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Summary 

1. Pesticides can have strong deleterious impacts in freshwaters, but understanding how these 

effects cascade through natural ecosystems, from microbes to apex predators, is limited 

because research that spans multiple levels of biological organisation is rare. 

2. We report how an accidental insecticide spill altered the structure and functioning of a 

river across levels ranging from genes to ecosystems. We quantified the impacts on 

assemblages of microbes, diatoms, macroinvertebrates and fish and measured leaf-litter 

decomposition rates and microbial functional potential at upstream control and downstream 

impacted sites two months after the spill.  

3. Both direct and indirect impacts were evident across multiple levels of organisation and 

taxa, from the base of the food web to higher trophic levels. At the molecular level, 

differences in functional gene abundance within the impacted sites reflected a combination of 

direct and indirect effects of the pesticide, via elevated microbial populations capable of 

utilising chlorpyrifos as a resource (i.e. direct effect) and oxidising ammonia released by 

decaying macroinvertebrate carcasses (i.e. indirect effect).   

4. At the base of the food chains, diatom taxa found only in the impacted sites were an order-

of-magnitude larger in cell-size than the largest comparable taxa in control communities, 

following the near-extirpation of their consumers. Population biomass of the key detritivore 

Gammarus pulex was markedly lower, as was the rate of litter decomposition in the impacted 

sites. This was partially compensated for, however, by elevated microbial breakdown, 

suggesting another indirect food-web effect of the toxic spill.  

5. Although many species exhibited population crashes or local extirpation, total 

macroinvertebrate biomass and abundance were largely unaffected due to a compensatory 

elevation in small tolerant taxa such as oligochaetes, and/or taxa which were in their adult 

aerial life-stage at the time of the spill (e.g. chironomids) meaning they avoided contact with 
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the polluted waters and were therefore able to repopulate quickly. Mass-abundance scaling of 

trophic links between consumers and resources revealed extensive restructuring within the 

food web. 

6. This case study shows that pesticides can affect food-web structure and ecosystem 

functioning, both directly and indirectly across levels of biological organisation. It also 

demonstrates how an integrated assessment approach, as adopted here, can elucidate links 

between micro-biota, macroinvertebrates and fish, for instance, thus improving our 

understanding of the range of biological consequences of chemical contamination in natural 

ecosystems. 

 

Introduction 

Freshwaters are exposed to multiple pesticides and other toxic chemicals at local to global 

scales (Schinegger et al. 2011; Beketov et al. 2013; Stehle & Schulz 2015). Ecotoxicological 

experiments in the laboratory have revealed with great accuracy and precision how these can 

affect the survival of target species (e.g. G. pulex; Xuereb et al. 2007), and community- and 

ecosystem-level responses have been demonstrated in micro- and mesocosm experiments 

(e.g. Van den Brink et al. 1995; Van Wijngaarden et al. 1996; Traas et al. 2004; Halstead et 

al. 2014) and field surveys (Chung, Wallace & Grubaugh 1993; Triebskorn et al. 2003; Malaj 

et al. 2014). In the last decade, new indices of community response have been proposed 

specifically to detect pesticide pollution (e.g. Liess & Ohe 2005; Schäfer et al. 2007; Liess, 

Schäfer & Schriever 2008) and to link community change to toxicants in field data (e.g. 

Kefford et al. 2010).  

Despite these advances, a mechanistic understanding of both the toxic effects of pesticides 

(i.e. direct) and those mediated via the food web (i.e. indirect) across multiple levels of 
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biological organisation (i.e. from genes to ecosystems) is still limited in natural settings 

(Kohler & Triebskorn 2013). This is likely because there are relatively few opportunities to 

understand how pesticides affect whole rivers or lakes, due to the logistical, ethical, and legal 

difficulties in conducting such a study in a controlled manner. Here, we address this research 

gap by quantifying the gene-to-ecosystem consequences of a major pesticide spill that caused 

widespread kills of macroinvertebrates over 15 km in a large lowland river by combining 

citizen science biomonitoring data with a suite of non-traditional measures of ecosystem 

impact.  

Invertebrate data were collected by citizen scientists prior to, during and after the spill 

enabling before-after-control-impact (BACI) assessment. These data enabled the UK 

Environment Agency to identify chlorpyrifos as the cause of the catastrophic mortality 

following the spill. Chlorpyrifos is a widely used organophosphate pesticide (insecticide and 

acaricide) which attacks insect (and arachnid) nervous systems. Since insects are core 

intermediate species in almost all stream food webs, perturbations to their populations have 

potential to ripple through the entire food web, as bottom-up effects on the fish assemblage 

and top-down effects on the microbial communities that drive a range of biogeochemical 

processes. Specifically, chlorpyrifos can affect microbial, macroinvertebrate and fish 

populations, both directly and indirectly (see reviews by Barron & Woodburn 1995; Brock, 

Lahr & Van den Brink 2000; Giddings et al. 2014), food-web structure (Traas et al. 2004) 

and can suppress macroinvertebrate-mediated litter breakdown (Maltby & Hills 2008). 

Placing the potentially subtle effects of pesticides within a coherent multilevel framework 

requires a combination of structural and functional measures from the microbial community 

at the base of the food web to apex predators. This has been partially achieved in some 

studies using mesocosms (e.g. Van den Brink et al. 1995; Van Wijngaarden et al. 1996; 

Kersting & Van den Brink 1997; Halstead et al. 2014), but rarely in natural settings (Kohler 

& Triebskorn 2013), and never in a manner that simultaneously captures molecular-level 
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responses through to the full complexity of the food web in the same system.  

Here we present data that reveal how chlorpyrifos affected the structure and functioning of 

the river food web, based on several complementary approaches including the abundance of 

targeted functional genes, those responsible for the degradation of chlorpyrifos(Kwak et al. 

2012), for example, measures of microbial and macroinvertebrate resource use and “trivariate 

analysis” (sensu Cohen et al. 2009). This collection of measures across multiple levels of 

organisation provides a vital bridge between field and laboratory-based findings and 

highlights the advantages of using a holistic approach to understand chemical stressor 

impacts in natural ecosystems.  

We test the following hypotheses: 

1. The structure (assessed using the abundance of functional gene loci) and functional 

capacity of the microbial assemblage will change due to direct effects (i.e. the 

pesticide provides an additional substrate) and indirect effects (i.e. increased organic 

substrates are derived from decaying macroinvertebrates) of the pesticide.  

2. Compensatory mechanisms will be evident in the food web in the aftermath of the 

spill, with less pesticide-sensitive, small, opportunistic, vagile, and fast-growing taxa 

(e.g. chironomids) higher in abundance and/or biomass in the absence of larger, slow-

growing taxa (e.g. Gammarus pulex), relative to control communities. 

3. Leaf litter breakdown will be impaired by the loss of key detritivores, with microbial 

activity hence accounting for a greater proportion of total litter breakdown. 

4. The food web will undergo extensive restructuring, particularly in terms of altered 

mass-abundance scaling relationships of the links between nodes. Local extirpations 

of intermediate species (e.g. herbivorous insects) will release basal species under top-

down control (e.g. benthic algae) while suppressing bottom-up fluxes to higher 
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trophic levels (e.g. fish). 

 

Methods 

Study site 

The River Kennet is a lowland chalk tributary (catchment area 1200 km2) of the River 

Thames in southern England, designated as a UK Site of Special Scientific Interest (SSSI). 

The river is groundwater-dominated, has hard water and is nutrient-rich (Fig. 1; Table 1). Its 

diverse fauna is dominated by Gammaridae, Baetidae, Ephemerellidae, Simuliidae and 

Chironomidae, which support an economically important salmonid game fishery (Wright et 

al. 2002; 2004).  

On 1 July 2013, following their routine biomonitoring, a citizen-science group (Action for the 

River Kennet, ARK) reported a large-scale macroinvertebrate kill along a 15-km stretch of 

the river. On 2 July 2013, an Environment Agency pollution incident team collected the first 

samples for, and detected, the organophosphate chlorpyrifos. This insecticide attacks the 

nervous system of insects by inhibiting acetylcholinesterase, and can be toxic to fish and 

meiofauna (Carr, Ho & Chambers 1997; DeLorenzo, Scott & Ross 1999). Concentrations of 

of 0.52-0.82µg L-l were recorded coming from the main tertiary sewage treatment works in 

Marlborough, Wiltshire, on 2 and 5 July, respectively (Fig. 1), probably resulting from a 

“down-the-drain” incident. The peak concentration was most likely missed by the sampling 

team, but even the measured concentration is sufficient to be acutely toxic to arthropods 

(Giddings et al. 2014), particularly over extended periods (i.e. >24 hours; Rubach, Crum & 

Van den Brink 2011). Chlorpyrifos was also detected at concentrations between 0.06-0.07 µg 

L-l across the impacted study site on 5 July. By 9 July 2013 the pesticide was undetectable, 

indicating that a single pulse was received and remained in the water column for a few days.  
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Contribution of citizen scientists  

Citizen scientists from ARK were trained by the Riverfly Partnership to collect and identify 

aquatic macroinvertebrates and had collected data for multiple sites for several years prior to 

and following the spill (Fig. S1). During the current study, they collected one monthly kick 

sample (3-minutes duration) from an upstream control and downstream impacted site (Fig. 1). 

A standard hand net (1-mm mesh) was used following the Riverfly Monitoring Initiative 

standard protocol (http://www.riverflies.org). The macroinvertebrates collected were 

identified live on the bank, without magnification, and abundance ranked per sample as: 0 = 0 

individuals; 1-9 = 1; 10-99 = 2; 100-1000 = 3; >1000 = 4, for eight key groups: 1. cased 

Trichoptera; 2. caseless Trichoptera; 3. Ephemeridae; 4. Ephemerellidae; 5. Heptageniidae; 6. 

Baetidae; 7. Plectoptera; 8. Gammaridae, which were summed to give a total score based on 

the number and diversity of the target taxa. These data provide a critical BACI element to the 

study, enabling us to track the impact of the spill through both space and time. 

Mean annual water chemistry data were obtained for Environment Agency monitoring 

stations located 2.3 km upstream and 2.7 km downstream from the spill and were similar 

across the study site (Table 1). These water chemistry data, combined with the ARK 

monitoring data of macroinvertebrates, showed no evidence of organic pollution from the 

sewage treatment works, indicating that sewage was an unlikely cause of the 

macroinvertebrate mortality event (Fig. S1).  

 

Sampling protocol 

Comprehensive biological sampling began in September 2013, as soon as possible after the 

chlorpyrifos spill had been identified as the causal agent, using an experimental design 

comprising three upstream control and three downstream impacted reaches, each 50 m long, 

Page 7 of 105 Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

along a c. 6 km river stretch (Fig. 1). Sites were c. 1 km apart, with similar channel forms and 

riparian surroundings. Here we present data from two control and two impacted reaches (Fig. 

1) for a suite of structural and functional indicators to test a multilevel bioassessment 

approach. Three sediment samples, a stone scrape, three Surber samples and depletion 

electrofishing were used to characterise microbial, diatom, macroinvertebrate and fish 

structural attributes, respectively. At each site, 10 fine- (0.5mm) and 10 coarse-mesh (10mm) 

leaf-litter bags were used to determine rates of decomposition driven by microbes alone or by 

whole communities (Woodward et al. 2012). In addition, a sample of river water was 

collected and incubated with a range of substrates to assess microbial functional capacity.   

  

Microbial functional gene abundance 

We used quantitative PCR (qPCR) to examine gene abundance for microbial functional and 

taxonomic marker genes. 16S rRNA gene abundance was used as a proxy for total bacterial 

abundance. Direct effects of the chlorpyrifos spill were examined using the organophosphate 

hydrolase gene (opd), which is responsible for the degradation of chlorpyrifos by bacteria; 

bacterial populations containing this gene have previously been demonstrated to increase in 

abundance at sites impacted by organophosphate (Kwak et al. 2012). Indirect effects were 

examined by quantifying the abundance of genes coding for enzymes involved in N-cycling: 

nitrite reductase (nirS) and ammonia monoxygenase (amoA) from ammonia-oxidising 

archaea (AOA) and bacteria (AOB) as these are most likely to reflect decomposition of dead 

arthropods in impacted sites. We hypothesised that decomposition of dead arthropods would 

result in an increased input of NH4
+ from ammonification of organic N. We focused on nirS 

and amoA genes as both nitrification and denitrification pathways are important in removing 

N from systems and can be coupled when denitrifiers reduce the NO3- produced by the 

nitrifiers that oxidised NH4
+. By focusing on functions of a range of populations, a change 
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across all populations combined provides an indicator for community-level effects of 

chlorpyrifos on river microbes. Full details of DNA isolation, primer details and qPCR 

cycling conditions are available in the Microbial Functional Gene Abundance section in the 

Supplementary Material. 

 

Microbial functional potential 

Open-water samples were collected from each site and returned to the laboratory in an ice-

chilled cooler. Samples were allowed to settle (>10 min), after which a 100-µL aliquot was 

pipetted into each well of a Biolog EcoPlate, which contained a single carbon substrate, 

including carbohydrates, polymers, fatty acids and amino acids. Each well also contained the 

redox dye tetrazolium, which is reduced during microbial respiration, resulting in a 

measurable colour change. Each EcoPlate contains 31 substrates plus a no-substrate control 

in triplicate. Plates were incubated in the dark at 22°C for 5 days, after which colour change 

was quantified by measuring optical density at 600 nm using a Biotek HT absorbance reader 

(Biotek, Swindon, UK). For each EcoPlate, we calculated the substrate usage by subtracting 

the mean of the three no-substrate controls from each measurement. Usage was ranked across 

the substrates in each replicate, and the ranked optical densities were plotted to visualise 

broad changes across sites. 

 

Population abundance, community structure and food web size-scaling 

Quantitative depletion electrofishing was undertaken, with population densities estimated 

using the R package FSA (Ogle 2012) and iterative Maximum Weighted Likelihood statistics 

(equation S1 and S2 in Supplementary Material; Carle & Strub 1978). All fishes caught were 

identified to species and measured by fork length. For each species, individual dry mass was 
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calculated using length-mass regression equations. Full details of fish dry mass estimation 

can be found in the Food web characterisation section of the Supplementary Material. 

Invertebrates were collected (n = 3 samples per site) using a Surber sampler (0.0625 m2, 335 

µm mesh), preserved in 99.8% ethanol, and later sorted from debris, identified to the highest 

possible taxonomic resolution (usually species), and counted (Table S1). Dry masses of 

macroinvertebrates were determined from regressions of linear dimensions using published 

equations (see Table S2); a subset of 60 individuals were measured per species per site, or 

every individual where abundance was below 60. We distinguished between arthropods (i.e. 

insect larvae and Crustacea) and other taxa (i.e. Tricladida, Annelida and Mollusca) based on 

their sensitivity to chlorpyrifos (Raven & George 1989; Giddings et al. 2014). 

Diatoms were scraped from 8.64 cm2 of the upper surface of one cobble at each site using a 

toothbrush and 3.6 by 2.4 cm photographic slide as a flexible quadrat, preserved using 

Lugol’s iodine, and prepared using standard methods (Battarbee et al. 2001). A minimum of 

300 diatom valves were identified to species per sample using the keys of Krammer & 

Bertalot (1986), Krammer et al. (1986), Krammer & Lange-Bertalot (1991a b) and 

abundances per unit area were determined as in Battarbee (1973). Linear dimensions were 

measured to the nearest 1 µm to estimate diatom biovolume (Table S3; Hillebrand et al. 

1999). The first 30 specimens of all common (n >30) species were measured and where 

species were encountered less frequently, all specimens in the count were measured. Carbon 

content was estimated (Rocha & Duncan 1985) and then converted to dry mass (Sicko-Goad, 

Schelske & Stoermer 1984). 

We used these mass-abundance data from across the different taxa and trophic levels to 

construct whole-community 'trivariate food webs' - food webs ordinated by overlaying 

feeding links on the bivariate relationship between species mean body mass and their 

numerical abundance on a double logarithmic scale - to understand how chlorpyrifos alters 
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food-web structure. Deviations in MN among species pairwise links can be used to identify 

alterations to biomass fluxes in the food web. For instance, altered consumer-resource 

feeding “link angles” can reveal rates of change in biomass, population production and 

population consumption between species-pairs, through to the food web as a whole (sensu 

Cohen et al. 2009), and these changes can help us to interpret direct and indirect effects of 

chlorpyrifos.  

