EXISTENCE OF GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE ISENTROPIC FINITELY EXTENSIBLE BEAD-SPRING CHAIN MODELS FOR DILUTE POLYMERS

JOHN W. BARRETT
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
jwb@imperial.ac.uk

ENDRE SULI
Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG
suli@maths.ox.ac.uk

Received (Day Month Year)
Revised (Day Month Year)
Communicated by (xxxxxxxxxx)

We prove the existence of global-in-time weak solutions to a general class of models that arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The class of models under consideration involves the unsteady, compressible, isentropic, isothermal Navier–Stokes system in a bounded domain \(\Omega \) in \(\mathbb{R}^d \), \(d = 2 \) or \(3 \), for the density \(\rho \), the velocity \(u \) and the pressure \(p \) of the fluid, with an equation of state of the form \(p(\rho) = c_p \rho^\gamma \), where \(c_p \) is a positive constant and \(\gamma > \frac{3}{2} \). The right-hand side of the Navier–Stokes momentum equation includes an elastic extra-stress tensor, which is the sum of the classical Kramers expression and a quadratic interaction term. The elastic extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term.

Keywords: Kinetic polymer models; FENE chain; compressible Navier–Stokes–Fokker–Planck system; nonhomogeneous dilute polymer; variable density.

AMS Subject Classification: 35Q30, 76N10, 82D60

1. Introduction

This paper establishes the existence of global-in-time weak solutions to a large class of bead-spring chain models with finitely extensible nonlinear elastic (FENE) type spring potentials, — a system of nonlinear partial differential equations that arises from the kinetic theory of dilute polymer solutions. The solvent is a compressible, isentropic, isothermal Newtonian fluid confined to a bounded Lipschitz domain \(\Omega \subset \mathbb{R}^d \), \(d = 2 \) or \(3 \), with boundary \(\partial \Omega \). For the sake of simplicity of presentation we shall suppose that \(\Omega \) has a ‘solid boundary’ \(\partial \Omega \), and the velocity field \(u \) will be therefore
assumed to satisfy the no-slip boundary condition $u = 0$ on $\partial \Omega$. The equations of continuity and balance of linear momentum have the form of the compressible Navier–Stokes equations (cf. Lions23, Feireisl18, Novotný & Straškraba24, or Feireisl & Novotný19) in which the elastic extra-stress tensor τ (i.e., the polymeric part of the Cauchy stress tensor) appears as a source term in the conservation of momentum equation:

Given $T \in \mathbb{R}_{>0}$, find $\rho : (x, t) \in \Omega \times [0, T] \mapsto \rho(x, t) \in \mathbb{R}$ and $\bar{u} : (x, t) \in \Omega \times [0, T] \mapsto \bar{u}(x, t) \in \mathbb{R}^d$ such that

\begin{align}
\frac{\partial \rho}{\partial t} + \nabla_x \cdot (u \rho) &= 0 \quad \text{in } \Omega \times (0, T], \quad (1.1a) \\
\rho(x, 0) &= \rho_0(x) \quad \forall x \in \Omega, \quad (1.1b) \\
\frac{\partial (\rho \bar{u})}{\partial t} + \nabla_x \cdot (\rho \bar{u} \otimes \bar{u} - \nabla_x \cdot S(u, \rho) + \nabla_x p(\rho)) &= \rho f + \nabla_x \cdot \tau \quad \text{in } \Omega \times (0, T], \quad (1.1c) \\
\bar{u} &= 0 \quad \text{on } \partial \Omega \times (0, T], \quad (1.1d) \\
(\rho \bar{u})(x, 0) &= (\rho_0 \bar{u}_0)(x) \quad \forall x \in \Omega. \quad (1.1e)
\end{align}

It is assumed that each of the equations above has been written in its nondimensional form; ρ denotes a nondimensional solvent density, \bar{u} is a nondimensional solvent velocity, defined as the velocity field scaled by the characteristic flow speed U_0. Here $S(u, \rho)$ is the Newtonian part of the viscous stress tensor defined by

$$S(u, \rho) := \mu^S(\rho) \left[D(u) - \frac{1}{d} (\nabla_x \cdot u) I \right] + \mu^B(\rho) (\nabla_x \cdot u) I,$$

where I is the $d \times d$ identity tensor, $D(v) := \frac{1}{2} \left(\nabla_x v + (\nabla_x v)^\top \right)$ is the rate of strain tensor, with $(\nabla_x v)(x, t) \in \mathbb{R}^{d \times d}$ and $(\nabla_x v)_{ij}$ is the rate of strain tensor. The shear viscosity, $\mu^S(\cdot) \in \mathbb{R}_{>0}$, and the bulk viscosity, $\mu^B(\cdot) \in \mathbb{R}_{>0}$, of the solvent are both scaled and, generally, density-dependent. In addition, p is the nondimensional pressure satisfying the isentropic equation of state

$$p(\rho) = c_p \rho^\gamma,$$

where $c_p \in \mathbb{R}_{>0}$ and $\gamma > \frac{3}{2}$. For the compressible Navier–Stokes equations at least, it is known that this condition on γ can be replaced by $\gamma > \frac{d}{2}$ for $d = 2, 3$. Although the analysis presented herein covers both $d = 2$ and $d = 3$, our main interest is in the physically relevant case of $d = 3$. For the sake of streamlining the exposition we have therefore assumed that $\gamma > \frac{3}{2}$ for both $d = 2$ and $d = 3$, instead of $\gamma > \frac{d}{2}$.

Remark 1.1. Our analysis applies, without alterations, to some other familiar monotonic equations of state, such as the (Kirkwood-modified) Tait equation of state $p(\rho) = A_0 (\rho / \rho_*)^{\gamma} - A_1$, where $\gamma > \frac{3}{2}$, A_0 and A_1 are constants, $A_0 - A_1 = p_*$ is the equilibrium reference pressure, and ρ_* is the equilibrium reference density.

On the right-hand side of (1.1c), f is the nondimensional density of body forces and τ denotes the elastic extra-stress tensor. In a bead-spring chain model, consisting of $K+1$ beads coupled with K elastic springs to represent a polymer chain, τ is
defined by a version of the \textit{Kramers expression} depending on the probability density
function ψ of the (random) conformation vector $q := (q_1^T, \ldots, q_K^T)^T \in \mathbb{R}^{Kd}$ of the
chain (see equation (1.11) below), with q_i representing the d-component conformation/orientation
vector of the ith spring. The Kolmogorov equation satisfied by ψ
is a second-order parabolic equation, the Fokker–Planck equation, whose transport
coefficients depend on the velocity field u, and the hydrodynamic drag coefficient
appearing in the Fokker–Planck equation is, generally, a nonlinear function of the
density ρ. The domain D of admissible conformation vectors $D \subset \mathbb{R}^{Kd}$ is a K-fold
Cartesian product $D_1 \times \cdots \times D_K$ of bounded open d-dimensional balls D_i centred
at the origin $0 \in \mathbb{R}^d$, $i = 1, \ldots, K$.

Let $\mathcal{O}_i := [0, \frac{1}{2})$ denote the image of D_i under the mapping $q_i \mapsto \frac{1}{2}|q_i|^2$, and consider the \textit{spring potential} $U_i \in C^1(\mathcal{O}_i; \mathbb{R}_{\geq 0}),$ $i = 1, \ldots, K$. We shall suppose that $U_i(0) = 0$ and that U_i is unbounded on \mathcal{O}_i for each $i = 1, \ldots, K$. The elastic spring-force $F_i : D_i \subseteq \mathbb{R}^d \to \mathbb{R}^d$ of the ith spring in the chain is defined by

$$F_i(q_i) := U_i'(\frac{1}{2}|q_i|^2) q_i, \quad i = 1, \ldots, K, \tag{1.4}$$

and the partial Maxwellian M_i, associated with the spring potential U_i, is defined by

$$M_i(q_i) := \frac{1}{Z_i} e^{-U_i(\frac{1}{2}|q_i|^2)}, \quad Z_i := \int_{D_i} e^{-U_i(\frac{1}{2}|q_i|^2)} dq_i, \quad i = 1, \ldots, K. \tag{1.5}$$

The (total) Maxwellian in the model is then

$$M(q) := \prod_{i=1}^K M_i(q_i) \forall q := (q_1^T, \ldots, q_K^T)^T \in D := \bigtimes_{i=1}^K D_i. \tag{1.6a}$$

Observe that, for $i = 1, \ldots, K$,

$$M(q) \nabla_q (M(q))^{-1} = -[M(q)]^{-1} \nabla_q M(q) = \nabla_q (U_i(\frac{1}{2}|q_i|^2)) = U_i'(\frac{1}{2}|q_i|^2) q_i, \tag{1.6b}$$

and, by definition,

$$\int_{D} M(q) dq = 1. \tag{1.6b}$$

The associated bead-spring chain model is referred to as a FENE (finitely ex-
tensible nonlinear elastic) model; in the case of $K = 1$, the corresponding model is
called a FENE dumbbell model.

We shall assume that $D_i = B(0, b_i)$ with $b_i > 0$ for $i = 1, \ldots, K$, and that for
$i = 1, \ldots, K$ there exist constants $c_{ij} > 0$, $j = 1, 2, 3, 4$, and $\theta_i > 1$ such that the spring potential $U_i \in C^1[0, \frac{1}{2})$ and the associated partial Maxwellian M_i satisfy

$$c_{11} \text{dist}(q_i, \partial D_i)^{\theta_i} \leq M_i(q_i) \leq c_{12} \text{dist}(q_i, \partial D_i)^{\theta_i}, \forall q_i \in D_i, \quad (1.7a)$$

$$c_{13} \leq \text{dist}(q_i, \partial D_i) U_i'(\frac{1}{2}|q_i|^2) \leq c_{14} \forall q_i \in D_i. \quad (1.7b)$$

It follows from (1.7a,b) that (if $\theta_i > 1$, as has been assumed here,)

$$\int_{D_i} \left[1 + [U_i'(\frac{1}{2}|q_i|^2)]^2 + [U_i'(\frac{1}{2}|q_i|^2)]^2 \right] M_i(q_i) dq_i < \infty, \quad i = 1, \ldots, K. \quad (1.8)$$
Example 1.1. In the classical FENE dumbbell model, $K = 1$ and the spring force is given by $F(q) = (1 - |q|^2)^{-1} q$, $q \in D = B(0, b^2)$, corresponding to $U(s) = -\frac{b}{2} \log \left(1 - \frac{2s}{b^2} \right)$, $s \in O = [0, \frac{b}{2})$, $b > 2$. More generally, in a FENE bead-spring chain, one considers $K + 1$ beads linearly coupled with K springs, each with a FENE spring potential. Direct calculations show that the partial Maxwellians M_i and the elastic potentials U_i, $i = 1, \ldots, K$, of the FENE bead spring chain satisfy the conditions (1.7a,b) with $\theta_i := \frac{b_i}{2}$, provided that $b_i > 2$, $i = 1, \ldots, K$. Thus, (1.8) also holds when $b_i > 2$, $i = 1, \ldots, K$.

The governing equations of the general nonhomogeneous bead-spring chain models with centre-of-mass diffusion considered here are (1.1a–e), where the extra-stress interaction kernel, which we shall henceforth consider to be γ: $\gamma : D \times D \to \mathbb{R}_{>0}$ is a smooth, time-independent, x-independent and ψ-independent interaction kernel, which we shall henceforth consider to be $\gamma(q, q') \equiv \mathcal{J}$, where $\mathcal{J} \in \mathbb{R}_{>0}$; thus,

$$
\tau(\psi) := \tau_1(\psi) - \mathcal{J} \left(\int_D \psi \, dq \right)^2
$$

(1.10)

Here, $\tau_1(\psi)$ is the Kramers expression; that is,

$$
\tau_1(\psi) := k \left[\left(\sum_{i=1}^{K} C_i(\psi) \right) - (K + 1) \left(\int_D \psi \, dq \right) \right],
$$

(1.11)

where $k \in \mathbb{R}_{>0}$, with the first term in the square brackets being due to the K springs and the second to the $K + 1$ beads in the bead-spring chain representing the polymer molecule. Further,

$$
C_i(\psi)(x, t) := \int_D \psi(x, q, t) U_i'(\frac{1}{2}|q|^2) q_i q_i^T \, dq, \quad i = 1, \ldots, K.
$$

(1.12)

The probability density function ψ satisfies the Fokker–Planck (forward Kolmogorov) equation

$$
\frac{\partial \psi}{\partial t} + \nabla_x \cdot (u \psi) + \sum_{i=1}^{K} \nabla_{q_i} \cdot \left(\sigma(q) q_i \right) = \varepsilon \Delta_x \left(\frac{\psi}{\zeta(\rho)} \right) + \frac{1}{4\lambda} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla_{q_i} \cdot \left(M \nabla_{q_j} \left(\frac{\psi}{\zeta(\rho) M} \right) \right) \quad \text{in } \Omega \times D \times (0, T],
$$

(1.13)

with $\sigma(q) \equiv \nabla_x u$ and a, generally, density-dependent scaled drag coefficient $\zeta(\cdot) \in \mathbb{R}_{>0}$. A concise derivation of the Fokker–Planck equation (1.13) can be found in Section 1 of Barrett and Suli. Let $\partial D_i := D_i \times \cdots \times D_{i-1} \times \partial D_i \times D_{i+1} \times \cdots \times D_K$.

4 John W. Barrett and Endre Suli
We impose the following boundary and initial conditions on solutions of (1.13):

\[
\begin{align*}
\frac{1}{4\lambda} \sum_{j=1}^{K} A_{ij} M \nabla q_i \left(\frac{\psi}{\zeta(\rho)} \right) - \sigma(u) q_i \psi & \sim 0 \\
\left. \frac{q_i}{|q_i|} \right|_{|q_i|} &= 0 & \text{on } \Omega \times \partial D_i \times (0, T), \quad \text{for } i = 1, \ldots, K, \\
\varepsilon \nabla \left(\frac{\psi}{\zeta(\rho)} \right) \cdot n & \sim 0 & \text{on } \partial \Omega \times D \times (0, T), \\
\psi(\cdot, 0) & = \psi_0(\cdot, \cdot) \geq 0 & \text{on } \Omega \times D, \\
\end{align*}
\]

where \(q_i \) is normal to \(\partial D_i \), as \(D_i \) is a bounded ball centred at the origin, and \(\psi_0 \) is normal to \(\partial \Omega \).

The nondimensional constant \(k > 0 \) featuring in (1.11) is a constant multiple of the product of the Boltzmann constant \(k_B \) and the absolute temperature \(T \). In (1.13), \(\varepsilon > 0 \) is the centre-of-mass diffusion coefficient defined as \(\varepsilon := (\ell_0/L_0)^2/(4(K+1)\lambda) \) with \(L_0 \) a characteristic length-scale of the solvent flow, \(\ell_0 := \sqrt{k_B T/\rho} \) signifying the characteristic microscopic length-scale and \(\lambda := \frac{GM_0}{\varepsilon} \) where \(\zeta_0 > 0 \) is a characteristic drag coefficient and \(H > 0 \) is a spring-constant. The nondimensional parameter \(\lambda \in \mathbb{R}_{>0} \), called the Deborah number (and usually denoted by \(\Omega \)), characterizes the elastic relaxation property of the fluid, and \(A = (A_{ij})_{i,j=1}^{K} \) is the symmetric positive definite Rouse matrix, or connectivity matrix; for example, \(A = \text{tridiag} [-1, 2, -1] \) in the case of a (topologically) linear chain. Concerning these scalings and notational conventions, we remark that the factor \(\frac{1}{\lambda} \) in equation (1.13) above appears as a factor \(\frac{1}{\lambda} \) in the Fokker–Planck equation in our earlier papers\(^5,6,8,10\). Two remarks are in order concerning (1.10).

Remark 1.2. The analysis in the present paper applies to a general class of extra stress tensors (1.10), with Kramers type expressions of the form

\[
\tau_1(\psi) := \kappa \left[\sum_{i=1}^{K} \zeta_i(\psi) \right] - \ell \int_D \psi dq \quad \ell,
\]

with \(\ell \in \mathbb{R} \) and \(\zeta > 0 \). Since the actual value of \(\ell \) is of no particular relevance in our analysis, we took \(\ell = K + 1 \) in the second term in (1.15), yielding (1.11), as this choice simplifies the expressions that arise in the course of the proof. As will be shown below, if \(\ell \geq K + 1 \) and \(\zeta \geq 0 \) a formal energy identity holds, and if \(\ell < K + 1 \) and \(\zeta > 0 \), one can still prove a formal energy inequality. In contrast with this, in the case of incompressible flows, \(\ell \) and \(\zeta \) are of no relevance in the analysis and can be any two real numbers; indeed, in Barrett & Süli\(^6,8,9\), \(\ell = K \) and \(\zeta = 0 \) were the values used in (1.15) and (1.10), respectively, resulting in \(\tau^1(\psi) \) that is the classical Kramers expression for the extra stress tensor.

Remark 1.3. Our second remark concerns the quadratic modification to \(\tau^1(\psi) \) appearing as the second term in (1.10). By defining the polymer number density

\[
\varrho(x, t) := \int_D \psi(x, q, t) dq, \quad (x, t) \in \Omega \times [0, T],
\]

formally integrating (1.13) over D and using the boundary condition (1.14a), we deduce that
\[\frac{\partial \varrho}{\partial t} + \nabla_x \cdot (\varrho \mathbf{u}) = \varepsilon \Delta_x \left(\frac{\varrho}{\zeta(\rho)} \right) \text{ on } \Omega \times (0, T], \tag{1.17a} \]

which together with the boundary and initial conditions (which result from integrating (1.14b,c) over D)
\[\varepsilon \nabla_x \left(\frac{\varrho}{\zeta(\rho)} \right) \cdot \mathbf{n} = 0 \text{ on } \partial \Omega \times (0, T] \quad \text{and} \quad \varrho(x, 0) = \int_D \psi_0(x, q) \, dq \quad \text{for } x \in \Omega. \tag{1.17b} \]

In order to avoid potential confusion concerning our notational conventions, we draw the reader’s attention to the fact that, here and throughout the rest of the paper, the symbol ρ signifies the density of the solvent, while the symbol ϱ denotes the polymer number density, as defined in (1.16).

If $\nabla_x \cdot \mathbf{u} \equiv 0$ and $\varrho(\cdot, 0)$ is constant, and either $\varepsilon = 0$ or $\zeta(\rho)$ is independent of ρ (and therefore identically equal to a constant), then $\varrho(x, t)$ is constant ($\equiv \varrho(\cdot, 0)$), for all $(x, t) \in \Omega \times (0, T]$, and hence
\[\int_D \varrho(x, q, t) \, dq = \int_D \varrho(x, q) \, dq \in \mathbb{R}_{>0} \quad \text{for all } (x, t) \in \Omega \times (0, T]; \]
in other words, the polymer number density is constant. This conservation property then guarantees complete control of ϱ (when $\zeta = 0$, and a fortiori, for $\zeta > 0$) in terms of the initial probability density function ψ_0 in the course of the weak compactness argument upon which the proof of existence of weak solutions rests (cf. Barrett & Süli for the analysis in the case of $\varepsilon > 0$, constant ζ and $\zeta = 0$). In particular, the time derivative $\frac{\partial \varrho}{\partial t}$ can be bounded in a sufficiently strong norm to enable the application of an Aubin–Lions–Simon type compactness theorem that ensures strong convergence of the sequence of approximations to the probability density function ϱ.

In the present paper, in order to focus on the essential new difficulty — the lack of the divergence-free property of \mathbf{u} — we shall suppose that the drag coefficient in the Fokker–Planck equation is identically equal to a constant, which we shall henceforth, without loss of generality, assume to be equal to 1, i.e., $\zeta(\rho) \equiv 1$. Setting $\zeta = 0$ in this context results in the loss of a bound on the $L^1(0, T; \mathcal{X}')$ norm of the time derivative of the probability density function ψ, for any reasonable choice of the function space \mathcal{X}. Failure to control $\frac{\partial \psi}{\partial t}$ or a time-difference of ψ in even such a weak sense brings into question the meaningfulness of the model in the case of compressible flows for solutions of as low a degree of regularity as is guaranteed by the formal energy bound in the case of $\zeta = 0$, see Remarks 4.1 and 4.2 below.

Motivated by the papers of Constantin, Constantin et al. and Bae & Trivisa, we have therefore included the quadratic term in (1.10), with $\zeta > 0$. As we shall show later on, inclusion of the quadratic term into (1.10) does not destroy energy balance thanks to the fact that the polymer number density function ϱ satisfies the initial-boundary-value problem (1.17a,b), and has the beneficial effect of guaranteeing...
Existence of Global Weak Solutions for Compressible Dilute Polymers

Let \(L^\infty(0,T; L^2(\Omega)) \cap L^2(0,T; H^1(\Omega)) \) norm control for \(\rho \), rendering the time derivative of the probability density function finite in the norm of \(L^2(0,T; X') \), with a suitable choice of \(X \) as a Maxwellian-weighted Sobolev space of sufficiently high order. This then enables the application of Dubinski˘ı’s extension of the Aubin–Lions–Simon compactness theorem (cf. Dubinski˘ı\(^{17}\) and Barrett & S¨uli\(^{11}\)).

Definition 1.1. The collection of equations and structural hypotheses (1.1a–e)–(1.14a–c) together with the assumption that the Rouse matrix \(A \) is symmetric and positive definite (as is always the case, by definition,) will be referred to throughout the paper as model (P), or as the compressible FENE-type bead-spring chain model with centre-of-mass diffusion. It will also be assumed throughout the paper that the shear viscosity, \(\mu_S \in \mathbb{R}^0 \), the bulk viscosity, \(\mu_B \in \mathbb{R} \geq 0 \), and the drag coefficient, \(\zeta \in \mathbb{R}^0 \), are independent of the density \(\rho \). For the ease of exposition we shall set \(\zeta \equiv 1 \).

For a survey of macroscopic models of compressible viscoelastic flow, the reader is referred to the paper by Bollada & Phillips\(^{13}\). Closer to the subject of the present paper, Bae & Trivisa\(^{3}\) have established the existence of global weak solutions to Doi’s rod-model in three-dimensional bounded domains. The model concerns suspensions of rod-like molecules in compressible fluids and involves the coupling of a Fokker–Planck type equation with the compressible Navier–Stokes system. Also, Jiang, Jiang & Wang\(^{21}\) have studied the existence of global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions.

Despite their importance, we shall, for the sake of simplicity, neglect all thermal effects and will focus instead on mechanical properties of the fluid in the isothermal setting. Since the argument is long and technical, we give a brief overview of the main steps of the proof.

At the heart of the proof is a formal energy identity, which we shall state under the assumption that \(u, \rho, \psi \) and \(\varrho \) are sufficiently smooth, and, at least for our purposes in this introductory section, \(\rho \) is nonnegative, and \(\psi \) and \(\varrho \) are positive. Instead of (1.11), used in the rest of the paper, we shall adopt for the moment the more general formula (1.15), in order to explain the admissible range of \(k \) alluded to in Remark 1.2 as well as our reasons for choosing \(k = K + 1 \) in (1.11). The formal energy identity satisfied by \(u, \rho, \psi \) and \(\varrho \), upon letting

\[
P(\rho) := \frac{p(\rho)}{\gamma - 1}
\]

and \(\mathcal{F}(s) := s(\log s - 1) + 1 \) for \(s > 0 \) and \(\mathcal{F}(0) := 1 \), is (cf. Barrett & S¨uli\(^{12}\)):

\[
\begin{align*}
\frac{d}{dt} \int_{\Omega} \left[\frac{1}{2} \rho |u|^2 + P(\rho) + \frac{3}{2} \varrho^2 + k ((k - (K + 1)) \mathcal{F}(\varrho) + \int_{\mathbb{D}} M \mathcal{F} \left(\frac{\psi}{M} \right) \, dq \right] \, dx \\
+ \mu_S \int_{\Omega} \left[D(\varrho) - \frac{1}{d} (\nabla_x \cdot \varrho) I \right]^2 \, dx + \mu_B \int_{\Omega} |\nabla_x \cdot \varrho|^2 \, dx \\
+ 2 \varepsilon \int_{\Omega} |\nabla_x \varrho|^2 \, dx + 4 \varepsilon K ((K + 1)) \int_{\Omega} |\nabla_x \sqrt{\rho}|^2 \, dx
\end{align*}
\]
The integral over Ω of the expression in the square brackets in the first line of (1.18) is the total energy, and the sum of the terms on the second, third and fourth line of (1.18) is the dissipation of the total energy; recall that the Rouse matrix $A = (A_{ij})^K\iota_{j=1}$ is, by definition, symmetric and positive definite. While, as an energy identity, (1.18) is meaningful for all $\zeta \geq 0$ and all $\varepsilon \geq K + 1$, it will transpire in the course of the proof that $\zeta > 0$ is necessary in order to ensure control of $\frac{d\psi}{dt}$ or of a time-difference of ψ (cf. Remarks 1.3 and 4.2). Once ζ has been chosen to be positive, the two terms in (1.18) that include the factor $(\varepsilon - (K + 1))$ are of lower order and contribute no additional information; we have therefore, for the sake of simplicity, set $\varepsilon = K + 1$ in (1.15), yielding (1.11). If $\varepsilon < K + 1$ and $\zeta > 0$, then upon moving the two terms containing the factors $(\varepsilon - (K + 1))$ from the left-hand side of (1.18) to the right, Gronwall’s inequality yields a formal energy inequality; since the ultimate outcome of the analysis is no different from the one with $\varepsilon = K + 1$ and $\zeta > 0$, we shall not discuss this case further.

