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Here we study subwavelength gratings for coupling into graphene plasmons by means of an an-
alytical model based on transformation optics that is not limited to very shallow gratings. We
consider gratings that consist of a periodic modulation of the charge density in the graphene sheet,
and gratings formed by this conductivity modulation together with a dielectric grating placed in
close vicinity of the graphene. Explicit expressions for the dispersion relation of the plasmon po-
laritons supported by the system, and reflectance and transmittance under plane wave illumination
are given. We discuss the conditions for maximising the coupling between incident radiation and
plasmons in the graphene, finding the optimal modulation strength for a conductivity grating.

I. INTRODUCTION

Graphene, a one atom thick layer of carbon atoms ar-
ranged in a honeycomb lattice [1], features unique optical
[2] and optoelectronic properties [3]. In particular, it ab-
sorbs πα0 ∼ 2.3% of visible light, with α0 = e2/(~c) be-
ing the fine structure constant. The conductivity of this
two-dimensional (2D) material is very sensitive to exter-
nal fields, such that its optoelectronic properties can be
precisely tuned. A finite chemical potential µ 6= 0 ap-
plied to a graphene sheet, by means for instance of a
gate voltage, provides a conduction band for the elec-
trons, allowing for plasmons supported by the graphene.
Remarkably, the plasmonic properties of graphene can
be controlled by tuning µ, and for this reason graphene
has attracted a lot of attention as a highly versatile plas-
monic material [4–7]. Plasmons in graphene feature a
deep subwavelength confinement together with a strong
enhancement of the electromagnetic fields, as has been
shown both theoretically [8–14] and experimentally [15–
17]. Such high field enhancement provided by graphene
plasmons has been employed to increase the low opti-
cal absorption of this 2D material, which has a great
potential for graphene-based optoelectronics. Different
ways of coupling incident radiation into surface plas-
mons have been suggested: graphene sheets with modu-
lated optical conductivity [18, 19] or relief corrugations
[20, 21], graphene placed on subwavelength dielectric
gratings [22], and patterned graphene structures includ-
ing arrays of 1D micro-ribbons [23–25] and 2D micro-
disks [26–28].

In this paper, we present an analytical formalism to
study the optical response of subwavelength graphene
gratings. We consider two systems: (i) a graphene con-
ductivity grating (i.e., graphene with periodically mod-
ulated carrier density) and (ii) a graphene conductivity
grating together with a dielectric grating. We make use of
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transformation optics [29–32] to derive the optical spec-
trum of such gratings within the quasistatic approxima-
tion, study their plasmonic response, and find the opti-
mal configurations for coupling into the surface plasmons
supported by the graphene. Our method presents an im-
portant advantage to previous analytical approaches to
subwavelength gratings in graphene [20, 22], namely that
it is not limited to very shallow grating modulations.

Transformation optics has successfully provided ana-
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FIG. 1. Effect of the conformal transformation. (a) A flat
graphene sheet between two dielectric media transforms to
a graphene sheet of periodically modulated thickness while it
keeps the same permittivity, εg. This is equivalent (b) to a pe-
riodic modulation of the sheet’s conductivity, σ(v), which can
be achieved by means of a 1D modulated bias. (c) A dielectric
slab on top of the graphene sheet transforms to a dielectric
grating, as its surface gets modulated following the confor-
mal map. (d) The resulting system is a graphene sheet with
periodically modulated conductivity plus a dielectric grating.
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lytical solutions to various problems in plasmonics [33–
39]. Its potential resides in its ability to relate highly
symmetric structures to more complex ones. In this pa-
per we relate a simple flat graphene sheet surrounded by
dielectrics to different subwavelength grating configura-
tions of period a, with a much smaller than the wave-
length of light a � λ (see Fig. 1). For this purpose, we
make use of the following conformal transformation:

w = γ log

(
1

ez − iw0
+ iyo

)
, (1)

with z = x+ iy and w = u+ iv. The modulation depth
is determined by w0, y0 is given by y0 = w0

e2b−w2
0
, and

the factor γ determines the overall size of the structure.
The effect of the transformation above is to map a reg-
ular Cartesian mesh into wavy contour lines that repeat
themselves with period a = 2πγ (see Ref. [39] for further
details).