Trivariate webs were constructed for all sites. Feeding links were inferred from trophic 

interactions published in the literature (Table S4). We assumed that if a trophic interaction 

between two species has been reported in the literature and those same species were present 

at one of our sites, then that trophic interaction also occurred, as has been validated in other 

stream food webs (Layer et al. 2010; Layer, Hildrew & Woodward 2013). In a few instances, 

feeding links were assigned on the basis of taxonomic similarity. For example, if a link had 

been established from the literature for at least one congener it was assumed that different 

species within the same genus fed upon the same resources and were consumed by the same 

consumers. It was necessary to extend this assumption to the family level in some instances 

where information in the primary literature was scarce (Table S5). This minimises bias 

between nodes where the quantity of directly observed information varies and allows the 

method to be reproduced exactly (Gray et al. 2014).  

 

Ecosystem functioning: leaf-litter decomposition 

At each site, the decomposition rate of leaf-litter was determined from leaf-packs containing 

3.0 g (±0.3 g SD) black alder (Alnus glutinosa) incubated in the river for 9 days. Coarse (150 

mm by 100 mm, 10mm mesh) and fine (150 mm by 100 mm, 500 µm mesh) mesh-aperture 

bags were used to determine the fraction of decomposition contributed by microbes (mass 

loss from fine mesh bags) and macroinvertebrates (difference in mass loss from coarse and 
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fine mesh bags). Leaf breakdown rates were expressed as the exponential decay rate 

coefficient, k (see equation S3; Woodward et al. 2012). 

 

Data analysis 

Trivariate statistics were calculated using the method of Cohen et al (2009) in the R package 

Cheddar (Hudson et al. 2012). We used link angles to estimate changes in potential biomass 

flux between a resource and its consumer. In summary, a link can be viewed as a vector from 

a resource to its consumer and, considering that macroinvertebrate taxa abundance and/or 

mass is predicted to decrease at impacted sites, a change in the angle of macroinvertebrate 

upper- and lower-links would indicate a potential change in biomass flux (Fig. 2). 

Linear mixed effect models (LMM) were used to test for differences in mean annual water 

quality, with treatment and date as fixed and random factors, respectively. Differences in 

biotic response variables (link angles, species and community abundance and/or biomass, 

gene abundances and microbial capacity) between control and impacted sites (i.e. condition) 

were tested using LMM with site and condition as random and fixed factors, respectively. 

Where necessary a variance structure was used to account for unequal variance between sites 

in order to meet model assumptions (after Zuur et al. 2009). If data were not normally 

distributed they were Log10 transformed to meet the assumptions of the test. All LMM were 

performed using the nlme package in R (Pinheiro et al. 2011) and estimates were made using 

restricted maximum likelihood or, when testing for differences in group means (e.g. 

macroinvertebrate communities within and between treatments), using general linear 

hypotheses tests in the R package multcomp (Hothorn et al. 2014). 
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Results 

Macroinvertebrate monitoring by citizen scientists 

Within control sites, G. pulex had the highest relative abundance (61%), followed by 

Baetidae (17%), Ephemerellidae (12%), cased Trichoptera (9%) and Plecoptera (1%). The 

macroinvertebrate assemblage within the impacted site in the three months prior to the spill 

was similar but following the spill on July 1st 2013, there was a 99.5% reduction in total 

abundance from the previous month (Fig. 3). By September, total abundance had increased 

again, but was dominated by Ephemeroptera instead of G. pulex, the latter being the slowest 

taxa to recover, as recorded by the citizen scientists.  

 

Microbial functional gene abundance and functional potential 

Analyses of gene abundances revealed that ammonia oxidisers (amoA), particularly AOBs, 

were up to 30-fold higher (t2 = 4.99; p = 0.03), and populations capable of utilising 

organophosphate (oph) as a resource were up to 7-fold higher in impacted sites compared 

with control sites (Fig. 4a; t2 = 6.14; p = 0.02). The elevation in the abundance of these 

populations suggests both direct (i.e. microbes utilised the insecticide as a resource) and 

indirect effects (i.e. microbes utilised ammonia released by decaying macroinvertebrates) of 

chlorpyrifos. However, there was no significant difference in the total abundance of bacteria, 

nor of the abundance of nitrite reducers or AOAs (Fig. 4a).  

The functional microbial assays showed impacted sites had higher overall substrate usage and 

a shallower rank abundance curve, indicating substantial functional changes in response to 

the spill. Mean overall carbon usage in the impacted sites was higher than the control sites 

(Fig. 4b; t2 = 4.2, p = 0.05). Differences among control and impacted sites suggested elevated 

rates of substrate usage of simple carbohydrates (e.g. glucose-1-phosphate, t2 = 4.4, p = 0.05; 
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α-D-lactose, t2 = 7.7, p = 0.02) and amino acids in the impacted sites, with little difference in 

the usage of complex polymers (e.g. Tween 40).  

 

Macroinvertebrate community structure and ecosystem functioning 

Total macroinvertebrate biomass and abundance did not significantly differ between the 

control and impacted sites (t2 = -1.43; p = 0.29; t2 = -2.11; p = 0.17). However, arthropod 

biomass was 92.9% lower in impacted sites than arthropod biomass in control sites and 

80.4% lower than biomass of less pesticide-sensitive taxa in impacted sites (Table 2; Fig. 5). 

In addition, the biomass of macroinvertebrate taxa considered less sensitive to pesticides was 

97.2% lower than that of the sensitive arthropods in control sites (Table 2), thus the former 

were partly compensating for the loss of the latter within impacted sites. G. pulex biomass 

(99.6%) and abundance (99.2%) and Baetis biomass (18.7%) and abundance (95.6%) were 

lower (Fig. 4c; 4d), but chironomid biomass (89.3%) and abundance (92.2%) and oligochaete 

biomass (85.4%) and abundance (94.5%) was higher in impacted sites compared to control 

sites (Table 2; Fig. 5). Macroinvertebrate diversity was similar between control and impacted 

sites (t2 = -0.39; p = 0.74), as was also true for fish diversity (Table 3), whereas four taxa of 

large diatoms (Cymatopleura solea, Cymatopleura elliptica, Gyrosigma attenuatum and 

Surirella caproni) were present only in the impacted sites (Fig. 4d). Microbial decomposition 

was higher, whereas total decomposition mediated by both microbes and detritivores was 

lower, in the impacted sites (Table 2; Fig. 4c), probably reflecting the decline of G. pulex and 

partial compensation by increased microbial activity. 

 

Trivariate analysis 

Arthropod lower-link angles were less negative (i.e. shallower) than less pesticide-sensitive 
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taxa in the control communities, but more negative (i.e. steeper) within the impacted 

communities (Table 2). This indicates altered mass-abundance scaling relationships of the 

links between nodes and a potential decrease in biomass flux from diatoms to arthropods 

within the impacted communities (Fig. 2). G. pulex and Baetis had the highest biomass and 

numerical abundance within the control macroinvertebrate community, respectively (Figs 4c, 

4d), and these species upper-link angles (i.e. to their predators) became shallower at impacted 

sites (Table 2), thus indicating a potential decrease in biomass flux to fishes from both the 

detritivore and herbivore food chains. To illustrate the direction of biomass flux through the 

food web and the connection of a key species to all other taxa via relatively direct and short 

paths, we constructed an example food chain with G. pulex as the focal species (Fig. 6). This 

highlights the potential for perturbations to ripple rapidly through the network even in this 

complex food web. More commonly used whole-network metrics, such as the regression 

slope and intercept, showed no clear differences that could be ascribed to the pesticide spill 

(Table 3).  

 

Discussion 

The documented insecticide spill in the River Kennet affected multiple organisational levels, 

from individual genes, through to food web structure and an ecosystem process. The location 

of pesticide-sensitive macroinvertebrate consumers relative to their resources in MN space 

shifted markedly, and the collapse in the population of a previously dominant keystone 

detritivore, G. pulex, was especially notable. This was associated with dramatically impaired 

rates of detritivore-mediated litter decomposition, with potential repercussions for the higher 

trophic levels. In this highly interconnected food web (Fig. 6) perturbations could potentially 

not only easily propagate through species interactions, but could also dissipate effectively. 

These properties could confer resilience on the system as a whole, as alternative feeding 
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paths provide relatively direct “short-circuits” in the food web (Fig. 6). Various 

compensatory mechanisms and hystereses within the food web were evident following the 

spill, including elevated microbial decomposer activity in the absence of macroinvertebrate 

detritivores (Fig. 4c) and irruptions and growth of less pesticide-sensitive and r-selected taxa 

capable of exploiting new resources (Fig. 5). The functional potential of the microbial 

assemblage in particular was higher in the impacted sites, as was the abundance of genes 

associated with organophosphate use and ammonia oxidation in the aftermath of widespread 

arthropod deaths (Fig. 4a; 4b). Extended temporal sampling will likely reveal if the sewage 

treatment work is potentially confounding our interpretation of this result, although there is 

no suggestion this is the case, as water quality is essentially identical above and below the 

works (Table 1; Fig. S1).  

Microbes account for most of a river’s biodiversity, drive key ecosystem processes and 

biogeochemical cycles (e.g. nitrogen cycle) and interact with higher trophic levels. Our qPCR 

assays revealed that the abundance of genes associated with the turnover of organophosphate 

and ammonia was higher in polluted sediment, revealing both direct and indirect effects of 

the spill on microbial activities. 

Strong links between changes in the structure and functioning of the microbial and 

macroinvertebrate community were evident, as revealed by the changes in decomposition 

rates associated with these two major biotic drivers (Gessner & Chauvet 2002; Schäfer et al. 

2007). The microbial community played a key role in maintaining litter decomposition 

following the macroinvertebrate losses, and microbial functional potential assessed by 

Ecoplate assays was also elevated at the impacted sites. The large-scale mortality of 

macroinvertebrates was likely to have released resources readily available for microbial use, 

promoting the proliferation of fast-growing bacteria able to use a broad range of substrates. 

Additional data from more extended sampling will eventually help us to better understand the 

temporal dynamics of the recovery process, by providing deeper insights into the baseline 
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variability. Even in the current absence of such additional data, our results clearly underline 

the potential of microbial bioindicators for assessing direct and indirect responses of river 

ecosystems to environmental impacts.  

Employing a highly resolved network-based perspective provided further insights into both 

direct and indirect effects of the perturbation - from genes to species and from food webs to 

the ecosystem as a whole - as we were able to connect structural and functional indicators 

across different levels of biological organisation, as well as improving understanding of the 

associated responses. For instance, G. pulex and Baetis represented key nodes in the major 

detritivore and herbivore food chains, respectively, as is the case in many lowland running 

waters (Woodward et al. 2008; Layer et al. 2010), and both populations collapsed in the 

impacted sites. Our broad multilevel approach revealed how the loss of consumers could 

result in the release of their resources and potential competitors, and also how major conduits 

of energy and biomass flux to the species at the top of the food web, including ecologically 

important and economically valuable fish species, such as trout, could be compromised.   

Microcosm and mesocosm experiments have described ecosystem-level responses to, and 

recovery from, combined pesticide and nutrient additions (Traas et al. 2004; Halstead et al. 

2014), and observational field-based research has demonstrated that recovery of the 

macroinvertebrate community and leaf-litter decomposition was related to aerial mobility of 

repopulating taxa (Chung et al. 1993). Our study represents a novel approach, integrating a 

broad range of assessment metrics at multiple levels and this has helped us to better 

understand the effects of a pesticide spill in a natural setting. The same approach is also more 

widely applicable to assessments of effects caused by other stressors, such as acidification 

and eutrophication, where interactions within food webs can shape both the ecosystem impact 

and the rate and trajectory of recovery (e.g. Ledger & Hildrew 2005; Layer et al. 2010; 

Rawcliffe et al. 2010). Thus, such an approach offers a way to move beyond partial 

taxonomic or trait-based views to one that explicitly incorporates species interactions in food 
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webs and ecosystem processes in river bioassessment (Gray et al. 2014). 

Our study also highlights the value of citizen science in biomonitoring and bioassessment, as 

it enabled us to place the detailed data specifically and intensively collected after the toxic 

spill in the context of a wide before-and-after-control-and-impact (BACI) -style “natural 

experiment”, which would have otherwise been impossible to employ in the search for causal 

relationships. Mobile Ephemeroptera (Baetis and Ephemerellidae, both active swimmers with 

an aerial adult life-stage that coincided with the pollution) repopulated the impacted sites 

more quickly than G. pulex (Fig. 3), as did the often opportunistic chironomid species and 

less sensitive non-arthropod taxa such as oligochaetes (Fig. 5). These responses echo those of 

small r-selected taxa preceding the recovery of larger K-selected species in previous studies 

on pesticide contamination (Chung et al. 1993; Liess & Schulz 1999; Beketov et al. 2008).  

It has been hypothesised that ecological inertia can operate within freshwater food webs, 

creating ‘community closure’ or  recovery trajectories that are not simple reversals of impacts 

(e.g. Ledger & Hildrew 2005; Layer et al. 2011; 2013). Impacts on key nodes can alter 

important aspects of food-web structure and associated processes, such that although the 

latter might operate at similar rates, they may be driven by microbes and r-selected taxa 

instead of K-selected taxa, as has been reported in response to pesticide contamination 

(Chung et al. 1993) and other stressors (Hladyz et al. 2011). Our initial data demonstrate that, 

while the R. Kennet’s ecological structure and functioning were significantly altered by the 

toxic spill, there were many alternative nodes and links within the food web that could help 

confer some level of resilience even in the face of catastrophic population losses. 

Future work will require well co-ordinated laboratory and field investigations based on 

matching methodologies to improve understanding of the links between microbiota and larger 

organisms before, if ever, one can be used as a proxy for the other (e.g. Triebskorn et al. 

2003). Nonetheless, our study represents a proof-of-concept as to how vastly different metrics 
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might be linked and, as more data are generated over time, potential time × treatment 

interactions can also be more thoroughly explored. Additional metrics based on, for instance, 

next-generation sequencing (e.g. Rosi-Marshall et al. 2013) or measures of whole-ecosystem 

respiration (e.g. Young, Matthaei & Townsend 2008), could be incorporated to capture the 

extent of impacts and recovery trajectories more fully.  

Although covering only part of the spectrum of responses reported here, other multimetric 

bioassessments have yielded comparable results, including how pesticides can indirectly 

release prey species from predation (Papst & Boyer 1980), constrain consumer populations 

through loss of resources (Brazner & Kline 1990), affect the structure and functioning of 

aquatic communities in mesocosms (Downing et al. 2008; Relyea 2008; Halstead et al. 2014) 

or alter the structure and functioning of natural stream communities (Chung et al. 1993; 

Schäfer et al. 2007). Results from correlational studies also suggest that changes at multiple 

trophic levels may be related to organic chemical contaminants (mostly pesticides) at the 

continental scale (Malaj et al. 2014). Despite this and the worldwide use of, and projected 

increase in, pesticides, studies of their effects at the ecosystem-level are rare in natural 

settings (Kohler & Triebskorn 2013). The present study contributes to bridging this gap. 
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Table 1. Locations of upstream control and downstream impacted sites as well as of water 

chemistry monitoring stations of the Environment Agency (EA). Mean and range, in 

brackets, of annual water chemistry concentrations from Environment Agency monitoring 

data are shown from sites located between control and impacted reaches. Oxidised nitrogen 

(oxidised N) is the sum of nitrate (NO3-) and nitrite (NO2-).  

Site Condition Latitude, Longitude 

A Control 51°4170'N, 1°7536'W 
EA Control Control 51°4163'N, 1°7325'W 
C Control 51°4235'N, 1°7165'W 
D Impacted 51°4227'N, 1°6982'W 
EA Impact Impacted 51°4227'N, 1°6982'W 
F Impacted 51°4269'N, 1°6650'W 

Water chemistry EA Control EA Impacted 

Alkalinity (mg L-1) 250 (187-262) 243 (189-254) 
Conductivity (µS cm-1) 626 (449-738) 609 (492-686) 
Oxidised N (mg L-1) 6.6 (4.4-7.5) 6.8 (4.4-7.6) 
Dissolved oxygen (mg L-1) 9.0 (6.9-10.0) 9.6 (6.9-10.9) 
Temperature (°C) 11.0 (5.7-14.4) 11.1 (5.7-14.5) 
pH  7.6 (7.4-7.8) 7.9 (7.4-8.1) 
Ortho-phosphate (mg L-1) 0.08 (0.02-0.36) 0.08 (0.02-0.34) 

 

 

Table 2. General linear model tests of the biomass (mg) and abundance of arthropods and 

other macroinvertebrates (Tricladida, Annelida and Mollusca, which are considered to be less 

sensitive to chlorpyrifos than arthropods) per sample; Baetis, G. pulex (i.e. K-selected taxa), 

chironomid and oligochaete (i.e. r-selected taxa) biomass and abundance; arthropod-resource 

and other-resource trivariate lower-link angles, Baetis and G. pulex upper-link angles and 

both total and microbial leaf-litter breakdown rate between control (C) and impacted (I) sites. 

