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Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but
without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly
recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction.
Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was
to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [11C]carfentanil PET with an
oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [11C]carfentanil PET scans, before and after an
oral administration of 0.5 mg/kg of d-amphetamine. The change in [11C]carfentanil binding between baseline and post-amphetamine scans
(ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral
amphetamine challenge led to significant reductions in [11C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of
opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory
analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of
blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids
may have an important role in the pathophysiology of addictions.
Neuropsychopharmacology (2016) 41, 1742–1750; doi:10.1038/npp.2015.340; published online 9 December 2015
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INTRODUCTION

Pathological gambling (PG) is a psychiatric disorder
characterized by a pre-occupation with thoughts of gam-
bling, repeated attempts to reduce or quit, debt and/or illegal
activity, and disruption of personal relationships and/or
employment. PG has been estimated to affect between 0.2
and 5.3% of the adult population worldwide (Hodgins et al,
2011). Originally classified as an ‘Impulse Control Disorder’
in DSM-IV, PG has recently been reconceptualized as a
‘behavioral addiction’ (Bowden-Jones and Clark, 2011), now
classified as a ‘Substance-Related and Addictive Disorder’ in

DSM-5 due to the observed similarities with substance
addiction. These include clinical and etiological features
such as abnormal reward sensitivity (van Holst et al, 2010),
disadvantageous decision making and diminished behavioral
inhibition (Verdejo-Garcia et al, 2008). PG constitutes a
useful model to provide broader insights into the core brain
processes of addictive disorders as it does not involve the
confounding effects of excessive and chronic substance use
on brain function.
Psychological treatments including cognitive behavioral

therapy (CBT) are currently the first-line therapies for PG;
however, these are associated with only a partial response
and short-term benefits (Cowlishaw et al, 2012). There has
been less exploration of the neuropharmacology of PG,
despite evidence from preliminary trials that opiate antago-
nists may be beneficial (Potenza, 2008). There is a wealth of
evidence indicating a key role for the opioidergic system in
substance dependence, as well as in related constructs such as
reward and impulsivity. The opiate antagonists, naltrexone
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and nalmefene, are also proven treatments for addictions,
particularly alcoholism (Lingford-Hughes et al, 2012).
Endogenous opioids in the brain comprise a number of
peptides (b-endorphins, dynorphins, enkephalins) and their
receptors (mu, kappa, delta, respectively) are widely
distributed throughout the brain. Mu-opioid receptors
(MOR) have a key role in mediating rewarding effects of
opiates and are most dense in the basal ganglia, thalamus,
and amygdala (Mansour et al, 1988).
Evidence of a dysregulated opioid system in alcohol,

cocaine, and opiate addiction has been shown using positron
emission tomography (PET) with the selective MOR agonist
radioligand [11C]carfentanil, which has greater selectivity
of the order 100-fold for MOR over other subtypes
(Subramanian et al, 2000; Titeler et al, 1989) or the non-
selective tracer [11C]diprenorphine. In these studies, higher
MOR availability is consistently reported (Gorelick et al,
2005; Heinz et al, 2005; Williams et al, 2007, 2009; Zubieta
et al, 1996). Higher MOR availability is also associated with
craving, which might contribute to the high rates of relapse
during early abstinence (Gorelick et al, 2005). It has therefore
been argued that as higher MOR availability is seen across
addictions to substances with differing pharmacology,
these changes are fundamental to addiction rather than
substance-specific (Williams et al, 2009). Higher MOR
availability, measured with [11C]carfentanil PET may reflect
either an increase in receptor density or a reduction in
endogenous β-endorphin levels to which [11C]carfentanil is
sensitive (Colasanti et al, 2012; Mick et al, 2014). A reduction
in endogenous β-endorphin levels would be consistent
with the concept that addiction vulnerability is associated
with an ‘opioid-deficient’ state, which is compensated for
by drug taking (Ulm et al, 1995). Consistent with this
hypothesis, individuals with an elevated risk of alco-
holism, and a heightened response to alcohol, have been
shown to have lower basal levels of plasma β-endorphin
(Gianoulakis, 1996).
Previously, we have shown in two independent healthy