The main idea of the proof is to construct a sequence of approximating solutions, whose existence one can prove, and then pass to the limit. Available results in the literature concerning the existence of weak solutions to the compressible Navier–Stokes–Fokker–Planck system will be based on discretizing the problem with respect to the temporal variable. For a similar approach, in the case of a coupled compressible Navier–Stokes–Cahn–Hillard system, we refer the reader to the work of Abels and Feireisl1 and to Remark 3.1 below, which explains the aspects in which our temporal approximation differs from the one in Abels & Feireisl1. The inclusion of the Fokker–Planck equation into the analysis is nontrivial, the main hurdle being to ensure that the presence of the extra stress term τ_{ij} (cf. (1.9)) on the right-hand side of the Navier–Stokes momentum equation does not destroy the Lions–Feireisl compactness argument for the compressible Navier–Stokes equations. We have only been able to achieve this for $\zeta > 0$. As the same requirement on ζ has been found to be necessary in the, related, Doi model for suspensions of rod-like molecules in a compressible fluid, considered by Bae and Trivisa3, we are confident that the condition $\zeta > 0$ is not a byproduct of our time-discrete approach to the proof of existence of weak solutions.

The proof of the central theorem in the paper, Theorem 6.1, stating the existence of global bounded-energy weak solutions to problem (P), consists of six steps, which are outlined below.
Step 1. Following the approach in Barrett & Suli4,6,7,8,9 we observe that if $\frac{\psi}{M}$ is bounded above then, for $L \in \mathbb{R}_{>0}$ sufficiently large, the third term in (1.13), referred to as the \textit{drag term} is equal to

$$
\sum_{i=1}^{K} \nabla q_i \cdot \left(\vec{q}(u) q_i M \beta^L \left(\frac{\psi}{M} \right) \right)
$$

(recall that, by hypothesis, $\zeta \equiv 1$), where $\beta^L \in C(\mathbb{R})$ is a cut-off function defined as

$$
\beta^L(s) := \min\{s, L\}. \quad (1.19)
$$

It then follows that, for $L \gg 1$, any solution ψ of (1.13), such that $\frac{\psi}{M}$ is bounded above by L, also satisfies

$$
\frac{\partial \psi}{\partial t} + \nabla_x \cdot (u \psi) + \sum_{i=1}^{K} \nabla q_i \cdot \left(\vec{\sigma}(u) q_i M \beta^L \left(\frac{\psi}{M} \right) \right) = \varepsilon \Delta \psi + \frac{1}{4\lambda} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla q_i \cdot \left(M \nabla q_j \left(\frac{\psi}{M} \right) \right) \quad \text{in } \Omega \times D \times (0, T]. \quad (1.20)
$$

We impose the following boundary and initial conditions:

$$
\left[\frac{1}{4\lambda} \sum_{j=1}^{K} A_{ij} M \nabla q_j \left(\frac{\psi}{M} \right) - \vec{\sigma}(u) q_i M \beta^L \left(\frac{\psi}{M} \right) \right] \cdot \frac{q_i}{|q_i|} = 0 \quad \text{on } \Omega \times \partial D_{i} \times (0, T], \quad \text{for } i = 1, \ldots, K, \quad (1.21a)
$$

$$
\varepsilon \nabla_x \psi \cdot \vec{n} = 0 \quad \text{on } \partial \Omega \times D \times (0, T], \quad (1.21b)
$$

$$
\psi(\cdot, \cdot, 0) = M(\cdot) \beta^L(\psi_0(\cdot, \cdot)/M(\cdot)) \geq 0 \quad \text{on } \Omega \times D. \quad (1.21c)
$$

The model with cut-off parameter $L > 1$ is further regularized, by introducing a dissipation term of the form $-\alpha \Delta \rho$, with $\alpha > 0$, into the continuity equation (1.1a) and supplementing the resulting parabolic equation with a homogeneous Neumann boundary condition on $\partial \Omega \times (0, T]$. In addition, the equation of state (1.3) is replaced by a regularized equation of state, $p_\kappa(\rho) = p(\rho) + \kappa(\rho^4 + \rho^\Gamma)$, where $\kappa \in \mathbb{R}_{>0}$ and $\Gamma = \max\{\gamma, 8\}$. The resulting problem is denoted by $\text{(P}_{\kappa,a,L})$.

Step 2. Ideally, one would like to pass to the limits $\kappa \to 0_+, \alpha \to 0_+, L \to +\infty$ to deduce the existence of solutions to (P). Unfortunately, such a direct attack at the problem is fraught with technical difficulties. Instead, we shall first (semi)discretize the problem $\text{(P}_{\kappa,a,L})$ with respect to t, with step size Δt. This then results in a time-discrete version $\text{(P}_{\kappa,a,L})$ of $\text{(P}_{\kappa,a,L})$.

Step 3. By using Schauder’s fixed point theorem, we will show in Section 3 the existence of solutions to $\text{(P}_{\kappa,a,L})$. In the course of the proof, for technical reasons, a further cut-off, now from below, with a cut-off parameter $\delta \in (0, 1)$, is required.
In addition, a fourth-order hyperviscosity term is added to the Navier–Stokes momentum equation (1.1c). We shall let δ pass to 0 to complete the proof of existence of solutions to (P$^{\delta}$) in the limit of $\delta \to 0^+$ in Section 3; cf. Lemma 3.3.

Step 4. In Section 4 we then go on to derive bounds on the sequence of solutions to problem (P$^{\delta}$); in particular, we develop various bounds on the sequence of weak solutions to (P$^{\delta}$) that are uniform in the time step Δt and the cut-off parameter L, and thus permit the extraction of weakly convergent subsequences, as $L \to +\infty$ and $\Delta t \to 0^+$, with $\Delta t = o(L^{-1})$, when $L \to +\infty$. The weakly convergent subsequences will then be shown to converge strongly in suitable norms. This will allow us to pass to the limit as $L \to +\infty$, with $\Delta t = o(L^{-1})$. The main result of Section 4 is Theorem 4.1, which summarizes the outcome of this limiting process.

Step 5. Section 5 is concerned with passage to the limit $\alpha \to 0^+$ with the parabolic regularization parameter that was introduced into the continuity equation in Step 1. The main result of Section 5 is Theorem 5.1, which summarizes the outcome of this limiting process.

Step 6. Finally, in Section 6 we pass to the limit $\kappa \to 0^+$ with the regularization parameter that was introduced into the equation of state in Step 1, which then leads to our main result, Theorem 6.1, stating the existence of global, bounded-energy, weak solutions to problem (P).

2. The polymer model (P$^{\kappa,\alpha,L}$)

Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with a Lipschitz-continuous boundary $\partial \Omega$, and suppose that the set $D := D_1 \times \cdots \times D_K$ of admissible conformation vectors $q := (q_1^T, \ldots, q_K^T)^T$ in (1.13) is such that D_i, $i = 1, \ldots, K$, is an open ball in \mathbb{R}^d, $d = 2$ or 3, centred at the origin, with boundary ∂D_i and radius $\sqrt{b_1}$, $b_1 > 2$; let

$$
\partial D := \bigcup_{i=1}^K \partial D_i, \quad \text{where} \quad \partial D_i := D_1 \times \cdots \times D_{i-1} \times \partial D_i \times D_{i+1} \times \cdots \times D_K. \quad (2.1)
$$

Collecting (1.1a–e), (1.10), (1.11), (1.12), (1.20) and (1.21a–c), we then consider the following regularized initial-boundary-value problem, dependent on the following given regularization parameters $\kappa > 0$, $\alpha > 0$ and $L > 1$. As has been already emphasized in the Introduction, the centre-of-mass diffusion coefficient $\varepsilon > 0$ is a physical parameter and is regarded as being fixed throughout.

(P$^{\kappa,\alpha,L}$) Find $\rho^{\kappa,\alpha,L} : (x, t) \in \Omega \times [0, T] \mapsto \rho^{\kappa,\alpha,L}(x, t) \in \mathbb{R}$ and $y^{\kappa,\alpha,L} : (x, t) \in \Omega \times [0, T] \mapsto y^{\kappa,\alpha,L}(x, t) \in \mathbb{R}^d$ such that

$$
\frac{\partial \rho^{\kappa,\alpha,L}}{\partial t} + \nabla \cdot (y^{\kappa,\alpha,L} \rho^{\kappa,\alpha,L}) - \alpha \Delta_x \rho^{\kappa,\alpha,L} = 0 \quad \text{in} \ \Omega \times (0, T], \quad (2.2a)
$$

$$
\alpha \nabla_x \rho^{\kappa,\alpha,L} \cdot n = 0 \quad \text{on} \ \partial \Omega \times (0, T], \quad (2.2b)
$$

$$
\rho^{\kappa,\alpha,L}(x, 0) = \rho^0(x) \quad \forall x \in \Omega, \quad (2.2c)
$$

where Δ_x is the Laplacian operator in \mathbb{R}^d.
Here, for a given $L > \beta$, we impose the following boundary and initial conditions:

\[
\begin{align*}
\partial_t \psi(x,0) &= \left(\rho^0 u_0(x) \right)(x) \quad \forall x \in \Omega, \\
\psi(x) &= \left(\sigma(u_{k,a,L}) \right)(x) \quad \forall x \in \Omega.
\end{align*}
\]

Henceforth, we shall write

\[
\hat{\psi}_{k,a,L}(x,0) = \psi_{k,a,L}(x,0) = \left(\sigma(u_{k,a,L}) \right)(x) \quad \forall x \in \Omega.
\]

Thus, for example, (2.6c) in terms of this compact notation becomes: \(\hat{\psi}_{k,a,L}(x,0) = \beta^L(\psi_0(x,0)) \) on \(\Omega \times D \).
3. Existence of a solution to \((P_{\kappa,\alpha,L})\), a discrete-in-time approximation of \((P_{\kappa,\alpha,L})\)

For later purposes, we recall the following Lebesgue interpolation result (which is a simple consequence of the Riesz–Thorin theorem) and the Gagliardo–Nirenberg inequality. Let \(1 \leq r \leq v \leq s < \infty\); then, for any bounded Lipschitz domain \(\Omega\),

\[
\|\eta\|_{L^r(\Omega)} \leq \|\eta\|_{L^v(\Omega)}^{1-\theta} \|\eta\|_{L^s(\Omega)}^\theta \quad \forall \eta \in L^s(\Omega),
\]

(3.1)

where \(\theta = \frac{(v-r)}{(v-s)}\). Let \(r \in [2, \infty)\) if \(d = 2\), and \(r \in [2, \infty)\) if \(d = 3\) and \(\theta = d\left(\frac{1}{2} - \frac{1}{d}\right)\).

Then, there is a constant \(C = C(\Omega, r, d)\), such that

\[
\|\eta\|_{L^r(\Omega)} \leq C \|\eta\|_{L^v(\Omega)}^{1-\theta} \|\eta\|_{H^1(\Omega)}^\theta \quad \forall \eta \in H^1(\Omega).
\]

(3.2)

We note also the generalized Korn’s inequality

\[
\int_\Omega \left[|D(w)|^2 - \frac{1}{d} |\nabla_x \cdot w|^2 \right] \, dx = \int_\Omega \left[|D(w)| - \frac{1}{d} (\nabla_x \cdot w) I\right]^2 \, dx \geq c_0 \|w\|_{H^1(\Omega)}^2 \quad \forall w \in H^1(\Omega),
\]

(3.3)

where \(c_0 > 0\), see Dain\(^{16}\). We remark that the notation \(\cdot \|\cdot\|\) will be used to signify one of the following. When applied to a real number \(x\), \(|x|\) will denote the absolute value of the number \(x\); when applied to a vector \(v\), \(\|v\|\) will stand for the Euclidean norm of the vector \(v\); and, when applied to a square matrix \(A\), \(|A|\) will signify the Frobenius norm, \(|\text{tr}(A^T A)||^\frac{1}{2}\), of the matrix \(A\). where, for a square matrix \(B\), \(\text{tr}(B)\) denotes the trace of \(B\).

Let \(F \in C(\mathbb{R}_+\) be defined by \(F(s) := s (\log s - 1) + 1, s > 0\). As \(\lim_{s \to 0^+} F(s) = 1\), the function \(F\) can be considered to be defined and continuous on \([0, \infty)\), where it is a nonnegative, strictly convex function with \(F(1) = 0\).

We assume the following:

\[
\partial\Omega \in C^{2,\theta}, \theta \in (0,1); \quad \rho_0 \in L^\infty_{\geq 0}(\Omega); \quad u_0 \in L^2(\Omega);
\]

\[
\psi_0 \geq 0 \text{ a.e. on } \Omega \times D \text{ with } F(\psi_0) \in L^1_M(\Omega \times D) \text{ and } \int_D \psi_0(s, q) \, dq \in L^\infty_{\geq 0}(\Omega);
\]

\[
\mu^S \in \mathbb{R}_{>0}, \quad \mu^B \in \mathbb{R}_{\geq 0}; \quad \text{the Rouse matrix } A \in \mathbb{R}^{K \times K} \text{ satisfies (2.5)};
\]

\[
p, p_\kappa \in C^1(\mathbb{R}_{>0}, \mathbb{R}_{\geq 0}) \text{ are defined by (1.3) and (2.3)};
\]

\[
f \in L^2(0, T; L^\infty(\Omega)) \text{ and } D_i = B(0, b_i^\frac{2}{\kappa}), \quad \theta_i > 1, \ i = 1, \ldots, K, \text{ in (1.7a,b)}.
\]

(3.4)

We introduce \(P, P_{\kappa} \in C^1(\mathbb{R}_{\geq 0}, \mathbb{R}_{\geq 0})\), for \(\kappa > 0\), such that

\[
sP'(\kappa)(s) - P(\kappa)(s) = p(\kappa)(s) \quad \text{and} \quad P(\kappa)(0) = P'(\kappa)(0) = 0
\]

\[
\Rightarrow \quad P(s) = \frac{p(s)}{\gamma - 1} = \frac{c_p}{\gamma - 1} s^\gamma \quad \text{and} \quad P_{\kappa}(s) = P(s) + \kappa \left(\frac{s^4}{3} + \frac{s^\Gamma}{\Gamma - 1}\right).
\]

(3.5)
Here, and throughout, the subscript "(\cdot)" means: with and without the subscript "(\cdot)". We adopt a similar notation for superscripts.

In (3.4), \(L_r^s(\Omega \times D) \), for \(r \in [1, \infty) \), denotes the Maxwellian-weighted \(L^r \) space over \(\Omega \times D \) with norm

\[
\| \varphi \|_{L_r^s(\Omega \times D)} := \left\{ \int_{\Omega \times D} M |\varphi|^r \, dq \, dx \right\}^{\frac{1}{r}}.
\]

Similarly, we introduce \(L_r^s(D) \), the Maxwellian-weighted \(L^r \) space over \(D \). Letting

\[
\| \varphi \|_{H_r^s(\Omega \times D)} := \left\{ \int_{\Omega \times D} M \left[\|\varphi\|^2 + |\nabla_x \varphi|^2 + |\nabla_q \varphi|^2 \right] \, dq \, dx \right\}^{\frac{1}{2}},
\]

we then set

\[
X \equiv H_r^s(\Omega \times D) := \left\{ \varphi \in L_r^1(\Omega \times D) : \| \varphi \|_{H_r^s(\Omega \times D)} < \infty \right\}.
\]

It is shown in Appendix C of Barrett & Süli\(^5\) (with the set \(X \) denoted by \(\tilde{X} \) there) that

\[
C^\infty(\Omega \times D) \text{ is dense in } X.
\]

We have from Sobolev embedding that

\[
H^1(\Omega; L^2_M(D)) \hookrightarrow L^s(\Omega; L^2_M(D)),
\]

where \(s \in [1, \infty) \) if \(d = 2 \) or \(s \in [1,6] \) if \(d = 3 \). In addition, we note that the embeddings

\[
H^1_M(D) \hookrightarrow L^2_M(D),
\]

\[
H^1_M(\Omega \times D) \equiv L^2(\Omega; H^1_M(D)) \cap H^1(\Omega; L^2_M(D)) \hookrightarrow L^2(\Omega; L^2_M(D)) \equiv L^2(\Omega; L^2_M(D))
\]

are compact if \(\theta_i \geq 1, i = 1, \ldots, K \), in (1.7a,b); see Appendix D of Barrett & Süli\(^5\).

We recall the Aubin–Lions–Simon compactness theorem, see, e.g., Simon\(^25\). Let \(X_0, \bar{X} \) and \(X_1 \) be Banach spaces with a compact embedding \(X_0 \hookrightarrow \bar{X} \) and a continuous embedding \(\bar{X} \hookrightarrow X_1 \). Then, for \(\zeta_i \in [1, \infty), i = 0,1, \) the embedding

\[
\left\{ \eta \in L^\infty(0,T;X_0) : \frac{\partial \eta}{\partial t} \in L^\zeta(0,T;X_1) \right\} \hookrightarrow L^\infty(0,T;\bar{X})
\]

is compact.

Let \(\bar{X} \) be a Banach space. We shall denote by \(C_w([0,T];\bar{X}) \) the set of all functions \(\eta \in L^\infty(0,T;\bar{X}) \) such that \(t \in [0,T] \mapsto \langle \varphi, \eta(t) \rangle_{\bar{X}} \in \mathbb{R} \) is continuous on \([0,T]\) for all \(\varphi \in \bar{X}' \), the dual space of \(\bar{X} \). Here, and throughout, \(\langle \cdot, \cdot \rangle_{\bar{X}} \) denotes the duality pairing between \(\bar{X}' \) and \(\bar{X} \). Whenever \(\bar{X} \) has a predual, \(\bar{E} \), say, (viz. \(\bar{E}' = \bar{X} \)), we shall denote by \(C_w([0,T];\bar{X}) \) the set of all functions \(\eta \in L^\infty(0,T;\bar{X}) \) such that \(t \in [0,T] \mapsto \langle \eta(t), \zeta \rangle_{\bar{E}} \in \mathbb{R} \) is continuous on \([0,T]\) for all \(\zeta \in \bar{E} \).
We note from Lemma 3.1(a) in Barrett & Süli12 and Lemma 6.2 in Novotný & Straškraba24 (or Lemma E.1 in Appendix E in Barrett & Süli12) that if \(\{ \eta_n \}_{n \in \mathbb{N}} \) is such that

\[
\| \eta_n \|_{L^\infty(0,T;L^r(\Omega))} + \left\| \frac{\partial \eta_n}{\partial t} \right\|_{L^r(0,T;W^{1,r}_0(\Omega))} \leq C, \quad r, \varsigma, \upsilon \in (1, \infty),
\]

then there exists a subsequence (not indicated) of \(\{ \eta_n \}_{n \in \mathbb{N}} \) and a function \(\eta \in C_w([0,T];L^r(\Omega)) \) such that

\[
\eta_n \rightharpoonup \eta \quad \text{in} \quad C_w([0,T];L^r(\Omega)).
\]

Throughout we will assume that (3.4) hold, so that (1.8) and (3.10a,b) hold. We note for future reference that (1.12) and (1.8) yield that, for \(\varphi \in L^2_M(\Omega \times D) \) and \(i = 1, \ldots, K \),

\[
\int_{\Omega} |C_i(M \varphi)|^2 \, dx = \int_{\Omega} \left(\int_D M \varphi U_i q_i q_i^T \, dq \right)^2 \, dx \leq C \left(\int_{\Omega \times D} M |\varphi|^2 \, dq \, dx \right),
\]

where \(C \) is a positive constant.

We state a simple integration-by-parts formula.

Lemma 3.1. Let \(\varphi \in H^1_M(D) \) and suppose that \(\underline{\psi} \in \mathbb{R}^{d \times d} \), then,

\[
\int_D M \sum_{i=1}^K (\underline{B} q_i) \cdot \nabla \varphi \, dq = \int_D M \varphi \left[\left(\sum_{i=1}^K U_i (\frac{1}{2} |q_i|^2) q_i q_i^T \right) - K I \right] : \underline{B} \, dq.
\]

Proof. By Theorem C.1 in Appendix C of Barrett & Süli3, the set \(C^\infty(D) \) is dense in \(H^1_M(D) \); hence, for any \(\tilde{\varphi} \in H^1_M(D) \) there exists a sequence \(\{ \tilde{\varphi}_n \}_{n \geq 1} \subset C^\infty(D) \) converging to \(\tilde{\varphi} \) in \(H^1_M(D) \). As \(M \in C^1(D) \) and vanishes on \(\partial D \), the same is true of each of the functions \(M \tilde{\varphi}_n, n \geq 1 \). By replacing \(\tilde{\varphi} \) by \(\tilde{\varphi}_n \) on both sides of (3.14), the resulting identity is easily verified by using the classical divergence theorem for smooth functions, noting (1.6a) and that \(M \tilde{\varphi}_n \) vanishes on \(\partial D \). Then, (3.14) itself follows by letting \(n \to \infty \), recalling the definition of the norm in \(H^1_M(D) \) and hypothesis (1.8).

