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Abstract

A new framework for applying anisotropic angular adaptivity in spectral wave modelling
is presented. The angular dimension of the action balance equation is discretised with
the use of Haar wavelets, hierarchical piecewise-constant basis functions with compact
support, and an adaptive methodology for anisotropically adjusting the resolution of
the angular mesh is proposed. This work allows a reduction of computational effort in
spectral wave modelling, through a reduction in the degrees of freedom required for a
given accuracy, with an automated procedure and minimal cost.
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1. Introduction

A wide range of different numerical models are now available which can be used for the
study of wave generation and propagation. These can be split into two main categories:
phase-resolving and phase-averaging [1]. Phase-resolving models, such as potential flow,
mild-slope, Boussinesq and full 3D Navier-Stokes models represent the sea surface ele-
vation in space and time and accurately account for the non-linear processes. They are,
however, computationally expensive and, thus, restricted to relatively small scale appli-
cations. Phase-averaging models are based on a spectral description of the waves and
though the non-linearities are represented by parametrised formulations, they are cheap
enough to be used on larger problem domains.
Spectral wave modelling first appeared after the introduction of the wave energy spectrum
by Pierson [2] and the introduction of the energy balance equation by Gelci [3]. Based on
linear wave theory, the sea surface elevation is composed of a superposition of harmonic
wave components and the energy spectrum E(x, y, f, θ, t) represents the energy content
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over frequencies f and directions θ, in space (x, y) and time t. All of the important
characteristics of the sea surface, such as the significant wave height or the mean period,
can then be seen as statistical parameters of the spectrum and derived from various
combinations of its moments mn =

∫ ∫
fnE(f, θ)dfdθ [4].

The energy spectrum is calculated based on the conservation of energy in an Eulerian
framework. A kinematic part representing the propagation of wave energy is balanced
with a set of source terms which represent wind generation, non-linear energy transfers
and wave dissipation. Various spectral wave models have been developed from as early
as the 1960s. So-called "first-generation models" did not account (or loosely accounted)
for non-linear wave energy interactions. "Second-generation" models used a simplified
parametrised form for these interactions, restricting the shape of the spectrum. A thor-
ough review of these early models can be found in [5].
The next milestone in spectral wave modelling came from the WAMDI group [6] with the
introduction of WAM, a model with improved formulations for the source terms and no
a-priori restriction on the shape of the spectrum. This framework was coined as "third-
generation" wave modelling and followed by rapid developments. Currents were included
in the formulation by rewriting the governing equation in terms of the action density
A = E/f , which is conserved in a relative frame of reference moving with the current [7].
The action balance equation was then extended to account for shallow water propagation,
such as shoaling and refraction and shallow water non-linear processes, such as triads and
depth induced breaking. For a thorough review of the most notable developments the
reader can refer to [8] and [9]. Today the most widely used third generation models by
the community are WAM [6] and WAVEWATCHIII [10] for global scales and SWAN [11]
for coastal applications.
The source parametrisations and the numerical schemes for spectral wave models are still
an active field of research. The last five years, for example, has seen the error levels for
the prediction of significant wave heights and mean periods in the middle of the ocean
drop by 20% and 30% respectively [12]. A further reduction in these errors necessitates an
increase in computational resolution, to resolve coastal processes while still covering large
domains [13]. An important step towards this direction has been the use of unstructured
meshes for the spatial discretisation [14, 15, 16, 17].
In the ocean circulation modelling community, the wide range of spatial and temporal
scales has motivated the development of spatially adaptive schemes, as a means of local
and anisotropic dynamical mesh refinement. Various techniques have been developed,
with examples including the structured tree-based hierarchical finite volume Gerris [18]
model and the unstructured finite element Fluidity [19] model. The first effort to apply
these techniques to the energy balance equation was made by Popinet et al. [20] who
combined the adaptive solver of Gerris with WAVEWATCHIII to develop a spatially
adaptive spectral wave model. In their work they showed a decrease of one to two orders
of magnitude in run-times for practical spatial resolutions. More recently Meixner [21]
was the first to apply adaptivity in phase space. By developing a discontinuous finite
element spectral wave model, p-adaptivity was applied both in geographic and spectral
space. Adjusting the order of the finite element expansions gave significant speed-ups
compared to using uniform higher order expansions, in a deep water propagation test
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case.
This work focuses on applying adaptivity for the refinement of the angular resolution.
It is not easy to quantify the directional distribution of ocean waves in a general frame-
work. Observations, however, show that the directional distribution tends to be sharp
around the peak frequency [22, 23]. As waves propagate outside of their generation area,
direction-dispersion further enhances this. Thus, in many cases the energy spectrum only
contains energy in a narrow band of directions. (This is even more obvious in coastal areas
where waves appear to come from a single direction). Viewed in this perspective, uniform
angular resolutions in spectral wave models are inefficient since for a specific point not
all angles have non-zero energy. The adaptive approach proposed here attempts to deal
with this problem though the use of compactly supported wavelet basis functions. These
can locally resolve details in the angular dimension resulting in a different angular mesh
for each computational point.
Wavelets, became an active field of research in the 1980’s, with the works of researchers
such as Morlet, Grossman and Daubechies [24] on signal processing. Starting as an
alternative to Fourier analysis, their popularity soon expanded, owing mainly to the
localised nature of wavelet basis in frequency and time, as well as their hierarchical
structure. This meant that a localised wavelet transform could be performed with a
variable-resolution reconstruction of a signal, which is ideal for applications such as data
and image compression [25, 26, 27]. These advantages soon drew the attention of the
numerical modelling community, as the aforementioned properties provided an efficient
framework for adaptive algorithms. Since then, wavelets have been applied to various
fields of numerical analysis, including turbulence modelling [28] and partial differential
equations such as the Navier-Stokes [29, 30], hyperbolic [31, 32] and parabolic systems
[33, 34]. A more comprehensive list of wavelets used in PDE’s can be found in [35].
Of more relevance to this work, is the use of wavelets for the discretisation of the Boltz-
mann transport equation, which provides a natural framework for spectral wave mod-
elling. Both the Boltzmann transport (in non-scattering media) and the energy balance
equations are multi-dimensional hyperbolic systems, dealing with the propagation of an
energy flux in geographic and phase space [36]. It is worth noting that the energy balance
equation is also known as the radiative transfer equation. In the case where only four-
wave interactions are considered for the source terms it is also known as the Boltzmann
equation [37, p. 30]. Buchan et al. [38] first applied linear and quadratic wavelets for
resolving the angular dependence of the Boltzmann transport equation, and then went
on to show how they can be used for the application of angular adaptivity [39]. Goffin
et al. [40] then extended this to apply goal-based measures to the error metrics driving
adaptivity.
In this paper Haar wavelets (named after Alfred Haar) – piecewise constant, hierarchical,
compactly supported basis functions – are used for the angular discretisation of the
action balance equation and the application of anisotropic angular adaptivity. Haar
wavelets are chosen for their simplicity, as well as the fact that they produce sparse system
matrices compared to higher order wavelet expansions. For a historical background and
an overview of wavelets in general and Haar wavelets in particular the reader can refer
to [41], while a more rigorous mathematical background and review of their numerical
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applications can be found in [42].
The paper is organised as follows. First in Section 2 the action balance equation and its
discretisation is presented. Then in Section 3 a brief theoretical background of wavelets
is given and the Haar wavelet functions are introduced. This is then followed by the
development of the adaptive framework and the description of the adaptive algorithm
in Section 4. Finally in Section 5 angular adaptivity is applied on both stationary and
time-dependent test cases and the benefits of the scheme are quantified, in terms of the
required degrees of freedom as well as computational run-times. The paper concludes
with a general overview of the results.

