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Abstract 

 

Blowflies are exquisite fliers and have long been established as models for 

sensorimotor research. Their flight performance crucially depends on both 

visual and mechanoreceptive feedback. Our understanding of how the 

nervous system integrates signals of these sensory modalities, however, 

leaves two important issues unresolved. First: As most experiments are 

performed on restrained animals, how are neural signals integrated when the 

animal actually moves? Second: Are neural mechanisms underlying optic-

flow-based self-motion estimation modulated by mechanosensory modalities 

when controlling motor behaviour?  

To address these questions, I have designed a mobile platform and 

miniaturized electrophysiological recording equipment. Here, I describe details 

of the platform’s mechanical and electronic components, test its performance, 

and demonstrate that it enables high quality recordings from an identified 

interneuron in the fly motion vision pathway, the H1-cell, which is believed to 

process optic-flow, generate during self-motion. I compare the recordings 

obtained with my novel platform to those gathered with much bigger setups, 

which are orders of magnitude heavier, and characterize the responses of the 

H1-cell under various stimulus conditions.  My results are mostly in agreement 

with earlier work but include new findings on pattern size-dependent 

responses of the cell, which are in contrast to theoretical predictions based on 

previous behavioural and physiological studies. To investigate how the fly 

uses signals from different sensory modalities to control various optomotor 

behaviours and potentially vision-based collision avoidance, I have 

established a brain machine interface on a small mobile robot that uses the 

neural activity of the H1-cell to control the robot's motor system.  

In summary, I have created a platform for in vivo recordings of neural activity 

in flies on a small robot. This novel technology will enable further studies on 
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multisensory integration to gain new insights into the design of fly 

sensorimotor pathways involved in course control and collision avoidance.  
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Prologue 

 

Mankind was often inspired by biological design principles which have proven 

successful over millions of year of evolution, when developing technical 

applications. The adaptive way in which animals and humans control their 

movements in habitats ranging from deserts, to tropical forests and from 

mountains to the beaches at the sea is still unmatched by any manmade robot. 

Understanding the principles of animal motor control is the subject of 

neuroscience research which, over the last few decades, has significantly 

benefitted from interdisciplinary approaches involving theoretical and 

engineering methods. Whenever ground breaking discoveries in neuroscience 

had been made they were based on the development of new methodologies. 

And in many cases the new discoveries were then translated into novel 

technical applications.  

One of the great fascinations for humans has been the ability to fly – or at 

least to engineer aerial vehicles that can do so. This is one of the areas where 

the interests of engineers and neuroscientists have converged in the last 

couple of years. Neuroscientists, trying to understand how the nervous 

system accomplishes the control of flight and engineers who are eager to 

design highly manoeuvrable aerial vehicles have started to combine their 

expertise in an attempt to extract and translate principles of sensorimotor 

control found in bird and flying insects (Zufferey Jean-Christophe Staff, 2008).  

One of the most accomplished flyers in the animal kingdom, the common 

blowfly, has been a model system for sensorimotor research for many years. 

Its flight envelope, the combination of translations and rotations it engages on 

when airborne, is superior to the performance of any manmade air vehicle. 

And yet, despite several decades of research into the secrets of how senor 

signals from different modalities are used to control its aerodynamic stability 

as well as avoiding collisions with obstacles are still not entirely understood 
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with respect to the underlying neural mechanisms. This is mostly because of 

methodological limitation: There is hardly any model system in which specific 

neural activity could have been recorded during flight and then correlated with 

the sensory input as well as behavioural output parameters.  

In my project I have designed a miniaturized recording platform as a first step 

to overcome some of the methodological problems. I have developed a 

system that will eventually enable studies on multisensory signal integration 

under closed-loop conditions where a blowfly is mounted on a small-mobile 

robot the movements of which it controls by the activity of an identified visual 

interneuron. Although this approach has its own limitations as the trajectory of 

the robot will be confined to the 2-dimensional plane, it will go beyond any 

previous studies in that multiple sensor systems will be activated during the 

robot’s movements. 

The major challenges of my project were to (i) design a miniaturized recording 

platform that features full functionality to enable (ii) stable high quality 

recordings over extended periods of time and (iii) under conditions where the 

recording platform is exposed to angular velocities within the dynamic input 

range the fly experiences during flight. Finally, I tested the performance of the 

mobile recording platform under various stimulus conditions and established 

an interface between the neural activity of a visual interneuron and a two-

wheeled robot. 
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1. Introduction  

 

In this chapter, I will review the background literature on the sensors of the 

blowfly, and how these sensors contribute to flight control. I will also review 

work on brain machine interfaces, in the more general sense, applied to flies 

and other insects which inspired this thesis. 

1.1. Blowfly neurobiology of flight control 

The blowfly, Calliphora vicina, is a frequently seen two winged insect. It is a 

convenient model animal in the lab, due to its simple feeding requirements 

and short reproductive cycle. It reaches a flight speed of 2.5 m/s and rotates 

at angular velocities  as high as 1700 deg/s when flying (Bomphrey et al., 

2009). Its light weight, small size, and a sophisticated flight motor system in 

combination with a variety of sensor systems providing robust information on 

state changes (Taylor and Krapp, 2007), the blowfly accomplishes a degree of 

aerial manoeuvrability that is hardly matched by any other flying animal or 

man-made air vehicle.  

The blowfly uses a combination of visual and mechanosensory systems to 

control its gaze and flight. During locomotion, the visual system supports 

course, altitude, and attitude control. The latter is augmented by 

mechanoreceptive systems indicating, for instance, air speed and body 

accelerations (Taylor and Krapp, 2007).  

In this section, the function of the visual systems and mechanosensors in the 

blowfly will be introduced and how their signals may be integrated to support 

tasks such as gaze and flight stabilization. 

1.1.1. Vision and motion  

1.1.1.1. Optic flow and ego motion 

During ego-motion, the eyes of the blowfly will move relative to its visual 

surroundings. The resulting panoramic image shifts are often called “optic flow” 
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fields (Koenderink and Doorn, 1987) which consist of local velocity vectors 

describing the direction and relative magnitude of retinal image motion. The 

global structure of optic flow fields is defined by the translational and rotational 

ego-motion components where the contribution of the translation component 

is inversely proportional to the distance between the eye and the objects in 

the environment. 

There are six degrees of freedom in ego-motion. Three translational, thrust, lift, 

sideslip, and three rotational yaw, pitch and roll (Taylor and Krapp, 2007).   

 

Figure 1. Self-motion and global optic flow. Top left: Optic flow generated during pure lift 
translation plotted as tangent vectors on a unit sphere that symbolizes the visual field. The 
direction of translation, At, defines the location of two singularities in the flow field, the focus of 
expansion and the focus of contraction, where no relative motion takes place. Local vectors in a 
translation flow field are aligned along great circles connecting the focus of expansion with the 
focus of contraction and point in the opposite directions to At. Bottom left: During pure rotation 
all flow vectors are aligned along parallel circles centered with the axis of rotation, Ar. and are 
thus oriented perpendicular to the rotation axis. The example shows a flow field as a result of a 
roll rotation around the longitudinal body axis. Plots on the right hand side show cylindrical 
projections of the flow fields into the 2-dimensional plane where each position in the visual field 
is defined by two angles: the (horizontal) azimuth and the (vertical) elevation. Note that the gray 
window in the right half of the visual field shows local flow vectors pointing in the same 
direction despite the fact they were generated by different ego-motions. Modified from (Krapp & 
Wicklein 2008). 
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Optic flow vectors generated by pure rotation do not contain distance 

information but only depend on the rotation vector and the azimuth and 

elevation upon which they are observed. The result is a pattern of coherent 

wide-field motion within the entire visual field. The velocity of optic flow is 

maximum at viewing directions perpendicular to the rotational axis, and 

gradually decreases to zero toward the axis of rotation, Ar. All local flow 

vectors are aligned along parallel circles which are centred on Ar. Their 

orientation is always perpendicular to the rotation axis.  

Optic flow vectors generated during pure translation are aligned with great 

circles connecting the focus of expansion with the focus of contraction. Their 

orientation and magnitude depends on the difference between the translation 

vector and the projection of the translation vector into the different viewing 

directions defined by azimuth and elevation. As a result, and similar to 

rotation-induced flow vectors, their magnitude becomes maximum at viewing 

directions perpendicular to the translation axis, At, and zero at the singularities 

of the flow field. Other than during pure rotation, the magnitude of flow vectors 

in translation induced flow fields depends on distance. In terms of relative 

motion: objects close to a moving observer move faster than distant objects. 

Quantitative accounts on optic flow can be found in the literature (Dahmen et 

al., 2001; Koenderink and van Doorn, 1987). 

The description of optic flow above holds true for an observer moving in a 

fixed environment where all objects are seen at a unit distance. Obviously, 

moving objects also cause image motion on the retinae of a stationary or 

moving observer. The direction and velocity of the resulting retinal image 

shifts is then given by the sum of the local velocity vectors. In case the 

observer is moving, external object motion introduces local discontinuities in 

the ego-motion-induced global optic flow field (Krapp and Wicklein, 2008).  

1.1.1.2. Elementary motion detector 

Optic flow is generated by ego-motion of an observer. Exploiting optic flow for 

visually guided behaviour requires a mechanism in the visual system that can 

analyses the direction and relative magnitude of the local velocity vectors. If 

this is done at a sufficient number of locations in the visual field, there is hope 
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that the ego-motion components, Ar and At, may be estimated and the 

resulting information can be used for gaze and flight control.  

Nervous systems, in general, analyses directional motion by so-called 

Elementary Movement Detectors (EMDs) the functional properties of which 

Reichardt proposed (Reichardt and Egelhaaf, 1988). The EMD model is also 

called ‘Reichardt detector’. This model describes the necessary and sufficient 

conditions required to distinguish between motions in opposite directions. It 

consists of: (1) Two spatially separated inputs. (2) Two different input transfer 

functions – one delayed, one without delay. (3) A non-linear combination of 

the delayed and non-delayed signals approximated by a multiplication 

operation. This basic structure of such a half detector is able to detect motion 

in one direction, called preferred direction, but cannot tell the difference 

between motion in the opposite, anti-preferred direction, and no motion. Two 

inputs and one output can only deal with two states, but two inputs and two 

outputs can deal with four states. By complementing the half detector with a 

mirror-symmetric version and then subtracting the output of the added half 

detector from the output of the original one on a common integration stage, 

the model is turned into a fully directional-selective EMD (Figure 2). The 

integration stage assumes four output states: (1) Generating positive output 

when motion passes across the inputs in the preferred direction of the 

detector. (2) Generating negative output for motion in the opposite direction. 

(3) No output is generated when there is no motion. (4) No output is 

generated when signals of the same amplitude from both half detectors reach 

the integration stage simultaneously.  

This generic model is also named correlation-type motion detector, because it 

provides a spatiotemporal correlation of light intensities received at 

neighbouring sensors on the retina. The EMD output depends not only on the 

angular velocity of the given stimulus pattern, but also on the spatial 

wavelength of a pattern which contains periodic light intensity fluctuations. 

The ratio between angular velocity and spatial wavelength of a periodic 

pattern is called contrast or temporal frequency and has the unit 1/s. More 

information about motion detection models may be found in the literature 

(Borst and Egelhaaf, 1989; Egelhaaf and Borst, 1993; Reichardt, 1987).  
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Figure 2. Elementary movement detector: (top left) half-detector with preferred direction stimulus 
moving to the right, first inducing a signal in the left then in the right input channel. The delayed 
signal from the first input channel coincides with the non-delayed signal from second input 
channel at a multiplication stage if the time it takes the stimulus to reach the second input 

channel corresponds to the delay, , in the first input channel. (top right) the same half-detector 
stimulated with  motion in the  anti-preferred direction. In this case the two inputs are de-
correlated in time and no sizable output is generated.  (bottom left and right) A fully directional 
EMD combines two mirror-symmetrical half-detectors. Motion in the detectors preferred and anti-
preferred direction result in a positive and negative output of the detector, respectively. Figure 
modified from (Krapp & Wicklein 2008)   

 

1.1.1.3. The aperture problem 

As was described above, the EMD is able to measure the local image motion. 

But there is a theoretical issue called “aperture problem” which affects the 

measurement of the local image velocities. The direction of local visual motion 

viewed through a round aperture is ambiguous. Figure 3 shows a case, where 

only the motion component perpendicular to the pattern orientation can be 

measured while the parallel component is “invisible” for a local analysis. 

Identical responses in a motion sensitive neuron in the visual system can be 
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caused by a variety of contours of different orientations moving at different 

speeds (Shimojo et al., 1989). 

 

 

Figure 3. The aperture problem. Motion orthogonal to the edge is detected, motion parallel to the 
edge can not be deteted. 

In the visual system, neurons at peripheral stages along the motion vision 

pathway respond to local motion within their receptive field. Each local 

motion-detecting neuron may suffer from the aperture problem (Pack and 

Born, 2001). To overcome this problem the signals of many neurons with local 

receptive fields may be spatially integrated for a correct global motion 

estimate (Dahmen et al., 2001; Koenderink and Doorn, 1987). 

1.1.2. The blowfly visual system 

The blowfly visual system can be divided into four parts (Figure 4). The retina 

is the first part where changes in light intensity are transduced into time-

varying electrical signal. At this stage visual processing takes place on a local 

basis with only a small amount of lateral processing. The retinotopic 

representation of visual information, i.e. light intensity changes at 

neighbouring locations in the visual field are mapped onto neighbouring 

elements in the visual system, is maintained (Strausfeld, 1976a). 

The lamina is the second part. It is organized in a columnar structure and 

receives retinotopic inputs from the retina. Within each column local neurons 

are involved in some lateral processing.  
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The third part is called medulla, which consists of three regions: the outer 

medulla, the inner medulla and the serpentine layer (Krapp and Wicklein, 

2008). The outer medulla receives inputs from lamina monopolar cells and 

other long visual fibres. The axons between the lamina and the medulla cross 

over to form the external chiasm.  

The last part is called lobula complex, which consists of the anterior lobula 

and the posterior lobula plate. In both parts spatial signal integration takes 

place. The lobula plate tangential cells (LPTCs) spatially integrate local 

motion signals – which reflect the properties of EMD half-detectors. Many of 

the cells have extended receptive fields and respond to wide-field motion in a 

directional selective way. Certain sub-populations of LPTCs, the VS- and HS-

cells (Hausen, 1984, 1993), were suggested to act as matched filters for 

specific optic flow fields (Franz and Krapp 2000). Some motion sensitive 

spiking cells have been well studied electrophysiologically, using small 

moving objects for visual stimulation including the H1-cell (Krapp and 

Hengstenberg, 1997).  

 

Figure 4. The blowfly visual system. The visual system includes: retina, lamina, medulla, lobula 
and lobula plate. The lobula plate receives retinotopic input from lobula and medulla, where the 
connecting axons cross over in the internal chiasm. In the external chiasm axons originating in 
the lamina cross over on their projection to the medulla. As the whole system is organized in a 
retinotopic way, a crossover of projections is equivalent to an inversion of the vertical image 
plane. Modified from (Borst and Haag, 2002a) 
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1.1.2.1. Retina 

The retina is the first neuropil of blowflies’ visual system. 

The eye consists of around 5200 hexagonally arranged functional units in 

both compound eyes (Beersma et al., 1977), called ommatidia. Each 

ommatidium has its own lens focussing incoming light on eight photoreceptors 

in each ommatidium. The spatial resolution of the compound eye in Calliphora 

is about 1 to 2 degrees, restricted mainly by diffraction resulting from small 

lenses and by the geometry of the lens-photoreceptor arrangement (Land and 

Eckert, 1985).  

 

Figure 5. The ommatidium. (Left) Drosophila photoreceptors R1-6 and R7, (right) structure of a 
single ommatidium with photoreceptors R1-6 (gray), R7 (purple) and R8 (green). Modified from 
(Yishai Michael Elyada 2009) 

Each ommatidium consists of the cornea, crystalline cones, rhabdom, 

receptor cells and pigment cells. The light passes though cornea and 

crystalline cones and is focused on the photoreceptors at the bottom of the 

crystalline cones, where the tip of the rhabdom is located. The rhabdom is a 

transparent crystalline receptive structure. It consists of rhabdomeres which 

contain a small number of photoreceptor cells. There are eight photoreceptors, 

R1-R8, which use light sensitive pigments to photochemically convert 

changes in photon flux into membrane potential changes. An increase in 

luminance is encoded by a depolarization of the membrane in insect 

photoreceptors (Laughlin, 1984). Neighbouring ommatidia are optically 
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insulated from one another by shieling pigments to reduce blurring of the 

images (Kirschfeld et al., 1977). 

The R1-R6 photoreceptors have short axons that terminate in the cartridges 

of the first neuropil, the lamina. A 180 degree twist of the photoreceptor axons 

is required before they synapse on to the cells in the lamina to maintain 

spatial contiguity after the inversion of the image by each of the facet lenses. 

The R7 and R8 have longer axons, which bypass the lamina, and terminate at 

different levels in the medulla. It is believed that R1-R6 are important for 

motion detection and produce monochromic signals while R7/R8 mediates 

polychromic signals (Heisenberg and Buchner, 1977).  

1.1.2.2. Lamina 

The lamina is the most peripheral of the three optic neuropils. The inputs from 

the retina are grouped into retinotopic columns in lamina, called “cartridges”. 

The blowfly possesses a structure called “neural superposition eye”, where 

R1-R6 photoreceptors (short visual fibres) of each ommatidium in the retina 

project to different cartridges in the lamina. Each lamina cartridge contains 

five principle neurons, the large monopolar cells (LMC) L1-L5.  

A depolarisation in the photoreceptors R1-R6 causes hyperpolarization in the 

LMCs. The sign of the signal is inverted in the lamina, compared to retina. 

The LMCs produce an impulse-shaped signal, when receiving a step-shaped 

input, which suggest them to function as some sort of high pass filter (Figure 

6). The signal will decline to zero after the initial response peak.  
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Figure 6. Signal transmission from photoreceptor to LMC. Transsynaptic signals are high pass 
filtered.  Modified from (Laughlin 1984) 

Among the Large monopolar cells, the L1 and L2 neurons are the principal 

neurons supporting motion vision (Tuthill et al., 2013). The motion vision 

pathway diverges into two pathways. The L1 neurons connect to Mi1 neurons 

in layers M1 and M5 of the medulla. The L2 neurons connect to Tm1 neurons 

in layer M2 of the medulla (Bausenwein et al., 1992).  

1.1.2.3. Medulla 

The medulla is the second neuropil in the visual system of the blowfly, 

receiving signals from laminar monopolar cells and directly from the 

photoreceptors R7, R8. The L1 monopolar cell axon ends in layers M1 and 

M5, connecting with the Mi1 cell, which connects or synapses with the motion-

sensitive, direction-selective T4 cells in layer M10 (Bausenwein et al., 1992). 