participant (HV) cohorts that an oral d-amphetamine
(0.5 mg/kg) challenge releases endogenous opioids as in-
dicated by a reduction in [11C]carfentanil binding (Colasanti
et al, 2012; Mick et al, 2014). This approach allows us for the
first time to directly measure opioid release in vivo in the
brain of individuals with addictive disorders. In the present
study, we used this technique to examine both baseline MOR
availability and endogenous opioid release in PG. Previous
studies using [11C]carfentanil have shown excellent reprodu-
cibility of [11C]carfentanil-binding parameter estimates
(Hirvonen et al, 2009). Given the similarities in behavior
between PG and substance addiction, we hypothesized that
PG would be associated with higher baseline MOR levels. On
the basis of the ‘opioid-deficient’ hypothesis in alcoholism,
we hypothesized that endogenous opioid release after
amphetamine in PG would be attenuated.

MATERIALS AND METHODS

Participants

Fifteen males with PG were recruited from the National
Problem Gambling Clinic, Central North West London NHS
Foundation Trust, UK. One participant’s PET data were not

quantifiable owing to technical issues, leaving 14 PG (mean
age± SD 34.3± 7.65 years, three smokers). Fifteen male age-
matched HV (34.5± 8.77 years, two smokers) have been
previously described in our original (Colasanti et al, 2012) six
who received ‘high dose’ amphetamine and second cohort
(Mick et al, 2014). Only men were studied owing to the small
number of women in treatment at the clinic, at 7% of clinic
attendees. Participants’ current/previous medical/mental
health as well as history of alcohol, tobacco, and other
substance use were assessed by trained psychiatrists using
Mini Psychiatric Interview International (MINI-5) (Sheehan
et al, 1998). HV with current or previous psychiatric
disorders were excluded. In PG, past depression and anxiety
was allowed, as these are common comorbidities; current
depression or anxiety was excluded. Current or past history
of substance abuse or dependence including alcohol but
except nicotine, was an exclusion criterion; previous
recreational drug use was allowed (410 times in lifetime:
one HV: cannabis; two PG: cannabis and cocaine).
Participants were excluded if they drank more than 21 UK
units of alcohol (166 g) per week. Other drug use (except
tobacco) was not allowed 2 weeks prior and during the study.
This was confirmed on study days by negative urine drug
screen testing (cocaine, amphetamine, THC, methadone,
opioids, benzodiazepines) and participants also breathalyzed
negative for alcohol. Smoking was not allowed 1 h before each
scan. All the participants had laboratory and ECG results
within normal range; none were taking regular medication.
PG were recruited either before or during an 8-week

course of CBT and all had a recent history of active
gambling; ‘days of abstinence’ ranged between 3 and 128 days
(mean± SD 47± 40.8). DSM-IV diagnosis of PG was
confirmed with the Massachusetts Gambling Screen
(Shaffer et al, 1994; MAGS; mean± SD 7± 1.9) corroborated
by the Problem Gambling Severity Index (Ferris and Wynne,
2001; PGSI; mean± SD 18± 5.2). The Gambling Craving
Scale (Young and Wohl, 2009; GACS) measured baseline
craving for gambling on the study day. Depression was
assessed with the Beck Depression Inventory (BDI) and
anxiety with Spielberger Trait inventory (STAI). To assess
impulsivity, the UPPS-P Impulsive Behavior Scale (Cyders
et al, 2007) was used with its five subscales: Negative
Urgency (NU), Positive Urgency (PU), Lack of Planning
(LoP), Lack of Perseverance (LoPe), and Sensation
Seeking (SS).
On the screening day, participants underwent structural

and functional magnetic resonance imaging (MRI) and
performed a computerized neurocognitive assessment; these
results will be reported elsewhere.
Written informed consent was obtained from all the

participants. The study was approved by the West London
Research Ethics Committee and the Administration of
Radioactive Substances Advisory Committee, UK.

