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First paragraph 29 

Magnetic reconnection is a fundamental process in solar system and astrophysical 30 

plasmas, through which stored magnetic energy associated with current sheets is 31 

converted into thermal, kinetic and wave energy1-4. Magnetic reconnection is also thought 32 

to be a key process involved in shedding internally-produced plasma from the giant 33 

magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic 34 

field5,6. The region where magnetic fields reconnect is known as the diffusion region and in 35 

this paper we report on the first encounter of the Cassini spacecraft with a diffusion region 36 

in Saturn’s magnetotail. The data also show evidence of magnetic reconnection over a 37 

period of 19 hours revealing that reconnection can, in fact, act for prolonged intervals in a 38 

rapidly-rotating magnetosphere. We show that reconnection can be a significant pathway 39 

for internal plasma loss at Saturn6. This counters the view of reconnection as a transient 40 

method of internal plasma loss at Saturn5,7. These results, whilst directly relating to the 41 

magnetosphere of Saturn, have applications to understanding other rapidly rotating 42 

magnetospheres, including that of Jupiter and other astrophysical bodies. 43 
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Main 44 

Since the discovery of H2O plumes from the icy moon Enceladus it has become clear that 45 

the dominant source of plasma in Saturn’s magnetosphere is the ionisation of neutral 46 

molecules deep within the magnetosphere, producing a plasma composed of H2O+, H3O+, 47 

OH+, collectively referred to as the water group, W+ (8-10). Some of this plasma is lost from 48 

the system by charge-exchange, the remaining plasma is transported radially outward. 49 

The radial transport is driven by the centrifugal interchange instability, which is analogous 50 

to the Rayleigh-Taylor instability with gravity replaced by the centrifugal force associated 51 

with the rapid rotation of the magnetosphere6. 52 

Magnetic reconnection is a process involving topological rearrangement of the magnetic 53 

field. Generally this involves either connecting planetary magnetic field lines with the solar 54 

wind, known as “opening” magnetic flux, on the dayside boundary of the magnetosphere, 55 

or reconnection in the magnetotail on the nightside of the planet which reconnects 56 

planetary magnetic field lines to each other, known as “closing” magnetic flux. This should 57 

also result in mass loss from the magnetosphere. In a time-averaged sense the outward 58 

plasma transport rate should match the plasma loss rate, and the dayside reconnection 59 

rate should match that in the magnetotail. Observations of reconnection in the magnetotail 60 

can thus provide a method to test the loss process for this internally-produced plasma, as 61 

well as the closure of magnetic flux opened on the dayside. 62 

Data from the Cassini spacecraft has only provided indirect evidence for reconnection in 63 

the magnetotail11,12,13,7 and the actual region where magnetic fields are merging, known as 64 

the diffusion region, has not been detected at Saturn or Jupiter. The diffusion region has a 65 

two-scale structure with the larger ion diffusion region surrounding the smaller electron 66 

diffusion region. The ion diffusion region has been detected in observations in Earth’s 67 
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magnetotail1,14,15, Earth’s magnetosheath16, and at Mars17,18. The plasma loss rates 68 

inferred from previous observations of magnetic reconnection at Saturn and Jupiter are an 69 

order of magnitude too small when compared to the known plasma production rates7,19,5. 70 

Here we report the first observations of an ion diffusion region in Saturn’s magnetotail. 71 

These direct observations show that reconnection can occur over prolonged intervals, 72 

almost an order of magnitude longer than the longest previously reported20. 73 

Figure 1 shows magnetic field and electron data for a six hour interval on 08 October 2006 74 

when Cassini was located in the post-midnight sector of Saturn’s magnetosphere around 75 

0130 Saturn Local Time, about 8º north of Saturn’s equatorial plane, and at a radial 76 

distance of 29 RS, where 1 RS=60268 km. As illustrated in Figure 2, the magnetic field in 77 

the tail is generally in a swept-back into an Archimedean configuration as the result of 78 

outward plasma transport and angular momentum conservation. This effect is removed by 79 

rotating the data into a new coordinate system where the background magnetic field is in 80 

the X direction, and the Y direction is perpendicular to the plane of the swept-back 81 

magnetic field (details of the transformation are given in the Supplementary Material). At 82 

the beginning of the interval, Cassini was located above the magnetotail current sheet 83 