II. CONDUCTIVITY GRATING

We start from a simple homogeneous graphene sheet
placed between two dielectrics of permittivities ε1 and ε2
[see Fig. 1(a)]. The graphene can be equivalently mod-
elled as an infinitely thin sheet with surface conductivity
σg or as a thin layer of thickness δ0 and with permittiv-
ity εg. Let us focus on the latter situation, and assume
a graphene sheet delimited by the lines at x = b and
x = b−δ0. Its permittivity can be related to the conduc-
tivity by,

εg = 1 + i
σg

ωε0δ0
, (2)

The effect of the transformation (1) on this system is
such that in the transformed space the graphene layer ac-
quires a periodically-modulated thickness, δ(v) = |u(x =
b) − u(x = b − δ0)|, of period 2πγ. Because the trans-
formation relating the two frames is a conformal map,
the in-plane components of the electric permittivity and
magnetic permeability are conserved [40, 41], meaning
that the graphene layer in the transformed space also has
permittivity εg as given by Eq. 2. This implies that in
the transformed frame the conductivity of the graphene
is periodically modulated [see Fig. 1(b)] according to,

σ(v) = σg
δ(v)

δ0γ
, (3)

where γ is the scaling factor of the transformation.
Hence, by choosing the parameters of the transformation,
we can model periodically-doped graphene sheets of large
modulations, controlled by w0. Finally, it is worth noting
that the conductivity modulations considered here corre-
spond to thicknesses modulations that are much smaller
than any other length scale in the system, including the
plasmon wavelength.

The periodic conductivity profile of the graphene in
the transformed space is presented in Fig. 2(a) for two
different modulation strengths, w0 = 1.5 and w0 = 2.5,
which we will refer to as the weak and strong modulation
cases. These modulation strengths correspond to mod-
ulation depths on the order of the period, in particular
0.75a and 1.6a. Such conductivity profiles can be gener-
ated by biasing the graphene with a periodic electrostatic
field. In addition, even though they were derived from
the conformal transformation (1), they can be very accu-
rately approximated to a sinusoidal shape for any value
of the modulation strength. For moderate modulations,
w0 . 2, an explicit expression for the coefficient of such
sine function can be given. As we show in the SM, see
Eq. S.16, we can write to zeroth order in v

σ(v) ∝ σg2i
(
d+1 e

b − d−1 e−b
)

sin(v/γ) , (4)

where d+1 = −i
2

−1
(w0+1/y0)

and d−1 = −i
2 w0 are the first or-

der Fourier coefficients of the coordinate transformation
(see SM, sections B and C). According to the above ana-
lytical expression, the conductivity modulation depends

(a)

(b)

FIG. 2. (a) Conductivity modulation of the graphene sheet in
the transformed space for two different modulation strengths,
w0 = 1.5 and w0 = 2.5. Both profiles were derived from two
lines separated by δ0 = 2× 10−3γ in the original frame, with
γ = 4× 10−7 m. (b) Dispersion relation in the first Brillouin
zone for a graphene conductivity grating at µ = 0.1 eV, for
the conductivity profiles shown in (a). Red circles: weakly
modulated conductivity grating (w0 = 1.5 ). Blue triangles:
strongly modulated conductivity grating (w0 = 2.5).
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only on the geometrical parameters – γ, w0, y0, b – and
the conductivity of homogeneously biased graphene, σg,
which depends on the frequency ω, chemical potential
µ and temperature T – we use T = 300 K throughout
the paper –. In our simulations we use the conductiv-
ity of graphene as given in the random phase approx-
imation, with intraband and interband contributions,
σg = σintra

g + σinter
g , which read as follows, [42]

σintra
g =

2ie2t

~π [Ω + iγ]
ln

[
2 cosh

(
1

2t

)]
, (5)

σinter
g =

e2

4~
(6)[

1

2
+

1

π
arctan

(
Ω− 2

2t

)
− i

2π
ln

(Ω + 2)2

(Ω− 2)2 + (2t)2

]
.

Here we have introduced a normalized frequency, Ω =
~ω/µ, and temperature t = kBT/µ. The damping term,
γ = ~/(µτ), is given by the carriers’ scattering time, τ =
mµ/v2F (m is the mobility and vF the Fermi velocity).
We refer the reader to the Supplementary Material (SM)
for more details.

The periodic modulation of the conductivity acts as a
grating that supplies the momentum mismatch for radi-
ation to couple into surface plasmons. Since the momen-
tum of plasmons in graphene is much larger than that
of free space radiation, the grating period needs to be
much smaller than the incident wavelength (2πγ � λ).
Note here that similar systems, where the coupling to
graphene plasmons is provided by periodically pattern-
ing the graphene has received large attention [23–28]. In
particular, 1D arrays of micro ribbons, present similar
plasmon resonances in the same frequency range for a
given periodicity.

