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A. Graphene’s conductivity

The conductivity of graphene depends on frequency, ω, chemical potential of the sheet,

µ, and temperature, T (we use T = 300 K throughout this paper). It consists of a sum

of intraband and interband contributions, σ = σintra + σinter, which can be written in the

random phase approximation [2] as follows,

σintra =
2ie2t

~π [Ω + iγ]
ln

[
2 cosh

(
1

2t

)]
, (S.1)

σinter =
e2

4~

[
1

2
+

1

π
arctan

(
Ω− 2

2t

)
− i

2π
ln

(Ω + 2)2

(Ω− 2)2 + (2t)2

]
. (S.2)

where we have used a normalized frequency, Ω = ~ω/µ, and temperature t = kBT/µ. In

addition, we have introduced a damping term, γ = ~/(µτ), where τ = mµ/v2F is the carriers’

scattering time (m is the mobility and vF the Fermi velocity).

In the main text we have used a mobility m = 106, which at µ = 1 eV corresponds to

a scattering time of τ = 10 ps. Figure S2 shows the absorption peaks for two conductivity

gratings of parameters w0 = 1.5 (a) and w0 = 2.5 (b) for τ = 10 ps and for a more realistic

value of the scattering losses in graphene, τ = 1 ps. For the latter case the lower order

plasmon peaks are still visible despite the broadening of the absorption peaks due to losses.

The result for an infinite scattering time is also shown for reference (dashed line).

B. Fourier expansion coefficients of the coordinate transformation

The conformal transformation used in the main text,

w = γ log

(
1

ez − iw0

+ iyo

)
, (S.3)
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FIG. S1. Absorption spectrum at normal incidence for different grating modulation strengths, (a)

w0 = 1.5 and (b) w0 = 2.5, and for different values of the scattering times for the electrons in

graphene.

with z = x+ iy and w = u+ iv, can be written as a Fourier series [1],

u = γ

log(1 + y0w0)− x+
∞∑

g=−∞
g 6=0

(
d+g e

|g|x + d−g e
−|g|x) eigy

 (S.4)

v = γ

−y +
∞∑

g=−∞
g 6=0

(
h+g e

|g|x + h−g e
−|g|x) eigy

 , (S.5)

with the following expansion coefficients,

d+g =
e−iπg/2

2|g|
−1

(w0 + 1/y0)|g|
(S.6)

d−g =
e−iπg/2

2|g|
w
|g|
0 (S.7)

h+g =
e−iπg/2

2|g|
isign(g)

(w0 + 1/y0)|g|
(S.8)

h−g =
e−iπg/2

2|g|
isign(g)w

|g|
0 (S.9)

provided that x is between the branch points at x = log(w0) and x = log(w0 + 1/y0).
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C. Conductivity profile

An infinitely thin graphene sheet of conductivity σg can be modelled as a thin layer of

thickness δ0 and permittivity,

εg = 1 + i
σg

ωε0δ0
. (S.10)

Under the transformation (S.3) the conductivity of the thin sheet transforms as,

σ(v) = σg
δ(v)

δ0γ
, (S.11)

where δ0 is the scaling factor and δ(v) is the inhomogeneous thickness of the graphene in

the grating frame. An analytical expression for δ(v) and hence for the conductivity profile

can be obtained by using the Fourier expansion of the transformation.

Let us assume that the right boundary of the graphene sheet in the slab frame is placed

at x = b, and its left boundary at x = b− δ0. The formula for u above allows us to calculate

the thickness δ(y) in the grating frame,

δ(y) = |u(b)− u(b− δ0)| (S.12)

= γ

∣∣∣∣∣∣∣∣−b+
∞∑

g=−∞
g 6=0

(
d+g e

|g|b + d−g e
−|g|b) eigy + (b− δ0)−

∞∑
g=−∞
g 6=0

(
d+g e

|g|b−δ0 + d−g e
−|g|b−δ0

)
eigy

∣∣∣∣∣∣∣∣
Using only the first order Fourier term,

δ(y) ≈ γ
∣∣−δ0 +

(
d+1 e

b + d−1 e
−b) eiy +

(
d+−1e

b + d−−1e
−b) e−iy

−
(
d+1 e

b−δ0 + d−1 e
−b+δ0

)
eiy −

(
d+−1e

b−δ0 + d−−1e
−b+δ0

)
e−iy

∣∣
= γ

∣∣−δ0 +
(
d+1 e

b(1− e−δ0) + d−1 e
−b(1− eδ0)

) (
eiy − e−iy

)∣∣
= γ

∣∣−δ0 + 2i
(
d+1 e

b(1− e−δ0) + d−1 e
−b(1− eδ0)