We now formulate our discrete-in-time approximation of problem \((P_{\kappa,\alpha,L}) \) for fixed parameters \(\kappa, \alpha \in [0,1] \) and \(L > 1 \). For any \(T > 0 \) and \(N \geq 1 \), let \(N \Delta t = T \) and \(t_n = n \Delta t, n = 0, \ldots, N \). To prove existence of a solution under minimal smoothness requirements on the initial data, recall (3.4), we regularize the initial data in terms of the parameters \(\alpha, \Delta t \) and \(L \). Specifically, we shall assign to \(\rho_0 \in L^\infty(\Omega) \) the function \(\rho^0 = \rho^0(\alpha) \in H^1(\Omega) \), appearing in (2.2c,f), defined as the unique solution of the problem:

\[
\int_{\Omega} \left[\rho^0 \eta + \alpha \nabla_x \rho^0 \cdot \nabla_x \eta \right] \, dx = \int_{\Omega} \rho_0 \eta \, dx \quad \forall \eta \in H^1(\Omega).
\]

(3.15)
Finally, by choosing ϕ as the unique solution of the problem:

$$Hence, \quad \rho^0(\cdot) \in [0, \|\rho^0\|_{L^\infty(\Omega)}], \quad (3.16a)$$

and $\rho^0 \to \rho_0$ weakly-*$ in $L^\infty(\Omega)$, strongly in $L^2(\Omega)$, as $\alpha \to 0_+$. \quad (3.16b)

Therefore, by (3.1) and (3.16a,b), also

$$\rho^0 \to \rho_0 \quad \text{strongly in } L^p(\Omega), \quad \text{as } \alpha \to 0_+, \quad p \in [1, \infty). \quad (3.16c)$$

Similarly, we assign to $u_0 \in L^2(\Omega)$ the function $y^0 = y^0(\alpha, \Delta t) \in H^1_0(\Omega)$, defined as the unique solution of the problem:

$$\int_{\Omega} \left[\rho^0 u_0^0 \cdot v + \Delta t \nabla_x u_0^0 : \nabla_x v \right] \, dx = \int_{\Omega} \rho^0 u_0 \cdot v \, dx, \quad \forall v \in H^1_0(\Omega). \quad (3.17)$$

Hence, it follows from (3.17) and (3.16a) that there exists a $C \in \mathbb{R}_{>0}$, independent of Δt, L, α and ϵ, such that

$$\int_{\Omega} \left[\rho^0 |u_0| \right] \, dx \leq \int_{\Omega} \rho^0 |u_0| \, dx \leq C, \quad (3.18a)$$

and

$$\int_{\Omega} \rho^0 (u^0 - u_0) \cdot v \, dx \to 0, \quad \forall v \in L^2(\Omega), \quad \text{as } \Delta t \to 0+. \quad (3.18b)$$

Analogously, we shall assign a certain ‘smoothed’ initial datum, $\hat{\psi}^0 = \hat{\psi}^0(L, \Delta t) \in H^1_0(\Omega \times D)$, to the given initial datum $\psi_0 = \frac{\psi}{\mu}$ such that

$$\int_{\Omega \times D} M \left[\hat{\psi}^0 \cdot \varphi + \Delta t \left(\nabla_x \hat{\psi}^0 \cdot \nabla_x \varphi + \nabla_q \hat{\psi}^0 \cdot \nabla_q \varphi \right) \right] \, dq \, dx = \int_{\Omega \times D} M \beta^L(\hat{\psi}_0) \varphi \, dq \, dx, \quad \forall \varphi \in H^1_0(\Omega \times D). \quad (3.19)$$

For $r \in [1, \infty)$, let

$$Z_r := \left\{ \varphi \in L^r_M(\Omega \times D) : \varphi \geq 0 \quad \text{a.e. on } \Omega \times D \right\}. \quad (3.20)$$

It is proved in the Appendix of Barrett & Süli10 that there exists a unique $\hat{\psi}^0 \in H^1_0(\Omega \times D)$ satisfying (3.19); furthermore, $\hat{\psi}^0 \in Z_2$,

$$\int_{\Omega \times D} M \mathcal{F}(\hat{\psi}^0) \, dq \, dx + 4 \Delta t \int_{\Omega \times D} M \left[\left| \nabla_x \sqrt{\hat{\psi}^0} \right|^2 + \left| \nabla_q \sqrt{\hat{\psi}^0} \right|^2 \right] \, dq \, dx \leq \int_{\Omega \times D} M \mathcal{F}(\hat{\psi}_0) \, dq \, dx \quad (3.21a)$$

and

$$\hat{\psi}^0 = \beta^L(\hat{\psi}^0) \to \hat{\psi}_0 \quad \text{weakly in } L^1_0(\Omega \times D), \quad \text{as } L \to \infty, \quad \Delta t \to 0+. \quad (3.21b)$$

Finally, by choosing $\varphi(x,q) = \phi^0(x) \otimes 1(q)$ in (3.19), where

$$\phi^0(x) := \int_D M(q) \psi^0(x,q) \, dq \, dx, \quad x \in \Omega,$$
yields, on noting (1.19) and (3.4), that

\[
\frac{1}{2} \left\| v^0 \right\|_{L^2(\Omega)}^2 + \int_{\Omega} \left(\int_D M \left(\psi^0 - \beta^L(\tilde{\psi}_0) \right) \, dq \right)^2 \, dx + \Delta t \left\| \nabla_v v^0 \right\|_{L^2(\Omega)}^2 = \frac{1}{2} \int_{\Omega} \left(\int_D M \beta^L(\tilde{\psi}_0) \, dq \right)^2 \, dx \\
\leq \frac{1}{2} \int_{\Omega} \left(\int_D M \tilde{\psi}_0 \, dq \right)^2 \, dx \leq C.
\]

(3.22)

Next, we define

\[
V := \{ w \in H^1_0(\Omega) : w \in L^\infty(\Omega), \nabla_x \cdot w \in L^\infty(\Omega) \}
\]

(3.23)

and

\[
Y^n := L^2(t_{n-1}, t_n; H^1(\Omega)) \cap H^1(t_{n-1}, t_n; H^1(\Omega)^*) \\
\cap L^\infty(t_{n-1}, t_n; L^2(\Omega)) \cap L^2(\Omega) \times (t_{n-1}, t_n).
\]

(3.24)

We recall also that, for all \(v, w \in H^1(\Omega) \),

\[
(v \odot v) \cdot \nabla_x w = [(v \cdot \nabla_x)w] \cdot v = -(v \cdot \nabla_x)\nabla_x w \cdot v + (v \cdot \nabla_x)(v \cdot w) \quad \text{a.e. in } \Omega.
\]

(3.25)

Noting the above, our discrete-in-time approximation of \((P_{k,\alpha,L})\) is then defined as follows.

\((P_{k,\alpha,L}^\Delta t)\) Let \(N \in \mathbb{N}_{\geq 1} \) and set \(\Delta t := T/N \); let us further suppose that \(\rho_{0,k,\alpha,L} := \rho^0 \in L^\infty_2(\Omega) \), \(u_{0,k,\alpha,L} := u^0 \in H^1_0(\Omega) \) and \(\tilde{\psi}_{0,k,\alpha,L} := \tilde{\psi}^0 \in \mathbb{Z}_2 \). For \(n = 1, \ldots, N \), and given \((\rho_{n,k,\alpha,L}, u_{n,k,\alpha,L}, \tilde{\psi}_{n,k,\alpha,L}) \in L^\infty(t_{n-1}, t_n) \times H^1(\Omega) \times \mathbb{Z}_2 \), find

\[
\rho_{n-1,k,\alpha,L} \in Y^n \quad \text{with} \quad \rho_{n,k,\alpha,L}(\cdot, t_n) := \rho_{n-1,k,\alpha,L}(\cdot, t_n) \in L^\infty(t_{n-1}, t_n), \quad u_{n,k,\alpha,L} \in H^1(t_{n-1}, t_n)
\]

and

\[
\tilde{\psi}_{n,k,\alpha,L} \in X \cap \mathbb{Z}_2,
\]

(3.26)

such that

\[
\int_{t_{n-1}}^{t_n} \left[\frac{d\rho_{n,k,\alpha,L}}{dt} - \eta \right] \, dt = 0,
\]

\[
\int_{t_{n-1}}^{t_n} \left(\alpha \nabla_x \rho_{n,k,\alpha,L} - \rho_{n,k,\alpha,L} \nabla_x \eta \right) \, dx = 0
\]

\forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)),

(3.27a)
\[
\int_\Omega \left[\frac{\rho^{n}_{\kappa,\alpha,L}}{\Delta t} \left(\frac{\rho^{n-1}_{\kappa,\alpha,L}}{\Delta t} \right) \right] \cdot w \, dx
+ \frac{1}{2} \int_\Omega \rho^{n-1}_{\kappa,\alpha,L} \left[\frac{\partial}{\partial t} \left(u^n_{\kappa,\alpha,L} \cdot \nabla w \right) \right] \cdot w \, dx
+ \int_\Omega S(u^n_{\kappa,\alpha,L}) : \nabla w \, dx
- \int_\Omega \left(\int_{t_{n-1}}^{t_n} \tau_1(M \hat{\psi}^{n}_{\kappa,\alpha,L}) : \nabla w \, dx \right)
- \frac{1}{2} \int_\Omega \int_D M \beta^n (\hat{\psi}^{n}_{\kappa,\alpha,L}) \,(q_j \cdot \nabla \phi) \, dx \cdot w \, dx = 0 \quad \forall w \in V,
\]

(3.27b)

where, for \(t \in (t_{n-1}, t_n) \) and \(n = 1, \ldots, N \),

\[
f^{(\Delta t)}(\cdot, \cdot) = f^n(\cdot) := \frac{1}{\Delta t} \int_{t_{n-1}}^{t_n} f(\cdot, t) \, dt \in L^\infty(\Omega).
\]

(3.28)

It follows from (3.4) and (3.28) that

\[
\int_{t_{n-1}}^{t_n} \| f^{(\Delta t)} \|^2_{L^\infty(\Omega)} \, dt \leq \int_{t_{n-1}}^{t_n} \| f \|^2_{L^\infty(\Omega)} \, dt, \quad n = 1, \ldots, N,
\]

(3.29a)

\[
f^{(\Delta t)} \rightarrow f \quad \text{strongly in } L^2(0, T; L^r(\Omega)), \quad \text{as } \Delta t \rightarrow 0_+,
\]

(3.29b)

where \(r \in [1, \infty] \).

Remark 3.1. A possible alternative to our temporal approximation scheme (3.27a) for (2.2a), which is the weak formulation of a parabolic initial boundary-value problem posed over the time slab \(\Omega \times [t_{n-1}, t_n] \), \(n = 1, \ldots, N \), would have been to proceed as in the work of Abels and Feireisl\(^1\) and approximate (2.2a) by an implicit finite difference scheme with respect to \(t \). That would have avoided the use of \(\rho^{(\Delta t), n}_{\kappa,\alpha,L} \) here, but would have had the disadvantage, from the point of view of constructive considerations in numerical analysis at least, that nonnegativity of \(\rho^{n}_{\kappa,\alpha,L} \) will have been guaranteed for \(\Delta t \leq \Delta t_0 \) only, where \(\Delta t_0 \in (0, T] \) is sufficiently small, with the value of \(\Delta t_0 \) not being easily quantifiable in terms of the data and its independence of \(\kappa, \alpha \) and \(L \) being less than obvious. In contrast with that, our \(\rho^{n}_{\kappa,\alpha,L} \), and thereby
also \(\rho_{n,\alpha,L}^n \) will be shown to be nonnegative for all \(\Delta t = \frac{T}{N} \) and all \(n = 1, \ldots, N \), regardless of the choice of \(\kappa, \alpha, L \) and \(N \).

We rewrite (3.27a) as
\[
\int_{t_{n-1}}^{t_n} \left[\frac{\partial [\Delta t, n]}{\partial t} \right]_{H^1(\Omega)} + c(u_n^{n,\alpha,L})(\rho_{n,\alpha,L}^n, \eta) \, dt = 0
\]
\[\forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)), \tag{3.30}\]
where, for all \(v \in H^1_0(\Omega) \) and \(\eta_i \in H^1(\Omega) \), \(i = 1, 2 \),
\[
c(v)(\eta_1, \eta_2) := \int_\Omega (a \nabla_\omega \eta_1 - \eta_1 v) \cdot \nabla_\omega \eta_2 \, dx.
\]
(3.31)

Similarly, on noting (1.2) and (1.11), we rewrite (3.27b) as
\[
b(\rho_{n,\alpha,L}^n)(u_{n,\alpha,L}^n, w) = \ell_b(\rho_{n,\alpha,L}^n, \tilde{\gamma}_n^{n,\alpha,L})(w) \quad \forall w \in V;
\]
where, for all \(\eta \in L^2(\Omega) \) and \(w_i \in H^1_0(\Omega) \), \(i = 1, 2 \),
\[
b(\eta)(w_1, w_2) := \frac{1}{2} \int_\Omega (\eta + \rho_{n,\alpha,L}^{n-1}) w_1 \cdot w_2 dx + \Delta t \mu_S \int_\Omega D(w_1) : D(w_2) dx
\]
\[+ \Delta t \left(\mu_B - \mu_S \right) \int_\Omega (\nabla_\omega \cdot w_1 \cdot (\nabla_\omega \cdot w_2) dx
\]
\[+ \frac{1}{2} \int_\Omega \rho_{n,\alpha,L}^{n-1} \left[(u_{n-1,\alpha,L} \cdot \nabla_\omega)) w_1 \right] \cdot w_2 \cdot ([u_{n-1,\alpha,L} \cdot \nabla_\omega) w_1] dx \]
\[\forall \eta \in Y^n \text{ with } \eta(\cdot, t_n) \in L^2(\Omega), \phi \in X \text{ and } w \in V,
\]
\[
\ell_b(\eta, \varphi)(w)
\]
\[:= \int_\Omega \left[\rho_{n,\alpha,L}^{n-1} u_{n-1,\alpha,L} \cdot w + \Delta t \eta(\cdot, t_n) f_n \cdot w - \Delta t k \sum_{i=1}^K c_i(M \varphi) \cdot \nabla_\omega w \right] dx
\]
\[+ \int_\Omega \left[\int_{t_{n-1}}^{t_n} \rho_k(\eta) dt + \Delta t \frac{c}{K+1} \int_D M \varphi \, d\eta \right] \nabla_\omega \cdot w dx
\]
\[- 2 \Delta t \frac{1}{2} \int_\Omega \left[\int_D M \beta^L(\varphi) \, d\eta \right] \nabla_\omega \left(\int_D M \varphi \, d\eta \right) \cdot w dx. \tag{3.33b}\]

It follows for fixed \(u_{n,\alpha,L}^{n-1} \in H^1_0(\Omega), \rho_{n,\alpha,L}^{n-1} \in L^2(\Omega) \) and \(\eta \in L^2(\Omega), \) and the generalized Korn’s inequality, (3.3), that the nonsymmetric bilinear functional \(b(\eta)(\cdot, \cdot) \) is a nonsymmetric continuous coercive bilinear functional on \(H^1_0(\Omega) \times H^1_0(\Omega) \). In addition, for fixed \(u_{n,\alpha,L}^{n-1} \in H^1_0(\Omega), \rho_{n,\alpha,L}^{n-1} \in L^2(\Omega), \eta \in Y^n \) with \(\eta(\cdot, t_n) \in L^2(\Omega) \) and \(\varphi \in X, \) it follows, on recalling (3.13), (2.3) and (3.24), that \(\ell_b(\eta, \varphi)(\cdot) \) is a continuous linear functional on \(V \).

It is also convenient to rewrite (3.27c) as
\[
a(\tilde{\gamma}_{n,\alpha,L}^n, \varphi) = \ell_a(u_{n,\alpha,L}^n, \beta^L(\tilde{\gamma}_{n,\alpha,L}^n))(\varphi) \quad \forall \varphi \in X, \tag{3.34}\]
where, for all $\varphi_1 \in X, i = 1, 2$,

$$a(\varphi_1, \varphi_2) := \int_{\Omega \times D} M \left[\varphi_1 \varphi_2 + \Delta t \varepsilon \nabla x \varphi_1 \cdot \nabla x \varphi_2 + \frac{\Delta t}{4\lambda} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla q_i \varphi_1 \cdot \nabla q_j \varphi_2 \right] dq \, dq x \, dx \, dx (3.35a)$$

and, for all $v \in H^1(\Omega), \xi \in L^\infty(\Omega \times D)$ and $\varphi \in X$,

$$\ell_a(v, \xi)(\varphi) := \int_{\Omega \times D} M \left[\hat{\psi}_n \kappa, \alpha, L \varphi + \Delta t \xi \left(\sum_{i=1}^{K} [\sigma(v) q_i] \nabla q_i \varphi + v \nabla x \varphi \right) \right] dq \, dq x \, dx \, dx. \quad (3.35b)$$

Clearly, $a(\cdot, \cdot)$ is a symmetric continuous coercive bilinear functional on $X \times X$. In addition, it is easily deduced for fixed $v \in H^1(\Omega)$ and $\xi \in L^\infty(\Omega \times D)$, on noting (3.2), that $\ell_a(v, \xi)(\cdot)$ is a continuous linear functional on X.

In order to prove existence of a solution, (3.26), to $(P, \Delta t \kappa, \alpha, L, n_0) = n_0 \kappa, \alpha, L(\cdot)$ and (3.27a–c), which is equivalent to (3.30), (3.32) and (3.34), we require two convex regularizations of the entropy function

$$F : s \in \mathbb{R}_{\geq 0} \mapsto F(s) = s(\log s - 1) + 1 \in \mathbb{R}_{\geq 0},$$

denoted by F^L and F^L_k. For any $L > 1$, we define $F^L \in C(\mathbb{R}_{\geq 0}) \cap C^2_{\text{loc}}(\mathbb{R}_{\geq 0})$ by

$$F^L(s) := \begin{cases} s(\log s - 1) + 1, & 0 \leq s \leq L, \\ s^2 - L^2 + s(\log L - 1) + 1, & L \leq s. \end{cases} \quad (3.36)$$

Note that

$$[F^L]'(s) = \begin{cases} \log s, & 0 < s \leq L, \\ \frac{s}{L} + \log L - 1, & L \leq s, \end{cases} \quad (3.37a)$$

and

$$[F^L]''(s) = \begin{cases} \frac{1}{s}, & 0 < s \leq L, \\ \frac{1}{L}, & L \leq s. \end{cases} \quad (3.37b)$$

Hence, on noting the definition (1.19) of β^L, we have that

$$\beta^L(s) = \min \{s, L\} = ([F^L]''(s))^{-1}, \quad s \in \mathbb{R}_{\geq 0}, \quad (3.38a)$$

with the convention $\frac{1}{\infty} := 0$ when $s = 0$, and

$$[F^L]''(s) \geq F''(s) = \frac{1}{s}, \quad s \in \mathbb{R}_{\geq 0}. \quad (3.38b)$$

We shall also require the following inequality, relating F^L to F:

$$F^L(s) \geq F(s), \quad s \in \mathbb{R}_{\geq 0}. \quad (3.39)$$
For $0 \leq s \leq 1$, (3.39) trivially holds, with equality. For $s \geq 1$, it follows from (3.38b), with s replaced by a dummy variable σ, after integrating twice over $\sigma \in [1,s]$, and noting that $[F^L]'(1) = F'(1)$ and $F^L(1) = F(1)$.

For $L > 1$ and $\delta \in (0,1)$, the function $F^L_{\delta} \in C^{1,1}(\mathbb{R})$ is defined by

$$F^L_{\delta}(s) := \begin{cases} \frac{s^2 - \delta^2}{2s} + s (\log \delta - 1) + 1, & s \leq \delta, \\ F^L(s), & \delta \leq s. \end{cases}$$

Hence,

$$[F^L_{\delta}]'(s) = \begin{cases} \frac{s}{2} + \log \delta - 1, & s \leq \delta, \\ [F^L]'(s), & \delta \leq s, \end{cases}$$

(3.41a)

and

$$[F^L_{\delta}]''(s) = \begin{cases} \frac{1}{s}, & s \leq \delta, \\ [F^L]''(s), & \delta \leq s. \end{cases}$$

(3.41b)

We note that

$$F^L_{\delta}(s) \leq F^L(s) \quad \forall s \geq 0,$$

(3.42a)

$$F^L_{\delta}(s) \geq \begin{cases} \frac{s^2}{2s^2} + \frac{s}{s^2} - C(L), & s \leq 0, \\ s, & s \geq 0; \end{cases}$$

(3.42b)

and that $[F^L_{\delta}]''(s)$ is bounded below by $\frac{1}{s^2}$ for all $s \in \mathbb{R}$. Finally, we set

$$\beta^L_{\delta}(s) := ([F^L_{\delta}]')^{-1}(s) = \max \{ \beta^L(s), \delta \},$$

(3.43)

and observe that $\beta^L_{\delta}(s)$ is bounded above by L and bounded below by δ for all $s \in \mathbb{R}$. Note also that both β^L and β^L_{δ} are Lipschitz continuous on \mathbb{R}, with Lipschitz constants equal to 1.

In addition, we regularize the bilinear functional $b(\eta)(\cdot, \cdot)$, (3.33a), on $X \times X$, by introducing the Banach space

$$\mathcal{V} := \{ \widetilde{w} \in H^2(\Omega) \cap \Sigma^1(\Omega) : \nabla_x \cdot \widetilde{w} \in H^2(\Omega) \},$$

(3.44)

which is compactly embedded in \mathcal{V}, (3.23). We then define, for $\delta \in \mathbb{R}_{>0}, \eta \in L^2_{\Sigma}(\Omega)$ and $w, w_1, w_2 \in \mathcal{V}, i = 1, 2$,

$$b_{\delta}(\eta)(w_1, w_2) := b(\eta)(w_1, w_2)$$

$$+ \Delta t \delta \sum_{|\lambda| = 2} \int_{\Omega} \bigg[\begin{array}{c} \frac{\lambda_1}{\partial_{x_1}} \frac{\lambda_2}{\partial_{x_2}} \frac{\lambda_3}{\partial_{x_3}} \cdot \frac{\lambda_1}{\partial_{x_1} w_1} \cdot \frac{\lambda_2}{\partial_{x_2} w_2} \cdot \frac{\lambda_3}{\partial_{x_3} (\nabla_x \cdot w_1, w_2)} + \frac{\lambda_4}{\partial_{x_4} w_1} \cdot \frac{\lambda_5}{\partial_{x_5} w_2} \cdot \frac{\lambda_6}{\partial_{x_6} (\nabla_x \cdot w_1, w_2)} \end{array} \bigg] dx.$$

(3.45)

It follows that $b_{\delta}(\eta)(\cdot, \cdot)$ is a nonsymmetric continuous coercive bilinear functional on $\mathcal{V} \times \mathcal{V}$ for fixed $\eta \in L^2_{\Sigma}(\Omega)$ and $\delta \in (0, 1)$. We also replace $\ell_{b}(\eta, \varphi)(\cdot)$ by $\ell_{b,\delta}(\eta, \varphi)(\cdot)$.
where $\beta^L(\varphi)$ in $\ell_b(\eta, \varphi)(\cdot)$ is replaced by $\beta^L_\delta(\varphi)$; that is, for $\delta \in (0, 1)$,

$$
\ell_b(\eta, \varphi)(\cdot) := \ell_b(\eta, \varphi)(\cdot) + 2 \Delta t \int_\Omega \left(\int_D [\beta^L(\varphi) - \beta^L_\delta(\varphi)] \, dq \right) \nabla_r \left(\int_D M \varphi \, dq \right) \cdot w \, dr.
$$

(3.46)

As for fixed $\eta \in Y^n$ with $\eta(\cdot, t_n) \in L^2_{\geq 0}(\Omega)$ and $\varphi \in X$, $\ell_b(\eta, \varphi)(\cdot)$ is a continuous linear functional on Y, it follows that $\ell_b(\eta, \varphi)(\cdot)$, for $\delta \in (0, 1)$, is a continuous linear functional on Y.

Next, we introduce

$$
\Upsilon^n := L^2(t_{n-1}, t_n; H^1(\Omega)) \cap H^1(t_{n-1}, t_n; H^1(\Omega)) \cap L^\infty_{\geq 0}(\Omega) \times (t_{n-1}, t_n)).
$$

(3.47)

We note that $\Upsilon^n \hookrightarrow C([t_{n-1}, t_n]; L^2_{\geq 0}(\Omega))$ and $\Upsilon^n \subset Y^n$, (cf. (3.24)). Finally, we regularize the initial datum for the problem posed in the time-slab $\Omega \times [t_{n-1}, t_n)$ by setting

$$
\rho^{n-1}_{b,\alpha,L,\delta} = \beta^{\delta^{-1}}(\rho^{n-1}_{b,\alpha,L}),
$$

(3.48)

where $\beta^{\delta^{-1}}$ is given by (1.19) with $L = \delta^{-1}$.

