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A. Graphene’s conductivity

The conductivity of graphene depends on frequency, w, chemical potential of the sheet,
i, and temperature, 7' (we use T = 300 K throughout this paper). It consists of a sum
of intraband and interband contributions, ¢ = Oiutra + Tinters Which can be written in the

random phase approximation [2] as follows,
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where we have used a normalized frequency, 2 = hw/u, and temperature t = kgT'/p. In
addition, we have introduced a damping term, v = h/(u7), where 7 = mu/v% is the carriers’
scattering time (m is the mobility and vg the Fermi velocity).

In the main text we have used a mobility m = 10°, which at 4 = 1 eV corresponds to
a scattering time of 7 = 10 ps. Figure S2 shows the absorption peaks for two conductivity
gratings of parameters wy = 1.5 (a) and wy = 2.5 (b) for 7 = 10 ps and for a more realistic
value of the scattering losses in graphene, 7 = 1 ps. For the latter case the lower order
plasmon peaks are still visible despite the broadening of the absorption peaks due to losses.

The result for an infinite scattering time is also shown for reference (dashed line).

B. Fourier expansion coefficients of the coordinate transformation

The conformal transformation used in the main text,

1 .
w = fylog (ez——l’wo + zyo) s (83)
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FIG. S1. Absorption spectrum at normal incidence for different grating modulation strengths, (a)

wp = 1.5 and (b) wy = 2.5, and for different values of the scattering times for the electrons in

graphene.

with z = z + iy and w = u + iv, can be written as a Fourier series [1],
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with the following expansion coefficients,
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provided that z is between the branch points at x = log(wg) and z = log(wg + 1/yo).
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C. Conductivity profile

An infinitely thin graphene sheet of conductivity o, can be modelled as a thin layer of

thickness dp and permittivity,

o
=1+i—2. S.10
69 +ZW60(50 ( )

Under the transformation (S.3) the conductivity of the thin sheet transforms as,

o(v) = ag% : (S.11)

where dy is the scaling factor and §(v) is the inhomogeneous thickness of the graphene in
the grating frame. An analytical expression for d(v) and hence for the conductivity profile
can be obtained by using the Fourier expansion of the transformation.

Let us assume that the right boundary of the graphene sheet in the slab frame is placed
at x = b, and its left boundary at x = b — dyg. The formula for u above allows us to calculate

the thickness d(y) in the grating frame,

6(y) = |u(b) — u(b — do)| (S.12)
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Using only the first order Fourier term,
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where we have used d] = %m, dt, = %(wolf/yo) = —df, d; = Fwp and dZ; = fwy =
—d; . For ¢y < 1,

(y) = oo | =1+ 2i (df €® — dye ") sin(y)] . (S.14)

Finally, in order to obtain §(v) we need an analytical expression for y(v). To zeroth order
we have y = —v/7 and, up to an additive constant, A, we can write an explicit expression

for the sinusoidal dependence of §(v)
§(v) ~ Sy [A+2i (df €® — dye") sin(v/v)] , (S5.15)
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which is accurate for moderate modulations wy < 2. Then from Eq. S.11 we get that the

conductivity in the transformed frame is given by

o(v) =04 [A+2i (df e’ — dye ) sin(v/7)] (S.16)

D. Fourier components of the gratings

Here we provide the numerical Fourier coefficients of the modulation profile of the con-
ductivity grating, as well as of the geometric relief of the dielectric grating. In both cases,
the modulation can be expanded in Fourier terms as

fw)=ao+ Z [ay, sin(wv) + b, cos(wv)] (S5.17)
The relative weight of the coefficients a,, and b, with respect to a; is shown in Fig. S1 for
the weak and strong modulations. The top panel corresponds to the conductivity grating

and the bottom panel to the dielectric grating.
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FIG. S2. Relative weight of Fourier coefficients a,, and b,, for Fourier components n ranging from

0 to 8. Top panel: conductivity grating profile. Bottom panel: dielectric grating relief profile.