These cells probably synapse onto tangential cells in the lobular plate 

(Strausfeld and Lee, 1991). The L2 monopolar cells connect to the M2 layer of 

the medulla and terminate on the transmedullary Tm1 cells. The Tm1 cells 
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connect T5 cells in the lobula, which are directionally selective and project to 

the lobula plate (Strausfeld and Lee, 1991).  

1.1.2.4. Lobula complex 

The lobula complex consists of two parts: the lobula (on the anterior side), 

and the lobula plate (posterior side of the lobula complex).  

The lobula consists of six layers. The transmedullary Tm1 neurons, which 

originate in the medulla, contact the directionally selective T5 neurons on the 

posterior layer of the lobula. Different T5 neurons go to different layers of the 

lobula plate. 

The lobula plate is located on the posterior side of the lobula complex and has 

indeed a plate-like shape. It receives retinotopic inputs form both the medulla 

and lobula. The lobula plate contains large motion-sensitive tangential 

neurons which have been characterized both anatomically and physiologically 

(Borst and Haag, 2002a; Hausen, 1984; Reichardt et al., 1983). They are 

called lobula plate tangential cells (LPTCs). LPTCs are thought to play a 

cardinal role in stabilization reflexes in flies supporting gaze and flight control. 

Local motion information from the retinotopically arranged arrays of 

directional-selective small field elements are selectively integrated onto the 

lobula plate (Krapp and Hengstenberg, 1996). 

The lobula plate has four input layers. The layers are invaded by dendrites of 

different LPTCs which receive signals from one out of four separate 

retinotopically arranged input arrays each of which providing distinctly 

different directional information (Buchner, 1984). 

The flat structure of the lobula plate, its location right underneath the cuticle of 

the animal’s read head capsule as well as the large two-dimensional 

morphology of the LPTCs make these neurons particularly accessible for 

electrophysiological studies. I have exploited those features of the LPTCs in 

this project. 
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1.1.2.5. H1-cell 

There are around 60 identified lobula plate tangential cells in each 

hemisphere of the fly brain (Hausen, 1984). The LPTCs process motion 

information from retinotopic arrays of local motion sensitive units as well as 

information provided by networks of ipsilateral and heterolateral cells, before 

passing the integrated information on to downstream motor circuits (Borst and 

Haag, 2002a). The responses of LPTC are either graded membrane 

potentials (CH cells), action potential (H1-H2, V1-V2), or both (HS cells, VS 

cells, FD cells) (Borst and Haag, 1996; Hengstenberg, 1977). The LPTCs can 

also be classified by their primary direction selectivity, such as: horizontal 

motion sensitive cells (HS, CH, H and FD cells) and vertical motion sensitive 

cells (VS and V cells), although the preferred direction of receptive fields are 

more complex (Hausen, 1993; Krapp and Hengstenberg, 1996).  

H1-cell is one of the horizontal motion sensitive cells in the lobula plate of the 

blowflies  (Krapp and Hengstenberg, 1997). The blowfly has two H1 neurons, 

one in each hemisphere of the brain. The axon of the H1-cell is about 5 

micrometres in diameter, 1200 micrometres in length and conducts action 

potentials at a speed of 1 m/s (Hausen, 1984). The diameter of the axons of 

most of these neurons enables both intracellular and extracellular recordings 

of their neural activity. 

The dendritic arborisation of the H1-cell covers the entire anterior surface of 

the lobula plate, where it receives retinotopic input from local small-field 

neurons of the medulla and lobula. The telo-dendritic arborizations of H1-cells 

transmit the signals to the contralateral lobula plate. The H1-cell is a spiking 

neuron, which generates action potentials for signal propagation. 

The receptive field of H1-cells as measured using local motion stimuli ranges 

from -165 degree to +15 degree along azimuth, and from -45 degree to +45 

degree along elevation (Krapp and Hengstenberg, 1997), where the 

coordinate azimuth = elevation = 0 corresponds to the position seen by the 

eye equator right in front of the animal (Figure 7). The H1-cell is excited by 

back-to-front optic flow on the ipsilateral side, i.e. the side where its cell body 

is located. The response of the cell in terms of spike per second depends on 
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various stimulus parameters one of which it the temporal frequency of the 

stimulus pattern. It is inhibited by the front-to-back motion, where the spike 

rate can be reduced to zero. The H1-cells have a spontaneous spike rate of 

20-50 spikes per seconds, when no visual motion is presented.  

 

Figure 7. H1-cell preferred direction mapping.  Cell morphology (inset at the bottom): The picture 
shows the cell’s ipsilateral dendritic (input) arborizations on the left and its telo-dendritic (output) 
arborisations on the right. Input mediated by the left eye is propagating to the right lobula plate. 
The cell is viewed from the posterior side of the head. Receptive field: Local preferred directions 
and motion sensitivities of the H1-cell presented as motion vectors in a cylindrical 
representation of the spherical visual field. Azimuth = elevation = 0 degrees denotes the point in 
front of the animal.  The H1-cell is excited mainly by back-to-front motion from around -150 deg 
to +15 deg in azimuth, and -45 deg to +45 deg in elevation. Modified from (Krapp et al. 2001)  

 

The large receptive field of the H1-cell makes it suitable to process, and more 

importantly, to differentiate optic flow patterns. (1) A high degree of spatial 

integration averages out the fluctuations caused by the dependence of the 

motion detectors on local input features, as well as avoiding the aperture 
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problem. (2) The receptive field organization may fit behaviourally relevant 

optic flow patterns in order to contribute to the generation of appropriate 

behavioural responses. The H1-cell is the focus of my work for investigating 

sensory integration. Its spiking activity will eventually be used to control a 2-

wheeled robot.  

 

1.1.3. Sensory integration 

Other than vision, mechanical (or inertial) sensors also play an important role 

in flight control (Taylor and Krapp, 2007). They trigger neck motor responses 

in combination with signals from the motion vision pathway mediating optic 

flow information (Huston and Krapp, 2009). The blowfly has many 

mechanosensory systems, for instance: filiform hairs on the antennae which 

sense changes in air speed, campaniform sensilla on the wings for sensing 

wing load, and the halteres which sense Coriolis forces during rapid attitude 

changes (Taylor and Krapp, 2007).  

1.1.3.1. Inertial sensor: haltere 

The haltere system is of interest in the context of this project because it helps 

generating stabilizing head movements and contributes to flight control when 

the thorax of the fly is rolled in featureless visual surroundings or in darkness.  
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Figure 8. Position and structure of halteres. The halteres are located at the rear of metathorax (a), 
one of the haltere is magnified in (b) to reveal its structural components in detail. Modified from 
(Hengstenberg 1993) 

The halteres are a pair of transformed hind wings in dipteran flies. These 

organs are used to sense the forces generated during body rotations and thus 

provide information about rapid attitude changes. The halteres are small club-

shaped organs, located in between the thorax and the abdomen. A haltere 

consists of three parts: a distal knob, a thin stiff stalk, and a basal swelling on 

top of a hinge joint connected to the thorax. There are around 15 

mechanoreceptive hairs on the knob, about 350 cuticular strain receptors in 

five distinct fields on the hinge and two internal stretch sense organs 

(Hengstenberg, 1993). The haltere beats vertically around 110-180 Hz in 

antiphase with the wings (Nalbach, 1993). The angular momentum of the 

halteres will be sensed if a body rotation occurs that is outside their plane of 

oscillation. The halteres measure angular velocity directly by its frequency, 

amplitude and phase relative to the wing beat (Nalbach, 1993). They are very 

sensitive to high angular velocity, and elicit compensatory head rotation with 

very short latencies (Hengstenberg, 1993). 
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1.1.3.2. Sensory integration for gaze stabilization  

Insect gaze shifts can be classified as either voluntary or in response to a 

stimulus. Though the gaze may shift to an object of interest, it is normally 

aligned with the external horizon. Pitch and Roll movements of the head are 

related to equilibrium reflexes, for keeping the head upright with respect to the 

external environment (Hengstenberg, 1993). 

The blowfly uses a variety of sensory mechanisms to keep its eyes level and 

for flight control. Visual and haltere subsystems have different dynamic 

characteristics. By combining information from the visual system and the 

haltere system, the gaze stabilization reflex covers both the low and high 

frequency range of possible stimulations.  

Experiments highlighting the integration of individual sensing systems 

contributing to roll gaze-stabilization have been reviewed by Hengstenberg 

(Hengstenberg, 1991). Hengstenberg and colleagues tethered blowflies in a 

wind tunnel, where the wall of the tunnel was decorated with patterns. Both 

the fly and tunnel were connected to two electrical motors, respectively. The 

fly would, in tethered flight, perform compensatory head rotations to stabilize 

its gaze against either body rotations or rotations of the visual pattern. The 

head roll response during haltere stimulation kicked in at around 60 deg/s and 

reached its peak at 1000 deg/s. No response was observed below 10 deg/s 

(Fig 9b). When the pattern was rotated, and thus only the visual system but 

not the haltere system was stimulated, the head roll response was 40 degrees 

at a stimulation velocity of around 100 deg/s (Fig 9c). When both visual and 

haltere systems were stimulated, the peak head roll response at 1000 deg/s 

body rotation was reduces to 40 degrees and the head roll response in low 

body rotation velocities increased to about 20 degrees (Fig 9a). Based on his 

experimental results Hengstenberg (Hengstenberg, 1991) concluded that the 

overall response to haltere and visual stimulation was an linear (internally 

scaled) combination of the responses to the stimulation of either the halteres 

or the motion vision system. He also pointed out that multisensory integration 

increases both accuracy and response bandwidth in the gaze control system 

(Hengstenberg, 1991).  
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Figure 9. Sensory integration. (a) The blowfly is placed in a stationary pattern cylinder with white 
on top and black on bottom (spatial wavelength of the pattern = 360 deg). The blowfly is 
oscillated between ±90° at constant speed around the roll axis, for various angular velocities, 
where both visual system and halteres are stimulated. The head roll angle of the blowfly as a 
function of angular velocity was found to have a band-pass-like shape where the peak response 
(40 deg) occurred at around 600 deg/s. The trough value is around 50% of the peak value. (b) The 
blowfly was placed in a homogeneous white cylinder (no visual contrast). The animal was 
oscillated at constant velocity around the roll axis for different angular velocities, where only the 
halteres were stimulated. The head roll angle peaked (70 deg) at around 1200 deg/s. The trough 
value is 0% of peak value. (c) The blowfly was kept stationary in an oscillation cylinder with 
black and white pattern (spatial wavelength = 30 deg). The cylinder was oscillated around the 
fly’s roll axis at different angular velocities - under these conditions only the motion vision 
pathway was stimulated. The head roll angle peaked (40 deg) at around 80 deg/s. The trough 
value was around 30% of peak value. Modified from (Hengstenberg 1991) 

 

1.1.3.3. Sensory integration in the neck motor system 

The results on gaze stabilization obtained at the behavioural level – 

suggesting a linear combination of sensory signals in the neck motor system – 

seem to be contrasted by work  conducted at the neuronal level (Huston and 

Krapp, 2009). Sensory integration of compound eye and haltere signals had 

been recorded in neck motor neurons. 
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The blowfly’s neck motor neurons (NMNs) connect to the neck muscles which 

ultimately control the gaze. One of the neck motor neurons was recorded, 

while it was stimulated by either the visual system, or the halteres, or both. 

Visual stimulation was supplied by a CRT monitor which displayed vertical 

bars moving horizontally either right-to-left or left-to-right. Haltere stimulation 

was achieved by periodic vertical movement of a magnet next to the haltere, 

where the tip of the haltere was treated with a mixture from paint andiron 

powder. The visual stimulation and haltere stimulation were applied in 

combination, which will produce four responses. 

 

Figure 10. Neck motor neuron responses to a combination of visual and haltere stimulations. In 
a,b,c,d. the top lines give the responses of neck motor neuron, the middle lines indicate the time 
course and direction of the visual stimulation, and the bottom lines show the time course of the 
haltere stimulus. Only in plot c the neck motor neuron generated action potentials where the fly 
experienced rightwards visual stimulation and haltere stimulation simultaneously. Modified from 
(Huston & Krapp 2009) 

The results (Fig. 10) show a gating-like nonlinear sensory integration at the 

level of the neck motor neuron. The neck motor neuron produced action 

potentials only when the visual stimulation in the cells preferred direction was 

combined with haltere oscillations. 

Specific questions remain unanswered. (1) where is the integration happening, 

in cephalic ganglia or in thoracic ganglia? (2) Will the fly respond differently 

under more naturalistic stimulation conditions, e.g. wide-field optic flow 

stimulation or in a closed-loop regime? (3) how will other sensory modalities 

impact on multimodal signal integration in the context of gaze and flight 

stabilization? (4) Why has a linear interaction between different modalities 



 

21 
 

observed at the behavioural level although signal integration in the nervous 

system can be highly non-linear?  

To find the answers to these questions, a novel approach will be required, that 

enables the monitoring of neural activity while the animal is actually moving in 

space and where more than one sensory modality is stimulated under closed-

loop conditions. 

 

1.1.3.4. Adaptation  

Like other sensor system, visual sensors have a “dynamic range matching” 

problem. The dynamic response range within a neuron is rather limited 

compare to the dynamic range of sensory stimuli in nature. The solution is to 

shift and rescale the operating range of the cell with its set point centred to the 

mean stimulus intensity (Harris et al., 2000).  

The adaptation of the H1-cell in blowfly has been investigated some time ago 

(Maddess and Laughlin, 1985). This study showed that the adaptation of the 

H1-cell was highly dependent on temporal frequency. Additionally, work from 

Harris et al. (Harris et al., 2000) shows adaptation does not only occur upon 

an adapting stimulus moving in the preferred direction. 

Most of the physiological mechanisms of motion adaptation are not yet 

understood. Nonetheless, the adaptation is important so as to prevent the 

cells from saturation (Krapp and Wicklein, 2008).  

 

1.2. Fly robot related work 

Robotic technology is becoming more and more helpful in assisting 

researchers. It is particularly useful in several aspects of biomedical 

engineering, for instance when developing brain machine interfaces in the 

context of rehabilitation robotics and neuro-mechanical prosthesis (Warwick K 

et al., 2003). Robots can provide a useful platform to validate models derived 

from experimental data (Minegishi et al., 2013). They also benefit studies in 

neuroscience which may, in turn, inspire novel biomimetic engineering 
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solutions with respect to energy-efficient information processing and robust 

autonomous control design. 

Due to improvements in semiconductor fabrication, electronics are becoming 

smaller in size and lower in power consumption. Conventional, normally bulky 

equipment can now be miniaturized to a size small enough to be embedded in 

some naturally behaving animals. For those animals too small to carry 

embedded systems, using a robotic system may be a first approximation of 

naturalistic closed-loop stimulus conditions while recording neural activities 

from the animal’s nervous system. Such untether or half-tether methods may 

provide new possibilities for research that seeks to understand the design 

principles of biological sensorimotor control at the neuronal level.  

In the next section, I will review a few systems related to insect brain machine 

interfaces, which inspired my work. 

 

1.2.1. Robot in H1-cell closed-loop control  

Ejaz and Peterson developed a fly robot interface (FRI) to study control laws 

for wide-field image stabilization using the activity of the blowfly H1-cells as 

feedback signal under closed-loop condition (Ejaz et al., 2011). 

The robot was positioned on top of a turn table inside a cylinder with vertical 

black and white stripes pattern. Two high speed video cameras (200 fps) were 

fixed on top of the robot, oriented 45 degrees towards either side. When the 

turn table was rotated, it also rotated the cameras on top of the robot resulting 

in horizontal pattern motion. The pattern motion was captured by the high 

speed cameras and presented to a blowfly’s compound eyes via two 200 Hz 

high speed CRT computer displays in front of the animal. The blowfly was 

stationary during the recording, located on a conventional recording setup 

(Figure 11). 
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Figure 11. Closed-loop fly robot interface. (1) Two high speed cameras were mounted on a robot 
that was placed on a turntable. Turntable and robot were surrounded by a vertical visual grating 
pattern (special wavelength = 11 deg). (2) Rotations of the turntable generated horizontal optic 
flow, which was captured by the cameras and displayed on two CRT monitors. The blowfly H1-
cell activity was recorded. (3,4,5) The cell’s spike rate was processed and converted into a 
control signal, which drove the robot to compensate for the rotation of the turntable, stabilizing 
the visual input. Modified from (Ejaz et al. 2011) 

The H1-cell activity of the blowfly was recorded extracellularly and its spike 

rate was used to control the robot rotation with a proportional controller to 

compensate of the turntable rotation, thus stabilizing the visual input. The 

results indicated a dependence of the FRI frequency response on the angular 

acceleration of visual motion. An adaptive controller was then used to control 

the robot, which dynamically scaled the feedback gain. The adaptive 

controller increased the bandwidth of the frequency response when compared 

with the performance of the fixed-gain proportional controller (Ejaz et al., 

2013). 

This system provided a starting point for studies into the neural mechanisms 

underlying a complementary combination of non-linear processes ultimately 

resulting in a linear performance of the overall system. The ultimate goal of 

this investigation will be to quantify the closed-loop dynamics of sensorimotor 

control at both the behavioural and neural level. 

1.2.2. H1-cell recordings on a rotating platform 

Lewen et al. have recorded blowfly H1-cell activity while the animal was 

rotating on the tip of a stepper motor shaft (Lewen et al., 2001). The setup 
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was designed so that the blowfly would experience naturalistic wide-filed 

visual stimulation upon yaw rotations, without any pattern distortions. The 

experiments were carried out both indoors and outdoors under open-loop 

conditions. After comparing the response under natural light levels and lab 

light level, they found the noise entropy to be almost the same, while the 

signal entropy was a function of light level (Lewen et al., 2001). 

 

Figure 12. Lewen’s neural recording setup. The blowfly was waxed in a tube exposing only its 
compound eyes and proboscis. A tungsten electrode was inserted into the lobula plate from 
behind. The extracellular H1-cell signals were pre-amplified and passed to a second amplifier 
stage via a slip ring. The whole system was mounted on the shaft of a stepper motor.  Modified 
from (Lewen et al. 2001) 

The thorax and abdomen of the blowfly were placed in a plastic tube and 

immobilized with wax. The compound eyes, proboscis, and the back of the 

head were left uncovered. A small feeding table was made by wax in front of 

the proboscis, from which the fly could access sugar water. A silver wire was 

contacting the body fluid as reference electrode while a tungsten 

microelectrode recorded the action potentials from the H1-cell extracellularly. 

The electrode signals were pre-amplified by a Burr-Brown INA111 integrated 

instrumentation amplifier. The pre-amplified signal then went through a slip 
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ring device, which allows the transmission of electrical signals from a 

stationary to a rotating structure, and amplified again by a second stage 

amplifier. A data acquisition card was used to digitize the signals for further 

data analysis in a computer. 

The H1-cell of the fly was recorded under different indoor and outdoor light 

intensity conditions. The results suggested that the velocity tuning of the H1-

cell depends on the absolute light level. At high light intensities the maximum 

responses occur at higher temporal frequencies – thus expanding the 

dynamic range of the H1-cell (Lewen et al., 2001). 

. 