(Bx>0), crossing below (Bx<0) the centre of the current sheet between 03:30 UT – 03:40 84 

UT. Bz is ordinarily expected to be negative, as shown in the Supplementary Material. At 85 

03:55 UT Bz reverses sign, which in fact corresponds to Cassini crossing the X-line from 86 

the tailward to the planetward side as shown in Figure 2. The quantity |Bz|/max(|Bx|) is an 87 

estimate of the reconnection rate and was found to be 0.13±0.10 with a peak of 0.66 – 88 

hence consistent with fast magnetic reconnection16. 89 

On the tailward side of the X-line a very energetic (~10 keV/q) ion population is observed 90 

flowing tailward, and slightly duskward. This population is not a field-aligned ion beam and 91 

has significant perpendicular velocity component. These ions are moving with speeds of 92 
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1200 km s-1, a substantial fraction of the Alfvén speed of ~4000 km s-1 outside of the 93 

current sheet21 and much larger than the speed of plasma azimuthally moving around the 94 

planet (~150 km s-1), and are identified as the tailward jet from the diffusion region. On the 95 

planetward side of the diffusion region the field-of-view of the ion detector does not cover 96 

the region where we would expect to see planetward ion beams. Later that day as Cassini 97 

leaves the diffusion region the plasma flow returns to near azimuthal motion, but with a 98 

tailward and northward component. Detailed analysis of these ion flow directions are 99 

presented in the Supplementary Material. 100 

Around the magnetic reconnection site ideal magnetohydrodynamics breaks down and 101 

charged particles become demagnetised from the magnetic field. Because of a factor of 102 

~1800 in the mass difference between electrons and ions, the ions demagnetise over a 103 

larger spatial region than electrons resulting in differential motion between ions and 104 

electrons. The resulting current system is known as the Hall current system and produces 105 

a characteristic quadrupolar magnetic field structure in the out-of-plane magnetic field, By 106 

(Figure 2). In the ion diffusion region on the tailward side of the diffusion region Bx and By 107 

have the same sign but on the planetward side of the X-line Bx and By have opposite 108 

signs15. Hence, the sign of By can be predicted based on the value of Bx and Bz thus 109 

providing a test for the presence of the Hall magnetic field. The red (blue) regions of Bx 110 

and By in Figure 1 indicate where the By component is expected to have a positive 111 

(negative) sign associated with this current system and this colour-coding is consistent 112 

with the Hall field. 113 

As expected, the strength of the Hall field perturbation peaks between the centre and 114 

exterior of the current sheet. Three of the four quadrants of the Hall field were measured 115 

by Cassini, as indicated by simplified sketch of Cassini’s trajectory in Figure 2, based on 116 

the data in Figure 1. As calculated in the Supplementary Material, the strength of the Hall 117 
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field can be estimated by the quantity |By|/max(|Bx|) and the mean value of 0.18±0.15 is 118 

somewhat smaller than that observed in other environments although the peak of 0.83 is 119 

more consistent with the typical strength, ~0.5, of the Hall field1,18. 120 

As shown in the Supplementary Material, further evidence for the detection of the ion 121 

diffusion region is cool ~100 eV electrons flowing in response to the Hall current system, 122 

and hot ~1-10 keV electrons flowing out of the diffusion region. Small loop-like magnetic 123 

field structures at 02:20-03:00 UT and 03:28-03:40 UT also represent evidence for 124 

ongoing reconnection. Taken together, the conclusion is that Cassini encountered a 125 

tailward moving ion diffusion region in Saturn’s magnetotail as sketched in Figure 2. 126 