2. Action Balance Equation

2.1. Introduction

The action balance equation in Cartesian coordinates can be written as [4]

∂N

∂t
+

∂(cgx + ux)N

∂x
+

∂(cgy + uy)N

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
, (1)

where the action density spectrum N(r, θ, σ, t) (Jm−2 rad−3 s2) is dependent on geo-
graphical space r = (x, y) (m), spectral space (θ, σ), i.e. direction of travel θ (rad)
and relative frequency σ = 2πf (rad s−1), the frequency in a frame of reference mov-
ing with the current, and time t (s). Here Stot (Jm−2 rad−2 s) are the source terms,
cg = (cgx , cgy) =

(
cg cos(θ), cg sin(θ)

)
(ms−1) is the group velocity, u = (ux, uy) (ms−1)

is the current velocity and cσ (rad s−2), cθ (rad s−1), are the propagation speeds in the
frequency and angle dimension respectively. These propagation speeds are

cg =
1

2
(1 +

2kd

sinh(2kd)
)

√
g tanh(kd)

k
, (2)

cσ =
dσ

dt
=

∂σ

∂d

[∂d
∂t

+ u · ∇d
]
− cgk · ∂u

∂s
, (3)

cθ =
dθ

dt
= −1

k

[∂σ
∂d

∂d

∂m
+ k · ∂u

∂m

]
, (4)

where k = 2π/L (radm−1) is the wavenumber and k =
(
k cos(θ), k sin(θ)

)
the wavenum-

ber vector, L (m) is the wavelength, d (m) the bathymetric value, g (ms−2) the ac-
celeration due to gravity, and s (m) is a coordinate in the direction of propagation
ŝ =

(
cos(θ), sin(θ)

)
, while m (m) is a coordinate perpendicular to the direction of propa-

gation m̂ =
(− sin(θ), cos(θ)

)
. To evaluate these expressions the value of the wavenumber

is needed, which can be calculated from the dispersion relationship in a relative frame of
reference, i.e. a frame of reference moving with the current,

σ2 = gk tanh(kd). (5)
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2.2. Angular discretisation

In this work, for simplicity, wave-current interactions and source terms are neglected.
Omitting these, the action balance equation becomes

∂N(r, t, θ)

∂t
+∇ ·

(
cg(r, t, θ)N(r, t, θ)

)
+

∂
(
cθ(r, t, θ)N(r, t, θ)

)
∂θ

= 0. (6)

A finite element expansion is used for the representation of the angular dimension. An
arbitrary angular discretisation is considered, in which θ is represented by the span of
angular trial functions Gj, j ∈ {1, 2, ..., K}, such that

N(r, t, θ) ≈
K∑
j=1

Nj(r, t)Gj(θ). (7)

To derive the weak formulation of the problem a set of test functions is required. For this
work the Galerkin method is used [43], in which the trial and test functions are the same.
Weighting the action balance equation with the set of test functions Gi, i ∈ {1, 2, ..., K},
gives

∫
θ

Gi(θ)
∂N(r, t, θ)

∂t
dθ+

∫
θ

Gi(θ)∇ ·
(
cg(r, t, θ)N(r, t, θ)

)
dθ+∫

θ

Gi(θ)
∂cθ(r, t, θ)N(r, t, θ)

∂θ
dθ = 0, ∀ i ∈ {1, 2, .., K},

(8)

where θ is the one-dimensional angular coordinate. For the last term of (8), applying the
divergence theorem gives

∫
θ

Gi(θ)
∂cθ(r, t, θ)N(r, t, θ)

∂θ
dθ =∫

S

Gi(θ)cθ(r, t, θ)N(r, t, θ)n̂θdS −
∫
θ

dGi(θ)

dθ
cθ(r, t, θ)N(r, t, θ)dθ, ∀ i ∈ {1, 2, .., K},

(9)

where S corresponds to the boundary surface and n̂θ to the outward normal unit vector.
Given that the domain θ is one-dimensional S reduces to a point and n̂θ is 1 and -1 on
the two boundary nodes of each angular element respectively (figure 1).
A first-order upwind scheme is applied to resolve the angular inter-element boundary
conditions. This is used to ensure the successful implementation of the numerical schemes,
due to its simplicity and numerical stability, before higher order approximations are
applied (such as the QUICKEST scheme [44]). For a specific angular element j the flux
F = cθN from the two boundaries at j − 1

2
and j + 1

2
(figure 1) is
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• •n̂θ n̂θ

θ
j − 1 j j + 1

Fj−1/2 Fj+1/2

Figure 1: Example of an element j of the angular dimension θ, the angular flux Fj±1/2 and
the normals n̂θ at the element boundaries.

Fj− 1
2
= cθj− 1

2
Nj− 1

2
; Fj+ 1

2
= cθj+ 1

2
Nj+ 1

2
,

cθj− 1
2
= 0.5

(
cθj−1 + cθj

)
; cθj+ 1

2
= 0.5

(
cθj + cθj+1

)
,

Nj− 1
2
= Nj−1 cθ ≥ 0; Nj+ 1

2
= Nj cθ ≥ 0,

Nj− 1
2
= Nj cθ < 0; Nj+ 1

2
= Nj+1 cθ < 0.