1.2.3. Other mobile neuron recording system 

Another platform is the brain-machine hybrid system built for closed-loop 

experiments in silkmoths (Minegishi et al., 2013). The system was used to 

record from both cervical neurons of the silkmoth on a robot, and showed that 

the moth could adjust its angular velocity by using sensory feedbacks caused 

by rotations of the robot which it was mounted on. This system enables stable 

extracellular patch recordings at angular velocities up to 86 deg/s, which is 

below the range required to effectively stimulate, for instance, the haltere in 

blowflies.  

 

1.3. Summary  

In this chapter, I firstly reviewed the organization of the blowfly visual system, 

including the function of most of its processing stages. Along the visual motion 

pathway local retinal images shifts are processed by arrays of retinotopically 

arranged elementary movements detectors and are finally integrated by wide-

field directional-selective lobula plate tangential cells which indicate particular 

ego-motions. The H1-cell, one of the wide-field motion sensitive tangential 

cells in the lobula plate, is excited and inhibited by horizontal back-to-front and 

front-to-back optic flow, respectively.. The spike rate of the H1-cell depends – 

besides other parameters – on the temporal frequency of the stimulus pattern 
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while generating spontaneous activity in the range around 30 spikes/s when 

no visual motion is presented.  

One of the mechanical sensors, the haltere system, senses angular velocity of 

sudden attitude changes. Regarding multisensory integration, action 

potentials in neck motor neurons are triggered only if both visual and haltere 

stimulations are combined. In behavioural experiments, the halteres produce 

gaze stabilization responses at high roll angular velocities of the body. 

Together with visually induced head movements in the low angular velocity 

band, the integration of both sensors increases the bandwidth of the gaze 

stabilization system.  

Robotic technology is becoming helpful in research on blowfly optomotor 

responses. For instance, H1-cell recordings on a stepper motor-driven 

platform have become feasible (Lewen et al., 2001). Further advance of 

robotic technology may enable a combination of behavioural and 

electrophysiological experiments on blowflies to study multisensory integration 

under closed-loop conditions.  

Inspired by the work reviewed in this chapter, next I will outline the 

development of a miniaturized recording platform which is meant to be the 

core element of an experimental closed-loop system.  
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2. Miniaturized neural recording platform for 

robot applications 

 

In this chapter, a miniaturized mobile recording platform will be introduced, on 

which a blowfly is mounted for electrophysiological recordings from identified 

motion sensitive interneurons in the fly visual system.  The platform has been 

designed to accommodate all the equipment necessary to perform stable 

extracellular recordings while the platform is moved, either in terms of 

rotations on a stepper or a combination from translation and rotation of a 

small 2-wheeled robot. Here I will present the details of the design, both 

mechanical and electrical, as well as verifying the platform’s performance. 

2.1. Introduction 

To study how the blowfly uses its various sensors for flight control, it is 

necessary that, whatever mobile platform is used, the dynamics of it at least 

overlap with the animal’s flight envelop. This requires a purpose-designed 

solution which takes into account the small size of the insect.  

The blowfly, Calliphora vicina, is a well-established model system for 

electrophysiological research on multisensory integration. It combines visual 

and mechanosensory information, achieving an aerobatic manoeuvrability that 

is unmatched by any man-made air-vehicle. The blowfly can achieve 

translational velocity of 2.5 m/s and angular rotation rates of 1700 deg/s in 

free flight (Bomphrey et al., 2009) with only about 10 mm of body length. 

As we can see from table 1, the blowfly is not the fastest flying animal, but it 

has the highest Eigen speed (flight speed divided by body length) compared 

to the hawk moth and the bald eagle.  
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Table 1. The eigen speed of blowfly, hawk moth and bald eagle (Bomphrey et al., 2009; 
Stevenson et al., 1995)  

 Blowfly Hawk moth Bald eagle 

Body length (m) 0.01 0.06 0.96 

Flight speed (m/s) 2.5 5.3 19.4 

Eigen speed (body/s) 250 88.3 20.2 

 

The blowfly’s high Eigen speed is impressive, partly due to its small body 

length, which means less body weight, reduced inertial forces and less drag. 

On the other hand, small body length may come with limited muscle power, 

which means most of the muscle power is required for the fly to support its 

own weight rather than to produce lift for carrying additional payload 

The conventional miniaturized ‘on-board’ recording systems which are 

designed for big insects, such as: locust (Harrison et al., 2011), hawkmoth 

(Wang et al., 2008), cockroach (Takeuchi and Shimoyama, 2004) are not 

suited to be fitted on a blowfly, due to its limited payload. Both size and weight 

of the system are important criteria, which will affect the aerodynamics of the 

blowfly, or even prevent it from taking off.  

Schilstra and van Hateren (Schilstra and van Hateren, 1998) had designed 

coils which were mounted on top of the blowfly’s head and thorax, to measure 

the orientation of the head and thorax while the blowfly was flying. The two 

coils were carefully designed to reduce interference with the blowfly’s 

aerodynamics. They were both 2 mm in diameter, and weighted 0.8 mg and 

1.6 mg respectively on head and thorax. Compared to the size and weight of 

the coils, Harrison’s telemetry recording system for locust (Harrison et al., 

2011) measures 13mm x 9 mm, and is almost 3 time bigger than a blowfly 

(the longitudinal and transvers dimensions of a blowfly are approximately 5 

mm x 10mm). In terms of weight, Harrison’s recording system including 

batteries amounts to 790 mg, while a blowfly is only 50 mg.  

Because the approach from Schilstra and van Hateren (Schilstra and van 

Hateren, 1998) did not allow for in-flight recording of neuronal activity, more 

recently an AC-amplifier was designed for blowfly electrophysiological that 
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could by embedding into the blowfly’s head capsule (Peterson, 2010). The 

dimension of the silicon die is around 1mm x 1.1mm. That is the smallest 

amplifier known so far. Full functionality of the system still requires the 

integration of micro power supply and electrode array before it may be used 

for recordings in freely flying blowflies. 

Due to the fact that those miniaturized on-insect recording systems are not yet 

small enough to be applied to blowflies, a new solution is needed. Technically 

speaking, if a system can’t be placed on a blowfly, then a blowfly has to be 

placed on a system. An alternative to in-flight recordings that still allows us to 

stimulate various sensors while monitoring the blowfly’s neural activity would 

be a miniaturized electrophysiology setup placed on a robotic platform. 

Although limited in its dimensionality such system would be a first step toward 

studying multisensory integration under closed-loop conditions.  

The work by Lewen and his colleagues (Lewen et al., 2001) I introduced 

earlier, comes close to my goal of recording neural activity in a freely-moving 

animal. Before their study, most of the electrophysiological experiments on 

blowflies were conducted when the animal was held stationary, to enable 

stable recordings.  

A caveat of the otherwise excellent study by Lewen et al. (Lewen et al., 2001) 

was that, under natural conditions, blowflies don’t only perform yaw rotations. 

They also engage on forward and backward translational movements. Both 

yaw rotation and translational movements will stimulate the H1-cells. For this 

reason, one stepper motor is not enough to generate naturalistic movements. 

A two-wheeled robot with independent wheel control, on the other hand, 

would more closely approximate the blowfly’s movements in nature - certainly 

those of a walking fly. 

Finally, there should be a stage in between the blowfly and the robot, which 

works as a transfer function that converts blowfly neural signals (input) into 

robot control signal (output). This transfer function is an essential part of the 

closed-loop condition, similar to the situation the fly would be in when moving 

through the environment. It requires to build an interface that uses visual 

feedback on the state changes of the fly generated by its own motion vision 
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system to control the movements of the robot, and thus its own trajectory in 

space. Such fly brain machine interface would require a signal chain through 

electrode, pre-amplifier, secondary amplifier, analog-to-digital converter and 

micro-controller along with its data transmission bus, such as a Universal 

Asynchronous Receiver/Transmitter (UART).  

In this chapter, I will describe the mechanical and electrical details of a system 

I designed that will eventually be used to study multisensory integration in 

blowflies under closed-loop conditions. 

 

2.2. Methods 

2.2.1. Robot selection 

One of the core elements required is an appropriate robotic platform. It will be 

used as a direct replacement of blowfly’s own motor systems, and should 

enable the stimulation of the fly’s sensors under closed-loop condition. There 

are, however, mechanical and electrical constraints regarding the robot 

selection and programming. 

Mechanically, the robot needs to be able to carry the experimental setup 

without sacrificing its dynamic properties required to stimulate the fly’s various 

sensor systems. Also, vibrations due to the action of the motors need to be 

sufficiently dampened to enable stable electrophysiological recordings. 

Closed-loop delays between measuring visual sensor signals and control of 

the motors driving the wheels of the robot will have to be short enough to stay 

within the biologically plausible range. The delay will be the result of 

microprocessor clock frequency, ADC sampling frequency, communicating 

baud rate and torque/speed characteristic of the motors.  

Three types of two-wheeled robots were chosen as possible candidates. Their 

mechanics, electronics and processor capacity as well as software 

compatibility were taken into account when selecting the most suitable one for 

the project. 
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2.2.1.1. ASURO® robot 

 

Figure 13. ASURO robot. The robot is powered by four AAA batteries. It equipped with an 
ATmega8L RISC-processor (8 MHz resonator system clock), an optical line-tracer, six collision-
detector switches and two odometer-sensors. The processor can be programmed via a serial 
RS232 port or USB at baud rate of 2400 bps. 

The ASURO robot is an educational robot, designed by the German 

Aerospace Centre (DLR). It was used in a study by Ejaz et al. (Ejaz et al., 

2011) who exploited the activity of the H1-cell in a one degree of freedom 

visual stabilization task.  

As we can see from the mechanical structure, the main PCB not only carries 

all the electronic components, but also acts like the chassis of the robot, 

locking the batteries, electrical motors, gears and wheels in position. The two 

independent controlled DC motors are driving two wheels through a 50:10 

ratio gear-box.  

The robot is powered by four AAA batteries and it is controlled by an 

ATmega8L RISC-processor, which has an 8 MHz resonator system clock. 

The ASURO is also equipped with an optical line-tracer, six collision-detector 

switches and two odometer-sensors. The robot is built using conventional 

through-hole electronic components, making it easy to assemble and repair. A 

pair of infrared transceivers - one set on the robot while the other one is in on 

a separate PCB which interfaces with a personal computer via serial RS232 
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port or USB - can  be used to control the robot from a personal computer 

using serial port terminal software at baud rate of 2400 bps. 

The ASURO robot can be programmed in C using freeware. The robot uses 

the same infrared channel for programming and updating the microprocessor 

memory remotely.  

 

2.2.1.2. Lego® mindstorms NXT 2.0 robot 

 

 

Figure 14. Lego Mindstorms NXT robot. The robot is controlled by Lego intelligent block which 
has an ARM core microcontroller inside. The processor is programmed via USB. 

The Lego Mindstorms NXT 2.0 consists of robotics kits, which contains: an 

NXT intelligence block, various sensors (touch sensor, light sensor, sound 

sensor and ultrasonic sensor) and three identical servo motors with integrated 

gear box. The sensors and motors are connected to the intelligence brick via 

modified RJ12 cables. The brick can attach up to 3 motors and 4 sensors at 

the same time. The robot can be assembled in various shapes and sizes by 

using Lego blocks. 

The intelligent brick contains most of the hardware, a 32-bit ARM7TDMI-core 

Atmel AT91SAM7S256 microcontroller with 256KB of FLASH memory, 64KB 

of RAM, an 8-bit Atmel AVR ATmega48 microcontroller, and Bluetooth 

support. The brick has a 100×60 pixel monochrome LCD display and four 

buttons that can be operated by the user through hierarchical menus. Power 

is supplied by six AA (1.5 V each) batteries in the consumer version of the kit 

and by a Li-Ion rechargeable battery and charger in the educational version. 
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2.2.1.3. 3pi® robot with mbed® controller 

The 3pi is designed for line following and maze-solving competitions. It is 

small but powerful. The size of the 3pi robot is around 10 centimetres in 

diameter and it weighs 83 gram without battery, capable of moving at speeds 

up to 1m/second, which is in the range of what the blowfly produces.   

 

Figure 15. 3pi robot with mbed controller. The robot is powered by four AAA batteries. It is 
controlled by ATmega328 microprocessor. The internal voltage regulator boosts the motor 
voltage to 9.25V, guarantees its speed performance. 

The 3pi robot is controlled by an ATmega328 microcontroller, clocked at 20 

MHz. ATmega328-based 3pi robots feature 32 KB of flash program memory, 

2 KB RAM, and 1 KB of non-volatile EEPROM memory. Four AAA batteries 

supply power to the whole robotic system. In addition to the battery, there is a 

voltage booster module and regulator, which provides a regulated voltage of 

9.25 volt. This results in highly consistent and repeatable performance of well-

tuned code even when the batteries run low. The robot comes fully assembled 

with two micro metal gear motors, five reflectance sensors, an 8×2 character 

LCD, three user pushbuttons, all connected to the user-programmable 

Atmega328 microcontroller.  

In addition, to compliment the performance of the 3pi robot, a company called 

mbed® produce a module using an NXP LPC1768 microprocessor. The NXP 
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LPC1768 is based on high performance ARM® Cortex™-M3 core, which runs 

at 96 MHz, together with 32 KB RAM and 512 KB FLASH memory.  The 

module has several interfaces including USB Host and Device, built-in 

Ethernet, SPI, I2C, CAN, DAC, ADC, PWM and other I/O interfaces. The 

control unit is packaged as a small 40-pin DIP, 2.54mm pitch form-factor, 

making it convenient for prototyping using solder-less breadboards, strip-

boards, and through-hole PCBs. 

Programming the module is as easy as using a USB Flash Drive because it 

includes a built-in USB programming interface. The USB drag & drop 

programming interface works with Windows, Mac OS X and Linux, which 

means updating the firmware does not require any drivers or a programming 

application. The binary programme can be easily compiled by using the 

“mbed Online Compiler”, or alternatively using any other standard off-line 

toolchain, such as: Keil uVision, Code Sourcery, Code Red, GCC, or IAR. A 

virtual serial port is also supported by using the same USB interface, enabling 

communication with a PC terminal running Labview, Matlab, or any other 

programming language that can operate a serial COM port.  

 

2.2.1.4. Summary 

 

Table 2. Comparison of robots 

 ASURO LEGO NXT 2.0 m3pi 

Dimension (mm) 117x122x45 ~168x168x56 Ø94 x 50 

Weight (g) 165 >373 83 

Velocity (m/s) <0.79  0.498 1 

Processor (bit) ATmega8L (8bit) ARMv7 (32bit) ARMv7 (32bit) 

Clock (MHz) 8 60 96 

Cost (£) 34.00 230.00 93.00 

 

As can be seen from the table, the m3pi generates the highest velocity, has 

the smallest dimension, lowest weight and fastest microprocessor clock speed. 
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It’s not the cheapest module, but with its powerful ARM processor, there is no 

need to add cost on peripheral functions because of its high performance. For 

example, the 96 MHz clock frequency will allow the user to operate 2 

channels of 20 KHz analog-to-digital conversion, together with the simple 

control of the electric motors, simultaneously on the same microprocessor. In 

comparison, ASURO and LEGO NXT will need support from external high 

speed ADC modules. 

For these reasons, the m3pi was selected as the robot to be used as the 

platform for this project. 

 

2.2.2. Mechanical design of recording platform 

The mechanical parts of the recording platform were designed to ensure the 

stability of the neuronal recordings, as well as providing a physical connection 

to the two wheeled robot that includes mechanical vibration damping. It also 

made sure the electronic system was working under ideal environmental 

conditions, for example, being water protected, dust-proved and radio 

frequency noise tolerant.  

 

2.2.2.1. Chassis 

The chassis was designed to, 

1) Fix the blowfly in the rotation centre of the platform  

2) To minimize obstructions of the H1 receptive field. 

3) To keep additional weight as low as possible  

The chassis is composed of two parts, a disc and a rod. The disc 

accommodates the miniaturized electrophysiological devices (Fig 16). The rod 

in the centre is an extension of the disc used to mount the blowfly.  
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Figure 16. Chassis disc. It determines the distance between fly and electrodes. 

The disc (Fig. 16) was cut from 3 mm aluminium sheet and its size matches 

the diameter of the 3pi robot. There are four pairs of notches on the edge of 

the disc, for connecting it with the robot, spaced at 90 degree intervals and 

three holes in the middle. A three millimetre hole in the centre was used for 

bolting on the central rod with a M3 screw. The adjacent two millimetre holes 

were positioned at the front and the back at a distance of 6 mm. These two 

holes were used for pivoting the disc and the rod, to provide mechanical 

stability during rapid angular accelerations of the disc. Mechanical stability is a 

necessary requirement for stable recordings. Any relative movements 

between the H1-cell, which is about 4-5 micrometre in diameter, and the 

sharp recording electrode placed right next to it may result in damages of the 

cell.   

There are also two 4 mm holes used for mounting the holders for two small-

scale micromanipulators. 
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Figure 17. Chassis central rod. The component connects chassis and fly holder. 

The blowfly will be mounted on the rod in the centre of the chassis disc. The 

H1-cell has a receptive field of approximately -45 to +45 degree in elevation 

(Fig 7). So the central rod (Fig. 17) was machined to 50 mm in length, which 

is the same as the radius of the chassis disc and prevents the ventral part of 

the cell’s receptive field to be obstructed by the disc. For mounting, there are 

three holes on either end of the rod. The middle hole was threaded as M3, 

two 2 mm pivot holes on the sides were positioned to match the 

corresponding hole on the chassis disc. All holes are at least 10 mm deep. 

 

2.2.2.2. Fly holder  

A holder was built to position the fly in the centre of the chassis disc for 

electrophysiological recordings. It was made of four parts: a small Perspex 

tablet, a 2-way 2.54 mm interval standard pin header, two 2 mm banana plugs 

and a piece of wire (Fig. 18).  
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Figure 18. Fly holder. The component is used to fix a fly. The two pins also act as reference 
electrodes. 

The fly holder (Fig. 18) serves two purposes:  

1) Forms a mechanical connection between the blowfly and the chassis.  

2) The wiring pins are used as reference electrodes while electrically isolating 

the blowfly from the chassis shielding.  

The blowfly was waxed in between the pins, with its head in front and its 

thorax to the rear of the pins. The pins also serve as reference electrodes 

connected to a differential amplifier by half submerging it into the blowfly’s 

haemolymph, avoiding a short circuit with the ground contact provided by the 

chassis. 
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2.2.2.3. MM1-CR-XYZ micromanipulator  

 

Figure 19. NAI® MM1-CR-XYZ micromanipulator. This small NAI® micromanipulator is much 
smaller and lighter than the Narishige® MX-2 model used in our lab. But this micromanipulator is 
much more difficult to operate as its light weight and small scale design is achieved at the 
expense of its mechanical stability.  

The MM1-CR-XYZ micro manipulator is manufactured by National Aperture 

Inc. Due to its small size, this micromanipulator is highly sensitive to imprecise 

hand movements when operated. In order to minimize the effect of potentially 

damage the neuron by during handling, the manipulator block for thrust 

movement needed to be mounted onto a solid frame onto which the animal 

was mounted as well. 