A. Plasmon modes and resonance condition

In the electrostatic limit the spectral properties of a
plasmonic structure depend only on its geometry. As it
was recently shown, transformation optics is specifically
suited to classify plasmonic resonances in terms of ge-
ometrical symmetries, since it is able to reveal ‘hidden’
symmetries present in plasmonic structures [37]. The rea-
son for this is that conformal transformations conserve
not only the in-plane ε and µ but also the electrostatic
potential. This implies that the plasmon modes and res-
onance condition in the transformed space are directly
given by those in the simple original frame.

The plasmon resonance condition of a translationally
invariant graphene sheet between two dielectrics is well
known and, under the quasistatic approximation, reads
as,

ε1 + ε2 + 2iα
|k|
k0

= 0 , (7)

where k is the mode’s parallel momentum, k0 = ω/c
and we have introduced a normalized conductivity for

graphene α = 2πσg/c. On the other hand, by the ar-
gument above, all the graphene conductivity gratings re-
lated to this system by transformation (1) also satisfy
the same plasmon resonance condition. This means that
the spectrum of a whole class of conductivity gratings,
characterized by the modulation strength, w0, and pe-
riod, 2πγ, can be derived [39] from the simple plasmon
condition of a graphene sheet given in Eq. 7.

Figure 2(b) presents the dispersion relation in the first
Brillouin zone for homogeneously doped graphene on
a substrate, as obtained from the analytical expression
Eq. 7 (solid line). The substrate has a permittivity
of ε = 3, similar to typical values for polymers in the
THz regime. Here and throughout this work we take the
graphene’s conductivity as given by the random phase
approximation and with a scattering time for the elec-
trons of τ = 10 ps (see SM section A for comments on
the losses). The graphene sheet is subject to a chemical
potential of µ = 0.1 eV, i.e. in the THz regime and far
below phonon losses (µ & 0.2 eV ) [6]. Note that the
operating frequency regime of the systems under study
can be tuned by changing µ or by rescaling the structure.

The plot also shows the band structures of two differ-
ent conductivity gratings belonging to the same class and
for the same parameters used in panel (a). These were
obtained from electrodynamics simulations (Comsol Mul-
tiphysics) and are plotted with dots. Because the system
in the transformed space is periodic along the v axis, we
need to impose the same periodicity in the (x, y) frame,
where the dispersion relation is continuous at the zone
edge. However, solutions at a finite wave vector have an
unphysical discontinuity of the phase across the branch
cuts of Eq. 1. For this reason, the equivalence between
the homogeneously doped graphene and the modulated
graphene strictly holds only at the zone centre, and the
conductivity grating case features a band gap opening
at the zone edge. The strongest effect is for the first
order mode and for the strongest modulation. This is
because the conductivity profiles derived from the con-
formal transformation and shown in Fig. 2(a) can be well
approximated by a sinusoidal function, such that these
gratings mostly provide coupling to the first order Fourier
component. In fact, all the higher order Fourier coeffi-
cients are several orders of magnitude smaller than the
first order one (see Fig. S2 in SM). In addition, the qua-
sistatic approximation disregards magnetic effects, which
account for small discrepancies between the band struc-
tures in the original and transformed frames. In par-
ticular, very small band gaps (not shown here) open at
k = 0 (see Ref. [39] for further comments). In any case
the magnetic gaps are much smaller than the broadening
of the bands due to losses and therefore have insignificant
effects.
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B. Optical response of the grating under plane
wave illumination

We now use transformation optics to calculate quanti-
ties that are attainable in experiments. In particular, we
derive analytical expressions for the transmission and re-
flection spectra of graphene conductivity gratings under
plane wave illumination at normal incidence. Only the
main steps of the calculation are presented here, while a
more detailed derivation can be found in the SM section
E.