We now consider the following regularized version of the coupled system (3.30), (3.32) and (3.34) for a given $\delta \in (0, 1)$:

For $(\rho^{n-1}_{b,\alpha,L,\delta}, \tilde{\psi}^{n-1}_{b,\alpha,L,\delta}) \in L^\Gamma_{\geq 0}(\Omega) \times H^1(\Omega) \times Z_2,$ find $(\rho^{[\Delta t]n}_{b,\alpha,L,\delta}, \psi^{n}_{b,\alpha,L,\delta}, \tilde{\psi}^{n}_{b,\alpha,L,\delta}) \in \Upsilon^n \times X \times X$ such that $\rho^{n-1}_{b,\alpha,L,\delta}(\cdot, t_n) = \rho^{n-1}_{b,\alpha,L,\delta}(\cdot)$,

$$
\int_{t_{n-1}}^{t_n} \left[\frac{\partial \rho^{[\Delta t]n}_{b,\alpha,L,\delta}(\cdot, \eta)}{\partial t} + c(\psi^{n}_{b,\alpha,L,\delta})(\rho^{[\Delta t]n}_{b,\alpha,L,\delta}, \eta) \right] \, dt = 0
$$

$$
\forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)),
$$

(3.49a)

$$
b_\delta(\rho^{[\Delta t]n}_{b,\alpha,L,\delta}(\cdot, t_n))(\psi^{n}_{b,\alpha,L,\delta}, \tilde{\psi}^{n}_{b,\alpha,L,\delta}, w) = \ell_b(\rho^{[\Delta t]n}_{b,\alpha,L,\delta}, \tilde{\psi}^{n}_{b,\alpha,L,\delta})(w) \quad \forall w \in X,
$$

(3.49b)

$$
a(\tilde{\psi}^{n}_{b,\alpha,L,\delta}, \varphi) = \ell_a(\tilde{\psi}^{n}_{b,\alpha,L,\delta}, \beta^L_\delta(\tilde{\psi}^{n}_{b,\alpha,L,\delta}))(\varphi) \quad \forall \varphi \in X.
$$

(3.49c)

The existence of a solution to (3.49a-c) will be proved by using a fixed-point argument. Given $(\tilde{\omega}, \tilde{\psi}) \in Y \times L^2_{\delta}(\Omega \times D)$, let $(\rho^*, \psi^*) \in \Upsilon^n \times X \times X$ be such that $\rho^*(\cdot, t_n) = \rho^{n-1}_{b,\alpha,L,\delta}(\cdot)$,

$$
\int_{t_{n-1}}^{t_n} \left[\frac{\partial \rho^*}{\partial t} + c(\tilde{\omega})(\rho^*) \right] \, dt = 0 \quad \forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)),
$$

(3.50a)

$$
a(\psi^*, \varphi) = \ell_a(\tilde{\psi}, \beta^L_\delta(\tilde{\psi}))(\varphi) \quad \forall \varphi \in X,
$$

(3.50b)

$$
b_\delta(\rho^*(\cdot, t_n))(\psi^*, \tilde{\psi}) = \ell_b(\rho^*(\cdot, t_n), \psi^*)(\tilde{\psi}) \quad \forall w \in Y.
$$

(3.50c)
For fixed \(v \in V \), it follows that \(c(v)(\cdot, \cdot) \), (3.31), is a nonsymmetric continuous bilinear functional on \(H^1(\Omega) \times H^1(\Omega) \), and, moreover, for all \(\eta \in H^1(\Omega) \),
\[
c_v(\eta, \eta) = \alpha \| \nabla_x \eta \|_{L^2(\Omega)}^2 + \frac{1}{2} \int_{\Omega} (\nabla_x \cdot v) \eta^2 \, dx \\
\geq \alpha \| \nabla_x \eta \|_{L^2(\Omega)}^2 - \frac{1}{2} \| \nabla_x \cdot v \|_{L^\infty(\Omega)} \| \eta \|_{L^2(\Omega)}^2. \tag{3.51}
\]

Hence for any fixed \(\tilde{u} \in V \), the existence of a unique weak solution
\[
\rho^* \in L^2(t_{n-1}, t_n; H^1(\Omega)) \cap H^1(t_{n-1}, t_n; H^1(\Omega)'), \quad \rho^* \in C([t_{n-1}, t_n]; L^2(\Omega)) \tag{3.52}
\]
satisfying \(\rho^*(\cdot, t_{n-1}) = \rho^*_{n-1} \) and (3.50a) is immediate; see, for example, Wloka, Thm. 26.1. Further, on choosing, for \(s \in (t_{n-1}, t_n) \), \(\eta(\cdot, t) = \chi_{[t_{n-1}, s]} e^{-\| \nabla_x \tilde{u} \|_{L^\infty(\Omega)} (t-t_{n-1})} [\rho^*(\cdot, t)]_\ast \) in (3.50a), where, for a set \(S \subset \mathbb{R} \), \(\chi_S \) denotes the characteristic function of \(S \), and recalling (3.51), we obtain that
\[
e^{-\| \nabla_x \tilde{u} \|_{L^\infty(\Omega)} (s-t_{n-1})} [\| \rho^*(\cdot, s) \|_{L^2(\Omega)}^2] + 2\alpha \int_{t_{n-1}}^s \int_\Omega e^{-\| \nabla_x \tilde{u} \|_{L^\infty(\Omega)} (t-t_{n-1})} |\nabla_x [\rho^*(\cdot, t)]_\ast|^2 \, dx \, dt \leq 0, \quad s \in (t_{n-1}, t_n). \tag{3.53}
\]

Next, we define
\[
R(t) := e^{-\| \nabla_x \tilde{u} \|_{L^\infty(\Omega)} (t-t_{n-1})} [\| \rho^*_{n-1} \|_{L^\infty(\Omega)}], \quad t \in [t_{n-1}, t_n]; \tag{3.54}
\]
hence,
\[
\int_{t_{n-1}}^t \left[\frac{\partial (\rho^* - R)}{\partial t}, \eta \right]_{H^1(\Omega)} + c(\tilde{u})(\rho^* - R, \eta) \, dt \\
= -\int_{t_{n-1}}^t R \int_\Omega (\nabla_x \cdot \tilde{u} + \| \nabla_x \tilde{u} \|_{L^\infty(\Omega)}) \eta \, dx \, dt, \quad \forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)). \tag{3.55}
\]

Then, similarly to (3.53), on choosing
\[
\eta(\cdot, t) = \chi_{[t_{n-1}, s]} e^{-\| \nabla_x \tilde{u} \|_{L^\infty(\Omega)} (t-t_{n-1})} [\rho^*(\cdot, t) - R(t)]_\ast \in [t_{n-1}, t_n],
\]
in (3.55) for \(s \in (t_{n-1}, t_n) \), we obtain that
\[
e^{-\| \nabla_x \tilde{u} \|_{L^\infty(\Omega)} (s-t_{n-1})} [\| \rho^*(\cdot, s) - R(s) \|_{L^2(\Omega)}^2] + 2\alpha \int_{t_{n-1}}^s \int_\Omega e^{-\| \nabla_x \tilde{u} \|_{L^\infty(\Omega)} (t-t_{n-1})} |\nabla_x [\rho^*(\cdot, t) - R(t)]_\ast|^2 \, dx \, dt \leq 0, \quad s \in (t_{n-1}, t_n). \tag{3.56}
\]

On noting (3.52), extending (3.53) and (3.56) from the interval \([t_{n-1}, t_n] \) to \([t_{n-1}, t_n] \) by letting \(s \to t_{n-1} \) in (3.53) and (3.56), and combining the resulting inequalities, we deduce that
\[
\rho^*(\cdot, t) \in [0, R(t)] \quad \text{for } t \in [t_{n-1}, t_n], \quad \text{and so } \rho^* \in \mathcal{Y}. \tag{3.57}
\]
As $a(\cdot, \cdot)$ is a symmetric continuous coercive bilinear functional on $X \times X$ and $\ell_a(v, \xi)(\cdot)$ is a continuous linear functional on X for fixed $v \in H^1(\Omega)$ and $\xi \in L^\infty(\Omega \times \mathbb{D})$, the Lax–Milgram theorem yields the existence of a unique solution $\psi^* \in X$ to (3.50b). Similarly, for $\delta \in (0, 1)$, as $b_\delta(\eta)(\cdot, \cdot)$ is a nonsymmetric continuous coercive bilinear functional on $\mathcal{V} \times \mathcal{V}$ for fixed $\eta \in L^2_{\geq 0}(\Omega)$, and $\ell_{b, \delta}(\eta, \varphi)(\cdot)$ is a continuous linear functional on \mathcal{V} for fixed $\eta \in \mathbb{T}^n$ with $\eta(\cdot, t_n) \in L^2_{\geq 0}(\Omega)$ and $\varphi \in X$, the Lax–Milgram theorem yields the existence of a unique solution $u^* \in \mathcal{V}$ to (3.50c). Therefore the overall procedure (3.50a–c) that, for $\rho_{\kappa, \alpha, L}^n \in L^1_{\geq 0}(\Omega)$ fixed, maps $(\tilde{u}, \tilde{v}) \in \mathcal{V} \times \mathcal{L}^2_{\alpha}(\Omega \times D)$ to $(\rho^*, u^*, \psi^*) \in \mathbb{T}^n \times \mathcal{V} \times X$, with $\rho^*(\cdot, t_n-1) = \rho_{\kappa, \alpha, L}^{n-1}$, is well defined.

Lemma 3.2. Let $\mathcal{T} : \mathcal{V} \times \mathcal{L}^2_{\alpha}(\Omega \times D) \to \mathcal{V} \times X$ denote the nonlinear map that takes the functions (\tilde{u}, \tilde{v}) to $(u^*, \psi^*) = \mathcal{T}(\tilde{u}, \tilde{v})$ via the procedure (3.50a–c). Then, the mapping \mathcal{T} has a fixed point. Hence, there exists a solution $(\rho_{\kappa, \alpha, L, \delta}^n, \psi_{\kappa, \alpha, L, \delta}^n) \in \mathbb{T}^n \times \mathcal{V} \times X$ to (3.49a–c).

Proof. Clearly, a fixed point of \mathcal{T} yields a solution of (3.49a–c). In order to show that \mathcal{T} has a fixed point, we apply Schauder’s fixed-point theorem; that is, we need to show that: (i) $\mathcal{T} : \mathcal{V} \times \mathcal{L}^2_{\alpha}(\Omega \times D) \to \mathcal{V} \times \mathcal{L}^2_{\alpha}(\Omega \times D)$ is continuous; (ii) \mathcal{T} is compact; and (iii) there exists a $C_* \in \mathbb{R}_{>0}$ such that

\[
\|\tilde{u}\|_{H^1(\Omega)} + \|\tilde{u}\|_{L^\infty(\Omega)} + \|
abla \cdot \tilde{u}\|_{L^\infty(\Omega)} + \|\tilde{v}\|_{L^2_{\alpha}(\Omega \times D)} \leq C_*
\]

(3.58)

for every $(\tilde{u}, \tilde{v}) \in \mathcal{V} \times \mathcal{L}^2_{\alpha}(\Omega \times D)$ and $x \in (0, 1]$ satisfying $x \mathcal{T}(\tilde{u}, \tilde{v}) = x \mathcal{T}(\tilde{u}, \tilde{v})$.

(i) Let $\{\tilde{u}^{(m)}, \tilde{v}^{(m)}\}_{m \in \mathbb{N}}$ be such that, as $m \to \infty$,

\[
\tilde{u}^{(m)} \to \tilde{u} \text{ strongly in } H^1_0(\Omega), \quad \tilde{v}^{(m)} \to \tilde{v} \text{ strongly in } L^\infty(\Omega),
\]

\[
\nabla_x \cdot \tilde{u}^{(m)} \to \nabla_x \cdot \tilde{u} \text{ strongly in } L^\infty(\Omega), \quad \tilde{v}^{(m)} \to \tilde{v} \text{ strongly in } L^2_{\alpha}(\Omega \times D).
\]

(3.59)

It follows immediately from (3.59), (3.43), (1.7a) and (3.1) that

\[
M^{\frac{1}{2}} \beta_1^R(\tilde{v}^{(m)}) \to M^{\frac{1}{2}} \beta_1^R(\tilde{v}) \text{ strongly in } L^r(\Omega \times D) \quad \text{as } m \to \infty
\]

(3.60)

for all $r \in [1, \infty)$. In order to prove that $\mathcal{T} : \mathcal{V} \times \mathcal{L}^2_{\alpha}(\Omega \times D) \to \mathcal{V} \times \mathcal{L}^2_{\alpha}(\Omega \times D)$ is continuous, we need to show that $(\tilde{u}^{(m)}, \tilde{v}^{(m)}) = \mathcal{T}(\tilde{u}^{(m)}, \tilde{v}^{(m)})$ is such that, as $m \to \infty$,

\[
\tilde{u}^{(m)} \to \tilde{u} \text{ strongly in } H^1_0(\Omega), \quad \tilde{v}^{(m)} \to \tilde{v} \text{ strongly in } L^\infty(\Omega),
\]

\[
\nabla_x \cdot \tilde{u}^{(m)} \to \nabla_x \cdot \tilde{u} \text{ strongly in } L^\infty(\Omega), \quad \tilde{v}^{(m)} \to \tilde{v} \text{ strongly in } L^2_{\alpha}(\Omega \times D),
\]

(3.61)

where $(\tilde{v}, \xi) := \mathcal{T}(\tilde{u}, \tilde{v})$. We have from the definition of \mathcal{T}, recall (3.50a–c), that, for all $m \in \mathbb{N}$, $(\tilde{u}^{(m)}, \tilde{v}^{(m)}, \tilde{\xi}^{(m)}) \in \mathbb{T}^n \times \mathcal{V} \times X$ is the unique solution to

\[
a(\tilde{\xi}^{(m)}(\cdot, \cdot), \varphi) = \ell_a(\tilde{u}^{(m)}, \beta_2^R(\tilde{\xi}^{(m)})(\cdot, \cdot))(\varphi) \quad \forall \varphi \in X,
\]

(3.62a)

\[
b_\delta(\tilde{\rho}^{(m)}(\cdot, t_n))(\tilde{u}^{(m)}(\cdot), w) = \ell_{b, \delta}(\tilde{\rho}^{(m)}, \tilde{\xi}^{(m)})(\cdot, \cdot)(w) \quad \forall w \in \mathcal{V},
\]

(3.62b)
where $\tilde{\rho}^{(m)} \in T^n$ is the unique solution to $	ilde{\rho}^{(m)}(\cdot, t^n) = \rho_{n, n, \xi}^{n-1}(\cdot)$ and

$$
\int_{t_{n-1}}^{t_n} \left[\left\langle \frac{\partial \tilde{\rho}^{(m)}}{\partial t}, \eta \right\rangle_{H^1(\Omega)} + c(\tilde{\rho}^{(m)}(\cdot, \eta)) \tilde{\rho}^{(m)}, \eta \right] \, dt = 0 \quad \forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)).
$$

(3.63)

(3.63) It follows from (3.59) that $\|\nabla \cdot \tilde{u}^{(m)}\|_{L^\infty(\Omega)} \leq C$, for all $m \in \mathbb{N}$. By choosing, for $s \in (t_{n-1}, t_n)$, the function $\eta(\cdot, t) = \chi_{(t_{n-1}, s)} e^{-C_s(t-t_{n-1})} \tilde{\rho}^{(m)}(\cdot, t)$ in (3.63) yields, on noting (3.51), the first two bounds in

$$
\|\tilde{\rho}^{(m)}\|^2_{C([t_{n-1}, t_n]; L^1(\Omega))} + \alpha \|\tilde{\rho}^{(m)}\|^2_{L^2(t_{n-1}, t_n; H^1(\Omega))}
+ \|\tilde{\rho}^{(m)}\|^2_{L^2(t_{n-1}, t_n; L^2(\Omega))} + \left\| \frac{\partial \tilde{\rho}^{(m)}}{\partial t} \right\|^2_{L^2(t_{n-1}, t_n; H^1(\Omega))} \leq C,
$$

(3.64)

where, here and below, C is independent of m. The third bound in (3.64) follows from applying the bound (3.57) to (3.63) with \tilde{u} in (3.54) replaced by $\tilde{\rho}^{(m)}$ and noting (3.59). The fourth bound in (3.64) follows immediately from the first two bounds in (3.64), (3.59) and (3.63). Choosing $\varphi = \xi^{(m)}$ in (3.62a) yields, on noting (3.35a,b) and (3.59), that

$$
\|\xi^{(m)}\|^2_{H^1_0(\Omega \times X)} \leq C.
$$

(3.65)

Choosing $w = \xi^{(m)}$ in (3.62b) yields, on noting (3.45), (3.46), (3.33a,b), $\rho^{(m)}(\cdot, t_n) \in L^2(\Omega), \rho^{n-1}_{k, n, \xi} \in L^1(\Omega)$, (3.3), (3.65), (3.63), (3.65), (2.3) and (3.64), that

$$
\|\xi^{(m)}\|^2_{H^1(\Omega)} + \|\nabla \cdot \xi^{(m)}\|^2_{H^1(\Omega)} \leq C.
$$

(3.66)

It follows from (3.64), (3.65), (3.66), (3.11), (3.43), (2.3), (2.5) and the compactness of $\tilde{\rho}$ in V and $X \equiv H^1_0(\Omega \times D)$ in $L^2(\Omega \times D)$ that there exists a subsequence $\{\tilde{\rho}^{(m_k)}, \xi^{(m_k)}\}_{m_k \in \mathbb{N}}$ and functions $\tilde{\rho}, \xi \in T^n \times V \times X$ such that, as $m_k \to \infty$, for any $r \in [1, \infty),

$$
\tilde{\rho}^{(m_k)} \to \tilde{\rho} \quad \text{weakly in } L^2(t_{n-1}, t_n; H^1(\Omega)),
$$

(3.67a)

$$
\frac{\partial \tilde{\rho}^{(m_k)}}{\partial t} \to \frac{\partial \tilde{\rho}}{\partial t} \quad \text{weakly in } L^2(t_{n-1}, t_n; H^1(\Omega)),
$$

(3.67b)

$$
\tilde{\rho}^{(m_k)}(\cdot, t_n) \to \tilde{\rho}(\cdot, t_n) \quad \text{weakly in } L^2(\Omega),
$$

(3.67c)

$$
\xi^{(m_k)} \to \xi \quad \text{weakly in } H_0^1(\Omega \cap L^\infty(\Omega)),
$$

(3.67d)

$$
\nabla \cdot \xi^{(m_k)} \to \nabla \cdot \xi \quad \text{weakly in } H^2(\Omega),
$$

(3.67e)

$$
\nabla \cdot \xi^{(m_k)} \to \nabla \cdot \xi \quad \text{weakly in } L^\infty(\Omega),
$$

(3.67f)

where $\tilde{\rho}^{(m_k)} \in T^n$ is the unique solution to $\tilde{\rho}^{(m_k)}(\cdot, t_{n-1}) = \rho_{n, n, \xi}^{n-1}(\cdot)$ and

$$
\int_{t_{n-1}}^{t_n} \left[\left\langle \frac{\partial \tilde{\rho}^{(m_k)}}{\partial t}, \eta \right\rangle_{H^1(\Omega)} + c(\tilde{\rho}^{(m_k)}(\cdot, \eta)) \tilde{\rho}^{(m_k)}, \eta \right] \, dt = 0 \quad \forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)).
$$

(3.63)
\(\xi^{(m_k)} \to \xi \) weakly in \(H^1_M(\Omega \times D) \),

strongly in \(L^2_M(\Omega \times D) \),

\(M^\frac{1}{2} \beta^L_0(\xi^{(m_k)}) \to M^\frac{1}{2} \beta^L_0(\xi) \) strongly in \(L'(\Omega \times D) \),

\(C_i(\xi^{(m_k)}) \to C_i(\xi) \) strongly in \(L^2(\Omega) \), \(i = 1, \ldots, K \). (3.67h)

We deduce from (3.63), (3.67a,b) and (3.59) that \(\tilde{\rho} \in \Upsilon^n \) is the unique solution to \(\tilde{\rho}(\cdot, t_{n-1}) = \rho^{n-1}_{k,a,L,\delta}(\cdot) \) and

\[
\int_{t_{n-1}}^{t_n} \left[\frac{\partial \tilde{\rho}}{\partial t}, \eta \right]_{H^1(\Omega)} + c(\tilde{\psi})(\tilde{\rho}, \eta) \, dt = 0 \quad \forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)). \tag{3.68}
\]

Choosing \(\eta = 1 \) in (3.68), on noting (3.31) and (3.48), yields that

\[
\int_{t_{n-1}}^{t_n} \rho(\cdot, t_n) \, dx = \int_{t_{n-1}}^{t_n} \rho^{n-1}_{k,a,L,\delta} \, dx \leq \int_{t_{n-1}}^{t_n} \rho^{n-1}_{k,a,L,\delta} \, dx. \tag{3.69}
\]

It follows from (3.62a), (3.35a,b), (3.67f), (3.59) and (3.60) that \(\xi, \tilde{\psi} \in X \) and \(\tilde{\eta} \in V \) satisfy

\[a(\xi, \varphi) = a_{\ell}(\tilde{\eta}, \beta^L_0(\tilde{\psi}))(\varphi) \quad \forall \varphi \in C^\infty(\Omega \times D). \tag{3.70}
\]

Then, noting that \(a(\cdot, \cdot) \) is a continuous bilinear functional on \(X \times X \), that \(a_{\ell}(\cdot, \beta^L_0(\cdot)) \) is a continuous linear functional on \(X \), and recalling (3.8), we deduce that \(\xi \in X \) is the unique solution of (3.70) for all \(\varphi \in X \). It further follows from (3.62b), (3.45), (3.46), (3.33a,b) and (3.67a,c,d,e,f,g,h) that \(\psi \in V \) is the unique solution to

\[b_{\ell}(\tilde{\rho}(\cdot, t_n))(\psi, w) = b_{\ell,\delta}(\tilde{\rho}, \xi)(w) \quad \forall w \in V. \tag{3.71}
\]

Combining (3.70) with \(\varphi \in X \) with (3.71) and (3.68), we have that \((\psi, \xi) = \mathcal{T}(\tilde{\eta}, \tilde{\psi}) \in Y \times X \). As \((\psi, \xi) \) is unique for fixed \((\tilde{\eta}, \tilde{\psi}) \), the whole sequence converges in (3.67a-h), and so (3.61) holds. Therefore the mapping \(\mathcal{T} : \tilde{V} \times L^2_M(\Omega \times D) \to \tilde{V} \times L^2_M(\Omega \times D) \) is continuous.

(ii) Since the embeddings \(Y \hookrightarrow \tilde{Y} \) and \(X \hookrightarrow L^2_M(\Omega \times D) \) are compact, we directly deduce that the mapping \(\mathcal{T} : \tilde{V} \times L^2_M(\Omega \times D) \to \tilde{V} \times L^2_M(\Omega \times D) \) is compact. It therefore remains to show that (iii) holds.