It was important to mount the thrust part of the micromanipulator to a solid 

surface, which reduced unwanted movements generated when using the knob 

screws for electrode placement. From measurement, 1 degree of knob 

rotation moves the sliding block 0.8 µm. 
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2.2.2.4. Electrode holder 

 

 

Figure 20. Electrode clip. (Left) This component clips the electrode holder and mounts onto the 
micromanipulator. (Right) The positions of electrode, electrode holder and electrode clip after 
assembled. 

The electrode holder was made of two parts: the electrode socket (Fig. 20 

Right) and the electrode clip (Fig. 20) both of which provided both stability for 

the electrode in position and provide electrical shielding. 

The electrode socket was constructed by modifying one of the sheaths 

holding the electrodes in place within the original packaging (FHC® 3 MΩ 

tungsten electrodes, FHC Inc., Bowdoin, ME, USA), and simplifying their 

handling. Such an electrode sheath looks like a small metal tube with two 

slots on the side, wrapping around the electrode base, and a tungsten tail that 

is attached on the other end for handling. An electrode sheath was modified to 

an electrode holder which fits into the electrode clip, and electrically isolates it 

from the grounded electrode clip with electrical tape. 

 

2.2.2.5. Micromanipulator holder and amplifier enclosure 

To enable placement of the electrode within the fly head capsule the 

micromanipulators had to be raised to roughly the same level as the fly holder. 

I designed a base for the micromanipulators that serves two functions: (i) as 
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mentioned above, it levels the micromanipulator with the fly holder and (ii) by 

enclosing the amplifier it serves as an electrical shielding device. The 

micromanipulator base is a chunk of aluminium, with a 27 degree slope on the 

top. The angle is adjusted to prevent collisions of the electrode tip with the 

blowfly thorax when inserting the electrode into the brain. There are four 

threaded holes for 0-80 screw on the top, arranged to mount MM1-CR-XYZ 

micromanipulator. And two threaded holes for M4 screw on the bottom of the 

micromanipulator base, to mount it on the chassis. 

 

Figure 21. Micromanipulator holder. This component is the connection between chassis and 
micromanipulator. It also serves as a faraday cage of miniaturized amplifier. 

The micromanipulator holder (Fig. 21) is hollowed for two reasons: for one, it 

reduces the weight of the recording platform and thus limits the loss of the 

robot’s dynamics. Secondly, it serves as a Faraday cage for the amplifier and 

reduces dust contamination. The hollowed space within the micromanipulator 

base is 20mm x 30mm x 15mm in volume, which set the size constrains for 

the customized PCB including the amplifier (appendix 1). 
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Figure 22. Amplifier enclosure lid. This component holds the miniaturized amplifier and mounts 
onto the micromanipulator holder. 

The lid (Fig. 22) for the micromanipulator base was made from a 2 mm thick 

aluminium sheet to cover the hollowed space, as well as supply mechanical 

support for the PCB (section 2.2.3.2). It was fitted onto the micromanipulator 

base by 3 mm screws on the corners. Two 3 mm holes in the centre were 

aligned with the PCB mounting holes and a slot cut-out for amplifier 

input/output connector. 

2.2.2.6. Stabilizing beam 

The stabilizing beam is a machined aluminium component that connects to 

the central rod and micromanipulator bases on the upper side. This part tightly 

connects the fly holder and electrode holder to provide additional stability.  
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Figure 23. Stabilizing beam. This component is used to tighten the central rod and two 
micromanipulator holders. 

The beam (Fig. 23) has a ring in the middle and two wings, one on each side. 

The ring has the same diameter as the central rod, and a three millimetre 

threaded hole on the anterior side of the ring was used to tighten the beam to 

the rod. There are 2 three millimetre holes on the wings for fixing them to the 

micromanipulator holders. The beam provides additional mechanical stability 

to the setup. 

 

2.2.3. Electrical design of recording platform 

2.2.3.1. Amplifier design specification 

The electrical part of the project was mainly concerned with the design of the 

amplifier system. To be useful for electrophysiological recordings on a small 

robotic platform four general specifications had to be met: (i) small size, (ii) 

single power supply, (iii) low power consumption, and (iv) high gain.    

As described above, space for an amplifier system inside the 

micromanipulator base was limited. The size of the PCB needed to be 

restricted to 20 mm x 30 mm and the height of the components should not be 

more than 15 mm. As conventional through-hole components were too large 

to be squeezed into the available space, surface-mount electronic 

components were the best choice.  
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The single supply operation was necessary because the robot requires 0-5V 

battery power. It was more efficient to use the same battery for both, the robot 

and the amplifier rather than employing two separate power supplies. A single 

supply amplifier works the same way as conventional dual supply amplifiers, 

but instead of an output signal range from -10V to +10V (0V as reference), the 

single supply amplifier output signal ranges from 0 - 5V (2.5V reference). 

The power consumption of the amplifier needed to be as low as possible to 

sustain its function throughout closed-loop experiments on the robot when 

both amplifier and motors will draw current.  

The gain of the amplifier was required to be approximately 104 in total, since 

the electric field potential generated during an action potential is in the range 

of 10-5 – 10-4 Volts and the analog-to-digital converter on the robot was also 

powered by the 5 Volt battery. 

 

2.2.3.2. Amplifier system 

With the specifications in hand, the task was then to select suitable 

components and assemble them in correct order to build an adequate 

amplifier system.  

I used the structure of the conventional amplifier, a pre-amplifier followed by a 

secondary gain stage amplifier. This was necessary because it would have 

been difficult to reach a gain of 104 by using only one amplifier, due to noise, 

stability and bandwidth limitations. According to the required specifications, 

and after testing several options, I used off-the-self chips INA333 and AD8607 

cascaded together with a gain of 102 each. (The circuit schematic is attached 

in the appendix.) 

The INA333 uses FETs (Field-Effect Transistor) as input rather than BJTs 

(Bipolar Junction Transistor). The FET is driven by the gate electric field to 

control the conductivity of a channel, which requires much less current than 

the BJT transistor. By testing amplifiers using BJT transistors as input stage I 

found that they do not enable the recording of neuronal electric field potentials 

(e.g., AD8223). The INA333 instrumentation amplifier has bandwidth up to 3 
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KHz, which covers most of the frequency spectrum of neuronal action 

potential. This is in agreement with the low pass filter setting of commercial 

amplifiers (NPI) at 3 KHz.  

AD8607 and OPA2333 were suitable as the secondary amplifier because their 

40 dB (gain of 100) cut off frequencies were both around 4 KHz. 

The design of the whole system was miniaturized to meet the tight space 

limitations. Both instrumentation amplifier and secondary amplifier were 

placed adjacent to each other. The neuronal field potential was fed into the 

INA333 through decoupling capacitors, plus a precise 2.5V bias voltage 

generated by an AD1582 component. After initial amplification the signal was 

passed on to the AD8607 for the second amplification to achieve an overall 

gain of 104. 

 

2.2.4. Systems for verification  

After all the electrical and mechanical components of the miniaturized 

recording platform were assembled, the next step was to verify the 

functionality of the system.  

To this end I recorded the neural activity of the H1-cell (see section 1.1.2.5) 

under two different conditions and compared the results (a) between the 

different conditions and (b) with previously published data.  In one condition I 

tested the recording platform while the fly was mounted on a stepper motor 

and rotated around the vertical axis within a cylinder lined with a visual grating 

pattern. In the second condition the fly was kept stationary but the grating 

pattern was rotated around the fly. Under both conditions the relative motion 

between the fly’s compound eyes providing the input to the H1-cell and the 

visual pattern were identical. The differences, however, was that the vibration 

from stepper motor would reach fly and electrode when the fly is rotated, but 

would not when the pattern is rotated. These two experimental conditions 

therefore allowed me to evaluate whether or not vibrations might have an 

impact on the recording of the H1-cell to visual motion.  
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The experimental setup used here included two stepper motors, one on the 

bottom to rotate the blowfly and the recording platform, the other on the top to 

rotate the visual stimulus. Both of the stepper motor systems were controlled 

by a computer which was also used to analyse the recorded data. 

 

2.2.4.1. Stepper motor system 

The stepper motor was a high power, high frequency electrical device which 

had to be shielded to avoid interference with low power precision analog 

devices, such as the electrophysiological recording system. The whole 

stepper motor system, together with its driver and power supply were 

enclosed in a 250mm x 250mm x 100 mm aluminium die-cast box which was 

connected directly to the electrical ground. 

Inside the box, the stepper motor (QSH5718-76-28-189, Trinamic®) is 

controlled by a stepper motor driver (P808A, Astrosyn®). The driver translates 

the direction and frequency pulse signals to 4-way stepper motor control 

sequences. It supports micro-stepping up to 50 KHz. The stepper motor and 

its driver were powered by an AC/DC converter with 48 Vdc / 3 A outputs. The 

inputs to the stepper motor driver were buffered by two hex-inverters 

(74HCT04) used as a Schmitt trigger, to be compatible with low current input.  

After the aluminium box lid was closed, it became a sealed aluminium box 

with two BNC socket providing pulsed signal inputs (one for direction, the 

other for frequency) and the torque output from the stepper motor shaft.  

The input signals to the stepper motor driver were delivered from analog 

outputs of a data acquisition card, NI-DAQ (NI-USB-6215, National 

Instruments Corporation, Austin, TX, USA). The NI-USB-6215 is a device that 

can be configured as a high speed signal source from a computer through a 

USB port.  The signal sequence data were transferred to the NI-DAQ from the 

computer and buffered inside its internal memory. Triggered from the 

computer, the NI-DAQ was reading out the signal sequence data from its 

buffer memory controlled by its interior high speed clock and played it back 

from its DA convertor. 
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2.2.4.2. Pattern cylinder clip and internal LED ring light 

The grating pattern used for visual stimulation was clipped to the wall of a 

cylinder. It consisted of vertical black and white stripes at a fundamental 

spatial wavelength of 30 degrees.  

 

Figure 24. Pattern cylinder clip. This component clips paper pattern cylinder and mounts onto a 
stepper motor shaft. 

The pattern cylinder clip (Fig 24) was manufactured by 3D printing in plastic. 

To illuminate the visual grating pattern an LED ring was made by white 

adhesive LED stripes (Maplin® N91NA). They were assembled to build a 

homogeneous ring light and fixed to the pattern clip. The LEDs were powered 

by a 9V battery. 
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2.2.4.3. Assembly and shielding of systems  

 

 

Figure 25. Motor shaft connector. This component connects the platform chassis and pattern 
clip to the stepper motor shaft. 

The recording platform and the pattern clip were both connected to the 

stepper motor shaft through a steel component as shown in figure 25.  

 

Figure 26. Fully assembled recording platform. (A) The fly is mounted so that a recording 
electrode can be inserted to the lobula plate from back of the head. (B) Experimental test setup. 
The recording platform is mounted on top of a stepper motor shaft (bottom). The surrounding 
grating pattern (special wavelength = 30 deg) is connected to the shaft of the top stepper motor. 
(Huang and Krapp, 2013)  

The recording platform was assembled as shown in figure 26A. It was 

connected with the stepper motor on the bottom. The pattern clip was 

connected with the stepper motor on the top, as is shown in figure 26B. A 

metallic spacer was placed in between the two stepper motor boxes. The gap 

below the pattern cylinder was helpful when aligning the blowfly in the centre 

of the pattern cylinder. 
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All metal pieces were grounded, avoiding any ground loops, and connected to 

the amplifier reference. 

2.2.4.4. Blowfly preparation 

Female blowflies, Calliphora vicina, aged between 4 and 11 days were 

chosen for H1-cell recording. They were bred in the lab under a 12:12 hour’s 

light-dark cycle.   

Blowflies were inserted into Perspex tubes and immobilized/anesthetized by 

placing them in a mixture from water and ice for several minutes. The wing 

hinges were blocked by applying small amounts of bee-wax. The blowflies 

were then placed ventral side up on a small board with double sided adhesive 

tape. Legs and proboscis were removed and the resulting wounds were 

sealed with wax to prevent desiccation. The openings of the respiratory 

system, spiracles, were left unblocked. The animals were then placed on the 

fly holder (see Fig 18) by sliding the neck in between the two metal pins. The 

fly’s head was aligned with the horizontal plane  based on the pseudopupil 

method (Franceschini, 1975), before waxing it to the pins of the holder. The 

thorax was then pushed down and fixed to the sides of the pins to expose the 

rear head capsule. 

The head capsule was opened under 40 x magnification of a stereo 

microscope (Stemi 2000, Zeiss©) using a micro scalpel. Fine forceps were 

then used to remove the cuticle on both sides of the rear head capsule. 

Ringer solution [for recipe see (Karmeier et al., 2001)] was applied to keep the 

tissue moist. Fat tissue, muscle tissue and air sacks were removed until the 

web of tracheae – the tubular ducts of the respiratory system – became visible. 

The placement of the recording electrode was guided by the characteristic 

branching pattern of the major trachea within the lobula plate which related to 

the location and orientation of H1-cells.  

2.2.4.5. Programming and experiment sequences 

The stepper motors are controlled by custom-written software programmed in 

Python v2.7 under windows XP sp3 environment, together with the Python 



50 
 

extension package including numpy, scipy and nidaqmx. The source code is 

attached (cf. appendix 2a). 

The micro-stepping frequency of the stepper motor driver was set to 50,000 

steps per 360 degree, which enables the smoothest performance of the 

system. The analog output sampling frequency of NI-USB-6215 was set to 

200 KHz, corresponding to the highest stable output frequency. The NI-DAQ 

would theoretically drive the stepper motor at angular velocity of 4 revolutions 

per second, which is equivalent to an angular velocity of 1440 deg/s.  

When quantifying the speed of the motion stimulus, the temporal frequency, f, 

has to be considered as the relevant parameter which takes into account the 

spatial wavelength of the visual pattern: 

   
 

 
 

Where   is the angular velocity, and   gives the spatial (angular) wavelength. 

Since the spatial wavelength used here is 30 deg, an angular velocity of 300 

deg/s corresponds to 10 Hz temporal frequency.  

To reduce any detrimental impact sudden angular accelerations and 

decelerations of the stepper motor may have on the stability of the 

electrophysiological recordings, changes in angular velocity were sinusoidal. 

The stimulation protocol used during the recordings from the H1-cell, lasted 

10 seconds per trial and included the following 4 sequences  

1. 0.5s no motion (H1-cell fires spontaneous spike rate).  

2. 3s stimulation of null direction motion (H1-cell is inhibited).  

3. 3s stimulation of preferred direction motion (H1-cell is excited).  

4. 3.5s of no motion.  

The null direction motion and preferred direction motion were presented at the 

same angular velocities.  

During an experiment temporal frequencies in the range from 1 Hz to 10 Hz 

were delivered in a shuffled order. This order was mirrored for another 9 
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repeated trials (Fig.28 A). After 10 repetitions of trials where the fly was 

rotated, the same sequence was applied again, but this time while the fly is 

stationary and the grating pattern was rotated. This stimulation protocol was 

used throughout the experiments reported in this thesis, if not specified 

differently. 

2.3. Results 

2.3.1. Instantaneous recording stability analysis 

Figure 27 shows typical results of an experiment where the fly was rotated, 

demonstrating that the miniaturized recording platform is indeed suitable for 

stable recordings of extracellular neural signals. In this specific experiment, 

the H1-cell spikes were recorded from the axon in the right lobula plate, while 

visual motion is presented to the left compound eye. The time course of the 

angular velocity of the recording platform is shown in Figure 27A, which, in 

this case, reached a maximum 270 deg/s in the counter-clockwise and the 

clockwise direction, respectively. Figure 27B shows the neural response of 

the H1-cell. The extracellularly recorded large action potentials (spikes) could 

be easily differentiated from the background noise. To visualize the shape of 

individual spikes Figure 27C presents the section marked by the two vertical 

black lines in Figure 27B, at higher time resolution. The signal to noise ratio 

(SNR) in this recording, which is the peak potential of the action potential 

compare to the envelop of the noise level, was high enough to detect 

individual action potential by using a simple voltage threshold criterion 

(horizontal red line, Fig. 27B) rather than a computationally expensive spike 

sorting algorithm. To compute a time-continuous measure of the neural 

response the instantaneous spike rate was calculated which is based on the 

inter-spike intervals (ISI) between consecutive action potentials. The 

instantaneous spike rate corresponds to the inverse of the time interval 

between two spikes (ISI), multiplied by one second.  
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Figure 27. Stimulation and response during a 10 second H1-cell recording. (A) The angular 
velocity curve of stimulation (here, positive and negative angular velocities refer to motion in the 
anti-preferred and preferred direction of H1-cell, respectively). (B) The action potentials 
generated by the H1-cell under stimulation as described in A. The red horizontal line indicates 
the threshold potential for the spike sorting. The black window marks the section of the data 
magnified in C. (C) The zoom-in plot of the H1-cell action potential sequence described in B. (D) 
The spike rate of H1-cell, calculated from the time interval (inter spike interval, ISI) between two 
consecutive action potentials. 

The responses of the H1-cell under these stimulus conditions were in 

agreement with previous studies (Jung et al., 2011). During counter-clockwise 

rotation the grating pattern moves from front-to-back over the left eye. (As 

mentioned in section 2.1.2.5) the H1-cell is inhibited during front-to-back 

motion which clearly is the case in this experiment. During the 3 seconds of 

counter clockwise rotation the H1-cell hardly generated any spikes – except 

for a few transient ones at the beginning of the rotation (Fig 27B and D). If the 

fly is rotated in the opposite direction and the relative motion between the 

0 1 2 3 4 5 6 7 8 9 10

-200

0

200

Time(sec)

S
ti
m

 a
n
g
 v

 (
d
e
g
/s

)

Blowfly stimulation and response analysisA.

0 1 2 3 4 5 6 7 8 9 10
1.8

2

2.2

2.4

2.6

Time(sec)

P
o
te

n
ti
a
l 
(V

)

B.

5 5.005 5.01 5.015 5.02 5.025 5.03 5.035 5.04 5.045 5.05
2

2.2

2.4

2.6

2.8

Time(sec)

Z
o
o
m

 i
n
 P

o
te

n
ti
a
l 
(V

) 

C.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

Time(sec)

IS
I 

ra
te

 (
H

z
)

D.



 

53 
 

grating pattern and the left compound eye is from back-to-front, the H1-cell 

generates spikes at rates exceeding 200 spikes/s in the initial phase (Figure 

27B and D).  When no relative motion occurs between the grating pattern and 

the fly, the spike rate assume low values around 25 spikes/s, a value that is 

well within the variability range commonly observed across different flies 

(Egelhaaf et al., 2001).  

In the context of this work the results presented in Figure 27 are of particular 

significance because: The spike amplitudes of the H1-cell did not change over 

the course of the trial despite the rotation of the platform. This demonstrates 

that the recoding platform provides sufficient mechanical stability to sustain 

high quality extracellular recording. Otherwise, had any relative movements 

between the electrode and the cell during the recoding occurred – even at the 

micro meter scale – the spike amplitude would have changed as a result of an 

increased or decreased distance between electrode and cell. The constant 

spike amplitude and thus the SNR indicate that this was not the case.       

