30 

of gene-disrupting PTVs, providing guidance for projects seeking to identify human 31 

“knockouts” to understand gene function. Individuals of African ancestry have more 32 

PTVs (140 on average), with this enrichment most pronounced at allele frequencies 33 

above 1% (Figure 5b). Finnish individuals, as a result of a population bottleneck, are 34 
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depleted at the lowest (<0.1%) allele frequencies but have a peak in frequency at 1-5% 1 

(Figure 5b). However, these differences are diminished when considering only LoF-2 

constrained (pLI > 0.9) genes (Extended Data Figure 10). Sampling multiple populations 3 

would likely be a fruitful strategy for a researcher investigating common PTV variation. 4 

However, discovery of homozygous PTVs is markedly enhanced in the South Asian 5 

samples, which come primarily from a Pakistani cohort with 38.3% of individuals self-6 

reporting as having closely related parents, emphasizing the extreme value of 7 

consanguineous cohorts for “human knockout” discovery (Figure 5d) [Saleheen et al., to 8 

be co-submitted]. 9 

 10 

Even with this unprecedented collection of jointly processed exomes, many limitations 11 

remain. First, most ExAC individuals were ascertained for the presence or absence of a 12 

biomedically important disease and thus are not a random sampling of the population. 13 

To minimize this bias, we have made every effort to exclude severe pediatric diseases, 14 

but nevertheless, the inclusion of both cases and controls for several polygenic disorders 15 

means that ExAC may contain higher counts of disease-associated variants for certain 16 

phenotypes34. Second, future reference databases would benefit from including a 17 

broader sampling of human diversity, particularly from the Middle East, a population not 18 

represented in the present dataset. Third, some protein-coding exons lack coverage in 19 

ExAC entirely or have coverage levels confounded with exome capture technology, 20 

which in turn is confounded with cohort and continental population. Fourth, protein-21 

coding exons are only one source of functionally important variation, and the future 22 

inclusion of whole genomes will also be critical to enable ascertainment of additional 23 

classes of variation and the identification of constrained regions outside of protein-24 

coding sequence. 25 
 26 

While the ExAC dataset dramatically exceeds the scale of previously available frequency 27 

reference datasets, much remains to be gained by further increases in sample size. 28 

Indeed, the fact that even the rarest transversions have mutational rates13 on the order 29 

of 1 x 10-9 implies that almost all possible non-lethal SNVs likely exist in some person on 30 

Earth. ExAC already includes >70% of all possible protein-coding CpG transitions at 31 

well-covered sites; order of magnitude increases in sample size will eventually lead to 32 

saturation of other classes of variation. 33 
 34 
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ExAC was made possible by the willingness of multiple large disease-focused consortia 1 

to share their raw data, and by the availability of the software and computational 2 

resources required to create a harmonized variant call set on the scale of tens of 3 

thousands of samples. The creation of yet larger reference variant databases will require 4 