In two-fluid magnetic reconnection theory the size of the ion diffusion region is a multiple of 127 

the ion inertial length, c/ωi, where c is the speed of light in a vacuum and ωi is the ion 128 

plasma frequency given by (nZ2e2/ε0mi)1/2, where n is the ion number density, Z is the ion 129 

charge state, e is the fundamental charge, ε0 is the permittivity of free space, and mi is the 130 

ion mass. Using measurements of magnetotail plasma at 30 RS with a plasma number 131 

density of 4 – 8×104 m-3 and composition22 of nW+/nH+~2, the mean ion mass is 1.95×10-26 132 

kg and the ion inertial length is 3000 – 4000 km (0.05 – 0.06 RS), hence, the ion diffusion 133 

region at Saturn should be >~0.06 RS (4000 km) in thickness. The lower plasma density in 134 

the saturnian system means that the ion diffusion region is an order of magnitude larger 135 

than at Earth. Cassini spends over 150 minutes near the reconnection site, which although 136 

is longer than ~10 minutes at Earth, is not unexpected given the differing size of the 137 

diffusion region itself. 138 

Plasmoids are loops of magnetic flux produced as part of the reconnection process and 139 

they have been used to estimate7 magnetic flux closure in the magnetotail by integrating 140 

the product of the Bθ component of the magnetic field and the tailward flow speed. This 141 
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has shown rates of magnetic flux closure between 0.0029 and 0.024 GWb/RS, where the 142 

dimensions include per unit length because the cross-tail length of the diffusion region is 143 

unknown and there is no evidence for large reconnection events that extend the full width 144 

of the magnetotail. 145 

Applying the same argument to the data in the ion diffusion region in Figure 1, between 146 

0146 and 0355 UT, and a flow speed of 1200 km s-1, (based on the ion measurements), 147 

the reconnected flux is 0.34 GWb RS
-1 over a 2 hour period. This is more than an order of 148 

magnitude greater than the largest estimates based on plasmoid observations alone7. 149 

From changes in the size of Saturn’s main auroral oval, changes in open tail flux are 150 

typically 5 GWb over a 10-60 hour period23 but, occasionally, can be much higher (3.5 151 

GWb/hour)(24). Our observations are entirely consistent with rates of flux closure inferred 152 

from auroral observations, requiring only modest ~10% fractions of the tail width to be 153 

involved. 154 

Estimates of the mass lost per plasmoid can be made by combining the typical tail plasma 155 

density of ~104 m-3 of 18 amu per ion plasma, with an estimate for the plasmoid volume of 156 

10 RS
3, to give 62×103 kg per plasmoid. Hence, ~200 plasmoids per day (one every ~7 157 

minutes) are required to remove the plasma transported outwards from the inner 158 

magnetosphere5. By scaling our calculated rate of flux closure by the mass per unit 159 

magnetic flux22 of ~10-3 kg/Wb, we estimate that this releases 3×105 kg RS
-1 or 3×107 kg, 160 

three orders of magnitude larger than previous estimates based on plasmoids20. Events of 161 

this magnitude every ~4-40 days are required to match a time-averaged mass loading rate 162 

of 100 kg/s, rather than every 7 minutes from previous estimates based on indirect 163 

observations5. Hence, these results demonstrate that magnetotail reconnection can close 164 

sufficient amounts of magnetic flux and act as a very significant mass loss mechanism. 165 
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Additional indirect signatures of magnetic reconnection are also observed two hours after 166 

the diffusion region moves tailward. Figure 3 shows five hours of electron fluxes and 167 

magnetometer data revealing a series of reconnection signatures in a spherical polar 168 