E. Optical response under plane wave illumination: conductivity grating

Here we summarize the main steps needed for the derivation of the reflection and trans-
mission coefficients. The derivation closely follows that of Ref. [1], where a more detailed
account can be found. Here we provide details of the main differences with the metal grating
case treated in that reference.

Making use of the Fourier expansion of the coordinate transformation given by Eq. S.4,

the incident plane wave can be written in the original frame as

HE" ~ “’ZEO (1 — iku)z
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The source electrostatic potential then reads
P = E5%y Z isign(g) (dfel9™ — d e7197) e’y 4y (S.19)
g=—00
g#0

1. Potential in the original space

We now focus on the conductivity grating [see Fig. 1(a) in the main text]. In the

illumination region the electrostatic potential has the form ¢y = ¢** + ¢ + 7% with

zear — Z b;cae|g|feigy (SQO)
g=—00
970
ot = By | Y isign(g) (df el — djeTolr) e 4y (8.21)
g=—00
970
In the substrate region, ¢r = %Y + ¢ with
(b%ear — Z e;CGe*|g|$eigy (822)
g=—00
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From the potential we derive the fields according to E, = oy

and D, = —eeog—f, and

impose the boundary conditions at x = bin the slab frame, £, ; = Ey, rand D, p—D, 1 = X.

We find the surface charge density, 32, from the continuity equation,
0YX+Vj=0—= —iwX+Vj=0

where the surface current density is j = j,y = o,F,y. Hence,

. iaEva
iw J(vy)

(S.24)

(S.25)

where the dimension factor, v, ensures that the surface charge density has the right units.

The application of the boundary conditions yields the following system

[sou o pref —

— Etra,
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which has one equation too few to unambiguously determine all the coefficients.

Taking £ and E"* as known, we write

6‘9“7 _€|9‘b bsca 0
g _
_ _o glb —|glb sca
<ed Mw|g|> eldlt ¢ e~ ldl e By

where

By = ~isign(g)(E*" + E™) -

{ |g| (del"” — dyeT) + (e1 = e2) (d] e + dge'gb)}

TWeEQY
Solving the system yields
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€
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2. Current

We can obtain the missing boundary condition from the tangential component of the
magnetic field in the grating frame. The graphene acts as a thin sheet with surface current
density j°

VxH=j° (S.33)

where j¢ = J,/(277?) is the total conduction current density in the transformed frame. Now,

we need to determine the total current along the vertical direction,

Jy = /du/dv o (S.34)

The current transforms as,

. 1 dv . 0Ov .

where
A=| 2 % (S.36)

So we have

1 ov . Ov . o 2 ov . 0Ov .
Jy = /dx/dy det(A)det(A) (%jm—k@—yjy) :/_ dar:/O dy (%]z—i_a_yjy) (S.37)

where the partial derivatives can be evaluated from the coordinate transformation,

g_:: = Z lg| (R} €l — b elolw) eiov (S.38)
g=—00
L g#0
v > +elgle — o lglz) pigy
a—y:fy -1+ Zzg(hge + h e 97) e (S.39)
g=—00
L g#0

and the current flowing along the graphene in the original frame is
J, = 040[x — b, . (S.40)
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Carrying out the integrals in Eq. S.37 and using

Eyr=E"" Z lg| (df el — de197) elov — Z iges@elolveioy (S.41)
g=—00 g=—00
g#0 g#0

yields a total conduction current density given by

j° = % Ey 4 Yy gl? (B yisign(g) (hy d*,e?9° — hydZ e 9 — hrdZ, + by d*,)

g=—00
g7#0
= (hy + hge ) )] (8.42)
This can be re-written as
j*=E"™N (S.43)

N =1+ Y |g’ [isign(g)(hyd® e — hyd” e 9" — hfd=, + h d*)

"0
— (hf + hy e 2Py e ] (S.44)
where .
escn = EQgW (S.45)