(10)

Formulating the whole system in vector form gives

M
∂N(r, t)

∂t
+
(
Acg(r, t)

)
· ∇N(r, t) +∇ ·

(
Acg(r, t)

)
N(r, t) +Hθ(r, t)N(r, t) = 0, (11)

where

A = (Ax,Ay), (12)

Ax =
K∑
j=1

∫
θ

Gi(θ) cos(θ)Gj(θ)dθ, ∀ i ∈ {1, 2, ..., K}, (13)

Ay =
K∑
j=1

∫
θ

Gi(θ) sin(θ)Gj(θ)dθ, ∀ i ∈ {1, 2, ..., K}, (14)

M =
K∑
j=1

∫
θ

Gi(θ)Gj(θ)dθ, ∀ i ∈ {1, 2, ..., K}, (15)

Hθ =
K∑
j=1

Gi(θ)

{(
max(cθj+ 1

2
, 0) + min(cθj− 1

2
, 0)

)
Gj(θ) + min(cθj+ 1

2
, 0)Gj+1(θ)+

max(cθj− 1
2
, 0)Gj−1(θ)

}
+

∫
θ

dGi(θ)

dθ
cθ(r, t, θ)Gj(θ)dθ, ∀ i ∈ {1, 2, ..., K}.

(16)

Here A is a vector of matrices, with Ax,Ay being the K×K angular streaming matrices
in the x− and y− direction respectively. M is the K ×K angular mass matrix and Hθ

the K ×K angular refraction matrix.
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2.3. Temporal discretisation

To discretise time, a first-order implicit finite difference scheme is used. If the continuous
time-space is divided into discrete timesteps {t, t+1...}, then the action balance equation
can be expressed as

∂N(r, t, θ)

∂t
+ L

(
N(r, t, θ)

)
≈ N(r, θ)t −N(r, θ)t−1

Δt
+ L

(
N(r, θ)t

)
, (17)

where, to avoid lengthy equations, L is an operator representing the last two terms of
(6). Applying this to the vector form of the angularly discretised system (11) gives

M
1

Δt
N(r)t +

(
Acg(r)

t
)
· ∇N(r)t +∇ ·

(
Acg(r)

t
)
N(r)t +Hθ(r)

tN(r)t = M
1

Δt
N(r)t−1.

(18)

2.4. Spatial discretisation

Owing to the hyperbolic nature of the energy balance equation, schemes that exhibit
upwind bias are necessary such as discontinuous finite element, Petrov-Galerkin or Taylor-
Galerkin methods. As an alternative, here the spatial dimensions are discretised with
a sub-grid scale finite element method (SGS). The SGS method combines the benefits
of continuous Galerkin formulations, i.e. low computational cost, with discontinuous
Galerkin formulations, i.e. accuracy and stability. This is based on the work of Buchan
et al. [45], who used this methodology for the spatial discretisation of the Boltzmann
transport equation.
A full description of the SGS method is beyond the scope of this work, but a brief
description is presented below. To formulate the model, the spatial domain V ⊂ R

2 is
partitioned into a set of disjoint sub-domains Vj, j ∈ {1, 2, ..., η}. The full solution N(r)
is then decomposed into two components

N(r) = Φ(r) +Θ(r), (19)

whereΦ andΘ represent the coarse scale (continuous) and fine SGS scale (discontinuous)
components of the solution respectively. The coarse component’s approximation lies in
a continuous finite element space, spanned by the continuous trial functions Pj, j ∈
{1, 2, ..., ηP},

Φ(r) ≈ Φ̃ =

ηP∑
j=1

Pj(r)Φj, (20)

while the fine scale approximation lies in a discontinuous finite element space, spanned
by the discontinuous trial functions Qj, j ∈ {1, 2, ..., ηQ},
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Θ(r) ≈ Θ̃ =

ηQ∑
j=1

Qj(r)Θj. (21)

Given that Φ and Θ are angular vectors of size K, the terms Pj and Qj are K × K
diagonal matrices, containing the spatial basis functions for each angular element. By
weighting the equation using both sets of trial functions Pi and Qi a system of ηP + ηQ
equations is formed:

AΦ̃+ BΘ̃ = S̃Φ, (22)

CΦ̃+DΘ̃ = S̃Φ, (23)

where the sub-matrices are presented in appendix A. If (23) is now multiplied by D−1,
the subgrid scale solution becomes

Θ̃ = −D−1CΦ̃+D−1S̃Θ. (24)

Substituting this into (22) an expression for the resolved (coarse) solution is formed:

(A− BD−1C)Φ̃ = −BD−1S̃Θ + S̃Φ. (25)

Thus the continuous coarse solution Φ̃ is solved using (25) and then (24) is utilised to
calculate the discontinuous fine solution Θ̃. Finally the two components are added to
get the full discontinuous solution N (19). In this work both the continuous and the
discontinuous spaces are approximated with linear finite element basis functions (P1).

3. Wavelets

In section 2.2 an arbitrary angular discretisation is defined in (7), with the use of a set of
angular basis functions Gj. As mentioned in section 1, in this work the angular dimension
of the action balance equation is discretised with the use of wavelets. The section below
outlines the construction of these angular basis functions Gj, for Haar wavelets. This
allows for the calculation of the angular matrices of (13) - (16) and the construction of
the linear system of (24)-(25).

3.1. Multiresolution analysis

In general, wavelets are constructed with the use of multiresolution analysis (MRA)
[46]. First a MRA is built and then the wavelet family can be constructed with the
desired criteria. Thus, a small introduction to MRA is necessary. A multiresolution
analysis is a nested sequence Vj, j ∈ Z, of subspaces of L2(R), the set of all Lebesgue
integrable functions on the real line, i.e. the collection of functions f : R→ R such that∫
R
f 2dR <∞. The basic properties for a MRA are,
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1. Vj ⊆ Vj+1, j ∈ Z;
2.

⋃
j∈Z Vj is dense in L2(R);

3. At each level j, there exists a set of scaling functions φj,k, k ∈ K
′
(j) for some index

set K ′ , for which the set {φj,k | k ∈ K
′
(j)} forms a Riesz basis of Vj.

For numerical applications, these nested spaces can be used to approximate any function
f ∈ L2(R), by projecting f onto fj ∈ Vj. In particular, using the scaling functions which
span Vj the approximation becomes,

f ≈ fj =
∑
k

αkφj,k, (26)

where j is the level of the space, k is the index number of the scaling functions for each
level and αk are the expansion coefficients which need to be determined. The accuracy of
the expansion is then governed by the choice of j, as property 2 from above states that
f can be fully recovered in the limit j →∞.