Secondly, the instantaneous spike rate shown in Figure 27D increased to 

around 200 Hz when the rotation switched from null direction to preferred 

direction, and adapted to around 100 Hz while the rotation continued at a 

constant angular velocity. The spike rate never exceeded 400 Hz throughout 

the entire recording. Spike rate above 400 Hz are generally indicative of an 

unphysiological state of the neuron, which could be the result of damage 

caused by the electrode. Together, these observations suggest that the 

recordings were stable and the cell was in a healthy physiological state.     

 

2.3.2. Prolonged recording stability analysis 

So far I presented evidence that a stable recording would be achieved over a 

period of 10 seconds. In the following I will show data obtained throughout an 

entire experiment lasting over 30 minutes.  

Figure 28A shows the temporal frequencies (y-axis) applied over the duration 

of the experiment (x-axis). Each dot represents the temporal frequency of the 

stimulus presented in each 10 seconds recording. The sequence was shuffled 
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and kept in the same order for another 9 times. Recordings during which the 

fly was rotated are shown in red, blue symbols indicate experiments where 

the pattern was rotated.  

 

Figure 28. Experimental stability analysis. (A) The sequence of temporal frequencies of the 
stimulus used in the experiment. (B) Mean and standard deviation of spike rate at 4 Hz temporal 
frequency. (C) Mean and standard deviation of spontaneous spike rates. (N=8) (Huang and Krapp, 
2013) 

Figure 28B shows the mean peak spike rate and standard deviation over the 

whole experiment for responses obtained at a temporal frequency of 4 Hz 

(see section 2.1.1.2). In agreement with previous studies (Jung et al., 2011; 

Maddess and Laughlin, 1985) my experiments shown maximum peak spike 

rate when the H1-cell responds to a temporal frequency of 4 Hz. The 

averaged peak spike rates are all between 250 to 300 Hz for each repetition 

of the given temporal frequency, with similar standard deviation. 
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Figure 28C shows the averaged spontaneous spike rate based on 8 animals 

throughout the whole experiment. Except for a few temporary increases, from 

the start until the end of the experiment the spontaneous activity stays at 

about the same level.  

The H1-cell is 1200 micrometer long, connecting the left and the right lobula 

plates in the fly brain by an axon that has a diameter of about 5 micrometer. 

The tungsten electrode tip is around 1 micrometer and needs to be placed 

right next to the neuron to achieve a good signal noise ratio. From experience 

we know, if the electrode tip is too far away from the neuron, the recorded 

signal amplitude will be very small. If the electrode tip is too close to the axon, 

the cell membrane may be damaged. A damaged neuron generates 

excessively high rates of action potentials due to a massive depolarization of 

the membrane potential which caused voltage gated sodium and potassium 

channels to open. If the membrane damage is small enough, the cell may 

regain a normal physiological state after a while when the membrane is still 

able to reassemble and seal any holes. But if the membrane damage is 

severe, and the cell won’t be able to recover, the amplitude of the action 

potentials will become smaller over time, until the cell eventually dies. 

The stable averaged peak- and spontaneous spike rate observed in the 

experiments tells us that no damage on the cell was inflicted during the whole 

experiment period. At no time did the peak spike rate reach 400 Hz, which 

would have been the case had the cell membrane been injured. The fairly 

constant spontaneous spike rate at about 20 to 30 Hz also indicates a healthy 

state of the cell. And finally, throughout the experiment the cell was 

responding to the stimulus in a directionally selective way which also reflects 

a proper physiological state. A few bursts of the spontaneous spike rate 

occurred, but a normal activity level was reached right afterwards. Bursting 

activity was thought to reflect internal activity modulations associated with the 

attempt of the fly to change its locomotor state, a phenomenon that is well 

documented in the literature (Longden and Krapp, 2010). Altogether the 

results suggest that the mobile platform enables stable recordings from the 

H1-cell over an extended period of time in all the experimental animals tested. 

(a link to a video is supplied in appendix 3). The data shown here were only 



56 
 

meant to demonstrate recording stability, the entire set of results will be 

presented in chapter 4. 

 

2.4. Summary 

The goal of the work described so far was to design, manufacture and test a 

miniaturized mobile platform that enables stable extracellular recordings from 

motion sensitive neurons in a blowfly.  

On the wing, the blowfly is highly manoeuvrable, though, due to its small size, 

it is virtually impossible to study the neural mechanisms underlying its 

multisensory flight control while the animal is freely moving. Rather than 

embedding a recording system in a blowfly’s brain, the present attempt is a 

first step towards the development of an experimental platform that will 

eventually enable neural recordings under closed-loop conditions. .  Whether 

or not this goal will be achieved depends on a number of prerequisites which 

include the choice of an appropriate robot, the miniaturization of 

electrophysiological equipment and the demonstration that stable recordings 

can be achieved on a moving platform.    

As far as the mobile robotic platform is concerned, out of three candidate 

systems the m3pi was chosen, the specifications of which suggest it to be 

better suited for the task than the ASURO or the Lego NXT robots. In 

particular its fast speed, light weight and powerful controller were the reasons 

to favour the m3pi over the other robots. Accordingly, the design of the 

miniaturized recording platform was based on the dimensions of this robot. 

The design of the recording platform was constrained by both mechanical and 

electrical considerations. Except for the micromanipulators, which were off-

the-shelf, the mechanical components were optimized to enable high 

recording stability without adding too much inertia to the system, in which 

case the dynamics of the robot would be further reduced. The electrical 

components had to comply with the size constraint given by the limited space 

inside the shielding micromanipulator base. A customized PCB was designed 

to accommodate a stage amplifier on a small scale that achieves a gain of 104.  
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To test the performance of the miniaturized recording platform a computer-

controlled stepper motor system was built. It allowed me to assess the 

stability while monitoring extracellular spiking activity in a directional selective 

interneuron. I carried out experiments under conditions where either the fly 

was rotated within a patterned cylinder or the fly was kept stationary and the 

pattern was rotated. The results obtained under both conditions demonstrated 

that the platform enabled prolonged high quality recordings without inflicting 

any damage to H1-cells studied in eight different animals.   

In next chapter, the H1-cell of the blowfly will be characterized on top of a 

stepper motor with this verified recording platform. 
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3. H1-cell response characterization using the 

miniaturized recording platform 

 

In this chapter, I will describe experiments on the H1-cell performed to assess 

the cell’s suitability for robotic control. As mentioned in the previous chapter, 

the responses of the cell to visual motion were recorded under two different 

stimulus conditions: 1) during wide-field motion stimulation by rotating the fly 

within a stationary grating pattern,   and 2) during wide-field motion stimulation 

by rotating the grating pattern around the stationary fly.  These two stimulus 

conditions also allowed me to investigate whether or not mechanoreceptive 

systems modulate the responses of the H1-cell. Because of its obvious 

significance for closed-loop control, the stimulus parameter I studied in these 

experiments was temporal frequency. I identified the range of temporal 

frequencies within which a near linear relationship between the speed of 

pattern motion and the cell’s responses exists.  

3.1. Introduction 

In order to learn how the blowfly utilizes the responses of its lobula plate 

tangential cells (LPTCs, cf. chapter 2) for flight control, a fundamental 

requirement is a quantitative analysis of the cell’s responses as a function of 

visual stimulus parameters.  

The H1-cell is one of the most popular LPTCs, the response properties of 

which have been characterized over many decades. H1-cell activity has been 

studied more than the activity of any other LPTCs, not only regarding its role 

in the control of optomotor behavior. It had also been studied in the context of 

applying information theory to work out the “neural code” used in the nervous 

system (Lewen et al., 2001), or to study circadian changes in sensory 

information processing (Bult et al., 1991) and finally, of course, to learn about 

the properties of the elementary motion detector (Lindemann and Egelhaaf, 

2013). It is readily accessible for electrophysiological recordings and responds 
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to horizontal wide-field motion which a ground-based mobile platform is likely 

to generate. 

In this chapter, recordings of H1-cell activity are presented that were 

performed under two conditions: 1) the fly was rotated within a stationary 

cylinder lined with a panoramic, vertical stripe pattern, and so experienced 

visual motion as well as mechanoreceptive stimulation – which we refer to as 

the “fly rotation” condition later; and 2) the pattern was rotated around the fly, 

and so it experienced visual motion – which we refer to as the “pattern 

rotation” condition. In the fly rotation condition, the halteres and other 

mechanoreceptors are stimulated in addition to the motion vision pathway, 

while in pattern rotation condition, it is only the motion visual pathway that is 

stimulated. 

With the possibility of moving either the fly or the visual pattern, we can 

perform experiments to investigate how mechanoreceptors affect visual 

sensory in gaze-stabilization. We also have the potential to explore how the 

fly’s sensory systems can be integrated to usefully control its movements. 

I performed four sets of experiments: 

In the first experiment, I characterize the temporal frequency tuning of an H1-

cell. The purpose of this experiment was to validate the functionality of the 

recording platform, by comparing tuning curves generated from data 

measured with my miniaturized equipment to results obtained using 

conventional setups reported in the literature (Jung et al., 2011).  

The aim of the second set of experiments is to establish whether the 

simultaneous stimulation of mechanosensory systems alters the temporal 

frequency tuning of the H1-cell. To do this, I derived the temporal frequency 

tuning from the response measured when the fly was rotated, and compared 

the results to those obtained in stationary flies. I then repeated the 

experiments on flies the halters of which had been removed.  

In walking and flying flies, the temporal frequency tuning of LPTCs is 

modulated (Chiappe et al., 2010; Jung et al., 2011). Potentially, this 

modulation could reflect the impact of mechanosensory signals. Moreover, 
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some neck motor neurons which receive input from the LPTCs only generate 

action potentials if visual motion stimuli are combined with haltere stimulation 

(Huston and Krapp, 2009). Therefore, my experiment would help to find out 

whether halteres directly or indirectly modulate the responses of the LPTCs, 

in this case, the H1-cells. 

In the third set of experiments, I characterized the responses of different sizes 

of the visual patterns. I was concerned that the cell’s dynamic output range 

would be limited by potential size-dependent saturation non-linearities. 

Therefore, I decreased the area of the motion stimulus, by reducing the height 

of the visual grating to 2%, and compared the temporal frequency tuning 

curves derived from rotating the fly or the pattern with those obtained using 

the larger patterns. 

In the fourth set of experiments, I investigated the impact of motion adaptation 

on the H1-cell responses. In flying or walking flies, motion adaptation affects 

the impact of locomotion on the temporal frequency tuning of the cell (Jung et 

al., 2011; Longden and Krapp, 2009). I therefore measured the temporal 

frequency tuning before and after the cell had been adapted to visual motion. 

 

3.2. Experiment 1:  H1-cell temporal frequency tuning 

In this experiment, I investigated the H1-cell activities when 

mechanoreceptive systems on top of the motion vision pathway were 

stimulated and when the fly was presented only with a visual motion stimulus. 

As mentioned above, these two stimulus conditions were achieved by either 

rotating the fly or rotating the grating pattern. Another important purpose of 

these experiments was to demonstrate that the miniaturized recording 

platform enables stable extracellular recordings while the whole platform is 

moving at high angular velocities, a necessary condition for the application in 

autonomous robot control. 

3.2.1. Method  

H1-cell activity was recorded using the mobile recording platform introduced 

in the chapter 2. A vertical black and white visual grating was placed around 
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the blowfly. The responses of the H1-cell were recorded during fly rotation 

and pattern rotation. 

For the recording, 4 - 11 day-old blowflies were chosen, immobilized using ice, 

and then fixed to a fly holder using bee wax. The cuticle of the back of the 

head capsule was removed. Fat tissue and muscles covering of the lobula 

plate were also removed, but the tracheae on the surface of the lobula plate 

were left intact.  

To perform the recordings, a tungsten electrode was inserted into the lobula 

plate. I used the pattern of tracheae as visual landmarks to identify 

appropriate recording sites. The tip of the electrode was placed close to the 

estimated location of the axons of the contralateral H1-cell. The signal-to-

noise ratio, i.e. the ratio between the amplitude of the H1-cell action potential 

peak to the amplitude of the background activity, was always higher than 2:1.  

The recording platform was mounted on the shaft of a stepper motor 

positioned below the platform. A cylinder lined with a visual grating 

surrounding the fly was suspended from above and connected to a second 

stepper motor. The visual grating consisted of black and white vertical stripes 

with a spatial wavelength of 30°, printed on 200 g/m2 A4 paper. For 

illumination, the cylinder was lit by 14 white LED (Maplin®: N91NA) as a 

circular light clipped on the top inside of the cylinder. The room light was 

turned off with the beginning of the experiments. 

The blowfly has wide field of view in this arrangement. The view covers more 

than -90 deg to +90 deg in azimuth, and from -45 to +90 in elevation. 

In order to derive the temporal frequency tuning curve, I stimulated the cell 

with pattern motion at angular velocities from 0 to 300 deg/s. In this 

experiment, temporal frequencies are from 1 Hz to 10 Hz, due to the spatial 

wavelength of 30°. Each temporal frequency stimulus was applied in a 

shuffled order and repeated 10 times, which was mirrored at each repetition, 

using alternating sequences to cancel any results caused by stimulus order. 
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H1-cell was first recorded during rotation of the fly, then the fly was kept 

stationary and the pattern was rotated. An entire experiment lasted for at least 

2000 seconds (or 33 minutes 20 seconds). 

A NI-USB-6215 data acquisition card was used for stimulus control and to 

store recorded neural signals on a PC. Software programmes controlling both 

processes were custom written in Matlab (Mathworks®). The motors were 

driven by a P808A stepper motor driver, which was controlled by an analog 

output channel of the data acquisition card. The neural signals were amplified 

by on-board amplifiers inside the recording platform (cf. chapter 2) before 

being sampled by the analog digital converter of the NI-USB-6215.   

3.2.2. Result 

After the recordings, the H1 spike trains were compared with a threshold to 

obtain the information about spiking events over time. The spike rate was 

calculated by averaging the number of action potentials generated during 

three seconds of visual stimulation in the cell’s preferred direction (Fig. 27). 

The resulting rate was then averaged across 10 stimulation repetitions within 

one animal. To plot the overall temporal frequency tuning curve, the data from 

eight blowflies were collected to calculate the interindividual mean and 

standard error (Figure 29).  
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Figure 29. The H1-cell temporal frequency tuning curves under both fly rotation and pattern 
rotation conditions. The results are based on data from eight blowflies. Error bars give the 
standard error of the mean.   

The shape of H1-cell temporal frequency tuning curves shown in Figure 29 

was found to be similar for both rotation of the fly and rotation of the pattern. 

Although the average responses upon rotations of the fly at high frequency 

are slightly higher, there was no statistical difference. Altogether the optimum-

shaped temporal frequency tuning of the H1-cell derived with the miniaturized 

recording platform is comparable with results obtained in previous studies 

where conventional equipment was used (but see discussion). 



64 
 

 

Figure 30. Extreme results obtained from individual animals: (A) The plot of individual trials of fly 
#1, where the variability of the spike rate is higher in pattern rotation condition. (B) the plot of 
individual trials of fly #2, where the variability of the spike rate is higher in fly rotation condition. 
(C) The boxplot of fly #1, showing similar mean spike rate to B. (D) the boxplot of fly #2, showing 
similar mean spike rate to C. 

While the average results presented in Fig 29 appear to be consistent with 

data reported in the literature, the responses of individual flies to the range of 

tested temporal frequencies can be rather different. This is shown in Figure 30. 

For example: fly one (Fig. 30, left panels) had a higher spike rate variability in 

the responses to high temporal frequencies during pattern motion, while fly 

two (Fig. 30, right panels) had a higher variability of spike rates at high 

temporal frequencies during the rotation of the fly. Nevertheless, from the 

boxplot, both flies generated similar averaged spike rates for both 

experimental conditions. 
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3.2.3. Discussion 

The results of this experiment allow for two conclusions: first, and most 

importantly, the custom-designed recording platform works as efficient as a 

conventional recording setup to obtain the H1-cell temporal frequency tuning. 

Second, as far as the mean temporal frequency tuning of the H1-cell is 

concerned, there is no differences between responses obtained under visual 

wide-field stimulation upon fly rotation and pattern rotation. 

Temporal frequency tuning curves of blowfly H1-cells have been investigated 

in previous researches where commercial equipment was used (Jung et al., 

2011; Longden and Krapp, 2010; Maddess and Laughlin, 1985). The H1-cell 

tuning curves show peak spike rates at a temporal frequencies between 1-5 

Hz, in cases where the fly is fixed to a setup that delivers a local visual by 58 

deg in circular angle (Maddess and Laughlin, 1985). 

Here, the H1-cell responses were first recorded during pattern motion at 

temporal frequencies from 1 Hz to 10 Hz, where the peak temporal frequency 

was found at 4 Hz under wide field visual stimulation. The resulting tuning 

curves were virtually the same as those reported in previous studies (Jung et 

al., 2011; Maddess, 2001). This means the custom designed mobile recording 

platform works as good as the conventional recording setup.  

I have already shown in the previous chapter that the gain and bandwidth of 

the miniaturized amplifier are properly tuned and that the system enables 

stable recordings. The experiment presented here further proves that the 

different settings in my mobile recording platform regarding angular extent 

and luminance do not produce H1-cells temporal frequency tuning curves 

which are qualitatively different from those obtained with conventional setups. 

Secondly, H1-cell activity was recorded under wide-field motion stimulation 

induced by rotating the fly, where the visual grating was kept stationary. In this 

case, the blowfly experienced the same optic stimulation as it did during 

pattern rotation, but in addition mechanoreceptors – for instance the halteres 

or antennae – were stimulated. From a comparison of the respective tuning 
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curves (Fig 29), we can see that the H1-cell responses upon the rotation of 

the fly are similar to those during pattern rotation. It could be inferred that 

under the experimental conditions applied no mechanoreceptive signals 

altered the responses of H1-cell.  

Additionally, the means of spike rate is slightly higher in the fly rotation 

condition than the rate in the pattern rotation condition. One of the assumption 

is due to the internal locomotor state change, when the fly was trying to take 

off (Jung et al., 2011; Longden and Krapp, 2009) after some 

mechanoreceptors were stimulated at high velocities.  

On the other hand, an interesting finding of this study was that the variability 

of spike rates increased at high temporal frequencies. Two extreme cases 

have been presented (Fig 30), which shown that such increased variability 

occurred in both cases, during fly rotation and pattern rotation. This suggests 

that the temporal frequency-dependent increase in response variability is not 

related to whether or not mechanoreceptive stimuli were accessible to the fly. 

The H1-cell is part of the network of horizontal LPTCs including the HS-cells 

(Borst and Haag, 2002b) which are the output cells from the lobula plate 

connecting to descending neurons. H1-cells are therefore indirectly involved 

in optomotor responses and gaze stabilization both of which compensate for 

rotational deviations from an equilibrium point. But the other function of HS 

cells studied by the Lindemann et al. (Lindemann et al., 2005) is to estimate 

relative distance during translational sections of flight. This function is of 

potential interest for robot control.  