Procedure

PET imaging procedures were identical to our previous
studies with [11C]carfentanil (Colasanti et al, 2012; Mick
et al, 2014). Briefly, participants underwent two [11C]
carfentanil PET scans, one before and one 3 h following an
oral administration of 0.5 mg/kg of d-amphetamine. Nine
HV underwent both PET scans on the same day. For six HV,
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the post-amphetamine scan was acquired on a different day
for logistic reasons; none of them received two doses of
amphetamine. The average time between pre- and post scans
in these cases was 8 days (range: 1–36 days). For PG, 13 out
of 14 participants had their pre- and post-amphetamine PET
scans on the same day. One PG participant had his scans
8 days apart. The oral d-amphetamine was administered 3 h
before the post- amphetamine scan, after a light meal, based
upon peak amphetamine plasma levels (Mick et al, 2014).
Blood samples to assess plasma levels were obtained pre-
dosing; 1; 2; 3, and 4.5 h post dosing.
Subjective responses to the amphetamine challenge were

rated using the simplified version of the Amphetamine
Interview Rating Scale (SAIRS) (Van Kammen and
Murphy, 1975), consisting of self-ratings for euphoria,
restlessness, alertness, and anxiety (from 1 (least ever felt)
to 10 (most ever felt)). It was administered after the pre-
amphetamine scan, 15 min pre-dosing and post dosing at
5 min, 1, 2, and 3 h (just before the post-amphetamine scan)
and 4.5 h.

PET and MR Imaging

As previously (Colasanti et al, 2012; Mick et al, 2014),
dynamic [11C]carfentanil PET scans were acquired on a
HiRez Biograph 6 PET/CT scanner (Siemens Healthcare,
Erlangen, Germany). Dynamic emission data were collected
continuously for 90 min (26 frames, 8 × 15 s, 3 × 60 s,
5 × 120 s, 5 × 300 s, 5 × 600 s), following an intravenous
injection of 217± 66.07 (mean± SD) MBq of [11C]carfentanil
in HV and 211± 58.42MBq in PG. All the participants
underwent a T1-weighted structural MRI (Magnetom Trio
Syngo MR B13 Siemens 3T; Siemens AG, Medical Solutions).
All the structural images were reviewed by an experienced
neuroradiologist for unexpected findings of clinical signifi-
cance. None were observed; however, one PG participant was
excluded owing to the inaccurate spatial normalization of
PET data into standard space using the structural MR data.

Image Analysis

As described previously (Colasanti et al, 2012; Mick et al,
2014), pre-processing of images and PET modeling were
carried out using MIAKAT, an analysis tool developed at
Imanova. After frame-by-frame motion correction of the
dynamic PET data, region-of-interest (ROI) time-activity
data were sampled using the CIC neuroanatomical atlas
(Tziortzi et al, 2011). This was applied to the PET image by
non-linear deformation parameters derived from the trans-
formation of the structural MRI into standard space.
Nine grey-matter-masked ROIs were chosen a priori, as

brain areas with a high density of MOR, with significant
amphetamine-induced reductions of [11C]carfentanil BPND,
and relevant to addiction—the caudate, putamen, thalamus,
cerebellum, frontal lobe, nucleus accumbens, anterior
cingulate, amygdala, and insula cortices. A tenth region of
interest, hypothalamus, where endorphin cell bodies are
located, was manually defined on the MRI of each subject
according to anatomical reference as described previously
(Colasanti et al, 2012; Tziortzi et al, 2011). BPND was
quantified regionally using the simplified reference tissue
model with occipital lobe as the reference region (Colasanti

et al, 2012). Endogenous opioid release was indexed as the
fractional reduction in [11C]carfentanil BPND following the
d-amphetamine:

DBPND ¼ BPNDpre–BPNDpost

� �
=BPNDpre

Statistical Analysis

Demographic differences between groups, and injected mass/
activity, were analyzed using independent-samples t-tests
(2-tailed). An omnibus mixed-model ANOVA tested BPND