3.2. Wavelet construction

Using the MRA, wavelets can be generated as a basis for the spaces Wj that complement
Vj in Vj+1, i.e. Vj+1 = Vj⊕Wj. These are denoted as { ψj,m | m ∈M(j) }, for some index
set M(j). Given that Wj is contained in Vj+1, so are the wavelet functions, i.e. ψj,m ∈
Wj ⊂ Vj+1. This means that the wavelet functions can be constructed as a combination
of the scaling functions spanning Vj+1,

ψj,m =
∑

k∈K(j+1)

vj,m,kφj+1,k. (27)

Recursively applying the relationship Vj = Vj−1 ⊕ Wj−1 gives,

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1 = ... = Vl ⊕j−1
n=l Wn. (28)

Finally combining this with property 2 above yields,

L2(R) = Vl ⊕∞
n=l Wn. (29)

Equation (29) defines a basis for L2(R) using the scaling functions in Vl, where l is the
starting level for the scaling functions, and the wavelet functions spanning Wn, n ∈
{l, l + 1, ...,∞}. Thus any function f ∈ L2(R) can be also expressed as combination of
scaling functions and wavelets as

f =
∑

k∈K(l)

αkφl,k +
∞∑
n=l

∑
k∈M(n)

βn,kψn,k. (30)

Finally, projecting f onto fj ∈ Vj ⊂ L2(R) yields
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V0

V1

V2

V3

i1

i1 i2

i1 i2 i3 i4

i1 i2 i3 i4 i5 i6 i7 i8

Figure 2: Haar wavelet MRA of the 2π angular domain. Each space Vl has 2l subdivisions.

f ≈ fj =
∑

k∈K(l)

αkφl,k +

j−1∑
n=l

∑
k∈M(n)

βn,kψn,k. (31)

3.3. Haar wavelets

Before moving on to the presentation of Haar wavelets, the space Vj must be defined
in terms of the governing equation. Wavelets are used for the angular discretisation of
the action balance equation and thus, Vj represents the angular domain θ ∈ {0, 2π}. In
particular given a specific level l of the MRA, Vl is split into 2l subdivisions (figure 2).
The Haar scaling functions, are piecewise constant functions within those intervals:

φl,k(x) =

{
1 if x ∈ ik,

0 otherwise.
(32)

The Haar wavelets are defined as

ψn,k(x) =

⎧⎪⎨
⎪⎩
1 if x ∈ i2k−1,

−1 if x ∈ i2k,

0 otherwise,
(33)

where n ∈ {l, l + 1, ..., j − 1} for Vj. The hierarchy of scaling functions and wavelets
is presented in figure 3. First, the scaling functions are expanded on Vl. On the first
wavelet level, Wl, wavelets span the same space as the scaling functions in Vl. For every
new level the number of wavelets doubles and thus each new wavelet supports half the
space.
If (32) and (33) are substituted into (31), the Haar wavelets’ approximation for any
function in L2(R) becomes,

f(x) ≈
2l∑

k=1

αkφl,k(x) +

j−1∑
n=l

2n∑
k=1

βn,kψn,k(x). (34)
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φ2,1
V2V2

ψ2,1
W2V3

ψ3,1 ψ3,2
W3V4

ψ4,1 ψ4,2 ψ4,3 ψ4,4
W4V5

Figure 3: Example of Haar wavelets on a quadrant of the 2π angular domain. Each Vj

space (denoted on the left) is reproduced by Vj = Vl ⊕j−1
n=2 Wn (denoted on the right).

Space V5 can be thus reproduced by V5 = V2 ⊕W2 ⊕W3 ⊕W4.

Equation (34) shows that any function in L2(R) can be approximated, with a linear
combination of the scaling functions on level l and the wavelets on levels n ∈ {l, l +
1, ..., j−1}. Henceforth, the Haar wavelet discretisation is referred to asHW l,j. Following
(28),

HW l,j = Vl ⊕Wl ⊕Wl+1 ⊕ ....⊕Wj−1 = Vj. (35)

HW 2,5 for instance has 22 scaling functions in V2, 22 wavelets in W2, 23 wavelets in W3

and 24 wavelets in W4. The resulting space is V5 with a cumulative number of functions
equal to 25 = 32 (figure 3). To visualise the angular mesh, polar plots are used that show
the position of the functions (middle point) for all the levels (figure 4).

3.4. Calculating the angular matrices

Equation (34) provides an expression for representing a function with Haar wavelets.
Assuming the levels of the scaling functions and wavelets are known, the number of
functions used for the projection is also known. Then (34) can be condensed to the
single summation given in (7):

N(r, t, θ) ≈
K∑
j=1

Nj(r, t)Gj(θ), (36)
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(a) HW 2,5 → 32 functions (b) HW 3,5 → 32 functions (c) HW 3,6 → 64 functions

Figure 4: Polar plots for various Haar wavelet expansions. Each concentric circle represents
the spaces: {Vl,Wl,Wl+1, ...,Wj−1}, for a HW l,j discretisation.

where Nj corresponds to the coefficients α, β and Gj to the functions φ and ψ of (7).
Thus, scaling functions and Haar wavelets are now simply referred to as angular basis
functions. Having the approximation for the angular dependence of the action density,
all that is needed for the implementation of Haar wavelets is to calculate the angular
matrices Ax, Ay, M, Hθ of (13) - (16), presented in section 2.2.
The vast majority of the available spectral wave models, use a finite difference approxi-
mation for the angular dimension. This is the equivalent of a cell centred finite element
P0 discretisation. In the Boltzmann transport community this is known as discrete or-
dinates or SN [36]. If the angular matrices are calculated for this expansion then there
exists a mapping operator W , which maps the P0 space to the Haar space (both are
piecewise constant, so the mapping is exact). The relationship is

WNW = NP0, (37)

where NW and NP0 correspond to the action density approximated in the wavelet space
and the P0 finite element space respectively. This mapping is applied to the angular
matrices by pre-multiplying and post-multiplying by WT and W respectively as,

AW
x =WT AP0

x W . (38)

The mapping matrix W is a square matrix of 1’s, -1’s and 0’s. The use of the mapping
operator simplifies the implementation of Haar wavelets, allowing them to be built on
existing conventional frameworks. This is particularly useful for the calculation of the
source terms (which are not included in this study).