)
sin(y)

∣∣ (S.13)

where we have used d+1 = −i
2

−1
(w0+1/y0)

, d+−1 = i
2

−1
(w0+1/y0)

= −d+1 , d−1 = −i
2
w0 and d−−1 = i

2
w0 =

−d−1 . For δ0 � 1,

δ(y) ≈ γδ0
∣∣−1 + 2i

(
d+1 e

b − d−1 e−b
)

sin(y)
∣∣ . (S.14)

Finally, in order to obtain δ(v) we need an analytical expression for y(v). To zeroth order

we have y = −v/γ and, up to an additive constant, A, we can write an explicit expression

for the sinusoidal dependence of δ(v)

δ(v) ≈ γδ0
[
A+ 2i

(
d+1 e

b − d−1 e−b
)

sin(v/γ)
]
, (S.15)
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which is accurate for moderate modulations w0 . 2. Then from Eq. S.11 we get that the

conductivity in the transformed frame is given by

σ(v) = σg
[
A+ 2i

(
d+1 e

b − d−1 e−b
)

sin(v/γ)
]

(S.16)

D. Fourier components of the gratings

Here we provide the numerical Fourier coefficients of the modulation profile of the con-

ductivity grating, as well as of the geometric relief of the dielectric grating. In both cases,

the modulation can be expanded in Fourier terms as

f(v) = a0 +
∑
n

[an sin(ωv) + bn cos(ωv)] (S.17)

The relative weight of the coefficients an and bn with respect to a1 is shown in Fig. S1 for

the weak and strong modulations. The top panel corresponds to the conductivity grating

and the bottom panel to the dielectric grating.
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FIG. S2. Relative weight of Fourier coefficients an and bn for Fourier components n ranging from

0 to 8. Top panel: conductivity grating profile. Bottom panel: dielectric grating relief profile.
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E. Optical response under plane wave illumination: conductivity grating

Here we summarize the main steps needed for the derivation of the reflection and trans-

mission coefficients. The derivation closely follows that of Ref. [1], where a more detailed

account can be found. Here we provide details of the main differences with the metal grating

case treated in that reference.

Making use of the Fourier expansion of the coordinate transformation given by Eq. S.4,

the incident plane wave can be written in the original frame as

Hsou ≈ ωεε0
k

Esou(1− iku)z

=−ωεε0
k

Esou

1− ikγ

log(1 + y0w0)− x+
∞∑

g=−∞
g 6=0

(
d+g e

|g|x + d−g e
−|g|x) eigy


 z (S.18)

The source electrostatic potential then reads

φsou = Esouγ

 ∞∑
g=−∞
g 6=0

isign(g)
(
d+g e

|g|x − d−g e−|g|x
)
eigy + y

 (S.19)

1. Potential in the original space

We now focus on the conductivity grating [see Fig. 1(a) in the main text]. In the

illumination region the electrostatic potential has the form φL = φsou + φnearL + φradL , with

φnearL =
∞∑

g=−∞
g 6=0

bscag e|g|xeigy (S.20)

φradL = Erefγ

 ∞∑
g=−∞
g 6=0

isign(g)
(
d+g e

|g|x − d−g e−|g|x
)
eigy + y

 (S.21)

In the substrate region, φR = φnearR + φradR , with

φnearR =
∞∑

g=−∞
g 6=0

escag e−|g|xeigy (S.22)

φradR = Etraγ

 ∞∑
g=−∞
g 6=0

isign(g)
(
d+g e

|g|x − d−g e−|g|x
)
eigy + y

 (S.23)
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From the potential we derive the fields according to Ey = −∂φ
∂y

and Dx = −εε0 ∂φ∂x , and

impose the boundary conditions at x = b in the slab frame, Ey,L = Ey,R and Dx,R−Dx,L = Σ.

We find the surface charge density, Σ, from the continuity equation,

∂tΣ +∇j = 0 → −iωΣ +∇j = 0 (S.24)

where the surface current density is j = jyy = σgEyy. Hence,

Σ =
σ

iω

∂Ey,L
∂(γy)

(S.25)

where the dimension factor, γ, ensures that the surface charge density has the right units.

The application of the boundary conditions yields the following system

Esou + Eref =

= Etra, (S.26)

(Esou + Eref )γisign(g)
(
d+g e

|g|b − d−g e−|g|b
)

+ bscag e|g|b =

= Etraγisign(g)
(
d+g e

|g|b − d−g e−|g|b
)

+ escag e−|g|b , (S.27)

−ε1Etraγisign(g)
(
d+g e

|g|b + d−g e
−|g|b)+ ε1e

sca
g e−|g|b +

+ε2(E
sou + Eref )γisign(g)

(
d+g e

|g|b + d−g e
−|g|b)+ ε2b

sca
g e|g|b =

=
σ

iωε0γ
|g|
[
(Esou + Eref )γisign(g)

(
d+g e

|g|b − d−g e−|g|b
)

+ bscag e|g|b
]

(S.28)

which has one equation too few to unambiguously determine all the coefficients.