We start by considering a plane wave incident from
the right in the grating frame, (u, v), and, following Ref.
[39], we approximate it in the vicinity of the graphene
grating,

Hsou = −ωε2ε0
k

Esoue−ikuz (8)

= −ωε2ε0
k

Esou(1− iku)z. (9)

with k =
√
ε2k0. Similar to the electrostatic potential,

the z-component of the magnetic field is conserved un-
der a conformal transformation [29, 43]. This property,
together with the Fourier expansion of the coordinate
transformation (1), allows us to write the incident po-
tential in the original space as,

φsou = Esouγ

×

 ∞∑
g=−∞
g 6=0

isign(g)
(
d+g e

|g|x − d−g e−|g|x
)
eigy + y

(10)

for log(w0) < x < log(w0 + 1/y0). The expansion coeffi-
cients d±g derive from the coordinate transformation and
are given in the SM. It is clear from the expression above
that a plane wave with only one Fourier component in the
grating frame, is transformed to a wave that contains all
higher order modes in the frame where the conductivity
of graphene is homogeneous. In other words, the con-
ductivity grating provides coupling between plane waves
and modes bound to the graphene. The total electro-
static potential at both sides of the graphene can then
be expressed as,

φL = φsouL + φnearL + φradL

φR = φnearR + φradR (11)

where the subindices L and R stand for the half-spaces
left and right to the graphene sheet. The above expres-
sion includes the following terms (full expressions are
given in the SM): (i) a near field part, φnearL,R that arises
from the contribution of the scattered evanescent electro-
static modes from the graphene; and (ii) a radiative part,
φradL,R, that originates from the fact that the conductiv-
ity grating induces a continuous current in the grating,
which in turn radiates outgoing plane waves with ampli-

tudes Eref and Etra:

Href =
ω
√
ε2ε0
k0

Erefei
√
ε2k0uz (12)

Htra = −
ω
√
ε1ε0
k0

Etrae−i
√
ε1k0uz (13)

It is important to note that the radiative part is not
present in a purely electrostatic calculation and incorpo-
rates the radiative reaction of the conductivity grating
into our theoretical formalism.

The amplitude and expansion coefficients are then ob-
tained by imposing the boundary conditions for the EM
fields at x = b. These are the continuity of the tangential
electric field, Ey,R − Ey,L = 0, and the discontinuity of
the normal displacement field, Dx,R − Dx,L = Σ. The
surface charge density on the graphene, Σ, is obtained
from the continuity equation, −iωΣ +∇j = 0, where the
surface current density along the graphene is j = σgEyy.

In order to determine all coefficients unambiguously,
we introduce an additional radiation boundary condi-
tion [39]. This is related to the radiative reaction of the
graphene conductivity grating and is imposed in the grat-
ing frame. According to Maxwell’s equation ∇×H = j,
the tangential component of the magnetic field is discon-
tinuous across the thin current sheet,

Htra
z −Hsou

z −Href
z = jc . (14)

Here, jc is the total conduction current density of the
graphene layer in the transformed frame. It can be ob-
tained by writing the current carried by the graphene
sheet in the original space,

Jcy = σgδ(x− b)Ey , (15)

transforming it into the grating frame, Jcv , integrating
it in the whole unit cell, and normalising to the unit
cell area. This procedure yields the total surface current
density,

jc = σgE
traN , (16)

N = 1 +

∞∑
g=−∞
g 6=0

|g|2
[
isign(g)(h+g d

+
2,−ge

2|g|b − h−g d−2,−ge−2|g|b

−h+g d−2,−g + h−g d
+
2,−g)− (h+g + h−g e

−2|g|besca2,−g)
]

(17)

Note that N contains a sum over all higher order Fourier
components, meaning that they all contribute to the cur-
rent in the grating.

From the boundary conditions and the expression for
the current we determine the reflection and transmission
coefficients to be

r =

√
ε1 −

√
ε2 − 2αN

√
ε1 +

√
ε2 + 2αN

, (18)

t =
2
√
ε1√

ε2 +
√
ε1 + 2αN

. (19)
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Finally, reflectance and transmittance are given by

R = |r|2 , (20)

T =

√
ε1√
ε2
|t|2 . (21)

The reflection and transmission properties of the two
conductivity gratings considered earlier are shown in
Fig. 3. The plots show the reflectance and transmittance
for two graphene gratings with weak (a) and strong (b)
modulations illuminated from the right. In both cases
the agreement between the analytical results obtained
with equations 18 and 19 (plotted with lines) and the
numerical results (represented with dots) is nearly per-
fect. Our analytical model predicts very accurately not
only the position of the resonances, as was clear from
Fig. 2, but the full EM response at normal incidence.
This confirms that, up to the quasistatic limit, it is only

(a)

(b)