4. Angular adaptivity

The application of anisotropic angular adaptivity, i.e. allowing the model to use a differ-
ent angular discretisation for each spatial node, would normally require the reconstruction
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of the angular matrices (13) - (16) for each spatial node at each adaptive time-step. This
can be a cumbersome task with a significant computational cost. Fortunately, the whole
process can be easily simplified with the use of hierarchical expansions, such as the Haar
wavelets used here. To make this clear, assume that a uniform expansion is applied
globally. The coefficients of this expansion will be high at spatial nodes where the action
density is high, and low in areas of low action density. As these coefficients get smaller a
filter can be applied to zero them out and eventually remove them from the expansion.
This is known as thresholding and used for data compression [41].
Applying this on an adaptive framework, the angular matrices are calculated for a uniform
expansion, and for each spatial node only the coefficients that are above the threshold are
added to the final system. This is where the real benefits from the use of Haar wavelets
can be seen, due to their compact support; every time a new level gets added the support
of the wavelets becomes smaller, focusing on more detail in the angular domain. Thus, an
adaptive scheme with wavelets, allows for the concentration of angles on specific patches
of the angular domain for each spatial node. This can significantly reduce the total
number of basis functions. An added benefit of their hierarchical nature is that there
is no need to interpolate between consecutive angular meshes. Projecting one adapted
angular mesh onto the next simply consists of copying the existing angular coefficients
over to the new angular mesh.
Thus, adapting in this framework simply consists of thresholding the angular coefficients
every time the system gets assembled; the cost of adaptivity is negligible. The added
cost comes from the use of wavelets. Compared to a P0 angular expansion, wavelets lead
to denser angular matrices which means that for a uniform (non-adapted) expansion
wavelets will be slower. However, Haar wavelets are still sparse, i.e. the extra cost
is small, and the ability to have a variable angular mesh compensates for the added
computational effort.

4.1. Error measure

Haar wavelets provide a natural framework for identifying the regions where the action
density is under- or over- resolved and hence the computational resolution should be
altered. Each wavelet coefficient gets smaller as its importance becomes smaller. Thus,
a magnitude-based error metric can be defined to indicate whether a wavelet coefficient
is sufficiently small to be removed, or sufficiently large for its higher level hierarchical
wavelets to be added. A simplified example is presented in figure 5.
Buchan et al. in [39] suggest that an appropriate error metric to be used is NjGjAj

where Nj is the angular coefficient, Gj the basis function and Aj the support area of the
basis function. However, for the Haar wavelets the basis functions switch between 1 and
−1 and, after some initial results, the introduction of the area did not appear to have a
significant impact. Thus, the error metric is implemented as

Ni > τ. (39)

If the angular coefficient is greater than a user-defined tolerance value τ then the error
is considered significant, suggesting that more resolution should be added to this region,
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Figure 5: Simplified example of the angular adaptive scheme. Starting from the left
sketch the red basis function suggests that the respective next level (dashed line) basis
functions(green) should be added, i.e. the wavelet coefficient is bigger than the tolerance
Ni > τ . The central sketch shows that one of the two newly added basis functions can
be removed (yellow), while the other requires yet another level. The sketch on the right
shows the final adapted system.

i.e. wavelets from the next level should be included. This could be repeated until enough
levels have been added, such that none of the values for Ni are bigger than τ . However,
in practice it is better to restrict the maximum number of levels. This means that both
a HWl,jinit and a HWl,jmax are defined, for the initial and finest possible discretisation
respectively.
Finally a way to remove basis functions is also needed to ensure that there are no over-
resolved regions. This threshold is set to Nj < 0.01τ ; every time an angular coefficient
is smaller than 0.01τ it is removed. This does not apply to scaling functions.

4.2. Adaptive procedure

The overall adaptive procedure can be described as,

1. Start with aHW l,jinit discretisation, choose the maximum value jmax and a tolerance
value for the error metric τ (39).

2. Run the non-adapted HW l,jinit system.
3. Loop every angular coefficient Ni for every spatial node and evaluate if they are
within the error bounds,

if Ni/τ > 1 → If not at max level, add the next level functions for Ni,

if Ni/τ < 0.01 → If not a scaling function, remove Ni,

if 0.01 ≤ Ni/τ ≤ 1 → Keep Ni.

4. Reassemble the system matrices (section 2.4), but only add the components of the
angular matrices, corresponding to the adapted angular coefficients.

5. For stationary simulations, repeat the above process until convergence (i.e. the
algorithm has stopped changing the angular mesh), or a maximum number of adapts
has been reached.

6. For non-stationary applications, choose an adapt period to specify at which time-
steps the adaptivity algorithm will be evoked.
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Owing to the SGS method (section 2.4), the action density is discontinuous. The system
that gets assembled, however, is continuous. A continuous error metric is, thus, necessary
to apply to the adaptive algorithm. One way to derive this is by looping over the elements
containing the same nodes and keeping the maximum values. Even though the frequency
discretisation is omitted in this study, it is worth mentioning that in the case of multiple
frequency groups a similar approach can be used to get a single error value for all groups.
The frequency groups are looped over and the maximum value for the action density is
kept for the error metric.
Finally a note on the use of the scaling functions. Given that HW 2,5 and HW 3,5 both
result in the same number of basis functions (see figure 4), one could enforce the scaling
functions to always start from the same level, i.e. level l = 0, and simplify the repre-
sentation of wavelets to HW j. However, the scaling functions are the only angular basis
functions that the adaptive algorithm cannot remove; thus by changing l, the minimum
number of basis functions can be easily controlled giving an extra degree of freedom in
the adaptive procedure. This could prove important in transient simulations when the
wave field changes abruptly. The adaptive algorithm might not have enough time to
resolve these areas and a minimum number of functions could be necessary to provide an
accurate representation.

5. Numerical results

To present the adaptive framework and attempt to quantify its benefits two test cases
are selected. The first one is a stationary depth-induced shoaling and refraction test
case, routinely used to benchmark spectral wave models. This is a highly directional
problem, where the angular resolution dominates the errors. The second is an idealised
deep water propagation scenario which is a standard test case for studying the "Garden
Sprinkler Effect" (GSE). The GSE is a direct result of the angular discretisation and
thus highly sensitive to the angular resolution. Since no effort has been spent to optimise
the code, the results are not compared against other spectral wave models. Instead Haar
adaptivity is compared against uniform resolutions within the same code to demonstrate
the advantages of the proposed numerical framework.