continued emphasis on the value of public data sharing. 5 

	  6 
	   	  7 
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	  1 
	  2 
Figure	   1.	   Patterns	   of	   genetic	   variation	   in	   60,706	   humans.	  a)	  The	  size	  and	  diversity	  of	  public	   reference	  3 
exome	   datasets.	   ExAC	   exceeds	   previous	   datasets	   in	   size	   for	   all	   studied	   populations.	   b)	   Principal	  4 
component	   analysis	   (PCA)	   dividing	   ExAC	   individuals	   into	   five	   continental	   populations.	   PC2	   and	   PC3	   are	  5 
shown;	  additional	  PCs	  are	  in	  Extended	  Data	  Figure	  2a.	  c)	  The	  allele	  frequency	  spectrum	  of	  ExAC	  highlights	  6 
that	  the	  majority	  of	  genetic	  variants	  are	  rare	  and	  novel.	  d)	  The	  proportion	  of	  possible	  variation	  observed	  7 
by	  mutational	  context	  and	  functional	  class.	  Over	  half	  of	  all	  possible	  CpG	  transitions	  are	  observed.	  e-‐f)	  The	  8 
number	  (e)	  and	  frequency	  distribution	  (proportion	  singleton;	  f)	  of	   indels,	  by	  size.	  Compared	  to	   in-‐frame	  9 
indels,	   frameshift	   variants	   are	   greater	   in	   number	   and	   are	   more	   common	   (have	   a	   lower	   proportion	   of	  10 
singletons,	  a	  proxy	  for	  predicted	  deleteriousness	  on	  gene	  product).	  11 
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1 
Figure	   2.	   Mutational	   recurrence	   at	   large	   sample	   sizes.	   a)	   Number	   of	   unique	   variants	   observed,	   by	  2 
mutational	   context,	  as	  a	   function	  of	  number	  of	   individuals	   (down-‐sampled	   from	  ExAC).	  CpG	  transitions,	  3 
the	   most	   likely	   mutational	   event,	   begin	   reaching	   saturation	   at	   ~20,000	   individuals.	   B)	   Proportion	   of	  4 
validated	  de	  novo	  variants	  from	  two	  external	  datasets	  that	  are	  independently	  found	  in	  ExAC,	  separated	  by	  5 
functional	   class	   and	   mutational	   context.	   Error	   bars	   represent	   standard	   error	   of	   the	   mean.	   Colors	   are	  6 
consistent	  in	  a-‐d.	  c)	  The	  site	  frequency	  spectrum	  is	  shown	  for	  each	  mutational	  context.	  d)	  For	  doubletons	  7 
(variants	   with	   an	   allele	   count	   of	   2),	   mutation	   rate	   is	   positively	   correlated	   with	   the	   likelihood	   of	   being	  8 
found	   in	   two	   individuals	   of	   different	   continental	   populations.	   e)	   The	  mutability-‐adjusted	   proportion	   of	  9 
singletons	  (MAPS)	  is	  shown	  across	  functional	  classes.	  Error	  bars	  represent	  standard	  error	  of	  the	  mean	  of	  10 
the	  proportion	  of	  singletons.	  11 
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	  1 
	  2 
Figure	  3.	  Quantifying	  intolerance	  to	  3 
functional	  variation	  in	  genes	  and	  gene	  sets.	  a)	  4 
Histograms	  of	  constraint	  Z	  scores	  [Samocha	  5 
2014]	  for	  18,225	  genes.	  This	  measure	  of	  6 
departure	  of	  number	  of	  variants	  from	  7 
expectation	  is	  normally	  distributed	  for	  8 
synonymous	  variants,	  but	  right-‐shifted	  (higher	  9 
constraint)	  for	  missense	  and	  protein-‐10 
truncating	  variants	  (PTVs),	  indicating	  that	  11 
more	  genes	  are	  intolerant	  to	  these	  classes	  of	  12 
variation.	  b)	  The	  proportion	  of	  genes	  that	  are	  13 
very	  likely	  intolerant	  of	  loss-‐of-‐function	  14 
variation	  (pLI	  ≥	  0.9)	  is	  highest	  for	  ClinGen	  15 
haploinsufficient	  genes,	  and	  stratifies	  by	  the	  16 
severity	  and	  age	  of	  onset	  of	  the	  17 
haploinsufficient	  phenotype.	  Genes	  essential	  18 
in	  cell	  culture	  and	  dominant	  disease	  genes	  are	  19 
likewise	  enriched	  for	  intolerant	  genes,	  while	  20 
recessive	  disease	  genes	  and	  olfactory	  21 
receptors	  have	  fewer	  intolerant	  genes.	  Black	  22 
error	  bars	  indicate	  95%	  confidence	  intervals	  23 
(CI).	  c)	  Synonymous	  Z	  scores	  show	  no	  24 
correlation	  with	  the	  number	  of	  tissues	  in	  25 
which	  a	  gene	  is	  expressed,	  but	  the	  least	  26 
missense-‐	  and	  PTV-‐constrained	  genes	  tend	  to	  27 
be	  expressed	  in	  fewer	  tissues.	  Thick	  black	  bars	  28 
indicate	  the	  first	  to	  third	  quartiles,	  with	  the	  29 
white	  circle	  marking	  the	  median.	  d)	  Highly	  30 