as a function of Scan (pre-amphetamine vs post-ampheta-
mine), ROI (10 levels) and Group (HV, PG). For analysis of
simple main effects for our hypotheses concerning opioid
release, we calculated percentage changes in [11C]carfentanil
BPND (%ΔBPND) from pre- to post-amphetamine scans. The
subjective responses to the amphetamine challenge were
analyzed using mixed-model ANOVAs based on the change
from baseline values, with Group (HV, PG) as a between-
subjects factor and Time (60, 120, 180, 270 min) as a
repeated-measures factor. Given the ordinal relationship in
the within-subjects factor (Time), we tested the linear and
quadratic terms. For correlational analyses, we calculated a
summary Δscore for subjective responses based on the
SAIRS and SSAI, from the subjective peak minus the
baseline. We tested for correlations between BPND, subjective
effects, and plasma amphetamine concentrations, using the
subjective Δscores and baseline BPND and regional %ΔBPND.
Associations between MOR BPND and impulsivity measures
were verified through Pearson’s r correlation test. Percentile
bootstrap (1000 replications) was used to estimate 95%
confidence intervals (CI) for the correlation coefficient
(Fethney, 2010). All data were normally distributed as
determined by visual inspection as well as using the
Kolmogorov–Smirnov and Shapiro–Wilk tests for normality.
All statistical comparisons were assessed using SPSS version
20.0; po0.05 was accepted as a nominal level of statistical
significance.

RESULTS

Pharmacokinetic Amphetamine Plasma Samples

At 3 h post dosing, just before the post-amphetamine scan,
the mean plasma amphetamine concentrations reached a
peak of 86.8± 18.2 ng/ml (mean± SD) in HV and
87.2± 10.3 ng/ml in PG, with no significant group differ-
ences in amphetamine absorption (t21= 0.06, p= 0.951).
There were no significant correlations between amphetamine
plasma concentrations and baseline [11C]carfentanil BPND or
%ΔBPND.

Injected Mass and Radioactivity

In HV, the mean injected [11C]carfentanil mass for scan 1
was 1.02± 0.52 μg and scan 2 was 1.08± 0.52 μg (t14=− 2.51,
p= 0.025). For PG, the mean injected [11C]carfentanil mass
was 1.53± 0.27 μg for scan 1 and 1.45± 0.20 μg for scan 2
(t13= 2.39, p= 0.032). There were also significant differences
between groups in masspre (p= 0.003) and masspost HV/PG
(p= 0.015). There were no significant differences in injected
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activity between or within groups (HV: pre 225.1± 65.0
MBq, post 208.9± 67.1 MBq; PG: pre 207.9± 67.7 MBq;
post 214.0± 49.2 MBq). To rule out any mass effect, we
confirmed there were no significant correlations between
masspre and baseline [11C]carfentanil BPND (p= 0.851) or
masspost and post-amphetamine [11C]carfentanil BPND

(p= 0.918).

Clinical Variables

There were no differences between PG and HV in age, IQ,
smoking, and alcohol consumption; however, PG scored
higher on measures of depression and anxiety though none
reached a clinical threshold (see Table 1).

[11C]carfentanil Binding

The omnibus ANOVA for BPND revealed a number of
significant effects. There was a significant main effect of ROI
(F(9,243)= 248.5, po0.001) indicating reliable differences in
[11C]carfentanil binding across the 10 brain regions, with
greatest binding in the nucleus accumbens and thalamus
(see Table 2). There was a significant main effect of Scan
(F(1,27)= 26.4, po0.001), and a Scan ×ROI interaction
(F(2.04,55.2)= 3.07, p= 0.053) consistent with ampheta-
mine-induced opioid release that varied in extent across
brain regions (see Figure 1). There was a significant
Scan ×Group interaction (F(1,27)= 7.07, p= 0.013),

which is explored further below. The three-way Scan ×
Group ×ROI interaction was not statistically significant
(F(2.04,55.2)= 0.37, p= 0.696).
To directly test our hypotheses, first, we tested for group

differences in baseline MOR levels using a Group×ROI
model on the pre-amphetamine BPND levels. There was no
significant main effect of Group (F(1,27)= 0.01, p= 0.923),
or Group ×ROI interaction (F(3.8, 103.8)= 0.73, p= 0.566).
Thus, the hypothesis that PG would be associated with
higher MOR levels was not supported.
Second, we confirmed that the amphetamine challenge led