 

3.3. Experiment 2: Halteres removed 

In this experiment, the H1-cell activities were recorded before and after 

removal of the halteres. An unspecific activation of the halters during neck 

motor neuron recordings has shown an interaction between motion vision and 

haltere signals (Huston and Krapp, 2009). The high degree of variability at 

high temp frequencies found in the previous experiments could potentially 

reflect such unspecific interaction. After all, as halteres operate best in the 
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high velocity range. By removing the halteres, I made sure they would not 

provide any signals that could modify the H1-cell activity. 

3.3.1. Method  

The blowfly dissection, preparation, and recordings were performed in the 

same way as described in the previous section. But contra-lateral H1-cell 

activities were measured only under conditions where the fly was rotated with 

halteres kept intact or with halteres removed.  

The range of temporal frequencies applied for stimulation was increased to 20 

Hz. The angular velocity profile of the stepper motor was kept the same, from 

0 to 300 deg/s, but the spatial wavelength of the pattern was reduced from 30 

degree to 15 degree. Ten temporal frequencies were applied: 0.2 Hz, 1 Hz, 3 

Hz, 4 Hz, 5 Hz, 8 Hz, 11 Hz, 14 Hz, 17 Hz and 20 Hz. These temporal 

frequencies were delivered in a shuffled sequence, which was alternated in 

mirrored order between repetitions. Each set of experiments was repeated 10 

times. 

During the first set of experiments, the H1-cell activities were recorded with 

intact halteres. After the recording, the halteres were pulled out by a pair of 

tweezers under the microscope. The second set of experiments was 

conducted using the same stimulus parameters, only in flies without halteres.  

Four sets of experiments were applied on one blowfly. In the first two sets of 

experiments H1-cell activities were recorded by rotating the fly in the 

stationary pattern cylinder with and without halteres. The second two sets of 

experiments were performed using the laboratory environment as visual 

stimulus.  
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3.3.2. Result   

 

 

Figure 31. H1-cell temporal frequency tuning curves obtained with vertical black and white stripe 
pattern with and without halteres. Plots A, B are trials of stimulations at various temporal 
frequencies. Plots C, D are means and standard deviations of the H1-cell temporal frequency 
tuning (N=1). Plots A, C are obtained from blowflies with halteres; Plots B, D are based on 
experiments in blowflies without halteres. Positive and negative temporal frequencies 
correspond to visual stimuli in the preferred and anti-preferred direction of the H1-cell, 
respectively. The straight purple lines in plots C, D indicate the overall mean spontaneous spike 
rate. 
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Figure 32. H1-cell temporal frequency tuning curves obtained with and without halteres in the 
laboratory environment. Plots A, B are trials of stimulations at various temporal frequencies. 
Plots C, D are means and standard deviations of the H1-cell temporal frequency tuning. Plots A, 
C show data from blowflies with halteres; Plot B, D present data for blowflies without halteres. 
As in the previous figure, negative and positive temporal frequencies indicate stimulation in the 
cell’s preferred and anti-preferred direction, respectively. The straight purple lines in plots C, D 
indicate the overall mean spontaneous spike rate. 

Figure 31 and figure 32, show no significant differences between the H1-cell 

temporal frequency tuning curves with and without their halteres. The 

variability without halteres seems to be slightly smaller than with halteres 

upon grating stimulation and the lab environment. 

The most intriguing result of this experiment was the marked difference in 

shape of the temporal tuning curves obtained under the two visual stimulation 
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conditions. In comparison with the visual grating, using the laboratory 

environment as a visual stimulus resulted in a monotonic H1 temporal 

frequency tuning as opposed to an optimum curve and a reduced variability of 

the responses to high temporal frequencies.  

Altogether, three flies were recorded grating stimulus and have similar 

temporal frequency tuning as Fig. 31, both with and without halteres. Only one 

fly was studied using the laboratory environment as a visual stimulus. 

3.3.3. Discussion 

In this experiment, the removal of the halteres did not change the shape of the 

temporal frequency tuning curve of the H1-cell.  

The mean spontaneous activity of the H1-cell stayed at around 25 Hz before 

and after the removal of the halteres. Previous research has shown that 

haltere activity does not necessarily induce changes in the activity of LPTCs 

(Rosner et al., 2009). Neither does the rotation of the fly in my experiments. 

Other mechanoreceptive systems, including sensory hairs and antennae, are 

not affecting the H1-cell activity either. On the other hand, removal of halteres 

seems to reduce the variability in the H1-cell tuning curve. It is still not clear, 

however, which mechanism have affected the variability in the spike rate of 

the H1-cell, possibly due to the internal state changes (Jung et al., 2011; 

Longden and Krapp, 2009). 

There is plenty of evidence from earlier studies that the optomotor pathway is 

receiving input from mechanoreceptive systems such as halteres (Huston and 

Krapp, 2009). The result of the experiment described here suggests that the 

integration of signals from horizontal cells and halteres is likely to happen in 

the optomotor pathway downstream of the H1-cell. 

Figure 31 and 32 show two interesting results: (a) the visual stimulus 

conditions have an impact on the tuning (grating pattern and lab environment) 

and (b) the variability with and without halteres at high angular velocities in the 

lab environment may be different (smaller without halteres).    

The laboratory-induced tuning curve shows a monotonic increase from 0 to 

300 deg/s angular velocity, while the tuning curve derived from the grating 
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stimulus decreases for temporal frequencies higher than 4 Hz (60 deg/s in 

angular velocity). This is likely to be the consequence of the integration of a 

broad range of temporal frequencies as a result of the wide range of spatial 

wavelengths present in the laboratory environment. 

Data reported by Lewen et al. (Lewen et al., 2001), show the spike rate of H1-

cell under naturalistic visual stimulation to peak at around 1000 deg/s. The 

monotonic shape of the H1-cell temporal frequency tuning curve under I 

obtained in the lab environment is comparable with Lewen’s data for the 

velocity range from 0.5 to 300 deg/s.  

In a natural environment, the biggest spatial wavelength possible would be 

360 deg. If the spatial wavelength in the grating I used was increased from 15 

deg to 360 deg, i.e. 24 times bigger, then the angular velocity at which the 

peak spike rate in the tuning curve should occur, would be 24 times higher 

than 60 deg/s, which is 1440 deg/s. Unfortunately, this would be beyond the 

maximum angular velocity of the stepper motors I used in my experiments.  

Regarding the variability, the variability with and without halteres at high 

angular velocities is slightly different in the lab environment.  

Why does the H1-cell always peak at 4 Hz when a visual grating is used for 

stimulation? A possible answer could be related to the common observation 

that during evolution sensory systems have adapted to the input distribution 

they are most likely to encounter in their natural habitat. The maximum spatial 

wavelength visual systems may be confronted with in nature is 360 degrees. 

Blowfly can rotate at angular rates up to 1700 deg/s (Bomphrey et al., 2009), 

which means the maximum temporal frequency they may have to deal with is 

around 1700 / 360 = 4.72 Hz. The fly is less likely to experience higher 

temporal frequencies than this in nature.  

The variability of spike rate is always small when the temporal frequency is 

below 4 Hz as the data in figure 31 and the results from my previous 

experiments (Fig 30). Based on the assumption above, if the spike rate 

always peaked at 4 Hz temporal frequency, the bigger spatial wavelength, the 

higher angular velocity 4 Hz will become. When the spatial wavelength 
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becomes 360 deg (e.g. laboratory environment), the 4 Hz temporal frequency 

achieves 1440 deg. This may be the reason why the temporal frequency 

tuning curve in Fig 32 is monotonic and less variable in the range of 0 - 300 

deg/s under laboratory environment. 

The finding that the H1 tuning curve obtained in the laboratory environment is 

monotonic in the angular velocity range from 0 to 300 deg/s and shows only 

small variability, may prove helpful in designing robust robotic feedback 

control laws. 

 

3.4. Experiment 3: Pattern size dependence 

Besides the temporal frequency the response of LPTCs depends on a couple 

of other stimulus parameters which have been studied in the past (Hausen, 

1984). Most of the parameters are directly related to the functional structure of 

the EMDs introduced earlier (Buchner, 1984). Pattern size, a parameter 

immediately relevant for robotic applications in different environments with 

varying spatial frequency compositions had been investigate both in 

behavioural (Reichardt et al., 1983) and electrophysiological (Haag et al., 

1992) experiments before, although in experimental setup different from the 

one I have described here. A theoretical account on dendritic gain control in 

LPTC dendrites proposed a combination of the phenomenological EMD model 

and a biophysical model of the electrical properties of the LPTCs to explain 

some interesting experimental observations (Borst et al., 1995). Beyond a 

certain size of the stimulus patter the behavioural and electrophysiological 

responses assumed plateau values that stayed constant even if the pattern 

size was further increased (Borst et al., 1995; Hausen, 1984; Reichardt et al., 

1983). The observed plateau values were dependent on pattern velocity and 

could not be explained by a simple output saturation of the system. Based on 

their modelling approach Borst et al. (Borst et al., 1995) came to the 

conclusion that the gain control mechanism underlying the experimental 

results could be explained by a velocity dependent activation of excitatory and 

inhibitory membrane conductance which determines the plateau level of the 

responses. Ever since, the response of the LPTCs were believed to pattern 
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size-invariant – at least beyond a certain threshold size – which benefitted the 

encoding of image velocity.  

As the experiment described above where the lab environment was used as 

the visual stimulus produced results qualitatively different from those obtained 

with the grating patterns I revisited the size parameter in my experiments. 

Especially in view of vision-based robotic control in arbitrary environments 

studying the size-dependent responses of the H1-cell would potentially 

provide useful information for the design of robust feedback algorithms.  

In the experiment described below, the H1-cell was stimulated by visual 

gratings the size of which was varied by changing their extent along elevation. 

 

3.4.1. Method  

The blowfly dissection and recording procedures were the same as described 

in sections. H1-cell activities were recorded under both fly rotation and pattern 

rotation conditions. 

Since the radius of the pattern cylinder (or the distance from the fly to the 

pattern surface) was fixed at 78.3 mm the angular extent of the pattern from 

the position of the fly could be calculated using by: 

          
 

  
  

where:   is the angular extent,   is the height of pattern and   is radius of the 

pattern cylinder.  

Table 3. Angular extent of the stimulus grating 

Pattern sample Pattern height (mm) Angular extent (deg) 

 

3 2.18 

10 7.30 

45 32.12 

85 56.94 

210 106.57 
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The vertical extent of the gratings used in my experiments is given in table 4. 

The sequence at which the different gratings were presented to each animal 

was random.  

Temporal frequencies applied were 0.2 Hz, 1 Hz, 3 Hz, 4 Hz, 5 Hz, 8 Hz, 11 

Hz, 14 Hz, 17 Hz and 20 Hz. Those temporal frequencies were presented in a 

shuffled sequence as described before including 10 repetitions. Five blowflies 

have been recorded in total. 

3.4.2. Results  

 

Figure 33. Temporal frequency tuning curves as a function of angular extent of the grating 
during pattern rotation. Each ribbon represents the angular extent dependent spike rate for a 
given temporal frequency. The middle green ribbon at 0 Hz temporal frequency shows the overall 
mean spontaneous spike rate. Negative and positive temporal frequencies correspond to motion 
in the anti-preferred and preferred direction of the cell, respectively. (The plot include averages 
of  data from 5 animals.) 



 

75 
 

 

Figure 34. Side view of data shown in figure 33. Each curve shows the angular extent dependent 
response for one temporal frequency obtained upon pattern rotation. The blue lines give 
responses to null direction motion, where neurons are inhibited. The red lines give responses to 
preferred direction motion, where neurons are excited. (N=5) 
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Figure 35. Temporal frequency tuning curves as a function of angular extent of the grating 
during fly rotation. The data were gathered from the same animals (N=5) which were used to 
obtain the results presented in figure 33, but here the animals were rotated in the centre of the 
stationary pattern. 
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Figure 36. The side view of the results shown in figure 35. It is the same way of presenting the 
data as in figure 34. Note that for angular extents greater than 32.12 deg, there is a linear 
relationship between pattern size and spike rate for all positive temporal frequencies. 

The H1-cell tuning curves obtained upon pattern rotation using gratings of five 

different angular extents are plotted in 3D format in fgure 33, while the 

corresponding result obtained during fly rotation are fiven in figure 35. Side 

views of the two data sets are presented in figure 34 and 36, respectively, for 

an easier inspection of the relationship between angular extent and response.  

The spike rates measured while the fly was rotated were higher than those 

obtained during pattern rotation for all angular extents above 32.12 degree 

(Fig 36). 
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3.4.3. Discussion  

In this experiment, the results shows: (1) the spike rates of H1-cells are 

almost proportionally related to the angular extent of the visual grating, which 

is different from on size-dependent responses of LPTCs published before 

(Borst et al., 1995; Hausen, 1982). (2) a detailed inspection of the plots 

reveals that spike rate and angular extent are related more closely by a 

straight line when the fly is rotated as opposed to the grating for angular 

extents greater than 32.12 degrees (Fig 36).    

As mentioned above, size dependent response of other LPTCs, for instance  

the HS-cell had been studied before (Hausen, 1982). But in those 

experiments the responses assumed different plateaus levels which 

depended on pattern velocity. That shows the responses are nearly 

independent of size beyond a certain extent of the stimuli (Hausen, 1982). My 

results, however, show that the H1-cell shows a linear relationship between 

angular extent and spike rate. A possible reason for this discrepancy could be 

the application of different visual stimulus. The simuli in Hausen’s experiments 

were presented through a 50 deg x 32deg aperture that was placed 30 deg in 

azimuth. And the pattern size was changed within this aperture. In my 

experiment, the blowfly had a field of view of at least ±90 degree azimuth 

angle, and -45 to +90 degree elevation angle. The azimuth and elevation 

range are far bigger than Hausen’s experiment. 

However there are evaluated curves where the membrane potential of the 

HS-cell was plotted against angular extent in Hausen’s publication (Hausen, 

1982), which did not settle at a constant value with increasing pattern size, 

evaluated from other experimental data from the same experiment. 

Considering the stimulation parameters 1.5 Hz temporal frequency and 32 

degree maximum angular extent along elevation in Hausen’s experiment, the 

evaluated curves are quite comparable to the result in Fig 34. 

It is not clear why the linearity between H1-cell spiking rate and angular extent 

of the pattern is more pronounced when the fly is rotated (Fig 36).  

The linear size-dependence of the H1-cell activity I found might potentially 

support distance estimation in the context of  collision avoidance (Lindemann 
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et al., 2005) on a robot, because an object is normally smaller and slower in 

distance than in front of eyes. 

 

3.5. Experiment 4: Bi-lateral H1-cells adaptation  

Motion adaptation is another property of visual system that could change the 

H1-cell spike rate. In this section I report experiments to investigate the 

responses of H1-cells before and after visual motion adaptation. For the robot, 

the controller needs to know whether the change of the spike rate is caused 

by adaptation, and compensate the change if necessary. 

3.5.1. Method 

The blowfly dissection and recording procedures are the same as for the 

previous experiment. The electrode is inserted into the right lobula plate and 

placed at a position where both ipsilateral and contralateral H1-cell spikes can 

be recorded with signal noise ratio greater than 2:1. Three flies were recorded. 

The visual stimulation protocol in this experiment contained two parts, where 

the direction of stimulus motion was swapped. During both rotations in the 

clockwise and counter-clockwise direction of the pattern one of the H1-cells is 

excited, while its contralateral counterpart is inhibited, as shown in Fig 37.   
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Figure 37. Motion adaptation experiments. The electrode was placed in the right lobula plate of 
the blowfly to record the activity of the contralateral H1-cell. The first stimulation sequence 
consists of 0.5 second without motion, 3 seconds anticlockwise rotation (view from dorsal side 
of the blowfly), 3 seconds clockwise rotation and 3.5 seconds without motion. The second 
stimulation sequence has 0.5 second without motion, 3 seconds clockwise rotation, 3 seconds 
anticlockwise rotation and 3.5 seconds without motion. This protocol guarantees that both H1-
cells are excited by motion in the anti-preferred direction before and after motion adaptation. “E” 
stands for excitation, “I” for inhibition, “a” for motion adapted. 

Each recording lasts for 10 seconds. The temporal frequency is the same for 

both clockwise rotation and anticlockwise rotation. A different temporal 

frequency is then applied during the next 10 seconds of the experiment. Ten 

different temporal frequencies were used: 0.2 Hz, 1 Hz, 3 Hz, 4 Hz, 5 Hz, 8 

Hz, 11 Hz, 14 Hz, 17 Hz and 20 Hz. They were applied in a shuffled sequence. 

Each set of experiments was repeated 10 times. 

3.5.2. Result  

After the experiment, the H1-cell spike rates were calculated by averaging the 

number of action potentials within a 3-second time interval of clockwise or 

anticlockwise rotation (each symbol in Fig. 38A, 38B). H1-cell spike rates 

obtained during 10 repetitions of the same stimulus conditions were used to 

calculate the means and standard deviations for each temporal frequency (in 

Fig. 38C, 38D). 
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Figure 38. Dual H1-cell recordings in asymmetric temporal frequency tuning curves after 
adaptation. The electrode is recording both H1 neurons in the right hand side of the lobula plate. 
Data presented in plots A, C were recorded under CCW-CW stimulation. The tuning curve of the 
contralateral (left) H1 (motion adapted) is plotted over positive temporal frequencies while the 
the tuning curve of the ipsi-lateral (right) H1-cell is plotted against negative temporal frequencies. 
Data presented in plot B, D were recorded under CW-CCW stimulation. The tuning curve of the 
contralateral (left) H1-cell is plotted against positive temporal frequencies. While the tuning 
curve of the ipsi-lateral (right) H1-cell (motion adapted) is plotted against negative temporal 
frequencies. The green line indicates the overall mean spontaneous spike rate in between 
pattern rotations, the magenta line shows the overall mean spontaneous spike rate in between 
fly rotation.  
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Figure 39. Dual H1-cell recordings show symmetric temporal frequency tuning curve with 
adaptation. Same experimental conditions as described in figure 38, but recorded from a 
different blowfly.  

The H1-cell spike rate is affected by motion adaptation. The adapted cell 

generates a lower spike rate than the non-adapted cell under both conditions, 

i.e. when pattern is rotated and when the fly is rotated. 

The peak spike rates shown in Figure 38 and 39, have to be viewed in relation 

to the cell’s spontaneous activity. The spike rates recorded before and after 

motion adaptation are more different, when the overall mean spontaneous 

activity is around 50 Hz for both cells. There is hardly any difference in spike 

rates recorded before and after motion adaptation, when the overall mean 
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spontaneous spike rate of each H1-cell is around 25 Hz (average of two H1-

cell spontaneous rates which is 50Hz from Figure 39). 