Taking Esou and Eref as known, we write e|g|b −e|g|b(
εd − σ

iωε0γ
|g|
)
e|g|b ε1e

−|g|b

 bscag

escag

 =

 0

Bg

 (S.29)

where

Bg = γisign(g)(Esou + Eref ) ·{
σ

iωε0γ
|g|
(
d+g e

|g|b − d−g e−|g|b
)

+ (ε1 − ε2)
(
d+g e

|g|b + d−g e
−|g|b)} (S.30)

Solving the system yields

bscag =
iγε0ωBge

−|g|b

iγε0ε1ω + iγε0ε2ω − σ|g|
(S.31)

escag =
iγε0ωBge

|g|b

iγε0ε1ω + iγε0ε2ω − σ|g|
(S.32)
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2. Current

We can obtain the missing boundary condition from the tangential component of the

magnetic field in the grating frame. The graphene acts as a thin sheet with surface current

density jc

∇×H = jc (S.33)

where jc = Jv/(2πγ
2) is the total conduction current density in the transformed frame. Now,

we need to determine the total current along the vertical direction,

Jv =

∫
du

∫
dv jv (S.34)

The current transforms as,

jv =
1

det(Λ)

(
∂v

∂x
jx +

∂v

∂y
jy

)
(S.35)

where

Λ =


∂u
∂x

∂v
∂y

0

∂v
∂x

∂v
∂y

0

0 0 1

 (S.36)

So we have

Jv =

∫
dx

∫
dy det(Λ)

1

det(Λ)

(
∂v

∂x
jx +

∂v

∂y
jy

)
=

∫ ∞
−∞

dx

∫ 2π

0

dy

(
∂v

∂x
jx +

∂v

∂y
jy

)
(S.37)

where the partial derivatives can be evaluated from the coordinate transformation,

∂v

∂x
= γ

 ∞∑
g=−∞
g 6=0

|g|
(
h+g e

|g|x − h−g e−|g|x
)
eigy

 (S.38)

∂v

∂y
= γ

−1 +
∞∑

g=−∞
g 6=0

ig
(
h+g e

|g|x + h−g e
−|g|x) eigy

 (S.39)

and the current flowing along the graphene in the original frame is

J cy = σgδ[x− b]Ey . (S.40)
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Carrying out the integrals in Eq. S.37 and using

Ey,R = Etraγ

 ∞∑
g=−∞
g 6=0

|g|
(
d+g e

|g|x − d−g e−|g|x
)
eigy − 1

− ∞∑
g=−∞
g 6=0

igescag e−|g|xeigy (S.41)

yields a total conduction current density given by

jc =
σ

γ

Etraγ +
∞∑

g=−∞
g 6=0

|g|2
(
Etraγisign(g)(h+g d

+
−ge

2|g|b − h−g d−−ge−2|g|b − h+g d−−g + h−g d
+
−g)

−
(
h+g + h−g e

−2|g|b) esca−g )] (S.42)

This can be re-written as

jc = σEtraN (S.43)

N = 1 +
∞∑

g=−∞
g 6=0

|g|2
[
isign(g)(h+g d

+
−ge

2|g|b − h−g d−−ge−2|g|b − h+g d−−g + h−g d
+
−g)

−
(
h+g + h−g e

−2|g|b) esca2,−g
]

(S.44)

where

esca2,g =
escag
Etraγ

(S.45)

3. Reflectance and transmittance

Applying the radiation boundary condition with the current calculated above,

H tra
z −Hsou

z −Href
z = jc . (S.46)

yields

ε0c
[√
ε2E

sou −
√
ε2E

ref −
√
ε1E

tra
]

= jc = σEtraN (S.47)

Using Etra = Eref + Esou we find

Esou

(
√
ε2 −

√
ε1 −

σ

ε0c
N

)
= Eref

(
√
ε2 +
√
ε1 +

σ

ε0c
N

)
(S.48)

Hence

r =

√
ε2 −

√
ε1 − 2αN

√
ε2 +
√
ε1 + 2αN

(S.49)

t =
2
√
ε2√

ε2 +
√
ε1 + 2αN

(S.50)
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where we have introduced a normalized conductivity, α, such that

σ

ε0c
= 2α (S.51)

Finally, transmittance and reflectance are given by

R = |r|2 (S.52)

T =

√
ε1√
ε2
|t|2 (S.53)

Absorption can be obtained from

Q = 1−R− T . (S.54)

frame

F. Conductivity and dielectric grating

Here we consider the conductivity and dielectric grating depicted in Fig. 1(c) in the main

text. For simplicity we take a symmetric environment: ε1 = ε3 = 1.