to significant reductions in [11C]carfentanil BPND in the HV
group, using a Scan ×ROI model. There was a significant
main effect of Scan (F(1,14)= 36.9, po0.001), with no
reliable Scan ×ROI interaction (F(2.03,28.4)= 2.18,
p= 0.132), driven by significant reductions in eight (caudate,
putamen, thalamus, cerebellum, frontal lobe (includes
dorsolateral, medial, and orbitofrontal cortices), nucleus
accumbens, anterior cingulate, insular cortices of the 10
(amygdala, hypothalamus) regions of interest (see Table 2).
Mean regional percentage reduction in BPND ranged between
− 4.9 and − 7.7% (see Figure 1). There were no regions where
increased BPND was observed. A post hoc analysis showed no
impact of the interval between first and second scan
on the results of the intervention (r=− 0.11, p= 0.563),
and no difference between the HV BPND changes on same
(n= 10) and different (n= 5) days (t= 0.69, p= 0.95). There
were no differences between ‘past drug users’ (410 times in
lifetime) and ‘non-past drug users’ in either baseline [11C]
carfentanil BPND (t=− 0.97, p= 0.34) or %ΔBPND

(t=− 0.24, p= 0.98).
Third, to test whether PG was associated with blunted

opioid release and decompose the Scan ×Group interaction
in the omnibus model, we ran a Group ×ROI model on the
%ΔBPND scores. There was a significant main effect of
Group (F(1,27)= 8.31, p= 0.008) without a reliable Group ×
ROI interaction (F(1.9,50.7)= 0.36, p= 0.684). As such, the
blunting of opioid release did not vary reliably across the 10
brain regions. The PG group showed significantly attenuated
opioid release in the putamen (t27= 2.85, p= 0.008),
cerebellum (t27= 2.51, p= 0.018), frontal lobe (t27= 3.76,
p= 0.001), anterior cingulate (t27= 4.17, po0.001) and insula
(t27= 3.08, p= 0.005).

Effects of Amphetamine on Subjective Responses

The subjective effects from the oral amphetamine were mild
(see Figure 2). For euphoria ratings, an ANOVA of change
from baseline values indicated no overall change in euphoria
(main effect of Time: F(2.5,66.6)= 1.09, p= 0.353) but a sig-
nificant quadratic term for the Group ×Time interaction
(F(1,27)= 5.06, p= 0.033), such that amphetamine-induced
euphoria was diminished in the PG group at the 120
(p= 0.047) and 180 (p= 0.042) minute time points around
the peak response (see Figure 2a). For alertness ratings,
ANOVA yielded no overall change in alertness (main effect
of Time: F(2.1,58.0)= 0.86, p= 0.435) but a significant
Group ×Time interaction (F(2.1,58.0)= 3.54, p= 0.032; see
Figure 2b), with a diminished response in the PG group at 60
(p= 0.009), 120 (p= 0.007) and 180 (p= 0.007) minutes. For
anxiety ratings, there was an overall decrease in anxiety
(F(3,81)= 4.44, p= 0.006) and a significant Group ×Time

Table 1 Participants’ Characteristics, Mean± SD

Healthy
volunteers

Pathological
gamblers

Significance
(two-tailed) p-value

Age 34.4± 8.7 34.3± 7.7 0.953

IQ 111.4± 8.4 114.4± 13.5 0.571

NART errors 19.2± 7.2 17± 10.8 0.595

PGSI 0.2± 0.6 18± 5.2 0.001

Alcohol units/week 6.8± 8.5 11± 7.7 0.254

Current smoking status 2 smokers 3 smokers

Pack years
(mean± SD)

14.25± 5.7 14.5± 5.3 0.963

FTND 2.5± 3.5 6± 1 0.386

Cigarettes/day 10± 7.1 18± 3.5 0.176

BDI on PET day 0.6± 1.8 8.7± 7.9 0.002

STAI 29.1± 6.9 45.6± 12.4 0.001

SSAI baseline 25.5± 6.5 39.1± 16.8 0.012

UPPS-NU 20.4± 5.4 32.3± 5.9 0.001

UPPS-PU 19.7± 6.5 28.3± 8.6 0.018

UPPS-LoP 20.3± 5.7 23.9± 5.5 0.155

UPPS-LoPe 18.4± 4.8 20.2± 4.6 0.387

UPPS-SS 33.3± 9.7 35.1± 7.0 0.622

Abbreviations: BDI, Beck Depression Inventory; FTND, Fagerstrom test for
nicotine dependence; IQ, intelligence quotient; LoP, lack of premeditation; LoPe,
lack of perseverance; NART, national adult reading test; NU, negative urgency;
PGSI, Canadian problem gambling Inventory; PU, positive urgency; SS, sensation
seeking; SSAI, Spielberger state anxiety inventory; STAI, Spielberger trait anxiety
inventory; UPPS, impulsive behavior scale.
Questionnaire data were only available for nine HV participants, except for SSAI.
Bold values indicate significant p-value.
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Table 2 [11C]carfentanil BPND Pre- and Post-Amphetamine in the 10 Regions of Interest in the Healthy Volunteers (HV) and Pathological
Gamblers (PG)