(iii) Let us suppose that \((\tilde{\eta}, \tilde{\psi}) = \mathcal{T}(\tilde{\eta}, \tilde{\psi}) \); then, \((\tilde{\rho}, \tilde{\eta}, \tilde{\psi}) \in \Upsilon^n \times \tilde{Y} \times X \) satisfies \(\tilde{\rho}(\cdot, t_{n-1}) = \rho^{n-1}_{k,a,L,\delta}(\cdot) \) and

\[
\int_{t_{n-1}}^{t_n} \left[\frac{\partial \tilde{\rho}}{\partial t}, \eta \right]_{H^1(\Omega)} + c(\tilde{\psi})(\tilde{\rho}, \eta) \, dt = 0 \quad \forall \eta \in L^2(t_{n-1}, t_n; H^1(\Omega)), \tag{3.72a}
\]

\[b_{\ell}(\tilde{\rho}(\cdot, t_n))(\tilde{\eta}, w) = b_{\ell,\delta}(\tilde{\rho}, \tilde{\psi})(w) \quad \forall w \in V, \tag{3.72b}
\]

\[a(\psi, \varphi) = a_{\ell}(\tilde{\eta}, \beta^L_0(\tilde{\psi}))(\varphi) \quad \forall \varphi \in X. \tag{3.72c}
\]
Choosing \(w = \tilde{u} \) in (3.72b) yields, as \(\varkappa \in (0, 1] \), that

\[
\frac{\varkappa}{2} \int_{\Omega} \left[\tilde{\rho}(\cdot, t_n) \left| \tilde{u} \right|^2 + \rho_{\kappa, \alpha, L}^{n-1} \tilde{u} - u_{\kappa, \alpha, L}^{n-1} \right|^2 - \rho_{\kappa, \alpha, L}^{n-1} |u_{\kappa, \alpha, L}^{n-1}|^2 \right] \, dx \\
+ \Delta t \mu^S \int_{\Omega} |D(\tilde{u})|^2 \, dx + \Delta t \left(\mu^B - \frac{\mu^S}{d} \right) \int_{\Omega} |\nabla_x \cdot \tilde{u}|^2 \, dx \\
+ \Delta t \delta \sum_{|\lambda| = 2} \int_{\Omega} \left[\left| \frac{\partial \tilde{\lambda}}{\partial x_1} \tilde{u} \right|^2 + \left| \frac{\partial \tilde{\lambda}}{\partial x_1} \nabla_x \cdot \tilde{u} \right|^2 \right] \, dx \\
\leq \varkappa \Delta t \left[\int_{\Omega} \tilde{\rho}(\cdot, t_n) f_n \cdot \tilde{u} \, dx - k \sum_{i=1}^{K} \int_{\Omega} C_i(M \tilde{\psi}) : \nabla_x \tilde{u} \, dx \right] \\
+ \varkappa \int_{\Omega} \left(\int_{t_{n-1}}^{t_n} p_n(\tilde{\rho}) \, dt \right) + \Delta t k(K + 1) \int_{\Omega} M \tilde{\psi} \, d\tilde{u} \\
- 2 \varkappa \Delta t^2 \int_{\Omega} \left(\int_{D} M \beta^x(\tilde{\psi}) \, d\tilde{u} \right) \nabla_x \cdot \tilde{u} \, dx. \tag{3.73}
\]

On recalling (3.5), we choose \(\eta(\cdot, t) = \chi_{[t_{n-1}, t_n]} P_{\kappa}(\tilde{\rho}(\cdot, t) + \varsigma) \) in (3.72a), for any \(s \in (t_{n-1}, t_n] \) and any fixed \(\varsigma \in \mathbb{R} > 0 \), to obtain, on noting (3.31), that

\[
\int_{\Omega} P_{\kappa}(\tilde{\rho}(\cdot, s)) \, dx + \alpha \kappa \int_{t_{n-1}}^{t_n} \left((4 \tilde{\rho}^2 + \Gamma \tilde{\rho}^r - 2) |\nabla_x \tilde{\rho}|^2 \right) \, dx \, dt \\
\leq \int_{\Omega} P_{\kappa}(\tilde{\rho}(\cdot, s)) \, dx + \alpha \int_{t_{n-1}}^{t_n} \int_{\Omega} P_{\kappa}^n(\tilde{\rho} + \varsigma) \, dx \, dt \\
= \int_{\Omega} P_{\kappa}(\rho_{\kappa, \alpha, L}^{n-1} + \varsigma) \, dx + \int_{t_{n-1}}^{t_n} \int_{\Omega} \tilde{\rho} \tilde{u} \cdot \nabla_x P_{\kappa}^n(\tilde{\rho} + \varsigma) \, dx \, dt \\
= \int_{\Omega} P_{\kappa}(\rho_{\kappa, \alpha, L}^{n-1} + \varsigma) \, dx + \int_{t_{n-1}}^{t_n} \left(\int_{\Omega} \left[P_{\kappa}(\tilde{\rho} + \varsigma) - \tilde{\rho} P_{\kappa}^n(\tilde{\rho}) \right] \right) \nabla_x \cdot \tilde{u} \, dx. \tag{3.74}
\]

As \(\rho_{\kappa, \alpha, L}^{n-1} \in L^\infty(\Omega), \tilde{\rho} \in L^\infty(t_{n-1}, t_n; L^\infty(\Omega)) \) and \(\tilde{u} \in \mathcal{Y} \), one can pass to the limit \(\varsigma \to 0^+ \) in (3.74) using Lebesgue’s dominated convergence theorem to obtain, for any \(s \in (t_{n-1}, t_n] \), that

\[
\int_{\Omega} P_{\kappa}(\tilde{\rho}(\cdot, s)) \, dx + \alpha \kappa \int_{t_{n-1}}^{t_n} \left[\| \nabla_x (\tilde{\rho}^2) \|^2_{L^2(\Omega)} + \frac{4}{\Gamma} \| \nabla_x (\tilde{\rho}^r) \|^2_{L^2(\Omega)} \right] \, dt \\
\leq \int_{\Omega} P_{\kappa}(\rho_{\kappa, \alpha, L}^{n-1} + \varsigma) \, dx + \int_{t_{n-1}}^{t_n} \left(\int_{\Omega} \left[P_{\kappa}(\tilde{\rho}) - \tilde{\rho} P_{\kappa}^n(\tilde{\rho}) \right] \right) \nabla_x \cdot \tilde{u} \, dx \\
\leq \int_{\Omega} P_{\kappa}(\rho_{\kappa, \alpha, L}^{n-1}) \, dx - \int_{\Omega} \left(\int_{t_{n-1}}^{t_n} p_n(\tilde{\rho}) \, dt \right) \nabla_x \cdot \tilde{u} \, dx, \tag{3.75}
\]

where we have noted (3.48) and (3.5) for the final inequality. We remark that we needed to choose \(P_{\kappa}^n(\tilde{\rho}(\cdot, t) + \varsigma) \), as opposed to \(P_{\kappa}^n(\tilde{\rho}(\cdot, t)) \), in the testing procedure.
Choosing \(\varphi(x, q) = \bar{\varphi}(x) \otimes 1(q) \) in (3.72c) yields that

\[
\frac{\kappa}{2} \left[\| \nabla \bar{\varphi} \|_{L^2(\Omega)}^2 + \| \nabla \varphi - u_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 \right] + \Delta t \varepsilon \| \nabla \bar{\varphi} \|_{L^2(\Omega)}^2 \\
= \frac{\kappa}{2} \| \varphi^{n-1}_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 + \Delta t \int_{\Omega} \left(\int_{D} M(\hat{\varphi}) \, dq \right) \nabla \bar{\varphi} \cdot \nabla \varphi \, dx
\]

(3.77)

Combining (3.73), (3.75) for \(s = t_n \) and (3.77) yields, on noting (3.3), (3.4) and (3.76), that, for all \(\kappa \in (0, 1] \),

\[
\frac{\kappa}{2} \int_{\Omega} \left[\rho(\cdot, t_n) \| \tilde{u} \|_{L^2(\Omega)}^2 + \rho^{n-1}_{\kappa, \alpha, L} \| \tilde{u} - u^{n-1}_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 \right] \, dx + \kappa \int_{\Omega} P_{\kappa}(\rho(\cdot, t_n)) \, dx \\
+ \Delta t \frac{\rho^{n-1}_{\kappa, \alpha, L}}{\kappa} \int_{t_{n-1}}^{t_n} \left[\| \nabla_x (\rho^{n-1}_{\kappa, \alpha, L}) \|_{L^2(\Omega)}^2 + \frac{4}{\kappa} \| \nabla \varphi \|_{L^2(\Omega)}^2 \right] \, dt + \Delta t \mu^S \kappa_0 \| \tilde{\varphi} \|_{H^1(\Omega)}^2 \\
+ \Delta t \sum_{\lambda = 2}^{\kappa} \int_{\Omega} \left[\left(\frac{\partial}{\partial x_1} \tilde{u} \right) \cdot \lambda \right] \, dx \\
+ \Delta t \sum_{\lambda = 2}^{\kappa} \frac{3}{\kappa} \left[\| \tilde{\varphi} \|_{L^2(\Omega)}^2 + \| \varphi - \varphi^{n-1}_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 \right] + 2 \Delta t \frac{3}{\kappa} \| \nabla \bar{\varphi} \|_{L^2(\Omega)}^2 \\
\leq \frac{\kappa}{2} \int_{\Omega} \rho^{n-1}_{\kappa, \alpha, L} \| u^{n-1}_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 \, dx + \kappa \int_{\Omega} P_{\kappa}(\rho^{n-1}_{\kappa, \alpha, L}) \, dx \\
+ \kappa \Delta t \int_{\Omega} \rho^{n-1}_{\kappa, \alpha, L} \| u^{n-1}_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 \, dx \\
+ \Delta t \int_{\Omega} \rho(\cdot, t_n) \| \tilde{u} \|_{L^2(\Omega)}^2 \, dx + \Delta t \int_{\Omega} \rho^{n-1}_{\kappa, \alpha, L} \| u^{n-1}_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 \, dx \\
+ \kappa \Delta t \int_{\Omega} \left[\frac{\kappa}{2} \int_{\Omega} \nabla \varphi \cdot \nabla \tilde{u} \, dx - \sum_{i=1}^{K} \int_{\Omega} C_i(\hat{\varphi}) \cdot \nabla \varphi \, dx \right].
\]

(3.78)

Choosing \(\varphi = [F^L_\delta]'(\tilde{\varphi}) \) in (3.72c) and noting (3.43) implies that

\[
\int_{\Omega \times D} M(\hat{\varphi}) \left(F^L_\delta(\tilde{\varphi}) - F^L_\delta(\kappa \varphi^{n-1}_{\kappa, \alpha, L}) \right) + \frac{1}{2L} \| \tilde{\varphi} - \kappa \varphi^{n-1}_{\kappa, \alpha, L} \|_{L^2(\Omega)}^2 \, dq \, dx \\
+ \frac{\Delta t}{4 \lambda} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \int_{\Omega \times D} M(\varphi) \nabla \varphi \cdot \nabla \varphi (\hat{F}^L_\delta)'(\tilde{\varphi}) \, dq \, dx \\
+ \Delta t \int_{\Omega \times D} M(\tilde{\varphi}) \nabla \tilde{\varphi} \cdot \nabla (\hat{F}^L_\delta)'(\tilde{\varphi}) \, dq \, dx
\]
where, in deriving the final inequality, we have noted (3.69). It is easy to see that the bounds (3.80) and (3.81), on noting (3.42b) and, from (3.43) and (1.19), yields, for all \(\kappa \in (0, 1) \) and \(\epsilon \in \mathbb{R}_{>0} \), that

\[
\frac{\kappa}{4} \int_{\Omega} \left[\rho(\cdot, t_n) [\bar{u}]^2 + \rho_{\kappa, \alpha, L}^{-1} [\bar{u} - u_{\kappa, \alpha, L}^{-1}]^2 \right] dx + \kappa \int_{\Omega} P_{\kappa}(\bar{\rho}(\cdot, t_n)) dx \\
+ \frac{\kappa}{2L} \int_{\Omega} \left[\| \nabla \bar{\psi} \|^2_{L^2(\Omega)} + \frac{\kappa}{4L} \| \nabla x (\bar{\rho}^2) \|^2_{L^2(\Omega)} \right] dt \\
+ k \int_{\Omega} \int_{\Omega \times D} M \left(F^L_{\bar{\psi}}(\bar{\psi}) + \frac{1}{2L} \bar{\psi} - \kappa \bar{\psi}^{-1}_{\kappa, \alpha, L} \right) dx \, dt \\
+ \Delta t \int_{\Omega} \left[\int_{|A| = 2} \left(\frac{\partial^2 \bar{\psi}}{\partial x^2} \bar{\psi} \right) \right] dx \\
+ \frac{\kappa}{4L} \int_{\Omega} \int_{\Omega \times D} M \left(\| \nabla x \bar{\psi} \|^2_{L^2(\Omega)} \right) dx \, dt
\]

\[
\leq \frac{\kappa}{2} \int_{\Omega} (\rho_{\kappa, \alpha, L})^{-1} [u_{\kappa, \alpha, L}]^2 dx + \kappa \int_{\Omega} P_{\kappa}(\rho_{\kappa, \alpha, L}) dx + k \int_{\Omega \times D} M \bar{F}^L_{\bar{\psi}}(\kappa \bar{\psi}^{-1}_{\kappa, \alpha, L}) dx \\
+ \Delta t \int_{\Omega} \left[\rho(\cdot, t_n) f^n \right] dx \\
\leq \frac{\kappa}{2} \int_{\Omega} \rho_{\kappa, \alpha, L}^{-1} [u_{\kappa, \alpha, L}]^2 dx + \kappa \int_{\Omega} P_{\kappa}(\rho_{\kappa, \alpha, L}) dx + k \int_{\Omega \times D} M \bar{F}^L_{\bar{\psi}}(\kappa \bar{\psi}^{-1}_{\kappa, \alpha, L}) dx \\
+ \frac{\kappa}{2} \int_{\Omega} \rho_{\kappa, \alpha, L}^{-1} [u_{\kappa, \alpha, L}]^2 dx + \frac{\kappa}{2} \int_{\Omega} \rho_{\kappa, \alpha, L}^{-1} [u_{\kappa, \alpha, L}]^2 dx + \frac{\Delta t}{2} \int_{\Omega} \left[\rho(\cdot, t_n) [\bar{u}]^2 \right] dx + \frac{1}{\kappa} \int_{\Omega \times D} [\bar{u}]^2 dx
\]

\[
(3.80)
\]

where, in deriving the final inequality, we have noted (3.69). It is easy to see that \(F^L_{\bar{\psi}}(s) \) is nonnegative for all \(s \in \mathbb{R} \), with \(F^L_{\bar{\psi}}(1) = 0 \). Furthermore, for any \(\kappa \in (0, 1) \), \(F^L_{\bar{\psi}}(\kappa s) \leq F^L_{\bar{\psi}}(s) \) if \(s < 0 \) or \(1 \leq \kappa s \), and also \(F^L_{\bar{\psi}}(\kappa s) \leq F^L_{\bar{\psi}}(0) \leq 1 \) if \(0 \leq \kappa s \leq 1 \). Thus we deduce that

\[
F^L_{\bar{\psi}}(\kappa s) \leq F^L_{\bar{\psi}}(s) + 1 \quad \forall s \in \mathbb{R}, \forall \kappa \in (0, 1). \quad (3.81)
\]

Hence, the bounds (3.80) and (3.81), on noting (3.42b) and, from (3.43) and (1.19), that \(\beta^L(\cdot) \leq L \), give rise, for \(\epsilon \) sufficiently small, to the desired bound (3.58) with \(C_\epsilon \) dependent only on \(\delta, L, \Delta t, M, k, \mu^\epsilon, C_0, a_0, \int_{\Omega \times D} [\rho_{\kappa, \alpha, L}^{-1} (\bar{u})^2] dx \), and \(\psi_{\kappa, \alpha, L}^{-1} \).
Therefore (iii) holds, and so \mathcal{T} has a fixed point, proving existence of a solution to (3.49a–c).

Similarly to (3.77), choosing $\varphi(x,q) = \varphi^n_{k,\alpha,L,\delta}(x) \otimes 1(q)$ in (3.49c), where $\varphi^n_{k,\alpha,L,\delta}(x) := \int_D M(q) \hat{\psi}^n_{k,\alpha,L,\delta}(x,q) \, dq \, dx$, yields that

$$\frac{1}{2} \left[\| \varphi^n_{k,\alpha,L,\delta} \|_{L^2(\Omega)}^2 + \| \varphi^n_{k,\alpha,L,\delta} - \varphi^{n-1}_{k,\alpha,L} \|_{L^2(\Omega)}^2 \right] + \Delta t \varepsilon \| \nabla_x \varphi^n_{k,\alpha,L,\delta} \|_{L^2(\Omega)}^2$$

$$= \frac{1}{2} \| \varphi^{n-1}_{k,\alpha,L} \|_{L^2(\Omega)}^2$$

$$+ \Delta t \int_\Omega \left(\int_D M \beta^2_{\epsilon}(\varphi^n_{k,\alpha,L,\delta}) \, dq \right) u^n_{k,\alpha,L,\delta} : \nabla_x u^n_{k,\alpha,L,\delta} \, dx. \tag{3.82}$$

Choosing $w = u^n_{k,\alpha,L,\delta}$ in (3.49b) and $\eta = P^n_k(\rho^{[\Delta t]}_{\kappa,\alpha,L,\delta})$ in (3.49a), and combining with (3.82), yields, similarly to (3.78), that

$$\frac{1}{2} \int_\Omega \left[\rho^{[\Delta t]}_{k,\alpha,L,\delta}(\cdot,t_n) \| u^n_{k,\alpha,L,\delta} \|_{L^2(\Omega)}^2 + \rho^{n-1}_{k,\alpha,L} \| u^n_{k,\alpha,L,\delta} - u^{n-1}_{k,\alpha,L} \|_{L^2(\Omega)}^2 \right] \, dx$$

$$+ \int_\Omega \rho(n_{k,\alpha,L,\delta}(\cdot,t_n) \, dx$$

$$+ \alpha \kappa \int_{t_n}^{t_{n+1}} \left[\| \nabla_x [\rho^{[\Delta t]}_{k,\alpha,L,\delta}] \|_{L^2(\Omega)}^2 + \frac{4}{1} \| \nabla_x [\rho^{[\Delta t]}_{k,\alpha,L,\delta}]) \|_{L^2(\Omega)}^2 \right] \, dt$$

$$+ \Delta t \mu \sum_{|\lambda| = 2} \int_\Omega \left[\frac{\partial^{[\lambda]}_{\kappa,\alpha,L,\delta}}{\partial x_1} \cdots \frac{\partial^{[\lambda]}_{\kappa,\alpha,L,\delta}}{\partial x_d} \right] \, dx$$

$$+ \sum_{|\lambda| = 2} \left[\| \nabla^{[\lambda]}_{\kappa,\alpha,L,\delta} \|_{L^2(\Omega)}^2 + \| \nabla^{[\lambda]}_{\kappa,\alpha,L,\delta} - \nabla^{n-1}_{\kappa,\alpha,L} \|_{L^2(\Omega)}^2 \right] + 2 \Delta t \varepsilon \| \nabla_x u^n_{k,\alpha,L,\delta} \|_{L^2(\Omega)}^2 \tag{3.83}$$

Choosing $\varphi = [F^n_{\delta}] \hat{\psi}^n_{k,\alpha,L,\delta}$ in (3.49e), combining with (3.83) and noting (3.42a), yields, similarly to (3.80), that, for $\varsigma \in \mathbb{R}_{>0}$ sufficiently small, the solution
where C is independent of δ and Δt.

On choosing, for any $s \in (t_{n-1}, t_n)$, $\eta(\cdot, t) = \chi_{[t_{n-1}, t]} n_{\kappa, \alpha, L, \delta}(\cdot, t)$ for $\varrho = 2$ and $\frac{\varrho}{2}$ in (4.3.9a), we obtain, on noting (3.31), (3.48) and (3.84), that

$$
\frac{1}{\varrho} \| \nabla \omega_{n_{\kappa, \alpha, L, \delta}, \theta} \|^2_{L^2(\Omega)} + \frac{4\alpha(\varrho - 1)}{\varrho^2} \int_{t_{n-1}}^{t_n} \| \nabla \omega \|_{L^2(\Omega)}^2 \, dt \\
= \frac{1}{\varrho} \left[\| \nabla u_{n_{\kappa, \alpha, L, \delta}} \|^2_{L^2(\Omega)} + (\varrho - 1) \int_{t_{n-1}}^{t_n} \int_{\Omega} u_{n_{\kappa, \alpha, L, \delta}} \cdot \nabla \omega \|_{L^2(\Omega)} \, dt \right]
$$
\[
\leq \frac{1}{\vartheta} \left[\| \rho_{n-1}^{n-1} \|_{L^\infty(\Omega)} + \Delta t \| u_{n-1}^{n} \|_{L^2(\Omega)}^2 + \frac{(\vartheta - 1)^2}{4} \int_{t_{n-1}}^{t_n} \| \nabla \varphi (\rho_{n}^{n}) \|_{L^2(\Omega)}^2 \, dt \right] \leq C, \tag{3.85}
\]

where \(C \) is independent of \(\delta \) and \(\Delta t \). On denoting by \(\bar{\varphi} \), the mean value of the function \(\varphi \) over \(\Omega \), it follows from a Poincaré inequality, (3.84) and (3.85) for \(\vartheta = \frac{2}{\vartheta} \) that

\[
\| \rho_{n}^{n} \|_{L^\infty(\Omega)} = \| (\rho_{n}^{n})_{\Gamma} \|_{L^\infty(\Omega)} \leq 2 \| (I - \bar{\varphi}) (\rho_{n}^{n}) \|_{L^2(\Omega)} + \int_{t_{n-1}}^{t_n} \| \rho_{n}^{n} \|_{L^\infty(\Omega)} \| \nabla \varphi (\rho_{n}^{n}) \|_{L^2(\Omega)} \, dt \leq C \| \rho_{n}^{n} \|_{L^\infty(\Omega)} + C \| \nabla \varphi (\rho_{n}^{n}) \|_{L^2(\Omega)} \tag{3.86}
\]

Next, we obtain from (3.31), (3.2), (3.84) and (3.85) for \(\vartheta = \frac{2}{\vartheta} \), on recalling that \(\Gamma \geq 8 \), that

\[
\left| \int_{t_{n-1}}^{t_n} c(u_{n}^{n})(\rho_{n}^{n}, \eta) \, dt \right| \leq \alpha \| \rho_{n}^{n} \|_{L^2(\Omega)} \| \nabla \varphi (\rho_{n}^{n}) \|_{L^2(\Omega)} \tag{3.87}
\]

Hence, we deduce from (3.85) for \(\vartheta = 2 \) and \(\frac{2}{\vartheta} \), (3.87), on noting (3.49a), (3.84), (3.5) and (3.86) that \(\rho_{n}^{n} \) is such that

\[
\| \rho_{n}^{n} \|_{L^\infty(\Omega)} = \| \rho_{n}^{n} \|_{L^\infty(\Omega)} \tag{3.88}
\]

where \(C \) is independent of \(\delta \) and \(\Delta t \). Furthermore, we deduce from (3.2) and the last bound in (3.88) that

\[
\| \rho_{n}^{n} \|_{L^\infty(\Omega)} \leq C\| \rho_{n}^{n} \|_{L^\infty(\Omega)} \tag{3.89}
\]

Finally, it follows from (3.1) with \(v = \frac{4\pi}{3} \), \(r = \frac{1}{2} \) and \(s = 3\Gamma \) yielding \(\vartheta = \frac{2}{3} \), the
There exists a subsequence (not indicated) of the sequence of func-
tions $\rho^{[\Delta t],n}_{\kappa,\alpha,L,\delta}$ such that, as $\delta \to 0_+$ in (3.49a–c), to deduce the existence of a solution
\[
\{\{\rho^{[\Delta t],n}_{\kappa,\alpha,L}, u^n_{\kappa,\alpha,L}, \psi^n_{\kappa,\alpha,L}\}\}_{n=1}^N \text{ to (P)}_{\kappa,\alpha,L}.
\]

Lemma 3.3. There exists a subsequence (not indicated) of the sequence of func-
tions $\{\{\rho^{[\Delta t],n}_{\kappa,\alpha,L}, u^n_{\kappa,\alpha,L}, \psi^n_{\kappa,\alpha,L}\}\}_{n=1}^N \in Y^n$ with $\rho^{[\Delta t],n}_{\kappa,\alpha,L} \to \rho^{[\Delta t],n}_{\kappa,\alpha,L}$ strongly in $L^2_{\kappa,\alpha,L}$, $u^n_{\kappa,\alpha,L} \in H_0^1(\Omega)$ and $\psi^n_{\kappa,\alpha,L} \in X \cap Z_2$, $n = 1, \ldots, N$, with
\[
\rho^{[\Delta t],n}_{\kappa,\alpha,L}(\cdot, t_n) \to \rho^{n}_{\kappa,\alpha,L}(\cdot),
\]
\[
u^{[\Delta t],n}_{\kappa,\alpha,L}(\cdot, t_n) \to \nu^{n}_{\kappa,\alpha,L}(\cdot),
\]
\[
\delta \frac{\partial^{[\Delta t],n}_{\kappa,\alpha,L}(\cdot, t_n)}{\partial t^\kappa x^\lambda_1 \cdots \partial^\lambda_d x^\lambda_d} \to 0
\]
\[
\delta \frac{\partial^{[\Delta t],n}_{\kappa,\alpha,L}(\cdot, t_n)}{\partial t^\kappa x^\lambda_1 \cdots \partial^\lambda_d x^\lambda_d} \to 0
\]
\[
\delta \frac{\partial^{[\Delta t],n}_{\kappa,\alpha,L}(\cdot, t_n)}{\partial t^\kappa x^\lambda_1 \cdots \partial^\lambda_d x^\lambda_d} \to 0
\]
\[
\delta \frac{\partial^{[\Delta t],n}_{\kappa,\alpha,L}(\cdot, t_n)}{\partial t^\kappa x^\lambda_1 \cdots \partial^\lambda_d x^\lambda_d} \to 0
\]
\[
\delta \frac{\partial^{[\Delta t],n}_{\kappa,\alpha,L}(\cdot, t_n)}{\partial t^\kappa x^\lambda_1 \cdots \partial^\lambda_d x^\lambda_d} \to 0
\]
where \(r \in [1, \infty) \) if \(d = 2 \) and \(r \in [1, 6) \) if \(d = 3 \), and \(v \in [1, \frac{d}{r}) \); and

\[
\begin{align*}
M^\frac{1}{2} \nabla_q \tilde{\psi}^n_{\kappa, \alpha, L, \delta} & \to M^\frac{1}{2} \nabla_q \tilde{\psi}^n_{\kappa, \alpha, L} \quad \text{weakly in } L^2(\Omega \times D), \\
M^\frac{1}{2} \nabla_s \tilde{\psi}^n_{\kappa, \alpha, L, \delta} & \to M^\frac{1}{2} \nabla_s \tilde{\psi}^n_{\kappa, \alpha, L} \quad \text{weakly in } L^2(\Omega \times D), \\
M^\frac{1}{2} \tilde{\psi}^n_{\kappa, \alpha, L, \delta} & \to M^\frac{1}{2} \tilde{\psi}^n_{\kappa, \alpha, L} \quad \text{strongly in } L^2(\Omega \times D), \\
M^\frac{1}{2} \beta^t (\tilde{\psi}^n_{\kappa, \alpha, L, \delta}) & \to M^\frac{1}{2} \beta^t (\tilde{\psi}^n_{\kappa, \alpha, L}) \quad \text{strongly in } L^s(\Omega \times D), \\
C_i (M \tilde{\psi}^n_{\kappa, \alpha, L, \delta}) & \to C_i (M \tilde{\psi}^n_{\kappa, \alpha, L}) \quad \text{strongly in } L^2(\Omega), \quad i = 1, \ldots, K, \\
\tilde{\psi}^n_{\kappa, \alpha, L, \delta} & \to \tilde{\psi}^n_{\kappa, \alpha, L} \quad \text{weakly in } H^1(\Omega),
\end{align*}
\]

where \(s \in [1, \infty) \). Furthermore, \((\rho^{[\Delta t]}_{\kappa, \alpha, L}, \tilde{\psi}^n_{\kappa, \alpha, L}) \) solves (3.27a–c) for \(n = 1, \ldots, N \). Hence, there exists a solution \(\{(\rho^{[\Delta t]}_{\kappa, \alpha, L}, \tilde{\psi}^n_{\kappa, \alpha, L})\}_{n=1}^N \) to \((\text{P}^{\Delta t}_{\kappa, \alpha})\).