FIG. 3. Graphene conductivity grating: The conductivity of
the graphene sheet is periodically modulated following the
profiles shown in Fig. 2(a). Optical response at normal inci-
dence: Transmittance and reflectance spectra for two different
modulation strengths, (a) w0 = 1.5 and (b) w0 = 2.5. The
inset panels show the respective norm of the electric field at
the first order plasmon resonance. The maximum value of
|E|/|E0| is 30 in (a) and 55 in (b). The graphene is placed on
top of a substrate (ε1 = 3, ε2 = 1) and illuminated from the
free space side.

the properties of the untransformed graphene sheet that
determines the response of these kind of grating. On
the other hand, from the field intensity plots given as in-
set panels, we observe that these graphene conductivity
gratings provide a very large field enhancement that can
be used to enhance non-linear effects. In particular, for
the parameters used in Fig. 3 we find that the maximum
value of |E|/|E0| is 55 for the case with w0 = 2.5 and
30 for w0 = 1.5. Note that the field enhancement is re-
duced when lower scattering times are considered in the
simulations. In particular, for τ = 1 ps, the maximum
field enhancement values for the strong and weak modu-
lations are 35 and 17, respectively, while for τ = 0.1 ps,
we obtain 7 and 3.

C. Coupling optimization and Impedance matching

We now take advantage of our analytical results to
find the optimal parameters for radiation coupling into
plasmon modes.

In Fig. 4 (a) we show the absorption spectrum of a
whole class of conductivity gratings with different mod-
ulation strengths, that is, different values of the w0 pa-
rameter. Since all the gratings derive from the same orig-
inal physical system, they all feature the same plasmon
resonance frequencies. As w0 increases, the coupling to
the incident wave increases and the absorption spectra
display higher order modes: while for the weakest mod-
ulation considered, w0 = 0.25, only the dipole mode is
visible in the spectrum, the first four modes are excited
for modulation strengths larger than w0 = 1.5. Since
the coupling is enhanced as w0 grows, the height of the
peaks increases. However, by increasing w0 also the ra-
diation losses increase, resulting in a broadening of the
peaks. For the first order mode, such an increase in radi-
ation damping results in lower absorption maxima for the
highest values of w0. This is clearly shown in Fig. 4 (b),
where the absorption maxima of the different modes are
plotted as a function of modulation strength, and implies
that there is an optimal value of the conductivity modu-
lation strength, w0 ≈ 1.75 for this set of parameters, that
yields the highest coupling to the plasmon dipole mode.
This is one of the main results of this paper.

As in electrical circuit theory, when the impedance of
the generator (in our case the radiative resistance) and
that of the load are matched, energy dissipated is a max-
imum and is shared equally between the generator and
the load. Hence in figure 4 (b) we note that at optimum

the absorption is maximised to nearly 1/(1+
√

3) ≈ 0.366
indicating that almost perfect matching is achieved.

III. DIELECTRIC AND CONDUCTIVITY
GRATING

We now consider the second structure shown in Fig. 1:
a graphene sheet with periodically modulated conductiv-
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FIG. 4. Optimal modulation strength for the graphene con-
ductivity grating. (a) Absorption spectrum at normal inci-
dence for different grating modulation strengths, w0. The
dots represent simulation results for w0 = 1.5 and w0 = 2.5,
the two cases shown in Fig. 3. (b) Top panel: Maximum of
the absorption peak as a function of w0 for the different order
modes. Bottom panel: minimum of the transmittance peak
(solid lines) and maximum of the reflectance peak (dashed
lines). The colour legend in the top panel applies to both
panels.

ity together with a dielectric grating of the same period-
icity, as sketched in panel (d). The periodically biased
graphene and dielectric grating system is placed between
two dielectrics, ε1 and ε3, which we will take to be free
space for simplicity. The dielectric grating consists of a
thin slab on top of the graphene, with different permit-
tivity, ε2 = εd, and with a periodic relief modulation of
the surface. The structure under consideration results
from applying transformation (1) to a system composed

of a flat dielectric slab of permittivity ε2 and thickness
d on top of a graphene sheet of homogeneous conduc-
tivity σg, as depicted in the left panel of Fig 1 (c). By
means of the transformation, both the conductivity of
the graphene and the surface of the dielectric slab ac-
quire a periodic modulation of the same pitch (a = 2πγ)
and corresponding intensity (given by w0). Therefore,
by changing the parameters γ and w0, we can derive a
whole class of graphene-plasmonic structures where cou-
pling to external light is provided by a conductivity grat-
ing together with a dielectric grating. The fact that both
gratings have the same periodicity is an advantage from
the point of view of the experimental realisation of this
system: by applying an electrostatic field to the dielec-
tric slab that acts as a dielectric grating, a modulated
doping can be induced in the graphene with the same
periodicity.