Significant p values (<0.05) are highlighted in bold.  

Log10 (biomass +1) Estimate Std. Error z value p 

C:arthropods - C:other 1.62 0.09 17.53 <0.001 

I:arthropods - I:other -0.73 0.12 6.00 <0.001 

C:arthropods - I:arthropods 1.17 0.23 5.19 <0.001 

C:other - I:other -1.17 0.25 -4.73 <0.001 

Log10 (abundance +1)         
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C:arthropods - C:other 1.28 0.19 6.82 <0.001 

I:arthropods - I:other -0.05 0.19 0.25 0.99 
C:arthropods - I:arthropods 0.56 0.24 2.37 0.06 
C:other - I:other -0.76 0.24 -3.23 0.005 

Log10 (biomass +1)         

C:Baetis - I:Baetis 0.62 0.16 4.00 <0.001 

C:G. pulex - I:G. pulex 2.30 0.15 15.82 <0.001 

C:chironomids - I:chironomids -0.93 0.15 -6.38 <0.001 

C:oligochaetes - I:oligochaetes -0.81 0.15 -5.49 <0.001 

Log10 (abundance +1)         

C:Baetis - I:Baetis 1.21 0.24 4.98 <0.001 

C:G. pulex - I:G. pulex 2.31 0.22 10.63 <0.001 

C:chironomids - I:chironomids -1.14 0.22 -5.24 <0.001 

C:oligochaetes - I:oligochaetes -1.12 0.23 -4.92 <0.001 

Invertebrate-resource lower-link angles 

C:arthropods - C:other -0.08 0.02 -3.8 <0.001 

I:arthropods - I:other 0.2 0.02 10.35 <0.001 

C:arthropods - I:arthropods -0.32 0.24 -1.36 0.44 
C:other - I:other -0.04 0.24 -0.18 >0.99 

Baetis and G. pulex upper-link angles 

C:Baetis – I:Baetis -103.71 24.3 -4.27 <0.001 

C:G. pulex – I:G. pulex -62.8 25.73 -2.44 0.03 

Leaf litter decomposition (k)         

I:total - C:total -0.05 0.01 -6.57 <0.001 

I:microbial - C:microbial 0.01 0.002 5.75 <0.001 

 

Table 3. Properties of the trivariate food webs at control and impacted river sites. 

Property 

Site A Site C Site D Site F 

Control Control Impacted Impacted 

Number of nodes 68 60 64 73 
Number of fish species 4 4 5 3 
Number of macroinvertebrate taxa 35 23 20 32 
Number of diatom taxa 29 33 39 38 
Number of links 837 635 739 1060 
Linkage density 11.96 10.41 11.37 14.13 
Directed connectance 0.17 0.17 0.17 0.19 
Trivariate regression slope -0.98 -0.67 -0.92 -0.95 
Trivariate regression intercept 1.29 1.26 1.58 1.35 
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Figure legends 

Fig. 1. River Kennet (UK) with study sites A-C (upward pointing triangles = control) and D-

F (downward pointing triangles = impacted). Data for sites A, C, D and F (filled triangles) are 

presented here. Monitoring data for aquatic macroinvertebrates were collected by citizen 

scientists upstream (i.e. control site) at Stonebridge Lane and downstream at Elcot Mill (i.e. 

impacted site) of Marlborough sewage treatment works, where the pesticide entered the river. 

 

Fig. 2. (a) Location of consumers sensitive to pesticides (Cs) and less sensitive to pesticides 

(Cl) in relation to the consumer resources (R) and predators (P) as viewed on a double-

logarithmic scale of body mass versus abundance. (b) Changes within the food web following 

pesticide exposure can be assessed by using link angles as a proxy for changes in potential 

biomass flux within the food web: a predicted decrease in Cs MN following pesticide 

exposure and an increase in R MN due to the release from top-down consumer control can be 

assessed using the Cs link angles in relation to Cl and control data; a decrease in Cs lower-link 

angles would indicate a potential reduction in biomass flux between R-Cs; an increase in Cs 

upper-link angle would indicate a potential reduction in biomass flux to P and hysteresis 

within the network whereby P is yet to be impacted by the loss of Cs, or that P has increased 

reliance on other resources, or a combination of the two. 

 

Fig. 3. Top: Aquatic macroinvertebrate monitoring data collected by citizen scientists show 

macroinvertebrate scores before and after the toxic spill (arrows), based on total abundance of 

the target taxa. The red line represents an Environment Agency threshold for substantial 

ecological degradation. Bottom: abundance of key taxa in relation to scores collected from an 

upstream control at Stonebridge Lane and a downstream impacted site at Elcot Mill (see Fig. 

1).  
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Fig. 4. Vertical arrows indicate notable differences between ecological data from control sites 

A and C and from impacted sites D and F two months after the toxic spill, error bars 

represent standard error. (a) Molecular results from microbial qPCR assays targeting the (α) 

16S rRNA (microbial abundance), (β) nirS (nitrite reductase) (γ) amoA (ammonia 

monooxygenase) AOB (ammonia oxidising bacteria), (δ) amoA (ammonia monooxygenase) 

AOA (ammonia oxidising archaea), (ε) opd (organophosphorus hydrolase) genes. (b) 

Ecoplate microbial functional potential on 31 carbon substrates (x-axis) and their usage (y-

axis; measured as optical density at 600 nm after 5 days of incubation at 22 °C as defined in 

the Methods). (c) Biomass of macroinvertebrates (light shading) and a keystone detritivore, 

Gammarus pulex (dark shading), and leaf-litter breakdown rates by all consumers (light 

shading) and microbes only (dark shading). (d) Trivariate mass-abundance food webs: green 

circles = algae (large species found only in the impacted sites highlighted), yellow symbols = 

arthropods (decreased relative to controls), blue symbols = other macroinvertebrates, black 

filled diamond = G. pulex, black open diamond = Baetis, pink symbols = fishes.  

 

Fig. 5. Macroinvertebrate mean biomass (per sample with standard error) at control and 

impacted sites in the River Kennet. 

 

Fig. 6. Aggregated network for the River Kennet food web, highlighting an exemplar food 

chain from the basal resource to the apex predator; a = coarse particulate organic matter (e.g. 

leaf litter), b = Gammarus pulex, c = brown trout, Salmo trutta, d = Eurasian otter, Lutra 

lutra. The two concentric circles of nodes represent the shortest food web distances to or 

from G. pulex – those in the inner circle are a single link removed from G. pulex, those in the 

outer circle are separated by two links in the shortest path. Here, all species are at most 2 
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links away from G. pulex, although longer food chains are present in the network, as shown 

by a-b-c-d. Symbols for nodes represent different trophic elements: green circles = producers, 

blue squares = macroinvertebrates, purple diamonds = vertebrate ectotherms, red triangles = 

endotherms, black circles = abiotic resources. Light blue and light purple circles = 

cannibalistic nodes of macroinvertebrates and vertebrate ectotherms, respectively. 
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Supplementary Material 1 

 2 

ARK macroinvertebrate monitoring data and Environment Agency water chemistry 3 

data 4 

Data from ARK monthly aquatic macroinvertebrate and UK Environment Agency water 5 

chemistry monitoring data were combined to provide a before-after-control-impact 6 

assessment which has not been possible in previous field studies of pesticide spills (Fig. S1). 7 

This information was used by the Environment Agency to direct their investigation into the 8 

macroinvertebrate loss and monitor for chlorpyrifos. The annual average of dissolved oxygen 9 

was significantly higher at the impacted Environment Agency monitoring station (t14 = 2.38, 10 

p = 0.03) but orthophosphate and oxidised nitrogen were not statistically significantly 11 

different between control and impacted monitoring stations (t5 = 1.83; p = 0.13; t4 = 0.01; p = 12 

0.99); and there was also no spike in their concentrations at the impacted station the month 13 

following the event during macroinvertebrate recovery (0.08 mg-l and 7.57 mg-l, respectively; 14 

see also Table 1). These results, combined with ARK macroinvertebrate scores (Fig. S1), 15 

indicate that there was no evidence of organic pollution from the sewage treatment works, 16 

and that this could therefore not be ascribed as the cause of the macroinvertebrate mortality 17 

event.  18 

 19 
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 1 

Figure S1. UK Environment Agency water chemistry and ARK aquatic macroinvertebrate 
data collected between July 2012 and July 2014. Water chemistry samples were collected 
from an upstream control (blue; adjacent to site B) and a downstream impacted monitoring 
station (red; adjacent to site E); ARK macroinvertebrate samples were collected from a 
control at Stonebridge Lane and impacted site at Elcot Mill (see Fig. 1). 

 

 

Microbial functional gene abundance 2 

DNA isolation: DNA was isolated from 0.25 g sediment samples using a Powersoil DNA 3 

Isolation Kit (Mo-Bio Laboratories) in accordance with the manufacturer’s instructions. Gene 4 

abundances of bacterial 16S rRNA, nitrite reductase (nirS), ammonia monooxygenase 5 

(amoA) from ammonia-oxidising archaea (AOA) and bacteria (AOB), and organophosphate 6 

hydrolase (opd) were quantified by qPCR using. 7 

The following primer pairs:- 16S rRNA: Bakt 341F (CCTACGGGNGGCWGCAG) and Bakt 8 

805R (GAC TAC HVG GGT ATC TAA TCC) (Herlemann et al. 2011); nirS: nirSCd3aF 9 

(AAC GYS AAG GAR ACS GG) and nirSR3cd (GAS TTC GGR TGS GTC TTS AYG AA) 10 

(Throbäck et al. 2004); amoA (AOA): CrenamoA-23F (ATG GTC TGG CTW AGA CG) and 11 

Page 36 of 105Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

CrenamoA-616R (GCC ATC CAT CTG TAT GTC CA) (Tourna et al. 2008); amoA (AOB): 1 

amoA-1F (GGG GTT TCT ACT GGT GGT) and amoA-2R (CCC CTC KGS AAA GCC 2 

TTC TTC) (Rotthauwe, Witzel & Liesack 1997); opd: OPDF (TCA CAC TGA CTC ACG 3 

AGC) and OPDR (CGG CCA ATA AAC TGA CGT).  4 

qPCR cycling conditions: DNA standards were constructed using target template generated 5 

by PCR amplification of the target genes from genomic DNA. DNA standards were purified 6 

using a GenElute PCR Clean-Up kit (Sigma-Aldrich), prior to quantification on a Nanodrop 7 

ND-1000 spectrophotometer (Thermo Scientific). The target gene abundance for DNA 8 

standards was calculated assuming a molecular mass of 660 Da for double stranded DNA 9 

using the following formula: Target abundance = 6.023×1023 (copies mol-1) × standard conc. 10 

(g µl-1) / MW (g  mol-1).  Standard curves for each gene were created using ten-fold dilution 11 

series ranging from 102 to 107 gene copies µl-1. For each of the genes the DNA standards, 12 

triplicate sediment samples and no-template controls were amplified in triplicate technical 13 

replicates on a CFX 96 Real Time System (Bio-Rad) using SensiFAST SYBR No-ROX Kit 14 

(Bioline) in 15 µl reactions (7.5 µl of 2 × mastermix, 0.3 µl of forward and reverse primers 15 

(10 µM), 5.9 µl PCR grade water (Bioline) and 1 µl of template DNA) using a 2-step cycle 16 

programme (initial denaturation/polymerase activation for 3 min at 95°C, followed by 40 17 

cycles of denaturation at 95°C for 5 s and combined annealing and extension at 60°C for 30 18 

s). A dissociation curve was run at the end of each assay to verify that only the expected 19 

amplification product was generated in addition to confirming by agarose gel electrophoresis. 20 

Gene abundances were quantified against the respective standard curves (all R2=0.99+) using 21 

the CFX Manager software (Bio-Rad) using automatic analysis settings for the Cq values and 22 

baseline settings. The limit of detection for all genes was set at 3.3 cycles lower than the Cq 23 

value of the no template controls. 24 

 

Food web taxa population densities 25 

   

Table S1. Mean numerical abundance per treatment for all nodes in the trivariate food webs 
(Fig. 4d) 

Taxa Treatment abundance (m2) 

Achnanthes minutissima control 1195229384.00 
Fragilaria leptostauron control 654926010.50 
Fragilaria capucina control 296124986.90 
Amphora inariensis control 202495097.30 
Cocconeis placentula control 202417409.60 
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Melosira varians control 122089193.40 
Nitzschia sublinearis control 104514701.30 
Nitzschia linearis control 96193580.87 
Achnanthes conspicua control 87095584.38 
Synedra ulna ulna control 87095584.38 
Amphora pediculus control 79085214.48 
Achnanthes lanceolata lanceolata control 70064905.57 
Navicula atomus control 69676467.50 
Nitzschia fonticola control 52335038.26 
Gomphonema parvulum control 43625479.80 
Fragilaria capucina gracilis control 34993608.98 
Gomphonema olivaceum control 34838233.75 
Navicula bacillum control 34838233.75 
Nitzschia dissipata control 34838233.75 
Nitzschia sigmoidea control 34838233.75 
Cocconeis pediculus control 26439425.77 
Fragilaria vaucheriae control 26439425.77 
Navicula margalithii control 26430880.13 
Navicula minima control 17574492.10 
Cyclotella radiosa control 17419116.88 
Fragilaria nitzschioides control 17419116.88 
Fragilariforma virescens control 17419116.88 
Meridion circulare control 17419116.88 
Cocconeis pseudothumensis control 8942621.28 
Navicula cryptonella control 1709127.51 
Rhoicosphenia abbreviata control 932251.37 
Achnanthes lanceolata rostrata control 776876.14 
Gomphonema control 776876.14 
Achnanthes clevei control 310750.46 
Fragilaria construens venter control 310750.46 
Gomphonema augur control 310750.46 
Achnanthes helvetica control 155375.23 
Amphora ovalis control 155375.23 
Fragilaria bidens control 155375.23 
Fragilaria capucina rumpens control 155375.23 
Navicula exilis control 155375.23 
Navicula seminulum control 155375.23 
Nitzschia control 155375.23 
Nitzschia amphibia control 155375.23 
Psammodictyon constrictum control 155375.23 
Synedra control 155375.23 
Gammarus pulex control 6674.00 
Baetis control 1782.67 
Agapetus fuscipes control 1549.33 
Polycelis tenuis control 492.67 
Elmis aenea control 335.33 
Oligochaeta control 218.67 
Leuctra inermis control 208.00 
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Silo nigricornis control 201.33 
Simulium vernum control 173.33 
Chironomidae control 156.67 
Tanypodinae control 149.33 
Simulium control 128.00 
Paraleptophlebia submarginata control 120.00 
Limnius control 88.00 
Hydracarina control 84.00 
Oreodytes sanmarkii control 80.00 
Ancylus fluviatilis control 66.67 
Bezzia control 64.00 
Athripsodes control 48.00 
Pisidium control 42.67 
Rhyacophila dorsalis control 34.67 
Asellus aquaticus control 32.00 
Glossiphonia complanata control 32.00 
Hemerodromia control 32.00 
Planaria torva control 32.00 
Caenis rivulorum control 26.67 
Dicranota control 26.67 
Serratella ignita control 24.00 
Dendrocoelum lacteum control 16.00 
Drusus annulatus control 16.00 
Dystiscidae control 16.00 
Erpobdella octoculata control 16.00 
Hydropsyche siltalai control 16.00 
Hygrobia hermanni control 16.00 
Limnephilidae control 16.00 
Piscicola geometra control 16.00 
Planorbis control 16.00 
Scirtidae control 16.00 
Cottus gobio control 0.63 
Salmo trutta control 0.19 
Gasterosteus aculeatus control 0.16 
Lampetra planeri control 0.01 
Cocconeis placentula impact 355252500.30 
Melosira varians impact 314459643.40 
Achnanthes minutissima impact 270097194.50 
Synedra ulna ulna impact 231925123.90 
Fragilaria construens venter impact 196952379.60 
Fragilaria leptostauron impact 103576020.10 
Fragilaria capucina rumpens impact 83934586.33 
Amphora pediculus impact 78860790.32 
Amphora inariensis impact 76471420.07 
Fragilaria capucina radians impact 74608521.18 
Fragilaria elliptica impact 74608521.18 
Cyclotella meneghiniana impact 70292612.62 
Nitzschia linearis impact 63824535.19 
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Achnanthes lanceolata impact 62482322.33 
Nitzschia fonticola impact 54672032.04 
Navicula margalithii impact 54556324.04 
Nitzschia palea impact 48377516.61 
Gomphonema olivaceum impact 46861741.75 
Navicula minima impact 46861741.75 
Diatoma vulgaris impact 37419968.60 
Gomphonema parvulum impact 37419968.60 
Fragilaria impact 37304260.59 
Fragilaria vaucheriae impact 34214856.88 
Nitzschia sublinearis impact 32641228.02 
Cocconeis pseudothumensis impact 31241161.17 
Fragilaria capucina impact 31241161.17 
Nitzschia dissipata impact 31241161.17 
Encyonema silesiacum impact 26520274.59 
Fragilaria capucina gracilis impact 24188758.30 
Cocconeis pediculus impact 23430870.87 
Cymbella proxima impact 18652130.30 
Nitzschia sigmoidea impact 16378468.01 
Cymatopleura elliptica impact 15620580.58 
Cymbella cistula impact 15620580.58 
Navicula cryptonella impact 15620580.58 
Navicula exilis impact 14804839.15 
Nitzschia recta impact 13231210.30 
Achnanthes lanceolata lanceolata impact 9326065.15 
Meridion circulare impact 9326065.15 
Neidium dubium impact 9326065.15 
Nitzschia capitellata impact 9326065.15 
Cymatopleura solea impact 8568177.72 
Amphora aequalis impact 7810290.29 
Amphora veneta impact 7810290.29 
Cymbella impact 7810290.29 
Navicula impact 7810290.29 
Nitzschia frustulum impact 7810290.29 
Nitzschia heufleriana impact 7810290.29 
Undiff. centric diatom impact 7810290.29 
Achnanthes lanceolata rostrata impact 4663032.57 
Amphora ovalis impact 4663032.57 
Diploneis parma impact 4663032.57 
Gomphonema clavatum impact 4663032.57 
Gyrosigma acuminata impact 4663032.57 
Gyrosigma attenuatum impact 4663032.57 
Hantzschia amphioxys impact 4663032.57 
Navicula lanceolata impact 4663032.57 
Surirella capronii impact 4663032.57 
Oligochaeta impact 3728.00 
Chironomidae impact 3013.33 
Ancylus fluviatilis impact 736.00 
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Caenis rivulorum impact 496.00 
Tanypodinae impact 202.67 
Niphargus aquilex impact 160.00 
Elmis aenea impact 144.00 
Silo nigricornis impact 133.33 
Simulium impact 96.00 
Polycelis tenuis impact 82.67 
Pisidium impact 77.33 
Hydracarina impact 70.67 
Gammarus pulex impact 52.00 
Agapetus fuscipes impact 50.67 
Oecetis impact 48.00 
Bezzia impact 44.00 
Baetis impact 41.33 
Centroptilum luteolum impact 32.00 
Paraleptophlebia submarginata impact 32.00 
Glossiphonia complanata impact 24.00 
Planaria torva impact 24.00 
Asellus aquaticus impact 16.00 
Cloeon simile impact 16.00 
Dendrocoelum lacteum impact 16.00 
Erpobdella octoculata impact 16.00 
Hydraenidae impact 16.00 
Leuctra impact 16.00 
Leuctra hippopus impact 16.00 
Oulimnius tuberculatus impact 16.00 
Piscicola geometra impact 16.00 
Proasellus meridianus impact 16.00 
Procloeon pennulatum impact 16.00 
Psychoda impact 16.00 
Serratella ignita impact 16.00 
Cottus gobio impact 0.14 
Salmo trutta impact 0.07 
Lampetra planeri impact 0.01 
Thymallus thymallus impact 0.01 
Gasterosteus aculeatus impact >0.01 
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Food web characterisation 