3. Reflectance and transmittance

Applying the radiation boundary condition with the current calculated above,

HI — H — HI = j°. (S.46)
yields
€0C [\/aEsou . \/aEref _ \/aEtm} _ jc _ UEtmN (847)

Using B = B¢/ 4+ E%° we find

Eoo <\/e_ —Ja - ;’_CN> — et (@ + e+ %N) (S.48)
0 0
Hence

_Va-J/a-2N

T e e ToaN (S.49)
2@

‘= et e TN (S.50)
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where we have introduced a normalized conductivity, «, such that

T 9 (S.51)

€gC

Finally, transmittance and reflectance are given by

R=|r] (S.52)
T:%%MQ (S.53)

Absorption can be obtained from
Q=1-R-T. (S.54)

frame

F. Conductivity and dielectric grating

Here we consider the conductivity and dielectric grating depicted in Fig. 1(c) in the main

text. For simplicity we take a symmetric environment: €; = €3 = 1.

1. Dispersion relation

The dispersion relation of surface plasmons in a system composed of a graphene sheet
and a dielectric slab of permittivity ¢4 and thickness d can be derived by writing the fields

in each region of space and applying the appropriate boundary conditions. This yields

¥k (egk, 5 — egh,3)(€1kon — €akan + 20k 1k o)

= —(Edk2,3 + 63]6272)(61]{?272 + Edkz,l -+ 2Oél{iz71]€272) (855)

where k, ; = \/€;k — k2. In the quasistatic limit, k, ; & ik, and for a symmetric environment

it is straightforward to show that the expression above reduces to,

G2l _ €q — 1 (ed—l)k0—2z:oc]k| ' (S.56)
Ed—|—1 (€d+1)k'0—|—2205’k’




2. Potential in the original space

In the illumination region, the electrostatic potential in the original frame is ¢ = ¢** +

(b’riear 4 ¢Ead’ where (bso“ is given by Eq S.19 and

zear — Z bzcae\g|zei9y (857)
g=—o00
970
¢rd = Erely Z isign(g) (d;ew‘x - dge_lgh") e +y (S5.58)
g=—0o0
970
Within the dielectric slab we have, ¢y = @75,
brr = Z (cgelg\x + Cg—e—lglw) Y 4+ Elyy (5.59)
g=—00
970

In the substrate side, ¢r = ¢ + ¢rae, with

o0

%ea'r — Z egcae—‘mfﬂeigy (S60)
g=—00
970
%ad _ Etra,y Z 181gn(g) (d;-6|9|x _ dg—e—\!ﬂﬂﬁ) et9y +y (S61)
g=—00
970

The boundary conditions in the slab frame are: £, ; = F, y and D, = D, v at x = xo;

Eyym = Eyr and Dy g — Dy = X at o = b, where the surface charge density is derived
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from the continuity equation. This yields the equation system

[psou +Eref — Eg, (862)
E(q); — Etra’ (363>
(E*" + E")y [isign(g) (d;e‘g‘mo — d;(;lglx)} + b;caem"’”o =
= (cfeldlmo 4 ¢ e7lol) | (S.64)
(Esou + ETef)*yiSign(g) (d!—]i-e\glaco + dg—e—|g|xo) + b;caekﬂaxo —
=¢q (Cg+6|9|930 _ C;e*|9|$0) 7 (865)
= E"yisign(g) (d;ew‘b — d;e“glb) + ezcae_lgw, (S.66)
—eqeg B yisign(g) (d;em'b + d;e"glb) + edeoezcae’|g|b + €460 (c;re‘g“’ — cg’e"g‘b)
_ 9 Fololb 4 o= p—lalb S.67
iw*y|g|<cg€ tege ) (S.67)
Taking EY and E™/ as known we write
elglzo —elglwo e lglwo 0 by A,
0 elalb e lglb —elglb ¢ c, |
0 (ea— 2z laDel® —(eaco + 2z lg)e 19 egelol? e D,
where
Ay = —y(E*" + E™) [isign(g) (d} el — de719770)] S.69