(a)

(b) (c) (d) (e)

FIG. 5. Subwavelength dielectric gratings for the excitation
of graphene plasmons. The dielectric grating (permittivity
ε2 = 3, period 2πγ, and thickness in the original frame d =
0.5γ, γ = 4 × 10−7) is placed in free space ( ε1 = 1, ε3 = 1).
(a) Band structure of the gratings: the red circles (blue stars)
represent simulation results for the same dielectric grating
with (without) a conductivity grating of the same periodicity.
The modulation strength is in both cases w0 = 1.5. The solid
line plots the analytical plasmon dispersion given by Eq. 22.
(b,c) Norm of the electric field for the lower energy (b) and
upper energy (c) first order modes at the zone edge for the
case of dielectric and conductivity gratings. (d,e) Same as
(b,c) but for the case of dielectric grating and homogeneously
doped graphene.
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A. Plasmon modes and resonance condition

A whole class of graphene conductivity and dielectric
grating derives its optical properties from a graphene
sheet of conductivity σg (placed at x = b) and a dielec-
tric slab of permittivity εd and thickness d (placed at
x = x0). Therefore, the plasmon resonance condition in
the slab frame, which within the quasistatic limit reads
as (see SM section F),

e2|k|d =

(
εd − 1

εd + 1

)
(εd − 1)k0 − 2iα|k|
(εd + 1)k0 + 2iα|k|

(22)

also determines the dispersion relation of the plasmon
modes in the grating frame.

Figure 5 presents the dispersion relation for an instance
of the class of conductivity and dielectric gratings derived
from the flat system (with d = 0.5 and x0 = 1). The pa-
rameters are the same as those considered in Section II:
µ = 0.1 eV, γ = 4 × 10−7, εd = 3. The solid line rep-
resents the analytical prediction given by Eq. 22, and is
to be compared with the numerical results for a grating
with w0 = 1.5 (red circles) obtained from full electro-
dynamics simulations. As in the conductivity grating
case discussed above, the agreement between the numer-
ical and analytical results is nearly perfect near the zone
centre, while simulations reveal a band gap opening at
the zone edge. Similarly to the previous case, this band
gap is largest for the first order mode, but, differently,
it is still appreciable for higher order modes. The rea-
son for this is that the dielectric relief grating cannot be
as accurately approximated to a sin(v) function as the
conductivity grating, although it is still a good approxi-
mation (see Fig 1 in the Supplementary material). This
difference stems from the position of the different start-
ing lines in the slab frame: while the conductivity grating
originates from a line that is very close to x = b (the un-
transformed line), the dielectric grating is obtained from
a line at a distance d, which transforms to a line that
is close to the branch points, where distortion is larger
and the transformation cannot be as accurately described
with a single Fourier component.

In addition, in Fig. 5 we show for comparison the
numerical results for the band structure of a dielectric
grating on top of a homogeneously doped graphene (blue
stars). In other words, we consider the same dielectric
slab with a periodically corrugated surface, but this time
we do not include the conductivity grating. Two remarks
can be extracted from this comparison. First, the res-
onance condition given by the analytical expression 22
fails to predict the spectral position of the modes in the
zone centre as accurately as in the previous case. Sec-
ond, although this case also presents a band gap at the
zone edge, it is much smaller than in the case where a
conductivity grating is also implemented.

This difference in the band gap opening can be under-
stood by looking at the field profiles of the first order
modes at the zone edge for the two cases [see Fig. 5
(b-e)]. When both a conductivity and dielectric grating

are implemented (b,c), the modes are tightly localised
at the conductivity minimum, which coincides with the
thinner part of the dielectric grating. While for one of
the modes the field resides mainly in the dielectric grat-
ing, for the other it peaks in the free space region, such
that frequency of the first is reduced and the frequency
of the second is increased, and a band gap opens. On the
other hand, in the presence of only the dielectric grating,
i.e., without the conductivity grating, the fields are not
so tightly localised at the thin part of the grating (d,e).
In this case, since the graphene is homogeneously doped,
the field is more uniformly distributed along the unit cell,
resulting in a much smaller band gap. It is worth not-
ing here that periodically modulating the doping of the
graphene has a strong effect on field concentration at the
zone edge modes.