3.5.3. Discussion  

Adaptation does change H1 spike rate, the higher the level of motion 

adaptation in the cell, the lower the spike rate it generates. In this experiment, 

we can see the temporal frequency tuning curve affected by adaptation when 

the fly is rotated and when the pattern is rotated (Fig 38). 

Here I present – for the first time in this study - un-adapted temporal 

frequency tuning curves derived from experiments using the miniaturized 

recording platform (Fig 38). All experiments described in previous sections 

were carried out on H1-cells subjected to motion adaptation, where 3 seconds 

of null direction motion were followed by 3 seconds of motion in the preferred 

direction. The justification for this protocol was based on the observation that 

airborne or walking blowflies, on average, translate in the forward direction. In 

this case the H1-cells would be stimulated by motion in their anti-preferred 

direction. Regarding the comparison with previous studies on motion 

adaptation in H1-cell (Maddess, 2001), the two temporal frequency tuning 

curves of a fixed blowfly before and after adaption in his work were similar to 

the frequency tuning curves in my experiment (Fig 38). 

In a special case, the H1-cell responses were almost identical before and 

after adaptation (Fig 39). Here, the frequency tuning curves of both the 

contralateral and ipsilateral H1-cells were almost perfectly mirror symmetrical. 

And the variability of the spike rates is low. Considering the low spontaneous 

spike rates, one assumption, based on research into state-dependent 

information processing in LPTCs (Jung et al., 2011; Longden and Krapp, 

2009), could be that this fly’s (Fig 39) activity was recorded while it was in a 

passive locomotion state. In such a case the responses of the H1-cell would 

be minimum, where adaptation cannot reduce the spike rate any further. 

The other important outcome of the experiment described in this section is 

that it shows the feasibility of performing simultaneous extracellular double 

recordings from both H1-cells on the miniaturized platform using only one 

electrode. In the future, spike peak potentials from different H1-cell can be 
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distinguished if carefully select the position of recording location. This could 

potentially simplify the design of the brain machine interface implemented for 

closed-loop robotic control, or to potentially record the V1-cell using the 

second electrode. 

For robotic control, monitoring of the spontaneous activity would be useful as 

it indicates the state of the blowfly. 

 

3.6. Summary  

In this chapter, I described the characterization of the H1-cell responses in 

blowflies using a miniaturized recording platform under different stimulus 

conditions. The H1-cells were recorded either when the fly was rotated within 

a cylinder lined with a visual grating or when the grating was rotated while the 

fly was stationary. The major goals of this work were (a) to demonstrate that 

the novel miniaturized recording equipment is suitable for stable recordings 

even if the whole platform is rotated at different angular velocities, (b) to 

investigate the potential impact of mechanoreceptive systems on the 

responses of the H1-cell, and (c) to show that the results obtained with the 

novel platform are in agreement with those obtained using conventional 

electrophysiology equipment in previous studies. Overall the results suggest 

that the platform I designed is well suited to be used for the closed-loop 

control of a wheeled robot. 

Four experiments have been carried out to characterize H1-cell responses 

during fly or pattern rotation: 

In the first experiment I recorded the H1-cell responses under both conditions 

to temporal frequencies in the range between 1 and 10 Hz. The results show 

no substantial differences between the temporal frequency tuning curves of 

H1-cell derived from fly and pattern rotation and that the tuning curves are in 

agreement with earlier results reported in the literature. This indicates that the 

designed recording platform has equivalent functionality to commercially 

available equipment. The finding that the tuning curves do not show any 

statistically significant differences between the fly rotation and pattern rotation 
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stimulus conditions also indicates no sizable impact of mechanosensory 

systems on the H1-cell activities within the range of tested temporal 

frequencies.  

In the second experiment H1-cell responses were recoded upon stimulation 

with temporal frequencies from 1 to 20 Hz in rotated flies with and without 

halteres. From these experiments similar H1-cell temporal frequency tuning 

curves were derived. The results suggest that the integration of visual motion 

and halteres information (Huston and Krapp, 2009) does not occur at the level 

of the H1-cell, i.e. within the lobula plate. The integration probably happens in 

downstream elements of the optomotor pathway, possibly at level of the neck 

motor neurons. An interesting additionally finding was that the H1-cell 

responses obtained during rotations of the fly in the laboratory environment 

shows a monotonic dependence on angular velocity up to 300 deg/s. This 

response property of the H1-cell, which was in agreement with previous 

studies (Lewen et al., 2001), will benefit the design of robust control laws for 

closed-loop experiments on a mobile robot.  

The third experiment was meant to characterize the H1-cell temporal 

frequency tuning as a function of the vertical angular extent of the visual 

grating used for motion stimulation. The results show, from 32.12 deg vertical 

pattern extent, a nearly proportional relationship between angular extent and 

the spike rate of the H1-cell for all positive temporal frequencies tested. Under 

the stimulus condition when the fly was rotated, I observed an almost linear 

dependence of the neural response on the angular extent of the grating. The 

linear dependence on pattern size is in contrast with previous studies 

suggesting size-invariant responses of LPTCs (Borst et al., 1995; Hausen, 

1982) might be caused by the different stimulus extents along the azimuth. 

The fourth experiment included simultaneous double recordings from both H1-

cells. The activity of the two H1-cells was recorded by using only one 

electrode. The impact of motion adaptation was demonstrated by comparing 

the spike rates of both H1-cells. H1-cells adapted by visual motion were 

shown to generate lower spike rates than non-adapted H1-cells (Maddess 

and Laughlin, 1985). I also found evidence that motion adaptation and 
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spontaneous spike rate may be correlated and might  possibly depend on the 

animal’s internal locomotor state (Jung et al., 2011; Longden and Krapp, 

2009).   

The experiments in this thesis were focussed on the aspects mentioned 

above: temporal frequency, mechanosensory integration, angular extent and 

motion adaptation, which are influenced by motion. Although there are other 

factors which have been shown to impact on the spike rate of the H1-cell, 

including ambient temperature (Egelhaaf et al., 2001), circadian rhythm (Bult 

et al., 1991), age (Whim and Evans, 1989) and nutritional state(Ishida and 

Ozaki, 2011), those factors are not directly related to motion stimulation, and 

may be investigated at a later stage.  

The next step will be to mount the novel miniaturized recording platform on a 

two-wheel robot.  
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4. H1-cell to robot interface 

 

In this chapter, the results of H1-cell characterization from previous chapter 

are used to establish an H1-cell interface between the cell and the controls of 

a ground based two-wheeled robot. at a first step the dynamic properties of 

the robot have to be characterized. These two tasks are necessary to create a 

functional closed-loop platform to study multisensory integration. 

4.1. Introduction 

Brain machine interfaces are implants that connect the nervous system to a 

machine by means of electrodes, which enable some sort of tast-specific 

communication (Jebari, 2013). By its bare nature, a brain machine interface 

requires both the application of neurophysiological expertise and engineering 

technologies.  

In this thesis, the brain machine interface consists of a connection between 

the H1-cell in the fly motion vision pathway and a robot As mentioned in the 

previous chapters the H1-cells is one of the motion sensitive tangential cells 

located in the fly lobula plate and responds to horizontal motion in a 

directional selective way. The spike rate of the H1-cell will be used in to 

control the trajectory of a 3pi®, a two-wheel ground based educational robot 

(Fig. 15).  

In order to establish a robot-based experimental system suitable to study 

multisensory integration under closed-loop conditions, two requirements have 

to be met: (i) the response properties of the sensor system should allow for a 

robust feedback control of the robot. This aspect has been dealt with in 

previous chapters.  (ii) the kinematics of the robot should enable movements 

which cover the dynamic input range of the sensory systems under study. The 

latter aspect requires a proper characterization of the robotic system. The 

results of this characterization together with (a) an analysis of the relationship 

between input a pulse width modulation signal (PWM) and output angular 
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velocity of the robot, (b) as well as programmes to control the interface on the 

microcontroller, will be presented in this chapter. 

The 3pi® robot has been chosen as the actuator in the brain machine 

interface described here because it has some advantages over competing two 

wheeled robots, including: high speed DC motors, high frequency 

microcontroller clock rate, and economical price.  

The first requirement is developing a method to characterize the speed of the 

robot. As per its specification the robot is supposed to achieve a turning rate 

of 1500 deg/s, which has a considerable overlap with angular velocities 

observed in freely flying blowfly’s (max: 1700 deg/s) (Bomphrey et al., 2009). 

The speed of the robot is regulated by PWM. It is essential to characterize the 

speed / voltage relationship. This will show whether the DC motor behaves 

linearly over the entire speed range and will indicate the influences of frictions. 

A linear motor operation with PWM input would make the motor a time 

invariant transfer function in the control loop.    

The second requirement is to program the interface. Since the blowfly is 

mounted on top of the robot, movements of the robot will induce relative 

motion – optic flow – between the fly and the visual environment. This will, 

through the motion vision pathway provided by the compound eyes, modulate 

the activities of the H1-cells which will be used to steer the robot by 

differentially driving the motors of the wheels. In this interface configuration 

the H1-cell is effectively used as an optic flow sensor that provides closed-

loop feedback signals. To this end the analog H1-cell spikes need to be 

recorded, amplified, filtered and converted into time-continuous digitized 

signals for further on board processing and the generation of motor control 

signals. While signal recording, amplification and filtering have been outlined 

previously (cf. chapter 3), in the following I will describe the remaining signal 

processing tasks, including: data acquisition, spike detecting and spike rate-

to-velocity conversion to the robot. The spike rate-to-velocity converter is the 

key part in this system, which is based on the characterization of the H1-cell 

responses. Similarlystudies have been performed on an interface between 

neck motor nerves in the silkmoth with a robot based on the integration of 



 

89 
 

olfactory and visual signals (Minegishi et al., 2013). In contrast to the work on 

the silkmoth robot interface, the fly robot interface here will be configured to 

control the robotic motion based on visual information but at a considerable 

higher dynamic range.  

4.2. Experiment 1: robot angular velocity calibration 

4.2.1. Method 

The 3pi® is equipped with a limited number of sensors when purchased. It 

has no on-board accelerometer, tachometer or odometer. Therefore its 

angular velocity cannot be directly or indirectly measured. There are many 

ways to measure angular velocities, for instance by using an inertial 

measurement unit (IMU). To minimize the measurement error, I eventually 

used high speed videography to extract the robot’s angular velocity from 

image sequences taken at a rate of 500 frames per second.  

Effectively, the angular velocity of the robot was obtained by differentiating the 

angular orientation of the robot over time which required high contrast image.  

In order to achieve good image contrast and thus simplify further processing, 

white paper was used to cover the top of the 3pi® robot and two labels were 

added: 1) a black circle, indicating the centre of the robot’s rotation 2) a black 

cross on the edge of the robot, to indicate its orientation. The robot was then 

placed on the A0 size white matte paper on the floor. A black triangle was 

painted on the white paper approximately 70 mm away from the robot’s centre 

of rotation as an external reference point (Fig. 42).  

A Photron® SA3 high speed video camera was mounted on a tripod. The 

optical axis was pointing downwards right at the robots centre of rotation. 

Recordings were triggered by a push button. Imagery was saved to the 

camera hard drive in bitmap format (*.bmp) for further off-line analysis 

The robot was programmed to change its yaw angular velocity by means of a 

periodic step-up and step-down pulse width modulated (PWM) voltage profile 

as illustrated in figure 40. The PWM voltage is described by 8 bits, which has 

256 levels. It started from level 0, and stepped up to level 250 by increments 

of 50. The step-down sequence started at level 255 and decreased to level 5 
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by decrement of 50. The same voltage output sequences were then repeated, 

but with the robot rotating in the opposite direction. 

 

Figure 40. Input voltage levels for dynamic characterization of 3pi robot. The input voltage is 
regulated by an 8 bit PWM generator. Levels 0 to 255 are equivalent to 0V to 9.25V, which are 
applied to the DC motors driving the wheels of the robot. 

 

4.2.2. Result 
From the stored image sequences the rotation angle of the robot was 

extracted using customize software written in Matlab.  
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Figure 41. Image processing for analysing angular orientation. The top left image is the original 
image, where the robot is in the middle of the image with the black dot indicating the rotating 
centre and the black cross marking the robot edge. The black triangle is the reference mark on 
the ground. The bottom left shows a high contrast (black and white) image after noise removal 
and contrast saturation. The image on the right shows the result of the analysis where the 
angular orientation has been calculated with respect to the coordinates of the patterns. The 
vector from dot to cross represents the orientation of the robot. The vector from dot to triangle is 
the reference vector. The angle calculated is defined by the counter clockwise angle between the 
reference vector and the vector describing the robot orientation. 

The data processing is based on a pattern recognition algorithm applied to the 

high speed camera images. In the original images a region of interest (ROI) 

was defined. Pixel values within the ROI were run through a threshold 

operation which effectively resulted in a black and white image, where all 

background pixels are black and those belonging to one of the labels (dot, 

cross, triangle) are white. Exploiting the different ‘roundness’ of the labels 

pattern recognition, commands from the Matlab image processing toolbox 

were used to obtain the pixel coordinates of the centres of the different labels. 

Once those coordinates were known, a vector connecting the dot with the 

cross (cr) provided the angular orientation of the robot relative to a reference 

vector defined by the pixel positions of the dot and the triangle (tr) (Fig. 41 

right). The angular orientation of the robot, theta (θ), was computed from the 

three pattern coordinates by the following equation:  

       
(     )(     )  (     )(     )

√(     )  (     ) 
 

 √(     )  (     ) 
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Where (      )  are the coordinate of the cross pattern, (      )  are the 

coordinate of the dot pattern and (      ) are the coordinate of the triangle 

pattern. 

 

Figure 42. Robot angular velocity calculation. (Top) The angular orientations of robot measured 
from frames captured by a high speed camera. (Middle) Continuous representation of angular 
rotation. It shows the cumulative rotation angle covered by the robot over time relative to its 
initial angular position. (Bottom) Angular velocity of the robot, obtained from the temporal 
derivative of the angular position. The red line indicates 0 deg/ms. 

After the robot angular orientations were extracted from images of high speed 

camera, the angular velocities were obtained from the temporal derivative of 

the angular orientations (Fig. 42). The angular velocity curve is based on the 

sequence of control signals shown in figure 40. The mean and standard 

deviation of the angular velocities at each step was calculated and are plotted 

in figure 43.  
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Figure 43. Angular velocity of the robot as a function of PWM voltage during acceleration and 
deceleration. The mean and standard deviation of each point was calculated from 100 angular 
velocity measurements.  

The results show that the angular velocity of the robot is a linear function of 

the PWM voltage sent to the motors with a small hysteresis between 

acceleration and deceleration. These results will benefit the implementation 

on linear feedback control laws of the closed-loop robotic interface system.  

4.2.3. Conclusion  

The results of the robot characterization show that (a) the 3pi® is able to 

reach maximum rotation speeds of 1500 deg/s, and that (b) there is a linear 

relationship between PWM voltage input and angular velocity of the robot 

throughout the entire dynamic range. The measured peak angular velocity 

indicates that the rated DC motor power is high enough to overcome the 

power loss due to frictions in the gear box and the ball bearings caused by the 

robot weight and lubrication status. Should in the future more weight be added 

to the robot, a similar calibration procedure could be performed with dummy 

load. It is worth mentioning that for the Pololu®, the manufacturer supplies a 

collection of DC motors with higher rated speed and gear ratio which should 
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guarantee the required angular velocity range will be achievable even if the 

robot’s payload is increased. 

As was shown in semi-closed loop experiments on roll gaze stabilization in 

blowflies, haltere-induced compensatory head movements were maximum at 

thorax rotations of approximately 1000 deg/s (Hengstenberg, 1991). The 

maximum angular velocity of the robot of 1500 deg/s should be sufficiently 

high for effective haltere stimulation – a necessary condition to investigate 

multisensory integration at the level of the LPTCs. 

Finally, the PWM voltage regulation improves the dynamics of low voltage 

operation of the DC motor, as well as increases electrical noise resistance. As 

mentioned above, the linear relationship between PWM voltage input and 

angular velocity output can be described as a simple transfer function in the 

system and eases the design of the control laws in closed-loop experiments. 

 

4.3. Experiment 2: bi-lateral neuron machine interface  

The ultimate goal of this project is to eventually control a robot by using the 

blowfly’s H1-cell as a visual motion sensor. Here, recordings from both H1-

cells are required to cover rotations in the counter clockwise and in the 

clockwise direction by the dynamic output range of the right and the left H1-

cell, respectively. Then, an essential step is to build an interface between H1-

cell responses and robot, by which the control loop is closed and the blowfly is 

enabled to steer the robot. 

This experiment is only a proof of concept. It shows the possibility of 

generating linear control signals for rotations in clockwise and counter-

clockwise direction using the spikes from the left and right H1-cell, 

respectively. All components are in place, e.g. recording platform, robot, 

microcontroller, interface programme, for more systematic studies in the 

future. 

4.3.1. Method 

In this experiment two separate electrodes were used to perform 

simultaneous double records from both, the H1-cell within the left and the right 
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lobula plate, respectively. The microcontroller (NXP® LPC1768) of the robot 

was programmed to be the brain machine interface, which converts the H1-

cell spike rate from the blowfly into the motor angular velocity of the robot. 

4.3.1.1. Dissection  

A blowfly form the laboratory colony aged between 4 - 11 was 

anesthetized/immobilized using ice. The legs and proboscis were removed. 

The fly was fitted onto the designed fly holder, and the head is aligned with 

the horizontal plane based on inspection of the symmetrical deep pseudopupil 

(Franceschini, 1972). The thorax was pushed down and the mesopleuron part 

was waxed to the pins on the fly holder for exposure of the back of the head. 

The cuticle on the back of the head was cut open. Fat tissue and muscles 

covering the lobula plate were removed to expose the tracheas on the surface 

of the lobula plate, as guide lines of electrode allocation.  

Two tungsten electrodes were inserted into the lobula plate one in each side 

of the brain. They were placed one at a time using the tracheae providing the 

lobula plate for visual guidance of the electrode placement. The left hand side 

electrode was recording the axon of the contralateral H1-cell, which obtain 

receives input from the right eye, and the right hand side electrode was 

recording the axon of the contralateral H1-cell, which receives input from the 

left eye. The ratio between the amplitude of H1-cell action potential peaks and 

the amplitude of the background noise envelope exceeded 2:1. The second 

electrode was inserted after retracting the first one, preventing neural damage 

from excessive mechanical tensions in the nervous tissue. After both H1-cells 

were localized, the two electrodes were carefully advanced into their 

recording position.  

4.3.1.2. Interface programming 

The mbed® microcontroller (NXP LPC1768) is based on an ARM cortex-M3 

core, running at 96 MHz, with 512 KB flash. Its peripheral modules include an 

analog digital converter (ADC) module, which receives neural signals from the 

designed amplifier (cf. appendix 1), and transmit digitized neural signal to the 

microcontroller. It also sends processed velocity signal to robot via a universal 

asynchronous receiver/transmitter (UART). Together with its low power 
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consumption, which allows the microcontroller to be powered by battery, this 

device is an ideally suited component for building an on-board blowfly robot 

interface. 