Fishes 

Dry mass was estimated using 60 individuals per species from control and impacted sites and 

species-specific conversions of wet to dry mass were extracted from http://fishbase.org/. 

Estimates were made with the following equation S1:  5 

 

DM = a*WM (eq. 1) 

 

Where DM is dry mass (mg), a is a constant and WM is wet mass (mg). 

Supplementary dry mass estimates were made using the following equation S2:  10 

 

Log(DM) = Log(a) + (b)*log(WM) 

 

Where DM is dry mass (mg), a and b are constants and WM is wet mass (mg). Natural 

logarithms (ln) were used and constants were supplied by Edwards (unpublished).  15 

 

Macroinvertebrates  

The dry mass of macroinvertebrates M (dry mass [mg]) was determined from body length or 

head capsule width using length-mass regression equations (Table S2).  
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Table S2. HW = head-capsule width (mm); BL = total body length (mm); SL = shell length (mm). Morphologically similar taxa or higher taxonomic 

levels, shown in square parantheses, were used where equations were unavailable for taxa. The source of each equation is denoted by a letter at the 

end of each row, and are: 1) Meyer (1989); 2) Calow (1975); 3) Baumgäertner & Rothhaupt (2003); 4) Benke et al. (1999); 5) Woodward & Hildrew 

(2001); 6) Burgherr and Meyer (1997); 7) Towers et al. (1994); 8) Edwards et al. (2009); 9) Smock (1980). 

 

taxa y x regression equation r
2 source 

Agapetus fuscipes [Glossosoma] ln(mg) lnHW y =  0.96+2.98x 0.71 1 

Ancylus fluviatilis  log10(mg) log10(SL) y =  -3.762 + 3.0x 0.99 2 

Asellus aquaticus  ln(mg) lnBL y =  -6.2+3.75x 0.69 3 

Asellus meridianus [Asellus aquaticus] ln(mg) lnBL y =  -6.2+3.75x 0.69 3 

Athripsodes [Oecetis spp.] ln(mg) lnHW y =  1.913+3.3x 0.67 4 

Baetis [Baetis spp.] (mg) HW y =  1.2688*(x^3.326) 0.96 4 

Baetis rhodani [Baetis spp.] (mg) HW y =  1.2688*(x^3.326) 0.96 4 

Baetis scambus [Baetis spp.] (mg) HW y =  1.2688*(x^3.326) 0.96 4 

Baetis vernus [Baetis spp.] (mg) HW y =  1.2688*(x^3.326) 0.96 4 

Bezzia [Bezzia sp.] ln(mg) lnBL y =  -4.13+1.12x 0.99 3 

Caenis rivulorum [Caenis spp.] ln(mg) lnHW y =  -0.91+3.35x 0.63 3 

Centroptilum luteolum [Baetis spp.] (mg) HW y =  1.2688*(x^3.326) 0.96 4 

Chironomid [Chrionomidae] (mg) HW y =  2.7842*(x^2.835) 0.9 4 

Dendrocoelum lacteum [Dugesia tigrina] (mg) BL y =  0.0089*(x^2.145) 0.81 4 

Dicranota sp. ln(mg) lnBL y =  -5.53+1.91x 0.54 5 

Drusus annulatus [Limnephilidae] ln(mg) lnHW y =  0.4109+3.1678(x) 0.83 1 

Dysticidae sp. [Coleoptera, larvae] ln(mg) lnBL y =  -4.4518+2.4724 0.57 1 
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Elmis aenea [Adult Coleoptera] ln(mg) lnBL y =  -5.46+4.33x 0.78 6 

Elmis aenea [Elmidae larvae] ln(mg) lnBL y =  -6.078+3.092x 0.83 7 

Eloeophila sp [Diptera] ln(mg) lnBL y =  -6.21+2.52x 0.83 6 

Erpobdella octoculata  Ln(mg) LnBL y =  –3.20+2.22x 0.78 8 

Gammarus pulex [Gammarus fossarum Koch] Ln(mg) Ln(BL) y =  y = –4·95 + 2·83(x) 0.9 6 

Glossiphonia complanata  Ln(mg) LnBL y =  -2.12+2x 0.64 8 

Helobdella stagnalis  Ln(mg) LnBL y =  -2.74+2.12x 0.62 8 

Hydracarina [Hydracarina spp.] Ln(mg) LnBL y =  -2.202+1.66 0.48 3 

Hydropsyche siltalai [Hydropsyche spp.] (mg) HW y =  1.265*(x^2.747) 0.87 4 

Hydroptilidae [Trichoptera, cased] ln(mg) lnHW y =  1.30+3.62x 0.82 3 

Hygrobia hermanni [Coleoptera, larvae] ln(mg) lnBL y =  -4.4518+2.4724 0.57 1 

Ilybius [Coleoptera, larvae] ln(mg) lnBL y =  -4.4518+2.4724 0.57 1 

Lepidostomata hirtum [Trichoptera, cased] ln(mg) lnHW y =  1.30+3.62x 0.82 3 

Leuctra spp [Leuctridae] (mg) HW y =  0.8496*(x^3.201) 0.9 4 

Limnephilus lunatus [Limnephilidae] ln(mg) lnHW y =  0.4109+3.1678(x) 0.83 1 

Limnius volkmari [Limnius larvae] ln(mg) lnHW y =  -8.71+4.53(x) 0.7 6 

Niphargus aquilex [Gammarus fossarum Koch] Ln(mg) Ln(BL) y =  y = –4·95 + 2·83(x) 0.9 6 

Oecetis [Oecetis spp.] ln(mg) lnHW y =  1.913+3.3x 0.67 4 

Oligochaeta  g y =  y = (πr2*1.05x)/4 9 

Oreodytes sanmarkii [Hydroporus - dysticidae] ln(mg) lnBL y =  0.0618*(x^2.502) 0.71 4 

Oulimnius tuberculatus L [Limnius larvae] ln(mg) lnHW y =  -8.71+4.53(x) 0.7 6 

Oxycera [Diptera] ln(mg) lnBL y =  -6.21+2.52x 0.83 6 

Paraleptophlebia submarginata [Leptophebidae] ln(mg) lnHW y =  -0.83+4.25x 0.86 6 

Piscicola geometra [Leech] Ln(mg) LnBL y =  -2.69+2.11x 0.62 8 

Pisidium  (mg) SL y =  0.0163*(x^2.477)) 0.87 4 

Plectrocnemia [Plectrocnemia conspersa] log10(ug) log10HW y =  2.58+2.80x 5 
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Polycelis tenuis [Dugesia tigrina] (mg) BL y =  0.0089*(x^2.145) 0.81 4 

Potamophylax latipennis [Limnephilidae] ln(mg) lnHW y =  0.4109+3.1678(x) 0.83 1 

Psychoda [Diptera] ln(mg) lnBL y =  -6.21+2.52x 0.83 6 

Rhyacophila dorsalis  log10(µg) log10HW y =  1.55+3.21x 0.72 8 

Serratella ignita [Serratella sp.] (mg) HW y =  0.7255*(x^3.325) 0.72 4 

Silo nigricornis [Goeridae] ln(mg) lnHW y =  0.8613+3.576x 0.75 1 

Simulium [Simulium sp.] Ln(mg) lnHW y =  y = 0·20 + 3·32(x) 0.93 6 

Tanypod [Tanypodinae] (mg) HW y =  2.1694*(x^2.623) 0.85 4 

Tipula Yamatotipula [Tipula abdominalis (Say)] ln(mg) lnBL y =  y = –5·30 + 2·36(x) 0.93 9 
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Diatoms 

The first 30 specimens of all common diatom species were measured and where species were 

encountered less frequently, all specimens in the count were measured (Table S3). 

 

Table S3. Diatom biovoulmes were calculated using predefined shapes (after Hillebrand et al. 

1999) 

 

taxa shape  

Achnanthes clevei prism on elliptic base 
Achnanthes conspicua prism on elliptic base 
Achnanthes delicatula prism on elliptic base 
Achnanthes distincta prism on elliptic base 
Achnanthes grischuna prism on elliptic base 
Achnanthes helvetica prism on elliptic base 
Achnanthes hintzii prism on elliptic base 
Achnanthes lanceolata prism on elliptic base 
Achnanthes lapidosa prism on elliptic base 
Achnanthes lauenburgiama prism on elliptic base 
Achnanthes lenmermanii prism on elliptic base 
Achnanthes minutissima prism on elliptic base 
Achnanthes pediculus prism on elliptic base 
Achnanthes ploenensis prism on elliptic base 
Achnanthes pusilla prism on elliptic base 
Achnanthes silvahercynia prism on elliptic base 
Amphora aequalis half elliptic prism 
Amphora fogediana half elliptic prism 
Amphora inariensis half elliptic prism 
Amphora libyca half elliptic prism 
Amphora pediculus half elliptic prism 
Ampipleura pellucida prism on elliptic base 
Ampipleura rutilans prism on elliptic base 
Asterionella formosa box 
Aulacoseira granulata cylinder 
Caloneis bacillum prism on elliptic base 
Cocconeis disculus prism on elliptic base 
Cocconeis neodiminuta prism on elliptic base 
Cocconeis neothumensis prism on elliptic base 
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Cocconeis pediculus prism on elliptic base 
Cocconeis placentula prism on elliptic base 
Cocconeis psedothumensis prism on elliptic base 
Cocconeis scutellum  prism on elliptic base 
Cyclostephanos sp1 cylinder 
Cyclotella comensis cylinder 
Cyclotella distinguenda cylinder 
Cyclotella meneghiana cylinder 
Cyclotella radiosa cylinder 
Cyclotella sp cylinder 
Cymbella affinis half elliptic prism 
Cymbella caespitosa half elliptic prism 
Cymbella minuta half elliptic prism 
Cymbella perpusilla half elliptic prism 
Cymbella prostrata half elliptic prism 
Cymbella pusilla half elliptic prism 
Cymbella silesiaca half elliptic prism 
Cymbella sinuata half elliptic prism 
Cymbella sp. half elliptic prism 
Denticula elegans prism on elliptic base 
Denticula kuetzingii prism on elliptic base 
Diatoma hyemalis prism on elliptic base 
Diatoma tenuis prism on elliptic base 
Diatoma vulgaris prism on elliptic base 
Diploneis oblongella prism on elliptic base 
Diploneis oculata prism on elliptic base 
Diploneis sp.  prism on elliptic base 
Ellerbeckia arenaria cylinder 
Entomoneis paludosa prism on elliptic base 
Eunotia bilunaris half elliptic prism 
Eunotia intermedia half elliptic prism 
Fragilaria capucina undiff. prism on elliptic base 
Fragilaria exigua prism on elliptic base 
Fragilaria fasciculata prism on elliptic base 
Fragilaria virescens prism on elliptic base 
Frustulia rhomboide prism on elliptic base 
Gomphonema acuminatum prism on elliptic base 
Gomphonema agur prism on elliptic base 
Gomphonema angustatum prism on elliptic base 
Gomphonema angustum prism on elliptic base 
Gomphonema aquemineralis prism on elliptic base 
Gomphonema clavatum prism on elliptic base 
Gomphonema gracile prism on elliptic base 
Gomphonema minutiforme prism on elliptic base 
Gomphonema minutum prism on elliptic base 
Gomphonema olivaceum prism on elliptic base 
Gomphonema parvulum prism on elliptic base 
Gomphonema truncatum prism on elliptic base 
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Gyrosigma acuminatum prism on elliptic base 
Gyrosigma attenuatum prism on elliptic base 
Gyrosigma nodiferum prism on elliptic base 
Gyrosigma scalproides prism on elliptic base 
Melosira lineata cylinder 
Melosira varians cylinder 
Meridion circulare prism on elliptic base 
Navicula aboensis prism on elliptic base 
Navicula atomus prism on elliptic base 
Navicula capitata var hungarica prism on elliptic base 
Navicula capitatoradiata prism on elliptic base 
Navicula cari prism on elliptic base 
Navicula caterva prism on elliptic base 
Navicula cf. densolineolata prism on elliptic base 
Navicula cincta prism on elliptic base 
Navicula clementis prism on elliptic base 
Navicula cryptocephala prism on elliptic base 
Navicula cryptotenella prism on elliptic base 
Navicula digitulus prism on elliptic base 
Navicula festiva prism on elliptic base 
Navicula gastrum prism on elliptic base 
Navicula goeppertiana prism on elliptic base 
Navicula gregoria prism on elliptic base 
Navicula halophila prism on elliptic base 
Navicula halophiloides.x. 

minuscula prism on elliptic base 
Navicula helensis prism on elliptic base 
Navicula ignota prism on elliptic base 
Navicula lanceolata prism on elliptic base 
Navicula lenzii prism on elliptic base 
Navicula luciadula prism on elliptic base 
Navicula margalithii prism on elliptic base 
Navicula menisculus prism on elliptic base 
Navicula minima prism on elliptic base 
Navicula phyllepta prism on elliptic base 
Navicula pupula prism on elliptic base 
Navicula pupula var mutata prism on elliptic base 
Navicula pygmaea prism on elliptic base 
Navicula radiosa prism on elliptic base 
Navicula recens prism on elliptic base 
Navicula reinhardtii prism on elliptic base 
Navicula schoenfeldii prism on elliptic base 
Navicula seminulum prism on elliptic base 
Navicula soehrensis var musciola prism on elliptic base 
Navicula spledicula prism on elliptic base 
Navicula striolata prism on elliptic base 
Navicula sublucidula prism on elliptic base 
Navicula subminuscula prism on elliptic base 
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Navicula subrotunda prism on elliptic base 
Navicula tripunctata prism on elliptic base 
Navicula trivialis prism on elliptic base 
Navicula veneta prism on elliptic base 
Nitzschia acicularis prism on elliptic base 
Nitzschia agnita prism on elliptic base 
Nitzschia angustatula prism on elliptic base 
Nitzschia capitellata prism on elliptic base 
Nitzschia dissipata prism on elliptic base 
Nitzschia dubia prism on elliptic base 
Nitzschia flexa prism on elliptic base 
Nitzschia fonticola prism on elliptic base 
Nitzschia frustulum prism on elliptic base 
Nitzschia heufleriana prism on elliptic base 
Nitzschia intermedia prism on elliptic base 
Nitzschia linearis prism on elliptic base 
Nitzschia palea prism on elliptic base 
Nitzschia perminuta prism on elliptic base 
Nitzschia recta prism on elliptic base 
Nitzschia wuellerstorfi prism on elliptic base 
Opephora olsenii prism on elliptic base 
Pinnularia acoricola prism on elliptic base 
Pinnularia appendiculata prism on elliptic base 
Pinnularia lagerstedtii prism on elliptic base 
Pleurosigma attenuatum prism on parallelogram base 
Pseudostaurosira brevistriata prism on elliptic base 
Rhoicosphenia abbreviata prism on elliptic base 
Stauroneis smithii prism on elliptic base 
Staurosira construens prism on elliptic base 
Staurosira elliptica prism on elliptic base 
Staurosirella leptostauron prism on elliptic base 
Staurosirella leptostauron var. 

leptostauron prism on elliptic base 
Staurosirella pinnata prism on elliptic base 
Stephanodiscus hantzschii cylinder 
Stephanodiscus parvus cylinder 
Surirella angusta prism on elliptic base 
Surirella brebissonii prism on elliptic base 
Synedra ulna prism on elliptic base 
Tabellaria flocculosa box 
Tryblionella constricta prism on elliptic base 
Tryblionella levidensis prism on elliptic base 
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Trivariate analysis 

Trophic links from the literature (Table S4) were then assigned on the basis of this generality. 