B. Optical response of the grating under plane
wave illumination

We now derive analytical expressions for the trans-
mission and reflection coefficients of graphene, subject
to the conductivity and dielectric gratings. We consider
a plane wave impinging from the right of the structure
shown in Fig. 1(d) and follow a procedure similar to
that described in Section II.B. Since we are making use
of the same transformation, the expansion of the incident
electrostatic potential, φsou(x, y), remains the same (Eq.
10). Based on this, we write the fields in the different
regions of space as,

φL = φsouL + φnearL + φradL

φM = φnearM

φR = φnearR + φradR (23)

While the potential at the left and right free-space regions
have the same expressions as before, φM stands for the
potential within the dielectric slab and reads as,

φM = Ev0γy

+

∞∑
g=−∞
g 6=0

(
c+g e
|g|x + c−g e

−|g|x
)
eigy (24)

Next, we apply the boundary conditions at the two inter-
faces: the continuity of the tangential component of the
electric field and the normal component of the displace-
ment field at x = x0; and the continuity of the tangential
component of the electric field and discontinuity of the
normal component of the displacement field at x = b.

As a last step, we implement the additional radi-
ation boundary condition. In this case, we consider
the graphene plus dielectric system as a thin current
layer, radiating outgoing plane waves, such that the
magnetic field in the left and right hand sides of the
structure is discontinuous across this radiating layer,
Htra
z −Hsou

z −Href
z = j. Two contributions to the cur-

rent need to be taken into account here: one from the
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conduction along the graphene sheet (jc which was also
present in the previous case), and one from the displace-
ment current within the dielectric area (jD),

j = jc + jD. (25)

By applying the same procedure to calculate the conduc-
tion current as in the previous case we arrive at

jc = σg(E
sou + Eref )N c , (26)

where N c reads as

N c = 1 +

∞∑
g=−∞
g 6=0

|g|2
(
h+g c

+
2,−ge

2|g|b + h−g c
−
2,−ge

−2|g|b

+h+g c
−
2,−g + h−g c

+
2,−g

)
(27)

(a)

(b)

FIG. 6. Optical response of the dielectric and conductivity
grating system: the surface of the dielectric slab and the con-
ductivity of the graphene sheet are modulated with the same
periodicity as in Fig. 5 and for w0 = 1.5 (a) Reflectance
and transmittance at normal incidence: from the analytical
expressions (solid and dashed lines) and from simulations (cir-
cles and triangles). The top inset panel shows the field profile
at the dipole mode. The lower inset panel is a zoom of the
first order resonance showing also for comparison the spec-
trum of a system with dielectric grating only, i.e., without
the conductivity grating. In this case the stars represent sim-
ulation results and the dotted lines are a guide-to-the-eye. (b)
Absorption spectrum for the same cases as in panel (a). The
case with no coupling to plasmons is shown as a dotted line
for reference.

On the other hand, starting with the displacement cur-
rent in the slab frame,

JD = iω(εd − 1)ε0E , (28)

and following the procedure described for the conduc-
tion current, the total displacement current in the grating
frame can be shown to be given by

jD = iω(εd − 1)ε0γ(Esou + Eref )ND . (29)

In this case, ND is

ND = −d+

∞∑
g=−∞
g 6=0

|g|
[
h+g c

+
2,−g(e

2|g|b − e2|g|x0)

−h−g c−2,−g(e−2|g|b − e−2|g|x0)
]

(30)

Making use of the boundary conditions in the slab
frame together with the radiation boundary condition we
arrive at,

r = − 2αN c + ik0(εd − 1)γND

2 + 2αN c + ik0(εd − 1)γND
, (31)

t =
2

2 + 2αN c + ik0(εd − 1)γND
. (32)

Then, reflectance and transmittance are given by R =
|r|2 and T = |t|2. Finally, note here that our analytical
model assumes that the current sheet radiates symmet-
rically on both sides, which will not be the case for very
strongly modulated gratings or higher frequencies.