5.1. Depth-induced shoaling-refraction

A plane beach front is considered, represented by a 4000 m × 4000 m domain, with a
bathymetric slope of 1 : 200. A long wave enters from the deep eastern boundary with
d = 20 m, at an angle of 210◦ (measured counter-clockwise for the positive x-axis),
propagating towards the shallow western boundary with d = 0.05 m (figure 6a). As the
wave encounters shallower waters, it slows down, causing its wave length to decrease and,
thus, its wave height to increase (shoaling). To account for this, the spatial mesh has
a variable element size, starting from an edge length of 600 m and going down to 20 m
(figure 6b). As different parts of the wave-train travel with different speeds, the wave
also turns (refraction).
To test shoaling and refraction, a monochromatic wave is set-up with a significant wave
height of 1 m, a frequency of 0.1 Hz and a cos500(θ) directional distribution (this results
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(a) Set-up. (b) Spatial mesh.

Figure 6: Depth induced shoaling and refraction. Set-up explanation and spatial mesh.
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Figure 7: Validation for depth induced shoaling and refraction. A P0 angular discretisa-
tion with 400 angles compared against the analytical solutions of (40) and (41).

in a directional width of σθ = 2.5◦, where σθ is the standard deviation of the directional
distribution [47]). The significant wave height and the angle of direction can be compared
to,

H2

H2
i

=
cgi cos(θi)

cg cos(θ)
, (40)

sin(θ)

sin(θi)
=

c

ci
, (41)

where H is the significant wave height, θ is the direction, cg and c the group and phase
velocity respectively, while i denotes the incident value.
First the P0 angular discretisation is tested with 400 angular degrees of freedom (Δθ =
0.9◦). The results of the simulation plotted along the y = 1000 m line (green line of figure
6a) are presented in figure 7, showing good agreement for both shoaling and refraction.
A refraction convergence test for the uniform P0 angular mesh is presented in figure 8.
For each simulation the number of angles is doubled and the discrete root-mean-square
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Figure 8: Depth induced refraction. Convergence tests for uniform P0 and HW 3,j, jmax

∈ {4, 5, 6, 7, 8, 9, 10}, adaptive discretisations for various tolerances: τ = 1 τ = 10−1

, τ = 10−2 . TheHW3,j points correspond to the results after the adaptive algorithm
converges.

(RMS) error plotted, compared to (41), along the y = 1000 m line. This is presented
by the blue line in figure 8, where first order convergence (p + 1) is achieved. In these
simulations, the angles are uniformly applied to all the spatial nodes of the domain.
However the directional width is narrow which means that as the angular mesh is refined,
a very small number of the angles have a non-zero action density.
Adaptive Haar wavelets are now used and compared to the uniform P0 results. For the
application of angular adaptivity in stationary simulations it is advised to start with
a coarse angular mesh, i.e. at the scaling function level. Each adaptive iteration then
gradually introduces new angular basis functions, until the system converges, i.e. the
algorithm stops changing the angular mesh and there is no change in the action density.
This way the computational costs are small and only grow according to the errors of the
simulation. In practice the convergence criteria should be relaxed to a percentage of the
change of the action density (or the significant wave height), as after a point the change
in the action density will be too small to justify the extra cost of re-running the system.
For each HWl,j simulation the scaling function and initial levels are jinit = l = 3. The
maximum level jmax is increased and the RMS error is plotted, compared to (41), along
the y = 1000 m line. The results for a HW 3,j, jmax ∈ {4, 5, 6, 7, 8, 9, 10}, discretisation
with tolerances τ ∈ {1, 10−1, 10−2} are presented in figure 8.
For a tolerance τ = 1, as jmax increases the errors appear to level out. As new levels are
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introduced, the values of the action density coefficients Ni become smaller, until they are
ignored by the adaptive algorithm. Thus, even though jmax increases there is not enough
resolution to represent the directional distribution of the action density and the errors
stop decreasing. This is a clear indication that the selected tolerance value is too large.
Decreasing the tolerance to τ = 10−1 amends this and produces errors comparable to
the uniform resolution discretisation. A further reduction of the tolerance to τ = 10−2

produces similar errors to τ = 10−1, with a higher number of angular basis functions.
This means that as the tolerance is further decreased, new basis functions are introduced
that do not have a significant impact on the errors of the simulation. Indeed, for an
infinitesimal value of τ adaptivity should uniformly add all the angular basis functions
producing the same results as the uniform P0 discretisation. It is the balance between
accuracy and computational costs that ultimately defines the tolerance value.
In terms of the computational degrees of freedom, the adaptive HW3,j discretisations
consistently use fewer degrees of freedom compared to the uniform P0 discretisations.
The error level for a P0 angular discretisation with 128 angles is achieved with almost
an order of magnitude less degrees of freedom by the adaptive HW3,7 discretisation.
Moving towards finer angular meshes, this difference becomes even bigger, showing the
advantages of angular adaptivity for high fidelity results.
To see how this translates in computational times, the results with a tolerance τ = 10−1

are isolated and the errors against the run-times are plotted in figure 9. These are the
results after each simulation has converged. For the same error levels adaptive HW3,j

discretisations run consistently faster, with differences approaching an order of magnitude
for fine resolutions. For the uniform P0 angular discretisation with 128 angles, the same
error is achieved by the HW3,7, six times faster. It is worth noting that the HW3,j

converges after ten adapts, i.e. solving ten times the adapted system is six times faster
than solving the uniform system once.
Finally in figure 10 the polar wavelet plots for a HW 3,10 discretisation with a tolerance
of τ = 10−1 are presented for three different locations with coordinates: (0 m, 1000 m),
(2000 m, 1000 m), (4000 m, 1000 m), or point a,b and c in figure 6a. As the wave
propagates from point c to point a, its mean direction shifts from 210◦ to 180◦. The
angular basis functions follow the change of the mean direction refining only the patches
of the angular domain that are active for each spatial node.