The firmware of the microcontroller has two subroutines in the main loop. The 

first subroutine implements the brain machine interface, which is continuously 

running in the background as a thread. It handles tasks, such as: neural signal 

sampling, signal processing (spike extraction, spike rate calculation, visual 

motor signal transformation) and robotic control signal generation. This 

subroutine is interrupted at 20 Hz, where the spikes over 50ms sampling 

period is averaged as spike rate for robot velocity conversion. The second 

subroutine establishes the UART communication, which is updating the 

control signal to the robot. The subroutine is called at 20 Hz as well.  

Alternatively, the inter-spike interval (ISI) algorithm can be used to calculate 

the spike rate, which is based on the time between two adjacent action 

potentials. The advantage of using the ISI algorithm is short latency, but the 

disadvantage is its high sensitivity to noise. The ISI would be the algorithm of 

choice if short latency were critical for design of closed-loop control law. 

The programme run on the NXP LPC1768 is compiled by an mbed® online 

integrated development environment (IDE) software, which can generate the 

firmware by an integrated ARM C compiler. The source code is provided in 

the appendix (appendix 2).  



 

97 
 

From the program, the sampling frequency of the ADC module is set to 5 KHz. 

Each sample of the recording is compared with a threshold voltage, which is 

determined from the oscilloscope before starting the experiment and 

programmed in to the robot. A positive crossing of the threshold value is 

regarded as a spike, which is used to generate the spike raster (action 

potential occurances on time axis) as a binary vector. The raster is stored in a 

first in first out (FIFO) array with a size of 250 samples, which corresponds to 

a sampling interval of 50 ms. An estimation of the time- continuous spike rate 

is then obtained by averaging over the past time interval.  

The next stage is to translate the spike rate estimate into a robot control 

signal. Based on the H1-cell response characterization described in the 

previous chapter, the cell’s velocity tuning curve obtained in the laboratory as 

a visual environment (Fig. 32) is used as a input-output function of the 

controller. Instead of programming the slightly logrithmic relationship between 

spike rate and angular velocity, I programmed a linear relationship where 100 

and 300 spikes/s correspond to the minimum and maximum angular velocity 

of the robot, respectively.   

Finally, the PWM voltage signal for the robot motor control, which was derived 

from the time-continuous H1-cell spike rate and reflects the angular velocity of 

the robot, is calculated and transmittied to the robot through the UART. 
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4.3.1.3. System assembly 

 

Figure 44. Full assembled fly-robot interface system. The mini-micromanipulators are used for 
electrodes placement. The blowfly is fixed in the rotating centre of the recording platform. The 
platform is insulated from mechanical vibrations of the motors driving the wheels by a damping 
layer made from a piece of sponge. The 3pi robot (diameter 94 mm) serves as spatial scaling 
reference in this figure. 

After blowfly preparation and programming the robot interface, the two 

subsystems, i.e. the miniaturized recording platform and the 2-wheeled robot 

were combined (Fig 43). The sponge in between platform and robot is used to 

isolate the recording platform from the high frequency mechanical vibrations 

caused by the motors. Electrical connections for signal transmission between 

recording platform and robot are provided by 3.5 mm jack plugs and sockets. 
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4.3.2. Results 

After two electrodes were inserted at appropriate recording positions, the 

amplifiers were properly working and transmitted spikes of both H1-cells. 

Unfortunately, an unexpected crosstalk issue arose, where each electrode 

was meant to record its contralateral H1-cell, but picked up the signals from 

both H1-cells when both amplifiers are powered. Spike detection by a simple 

threshold became problemetic.  Voltage peaks were not only generated as a 

result of spikes generated by the recorded H1-cell, but also due to the 

electrical cross talk between the amplifiers. This meant a simple threshold 

detection algorithm was not suited to selectively convert spikes of a given H1-

cell into a specific set of unit pulses.  Luckily, the cross talk signals had 

smaller amplitudes than the  recorded spikes. So a simple sorting algorithm 

was used in addition to the threshold-based detection which took into account 

the peak amplitude  to distinguish between the spikes of the two H1-cells. 
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Figure 45. Bilateral H1-cell action potential detection. (top) The blue and red signals are recorded 
from different H1-cells. The green line is the threshold voltage for spike sorting. In this 
experiment crosstalk between the two recording channels occurred. Based on the different spike 
amplitudes of generated by the two H1-cells. The signals of the two cells could be separated in 
software. (bottom) The accurately detected spikes of the two H1-cells. Blue and red vertical lines 
indicated the detection of spikes of the ipsilateral and contralateral H1, respectively. 

After sorting out the genuine H1-cell action potentials from cross-talk noise, 

each wheel of the robot could be rotated according to the spike rate from each 

corresponding contralateral H1-cell.  

  

4.3.3. Discussion  

In this experiment, the brain machine interface between the H1-cells and the 

robot was implemented, and tested under open-loop conditions. 
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The brain machine interface on the microcontroller allows the robot to rotate 

the wheels based on the ambient horizontal image motion, or optic flow 

experienced by the blowfly. The robot is capable of move forward when other 

objects are approaching laterally from behind. The rotating of the wheel was 

tested with robot being suspended. It is still an open loop condition, since the 

rotation of the wheel did not generate global optic flow and thus there was no 

feedback due to movements of the robot.  

As a starting point of building an on-board blowfly robot interface, the transfer 

function of the interface is a relatively simple inverted model of the H1-cell 

velocity tuning obtained in the laboratory environment (Fig 32) as described in 

the previous chapter. Mechanosensory integration appears not to be reflected 

in H1-cell responses – at least not with respect to the average firing rate.  

As VS-cells, on the other hand, are synaptically connected to descending 

neurons (Wertz et al., 2009), haltere signal integration may show an impact 

on the responses to visual motion in the spiking V1 cell –which has also been 

shown to reflect inputs to the ocelli system (Parsons et al., 2006). In the future 

H1-cell responses will be used for robotic control and V1-cell responses will 

be analysed regarding multisensory integration. 

Regarding the crosstalk problem, one of the solutions would be to have two 

amplifier components, a head stage (pre-amplifier) and separate AC-amplifier 

stage, as realized in commercial amplifiers. The head stage amplifier would 

be a low gain stage placed as close as possible to the recording site, while 

the second amplifier stage provides high gain and would be placed as close 

as possible to the ADC module. The amplified microvolt signal in the cable is 

less likely to interfere with other pre-amplified signal through radio frequency. 

In the future, more sophisticated interfaces could be implemented where, for 

instance, the flies will be mounted in a way that enables tethered flight, while 

recording the responses of LPTCs (Drosophila: (Maimon et al., 2010), 

Calliphora: (Jung et al., 2011)) on top of the robot. Such a setup would also 

permit to analyse the wing beat amplitude as a behavioural output parameter 

to close the loop between the fly and the robot. At the same time the 

behavioural output and the neuronal signals may be correlated while different 
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sensory systems are enabled or switched off. More details will be discussed in 

next chapter.  

4.4. Summary  

In this chapter, I have described the implementation of a basic brain machine 

interface as a proof of concept and tested it under open-loop conditions. I 

demonstrated that the wheels of a two wheel ground-based robot could be 

controlled independently by the neuronal signals of the two H1-cells in the left 

and right parts of the blowfly’s visual system. Two experiments were carried 

out to assess the performance of the system. 

The first experiment (section 4.2) established the relationship between the 

PWM signal and the angular rotation of the robot.  To this end I used a high 

speed camera to monitor the angular velocity of the robot, while the robot was 

pre-programmed with a speed profile. The acceleration curve and 

deceleration curve, show a linear relationship between angular velocity of the 

robot and the input PWM signal. This is a good prerequisite for robotic closed-

loop control, where the controller can treat its transfer function as a constant 

gain.  

In a second experiment (section 4.3) I implemented a brain machine interface 

– including the required hardware and software components. An inverted 

model from H1-cell temporal frequency tuning was used for the transformation 

of spike rate into independent motor signals driving the two wheels. Future 

modifications of the amplifier circuits will have to be made to avoid crosstalk 

issues between the two amplifiers used which, in case of my experiment, 

could be resolved by means of a software solution.  
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5. Summary and future work 

 

5.1. Summary 

The main objective of this project was to establish a brain machine interface 

between a blowfly and a suitable 2-wheeled robot. My work provides the basis 

for an experimental platform that will enable studies on multisensory 

integration under closed-loop conditions.  

The greatest challenge in this project was to reduce the size and weight of 

electrophysiological equipment commonly used from about 5 kg and 0.5m  x 

0.5m x 0.2m (Narishige® micromanipulators and NPI® amplifier) to the 500 g 

and Ø100mm x 50mm, respectively, so it could be mounted on top of an m3pi 

robot. To this end I designed a small platform which met the size and weight 

constraints while still providing sufficient mechanical stability and vibration 

damping enabling stable extracellular recording over extended periods of time.   

The core part of the interface is a miniaturized extracellular recording platform, 

described in chapter 2. The amplifier was made by off-the-shelf components 

with a customized PCB, which is small, light-weight, low-power, cheap, while 

achieving sufficient gain and bandwidth to monitor spiking activity in the 

blowfly motion vision system. Using the platform, the H1-cell responses could 

be investigated while either the fly was rotated within a stationary visual 

pattern or the pattern was rotated around the stationary fly. 

Stepper motors were used to test the recording platform. The H1-cell of the 

blowfly was recorded under two different conditions across various temporal 

frequencies up to 20 Hz. The data obtained upon pattern rotation were in 

agreement with previously published results regarding the cell’s temporal 

frequency/velocity tuning (Jung et al., 2011; Maddess and Laughlin, 1985). 

Rotating an fly in a static visual environment was essentially a novel 

experimental condition where the fly could access both visual and 

mechanosensory information.  
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In chapter 3, I described four experiments to characterize H1-cell responses 

using the miniaturized recording platform as a function of stimulus parameters 

relevant for later closed-loop experiments, again upon fly rotation and pattern 

rotation. The first experiment showed the mean values of the temporal 

frequency tuning of the H1-cell (a) did not show differences between the two 

conditions and (b) were agreement with data found in the literature. The 

second experiment showed no difference on H1 temporal frequencies tuning 

before and after removal of halteres, although the velocity turning curves 

between grating stimulus and laboratory environment were found to be 

qualitatively different. In the third experiment I characterized the relationship 

between vertical angular extent of the visual pattern and H1-cell spike rate. It 

revealed a near-linear relationship between angular extent and H1-cell spike 

rate. The fourth experiment was a proof of concept. It shows the feasibility to 

generate linear control signals for rotating the robot using the spikes rate of 

the H1-cell.  

While most of the results were in agreement with previous publications, in 

some cases the findings I obtained using my recording platform were in 

contradiction with theoretical predictions, for instance, regarding size-

dependent responses of LPTCs in the fly motion vision pathway (section 3.4).  

Finally, in chapter 4, the blowfly robot interface system is implemented. After 

angular velocity calibrations of the robot, the fly robot interface, which 

converts the output from the amplifier into signals for motor control, was 

developed based on velocity tuning curve (Fig. 32) and programmed into the 

microcontroller of the robot. The system was able to react to surrounding optic 

flow received by the blowfly’s compound eyes in an approximation of a simple 

semi-closed-loop control test (appendix 3).  

 

5.2. Future work 

The final goal of this project is to study the neural mechanisms of 

multisensory integration supporting blowfly gaze and flight control. 
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5.2.1. Optomotor 

Some previous work (Jung et al., 2011; Maimon et al., 2010) has shown the 

possibilities of combining behavioural and physiological experiment. In these 

experiments neural activity was recorded while monitoring motor activity the 

animals generated, for instance walking (Chiappe et al., 2010) or flying (Jung 

et al., 2011) under tethered conditions. 

As I described earlier in my thesis, the bio-hybird silkmoth robot (Minegishi et 

al., 2013) had implemented a closed-loop control, which is able to find odour 

sources by adjust its angular velocity with sensory feedbacks caused by its 

behaviour. 

Closed-loop control is the next step of this project. A possible extension of the 

functionality of the miniaturized recording platform would be to modify the fly 

holder so that both electrophysiological recordings can be performed while 

simultaneously monitoring behavioural output parameters. The fly could be 

fixed in a way where only the head is immobilized, legs and wings are left free 

to move. The LPTC activity could still be recorded, but in addition the wing 

beat amplitudes could be monitored. Differences between the left and right 

wing beat amplitude are indicative of the yaw torque the fly tries to generate 

and could be used for closed-loop control as frequently done in Drosophila 

optomotor experiments (Frye, 2010; Tammero and Dickinson, 2002).  

There are still unsolved questions in this thesis. Regarding to the angular 

extent experiment (section 3.4), my results are slightly different from those 

previously published. The spike rate increased linearly, when the angular 

extent was increased rather than assuming a plateau value that depends on 

image velocity as previously reported (Borst et al., 1995). Partly these 

contradictory results may be explained based on different wide-field 

stimulation arrangements between my experimental setup and those used in 

other studies. While in my experiments flies received input over an azimuthal 

range of +/- 90 deg, effectively stimulating both eyes, other studies provided 

only monocular input within a limited azimuth range. The way to test this 

explanation would be to perform the same experiments in my setup again, but 

to cover the eyes except for an aperture of the size that was used in the 
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experiments by hausen (Hausen, 1982). Along those lines, an experiment 

only covering one eye would show whether the linear relationship between 

H1-cell response and pattern extent is established by binocular interactions, 

which could be mediated by the heterolateral networks of horizontal cells. 

Regarding to the adaptation experiment (section 3.5), it is still an open 

question that how does the motion adaptation work? And is it related to the 

locomotor state change? In future experiments, after the free wing beat 

recording and wing beat analyser are implemented, it will be easier to observe 

state change from behaviour activity, e.g. wing beat, and analyse the 

adaptation of visual cell activity at the same time. 

In future, the parameters of open-loop experiments need more test. The 

experimental protocols are chosen to come closer to the expected closed-loop 

conditions. This could include experiments where the robot is following a left-

right oscillatory trajectory and asymmetric distance distributions are 

systematically introduced by positioning visible objects at different distances 

while recording the activity of the H1-cells.    

 

5.2.2. Multi-sensory integration 

The multisensory integration experiments (section 3.3) of this thesis did not 

indicate a marked impact of mechanosensory systems on the activity of the 

H1-cell. Such impact which should have been revealed by differences in the 

results obtained during fly or pattern rotation. 

A clear indication of multisensory integration has been shown for the V1 cell, 

another spiking LPTC which receives input from the VS-cells. Interactions 

between the two visual systems, compound eyes and ocelli, have been shown 

in extracellular V1 cell recordings (Parsons et al., 2006). They were 

interpreted as a result of the VS cells being electrically coupled to descending 

neurons (Strausfeld and Seyan, 1985) which receive input from several sense 

organs including the antennae, ocelli, and compound eyes. Descending 

neurons are very likely to be the major stage for multisensory integration 

(Taylor and Krapp, 2007; Wertz et al., 2008) and are connected to the neck 
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and the flight motor system. Motor neurons of the flight motor system had also 

been shown to integrate sensory information from more than one sensor 

system. As mentioned earlier, some of the NMNs, for instance, receive input 

from the motion vision pathway provided by the compound eye and from the 

halteres (Huston and Krapp, 2009). These inputs have to arrive 

simultaneously at the NMNs for them to generate action potentials, so they 

establish a non-linear gating function (Huston and Krapp, 2009).  

It is very likely that V1 cell activity does reflect some aspects of multisensory 

integration. The cell can be recorded in the future in a similar way as the H1-

cell was characterized in this thesis.   

 

5.2.3. Closed loop control 

There are two independent lines of evidence that the signals of LPTCs can be 

used for a potential closed loop control.  

Firstly, studies from the Egelhaaf lab revealed that HS cell signals, if 

compared between the left and right cell, provide sufficient information for 

differential distance estimation. Simply put, the cell that shows higher activity 

during a translation phase indicates a closer distance to objects, information 

that could be used to generate a turn in the opposite direction (Karmeier et al., 

2006; Lindemann et al., 2005). The relevance of the HS cells in distance 

estimation was proposed after the analysis of flight trajectories under semi-

free flight conditions (Hateren and Schilstra, 1999). In a 0.4 m3 environment, 

Calliphora displayed a stereotyped flight pattern where phases of sudden yaw 

rotations were followed by phases of almost pure translations along a mixture 

from thrust and side-slip. During those phases where rotational optic flow is 

nearly zero, the integrated response of wide-field field optic flow processing 

LPTCs should be determined by two parameters: translation speed and the 

distance to objects in the environment (Dahmen et al., 2001; Franz and Krapp, 

2000; Koenderink and Doorn, 1987; Krapp, 2000). As translation speed would 

be the same for cells in either half of the brain the remaining difference in the 

responses of the left and right HS cell would be due to different distances 

(Lindemann et al., 2005). 
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Secondly, research into the application of biological principles of optic flow 

processing (Krapp, 2000) for micro air vehicle control provided an 

independent proof of concept that the activity of LPTCs may be used to 

control distance to visual objects and other flight related parameters (Hyslop 

et al., 2010). 

During a straight forward translation both H1-cells would be more or less 

entirely inhibited due to their motion preference for back-to-front motion. A 

pre-programmed forward translation component superimposed by a regular 

pattern of alternating left-right rotations can be a solution. The amplitude of 

the next rotation would be chosen depending on the H1-cell activity measured 

within a certain integration time window.  

Such a strategy of ‘active vision’ would be inspired by free flight behaviour 

observed in Calliphora and Lucilia and may be an ideal starting point for 

addressing a number of outstanding questions which could not have been 

tackled before: (i) how are signals from multiple sensory modalities integrated 

under closed-loop conditions? – as posed before, (ii) is there any evidence for 

flies using forward-models when analysing optic flow information during self-

motion? (A forward model is a prediction of the sensory consequences of a 

self-generated motor action. Such model could increase the efficiency of 

motor control strategies. Whenever there is a mismatch between the forward 

model and the actually measure sensory feedback, the resulting difference 

may be used as an error signal to adjust the gains of the motor commands 

(Wolpert et al., 1995) ), and (iii) will flies in such a closed-loop setting adapt 

their neural responses to the changed dynamics of their self-motion? 
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Appendix 

 

 

Appendix 1.  Schematic of miniaturized amplifier 



116 
 



 

117 
 

 

Appendix 2. Source code  

 

a. Stimulation protocol: 

https://github.com/Blueasteroid/Blowfly-robot-interface/py_H1_3s_stim.py 

 

b. Fly-machine interface: 

https://github.com/Blueasteroid/Blowfly-robot-

interface/blob/master/m3pi_firmware_50ms-win-rate.cpp 

 

 

 

Appendix 3. Video link 

 

a. H1-cell recording stability on top of miniaturized recording platform  

Link: https://www.youtube.com/watch?v=FAaEuLILbJM 

 

b. Open-loop control of robot wheel by blowfly H1-cell robot interface  

Link: https://www.youtube.com/watch?v=PbTmX4bF3aU 

 