missense-‐	  and	  PTV-‐constrained	  genes	  are	  less	  31 
likely	  to	  have	  eQTLs	  discovered	  in	  GTEx	  as	  the	  32 
average	  gene.	  Shaded	  regions	  around	  the	  lines	  33 
indicate	  95%	  CI.	  e)	  Highly	  missense-‐	  and	  PTV-‐34 
constrained	  genes	  are	  more	  likely	  to	  be	  35 
adjacent	  to	  GWAS	  signals	  than	  the	  average	  36 
gene.	  Shaded	  regions	  around	  the	  lines	  indicate	  37 
95%	  CI.	  f)	  MAPS	  (Figure	  2d)	  is	  shown	  for	  each	  38 
functional	  category,	  broken	  down	  by	  39 
constraint	  score	  bins	  as	  shown.	  Missense	  and	  40 
PTV	  constraint	  score	  bins	  provide	  information	  41 
about	  natural	  selection	  at	  least	  partially	  42 
orthogonal	  to	  MAPS,	  PolyPhen,	  and	  CADD	  43 
scores,	  indicating	  that	  this	  metric	  should	  be	  44 
useful	  in	  identifying	  variants	  associated	  with	  45 
deleterious	  phenotypes.	  Shaded	  regions	  46 
around	  the	  lines	  indicate	  95%	  CI.	  For	  panels	  47 
a,c-‐f:	  synonymous	  shown	  in	  gray,	  missense	  in	  48 
orange,	  and	  protein-‐truncating	  in	  maroon.	  49 
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	  1 
Figure	  4.	  Filtering	  for	  Mendelian	  variant	  discovery.	  a)	  Predicted	  missense	  and	  protein-‐truncating	  variants	  2 
in	  500	  randomly	  chosen	  ExAC	  individuals	  were	  filtered	  based	  on	  allele	  frequency	  information	  from	  ESP,	  or	  3 
from	  the	  remaining	  ExAC	  individuals.	  At	  a	  0.1%	  allele	  frequency	  (AF)	  filter,	  ExAC	  provides	  greater	  power	  to	  4 
remove	   candidate	   variants,	   leaving	   an	   average	   of	   154	   variants	   for	   analysis,	   compared	   to	   1090	   after	  5 
filtering	   against	   ESP.	   Popmax	   AF	   also	   provides	   greater	   power	   than	   global	   AF,	   particularly	   when	  6 
populations	  are	  unequally	  sampled.	  b)	  Estimates	  of	  allele	  frequency	  in	  Europeans	  based	  on	  ESP	  are	  more	  7 
precise	   at	   higher	   allele	   frequencies.	   Sampling	   variance	   and	   ascertainment	   bias	   make	   AF	   estimates	  8 
unreliable,	  posing	  problems	  for	  Mendelian	  variant	  filtration.	  69%	  of	  ESP	  European	  singletons	  are	  not	  seen	  9 
a	   second	   time	   in	  ExAC	   (tall	   bar	   at	   left),	   illustrating	   the	  dangers	  of	   filtering	  on	  very	   low	  allele	   counts.	   c)	  10 
Allele	   frequency	   spectrum	   of	   disease-‐causing	   variants	   in	   the	   Human	  Gene	  Mutation	   Database	   (HGMD)	  11 
and/or	  pathogenic	  or	  likely	  pathogenic	  variants	  in	  ClinVar	  for	  well	  characterized	  autosomal	  dominant	  and	  12 
autosomal	   recessive	   disease	   genes30.	   Most	   are	   not	   found	   in	   ExAC;	   however,	   many	   of	   the	   pathogenic	  13 
variants	   found	   in	   ExAC	   are	   at	   too	   high	   a	   frequency	   to	   be	   consistent	   with	   disease	   prevalence	   and	  14 
penetrance.	  d)	  Literature	  review	  of	  variants	  with	  >1%	  global	  allele	  frequency	  or	  >1%	  Latin	  American	  and	  15 
South	  Asian	  population	  allele	  frequency	  confirmed	  there	  is	  insufficient	  evidence	  for	  pathogenicity	  for	  the	  16 
majority	  of	  these	  variants.	  Variants	  were	  reclassified	  by	  ACMG	  guidelines28.	  17 
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1 
Figure	  5.	  Protein-‐truncating	  variation	  in	  ExAC.	  a)	  The	  average	  ExAC	  individual	  has	  85	  heterozygous	  and	  35	  2 
homozygous	   protein-‐truncating	   variants	   (PTVs),	   of	   which	   18	   and	   0.19	   are	   rare	   (<0.1%	   popmax	   AF),	  3 
respectively.	  Error	  bars	  represent	  standard	  deviation.	  b)	  Breakdown	  of	  PTVs	  per	  individual	  (a)	  by	  popmax	  4 
AF	  bin.	  Across	  all	  populations,	  most	  PTVs	  found	  in	  a	  given	  individual	  are	  common	  (>5%	  popmax	  AF).	  c-‐d)	  5 
Number	  of	  genes	  with	  at	  least	  one	  PTV	  (c)	  or	  homozygous	  PTV	  (d)	  as	  a	  function	  of	  number	  of	  individuals,	  6 
downsampled	  from	  ExAC.	  7 
	  8 
	  9 

. CC-BY-ND 4.0 International licensefor this preprint is the author/funder. It is made available under a 
The copyright holder; http://dx.doi.org/10.1101/030338doi: bioRxiv preprint first posted online October 30, 2015; 

http://dx.doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/