B, = —y(E** + Eref) [isign(g) (d;elg\zo + dg_e_‘g‘xo)}

Cy = ’YEtTa [isign(g) (d;e\g\b _ dg€—|g|b)]

Dg = nytraed [isign(g) (d;e\g\b + dgfef|g|b)}
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Solving the system yields

—lglzo
sca €

97 (eq+ 1) (2eqeqwy + iolg]) €294 + (eq — 1)io|g|
[2w'yeoed ((Aded + Bg)e|9|d +eqCy + Dg) elgld
+ (Aeq — By + (Aaea + By)e?99) ia|g]] (S.73)
el Jworyeg(eq + 1) (€aCy + Dy)eld 4 (A, — By)iolgl]

BT T et 1) Geaeowy + iolg) A (eq — Dol 57
— eloldr@o) [ryeq(eg — 1)(€aCy + Dy) — (Ag — By)(2wyeqco + iolg|)eld] (5.75)
! (ed + 1) (2eqeowy +ia|g|) e2l9l? + (eq — 1)io]g] '
wea elglb
% 7 lea+ 1) (2eacowr + iolg]) €290 + (eq — )iolg|
[—2wyeqeo(Ay — B,)el? 4 (5 + 1) (wyeo(Dy — €4Cy) — Cyialg|) 291
+(€a = 1) (wyeo(Dy + €aCy) — Cyialgl)] (5.76)

3. Current

Two contributions to the current need to be taken into account in this case: the con-
duction current along the graphene sheet and the displacement current within the dielectric
slab.

Conduction current. The current flowing along the graphene sheet in the original frame

is
J, = 040[x — b|E, . (S5.77)
Making use of
E,=— Z ig () el 4 c e 1917 oy — Epy (S.78)
g=—00
g#0

and performing the integrals in Eq. S.37, we obtain the total conduction current density

. g = - _ _
5= B 3 I (et e et e, et (87
g=—00

g7#0
which can be rewritten as

§¢ = o (B + BT N© (S.80)
Ne=1- Z lg|? (h;c;,gemg‘b + hg_cifge_mglb +hicy, _,+hycl ) (S.81)
g=—00

970

12



where

C:I:

+ g
= S.82
6279 (Esou + Eref),y ( )

Displacement current. 'The displacement current within the dielectric slab in the original

fame is

JP =iw(eg — 1)egE. (5.83)

We need to integrate the current over the region between the graphene and the dielectric

grating,
b 2w
. ov ov
JP =iw(eqg — e /xo d:z:/o dy {%Ex + 8_yEy} : (S.84)
Making use of the fields
B == 3= (G0 oy 55
g=—00
g#0
E,v=— Z ig () el 4+ c e 1917 oy 4 Eiy (S.86)
g=—00
970
we arrive to the total displacement current density
G =iwleg — 1)eoyELNP (S.87)
NP = —d+ Z g [h;CI—g (62\9|b _ 62\glxo) —h e, (e—nglb _ 6—2\9\960)] (S.88)
g=—00
g7#0

4. Reflectance and transmittance
The radiation boundary condition in this case reads as,
Hire — prsov — grel = e 4 5P (S.89)
eoc (E%" — E™) — E'") = o(E*** + E"/)N° + iw(eq — V)egy(E*“ + E™/)NP  (S.90)
Using B = E"/ + E** we find

E*"(oN® +iw(eq — 1)egyNP) = —E™/ (2e9c + 0N + iw(eg — 1)egyNP) (5.91)
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Hence

_ 2aN°+ikg(eq — 1)yNP
24 2aN°¢ +iky(eq — 1)yNP’
2

24 2aN¢ +iko(eg — 1)yNP

Finally, transmittance and reflectance are given by

R=|r?
T = |t]?
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