For instance if the node Agapetus fuscipes was assigned the level ‘genus’ all trophic 

interaction involving the genus Agapetus would be assigned to Agapetus fuscipes. The 5 

assignment of pre-determined generality removes bias and allows this method to be 

reproduced exactly. The level of generality assigned to each node is given in Table 5. 

Examples of trivariate analysis are provided in the R package Cheddar (Hudson et al. 2012).  

 

Table S4. Sources of feeding interactions from the primary literature 

Source System Place 

Gilliam et al (2011) freshwater stream UK 
Layer et al.  (2010) freshwater stream UK 
Ledger et al. (2013) experimental freshwater channels UK 
Brose et al. (2005) freshwater lake USA 
Warren (1989) experimental freshwater stream UK 
Becker  (1990) freshwater pond UK 
Jones et al. (1951)  freshwater stream Europe 
Northcott (1981) freshwater river UK 
Hynes (1950) freshwater lake UK 
Moore & Potter (1976) laboratory experimental freshwater UK 
Iversen (1988) freshwater stream UK 
Spänhoff et al. (2003) freshwater stream UK 
Thomas (1962) laboratory experimental freshwater UK 
Slack (1936) freshwater stream Europe 
Clitherow et al. (2013)  freshwater stream Europe 
Maitland (1965) freshwater river UK 
Lancaster et al. (2005)  freshwater river UK 
Rowan Dunn (1954) freshwater river Europe 
Radforth (1940) freshwater river UK 
Woodward et al. (2008) freshwater stream UK 
Woodward et al. (2005)  freshwater lake UK 
Woodward unpublished freshwater river UK 
Badcock (1949) freshwater stream UK 
Mackereth (1957) freshwater unknown 
Cook (1979) freshwater stream UK 
Perkins unpublished freshwater stream UK 
Townsend & Hildrew 
(1979) 

freshwater river UK 
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Tikkanen et al. (1997)  freshwater lake UK 
Harper-Smith et al. (2005)  freshwater stream UK 
Englund (2005) freshwater stream UK 
N. Dewhurst & G. 
Woodward unpublished data 

freshwater lake Europe 

Young & Procter (1986) freshwater lake USA 
Mann & Blackburn (1991) freshwater stream UK 
Warren, unpublished experimental freshwater stream Europe 
Friday (Friday 1988) freshwater lake UK 
Gee & Young (1993)  freshwater stream UK 
Elliott et al. (1988) freshwater lake UK 
Fox (1978) freshwater UK 
Harrison et al. (2005) freshwater UK 
Hall et al. (2000)  freshwater stream UK 
Armitage & Young (1990) freshwater stream USA 

 

 

Table S5. The taxonomic resolution (i.e. generality) assigned to each node in the networks to 

create links between nodes. 

node resolution 

Achnanthes clevei genus 
Achnanthes conspicua genus 
Achnanthes helvetica genus 
Achnanthes hungarica genus 
Achnanthes lanceolata genus 
Achnanthes lanceolata abbreviata genus 
Achnanthes lanceolata bimaculata genus 
Achnanthes lanceolata lanceolata genus 
Achnanthes lanceolata rostrata genus 
Achnanthes minutissima genus 
Achnanthidium minutissimum genus 
Agapetus fuscipes genus 
Alboglossiphonia heteroclita family 
Amphipoda exact 
Amphora aequalis genus 
Amphora inariensis genus 
Amphora ovalis genus 
Amphora pediculus genus 
Amphora veneta genus 
Ancylus fluviatilis family 
Asellus aquaticus family 
Athripsodes family 
Baetis genus 
Baetis rhodani genus 
Baetis scambus genus 
Baetis vernus genus 
Bezzia family 
Caenis rivulorum genus 
Caenis robusta genus 
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Centroptilum luteolum genus 
Chironomidae family 
Cloeon simile genus 
Cocconeis pediculus genus 
Cocconeis placentula genus 
Cocconeis pseudothumensis genus 
Coleoptera exact 
Cottus gobio genus 
Cyclotella genus 
Cyclotella meneghiniana genus 
Cyclotella radiosa genus 
Cymatopleura elliptica genus 
Cymatopleura solea genus 
Cymbella genus 
Cymbella cistula genus 
Cymbella proxima genus 
Dystiscidae family 
Dendrocoelum lacteum family 
Diatoma vulgaris genus 
Dicranota genus 
Diploneis oblongella genus 
Diploneis parma genus 
Diptera exact 
Drusus annulatus genus 
Elmis aenea genus 
Eloeophila family 
Encyonema silesiacum genus 
Ephemeroptera exact 
Erpobdella octoculata genus 
Fragilaria genus 
Fragilaria bidens genus 
Fragilaria capucina genus 
Fragilaria capucina gracilis genus 
Fragilaria capucina radians genus 
Fragilaria capucina rumpens genus 
Fragilaria construens venter genus 
Fragilaria elliptica genus 
Fragilaria leptostauron genus 
Fragilaria nitzschioides genus 
Fragilaria ulna genus 
Fragilaria vaucheriae genus 
Fragilariforma virescens genus 
Gammarus pulex family 
Gasterosteus aculeatus genus 
Glossiphonia complanata family 
Gomphonema genus 
Gomphonema angustum genus 
Gomphonema augur genus 
Gomphonema clavatum genus 
Gomphonema olivaceum genus 
Gomphonema parvulum genus 
Gyrosigma acuminata genus 
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Gyrosigma attenuatum genus 
Hantzschia amphioxys genus 
Helobdella stagnalis family 
Hemerodromia family 
Hydracarina family 
Hydraenidae genus 
Hydropsyche siltalai genus 
Hydroptila genus 
Hydroptilidae family 
Hygrobia hermanni genus 
Ilybius genus 
Lampetra planeri genus 
Lepidostoma hirtum genus 
Leuctra genus 
Leuctra hippopus genus 
Leuctra inermis genus 
Limnephilidae family 
Limnephilus lunatus genus 
Limnius genus 
Earthworm exact 
Melosira varians genus 
Meridion circulare genus 
Navicula genus 
Navicula atomus genus 
Navicula bacillum genus 
Navicula cincta genus 
Navicula cryptonella genus 
Navicula exilis genus 
Navicula ignota genus 
Navicula lanceolata genus 
Navicula margalithii genus 
Navicula minima genus 
Navicula seminulum genus 
Navicula slesvicensis genus 
Neidium dubium genus 
Niphargus aquilex family 
Nitzschia genus 
Nitzschia amphibia genus 
Nitzschia capitellata genus 
Nitzschia dissipata genus 
Nitzschia fonticola genus 
Nitzschia frustulum genus 
Nitzschia heufleriana genus 
Nitzschia linearis genus 
Nitzschia palea genus 
Nitzschia recta genus 
Nitzschia sigmoidea genus 
Nitzschia sublinearis genus 
Oecetis family 
Oligochaeta genus 
Oreodytes sanmarkii genus 
Oulimnius tuberculatus genus 
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Oxycera family 
Paraleptophlebia submarginata genus 
Phoxinus phoxinus genus 
Pinnularia genus 
Piscicola geometra family 
Pisidium genus 
Planaria torva family 
Planorbis family 
Polycelis tenuis family 
Potamophylax latipennis genus 
Proasellus meridianus family 
Procloeon pennulatum family 
Psammodictyon constrictum genus 
Pseudostaurosira brevistriata genus 
Psychoda family 
Pungitius pungitius genus 
Rhoicosphenia abbreviata genus 
Rhyacophila dorsalis genus 
Salmo trutta genus 
Scirtidae family 
Serratella ignita genus 
Silo nigricornis genus 
Simulium genus 
Simulium vernum genus 
Stauroneis genus 
Stauroneis smithii genus 
Staurosira construens genus 
Staurosira elliptica genus 
Staurosira pinnata genus 
Staurosirella lapponica genus 
Staurosirella leptostauron genus 
Staurosirella pinnata genus 
Surirella brebissonii genus 
Surirella capronii genus 
Synedra genus 
Synedra parasitica genus 
Synedra ulna ulna genus 
Tanypodinae family 
Thymallus thymallus family 
Tipula genus 
Trichoptera exact 
Undiff. centric diatom exact 
CPOM exact 
FPOM exact 

 

Leaf litter decomposition 

Leaf breakdown rates were expressed as the exponential decay rate coefficient, k (after 
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Woodward et al. 2012) equation S3: 

 

mt/m0 = e-kt  

 

where m0 is the initial dry weight and mt is the dry weight at time t. 5 
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Summary 

1. Pesticides can have profoundly strong deleterious impacts in fresh waters, but 

understanding how these effects cascade through natural ecosystems, from microbes to apex 

predators, is limited because research that spans multiple organisational levels of biological 

organisation is rare. 

2. We report how an accidental insecticide spill in the River Kennet, UK, altered the structure 

and functioning of a river across different levels rangingorganisational levels, from genes to 

ecosystems. We quantified the impacts on assemblages of microbes, diatoms, invert 

macroinvertebrates and fish and measured leaf-litter decomposition rates and microbial 

functional potential at upstream control and downstream impacted sites two months after the 

spill.  

3. Both direct and indirect impacts were evident across multiple levels of organisation and 

taxa, from the base of the food web to the higher trophic levels. At the molecular level, the 

abundance of bacterial functional genes associated with degrading organophosphates and 

ammonia oxidation were higher in the polluted sites. These differences in functional gene 

abundance within the impacted sites reflected a combination of direct and indirect effects of 

the pesticide, via elevated microbial populations capable of utilising chlorpyrifos as a 

resource (i.e. direct effect) and oxidising ammonia released by decaying macroinvertebrate 

carcasses (i.e. indirect effect). the processing of the pesticide and substrates from organic the 

breakdown of animal carcases, respectively.  

4. At the base of the autochthonous-based food chains, diatom taxa found only in the 

impacted sites were an order-of-magnitude larger in cell-size than the largest comparable taxa 

in the control communities, following the near-extirpation of their consumers. In the detrital-

based food chains, pPopulation bPopulation bBiomass of the key invertebrate detritivore 

(Gammarus pulex) decreased were was markedly lower, with as was the rate ofresultant 
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drops in litter decomposition rates in the impacted sites. This was partially compensated for, 

however, by increased elevated microbial-driven breakdown, again suggesting another 

unexpected indirect food- web effect of the toxic spill.  

5. Although many species exhibited severe population crashes or local extirpation, total 

macroinvertebrate biomass and abundance were largely unaffected due to a compensatory 

increases ofelevation in small r-selected and less pesticide-sensitivetolerant taxa such as non-

arthropods (e.g. oligochaetes), and/or thosetaxa which were inwith  their a terrestrial n adult 

terrestrial aerial life-stage at the time of the spill (e.g. chironomids) life-stage that enabled 

them tomeaning they avoided contact with the polluted waters in the immediate aftermath of 

the spill (e.g. chironomids)and were therefore able to repopulate quickly. Mass-abundance 

scaling of trophic links between consumers and resources revealed extensive restructuring 

within the food web. 

6. This case study shows that pesticides can affect both food- web structure and ecosystem 

functioning, both directly and indirectly across multiple levels of biological organisation. It 

also demonstrates how such an integrated assessment approach, as adopted here, can 

elucidate these links between micro-biota, macroinvertebrates and fish, for instances, thus 

improving our understanding of the true spectrumrange of biological consequences of 

chemical contamination in natural ecosystems. 

 

Introduction 

Most lowland rivers in EuropeFreshwaters  are exposed to multiplea cocktail of pesticides 

and other toxic chemicals at local to the global scales (Schinegger et al. 2011; Beketov et al. 

2013; Stehle & Schulz 2015)(Schinegger et al. 2011; Beketov et al. 2013). Controlled 

eEcotoxicological experiments in the laboratory have revealed with great accuracy and 
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precision how these can affect the survival of target species (e.g. G. pulex; Xuereb et al. 

2007)(e.g. Gammarus pulex; Xuereb et al. 2007) with great accuracy and precision in the 

laboratory (e.g. G. pulex; Xuereb et al. 2007), and community- and ecosystem-level 

responses have been demonstrated in experimental micro- and mesocosms experiments (e.g. 

Van den Brink et al. 1995; Van Wijngaarden et al. 1996; Traas et al. 2004; Halstead et al. 

2014)(e.g. Van den Brink et al. 1995; Van Wijngaarden et al. 1996; Traas et al. 2004; 

Halstead et al. 2014) and field surveys (Chung, Wallace & Grubaugh 1993; Triebskorn et al. 

2003; Malaj et al. 2014). In the last decade, new indices of community response have been 

proposed specifically to detect pesticide pollution (e.g. Liess & Ohe 2005; Schäfer et al. 

2007; Liess, Schäfer & Schriever 2008)(e.g. Liess & Ohe 2005; Schäfer et al. 2007; Liess, 

Schäfer & Schriever 2008) and to link community change to toxicants in the field data (e.g. 

Kefford et al. 2010)(e.g. Kefford et al. 2010).  

Despite these advances, a mechanistic understanding of both the toxic effects of pesticides 

(i.e. direct) and those mediated via the food web (i.e. indirect) across multiple organisational 

levels of biological organisation (i.e., from genes to ecosystems) is still limited in natural 

settings (Kohler & Triebskorn 2013). This ismightis likely be because there are relatively few 

opportunities to understand how pesticides affect whole rivers or lakes, due to the inherent 

logistical, ethical, and legalislative difficulties in conducting such a study in a controlled 

manner. Here, we aim to move towards addressing this research gap by quantifying the gene-

to-ecosystem consequences of a major pesticide spill that caused widespread kills of invert 

macroinvertebrates over 15 km of thein a large lowland rRiver Kennet, a lowland chalk river, 

in the UK, by combining citizen science biomonitoring data with a comprehensive suite of 

more novelnon-traditional measures of ecosystem impact.  

Citizen science Iinvertebrate data were collected by citizen scientists prior to, during and after 

the spill enabling before-after-control-impact (BACI) assessment. These data helped enabled 

the UK Environment Agency to identify chlorpyrifos as the cause of the catastrophic 
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mortality following the spill.- Chlorpyrifos is a widely used organophosphate pesticide 

(insecticide and acaricide)  which attacks insect (and arachnid) nervous systems and is can 

also be also toxic to fishes and humans - as the cause of the catastrophicinvertebrate mortality 

event.   