5.2. Deep water propagation

An inherent problem of the phase-space discretisation is the spurious separation of energy
into the discretised bins. This is called the "Garden Sprinkler Effect" and has has been
extensively studied in [48, 49, 20]. (In the Boltzmann transport community this is known
as the ray effect). To showcase this effect in the angular dimension, a large spatial domain
(4000 km× 4000 km) is simulated, with a monochromatic wave propagating over a long
distance in deep water (d = 10000 m). For the spatial discretisation a structured triangle
mesh is used, with an element edge length of 67 km (figure 11a). The initial wave field,
located 500 km from the lower and left side has a Gaussian distribution in space, with
a significant wave height of Hs = 2.5 m and a standard deviation of 150 km (figure
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Figure 9: Depth induced refraction. Convergence tests for uniform P0 with
{16, 32, 64, 128, 256, 400} angles and HW 3,j, jmax ∈ {4, 5, 6, 7, 8, 9, 10}, adaptive dis-
cretisations for a tolerance τ = 10−1 . The HW3,j points correspond to the results
after the adaptive algorithm converges.

(a) Point a (b) Point b (c) Point c

Figure 10: Polar plots for a HW 3,10 discretisation for points: a = (0 m, 1000 m), b =
(2000 m, 1000 m), c = (4000 m, 1000 m) in figure 6a.
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(a) Spatial mesh (b) Initial field

Figure 11: Spatial mesh and initial conditions for the deep water propagation test case.

(a) P0 - 16 angles (b) P0 - 32 angles (c) P0 - 64 angles

Figure 12: Significant wave height after 5 days of deep water propagation, for a P0 angular
discretisation with various angular resolutions.

11b). Its mean direction is 30◦ with an angular distribution of cos2(θ) and a frequency of
0.1 Hz. The simulation is time-dependent and runs for 5 days with a time-step of 600 s.
In figure 12, the results at the final timestep for a P0 angular discretisation with 16,
32 and 64 basis functions are presented. As the wave propagates, it breaks up into
the paths of the prescribed directions; the coarser the angular discretisation, the more
intense the GSE will be. This is also connected to the numerical diffusion of the spatial
discretisation. Higher order schemes have a lower numerical diffusion, which intensifies
the GSE. This essentially means that increasing the resolution in geographic space makes
the GSE worse.
The obvious solution is to increase the number of angles. However, in the multidimen-
sional framework of the action balance equation increasing the number of angles globally
significantly affects the computational costs. With a finite element expansion, as the one
presented here, doubling the angular basis functions quadruples the size of the angular
matrices. This increased computational cost for finer angular resolutions, led to the use
of a diffusion correction term by [48], which smears out the action density depending on
the wave age. By knowing how much the wave field has propagated, it can be spread
accordingly to alleviate the GSE. Calculating the wave age, however, is costly, leaving
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(a) t = 2 days. (b) t = 3.5 days. (c) t = 5 days.

Figure 13: Significant wave height for an adaptive HW 2,6 discretisation with tolerance
τ = 10−6 at several time levels.

(a) t = 2 days. (b) t = 3.5 days. (c) t = 5 days.

Figure 14: Absolute difference in significant wave height between a P0− 64 angle and an
adaptive HW 2,6 discretisation with tolerance τ = 10−6 for various time levels. Colorbar
in logarithmic scale.

the age as a tunable coefficient, which introduces inaccuracies.
Here, as an alternative, angular adaptivity is used, to increase the accuracy of the solution
while keeping the computational cost at a minimum. A HW 2,6 discretisation is applied,
with a tolerance value of τ = 10−6. This introduces a maximum of 26 = 64 basis
functions, making the results comparable to the uniform P0 with 64 angles. By starting
the simulations at the scaling function level, as in the stationary example, the initial
cos2(θ) distribution is only represented by 4 angles. This of course introduces errors
which then propagate throughout the simulation. Thus, the simulation starts at the
maximum angular discretisation jinit = jmax. (An alternative would have been to be able
to adapt a few times at the first timestep before propagating in time). Given that the
cost of adapting is negligible, adaptivity is activated at each time-step.
In figure 13 the adaptive run is presented at various time levels, while figure 14 shows the
difference between the significant wave height for the HW 2,6 and P0 − 64 angles runs.
The results are readily comparable, with differences in the order of mm.
However, capturing the solution is only part of the goal, as the objective is the reduction
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(a) t = 2 days. (b) t = 3.5 days. (c) t = 5 days.

Figure 15: Angular mesh, i.e. number of angular basis functions, for aHW 2,6 discretisation
with tolerance τ = 10−6 at various time levels. The polar plots for the points denoted by
the yellow dots are presented in figure 16.

(a) t = 2 days. (b) t = 3.5 days. (c) t = 5 days.

Figure 16: Polar plots of a HW 2,6 discretisation for the points in figure 15, at their respec-
tive time levels.

of the computational cost. To showcase this, the angular mesh, or the distribution of
the number of angular basis functions in space, is presented in figure 15. The angular
mesh can be seen to be following the propagation of the wave field, surrounding the area
around it. It is worth observing that the maximum errors in figure 14 occur at the edges
of this area. The smaller the prescribed tolerance, the bigger the region of increased
adapted angles will be and thus the smaller the error.
Finally in figure 16 the polar plots for the three geographical points denoted by the yellow
dots in figures 15a–15c, are presented at their respective time levels. For each point, the
wave field has a different mean direction and directional distribution. Adaptivity adjusts
the number and position of angular basis functions accordingly.
To better quantify the savings in the computational costs from using angular adaptivity
a convergence test is now presented. First the P0 angular discretisation is tested. With
300 angles used to construct the reference solution, the number of angles is gradually
increased and the l2 norm of the significant wave height for the final timestep is plotted
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against the run-time. This is presented in the blue line of figure 17.
For the adapted runs, a HW 2,j, jmax ∈ {3, 4, 5, 6, 7, 8}, discretisation is used with toler-
ances τ ∈ {10−6, 10−7, 10−8}. The results are presented in figure 17. As jmax is increased
the maximum number of basis functions is doubled and the HW2,j lines move towards
higher run-times and smaller errors. Using a smaller tolerance value, adaptivity inserts
more angles and thus the run-times are higher. However, up to jmax = 7 the errors are
the same for all tolerances, i.e. the extra angular basis functions that are inserted do not
significantly impact the error. A significant difference can only be seen for the last value
of jmax = 8. This is the point where the accuracy of the solution is comparable to the
tolerance limit and thus decreasing the tolerance produces better results. For the case
of τ = 10−8 the highest value of jmax = 8 gives the same error values as the respective
uniform P0 runs. This is a useful guide to how the tolerance should be tuned depending
on the desired accuracy.
The adaptive simulations are consistently faster compared to the uniform resolution ones.
The same error produced by a uniform P0 angular discretisation with 128 angles is
achieved almost an order of magnitude faster by the HW2,7 adaptive discretisation. As
the angular resolutions increase this difference becomes bigger. This is due to the reduced
number of degrees of freedom, as is evident in figure 18, where the mean number of angular
basis functions for a tolerance of τ = 10−6 is plotted at each time level. At the first time
level, the simulation starts with the maximum number of angles so as to accurately
represent the initial angular distribution. After the first adapt, the mean number of
basis functions immediately drops and the simulations run consistently with up to an
order of magnitude fewer degrees of freedom. As the wave field propagates it spreads
covering a larger computational area. Thus, the degrees of freedom increase towards
higher time levels, only to decrease again when parts of the wave field exit the domain.
This constant adjustment of the degrees of freedom ensures that the computational costs
are always optimised depending on the desired accuracy.