Proof. The weak convergence results (3.92a,c,d) follow immediately from (3.88).
The strong convergence results (3.92b) follow from (3.92a), (3.11), (3.90) and the interpolation result (3.1). Hence \(\rho^{[\Delta t]}_{\kappa, \alpha, L} \in Y^n \) with \(\rho^{[\Delta t]}_{\kappa, \alpha, L}(\cdot) = \rho^{[\Delta t]}_{\kappa, \alpha, L}(\cdot, t_n) \in L^2(\Omega) \)
as \(\rho^{[\Delta t]}_{\kappa, \alpha, L} \in Y^n \). The weak convergence result (3.93a) and the strong convergence results (3.93b,c) follow immediately from (3.84), and hence \(\tilde{\psi}^n_{\kappa, \alpha, L} \in H^1(\Omega) \) as \(\tilde{\psi}^n_{\kappa, \alpha, L} \in \mathcal{Y} \). The strong convergence result (3.93a) follows as \(H^1(\Omega) \) is compactly embedded in \(L^r(\Omega) \) for the stated values of \(r \).

The weak convergence results (3.94a,b) follow from (3.84); the strong convergence result (3.94c) and the fact that \(\tilde{\psi}^n_{\kappa, \alpha, L} \geq 0 \) a.e. on \(\Omega \times D \) follow from the fourth bound in (3.84), (3.42b) and (3.10b). Hence \(\tilde{\psi}^n_{\kappa, \alpha, L} \in X \cap Z_2 \). The desired results (3.94d,e) follow from (3.94c), (3.43), (1.12) and (3.13). See the proof of Lemma 3.3 in Barrett & Suli for details of the results (3.94a–c). Finally, (3.94f) follows from (3.84) and (3.94c).

It follows from (3.92a–c), (3.93a–c), (3.94a–f), (3.31), (3.45), (3.46), (3.33a,b), (3.35a,b) and (3.8) that we may pass to the limit \(\delta \to 0 \) in (3.49a–c) to obtain that \(\rho^{[\Delta t]}_{\kappa, \alpha, L}, \tilde{\psi}^n_{\kappa, \alpha, L} \) solves (3.30), (3.32), and (3.34); that is, (3.27a–c).

Finally, as \(\rho^{[\Delta t]}_{\kappa, \alpha, L}, \tilde{\psi}^n_{\kappa, \alpha, L} \in L^1_0(\Omega) \times H^1_0(\Omega) \times Z_2 \), performing the above existence proof at each time level \(t_n, n = 1, \ldots, N \), yields a solution \(\{(\rho^{[\Delta t]}_{\kappa, \alpha, L}, \tilde{\psi}^n_{\kappa, \alpha, L})\}_{n=1}^N \) to \((\text{P}^{\Delta t}_{\kappa, \alpha, L})\) with \(\rho^{[\Delta t]}_{\kappa, \alpha, L}(\cdot) = \rho^{[\Delta t]}_{\kappa, \alpha, L}(\cdot, t_n) \), \(n = 1, \ldots, N \), by noting that \(\rho^{[\Delta t]}_{\kappa, \alpha, L} \) thus constructed is an element of \(C([t_{n-1}, t_n]; L^2(\Omega)) \), \(n = 1, \ldots, N \).

4. Existence of a solution to \((\text{P}_{\kappa, \alpha})\)

Next, we derive bounds on the solution of \((\text{P}^{\Delta t}_{\kappa, \alpha, L})\), independent of \(\Delta t \) and \(L \). Our starting point is Lemma 3.3, concerning the existence of a solution to the
to the initial condition form: find \((\rho, u)\) corresponding to the initial condition \(\rho^0(\cdot)\), so that the solution \((\rho, u)\) to \(\partial_t \rho + \nabla \cdot (\rho u) = 0\) obeys the bounds \(|\nabla \rho| \leq C \rho^{\gamma - 1}\) and \(\|\nabla u\| \leq C \rho^{\gamma - 1}\).

Our next objective is to pass to the limits \(\Delta t \to 0_+\) and \(L \to \infty\) in the model \((P_{\kappa,\alpha,L}^\Delta t)\), with \(L\) and \(\Delta t\) linked by the condition \(\Delta t = o(L^{-1})\), as \(L \to \infty\). To that end, we need to develop various bounds on sequences of weak solutions of \((P_{\kappa,\alpha,L}^\Delta t)\) that are uniform in the time step \(\Delta t\) and the cut-off parameter \(L\), and thus permit the extraction of weakly convergent subsequences, as \(L \to \infty\), through the use of a weak compactness argument. The derivation of such bounds, based on the use of the relative entropy associated with the Maxwellian \(M\), is our main task in this section.

We define
\[
\rho_{\kappa,\alpha,L}^{[\Delta t]}(\cdot, t) = \frac{1}{\Delta t} \int_{t-\Delta t}^t \rho_{\kappa,\alpha,L}(\cdot, s) \, ds, \quad t \in (t_{n-1}, t_n], \quad n = 1, \ldots, N.
\]
and the momentum variable
\[
m_{\kappa,\alpha,L}^n := \rho_{\kappa,\alpha,L}^n u_{\kappa,\alpha,L}^n, \quad n = 0, \ldots, N.
\]

We then introduce the following definitions:
\[
y_{\kappa,\alpha,L}^{\Delta t}(\cdot, t) := \frac{t - t_{n-1}}{\Delta t} y_{\kappa,\alpha,L}^n(\cdot) + \frac{t_n - t}{\Delta t} y_{\kappa,\alpha,L}^{n-1}(\cdot), \quad t \in [t_{n-1}, t_n], \quad n = 1, \ldots, N.
\]

We shall adopt \(y_{\kappa,\alpha,L}^{\Delta t}(\cdot, t)\) as a collective symbol for \(y_{\kappa,\alpha,L}^{\Delta t}(\cdot, t)\) and \(y_{\kappa,\alpha,L}^{\Delta t}(\cdot, t)\). The corresponding notations \(\hat{\psi}_{\kappa,\alpha,L}^{\Delta t}(\cdot, t)\) and \(\hat{\psi}_{\kappa,\alpha,L}^{\Delta t}(\cdot, t)\) are defined analogously. The notation \(\rho_{\kappa,\alpha,L}^{\Delta t}(\cdot, t)\) signifies the piecewise linear interpolant of \(\rho_{\kappa,\alpha,L}(\cdot, t)\) with respect to the variable \(t\) is not to be confused with \(\rho_{\kappa,\alpha,L}^{\Delta t}(\cdot, t)\) itself, which denotes the function defined piecewise, over the union of time slabs \(\Omega \times [t_{n-1}, t_n]\), \(n = 1, \ldots, N\), solving (3.27a) subject to the initial condition \(\rho_{\kappa,\alpha,L}^{\Delta t}(\cdot, t_{n-1}) = \rho_{\kappa,\alpha,L}^{\Delta t}(\cdot, t_{n-1})\), \(n = 1, \ldots, N\), with \(\rho_0^\alpha := \rho_0^\alpha\).

Using the above notation, (3.27a)–(3.27c) summed for \(n = 1, \ldots, N\) can be restated in the form: find \((\rho_{\kappa,\alpha,L}(\cdot, t), u_{\kappa,\alpha,L}(\cdot, t)) \in H^1(\Omega) \cap \mathcal{B}_0^\alpha(\Omega) \times H^1_0(\Omega) \times \mathcal{B}_0^\alpha(\Omega) \times \mathcal{B}_0^\alpha(\Omega) \times (X \cap Z_2)\),
Existence of Global Weak Solutions for Compressible Dilute Polymers

with \(\frac{\partial \rho^{[\Delta t]}_t}{\partial t} (\cdot, t) \in H^1(\Omega)' \), a.e. \(t \in (0, T) \), such that \(\theta^{\Delta t}_{k, \alpha, L} \) is defined via (4.3) and

\[
\int_0^T \left\langle \frac{\partial \rho^{[\Delta t]}_t}{\partial t}, \eta \right\rangle_{H^1(\Omega)} dt + \int_0^T \int_\Omega \left(\alpha \nabla \rho^{[\Delta t]}_t \rho^{[\Delta t]}_t - \rho^{[\Delta t]}_t \theta^{\Delta t+}_{k, \alpha, L} \cdot \nabla \eta \right) dx \, dt = 0
\]

\(\forall \eta \in L^2(0, T; H^1(\Omega)) \), \hspace{1cm} (4.5a)

\[
\int_0^T \int_\Omega \left[\frac{\partial \theta^{\Delta t}_{k, \alpha, L}}{\partial t} - \frac{1}{2} \frac{\partial \rho^{[\Delta t]}_t}{\partial t} \theta^{\Delta t+}_{k, \alpha, L} \right] : w \, dx \, dt + \int_0^T \int_\Omega S(\theta^{\Delta t+}_{k, \alpha, L}) \cdot \nabla w \, dx \, dt
\]

\[
+ \frac{1}{2} \int_0^T \int_\Omega \left[(m \theta^{\Delta t+}_{k, \alpha, L} \cdot \nabla \psi^{\Delta t+}_{k, \alpha, L}) \cdot w - (m \theta^{\Delta t+}_{k, \alpha, L} \cdot \nabla \psi^{\Delta t+}_{k, \alpha, L}) \psi^{\Delta t+}_{k, \alpha, L} \right] \nabla w \, dx \, dt
\]

\[
- \int_0^T \int_\Omega \rho^{[\Delta t]}_t \nabla w \cdot dx \, dt
\]

\[
= \int_0^T \int_\Omega \left[\theta^{\Delta t+}_{k, \alpha, L} f^{(\Delta t)} - \rho^{[\Delta t]}_t \cdot \nabla \psi^{\Delta t+}_{k, \alpha, L} \right] \nabla w \, dx \, dt
\]

\[
- 2 \int_0^T \int_\Omega \left(\int_M \beta^L(\psi^{\Delta t+}_{k, \alpha, L}) \, dq \right) \nabla_x \psi^{\Delta t+}_{k, \alpha, L} \cdot w \, dx \, dt
\]

\(\forall w \in L^2(0, T; V) \), \hspace{1cm} (4.5b)

\[
\int_0^T \int_{\Omega \times D} M \frac{\partial \psi^{\Delta t}_{k, \alpha, L}}{\partial t} \varphi \, dx \, dt
\]

\[
+ \frac{1}{4} \lambda \sum_{i=1}^K \sum_{j=1}^K A_{ij} \int_0^T \int_{\Omega \times D} M \nabla q_i \psi^{\Delta t+}_{k, \alpha, L} \cdot \nabla q_j \varphi \, dx \, dt
\]

\[
+ \int_0^T \int_{\Omega \times D} \left[\nabla \psi^{\Delta t+}_{k, \alpha, L} - \frac{\theta^{\Delta t+}_{k, \alpha, L} + \beta^L(\psi^{\Delta t+}_{k, \alpha, L})}{\theta^{\Delta t+}_{k, \alpha, L}} \beta^L(\psi^{\Delta t+}_{k, \alpha, L}) \right] \cdot \nabla \varphi \, dx \, dt
\]

\[
- \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \left[\sigma(u^{\Delta t+}_{k, \alpha, L} q_i) \right] \beta^L(\psi^{\Delta t+}_{k, \alpha, L}) \cdot \nabla q_i \varphi \, dx \, dt = 0
\]

\(\forall \varphi \in L^2(0, T; X) \), \hspace{1cm} (4.5c)

subject to the initial conditions \(\rho^{[\Delta t]}_{k, \alpha, L}(0) = \rho^0 \in L^\infty(\Omega) \), \(u^{\Delta t}_{k, \alpha, L}(0) = u^0 \in H^1_0(\Omega) \) and \(\psi^{\Delta t}_{k, \alpha, L}(0) = \psi^0 \in X \cap \mathcal{Z}_2 \), where we recall (3.17) and (3.19). We emphasize that (4.5a–c) is an equivalent restatement of problem (P^\Delta t_{k, \alpha, L}), for which existence of a solution has been established (cf. Lemma 3.3). We are now ready to embark on the derivation of the required bounds, uniform in the time step \(\Delta t \) and the cut-off parameter \(L \), on norms of \(\theta^{[\Delta t]}_t \), \(u^{\Delta t+}_{k, \alpha, L} \), \(\psi^{\Delta t+}_{k, \alpha, L} \), \(g^{\Delta t+}_{k, \alpha, L} \), \(t \in (0, T) \).
4.1. L, Δt-independent bounds on the spatial derivatives of $u_{\kappa,\alpha,L}^{\Delta t}$ and $\tilde{\psi}_{\kappa,\alpha,L}^{\Delta t}$

We note that it is not possible to pass to the limit $\delta \to 0_+$ in (3.84) to obtain strong enough L-independent bounds due to the fourth, seventh and eighth of the ten terms on the left-hand side. Similarly, it is not possible to pass to the limit in these terms even before we use the bound $[F_{\delta'}^\alpha]''(\cdot) \geq \frac{1}{L}$; recall its use in (3.79) to obtain (3.80), and hence (3.84). However, it is a simple matter to pass to the limit $\delta \to 0_+$ in (3.83). Noting (3.92c,d), (3.93a), (3.94e,f) and the convexity of $P_\kappa(\cdot)$, we may pass to the limit $\delta \to 0_+$ in (3.83) to obtain for $n = 1, \ldots, N$ that

$$
\frac{1}{2} \int_{\Omega} \rho_{\kappa,\alpha,L}^n \left[|u_{\kappa,\alpha,L}^n|^2 + \rho_{\kappa,\alpha,L}^{n-1} |u_{\kappa,\alpha,L}^{n-1}|^2 \right] dx + \int_{\Omega} P_\kappa(\rho_{\kappa,\alpha,L}^n) dx
$$

$$
+ \alpha \kappa \int_{t_n-1}^{t_n} \left[\| \nabla x [\rho_{\kappa,\alpha,L}^{\Delta t}]^2 \|_{L^2(\Omega)}^2 + \frac{4}{1} \left[\| \nabla x [\rho_{\kappa,\alpha,L}^{\Delta t}]^2 \|_{L^2(\Omega)}^2 \right] \right] dt
$$

$$
+ \Delta t \mu^S c_0 \| u_{\kappa,\alpha,L}^{n} \|_{H^1(\Omega)}^2
$$

$$
+ \frac{1}{2} \int_{\Omega} \rho_{\kappa,\alpha,L}^n |u_{\kappa,\alpha,L}^{n-1}|^2 dx + \int_{\Omega} P_\kappa(\rho_{\kappa,\alpha,L}^{n-1}) dx + \Delta t \int_{\Omega} \rho_{\kappa,\alpha,L}^n u_{\kappa,\alpha,L}^{n-1} dx
$$

$$
+ \frac{1}{2} \int_{\Omega} \rho_{\kappa,\alpha,L}^{n-1} |u_{\kappa,\alpha,L}^{n-1}|^2 dx + \int_{\Omega} P_\kappa(\rho_{\kappa,\alpha,L}^{n-1}) dx + \Delta t \int_{\Omega} \rho_{\kappa,\alpha,L}^{n-1} \nabla \cdot u_{\kappa,\alpha,L}^{n-1} dx
$$

$$
+ \Delta t \mu^S c_0 \| u_{\kappa,\alpha,L}^{n-1} \|_{H^1(\Omega)}^2 + \Delta t \int_{\Omega} \rho_{\kappa,\alpha,L}^{n-1} \nabla \cdot u_{\kappa,\alpha,L}^{n-1} dx
$$

$$
- k \Delta t \sum_{i=1}^{K} \int_{\Omega} C_i(M \psi_{\kappa,\alpha,L}^n) : \nabla u_{\kappa,\alpha,L}^{n} dx. \tag{4.6}
$$

Summing the above over n, and adopting the notation (4.1a), (4.4a,b) and (3.22),

$$
\frac{1}{2} \int_{\Omega} \rho_{\kappa,\alpha,L}^{\Delta t+} (t_n) \left[|u_{\kappa,\alpha,L}^{\Delta t+}(t_n)|^2 \right] dx + \frac{1}{2} \Delta t \int_{\Omega} \rho_{\kappa,\alpha,L}^{\Delta t-} \left[|u_{\kappa,\alpha,L}^{\Delta t-}(t_n)|^2 \right] dx dt
$$

$$
+ \int_{\Omega} P_\kappa(\rho_{\kappa,\alpha,L}^{\Delta t+}(t_n)) dx + \mu^S c_0 \int_{\Omega} u_{\kappa,\alpha,L}^{\Delta t+} \| u_{\kappa,\alpha,L}^{\Delta t+} \|_{H^1(\Omega)}^2 dt
$$

$$
+ \alpha \kappa \int_{0}^{t_n} \left[\| \nabla x [\rho_{\kappa,\alpha,L}^{\Delta t}]^2 \|_{L^2(\Omega)}^2 + \frac{4}{1} \left[\| \nabla x [\rho_{\kappa,\alpha,L}^{\Delta t}]^2 \|_{L^2(\Omega)}^2 \right] \right] dt
$$

$$
+ \Delta t \mu^S c_0 \| u_{\kappa,\alpha,L}^{\Delta t+} \|_{H^1(\Omega)}^2
$$

$$
+ \frac{1}{2} \int_{\Omega} \rho_{\kappa,\alpha,L}^{\Delta t+} |u_{\kappa,\alpha,L}^{\Delta t-}|^2 dx + \int_{\Omega} P_\kappa(\rho_{\kappa,\alpha,L}^{\Delta t-}) dx + \frac{1}{2} \| u_{\kappa,\alpha,L}^{\Delta t-} \|_{L^2(\Omega)}^2
$$

$$
+ \Delta t \mu^S c_0 \| u_{\kappa,\alpha,L}^{\Delta t-} \|_{H^1(\Omega)}^2 + \Delta t \int_{\Omega} \rho_{\kappa,\alpha,L}^{\Delta t-} \nabla \cdot u_{\kappa,\alpha,L}^{\Delta t-} dx
$$

$$
- k (K + 1) \int_{0}^{t_n} \int_{\Omega} \nabla x \psi_{\kappa,\alpha,L}^{\Delta t+} : u_{\kappa,\alpha,L}^{\Delta t+} dx dt. \tag{4.6}
$$
\[-k \sum_{i=1}^{K} \int_{0}^{t_n} \int_{\Omega} C_i (M \frac{\psi^{\Delta t, +}_{i} - \psi^{\Delta t, +}_{i}}{\Delta t}) : \nabla \mu \psi^{\Delta t, +}_{i,L} \ dx \ dt, \quad n = 1, \ldots N. \quad (4.7) \]

We now require a suitable \(\psi^{n}_{k,\alpha,L} \) analogue of (3.79). The appropriate choice of test function in (3.27c) for this purpose is \(\varphi = [F^L]'(\psi^{n}_{k,\alpha,L}) \). While Lemma 3.3 guarantees that \(\psi^{n}_{k,\alpha,L} \) belongs to \(Z_2 \), and is therefore nonnegative a.e. on \(\Omega \times D \), there is unfortunately no reason why \(\psi^{n}_{k,\alpha,L} \) should be strictly positive on \(\Omega \times D \), and therefore the expression \([F^L]'(\psi^{n}_{k,\alpha,L}) \) may in general be undefined. Similarly to (3.74), we shall circumvent this problem by choosing \(\varphi = [F^L]'(\psi^{n}_{k,\alpha,L} + \varsigma) \) in (3.27c), which leads, for any fixed \(\varsigma \in \mathbb{R}_{>0} \), to

\[0 = \int_{\Omega \times D} M \frac{\psi^{n}_{k,\alpha,L} - \psi^{n-1}_{k,\alpha,L}}{\Delta t} [F^L]'(\psi^{n}_{k,\alpha,L} + \varsigma) \ dq \ dx \\
- \int_{\Omega \times D} M \sum_{i=1}^{K} \int_{\Omega \times D} A_{ij} M \nabla \psi^{n}_{k,\alpha,L} \cdot \nabla \iota_q [F^L]'(\psi^{n}_{k,\alpha,L} + \varsigma) \ dq \ dx \\
+ \frac{1}{4\lambda} \sum_{i=1}^{K} \sum_{j=1}^{K} \int_{\Omega \times D} \beta^{L}(\psi^{n}_{k,\alpha,L}) \ \sigma \left(u^{n}_{k,\alpha,L} \right) \ i_{q} \cdot \nabla \iota_q [F^L]'(\psi^{n}_{k,\alpha,L} + \varsigma) \ dq \ dx \\
+ \frac{1}{\Delta t} \int_{\Omega \times D} \psi^{n}_{k,\alpha,L} - \psi^{n-1}_{k,\alpha,L} \ dq \ dx \]

\[=: \sum_{i=1}^{5} T_i. \quad (4.8) \]

It follows from (3.38a) that

\[T_1 \geq \frac{1}{\Delta t} \int_{\Omega \times D} M \left[F^L(\psi^{n}_{k,\alpha,L} + \varsigma) - F^L(\psi^{n-1}_{k,\alpha,L} + \varsigma) \right] \ dq \ dx \\
+ \frac{1}{2\Delta t L} \int_{\Omega \times D} M \left(\psi^{n}_{k,\alpha,L} - \psi^{n-1}_{k,\alpha,L} \right)^2 \ dq \ dx. \quad (4.9) \]

In addition, it follows from (3.38a) that

\[T_2 = - \int_{\Omega \times D} \psi^{n}_{k,\alpha,L} \ dq \ psi^{n}_{k,\alpha,L} \ \nabla \psi^{n}_{k,\alpha,L} \ dq \ dx \\
+ \int_{\Omega \times D} M \left(1 - \frac{\beta^L(\psi^{n}_{k,\alpha,L})}{\beta^L(\psi^{n}_{k,\alpha,L} + \varsigma)} \right) \ u^{n}_{k,\alpha,L} \ \nabla \psi^{n}_{k,\alpha,L} \ dq \ dx. \quad (4.10) \]
Thanks to (2.5), we have that

$$T_3 \geq \frac{a_0}{4\lambda} \int_{\Omega \times D} M \left[|\mathcal{F}^{L}|' (\hat{\psi}_{\kappa,\alpha,L}+\varsigma) \right] |\nabla_x \hat{\psi}_{\kappa,\alpha,L}^n| dx dt \tag{4.11a}$$

$$T_4 \geq \varepsilon \int_{\Omega \times D} M \left[|\mathcal{F}^{L}|' (\hat{\psi}_{\kappa,\alpha,L}^n+\varsigma) \right] |\nabla_x \hat{\psi}_{\kappa,\alpha,L}^n| dx dt \tag{4.11b}$$

It is tempting to bound \(|\mathcal{F}^{L}|' (\hat{\psi}_{\kappa,\alpha,L}+\varsigma) \) below further by \((\hat{\psi}_{\kappa,\alpha,L}+\varsigma)^{-1} \) using (3.38b). We have refrained from doing so as the precise form of (4.11b) will be required to absorb the extraneous term that the process of shifting \(\hat{\psi}_{\kappa,\alpha,L}^n \) by the addition of \(\varsigma > 0 \) generates in the last term in (4.10). Similarly, (4.11a) is required for the last line in (4.12) below. Finally, it follows from (3.38a) and (1.6a) that

$$T_5 = -\sum_{i=1}^{K} \int_{\Omega} \left[\int_D M [(\nabla_x u_{\kappa,\alpha,L}^n) q_i] \cdot \nabla_x \hat{\psi}_{\kappa,\alpha,L}^n dx \right] - \int_{\Omega \times D} M \left[1 - \frac{\beta L (\hat{\psi}_{\kappa,\alpha,L}^n)}{\beta L (\hat{\psi}_{\kappa,\alpha,L}^n+\varsigma)} \right] \sum_{i=1}^{K} [(\nabla_x u_{\kappa,\alpha,L}^n) q_i] \cdot \nabla_x \hat{\psi}_{\kappa,\alpha,L}^n dx \tag{4.12}$$

Substituting (4.9)–(4.12) into (4.8), multiplying by \(\Delta t \), summing over \(n \) and adopting the notation (4.4a,b) yields, for \(n = 1, \ldots, N \), that

$$\int_{\Omega \times D} M \mathcal{F}^{L} (\hat{\psi}_{\kappa,\alpha,L}^n (t_n) + \varsigma) dx dt \leq \frac{1}{2\Delta t L} \int_0^{t_n} \int_{\Omega \times D} M (\hat{\psi}_{\kappa,\alpha,L}^{n+\Delta t} - \hat{\psi}_{\kappa,\alpha,L}^n)^2 dx dt + \frac{a_0}{4\lambda} |\nabla_x \hat{\psi}_{\kappa,\alpha,L}^{n+\Delta t}|^2 + \varepsilon |\nabla_x \hat{\psi}_{\kappa,\alpha,L}^n|^2 dx dt \leq \int_{\Omega \times D} M \mathcal{F}^{L} (\hat{\psi}_{\kappa,\alpha,L}^n + \varsigma) dx dt$$
Similarly to (3.69), we have on choosing the right-hand side of (4.7) are cancelled by (4.13) by

\[\Delta t \rightarrow 0^+ \] (or, equivalently, \(\Delta t = o(L^{-1}) \), as \(L \rightarrow \infty \)), in order to drive the integral multiplied by the prefactor to 0 in the limit of \(\Delta t \rightarrow 0^+ \), once the product of the two has been bounded above by a constant, independent of \(\Delta t \) and \(L \).