Since insects are core intermediate species in almost all loticstream food chainswebs, 

perturbations to their populations have the potential to ripple through the entire food web, as 

bottom-up effects on the fish assemblage and top-down effects on the microbial communities 

that drive a range of detrital processing  and biogeochemical cyclesand biogeochemical 

processes, such as the nitrogen cycle. Specifically, chlorpyrifos can affect microbial, invert 

macroinvertebrate and fish populations, both directly and indirectly (see reviews by Barron & 

Woodburn 1995; Brock, Lahr & Van den Brink 2000; Giddings et al. 2014)(Raven & George 

1989; Barron & Woodburn 1995; Van den Brink et al. 1995; 1996; Van Wijngaarden et al. 

1996; also see reviews by Brock, Lahr & Van den Brink 2000; Giddings et al. 2014), food- 

web structure (Traas et al. 2004) and can suppress invert macroinvertebrate-mediated detrital 

processing rateslitter breakdown (Maltby & Hills 2008). Placing the potentially subtle effects 

of pesticides within a coherent multilevel framework requires a combination of structural and 

functional measures from the microbial community at the base of the food web to apex 

predators. This has been partially achieved in some studies using mesocosms (e.g. Van den 

Brink et al. 1995; Van Wijngaarden et al. 1996; Kersting & Van den Brink 1997; Halstead et 

al. 2014), for instance, but rarely in natural settings (Kohler & Triebskorn 2013), and never in 

a manner that simultaneously captures molecular-level responses through to the full 

complexity of the food web in the same system.  

Here wWe present new data thato reveal how chlorpyrifos affected the structure and 

functioning of the wholeriver food web, based onusing several complementary approaches.  

including First, wWe used changes in the abundance of microbial populations based on 

specific functional gene loci to reveal how the genes or metabolic pathways of microbial 
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communities are affected by the pesticide. Specifically, we investigated increases in the 

abundance of targeted functional genes, those responsible for the degradation of 

chlorpyrifos(Kwak et al. 2012), for example, measures of associated with organophosphate 

degradation and ammonia oxidisation which would suggest that microbes are both using 

chlorpyrifos as a resource (i.e. directly) and decomposing carcasses (i.e. indirectly), 

respectively. We measured microbial and macroinvertebrate activity across a range of 

substrates to provide a rapid assessment of the functional potential of a community thus 

further enhancing our understanding of the relationship between structure and function within 

the microbial portion of the food web. We also measure alterations in resource use ecosystem 

processes, in particular focusing on how the loss of keystone species, such as thea dominant 

detritivore, Gammarus pulex, could have a range of subtle yet potentially powerful indirect 

consequences. In addition, we useand “trivariate analysis” (sensu Cohen et al. 2009) to 

measure higher-level food-web responses, including changes in the size -structure and 

architecture of the food web.  

To our knowledge, tThis study providescovers the most comprehensive collection of 

measures across multiple levels of organisation (genes, species, and higher-level measures) to 

be applied following a pesticide spill. Consequently, it provides a vital bridge between field 

and laboratory-based findings and highlights the advantages of using a holistic approach to 

understand chemical stressor impacts in natural ecosystems. This collection of measures has 

enabled us to test the following hypotheses:  

We test the following hypotheses: 

1.  Microbial structure and function: tThe structure (assessed using the abundance of 

functional gene loci) and functional capacity of the microbial assemblage will change 

due to direct effects (i.e. the  pesticide provides an novel additional substrate) and 

indirect effects (i.e. increased organic substrates are derived from decaying invert 
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macroinvertebrates) of the pesticide.  

2. Community composition: cCompensatory mechanisms will be evident in the food 

web in the immediate aftermath of the spill, with less pesticide-sensitive, small, 

opportunistic, vagile, and more r-selectedfast-growing taxa (e.g. chironomids) 

initially increasing higher in abundance and/or biomass in the absence of larger, more 

K-selectedslow-growing taxa (e.g. Gammarus pulex), relative to control communities. 

3. Ecosystem function: lLeaf litter decomposition ratesbreakdown will be impaired by 

the loss of keystone detritivoreous invertebrates from the food web, with microbial 

activity hence accounting for a greater proportion of total litter breakdown. 

4. Trivariate analysis: The food web will undergo extensive restructuring, particularly in 

terms of altered mass-abundance scaling relationships of the links between nodes. 

Local extirpations of intermediate species (e.g. herbivorous insects) will release basal 

species under top-down control (e.g. benthic algae) while suppressing bottom-up 

fluxes to the higher trophic levels (e.g. fishes). 

 

Methods 

Study site 

The River Kennet is designated as a Site of Special Scientific Interest (SSSI) and is a lowland 

chalk tributary (catchment area 1200 km2) of the River Thames in southernSouth. England, 

designated as a UK Site of Special Scientific Interest (SSSI). The river is groundwater- 

dominated, has base-richhard water (mean annual pH 7.64) and is nutrient-rich (Fig.ure 1;   

Comment [MOG11]: This could not be tested 2 months after the spill, could it? Please clarify/amend. 

Formatted: Indent: First line:  0"

Comment [MOG12]: Can you give alkalinity and conductivity as well in Table 1? 

Page 66 of 105Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review
Table 1Table 1 (Fig. 1; Table 1))., with aIts diverse flora and fauna is dominated by 

Gammaridae, Baetidae, Ephemerellidae, Simuliidae, and Chironomidae, which support an 

economically important sSalmonidae sportsgame fishery (Wright et al. 2002; 2004).  

On 1 July 1st 2013, following their routine biomonitoring, the a citizen-science group (Action 

for the River Kennet, (ARK) reported a large-scale invert macroinvertebrate kill along a 15-

km stretch of the river. On 25 July 5th 2013, an Environment Agency pollution incident team 

collected the first samples for, and detected, the organophosphate chlorpyrifos. This 

insecticide attacks the nervous system of insects by inhibiting acetylcholinesterase, and can 

be toxic to fish and meiofauna  (Carr, Ho & Chambers 1997; DeLorenzo, Scott & Ross 

1999). A cConcentrations of of 0.52- 0.82µg L-l wereas recorded coming from the main 

tertiary sewage treatment works in Marlborough, Wiltshire, on 25 and 5 July, respectively 5th 

(Fig.ure 1), likely probably resulting from a “down- the- drain” incident. Although tThe peak 

concentration was most likelyprobablylikely missed by the sampling team, but even theis 

measured concentration is sufficient to be acutely toxic to arthropods (Giddings et al. 

2014)(Raven & George 1989; Giddings et al. 2014), particularly over extended periods (i.e. 

>24 hours; Rubach, Crum & Van den Brink 2011). Chlorpyrifos was also detected at 

concentrations between 0.06-0.07-0.06 µg L-l in repeat measures collected across the 

impacted study site on 5 July 5th. However, bBy 9 July 9th 2013 the pesticide was 

undetectable, indicating that this was a single pulse was received and that remained in the 

water column for just a few days.  

 

Contribution of citizen scientists  

Citizen scientists from ARK werehave been trained by the Riverfly Partnership toin the 

collection and identifyication of aquatic macroinvertebrates and had. They hadve collected 

data for multiple sites for several years prior to and following the spill (Fig.ure S1).: Dduring 
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the current study, they collected one monthly kick sample (3-minutes duration) using a 

standard hand net (1mm mesh), using following the Riverfly Monitoring Initiativeir standard 

protocol (http://www.riverflies.org), from an upstream control and downstream impacted site 

which complemented our own more intensive sampling (Fig.ure 1). A standard hand net (1-

mm mesh) was used following the Riverfly Monitoring Initiative standard protocol 

(http://www.riverflies.org). The invert macroinvertebrates collected were identified live on 

the bank, without magnification, and abundance ranked per sample as: 0 = 0 individuals; 1-9 

= 1; 10-99 = 2; 100-1000 = 3; >1000 = 4, for eight key groups: 1. cCased Trichoptera; 2. 

caseless Trichoptera; 3. Ephemeridae; 4. Ephemerellidae; 5. Heptageniidae; 6. Baetidae; 7. 

Plectoptera; 8. Gammaridae, which were summed to give a total score based on the number 

and diversity of the target taxa. These data provide a critical BACI element to the study, 

enabling us to track the impact of the spill through both space and time. 

Mean annual water chemistry data were obtained for Environment Agency monitoring 

stations located 2.3 km above upstream and 2.7 km below downstream from the spill and 

were similar in the two treatmentsacross the study site (Table 1)(  
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Table 1Table 1). These water chemistry data, combined with the ARK invertebrate 

monitoring data of macroinvertebrates, showed indicate that there was no evidence of organic 

pollution from the sewage treatment works, indicating and that this could therefore not be 

ascribedsewage was an unlikely the cause of the invert macroinvertebrate mortality event 

(Fig.ure S1).  

 

Sampling protocol 

We began Comprehensivelarge-scale biological sampling began in September 2013, as soon 

as possible as soon as was feasible after the chlorpyrifos spill washad been identified as the 

causal agent, using an experimental design comprising three upstream control and three 

downstream impacted reaches, each 50 m longin length, along a ca. 6 km river stretch 

(Fig.ure 1). Sites were c. approximately 1 km apart, with similar channel forms and riparian 

surroundings. HIn this studyere we present data from two control and two impacted reaches 

(Fig.ure 1) for a suite of structural and functional biotic measuresindicators to test the novela 

multilevel bioassessment approach. Depletion electrofishing, three Surber samples, a stone 

scrape and Tthree sediment samples, a stone scrape, three Surber samples and depletion 

electrofishing were used to characterise fish, invertebrates, diatoms and microbial, diatom, 

macroinvertebrate and fish structural attributes, respectively. At each site, ten 10 coarse 

(10mm) and ten fine- mesh (0.5mm) and 10 coarse-mesh (10mm) leaf- litter bags were used 

to assess determine rates of community and microbial decomposition driven by microbes 

alone or by whole communitiesrates  (Woodward et al. 2012)(after Woodward et al. 2012b). 

A andIn addition, a sample of river water was collected and then incubated over with a range 

of substrates to measure assess microbial functional capacity.   
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Microbial functional gene abundance 

We used quantitative PCR (qPCR) to examine gene abundance for microbial functional and 

taxonomic marker genes. 16S rRNA gene abundance was used as a proxy for total bacterial 

abundance. Direct effects of the chlorpyrifos spill were examined using the organophosphate 

hydrolase gene (opd), which is responsible for the degradation of chlorpyrifos by bacteria; 

and bacterial populations containing this gene have previously been demonstrated to increase 

in abundance inat sites impacted by organophosphate impacted sites (Kwak et al. 2012). 

Indirect effects were examined by quantifying the abundance of N-cycling genes coding for 

enzymes involved in N-cycling: (nitrite reductase, (nirS;) and ammonia monoxygenase, 

(amoA ) from ammonia-oxidising archaea (AOA) and bacteria (AOB)) as these are most 

likely to reflect decomposition of dead arthropods in impacted sites. We hypothesised that 

decomposition of dead arthropods would result in an increased input of NH4
+ from 

ammonification of organic N. We focused on nirS and amoA genes as both nitrification and 

denitrification pathways are important in removing N from systems and can be coupled when 

denitrifiers reduce the NO3- produced by the nitrifiers that oxidised NH4
+. By focusing on 

functions of a range of functional populations, a change across all populations combined 

provides an indicator for community-level effects of chlorpyrifos on river microbes. Full 

details of DNA isolation, primer details and qPCR cycling conditions are available in the 

Microbial Ffunctional Ggene Aabundance section in the Ssupplementary Mmaterial. 

 

Microbial functional potential 

Open- water samples were collected from each site and returned to the laboratory in an ice-

chilled cooler. Samples were allowed to settle (>10 min), after which a subsample of 100- 

µLl-1 was aliquoted was pipetted into each well of a Biolog EcoPlate, which contained an 

individualsingle carbon substrate, including carbohydrates, polymers, fatty acids, and amino 
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acids. Each well also contained the redox dye tetrazolium, which is reduced during microbial 

respiration, resulting in a measurable colour change. Each EcoPlate contains 31 substrates 

plus a no-substrate control in triplicate. Plates were incubated in the dark at 22°C for 5 days, 

after which colour change was quantified by measuring optical density at 600 nm using a 

Biotek HT absorbance reader (Biotek, Swindon, UK). For each EcoPlate, we calculated the 

substrate usage by subtracting the mean of the three no-substrate controls from each 

measurement. Substrate uUsage was ranked across the substrates in each replicate, and the 

ranked optical densities were plotted to visualise broad changes across sites.For each 

EcoPlate, we subtracted the mean of the three no-substrate controls from each measurement. 

Optical density was ranked across the substrates in each replicate, and the ranked optical 

densities were plotted to visualise broad changes across sites. 

 

Population abundance, community structure, and food web size-scaling 

Quantitative depletion electrofishing was undertaken, with population densities estimated 

using the R package FSA (Ogle 2012) and iterative Maximum Weighted Likelihood statistics 

(equation S1 and S2 in Supplementary Material; Carle & Strub 1978)(equations S1 and; S2; 

for additional equations and statistical methods see Carle & Strub 1978). All fishes caught 

were identified to species and measured by fork length. For each species, individual dry mass 

was calculated from length using length-mass regression equations generated from a sub-

sample. Full details of fish dry mass estimation can be found in the Food web  (see equations 

S1 and S2). characterisation section of the Supplementary Material. 

Invertebrates were collected (n = 3 samples per site) using a Surber sampler (0.0625 m2, 335 

µm mesh), preserved in 99.8% ethanol, and later sorted from debris, identified to the highest 

possible taxonomic resolution (usually species), and counted (Table S1). Dry masses of invert 

macroinvertebrates were determined from regressions of linear dimensions (up to 60 
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individuals measured per species) using published equations (see Table S2); a subset of 60 

individuals were measured per species per site, or every individual where abundance was 

below 60. In our analyses wWe distinguished between arthropods (i.e. insect larvae and 

Crustacea) and other taxa (i.e. Tricladida, Annelida and Mollusca) based on their sensitivity 

to chlorpyrifos (Raven & George 1989; Giddings et al. 2014). 

Diatoms were scraped from 8.64 cm2 of the upper surface of one cobble at each site using a 

toothbrush and 3.6 by 2.4 cm photographic slide as a flexible quadrat and toothbrush, 

preserved using Lugol’s iodine, and prepared using standard methods (Battarbee et al. 2001). 

A minimum of 300 diatom valves were identified to species per sample using the keys of 

Krammer & Bertalot (1986), Krammer et al. (1986), Krammer & Lange-Bertalot (1991a 

b)(1991a, b) and abundances per unit area were determined as in Battarbee (1973). Linear 

dimensions were measured to the nearest 1 µm to estimate diatom biovolume (Table S3; 

Hillebrand et al. 1999). The first 30 specimens of all common (n >30) species were measured 

and where species were encountered less frequently, all specimens in the count were 

measured. Carbon content was estimated (Rocha & Duncan 1985) and then converted to dry 

mass (Sicko-Goad, Schelske & Stoermer 1984).as in (Battarbee (1973). Linear dimensions 

were measured to the nearest 1µm to estimate diatom biovolume (Table S3; after Hillebrand 

et al. 1999). The first 30 specimens of all common (n >30) species were measured and where 

species were encountered less frequently, all specimens in the count were measured. Carbon 

content was estimated (after Rocha & Duncan 1985) and then converted to dry mass (after 

Sicko-Goad, Schelske & Stoermer 1984). 

We used these mass-abundance data from across the different taxa and trophic levels to 

construct whole-community 'trivariate food webs' - food webs ordinated by overlaying 

feeding links on the bivariate relationship between species mean body mass and their 

numerical abundance on a double logarithmic scale - We used these mass-abundance data 

from across the different taxa and trophic levels to construct whole-community 'trivariate 
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food webs', which map feeding links onto mass versus numerical (MN) abundance plots to 

understand how chlorpyrifos alters food- web structure and substructure. Deviations in MN 

among species pairwise links can be used to identify alterations to biomass fluxes in the food 

web. For instance, altered consumer-resource feeding “link angles” can reveal rates of change 

in biomass, population production and population consumption between species-pairs, 

through to the food web as a whole (sensu Cohen et al. 2009), and these changes can help us 

to interpret direct and indirect effects of chlorpyrifos.  

Trivariate webs were constructed for all sites. Feeding links were inferred from trophic 

interactions published in the literature  (Table S4). We assumed that if a trophic interaction 

between two species has been observedreported in the literature and those same species 

arewere present at one of our sites, then that trophic interaction is also presentoccurred, as has 

been validated in other running waterstream food webs (Layer et al. 2010; Layer, Hildrew & 

Woodward 2013).(Layer et al. 2010; 2013). In a few instances, feeding links were assigned 

on the basis of taxonomic similarity. For example, if a link had been established from the 

literature for at least one congener it was assumed that different species within the same 

genus fed upon the same resources and were consumed by the same consumers. In some 

instances Iit was necessary to extend this assumption to the family level in some instances 

where information in the primary literature was scarce (Table S5). This minimises bias 

between nodes where the quantity of directly observed information varies and allows the 

method to be reproduced exactly  (Gray et al. 2014)(Gray et al. 2014).  