In Fig. 6 we present the optical spectrum at normal
incidence for a dielectric and conductivity grating with
the same periodicity and chemical potential as in Fig. 5
and for modulation strength w0 = 1.5. The solid lines
in panel (a), which depict reflectance and transmittance
obtained from Eqs. 31 and 32, show a very good agree-
ment with the simulation results (dots), as well as those
in panel (b), which represent absorption. On the other
hand, we also show numerical results for the case when
only a dielectric grating is considered, i.e., without mod-
ulation of the conductivity. It is clear from these re-
sults that the optimal way to couple into plasmons is to
have both a dielectric and a conductivity grating, which
greatly enhances absorption in the graphene and sup-
presses transmission through the system, as opposed to
the less efficient coupling provided by only modulating
the dielectric interface.

Our analytical model allows us to study the behaviour
of the coupling with the modulation strength. In con-
trast to the case considered in the previous section, where
we showed that coupling into graphene plasmons by a
conductivity grating can be maximised for a range of
modulation strengths, we see in Fig. 7 that for the case
where a dielectric grating is included absorption increases
monotonically with w0. That is, the deeper the modula-
tion, the more efficient the coupling into plasmons. For
the largest modulation strengths considered absorption
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reaches 0.5, a signature of perfect impedance matching.
The fact that there is no optimal modulation strength for
more efficient coupling into plasmons is consistent with
the previous analysis in Ref. [20].

(a)

(b)
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FIG. 7. Conductivity and dielectric grating. (a) Absorp-
tion at each of the resonance peaks as a function of modula-
tion strength for the dielectric and conductivity grating. (b)
Transmittance (solid lines) and reflectance (dashed lines).

IV. CONCLUSIONS

In this paper we have used transformation optics to
study plasmons in graphene excited with the help of
subwavelength dielectric gratings. We have considered
gratings formed by a periodic modulation of graphene’s

conductivity, as well as this together with a and also a
subwavelength dielectric grating of the same periodicity
placed close to the graphene sheet. In both cases, the
shape of the periodic profiles derive from a conformal
transformation that maps a Cartesian mesh into a wavy
and periodic one. However, in both cases they can be
accurately approximated by conform accurately to a si-
nusoidal shape. We have given analytic expressions for
the surface plasmon dispersion relation and the optical
response at normal incidence that are exact up to the
quasistatic approximation. We have shown coupling to
highly confined graphene surface plasmons that provide
very large field enhancements, thus increasing the low
optical absorption of graphene. For the case of periodic
modulation of the conductivity we have discussed the op-
timal conditions for coupling into the surface plasmons.
Absorption as high as 35% can be achieved with a single
sheet of graphene on a substrate of permittivity ε = 3,
and at the same time transmission can be cut down to
less than 10%. On the other hand, for the conductivity
and dielectric grating we have found that there is no op-
timal modulation strength to yield a maximum coupling
efficiency. Finally, we have shown that accompanying a
dielectric grating with a conductivity grating of the same
period is a much more efficient route to couple into the
plasmons than by having only the dielectric grating.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Yu Luo for fruitful
discussions. This work was supported by the Lever-
hulme Trust, the EPSRC (grant number EP/L024926/1),
the Gordon and Betty Moore Foundation and the Na-
tional Natural Science Foundation of China (grant num-
ber 11104200).

[1] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Reviews of Modern Physics 81, 109 (2009),
arXiv:0709.1163.

[2] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari,
Nature Photonics 4, 611 (2010).

[3] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf,
L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).

[4] A. Vakil and N. Engheta, Science (New York, N.Y.) 332,
1291 (2011).

[5] a. N. Grigorenko, M. Polini, and K. S. Novoselov, Nature
Photonics 6, 749 (2012).
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[28] T. Stauber, G. Gómez-Santos, and F. J. G. De Abajo,
Physical Review Letters 112 (2014), 10.1103/Phys-
RevLett.112.077401, arXiv:1310.6197.

[29] A. J. Ward and J. B. Pendry, Journal of Modern Optics
43, 773 (1996).

[30] J. B. Pendry, D. Schurig, and D. R. Smith, Science (New
York, N.Y.) 312, 1780 (2006).

[31] J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier,
Science (New York, N.Y.) 337, 549 (2012).

[32] Y. Luo, R. Zhao, A. I. Fernández-Domı́nguez, S. A.
Maier, and J. B. Pendry, Science China Information Sci-
ences 56, 120401:1 (2014).

[33] A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry,
Physical Review Letters 105, 233901 (2010).

[34] P. A. Huidobro, M. L. Nesterov, L. Mart́ın-Moreno, and
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