Comparing (4.13) with (4.7), and noting (1.12), we see that after multiplying (4.13) by \(k \) and adding the resulting inequality to (4.7) the last two terms on the right-hand side of (4.7) are cancelled by \(k \) times the second and third terms on the right-hand side of (4.13). Hence, for \(n = 1, \ldots, N \), we deduce that

\[
\begin{align*}
&\frac{1}{2} \int_0^t \int_{\Omega \times D} M \left[1 - \frac{\beta L(\bar{\psi}_{k,n}^{\Delta t,+})}{\beta L(\bar{\psi}_{k,n}^{\Delta t,+} + \varsigma)} \right] u_n^{\Delta t,+}_{k,n} \cdot \nabla_x \bar{\psi}_{k,n}^{\Delta t,+} \cdot dq \cdot dx \cdot dt \\
&\quad - \int_0^t \int_{\Omega \times D} M \left[1 - \frac{\beta L(\bar{\psi}_{k,n}^{\Delta t,+})}{\beta L(\bar{\psi}_{k,n}^{\Delta t,+} + \varsigma)} \right] \left(\sum_{i=1}^K \left[\nabla_x u_n^{\Delta t,+}_i \right] q_i \right) \cdot \nabla_n \bar{\psi}_{k,n}^{\Delta t,+} \cdot dq \cdot dx \cdot dt, \\
&\quad \text{(4.13)}
\end{align*}
\]

where we have noted (3.21b). The denominator in the prefactor of the second integral on the left-hand side motivates us to link \(\Delta t \) to \(L \) so that \(\Delta t L = o(1) \), as \(\Delta t \rightarrow 0^+ \), where we have noted (3.21b). The denominator in the prefactor of the second integral on the left-hand side motivates us to link \(\Delta t \) to \(L \) so that \(\Delta t L = o(1) \), as \(\Delta t \rightarrow 0^+ \), once the product of the two has been bounded above by a constant, independent of \(\Delta t \) and \(L \).

Comparing (4.13) with (4.7), and noting (1.12), we see that after multiplying (4.13) by \(k \) and adding the resulting inequality to (4.7) the last two terms on the right-hand side of (4.7) are cancelled by \(k \) times the second and third terms on the right-hand side of (4.13). Hence, for \(n = 1, \ldots, N \), we deduce that

\[
\begin{align*}
&\frac{1}{2} \int_0^t \int_{\Omega \times D} M \left[1 - \frac{\beta L(\bar{\psi}_{k,n}^{\Delta t,+})}{\beta L(\bar{\psi}_{k,n}^{\Delta t,+} + \varsigma)} \right] u_n^{\Delta t,+}_{k,n} \cdot \nabla_x \bar{\psi}_{k,n}^{\Delta t,+} \cdot dq \cdot dx \cdot dt \\
&\quad + \int_0^t \int_{\Omega \times D} M \left[1 - \frac{\beta L(\bar{\psi}_{k,n}^{\Delta t,+})}{\beta L(\bar{\psi}_{k,n}^{\Delta t,+} + \varsigma)} \right] u_n^{\Delta t,-}_{k,n} \cdot \nabla_x \bar{\psi}_{k,n}^{\Delta t,+} \cdot dq \cdot dx \cdot dt \\
&\quad + \frac{k}{2} \int_0^t \int_{\Omega \times D} M \left[1 - \frac{\beta L(\bar{\psi}_{k,n}^{\Delta t,+})}{\beta L(\bar{\psi}_{k,n}^{\Delta t,+} + \varsigma)} \right] u_n^{\Delta t,-}_{k,n} \cdot \nabla_x \bar{\psi}_{k,n}^{\Delta t,+} \cdot dq \cdot dx \cdot dt \\
&\quad \leq \frac{1}{2} \int_0^t \int_{\Omega \times D} M \left[1 - \frac{\beta L(\bar{\psi}_{k,n}^{\Delta t,+})}{\beta L(\bar{\psi}_{k,n}^{\Delta t,+} + \varsigma)} \right] u_n^{\Delta t,+}_{k,n} \cdot \nabla_x \bar{\psi}_{k,n}^{\Delta t,+} \cdot dq \cdot dx \cdot dt \\
&\quad + \int_0^t \int_{\Omega \times D} M \left[1 - \frac{\beta L(\bar{\psi}_{k,n}^{\Delta t,+})}{\beta L(\bar{\psi}_{k,n}^{\Delta t,+} + \varsigma)} \right] u_n^{\Delta t,-}_{k,n} \cdot \nabla_x \bar{\psi}_{k,n}^{\Delta t,+} \cdot dq \cdot dx \cdot dt \\
&\quad \text{(4.14)}
\end{align*}
\]
Noting (4.15) and (4.19), we have that
\[
\left|\int_0^{t_n} \int_{\Omega} \rho_{k,a,L}^{{\Delta}t,t} f \cdot u_{k,a,L}^{{\Delta}t,t} \, dx \, dt\right| \\
\leq \frac{1}{2} \left[\int_0^{t_n} \int_{\Omega} \rho_{k,a,L}^{{\Delta}t,t} |u_{k,a,L}^{{\Delta}t,t}|^2 \, dx \, dt + \int_0^{t_n} \|f\|_{L^\infty(\Omega)}^2 \, dt \int_{\Omega} \rho^0 \, dx \right]. \quad (4.16)
\]

Next we recall from Barrett & Süli\(^8\) the bound
\[
\int_{\Omega \times \Delta} M \mathcal{F}^L(\beta^L(\psi^0) + \varsigma) \, dq \, dx \leq \frac{3k}{2} |\Omega| + \int_{\Omega \times \Delta} M \mathcal{F}(\psi^0 + \varsigma) \, dq \, dx.
\]
(4.17)

Let \(b := (b_1, \ldots, b_K) \), recall (3.4), and \(b := |b| := b_1 + \cdots + b_K \); then we can bound the magnitude of the last term on the right-hand side of (4.14), on noting (3.38a) and (1.6b), by
\[
\frac{k a_0}{8\lambda} \left(\int_0^{t_n} \int_{\Omega \times \Delta} M \left[|\mathcal{F}^L(\psi_{k,a,L}^{{\Delta}t,t} + \varsigma)|^2 \, dq \, dx \right] \right.
\]
\[
+ \varsigma \frac{2k \lambda b}{a_0} \left(\int_0^{t_n} \int_{\Omega} |\nabla_x \psi_{k,a,L}^{{\Delta}t,t}|^2 \, dx \, dt \right), \quad (4.18)
\]
see Barrett & Süli\(^8\) for the details. Similarly, the second to last term on the right-hand side of (4.14) can be bounded by
\[
\frac{k \varepsilon}{2} \left(\int_0^{t_n} \int_{\Omega \times \Delta} M \left[|\mathcal{F}^L(\psi_{k,a,L}^{{\Delta}t,t} + \varsigma)|^2 \, dq \, dx \right] \right.
\]
\[
+ \varsigma \frac{k}{2 \varepsilon} \left(\int_0^{t_n} \int_{\Omega} |u_{k,a,L}^{{\Delta}t,t}|^2 \, dx \, dt \right), \quad (4.19)
\]

Noting (4.14)–(4.19), and using (3.38b) to bound the expression \([\mathcal{F}^L(\psi_{k,a,L}^{{\Delta}t,t} + \varsigma)]\) from below by
\[
\mathcal{F}''(\psi_{k,a,L}^{{\Delta}t,t} + \varsigma) = (\psi_{k,a,L}^{{\Delta}t,t} + \varsigma)^{-1}
\]
and (3.39) to bound \(\mathcal{F}^L(\psi_{k,a,L}^{{\Delta}t,t} + \varsigma)\) by \(\mathcal{F}(\psi_{k,a,L}^{{\Delta}t,t} + \varsigma)\) from below yields, for \(n = 1, \ldots, N, \) that
\[
\frac{1}{2} \int_{\Omega} \rho_{k,a,L}^{{\Delta}t,t} (t_n) |u_{k,a,L}^{{\Delta}t,t}(t_n)|^2 \, dx + \frac{1}{2\Delta t} \int_0^{t_n} \int_{\Omega} \rho_{k,a,L}^{{\Delta}t,t} |u_{k,a,L}^{{\Delta}t,t} - u_{k,a,L}^{{\Delta}t,t}|^2 \, dx \, dt
\]
\[
+ \int_{\Omega} \rho_{k,a,L}^{{\Delta}t,t} (t_n) \, dx + k \int_{\Omega \times \Delta} M \mathcal{F}(\psi_{k,a,L}^{{\Delta}t,t} + \varsigma) \, dq \, dx
\]
\[
+ \alpha \kappa \int_0^{t_n} \left[|\nabla_x [\rho_{k,a,L}^{{\Delta}t,t}]|^2\|L^2(\Omega) + \frac{4}{3} \|\nabla_x (\rho_{k,a,L}^{{\Delta}t,t})^\frac{1}{2}\|^2_{L^2(\Omega)}\right] \, dt
\]
Existence of Global Weak Solutions for Compressible Dilute Polymers

\[
+ \mu^c \int_0^{t_n} \|u_{\kappa,\alpha,L}^{t,+}\|_{H^1(\Omega)}^2 \, dt
+ \frac{k}{2} \int_0^{t_n} \int_{\Omega \times D} M(\hat{\psi}_{\kappa,\alpha,L}^{t,+} - \hat{\psi}_{\kappa,\alpha,L}^{t,-})^2 \, dq \, dt
data
+ \frac{k}{2} \int_0^{t_n} \int_{\Omega \times D} \frac{\alpha}{4} \left| \nabla_q \hat{\psi}_{\kappa,\alpha,L}^{t,+} \right|^2 + 2 \varepsilon \left| \nabla_x \hat{\psi}_{\kappa,\alpha,L}^{t,+} \right|^2 \, dq \, dx \, dt
data
+ \frac{1}{2} \int_0^{t_n} \|u_{\kappa,\alpha,L}^{t,+}\|_{H^1(\Omega)}^2 \, dt + \frac{1}{2} \int_0^{t_n} \int_{\Omega \times D} M(\hat{\psi}_{\kappa,\alpha,L}^{t,+} - \hat{\psi}_{\kappa,\alpha,L}^{t,-})^2 \, dq \, dx \, dt
data
+ k \int_0^{t_n} \int_{\Omega \times D} M \frac{\alpha}{2L} \left[\nabla_q \sqrt{\hat{\psi}_{\kappa,\alpha,L}^{t,+}} \right]^2 + 2 \varepsilon \left| \nabla_x \sqrt{\hat{\psi}_{\kappa,\alpha,L}^{t,+}} \right|^2 \, dq \, dx \, dt
data
+ \frac{1}{2} \int_0^{t_n} \rho^0 \|u_0^0\|^2 \, dx + \int_0^{t_n} \int_{\Omega \times D} M(\hat{\psi}_0^0)^2 \, dq \, dx \, dt
+ \frac{1}{2} \int_0^{t_n} \|f\|^2_{L^\infty(\Omega)} \, dt
\leq C,
\]

(4.21)
where C is a positive constant, independent of the parameters Δt, L, α and κ. Here, we have noted (3.18a), (3.21a) and (3.22) for the penultimate inequality in (4.21), and (3.16a) for the final inequality.

Next we bound the extra stress term (1.12). As we do not have a bound on $\|M^{\frac{1}{2}} \psi_{h,\alpha,L}^{\Delta t,+}\|_{L^2(\Omega \times D)}$ in (4.21), we will need a weaker bound than (3.13). First, we deduce from (1.12), (1.6a) and as $M = 0$ on ∂D that

$$C_i(M \varphi) = -\int_D \frac{\varphi}{\psi} M q_1 \varphi dq = \int_D M (\nabla \varphi \varphi) q_1 dq + \left(\int_D \varphi dq \right) I. \quad (4.22)$$

Hence, for $r \in [1,2)$, on noting that $\nabla \varphi = \nabla_q (\sqrt{\varphi})^2 = 2\sqrt{\varphi} \nabla_q \sqrt{\varphi}$ for any sufficiently smooth nonnegative function φ, we have that

$$\int_{\Omega} \left\| C_i(M \varphi) \right\|_{L^r(\Omega)} \leq C \left[\int_{\Omega} \left(\int_D \varphi dq \right)^2 \left(\int_D M |\nabla \varphi|^2 dq \right)^{\frac{1}{2}} dx + \int_{\Omega} \left(\int_D \varphi dq \right)^{\frac{3}{2}} dx \right] \leq C \left\| \nabla_q \sqrt{\varphi} \right\|_{L^2(\Omega \times D)} \left\| M \varphi dq \right\|_{L^{\frac{u}{2}}(\Omega)} + \left\| \int_D \varphi dq \right\|_{L^{\frac{u}{2}}(\Omega)} \right], \quad (4.23)$$

Therefore, for $r \in [1,2)$ and $s \in [1,2]$, it follows that, for any such function φ,

$$\left\| C_i(M \varphi) \right\|_{L^r(0,T;L^s(\Omega))} \leq C \left[\left\| \nabla_q \sqrt{\varphi} \right\|_{L^2(0,T;L^2(\Omega \times D))} \right] \left\| M \varphi dq \right\|_{L^{\frac{s}{2}}(0,T;L^s(\Omega))} + \left\| \int_D \varphi dq \right\|_{L^{\frac{s}{2}}(0,T;L^s(\Omega))}, \quad (4.24)$$

where $v = \frac{s}{2}$ if $s \in [1,2)$ and $v = \infty$ if $s = 2$. We deduce from (4.24) and (4.21) that, for $i = 1, \ldots, K$,

$$\left\| C_i(M \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+}) \right\|_{L^r(0,T;L^r(\Omega))} \leq C \quad \text{if} \quad \left\| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+} \right\|_{L^r(0,T;L^r(\Omega))} \leq C, \quad (4.25)$$

where $r \in [1,2)$, $s \in [1,2]$ and $v = \frac{s}{2}$ if $s \in [1,2)$ and $v = \infty$ if $s = 2$.

It follows from (4.21) and (3.2) that

$$\left\| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+} \right\|_{L^2(0,T;L^2(\Omega))} \leq C \left\| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+} \right\|_{L^2(0,T;L^2(\Omega))}^{1-\frac{\vartheta}{d}} \left\| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+} \right\|_{L^2(0,T;L^d(\Omega))}^{\vartheta}, \quad (4.26)$$

where $\vartheta = \frac{(d-2)d}{2d}$, and $v \in (2, \infty)$ if $d = 2$ and $v \in (2,6]$ if $d = 3$. For example, we have that

$$\left\| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+} \right\|_{L^2(0,T;L^2(\Omega))} + \left\| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+} \right\|_{L^{\frac{2(d+2)}{d+4}}(\Omega_T)} + \left\| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t,+} \right\|_{L^2(0,T;L^6(\Omega))} \leq C, \quad (4.27)$$
and hence we deduce from (4.25) and (1.11) that
\[
\|C_i(M \hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L})\|_{L^2(0, T; L^2(\Omega))} + \|C_i(M \hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L})\|_{L^4(0, T; L^{8/3}(\Omega))} \leq C, \quad i = 1, \ldots, K,
\]
where \(C \) is independent of \(\Delta t, L, \alpha \) and \(\kappa \).

Remark 4.1. We note from (4.21) and (4.26) that if \(\tilde{\varphi} = 0 \), then the bounds (4.27) and (4.28a,b) no longer hold. In this case, we have only the following weaker bounds.

Similarly to (4.15), we have on choosing \(\varphi = 1 \) in (3.27c), and noting (4.4b) and (3.21b), that, for a.a. \(t \in (0, T) \),
\[
\int_{\Omega} \hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L} \, dx = \int_{\Omega \times D} M \hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L} \, dq \sim \int_{\Omega \times D} M \hat{\psi}^0 \, dq \sim C. \quad (4.29)
\]
Next we deduce from (4.21) and (4.29) that
\[
\|\nabla_x \hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L}\|_{L^2(0, T; L^2(\Omega))} = 4 \left\| \int_{\Omega} M \sqrt{\hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L}} \nabla_x \sqrt{\hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L}} \, dq \right\|_{L^2(0, T; \Omega)} \\
\leq 4 \|\hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L}\|_{L^\infty(0, T; L^1(\Omega))} \left\| \nabla_x \sqrt{\hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L}} \right\|_{L^2(0, T; L^2(\Omega \times D))} \leq C. \quad (4.30)
\]
It follows from Sobolev embedding, (4.30) and (4.29) that
\[
\|\hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L}\|_{L^2(0, T; L^{\frac{8}{3}}(\Omega))} \leq C \|\hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L}\|_{L^2(0, T; W^{1, 1}(\Omega))} \leq C. \quad (4.31)
\]
Therefore, we obtain from (4.25), (4.31) and (1.11) that
\[
\|\tau_1(M \hat{\psi}^{\Delta t, +}_{\kappa, \alpha, L})\|_{L^\frac{3}{2}(0, T; L^{\frac{6}{5}}(\Omega))} \leq C, \quad (4.32)
\]
where \(C \) is independent of \(\Delta t, L, \alpha \) and \(\kappa \).

4.2. \(L, \Delta t \)-independent bounds on the spatial and temporal derivatives of \(\rho_{\kappa, \alpha, L}^{[\Delta t]} \)

In addition to the bounds on \(\rho_{\kappa, \alpha, L}^{[\Delta t]} \) and \(\rho_{\kappa, \alpha, L}^{\Delta t, +} \) in (4.21), we establish further relevant bounds here. Similarly to (3.85), on choosing, for any \(s \in (0, T) \), \(\eta(:, t) = \chi([0, s] \times [\rho_{\kappa, \alpha, L}^{[\Delta t]}(\cdot, t)]^{-1}, \tau_2, \) in (4.5a), we obtain, on noting (4.21), that
\[
\frac{1}{\vartheta} \|\rho_{\kappa, \alpha, L}^{[\Delta t]}(\cdot, s)\|_{L^1(\Omega)} + \frac{4\alpha(\vartheta - 1)}{\vartheta^2} \int_0^s \|\nabla_x (\rho_{\kappa, \alpha, L}^{[\Delta t]}(\cdot, t))\|_{L^2(\Omega)} \, dt \\
= \frac{1}{\vartheta} \left[\|\rho_{\kappa, \alpha, L}^{[\Delta t]}(\cdot, s)\|_{L^1(\Omega)} + (\vartheta - 1) \int_0^s \int_{\Omega} u_{\kappa, \alpha, L}^{\Delta t, +} \cdot \nabla_x (\rho_{\kappa, \alpha, L}^{[\Delta t]}(\cdot, t)) \, dx \, dt \right] \\
\leq \frac{1}{\vartheta} \|\rho_{\kappa, \alpha, L}^{[\Delta t]}(\cdot, s)\|_{L^1(\Omega)} + \int_0^s \|u_{\kappa, \alpha, L}^{\Delta t, +}\|_{L^2(\Omega)} \, dt + \frac{(\vartheta - 1)^2}{4} \int_0^s \|\nabla_x (\rho_{\kappa, \alpha, L}^{[\Delta t]}(\cdot, t))\|_{L^2(\Omega)} \, dt \\
\leq C,
\]
(4.33)
where C is independent of Δt and L. Similarly to (3.86), it follows from a Poincaré inequality, (4.21) and (4.33) for $\vartheta = \frac{\Gamma}{2}$ that
\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{\infty}(0,T;L^{2}(\Omega))} = \|(\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;L^{2}(\Omega))} \leq C \left[\|\nabla_{x}[(\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;L^{2}(\Omega))} + \|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{\infty}(0,T;L^{2}(\Omega))} \right] \leq C. \tag{4.34}
\]

Similarly to (3.87), we obtain from (3.31), (3.2), (4.21) and (4.33) for $\vartheta = \frac{\Gamma}{2}$ that
\[
\left| \int_{0}^{T} \frac{\Delta u_{(\rho_{\kappa,\alpha,L})}^{[\Delta t]}(\rho_{\kappa,\alpha,L}^{[\Delta t]},\eta) dt}{\rho_{\kappa,\alpha,L}^{[\Delta t],L}} \right| \leq C \|\eta\|_{L^{2}(0,T;H^{1}(\Omega))} + C \left| \int_{0}^{T} \frac{\Delta u_{(\rho_{\kappa,\alpha,L})}^{[\Delta t]}(\rho_{\kappa,\alpha,L}^{[\Delta t]},\eta) dt}{\rho_{\kappa,\alpha,L}^{[\Delta t],L}} \right| \leq C \left[1 + \|\Delta u_{(\rho_{\kappa,\alpha,L})}^{[\Delta t]}(\rho_{\kappa,\alpha,L}^{[\Delta t]},\eta) \leq C \|\eta\|_{L^{2}(0,T;H^{1}(\Omega))} \right]
\]

Hence, similarly to (3.88), we deduce from (4.33) for $\vartheta = 2$ and $\frac{\Gamma}{2}$, (4.35), on noting (4.5a) and (3.31), (4.21) and (4.34) that
\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{\infty}(0,T;L^{2}(\Omega))} + \|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;H^{1}(\Omega))} + \|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;H^{1}(\Omega))} \leq C, \tag{4.36}
\]
where C is independent of Δt and L. Similarly to (3.89), we deduce from (3.2) and the last bound in (4.36) that
\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;L^{2}(\Omega))} \leq C \|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;H^{1}(\Omega))} \leq C. \tag{4.37}
\]

Next, similarly to (3.90), it follows from (3.1), the first bound in (4.36) and (4.37) that
\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;L^{2}(\Omega))} \leq C \|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{2}(0,T;H^{1}(\Omega))} \leq C, \tag{4.38}
\]
where C is independent of Δt and L. Finally, it follows from (4.2), (2.3) and (4.38) that, with C independent of Δt and L,
\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{\frac{4}{3}}(\Omega)} \leq C \|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^{\frac{4}{3}}(\Omega)} \leq C. \tag{4.39}
\]

4.3. Passing to the limit $\Delta t \to 0_{+}$ ($L \to \infty$) in the continuity equation (4.5a)

As noted after (4.13), we shall assume that
\[
\Delta t = o(L^{-1}) \quad \text{as} \quad \Delta t \to 0_{+} \quad (L \to \infty). \tag{4.40}
\]
Requiring, for example, that \(0 < \Delta t \leq C_0/(L \log L)\), \(L > 1\), with an arbitrary (but fixed) constant \(C_0\) will suffice to ensure that (4.40) holds. We have the following convergence results.