6. Conclusions

Due to the multidimensional nature of the action balance equation, the computational
costs associated with its solution renders the use of high fidelity discretisations expensive
and inefficient. This means that in realistic domains, the number of angles used needs
to be kept small. In general, however, sea surface wind-wave fields are directional and
thus in most cases the majority of angular degrees of freedom do not significantly impact
on the accuracy of the solution. What is more, the mean direction of the wave field is
constantly changing and the rate of this change is subject to external forces, such as
the wind, currents and the bathymetric slope. Hence, a-priori estimation of the required
angular mesh resolution is challenging.
To resolve this problem, this paper introduces a new framework for applying angular
adaptivity in spectral wave models. The method employs hierarchical angular expan-
sions, using Haar wavelets to represent the angular dependence of the action density.
The adaptive procedure uses the hierarchy and compact support of wavelets to locate
the areas on the angular mesh that are under-resolved and increase the number of angular
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Figure 17: Error against run-time for the deep water propagation test case. Results for P0
with {8, 16, 32, 64, 128, 256} angles and HW2,j, jmax ∈ {3, 4, 5, 6, 7, 8}, for tolerances:
τ = 10−6 , τ = 10−7 , τ = 10−8 . Each point corresponds to the error compared
to a uniform P0 discretisation with 300 angles, at the final time level.
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Figure 18: Mean number of angular basis functions against timelevel for the deep water
propagation test case. HW2,3 , HW2,4 , HW2,5 , HW2,6 , HW2,7 , HW2,8

, for a tolerance of τ = 10−6.

functions to locally refine the resolution. At the same time, areas that are over-resolved
are identified and functions removed to decrease the global degrees of freedom without
negatively impacting on the accuracy. By controlling the minimum and maximum num-
ber of basis functions, as well as the tolerance for the error metric the balance between
errors and computational costs is easily managed.
The method is applied to a steady state depth induced shoaling-refraction test case,
as well as a transient large scale propagation test case. The adaptive results are veri-
fied against a uniform resolution discretisation and the gains in terms of computational
degrees of freedom and run-times are quantified.
Wavelets are constantly rearranged for each geographic point following the mean direc-
tion and capturing the directional distribution of the wave field. Thus, the same error
levels, compared to a uniform expansion, are achieved in both cases with lower computa-
tional costs and faster run times. In particular, for an angular resolution of 128 angles,
adaptivity runs with an order of magnitude less degrees of freedom compared to the uni-
form resolution. This translates in six times faster run-times for the shoaling-refraction
test case and almost an order of magnitude faster run times for the large scale propaga-
tion test case. This refers to the total run-times including both the linear solves and the
adapt process. The difference widens as the angular mesh is further refined, showing the
advantage of adaptivity for high fidelity results.
In all the results presented the objective is to show that adaptive wavelets can repro-
duce the same errors as the equivalent uniform resolution angular meshes. Thus, the
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convergence criteria are strict and the tolerance limits low. In practical simulations the
convergence criteria and tolerance limits need to be linked to the change of the significant
wave height, which will result in fewer angular basis functions and, thus, faster run-times.
Speed-ups can also be achieved by optimising the scheme, such as exploiting the sparsity
of the angular matrices for the mapping.
Haar wavelets provide an effective framework for applying anisotropic angular adaptivity,
refining the angular resolution according to the desired accuracy while at the same time
reducing the computational costs. This can push spectral wave models towards higher
resolutions and help bridge the gap between coarse large scale and fine coastal zone
simulations.
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Appendix A. Sub-grid scale matrices

The sub-grid scale matrices A,B, C,D, are,

Ai,j =

∫
V

PiM
1

Δt
PjdV +

∫
V

PiHθ(r)
t,σPjdV +

∫
V

PiHf (r)
t,σ 1

Δf
PjdV

+

∫
Γ

Pi

[(
Acg(r)

t,σ +Mu(r)t,σ
)
· n

]
PjdΓ−

∫
V

∇Pi ·
(
Acg(r)

t,σ +Mu(r)t,σ
)
PjdV

(A.1)

Bi,j =

∫
V

PiM
1

Δt
QjdV +

∫
V

PiHθ(r)
t,σQjdV +

∫
V

PiHf (r)
t,σ 1

Δf
QjdV

−
∫
V

∇Pi ·
(
Acg(r)

t,σ +Mu(r)t,σ
)
QjdV (A.2)
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Ci,j =
∫
Ve

QiM
1

Δt
PjdV +

∫
Ve

QiHθ(r)
t,σPjdV +

∫
Ve

QiHf (r)
t,σ 1

Δf
PjdV+

∫
Ve

Qi

(
Acg(r)

t,σ +Mu(r)t,σ
)
· ∇PjdV +

∫
Ve

Qi∇ ·
(
Acg(r)

t,σ +Mu(r)t,σ
)
PjdV

(A.3)

Di,j =

∫
Ve

QiM
1

Δt
QjdV +

∫
Ve

QiHθ(r)
t,σQjdV +

∫
Ve

QiHf (r)
t,σ 1

Δf
QjdV+

∫
Γe
out

Qi

[(
Acg(r)

t,σ +Mu(r)t,σ
)
· n

]
QjdΓ−

∫
Ve

∇Qi ·
(
Acg(r)

t,σ +Mu(r)t,σ
)
QjdV

(A.4)

SΦi
=

ηQ∑
j=1

∫
V

NiSjQj (A.5)

SΘi
=

ηQ∑
j=1

∫
V

QiSjQj (A.6)

where i, j correspond to block matrices of size KxK, i.e. they contain the angular
discretised information on each spatial node. The integral

∫
Γout

dΓ refers to the outgoing

component of the boundary integral
∫
Γ

dΓ.
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