(Kronocentric radial-theta-phi, KRTP) coordinate system. Bipolar perturbations in the Bθ 169 

component indicate the passage of a loop-like magnetic flux structure and the sense of the 170 

perturbation indicates the direction of travel, i.e. a negative-positive perturbation is moving 171 

tailward7. At 0610 UT a tailward moving loop passes near the spacecraft, sourced from an 172 

diffusion region planetward of the spacecraft. At 0705 and 0810 UT a sharp increase in Bθ 173 

to large positive values is indicative of the compression of magnetic field lines around 174 

plasma moving rapidly towards the planet as the result of magnetic reconnection downtail 175 

from the spacecraft25. These are known as dipolarisation fronts and they indicate the 176 

presence of an diffusion region tailward of the spacecraft. Following the passage of the 177 

fronts the spacecraft is immersed in hot plasma, similar to that seen in Earth’s 178 

magnetotail26, and this is a signature of the energy conversion in the reconnection process. 179 

After the final dipolarisation front passes Cassini, the spacecraft is located in a region of 180 

fluctuating magnetic fields similar to a chain of magnetic islands (loops) and is surrounded 181 

by energetic ~10 keV electrons27 which from 0810 to 0910 UT also display evidence of 182 

becoming more energetic with time. Ion flows with a planetward component are found 183 

throughout this hot plasma region with speeds in excess of ~1000 km s-1. Towards the end 184 

of the interval, between 15:00 and 17:25 UT, planetward flowing ions and electrons are 185 

found in a layer between the centre of the current sheet and its exterior, which are 186 

consistent with outflows from a more distant diffusion region28. The detailed particle 187 

analysis is presented in the Supplementary Material. 188 

These data are evidence for ongoing but time variable magnetic reconnection in the 189 

magnetotail at this local time over a period of 19 hours, covering almost two rotations of 190 
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Saturn. Simulations of upstream solar wind conditions presented in the Supplementary 191 

Information show that the magnetosphere was strongly compressed just before the entry 192 

into the diffusion region, suggesting triggering of tail reconnection by a solar wind pressure 193 

pulse. As shown in the Supplementary Material, a weaker pressure pulse arrives on 09 194 

October at 1400 UT when Cassini was located in the inner magnetosphere. Wave 195 

signatures suggest that this triggered further reconnection. These observations stand in 196 

contrast to the much less frequent plasmoid observations that have previously been used 197 

to infer rates of magnetic reconnection in Saturn’s magnetotail. At this point it is not 198 

possible to determine whether this is a consequence of the magnitude of the solar wind 199 

pressure increase, or if this is simply a common event but rarely observed due to the orbit 200 

of Cassini and the spatial distribution/spatial size of diffusion regions. These results show 201 

that prolonged magnetotail reconnection can close sufficient magnetic flux and shed 202 

sufficient mass to explain the time-averaged driving of Saturn’s magnetosphere. 203 
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Figure captions 301 

Figure 1: Interval encompassing an ion diffusion region in Saturn’s magnetotail as seen by 302 

the Cassini spacecraft. Panel (a) electron omnidirectional flux time-energy spectrogram in 303 

units of differential energy flux (eV m-2 sr-1 s-1 eV-1); (b-d) three components of the 304 

magnetic field in the X-line coordinate system, parts of the Bx and By traces in red (blue) 305 

show where the By component is expected to be positive (negative); (e) the field 306 

magnitude. 307 

 308 
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Figure 2: Geometry of the X-line coordinate system and schematic of Cassini’s motion 309 

relative to the X-line. The red vectors show the original spherical polar coordinate system 310 

from the magnetometer data and the green vectors show the new X-line coordinate 311 

system which takes into account the swept-back configuration of the magnetic field. The 312 

blue curve in the top two panels shows the orbit of Cassini around Saturn and in the 313 

bottom view we show a simplified sketch of the inferred motion of Cassini relative to the 314 

magnetic reconnection X-line. The pink and blue regions are the ion and electron diffusion 315 

regions9. 316 

 317 
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Figure 3: Dipolarisation fronts (DF), magnetic loop (Loop), and the restart of reconnection. 318 

Panel (a) electron omnidirectional flux time-energy spectrogram in units of differential 319 

energy flux (eV m-2 sr-1 s-1 eV-1); (b-d) three components of the magnetic field in spherical 320 

polar coordinates. The grey region indicates periods where the spacecraft is immersed in 321 

the plasma sheet.  322 
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