1. Dispersion relation

The dispersion relation of surface plasmons in a system composed of a graphene sheet

and a dielectric slab of permittivity εd and thickness d can be derived by writing the fields

in each region of space and applying the appropriate boundary conditions. This yields

e2ikz,2d(ε3kz,2 − εdkz,3)(ε1kz,2 − εdkz,1 + 2αkz,1kz,2)

= −(εdkz,3 + ε3kz,2)(ε1kz,2 + εdkz,1 + 2αkz,1kz,2) (S.55)

where kz,j =
√
εjk20 − k2. In the quasistatic limit, kz,j ≈ ik, and for a symmetric environment

it is straightforward to show that the expression above reduces to,

e2|k|d =

(
εd − 1

εd + 1

)
(εd − 1)k0 − 2iα|k|
(εd + 1)k0 + 2iα|k|

. (S.56)
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2. Potential in the original space

In the illumination region, the electrostatic potential in the original frame is φL = φsou +

φnearL + φradL , where φsou is given by Eq. S.19 and

φnearL =
∞∑

g=−∞
g 6=0

bscag e|g|xeigy (S.57)

φradL = Erefγ

 ∞∑
g=−∞
g 6=0

isign(g)
(
d+g e

|g|x − d−g e−|g|x
)
eigy + y

 (S.58)

Within the dielectric slab we have, φM = φnearM ,

φM =
∞∑

g=−∞
g 6=0

(
c+g e

|g|x + c−g e
−|g|x) eigy + Ev

0γy (S.59)

In the substrate side, φR = φnearR + φradR , with

φnearR =
∞∑

g=−∞
g 6=0

escag e−|g|xeigy (S.60)

φradR = Etraγ

 ∞∑
g=−∞
g 6=0

isign(g)
(
d+g e

|g|x − d−g e−|g|x
)
eigy + y

 (S.61)

The boundary conditions in the slab frame are: Ey,L = Ey,M and Dx,L = Dx,M at x = x0;

Ey,M = Ey,R and Dx,R − Dx,M = Σ at x = b, where the surface charge density is derived
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from the continuity equation. This yields the equation system

Esou + Eref = Ev
0 , (S.62)

Ev
0 = Etra, (S.63)

(Esou + Eref )γ
[
isign(g)

(
d+g e

|g|x0 − d−g e−|g|x
)]

+ bscag e|g|x0 =

=
(
c+g e

|g|x0 + c−g e
−|g|x0

)
, (S.64)

(Esou + Eref )γisign(g)
(
d+g e

|g|x0 + d−g e
−|g|x0

)
+ bscag e|g|x0 =

= εd
(
c+g e

|g|x0 − c−g e−|g|x0
)
, (S.65)(

c+g e
|g|b + c−g e

−|g|b) =

= Etraγisign(g)
(
d+g e

|g|b − d−g e−|g|b
)

+ escag e−|g|b, (S.66)

−εdε0Etraγisign(g)
(
d+g e

|g|b + d−g e
−|g|b)+ εdε0e

sca
g e−|g|b + εdε0

(
c+g e

|g|b − c−g e−|g|b
)

=
σ

iωγ
|g|
(
c+g e

|g|b + c−g e
−|g|b) (S.67)

Taking Ev
0 and Eref as known we write


e|g|x0 −e|g|x0 −e−|g|x0 0

e|g|x0 −εde|g|x0 εde
−|g|x0 0

0 e|g|b e−|g|b −e−|g|b

0 (εd − σ
iωγε0
|g|)e|g|b −(εdε0 + σ

iωγε0
|g|)e−|g|b εde−|g|b




bscag

c+g

c−g

escag

 =


Ag

Bg

Cg

Dg

(S.68)

where

Ag = −γ(Esou + Eref )
[
isign(g)

(
d+g e

|g|x0 − d−g e−|g|x0
)]

(S.69)

Bg = −γ(Esou + Eref )
[
isign(g)

(
d+g e

|g|x0 + d−g e
−|g|x0

)]
(S.70)

Cg = γEtra
[
isign(g)

(
d+g e

|g|b − d−g e−|g|b
)]

(S.71)

Dg = γEtraεd
[
isign(g)