HV: brain region Mean pre-amph Mean post-amph Mean diff SD mean diff Mean % decrease SD Mean % decrease Sig (two-tailed)
p-value

Frontal lobe 1.13 1.06 0.07 0.04 − 5.7 3.1 0.001

Insula 1.42 1.36 0.06 0.06 − 4.9 3.9 0.001

Ant cingulate 1.49 1.41 0.08 0.04 − 5.2 2.7 0.001

Amygdala 1.73 1.70 0.03 0.12 − 1.5 6.7 0.335

Thalamus 2.03 1.91 0.12 0.06 − 5.9 3.0 0.001

Hypothalamus 1.75 1.65 0.10 0.25 − 5.9 14.0 0.121

Caudate 1.40 1.30 0.10 0.14 − 7.5 9.1 0.009

Putamen 1.82 1.68 0.14 0.08 − 7.7 4.5 0.001

Accumbens 2.76 2.60 0.16 0.18 − 5.9 6.1 0.004

Cerebellum 0.73 0.69 0.04 0.03 − 5.7 4.9 0.001

PG: brain region Mean pre-amph Mean post-amph Mean diff SD Mean diff Mean % decrease SD Mean % decrease Sig (two-tailed)
p-value

Frontal lobe 1.03 1.02 0.01 0.04 − 0.5 4.2 0.585

Insula 1.39 1.39 0.00 0.07 0.3 5.3 0.858

Ant cingulate 1.43 1.43 0.00 0.05 − 0.2 3.7 0.795

Amygdala 1.82 1.82 0.00 0.14 − 0.1 7.4 0.817

Thalamus 2.07 2.01 0.06 0.10 − 3.1 4.8 0.029

Hypothalamus 1.78 1.76 0.02 0.24 − 0.5 16.4 0.769

Caudate 1.39 1.33 0.06 0.11 − 4.5 8.6 0.058

Putamen 1.78 1.70 0.08 0.09 − 2.7 5.1 0.071

Accumbens 2.78 2.71 0.07 0.13 − 2.6 4.7 0.056

Cerebellum 0.77 0.77 0.00 0.05 − 0.7 5.9 0.675

Bold values indicate significant p-value.

Figure 1 Percentage change (mean and SD) of [11C]carfentanil BPND from pre-amphetamine to post-amphetamine scan in HV and PG. There was a
significant difference between groups in the frontal lobe, insula, anterior cingulate, putamen and cerebellum.
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interaction (F(3,81)= 3.70, p= 0.015) although groups did not
differ significantly at any individual time point. There were no
effects on restlessness (main effect of Time: F(1.8,49.5)= 0.45,
p= 0.624; Group×Time F(1.8,49.5)= 1.21, p= 0.304).

Relationship Between PET Measures and Clinical/
Impulsivity Scores

None of the clinical variables assessing severity of problem
gambling (PGSI), craving to gamble (GACS), depression
(BDI), anxiety (STAI, SSAI), alcohol use (AUDIT), or ‘days
of abstinence’ were significantly correlated with baseline
[11C]carfentanil BPND or %ΔBPND.
PG showed significantly higher scores in UPPS-P NU and

PU subscales compared with HV (see Table 1). An
exploratory analysis of HV and PG groups separately
revealed a significant positive correlation between NU and
baseline [11C]carfentanil BPND in the caudate in PG
(r= 0.638; p= 0.014). There were no significant correlations
with baseline BPND in HV.