 

Ecosystem functioning: leaf-litter decomposition 

At each site, the decomposition rate of leaf-litter was determined from leaf-packs containing 

3.0 g (±0.3 g SD) black alder (Alnus glutinosa (L.) Gaertn.) incubated in the river for 9 days. 

Coarse (150 mm by 100 mm, 10mm mesh) and fine (150 mm by 100 mm, 500 µm mesh) 
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mesh-aperture bags were used to determine the fraction of decomposition contributed by 

microbes (mass loss from fine mesh bags) and invert macroinvertebrates (difference in mass 

loss from coarse and fine mesh bags). Leaf breakdown rates were expressed as the 

exponential decay rate coefficient, k (see equation S3; Woodward et al. 2012).(see equation 

S3; after Woodward et al. 2012). 

 

Data analysis 

Trivariate statistics were calculated using the method of Cohen et al (2009) in the R package 

Cheddar (Hudson et al. 2012). We used link angles to estimate changes in potential biomass 

flux between a resource and its consumer. In summary, a link can be viewed as a vector from 

a resource to its consumer and, considering that invert macroinvertebrate taxa abundance 

and/or mass is predicted to decrease withinat impacted sites, a change in the angle of invert 

macroinvertebrate upper- and lower-links would indicate a potential change in biomass flux 

(Fig.ure 2). 

Linear mixed effect models (LMM) were used to test for differences in mean annual water 

quality, with treatment and date as fixed and random termsfactors, respectively (Results are 

presented in supplementary material). Differences in our biotic response variables (link 

angles, species and community abundance and/or biomass, gene abundances and microbial 

capacity) between treatments control and impacted sites (i.e. condition) were tested using 

LMM with site and treatment condition as random and fixed factors, respectively. Where 

necessary a variance structure was used to account for unequal variance between sites in 

order to meet model assumptions (after Zuur et al. 2009). If data were not normally 

distributed they were Log10 transformed to meet the assumptions of the test. All LMM were 

performed using the nlme package in R (Pinheiro et al. 2011) and estimates were made using 

restricted maximum likelihood or, when testing for differences in group means (e.g. invert 
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macroinvertebrate communities within and between treatments), using general linear 

hypotheses tests in the R package multcomp (Hothorn et al. 2014). 

 

Results 

ARK aquaticMacro invertebrate monitoring by citizen scientists 

Over six months wWithin control sites, G. pulex had the highest relative abundance 

compared to other taxa sampled by ARK citizen scientists (61%), followed by Baetidae 

(17%), Ephemerellidae (12%), cased Trichoptera (9%) and Plecoptera (1%). The pre-impact 

“riverfly”macroinvertebrate assemblage within the impacted site in the three months prior to 

the spill was similar but following the spill on July 1st 2013, there was a 99.5% reduction in 

total abundance relative to data from the previous month (Fig.ure 3). By September, the time 

of our sampling date, total abundance had increased again, but was dominated by 

Ephemeroptera instead of G. pulex, the latter being the slowest taxa to recover, as recorded 

by the citizen scientists to recoverwith the latter being among the slowest of the four 

“riverfly” taxa to recover.   

 

Microbial functional gene abundance and functional potential 

Based on aAnalyses of gene abundances revealed that, Within the microbial community, 

populations of ammonia oxidisers (amoA), particularly AOBs, increased were by up to 3,20-

fold higher174% (Fig.ure 4.1c; t2 = 4.99; p = 0.03), after the chlorpyrifos spill, and 

populations capable of usingutilising organophosphate (oph) as a resource degraders 

increasedwere by up to 7-fold24%  higher(Fig.ure 4.1e; t2 = 6.14; p = 0.02), in impacted sites 

compared with control sites (Fig. 4a; t2 = 6.14; p = 0.02). The large iIncreaseelevations in 
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populationsthe abundance of ammonia oxidisers and organophosphate degradersboththese 

groupspopulations revealsuggests both direct (i.e. microbes utilised the insecticide as a 

resource) and indirect effects (i.e. microbes utilised ammonia fromreleased by decaying 

invert macroinvertebrates) of chlorpyrifos. However, there was no significant change 

difference in the total population abundance of bacteria (Fig.ure 4.1a), nor of populationsthe 

abundance of nitrite reducers (Fig.ure 4.1b) or ammonia- oxidising archaeaAOAs (Fig.ure 

4a.1d).  

The functional microbial assays showed impacted sites had higher overall substrate usage and 

a shallower rank abundance curve, indicating substantial functional changes in response to 

the spill. Mean overall carbon usage ofin the impacted sites differed from that inwas higher 

than the control sites (Fig.ure 4b.2; t2 = 4.2, p = 0.05), with lower mean substrate usage in the 

latter). Differences among control and impacted sites suggested elevated rates of substrate 

usage of simple carbohydrates (e.g. glucose-1-phosphate, t2 = 4.4, p = 0.05;, αalpha-D-

lactose, t2 = 7.7, p = 0.02) and amino acids in the impacted sites, with little difference in the 

usage of the more complex polymers (e.g. Tween 40).  

 

Macroinvertebrate cCommunity compositionstructure and ecosystem functioning 

Overall Total macroinvertebrate biomass  and abundance did not significantly differ 

significantly between the control and impacted sites (t2 = -1.43; p = 0.29; t2 = -2.11; p = 

0.17). However, tThe biomass of less pesticide-sensitive macroinvertebrate taxa considered 

less sensitive to pesticides was 97.2% lower than that of the sensitive arthropodsarthropod 

taxa within control sites (Table 2). Furthermore, However, total arthropod biomass was 

92.9% lower within impacted sites thanwhen compared to  control arthropod biomass in 

control sites and 80.4% lower thanrelative to biomass of less pesticide-sensitive invertebrate 

taxa within impacted sites (Table 2Table 2; Fig.ure 5). In addition, the biomass of 
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macroinvertebrate taxa considered less sensitive to pesticides was 97.2% lower than that of 

the sensitive arthropods in control sites (Table 2), thus less sensitive taxa the former were 

partly compensating for the loss of arthropodsthe latter within impacted sites.  Within the 

impacted sites there were decreases in G. pulex biomass (99.6%) and abundance (99.2%) and, 

Baetis biomass (18.7%) and abundance (95.6%) were lower (95.6%; Fig.ure 4c.3; 4.4d), but 

increases in chironomid biomass (89.3%) and abundance (92.2%) and oligochaetea biomass 

(85.4%) and abundance (94.5%) was higher in impacted sites compared to control sites 

(94.5%; Table 2; Fig.ure 5). MFish acroinvertebrates diversity was similar across between 

control and impacted sites (t2 = -0.39; p = 0.74Table 3), as was also true for fish diversity the 

invertebrates (Table 3t2 = -0.39; p = 0.74), whereas four taxa of large diatoms taxa 

(Cymatopleura solea, Cymatopleura elliptica, Gyrosigma attenuatum and Surirella caproni) 

were present only in the impacted sites (Fig.ure 4d.4). Microbial mediated decomposition 

was higher, whereas total decomposition mediated by both microbes and detritivores was 

lower, within the impacted sites (Table 2; Fig.ure 4c.3), probably reflecting the decline of the 

detritivore G. pulex and partial compensation by increased microbial activity consumers. 

 

Trivariate analysis 

Arthropod lower-link angles were less negative (i.e. shallower) thanrelative to less pesticide-

sensitive taxa in the control communities, whereas thesebut were more negative (i.e. steeper) 

within the impacted communities (Table 2). This indicates altered mass-abundance scaling 

relationships of the links between nodes as hypothesised (Fig.ure 2)and a potential decrease 

in biomass flux from diatoms to arthropods within the impacted communities (Fig. 2). G. 

pulex and Baetis had the highest biomass and numerical abundance within the control 

macroinvertebrate community, respectively (Figsure 4c.3,; 4d.4), and these species upper-link 

angles (i.e. to their predators) became less negativeshallower at impacted sites (Table 2), thus 
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representingindicating a potential decrease in biomass flux to fishes from both the 

detritivoreal and herbivoreous food chains. To illustrate the direction of biomass flux through 

the network food web and the how one key species is connectioned of a key species to all the 

other taxas via relatively direct and short paths, we have constructed an example food chain 

with G. pulex as the focal species (Fig.ure 6)., whichThis showedhighlights that even in this 

complex food web most species are only 1-2 links from all the others, highlighting the 

potential for perturbations to ripple rapidly through the network even in this complex food 

web. More commonly used wWhole-network metrics, such as the regression slope and 

intercept, showed no clear differences that could be ascribed to the pesticide spill (Table 3).  

These gene-to-ecosystem results provide insights into previously unexpected phenomena, 

such as the increased gene abundance and increased functional capacity of the microbial 

community associated with both direct and indirect impacts of the pesticide, the appearance 

of large diatom taxa under reduced consumer densities, the suppression of ecosystem 

functioning due to the loss of a keystone detritivore and can provide plausible hypotheses for 

further testing. 

 

Discussion 

The documented insecticide spill in the River Kennet affected multiple organisational levels, 

from individual genes, through to food web structure and an ecosystem processes. The 

location of pesticide-sensitive macroinvertebrate consumers relative to their resources in MN 

space shifted markedly, and the collapse in the population biomass of a previously dominant 

keystone detritivore, G. pulex, was especially notable. This was associated withresulted in 

dramatically impaired rates of invertebratedetritivore-mediated litter decomposition, with 

potential repercussions for the higher trophic levels. In this highly interconnected food web 
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(Fig. 6) , most species were separated by just 1-2 links, so perturbations could potentially not 

only easily spread propagate quicklythrough species interactions, but they could also 

dissipate effectivelyrapidly. These small-world properties could confer resilience on the 

system as a whole, as alternative feeding paths provide an abundance of relatively direct 

“short-circuits” in the network food web (Fig.ure 6). Various compensatory mechanisms and 

hystereses within the food web were evident following the spill, including increased elevated 

microbial decocomposer activity in the absence of invert macroinvertebrate detritivores 

(Fig.ure 4c.3) and irruptions and growth of less pesticide-sensitive and r-selected taxa 

capable of exploiting recently vacated nichesnew resources (Fig.ure 5). The functional 

potential of the microbial assemblage in particular increased was higher within the impacted 

sites, as did was the abundance of genes associated with organophosphate degradationuse and 

ammonia oxidation in the aftermath of widespread arthropod deaths (Fig.ure 4.1a; 4.2b).  

Extended temporal sampling will likely reveal if the sewage treatment work is potentially 

confounding our interpretation of this result, although there is no suggestion this is the case, 

as water quality is essentially identical above and below the works (Table 1; Fig. S1).  

It is essentially unknown exactlyMicrobes account for most of a river’s biodiversity, 

drive key ecosystem processes and biogeochemical cyclesMicrobial biodiversity in natural 

ecosystems (Woodward, Gray & Baird 2013), even though these taxa account for most of a 

river’s biodiversity, drives key ecosystem processes and biogeochemical cycles (e.g. nitrogen 

cycle) and both respond to and regulate changesinteracts within higher trophic levels. Our 

qPCR assays revealed that the abundance of genes associated with processingthe turnover of 

organophosphate and ammonia increased was higher in polluted sediment, revealing both 

direct and indirect food-web effects of the spill on , as a small first glimpse into the workings 

of the microbial activities“black box”. 

Strong links between changes in the structure and functioning of the microbial and invert 

macroinvertebrate community were evident, as revealed by the changes in decomposition 
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rates associated with these two major biotic drivers (Gessner & Chauvet 2002; Schäfer et al. 

2007). The microbial community played a key role in maintaining detrital processinglitter 

decomposition following the invert macroinvertebrate lossesextirpation, and microbial 

functional potential assessed by Ecoplate assays was also increased elevated at the impacted 

sites.  The large-scale mortality of invert macroinvertebrates was likely to have released 

resourcesreadily-metabolised substrates readily available for microbial use, 

allowingpromoting the proliferation of fast-growing 'weedy' bacteria able to use a broader 

range of the Ecoplate substrates. Additional data from more extended  sampling will 

eventually help us to better understand the temporal dynamics of the recovery process, by 

providing deeper insights into the baseline variability. NeverthelessEven in the current 

absence of such additional data, tTheseour results clearly revealunderline the potential of 

microbial techniques as bioindicators forin assessing direct and indirect responses of river 

ecosystems to environmental impacts at the base of the food web.  

Employing a highly resolved network-based perspective provided further insights into both 

direct and indirect effects of the perturbation - from genes to species individuals and from 

food webs species through to the ecosystem as a whole - as we were able to connect 

structurale and functional indicators across different levels of biological organiszation, as 

well as providing a deeper mechanisticimproving understanding of the associated responses 

and indicators. For instance, G. pulex and Baetis represented key nodes in the major 

detritivoreal and herbivoreous food chains, respectively, as is the case in many lowland 

running waters (Woodward et al. 2008; Layer et al. 2010), and both populations collapsed in 

the impacted sites. Our broad new multilevel approach revealed how the loss of consumers 

could result in the release of their resources (orand potential competitors), and also how 

major conduits of energy and biomass flux to the economically and ecologically important 

species at the top of the food web, including (e.g. ecologically important and economically 

valuableed fish species, such as trout,) could be compromised.   
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Microcosm and mesocosm experiments have described ecosystem-level responses to, and 

recovery from, combined pesticide and nutrient additions (Traas et al. 2004; Halstead et al. 

2014)(e.g. Traas et al. 2004; Halstead et al. 2014), and observational field- based research 

has demonstrated a study of a stream in the US treated with pesticides reported that recovery 

of the invert macroinvertebrate community and leaf- litter processingdecomposition was 

related to aerial mobility of repopulating taxa (Chung et al. 1993). Our study represents a 

novel integrated approach, that integratinges a broad range of assessment metrics at multiple 

levels and this has helped us to better understanding the eaffects of a pesticide contamination 

spill in a natural setting, bridging the gap between experimental and previous observational 

field-based research. It. ,Our approachThe same approach is also more widely applicable also 

comparable to other studies which have shown how interactions within freshwater food webs 

exposed toassessments of effects caused by other stressors, such as acidification and 

eutrophication, where interactions within food webs have been found to can modulatehave a 

bearing oncan shape both the ecosystem impact and the rate and trajectory of recovery (e.g. 

Ledger & Hildrew 2005; Layer et al. 2010; Rawcliffe et al. 2010). As suchThus, it thesuch an 

approach highlights offers how a way we canto move beyond a partial taxonomic or trait-

based views to one that mpore explicitly incorporates species interactions within the wider 

food webs: and ecosystem processes in river bioassessment  i.e. this provides a means of 

shifting from autecological, node-based approaches towards more synecological, network-

based biomonitoring  (Gray et al. 2014)(Gray et al. 2014). 

In addition,Our study also highlights the value of citizen science in biomonitoring and 

bioassessmentis highlighted, as it enabled us to place the more detailed intensive data 

specifically and intensively collected after the toxic spill in the context of a much wider 

before-and-after-control-and-impact (BACI) -style “natural experiment”, which would have 

otherwise been impossible to employ in the search for causal relationships. Mobile 

Ephemeroptera (Baetis and Ephemerellidae, both active swimmers with an aerial adult 
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terrestrial life-stage that coincided with the pollution) repopulated the riverimpacted sites  

more quicklyer than G. pulex (Fig.ure 3), as did the often opportunistic more r-selected 

chironomid speciess and less sensitive non-arthropod taxa including such as oligochaetes 

(Fig.ure 5). Theise responses echoes those responses of small r-selected taxa, which also 

precedinged the recovery of larger K-selected species in previous pesticide spill 

contamination field studies on pesticide contamination contamination (Chung et al. 1993; 

Liess & Schulz 1999; Beketov et al. 2008)(Raven & George 1989; Chung et al. 1993).  

It has been hypothesised that ecological inertia can operate within freshwater food webs, 

creating ‘community closure’ or altering furthering recovery trajectories such that they are 

not simple reversals of the impacts (e.g. Ledger & Hildrew 2005; Layer et al. 2011; 

2013)(e.g. Ledger & Hildrew 2005; Layer et al. 2011; Layer, Hildrew & Woodward 2013). 

Our initial data suggest these systems are relatively resilient: i.e. both the impact and the 

recovery phase can move quicklybe short in duration, so long as sufficient alternative nodes 

and links are retained within the affected food web. Nonetheless, iImpacts on key nodes can 

alter important aspects of food- web structure and associated processes, such that although 

the latter might operate at similar rates, they may be driven by microbes and r-selected taxa 

instead of the larger K-selected taxa, as has been reported in response to pesticide 

contamination (Chung et al. 1993) and other stressors (Hladyz et al. 2011) . Our initial data 

demonstrate that, while the R. Kennet’s ecosystemecological structure and functioning were 

significantly impactedaltered by the toxic spill, but that there were many alternative nodes 

and links retained within the affected food web suggesting that the system is relatively 

resilientthat could help confer some level of resilience even in the face of catastrophic 

population losses. 