(
d+g e

|g|b + d−g e
−|g|b)] (S.72)
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Solving the system yields

bscag =
e−|g|x0

(εd + 1) (2εdε0ωγ + iσ|g|) e2|g|d + (εd − 1)iσ|g|
·[

2ωγε0εd
(
(Adεd +Bg)e

|g|d + εdCg +Dg

)
e|g|d

+
(
Aεd −Bg + (Adεd +Bg)e

2|g|d) iσ|g|] (S.73)

c+g =
e−|g|x0

[
ωγε0(εd + 1)(εdCg +Dg)e

|g|d + (Ag −Bg)iσ|g|
]

(εd + 1) (2εdε0ωγ + iσ|g|) e2|g|d + (εd − 1)iσ|g|
(S.74)

c−g =
e|g|(d+x0)

[
ωγε0(εd − 1)(εdCg +Dg)− (Ag −Bg)(2ωγεdε0 + iσ|g|)e|g|d

]
(εd + 1) (2εdε0ωγ + iσ|g|) e2|g|d + (εd − 1)iσ|g|

(S.75)

escag =
e|g|b

(εd + 1) (2εdε0ωγ + iσ|g|) e2|g|d + (εd − 1)iσ|g|
·[

−2ωγεdε0(Ag −Bg)e
|g|d + (εd + 1) (ωγε0(Dg − εdCg)− Cgiσ|g|) e2|g|d

+(εd − 1) (ωγε0(Dg + εdCg)− Cgiσ|g|)] (S.76)

3. Current

Two contributions to the current need to be taken into account in this case: the con-

duction current along the graphene sheet and the displacement current within the dielectric

slab.

Conduction current. The current flowing along the graphene sheet in the original frame

is

J cy = σgδ[x− b]Ey . (S.77)

Making use of

Ey = −
∞∑

g=−∞
g 6=0

ig
(
c+g e

|g|x + c−g e
−|g|x) eigy − Ev

0γ (S.78)

and performing the integrals in Eq. S.37, we obtain the total conduction current density

jc =
σ

γ

Ev
0γ −

∞∑
g=−∞
g 6=0

|g|2
(
h+g c

+
−ge

2|g|b + h−g c
−
−ge
−2|g|b + h+g c

−
−g + h−g c

+
−g
) (S.79)

which can be rewritten as

jc = σ(Esou + Eref )N c (S.80)

N c = 1−
∞∑

g=−∞
g 6=0

|g|2
(
h+g c

+
2,−ge

2|g|b + h−g c
−
2,−ge

−2|g|b + h+g c
−
2,−g + h−g c

+
2,−g
)

(S.81)
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where

c±2,g =
c±g

(Esou + Eref )γ
(S.82)

Displacement current. The displacement current within the dielectric slab in the original

fame is

JD = iω(εd − 1)ε0E . (S.83)

We need to integrate the current over the region between the graphene and the dielectric

grating,

JDv = iω(εd − 1)ε0

∫ b

x0

dx

∫ 2π

0

dy

[
∂v

∂x
Ex +

∂v

∂y
Ey

]
. (S.84)

Making use of the fields

Ex,M = −
∞∑

g=−∞
g 6=0

|g|
(
c+g e

|g|x − c−g e−|g|x
)
eigy (S.85)

Ey,M = −

 ∞∑
g=−∞
g 6=0

ig
(
c+g e

|g|x + c−g e
−|g|x) eigy + Ev

0γ

 (S.86)

we arrive to the total displacement current density

jD = iω(εd − 1)ε0γE
v
0N

D (S.87)

ND = −d+
∞∑

g=−∞
g 6=0

|g|
[
h+g c

+
2,−g

(
e2|g|b − e2|g|x0

)
− h−g c−2,−g

(
e−2|g|b − e−2|g|x0

)]
(S.88)

4. Reflectance and transmittance

The radiation boundary condition in this case reads as,

H tra
z −Hsou

z −Href
z = jc + jD (S.89)

ε0c
(
Esou − Eref − Etra

)
= σ(Esou + Eref )N c + iω(εd − 1)ε0γ(Esou + Eref )ND (S.90)

Using Etra = Eref + Esou we find

Esou(σN c + iω(εd − 1)ε0γN
D) = −Eref

(
2ε0c+ σN c + iω(εd − 1)ε0γN

D
)

(S.91)
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Hence

r = − 2αN c + ik0(εd − 1)γND

2 + 2αN c + ik0(εd − 1)γND
, (S.92)

t =
2

2 + 2αN c + ik0(εd − 1)γND
. (S.93)

Finally, transmittance and reflectance are given by

R = |r|2 (S.94)

T = |t|2 (S.95)
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