DISCUSSION

Using [11C]carfentanil PET, we demonstrate here evidence of
blunted endogenous opioid release to an oral amphetamine
challenge in PG compared with HV, whereas there was no
difference in baseline MOR availability. Our hypotheses for
this study were predicated on the view that as a behavioral

addiction, PG would have similar neurobiological signature
to that established for substance addictions. Our observation
of blunted opioid release is consistent with the broader
‘reward deficiency hypothesis’. Our data are consistent with
lower baseline endorphin levels reported in individuals with
a positive family history of alcoholism compared with those
with no family history, though increased endorphin release
was seen after exposure to alcohol (Gianoulakis, 1996).
Thus a dysregulated endorphin system appears to be present
in behavioral and substance addictions. However, the
hypothesis of higher baseline MOR availability in PG was
not supported, in contrast to consistent findings in substance
addiction. Similar to past work, we also found relationships
between [11C]carfentanil BPND binding and trait impulsivity,
but no relationships with other clinical variables.
Our key finding of a blunted release of endogenous opioid

in PG following the oral amphetamine challenge strongly
suggests a dysregulated opioid system in this disorder. Other
studies measuring plasma β-endorphin during a gambling
task are inconsistent with increase, no change, or blunted
response reported (Blaszczynski et al, 1986; Meyer et al,
2004; Shinohara et al, 1999). The blunted opioid release in
our study was accompanied by diminished subjective
euphoria and alertness in PG in response to the ampheta-
mine challenge, and was not explained by differences in
plasma amphetamine levels between the groups. Another
study has reported similarly increased euphoria in PG and
controls following a similar oral amphetamine challenge to
ours (0.4 vs 0.5 mg/kg) in combination with a dopaminergic

Figure 2 Changes in subjective amphetamine effects measured at four time points (minutes). (a) Amphetamine-induced euphoria was significantly
diminished in the pathological gamblers group at 120 and 180 min. (b) For alertness scores, there were significantly diminished responses in the pathological
gamblers group at 60, 120, and 180 min. (c, d) Groups did not differ significantly at any individual time point for anxiety or restlessness.
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PET tracer (Boileau et al, 2013). There are a number of
pertinent differences that may underlie these contrasting
effects. The Addiction Research Center Inventory used by
Boileau assays a broader range of subjective responses than
the SAIRS we used. In addition, our samples were all in
treatment and had not gambled recently, whereas the
participants in Boileau’s study were non-treatment-seeking
(Boileau et al, 2013). Another factor that may have
moderated the response was that oral amphetamine was
nonsalient as both PG and HV had limited or no experience
of such stimulants. Thus our blunted response is consistent
with other addiction studies, which have shown that
responses to a nonsalient ‘reward’ are blunted compared
with salient ones (Lubman et al, 2008).
Concerning baseline MOR availability, our hypothesis that

individuals with PG would show higher MOR availability
was based on findings in individuals dependent on
substances with differing pharmacologies, that is, cocaine
(Zubieta et al, 1996), alcohol (Heinz et al, 2005; Williams
et al, 2009), or heroin (Williams et al, 2007). Relationships
have been described between higher MOR availability and
greater craving in alcohol and cocaine addiction (Gorelick
et al, 2005; Heinz et al, 2005; Williams et al, 2009; Zubieta
et al, 1996). Such a relationship provides a potential
mechanism for the clinical efficacy of opioid antagonists,
naltrexone and nalmefene, in treating alcoholism (Lingford-
Hughes et al, 2012). These medications have also shown
efficacy in treating PG, which provides another rationale for
predicting higher MOR availability (Ghitza et al, 2010).
However, we did not observe any group difference in MOR
availability or any relationship with craving in our PG
sample. A key clinical variable that may impact on opioid
receptor availability is abstinence. In cocaine addiction,
higher levels of MOR availability are related to relapse and
levels may reduce over time (Ghitza et al, 2010; Gorelick
et al, 2008; Zubieta et al, 1996), though no changes in
availability have been reported in alcoholism up to 3 months
of sobriety (Heinz et al, 2005; Williams et al, 2009). Our PG
were in treatment and abstinent at the time of scanning, so
the influence of abstinence on MOR in behavioral addiction
requires further investigation.
Consistent with previous research, we found significantly

higher impulsivity scores using the UPPS scale in PG
compared with HV (Clark et al, 2012; Forbush et al, 2008;
Fuentes et al, 2006; Michalczuk et al, 2011). An exploratory
analysis revealed that in PG, baseline [11C]carfentanil BPND

