Stata tip 1: The eform() option of regress
Roger Newson, King’s College London, UK
roger.newson@kcl.ac.uk

Did you know about the `eform()` option of `regress`? It is very useful for calculating confidence intervals for geometric means and their ratios. These are frequently used with skewed Y-variables, such as house prices and serum viral loads in HIV patients, as approximations for medians and their ratios. In Stata, I usually do this by using the `regress` command on the logs of the Y-values, with the `eform()` and `noconstant` options. For instance, in the `auto` dataset, we might compare prices between non-US and US cars as follows:

```
. sysuse auto, clear
   (1978 Automobile Data)
. generate logprice = log(price)
. generate byte baseline = 1
. regress logprice foreign baseline, noconstant eform(GM/Ratio) robust
Regression with robust standard errors
Number of obs = 74
F( 2, 72) =18043.56
Prob > F = 0.0000
R-squared = 0.9980
Root MSE = .39332

        | GM/Ratio     | Std. Err.  | t    | P>|t|    | [95% Conf. Interval]|
-----------|--------------|-----------|------|--------|---------------------|
foreign    | 1.07697      | 0.103165   | 0.77 | 0.441  | 0.8897576 to 1.303673|
baseline   | 5533.565     | 310.8747   | 153.41| 0.000  | 4947.289 to 6189.316|
```

We see from the `baseline` parameter that US-made cars had a geometric mean price of 5534 dollars (95% CI from 4947 to 6189 dollars), and we see from the `foreign` parameter that non-US cars were 108% as expensive (95% CI, 89% to 130% as expensive). An important point is that, if you want to see the baseline geometric mean, then you must define the constant variable, here `baseline`, and enter it into the model with the `noconstant` option. Stata usually suppresses the display of the intercept when we specify the `eform()` option, and this trick will fool Stata into thinking that there is no intercept for it to hide. The same trick can be used with `logit` using the `or` option, if you want to see the baseline odds as well as the odds ratios.

My nonstatistical colleagues understand regression models for log-transformed data a lot better this way than any other way. Continuous X-variables can also be included, in which case the parameter for each X-variable is a ratio of Y-values per unit change in X, assuming an exponential relationship—or assuming a power relationship, if X is itself log-transformed.