Future work will require more well co-ordinated laboratory and field-based experiments 

investigations based on that sharematching methodologies to develop a mechanisticimprove 

understanding of the links between the microbiota and macrobiota larger organisms before, if 

Comment [MOG56]: There should must be a lot more recent studies.  

Page 82 of 105Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review
ever, one can be used as a proxy for the other (e.g. Triebskorn et al. 2003).  Nonetheless, our 

study represents a proof-of-concept as to how these vastly different metrics might be linked 

and, a. Also, as more data are generated both spatially and temporallyover time, the potential 

time ×* treatment interactions and any potential underlying effects of the sewage treatment 

works can also be more thoroughly explored. Additional metrics based on techniques, for 

instance, such as next-generation sequencing (e.g. Rosi-Marshall et al. 2013)(e.g. Rosi-

Marshall et al. 2013) or, and measures of whole-ecosystem respiration  (e.g. Young, Matthaei 

& Townsend 2008)(e.g. Young, Matthaei & Townsend, 2008), could be incorporated to gain 

a clearer view ofcapture the full extent of the impacts and recovery trajectories more fullyy of 

recovery.  

Although  they have only coveringed only a subsetpart of the spectrum of responses reported 

here, several other multimetric bioassessments studies have also shown parts of a comparable 

pictureyielded similarcomparable results, including how pesticides: 1) can indirectly release 

prey species from predation (Papst & Boyer 1980),; 2) constrain consumer populations 

through loss of resources (Brazner & Kline 1990), affect the micro and macrobiota structure 

and functioning of microbial and invertebrate aquatic communities in mesocosms (Downing 

et al. 2008; Relyea 2008; Halstead et al. 2014) or; alter the structure and functioning of 

natural stream communities (Chung et al. 1993; Schäfer et al. 2007). Results from ecent 

correlational workstudies has also suggested that  changes across at multiple trophic levels 

may be related to contamination from organic chemicals contaminants (mostly pesticides) at 

the continental scale (Malaj et al. 2014). Despite this and the worldwide use of, and predicted 

projected increase in, pesticides application, studies of their effects at the ecosystem-level are 

rare in natural settings (Kohler & Triebskorn 2013)., but with thisThe present study we 

contributes to bridging this research gap. 

To the best of our knowledge, this study represents the most comprehensive diverse 

collection set of measures across multiple levels of biological organisation to have been 
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applied following a pesticide spill. We have been able to demonstrate both direct and indirect 

effects of the pesticide by combining structural and functional measures and integrating 

ecological and molecular approaches from a food-web perspective. By applying multiple 

metrics in this way the added information gained from the links between them will help to 

develop causation and refine predictions of perturbations in complex systems, and studies 

such as these could provide invaluable data for parameterising future predictive network-

based models of stressor impacts (Gray et al. 2014). 
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Table 1. Locations of upstream control and downstream impacted sites as well as of water 

chemistry monitoring stations of the Environment Agency (EA). Mean and range, in 

brackets, of annual water chemistry concentrations from Environment Agency monitoring 

data are shown from sites located between control and impacted reaches. Oxidised nitrogen 

(oxidised N) is the sum of nitrate (NO3-) and nitrite (NO2-).  

Site Condition Latitude, Longitude 

A Control 51°4170'N, 1°7536'W 
EA Control Control 51°4163'N, 1°7325'W 
C Control 51°4235'N, 1°7165'W 
D Impacted 51°4227'N, 1°6982'W 
EA Impact Impacted 51°4227'N, 1°6982'W 
F Impacted 51°4269'N, 1°6650'W 

Water chemistry EA Control EA Impacted 

Alkalinity (mg L-1) 250 (187-262) 243 (189-254) 
Conductivity (µS cm-1) 626 (449-738) 609 (492-686) 
Oxidised N (mg L-1) 6.6 (4.4-7.5) 6.8 (4.4-7.6) 
Dissolved oxygen (mg L-1) 9.0 (6.9-10.0) 9.6 (6.9-10.9) 
Temperature (°C) 11.0 (5.7-14.4) 11.1 (5.7-14.5) 
pH  7.6 (7.4-7.8) 7.9 (7.4-8.1) 
Ortho-phosphate (mg L-1) 0.08 (0.02-0.36) 0.08 (0.02-0.34) 

 

Table 2. General linear model tests of the biomass (mg) and abundance of arthropods and 

other macroinvertebrates (Tricladida, Annelida and Mollusca, which are considered to be less 

sensitive to chlorpyrifos than arthropods) per sample; Baetis, G. pulex (i.e. K-selected taxa), 

chironomid and oligochaete (i.e. r-selected taxa) biomass and abundance; arthropod-resource 

and other-resource trivariate lower-link angles, Baetis and G. pulex upper-link angles and 

both total and microbial leaf-litter breakdown rate between control (C) and impacted (I) sites. 

Significant p values (<0.05) are highlighted in bold.  

Log10 (biomass +1) Estimate Std. Error z value p 

C:arthropods - C:other 1.62 0.09 17.53 <0.001 

I:arthropods - I:other -0.73 0.12 6.00 <0.001 

C:arthropods - I:arthropods 1.17 0.23 5.19 <0.001 

C:other - I:other -1.17 0.25 -4.73 <0.001 

Log10 (abundance +1)         

C:arthropods - C:other 1.28 0.19 6.82 <0.001 

I:arthropods - I:other -0.05 0.19 0.25 0.99 
C:arthropods - I:arthropods 0.56 0.24 2.37 0.06 
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C:other - I:other -0.76 0.24 -3.23 0.005 

Log10 (biomass +1)         

C:Baetis - I:Baetis 0.62 0.16 4.00 <0.001 

C:G. pulex - I:G. pulex 2.30 0.15 15.82 <0.001 

C:chironomids - I:chironomids -0.93 0.15 -6.38 <0.001 

C:oligochaetes - I:oligochaetes -0.81 0.15 -5.49 <0.001 

Log10 (abundance +1)         

C:Baetis - I:Baetis 1.21 0.24 4.98 <0.001 

C:G. pulex - I:G. pulex 2.31 0.22 10.63 <0.001 

C:chironomids - I:chironomids -1.14 0.22 -5.24 <0.001 

C:oligochaetes - I:oligochaetes -1.12 0.23 -4.92 <0.001 

Invertebrate-resource lower-link angles 

C:arthropods - C:other -0.08 0.02 -3.8 <0.001 

I:arthropods - I:other 0.2 0.02 10.35 <0.001 

C:arthropods - I:arthropods -0.32 0.24 -1.36 0.44 
C:other - I:other -0.04 0.24 -0.18 >0.99 

Baetis and G. pulex upper-link angles 

C:Baetis – I:Baetis -103.71 24.3 -4.27 <0.001 

C:G. pulex – I:G. pulex -62.8 25.73 -2.44 0.03 

Leaf litter decomposition (k)         

I:total - C:total -0.05 0.01 -6.57 <0.001 

I:microbial - C:microbial 0.01 0.002 5.75 <0.001 

 

Table 3. Properties of the trivariate food webs at control and impacted river sites. 

Property 

Site A Site C Site D Site F 

Control Control Impacted Impacted 

Number of nodes 68 60 64 73 
Number of fish species 4 4 5 3 
Number of macroinvertebrate taxa 35 23 20 32 
Number of diatom taxa 29 33 39 38 
Number of links 837 635 739 1060 
Linkage density 11.96 10.41 11.37 14.13 
Directed connectance 0.17 0.17 0.17 0.19 
Trivariate regression slope -0.98 -0.67 -0.92 -0.95 
Trivariate regression intercept 1.29 1.26 1.58 1.35 

Table 1. Locations for of upstream control and downstream impacted sites and as well as of 

Environment Agency water chemistry monitoring stations of the Environment Agency (EA). 

Mean and range, in brackets, of annual water chemistry concentrations from Environment 

Agency monitoring data are shown from sites located between control and impacted reaches 

are shown. 
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Site Condition Latitude, -Longitude 

A Control 51°4170'N, 1°7536'W 

EA Control Control 51°4235'N, 1°7165'W 

C Control 51°4227'N, 1°6982'W 

D Impacted 51°4227'N, 1°6982'W 

EA Impact Impacted 51°4170'N, 1°7536'W 

F Impacted 51°4163'N, 1°7325'W 

Water chemistry EA Control EA Impacted 

Oxidised N ([mg Ll-1)] 6.64 [4.435-7.547] 6.82 [4.435-7.657] 

Dissolved oxygenO ([mg Ll-1]) 9.04 [6.89-10.09.98] 9.657 [6.89-10.9] 

Ttemperature ([mg l-°C1]) 11.02 [5.7-14.4] 11.14 [5.7-14.5] 

pH [mg l-1] 7.64 [7.4-7.8] 7.92 [7.4-8.1] 

Ortho-phosphate ([mg Ll-1]) 0.083 [0.02-0.36] 0.08 [0.02-0.34] 
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Table 2. General linear model tests of the biomass and abundance of arthropods =  arth and 

non-arthropod = other macroinvertebrates (Tricladida, Annelida and Mollusca, which i.e. 

groupsare considered to be less sensitive to chlorpyrifos than arthropods to chlorpyrifos - 

Tricladida, Annelida and Mollusca) biomass and abundance,; Baetis, Gammarus pulex, 

chironomid and oligochaetea biomass and abundance (i.e. K- versus r- selected taxa);, 

arthropod-resource and other-resource trivariate lower link angles, Baetis and G. pulex upper-

link angles and both total and microbial leaf- litter breakdown rates between control (C) and 

impacted (I) sites. Significant p values (<0.05) are highlighted in bold.  

 

 

Log10 (biomass +1) Estimate Std. Error z value p 

C:arthropods - C:other 1.62 0.09 17.53 <0.001 

I:arthropods - I:other -0.73 0.12 6.00 <0.001 

C:arthropods - I:arthropods 1.17 0.23 5.19 <0.001 

C:other - I:other -1.17 0.25 -4.73 <0.001 

Log10 (abundance +1)         

C:arthropods - C:other 1.28 0.19 6.82 <0.001 

I:arthropods - I:other -0.05 0.19 0.25 0.99 

C:arthropods - I:arthropods 0.56 0.24 2.37 0.06 

C:other - I:other -0.76 0.24 -3.23 0.005 

Log10 (biomass +1)         

C:Baetis - I:Baetis 0.62 0.16 4.00 <0.001 

C:G. pulex - I:G. pulex 2.30 0.15 15.82 <0.001 

C:chironomids - I:chironomids -0.93 0.15 -6.38 <0.001 

C:oligochaetesa - -0.81 0.15 -5.49 <0.001 

Comment [s69]: Please give the units of measurement here 
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I:oligochaetesa 

Log10 (abundance +1)         

C:Baetis - I:Baetis 1.21 0.24 4.98 <0.001 

C:G. pulex - I:G. pulex 2.31 0.22 10.63 <0.001 

C:chironomids - I:chironomids -1.14 0.22 -5.24 <0.001 

C:oligochaetesa - 

I:oligochaetesa 
-1.12 0.23 -4.92 <0.001 

Invertebrate-resource lower-link angles 

C:arthropods - C:other -0.08 0.02 -3.8 <0.001 

I:arthropods - I:other 0.2 0.02 10.35 <0.001 

C:arthropods - I:arthropods -0.32 0.24 -1.36 0.44 

C:other - I:other -0.04 0.24 -0.18 >0.99 

Baetis and G. pulex upper-link angles 

C:Baetis – I:Baetis -103.71 24.3 -4.27 <0.001 

C:G. pulex – I:G. pulex -62.8 25.73 -2.44 0.03 

Leaf litter decomposition (k)         

I:total - C:total -0.05 0.01 -6.57 <0.001 

I:microbial - C:microbial 0.01 0.002 5.75 <0.001 
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Table 3. Properties of the trivariate food webs associated withat control and impacted stream 

sites. 

 

Property 

Site A Site C Site D Site F 

Control Control Impacted Impacted 

Number of nNodes 68 60 64 73 

Number of fFish sSpecies 4 4 5 3 

Number of macroiInvertebrate 

tTaxa 35 23 20 32 

Number of dDiatom tTaxa 29 33 39 38 

Number of Llinks 837 635 739 1060 

Linkage dDensity 11.96 10.41 11.37 14.13 

Directed cConnectance 0.17 0.17 0.17 0.19 

Trivariate rRegression sSlope -0.98 -0.67 -0.92 -0.95 

Trivariate rRegression iIntercept 1.29 1.26 1.58 1.35 
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Figure legends
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Mmonitoring data 

upstream (i.e. control site) 
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works, where the

 

 

legends 

River. Kennet (UK) with study sites A

downward pointing triangles = 

(filled triangles) are presented here

onitoring data for aquatic macroinvertebrates 

upstream (i.e. control site) from at 

downstream at Elcot Mill (a downstream

where the pesticide entered the river

Kennet (UK) with study sites A-C (upward pointing 

= impacted) highlighted. Data for sites A, C, D and F 

are presented here. and ARK routine aquatic riverfly invertebrate 

for aquatic macroinvertebrates were collected 

at Stonebridge Lane (an upstream control

a downstreami.e. impacted site) of Marlborough

ered the river. 

pointing triangles = control) and 

Data for sites A, C, D and F 

and ARK routine aquatic riverfly invertebrate 

were collected by citizen scientists 

(an upstream control site) and 

of Marlborough sewage treatment 

 

control) and 

Data for sites A, C, D and F 

and ARK routine aquatic riverfly invertebrate 

by citizen scientists 

and 

sewage treatment 
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Fig.ure 3. Top: 
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Agency threshold for substantial ecological degrada

relation to scores 

impacted site at Elcot Mill
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represent standard error
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show macroinvertebrate scores before and after the 
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represent standard error. (a) Ecological data from control sites A & 

quatic macroinvertebrate monitoring data 

invertebrate scores before and after the toxic 

the target taxa. The red line represents an Environment 

Agency threshold for substantial ecological degradation. Bottom: abundance of key taxa in 

collected from an upstream control at Stonebridge Lane and 

Fig.ure 1Fig. 1).  

Vertical arrows indicate notable differences between 

sites A and C and from impacted sites D and F two months after the toxic spill

Ecological data from control sites A & 

invertebrate monitoring data collected by citizen 

toxic spill (red arrows), based 

target taxa. The red line represents an Environment 

tion. Bottom: abundance of key taxa in 

collected from an upstream control at Stonebridge Lane and a downstream 

Vertical arrows indicate notable differences between ecological data from control 

sites A and C and from impacted sites D and F two months after the toxic spill, error bars 

Ecological data from control sites A & and C and from impacted 

collected by citizen 

arrows), based 

target taxa. The red line represents an Environment 

tion. Bottom: abundance of key taxa in 

downstream 

ecological data from control 

error bars 

impacted 
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sites D & and F two months after the toxic spill. 1) Molecular results from microbial qPCR 

assays targeting the ([αa)] 16S rRNA (microbial abundance), ([βb)] nirS (nitrite reductase) 

([γc)] amoA (ammonia monooxygenase) AOB (ammonia oxidising bacteria), ([δd)] amoA 

(ammonia monooxygenase) AOA (ammonia oxidising archaea), ([εe)] opd 

(organophosphorus hydrolase) genes. Results show gene copy number per gram of sediment 

on a log10 scale. (b2)  Ecoplate microbial functional potential on 31 carbon substrates (x-axis) 

and their usage (y-axis; measured as optical density at 600 nm after 5 days of incubation at 22 

°C as defined in the Methods).Ecoplate microbial functional potential on 31 carbon substrates 

(x-axis) and their usage (y-axis). (c3) Biomass of macroinvertebrates (lighter shading) and a 

keystone detritivore, (Gammarus pulex – (darker shading), and leaf- litter breakdown rates by 

all consumers (light shadinger) and microbes -only (dark shadinger).. (d4) Trivariate mass-

abundance food webs: green circles = algae (large species found only in the impacteds sites 

highlighted), yellow symbols = arthropods (decreased relative to controls), blue symbols = 

other macroinvertebrates, black filled diamond = G. pulex, black open diamond = Baetis, 

pink symbols = fishes.  
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Figur.e 5. Macroi

treatmentat control and 

MacroiInvertebrate mean biomass (per sample

at control and impacted sites in the River Kennet.

nvertebrate mean biomass (per sample with standard error

impacted sites in the River Kennet. 
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represent different trophic elements: green circles 
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