in the caudate was positively correlated with the UPPS
Negative Urgency subscale, which relates to the tendency
towards impulsive behavior while experiencing negative
affect (Whiteside and Lynam, 2001). This association was
not observed in the HV group. These data also lend further
support to a role of the endogenous opioid system in
impulsive behaviors, particularly mood-related impulsivity,
which is consistent with the proposed role for opioid system
in emotion (Zubieta et al, 2003).
Although the efficacy of opiate antagonists in some people

with PG was first reported over a decade ago, our study is the
first to assess the integrity of the opioid system in PG, by
imaging MOR availability and opioid release. Past work links
the endogenous opioid system with pleasure, urges, and
impulsivity (Love et al, 2009). For instance in HV, the opiate
antagonist, naloxone, attenuated the fMRI response in the

medial prefrontal cortex to monetary wins in a gambling task
and increased responses to monetary losses in insula and
anterior cingulate (Petrovic et al, 2008). The opiate
antagonists, naltrexone and nalmefene were investigated as
treatment for PG based on preclinical evidence of opioid
involvement in urge and motivation and their efficacy in
alcoholism (Grant et al, 2014; Potenza, 2008). A recent meta-
analysis reported a small but significant effect of opiate
antagonists though noted earlier studies were more likely to
report efficacy (Bartley and Bloch, 2013). PG who respond to
opioid antagonists report significant reduction in gambling
urges, particularly in those with a family history of alcohol
dependence (Grant et al, 2008; Potenza, 2008). In our
sample, only one PG had a family history of alcoholism so we
were unable to explore this further. The underlying
mechanism for clinical efficacy of opioid antagonists in
alcoholism is generally described as blocking the increased
MOR and β-endorphin stimulation of MOR in mesolimbic
dopaminergic pathway thus reducing activity and the
rewarding effects of alcohol and craving (Johnson and
North, 1992). Given our observation that MOR availability is
unchanged in PG, the mechanism of action for opioid
antagonists may therefore involve other opioid receptors
such as kappa (Votinov et al, 2014) or processes other than
those involved in pleasure and reward, such as impulsivity.
Dysregulation between opioid and dopamine transmission is

likely to underlie our blunted opioid release in PG. Studies
implicate a role for DRD2/3 in regulating endorphin release
(Doron et al, 2006; Soderman and Unterwald, 2009). A role for
the hypothalamus is probable since opioid projections originate
from here to modulate dopaminergic neuronal activity in the
ventral tegmental area (VTA) (Bourdy and Barrot, 2012).
Concerning the dopaminergic system in PG, increased
dopamine release in PG to a similar amphetamine challenge
has been reported alongside no difference in dopamine receptor
availability using [11C]PHNO PET (Boileau et al, 2013). In this
study, [11C]PHNO binding in the hypothalamus was not
assessed in PG and since we found increased [11C]PHNO
binding in the hypothalamus in alcoholism with no differences
elsewhere in the brain, it would be interesting to know if [11C]
PHNO in the hypothalamus in PG was similarly increased
(Erritzoe et al, 2014). Further investigation of dopamine–opioid
interactions is warranted to characterize the sensitivity of
dopaminergic system and whether there is reduced function of
POMC-ergic hypothalamic neurons in PG.
In summary, we provide here the first evidence of a

dysregulated opioid system in PG with blunted amphetamine-
induced opioid release in the presence of normal MOR
availability. The evidence from PET imaging of dopaminergic
and opioid systems suggest that this behavioral addiction may
differ from substance addiction with regard to receptor
availability and release of endogenous neurotransmitters.
Characterizing dopamine–opioid interactions will inform our
understanding of substance and behavioral addictions as these
neurotransmitter systems are critically involved. The reclassi-
fication of PG (and renaming to disordered gambling) in
DSM-5 was based on evidence from epidemiological, clinical,
and neurobiological data demonstrating similarities between
PG and substance addiction (Clark and Limbrick-Oldfield,
2013). Therefore, further investigation of the neurobiology of
PG with direct comparisons with other addictions is required
to characterize their comparative neurobiology.
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