Lemma 4.1. There exists a subsequence (not indicated) of the sequence of functions \(\{[\rho]^{\Delta t}_{k_\alpha, L}, [\psi]_k^{\Delta t}_{\alpha, L}, [w]_k^{\Delta t}_{\alpha, L}\}_{\Delta t > 0}\), and functions

\[
\rho_{k_\alpha} \in L^2(0, T; H^1(\Omega)) \cap H^1(0, T; H^1(\Omega)) \cap C_w([0, T]; L^2(\Omega)) \cap L^2_{\text{loc}}(\Omega_T) \tag{4.41}
\]

with \(\rho_{k_\alpha}(\cdot, 0) = \rho^0(\cdot)\) and \(w_{k_\alpha} \in L^2(0, T; H^1(\Omega))\) such that, as \(\Delta t \to 0_+\) \((L \to \infty)\),

\[
\begin{align*}
\rho^{\Delta t}_{k_\alpha} & \rightharpoonup \rho_{k_\alpha} \quad \text{weakly in } L^2(0, T; H^1(\Omega)), \\
\left(\rho^{\Delta t}_{k_\alpha}+\right) & \rightharpoonup \frac{\psi}{\alpha} \quad \text{weakly in } H^1(0, T; H^1(\Omega)), \quad (4.42a) \\
\rho^{\Delta t}_{k_\alpha} & \rightharpoonup \rho_{k_\alpha} \quad \text{in } C_w([0, T]; L^2(\Omega)), \\
\left(\rho^{\Delta t}_{k_\alpha}+\right) & \rightharpoonup \frac{\psi}{\alpha} \quad \text{weakly in } L^2(0, T; H^1(\Omega)), \quad (4.42b) \\
\rho^{\Delta t}_{k_\alpha} & \rightharpoonup \rho_{k_\alpha} \quad \text{strongly in } L^2(0, T; L^r(\Omega)), \\
\left(\rho^{\Delta t}_{k_\alpha}+\right) & \rightharpoonup \frac{\psi}{\alpha} \quad \text{strongly in } L^r(\Omega_T), \quad (4.42c)
\end{align*}
\]

where \(r \in [1, \infty)\) if \(d = 2\) and \(r \in [1, 6]\) if \(d = 3\), and \(v \in [1, \frac{4r}{3r-4}]\);

\[
\begin{align*}
\rho_{k_\alpha}(\rho^{\Delta t}_{k_\alpha}) & \rightharpoonup \rho_{k_\alpha}(\rho^0) \quad \text{strongly in } L^r(\Omega_T), \\
\rho^{\Delta t}_{k_\alpha} & \rightharpoonup \rho_{k_\alpha} \quad \text{weakly in } L^r(\Omega_T), \quad (4.43a) \\
\rho^{\Delta t}_{k_\alpha} & \rightharpoonup \rho_{k_\alpha} \quad \text{weakly in } L^r(\Omega_T), \quad (4.43b)
\end{align*}
\]

where \(s \in [1, \frac{4r}{3r-4}]\); and

\[
\begin{align*}
\left(\rho^{\Delta t}_{k_\alpha}+\right) & \rightharpoonup \frac{\psi}{\alpha} \quad \text{weakly in } L^2(0, T; H^1_0(\Omega)). \quad (4.44)
\end{align*}
\]

Moreover, we have that

\[
\int_0^T \left(\frac{\partial \rho_{k_\alpha}}{\partial t}, \eta \right)_{H^1(\Omega)} dt + \int_0^T \int_{\Omega} \left(\alpha \nabla_x \rho_{k_\alpha} - \rho_{k_\alpha} u_{k_\alpha} \right) \cdot \nabla_x \eta \, dx \, dt = 0 \\
\forall \eta \in L^2(0, T; H^1(\Omega). \quad (4.45)
\]

Proof. The convergence results (4.42a,b) follow immediately from (4.36), (3.12a,b) and (4.38). The strong convergence results (4.42d) follow from (4.42a), (3.11), (4.38) and the interpolation result (3.1). The weak convergence result (4.42c) is then a consequence of (4.36) and (4.44d). Therefore, we have the desired result (4.41). As \(L^2(0, T; H^1(\Omega)) \cap H^1(0, T; H^1(\Omega)) \hookrightarrow C([0, T]; L^2(\Omega))\), we obtain that \(\rho_{k_\alpha}(\cdot, 0) = \rho^0(\cdot)\).

Next, it follows from (2.3), for \(s \in [1, \frac{4r}{3r-4}]\), that

\[
\begin{align*}
\|\rho_{k_\alpha} - \rho_{k_\alpha}(\rho^{\Delta t}_{k_\alpha})\|_{L^r(\Omega_T)} & \leq C \left[\|\rho_{k_\alpha}\|_{L^r(\Omega_T)}^{r-1} + \|\rho^{\Delta t}_{k_\alpha}\|_{L^r(\Omega_T)}^{r-1} \right] \|\rho_{k_\alpha} - \rho^{\Delta t}_{k_\alpha}\|_{L^r(\Omega_T)}. \quad (4.46)
\end{align*}
\]
Hence, the result (4.43a) follows from (4.46) and (4.42d).

It follows from (4.2) and (4.43a) that, for \(s \in (1, \frac{4}{3}) \),

\[
\int_{\Omega_T} p_{\kappa,\alpha,L}^{(\Delta t)} \eta \, dx \, dt = \int_{\Omega_T} p_{\kappa} (p_{\kappa,\alpha,L}^{(\Delta t)}) \eta^{(\Delta t)} \, dx \, dt \quad \forall \eta \in L^{2r'}(\Omega_T),
\]

where

\[
\eta^{(\Delta t)}(\cdot,t) := \frac{1}{\Delta t} \int_{t_{n-1}}^{t_n} \eta(\cdot,t') \, dt', \quad t \in (t_{n-1}, t_n], \quad n = 1, \ldots, N.
\]

We note that

\[
\lim_{\Delta t \to 0^+} \| \eta - \eta^{(\Delta t)} \|_{L^r(\Omega_T)} = 0 \quad \forall \eta \in L^r(\Omega_T), \quad r \in [1, \infty).
\]

Therefore, the desired result (4.43b) follows from (4.47), (4.43a) and (4.49). Finally, the weak convergence result (4.44) follows immediately from (4.21).

It is now a simple matter to pass to the limit \(\Delta t \to 0^+ \) \((L \to \infty)\) for the subsequence in (4.5a), on noting (4.42a-c) and (4.44), to obtain (4.45).

In order to pass to the limit \(\Delta t \to 0^+ \) \((L \to \infty)\) in the momentum equation (4.5b), we will need a strong convergence result for \(\nabla_s p_{\kappa,\alpha,L}^{(\Delta t)} \). First, it follows from (4.4b), (3.18a), and (4.21) that

\[
\left\| \nabla_s p_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^2(0,T;L^2(\Omega))}^2 \leq \Delta t \left\| \nabla_s u_0^0 \right\|^2 + \int_0^T \left\| \nabla_s u_{\kappa,\alpha,L}^{(\Delta t)} \right\|^2 \, dt \leq C;
\]

hence, we obtain from (3.2), a Poincaré inequality, (4.21), (4.50) and (4.4a,b) that

\[
\left\| \nabla_s p_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^2(0,T;L^2(\Omega))} \leq \left\| \nabla_s u_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^2(0,T;H^1(\Omega))} \leq \left\| \nabla_s u_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^2(0,T;L^2(\Omega))} \leq C,
\]

where \(C \) is independent of \(\Delta t, L, \alpha \) and \(\kappa \).

Lemma 4.2. There exists a \(C \in \mathbb{R}_{>0} \), independent of \(\Delta t \) and \(L \), such that

\[
\left\| \nabla_s p_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^\infty(0,T;L^r(\Omega))} + \left\| \sqrt{p_{\kappa,\alpha,L}^{(\Delta t)}} u_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^\infty(0,T;L^2(\Omega))} + \left\| \nabla_s u_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^2(0,T;L^2(\Omega))} \leq C,
\]

(4.52a)

\[
\left\| \nabla_s p_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^\infty(0,T;L^r(\Omega))} + \left\| \nabla_s u_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^2(0,T;L^2(\Omega))} \leq C,
\]

(4.52b)

\[
\left\| \nabla_s p_{\kappa,\alpha,L}^{(\Delta t)} \right\|_{L^\infty(0,T;L^r(\Omega))} \leq C,
\]

(4.52c)
where \(v = \frac{3\Gamma - 12}{\Gamma} \geq \frac{13}{7} \) as \(\Gamma \geq 8 \).

Hence, in addition to (4.41), \(\rho_{\kappa,\alpha} \in L^\infty(0,T;L^\Gamma(\Omega)) \) and for a further subsequence of the subsequence of Lemma 4.1, it follows that, as \(\Delta t \to 0_+ \) (\(L \to \infty \)),

\[
\nabla_x \rho_{\kappa,\alpha,L}^{[\Delta t]} \to \nabla_x \rho_{\kappa,\alpha} \quad \text{weakly in} \quad L^\nu(\Omega_T), \\
\rho_{\kappa,\alpha,L}^{[\Delta t]} \to \rho_{\kappa,\alpha} \quad \text{strongly in} \quad L^2(\Omega_T),
\]

and, for any nonnegative \(\eta \in C[0,T] \),

\[
\int_0^T \left(\int_\Omega P_*(\rho_{\kappa,\alpha}) \, dx \right) \eta \, dt \leq \liminf_{\Delta t \to 0_+} \int_0^T \left(\int_\Omega P_*(\rho_{\kappa,\alpha,L}^{[\Delta t]}) \, dx \right) \eta \, dt. \tag{4.53c}
\]

Proof. The first two bounds in (4.52a) follow immediately from (4.4a,b), (4.21), (3.5), (3.16a) and (3.18a). The third bound in (4.52a) follows immediately from the first two on noting that

\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]} u_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^2(\Omega)} \leq \left\| \sqrt{\rho_{\kappa,\alpha,L}^{[\Delta t]}} \right\|_{L^2(\Omega)} \left\| \sqrt{\rho_{\kappa,\alpha,L}^{[\Delta t]} u_{\kappa,\alpha,L}^{[\Delta t]}} \right\|_{L^2(\Omega)}. \tag{4.54}
\]

It follows from the first bound in (4.52a), (3.2) and (4.51) that

\[
\left\| \sqrt{\rho_{\kappa,\alpha,L}^{[\Delta t]} u_{\kappa,\alpha,L}^{[\Delta t]}} \right\|_{L^2(0,T;L^\Gamma(\Omega))} \leq C,
\]

and hence the fourth bound in (4.52a).

Next we note, for any \(\eta \in L^2(0,T;H^1(\Omega)) \) and for a.a. \(s \in (t_{n-1},t_n) \), that

\[
\left| \int_\Omega \left[\rho_{\kappa,\alpha,L}^{[\Delta t]}(x,s) - \rho_{\kappa,\alpha,L}^{[\Delta t,+]}(x,s) \right] \eta(x,s) \, dx \right| = \int_s^{t_n} \int_\Omega \eta(x,s) \frac{\partial \rho_{\kappa,\alpha,L}^{[\Delta t]}}{\partial t} \big|_{(x,t)} \, dx \, dt \left| \leq \int_\Omega \|\nabla \eta\|_{H^1(\Omega)} \int_{t_{n-1}}^{t_n} \left\| \frac{\partial \rho_{\kappa,\alpha,L}^{[\Delta t]}}{\partial t} \right\|_{H^1(\Omega)} \, dt. \tag{4.56}
\]

It follows from (4.56) with \(\eta = \|u_{\kappa,\alpha,L}^{[\Delta t,+]}\|_1 \) (4.52a), (4.36) and (4.21) that

\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]} u_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^\infty(0,T;L^1(\Omega))} \leq \|\rho_{\kappa,\alpha,L}^{[\Delta t,+]} u_{\kappa,\alpha,L}^{[\Delta t,+]}\|_{L^\infty(0,T;L^1(\Omega))} + \frac{1}{2} \left\| \frac{\partial \rho_{\kappa,\alpha,L}^{[\Delta t]}}{\partial t} \right\|_{L^2(0,T,H^1(\Omega))} + \left\| u_{\kappa,\alpha,L}^{[\Delta t,+]} \right\|_{L^2(0,T;H^1(\Omega))} \leq C. \tag{4.57}
\]
and hence the first desired bound in (4.52b). Similarly to (4.55), it follows from (4.36), (3.2) and (4.51) that
\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]} \xi_{\kappa,\alpha,L}^{t+} \|_{L^2(0,T;L^2(\Omega))} \leq \|\rho_{\kappa,\alpha,L}^{[\Delta t]} \xi_{\kappa,\alpha,L}^{t+} \|_{L^\infty(0,T;L^\infty(\Omega))},
\]
(4.58a)
and hence the second and third bounds in (4.52b). It follows from (3.1) with \(v = \frac{6r_{12}}{\Gamma + 12}, \ r = 1\) and \(s = \frac{6r_{12}}{\Gamma + 2}\) that \(v \vartheta = 2\) (with \(\vartheta \in (0, 1)\) for \(\Gamma \geq 8\)) and so
\[
\|\rho_{\kappa,\alpha,L}^{[\Delta t]} \xi_{\kappa,\alpha,L}^{t+} \|_{L^\infty(\Omega)} \leq \|\rho_{\kappa,\alpha,L}^{[\Delta t]} \xi_{\kappa,\alpha,L}^{t+} \|_{L^\infty(0,T;L^\infty(\Omega))} \|\rho_{\kappa,\alpha,L}^{[\Delta t]} \xi_{\kappa,\alpha,L}^{t+} \|_{L^2(0,T;L^2(\Omega))}.\]
(4.59)
Thus, (4.59) and the first two bounds in (4.52b) yield the fourth bound in (4.52b). On noting this bound and recalling from (3.4) that \(\partial \Omega \in C^2, \ \vartheta \in (0, 1), \) and \(\rho_0 \in L^\infty(\Omega) \) satisfying (3.16a), we can now apply the parabolic regularity result, Lemma 7.38 in Novotný & Straškraba\(^\text{24}\) (or Lemma G.2 in Appendix G in Barrett & Süli\(^\text{12}\)), to (4.5a) to obtain that the solution \(\rho_{[\Delta t]}^{\kappa,\alpha} \) satisfies the bound (4.52c).

The first desired result in (4.53a) follows immediately from (4.52c). Next we obtain from (4.33) for \(\vartheta = 2\) that, for any \(s \in (0, T]\),
\[
\frac{1}{2} \|\rho_{\kappa,\alpha,L}^{[\Delta t]}(\cdot, s)\|_{L^2(\Omega)}^2 + \alpha \int_0^s \|\nabla \rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^2(\Omega)}^2 \, dt
\]
\[
= \frac{1}{2} \left[\|\rho_0^{[\Delta t]}\|_{L^2(\Omega)}^2 - \int_0^s \int_{\Omega} (\nabla_x \cdot u_{\kappa,\alpha,L}^{[\Delta t]}) (\rho_{\kappa,\alpha,L}^{[\Delta t]}) \, dx \, dt \right].
\]
(4.60)
Integrating (4.60) over \(s \in (0, T]\), and performing integration by parts, yields that
\[
\frac{1}{2} \|\rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^2(\Omega_T)}^2 + \alpha \int_0^T (T - t) \|\nabla \rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^2(\Omega)}^2 \, dt
\]
\[
= \frac{1}{2} \left[T \|\rho_0^{[\Delta t]}\|_{L^2(\Omega)}^2 - \int_0^T (T - t) \int_{\Omega} (\nabla_x \cdot u_{\kappa,\alpha,L}^{[\Delta t]}) (\rho_{\kappa,\alpha,L}^{[\Delta t]}) \, dx \, dt \right].
\]
(4.61)
Similarly, on choosing for any \(s \in (0, T]\), \(\eta(\cdot, t) = \chi_{[0,s]} \rho_{\kappa,\alpha}(\cdot, t)\) in (4.45), and integrating over \(s \in (0, T]\) yields that
\[
\frac{1}{2} \|\rho_{\kappa,\alpha}\|_{L^2(\Omega_T)}^2 + \alpha \int_0^T (T - t) \|\nabla \rho_{\kappa,\alpha}\|_{L^2(\Omega)}^2 \, dt
\]
\[
= \frac{1}{2} \left[T \|\rho_0\|_{L^2(\Omega)}^2 - \int_0^T (T - t) \int_{\Omega} (\nabla_x \cdot u_{\kappa,\alpha}) (\rho_{\kappa,\alpha}) \, dx \, dt \right].
\]
(4.62)
We deduce from (4.61), (4.62), (4.42d) (with \(v = 4\) and (4.44) that
\[
\lim_{\Delta t \to 0^+} \int_0^T (T - t) \|\nabla \rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^2(\Omega)}^2 \, dt = \int_0^T (T - t) \|\nabla \rho_{\kappa,\alpha,L}^{[\Delta t]}\|_{L^2(\Omega)}^2 \, dt.
\]
(4.63)
By applying the elementary identity $|a - b|^2 = |a|^2 - |b|^2 - 2(a - b) \cdot b$ with $a = \sum xP_{\kappa,\alpha,L}^{[\Delta t]}$ and $b = \sum xP_{\kappa,\alpha,L}$, it follows from (4.63) and (4.42a) that
\[
\lim_{\Delta t \to 0_+ (L \to \infty)} \int_0^T (T - t) \| \nabla_x (\rho_{\kappa,\alpha,L} - \rho_{\kappa,\alpha,L}^{[\Delta t]}) \|_{L^2(\Omega)}^2 \, dt = 0, \quad (4.64a)
\]
and hence, for a.a. $t \in (0, T)$,
\[
\| \nabla_x (\rho_{\kappa,\alpha,L} - \rho_{\kappa,\alpha,L}^{[\Delta t]}) (\cdot, t) \|_{L^2(\Omega)}^2 \to 0, \quad \text{as } \Delta t \to 0_+ (L \to \infty). \quad (4.64b)
\]
Therefore, we obtain the second desired result (4.53a) from (4.64b), (4.52c) and Vitali’s convergence theorem. The details of the argument are as follows. With $\nu \geq \frac{13}{20} > 2$, the bound (4.52c) implies that $|\nabla x P_{\kappa,\alpha,L}^{[\Delta t]}|^2$ is equi-integrable in $L^1(\Omega_T)$, i.e., $\nabla x P_{\kappa,\alpha,L}^{[\Delta t]}$ is 2-equi-integrable. Further, thanks to (4.64a), a subsequence of $\nabla_x P_{\kappa,\alpha,L}^{[\Delta t]}$ is a.e. convergent on Ω_T (cf. Theorem 2.20 (iii) in Fonseca & Leoni 20), and thus by Egoroff’s theorem (cf. Theorem 2.22 in Fonseca & Leoni 20), it also converges in measure. Hence, by Vitali’s convergence theorem (cf. Theorem 2.24 in Fonseca & Leoni 20), with $p = 2$, we have strong convergence of the subsequence (not indicated).

The first stated convergence result in (4.53b) follows directly from the first bound in (4.52a). Next, it follows from (4.56) and (4.36) that
\[
\| P_{\kappa,\alpha,L}^{[\Delta t]} - P_{\kappa,\alpha,L}^{\Delta t, +} \|_{L^2(0,T;H^1(\Omega)^{\nu})} \leq (\Delta t)^2 \| \frac{\partial P_{\kappa,\alpha,L}^{[\Delta t]}}{\partial t} \|_{L^2(0,T;H^1(\Omega)^{\nu})} \leq C (\Delta t)^2. \quad (4.65)
\]
Hence the desired convergence results (4.53b) follow immediately from (4.65) and (4.42d) with $r > \frac{2}{\nu + 2}$ (to ensure that $L^r(\Omega) \subset H^1(\Omega)^\nu$).

Finally, it follows for any nonnegative $\eta \in C[0, T]$, on noting the convexity of $P_{\kappa}(\cdot)$, that
\[
\int_0^T \left(\int_\Omega P_{\kappa}(\rho_{\kappa,\alpha,L}^{\Delta t, +}(\cdot, t)) \eta \, dx \right) \, dt \\
\geq \int_0^T \left(\int_\Omega \left[P_{\kappa}(\rho_{\kappa,\alpha}) + P_{\kappa}'(\rho_{\kappa,\alpha})(\rho_{\kappa,\alpha} - \rho_{\kappa,\alpha}) \right] \eta \, dx \right) \, dt. \quad (4.66)
\]
This yields the desired result (4.53c) on noting (4.53b) and that $P_{\kappa}'(\rho_{\kappa,\alpha}) \in L^1(0,T;L^{\frac{\nu + 2}{\nu + 1}}(\Omega))$ by (4.41).

The following result is also required to pass to the limit $\Delta t \to 0_+ (L \to \infty)$ in the momentum equation (4.5b).

Lemma 4.3. There exists a $C \in \mathbb{R}_{>0}$, independent of Δt and L, such that
\[
\| \nabla_x \cdot (\rho_{\kappa,\alpha,L}^{[\Delta t]} u_{\kappa,\alpha,L}^{[\Delta t]}) \|_{L^r(\Omega_T)} + \| \frac{\partial P_{\kappa,\alpha,L}^{[\Delta t]}}{\partial t} \|_{L^r(\Omega_T)} + \| \Delta_x P_{\kappa,\alpha,L}^{[\Delta t]} \|_{L^r(\Omega_T)} \leq C, \quad (4.67)
\]
where \(s = \frac{8\Gamma - 12}{7\Gamma - 6} \geq \frac{26}{25} \) as \(\Gamma \geq 8 \). In addition, we have that

\[
\lim_{\Delta t \to 0^+} \left(\frac{T}{L} \right) \| \rho_{\kappa,\alpha,L}^{[\Delta t]} \|_{L^\infty} \leq \frac{26}{25} \| \rho_{\kappa,\alpha,L}^{[\Delta t]} \|_{L^2} = 0,
\]

(4.68a)

and

\[
\lim_{\Delta t \to 0^+} \left(\frac{T}{L} \right) \| \rho_{\kappa,\alpha,L}^{[\Delta t]} \|_{L^\infty} \leq \frac{26}{25} \| \rho_{\kappa,\alpha,L}^{[\Delta t]} \|_{L^2} = 0.
\]

(4.68b)

Proof. It follows from (4.34) and (4.52c) that

\[
\left\| \rho_{\kappa,\alpha,L}^{[\Delta t]} \right\|_{L^\infty(\Omega)} \leq \left\| \nabla \rho_{\kappa,\alpha,L}^{[\Delta t]} \right\|_{L^\infty(\Omega)} \leq C,
\]

where we have noted that \(\frac{8\Gamma - 12}{7\Gamma - 6} \leq \Gamma \), with \(\Gamma \geq 8 \). Hence, (4.69) and (4.51) yield that

\[
\left\| \nabla_x \rho_{\kappa,\alpha,L}^{[\Delta t]} \right\|_{L^\infty(\Omega)} \leq \left\| \nabla_x \rho_{\kappa,\alpha,L}^{[\Delta t]} \right\|_{L^\infty(\Omega)} \leq C,
\]

(4.70)

where \(s = \frac{8\Gamma - 12}{7\Gamma - 6} \). From the first bound in (4.69) and (4.70), we obtain the first bound in (4.67). As \(\partial \Omega \in C^2, \theta \in (0, 1) \), it follows from (3.15), (3.16a) and elliptic regularity that, for all \(r \in [1, \infty) \),

\[
\| \rho^0 \|_{W^{2,r}(\Omega)} \leq C(\alpha) \| \rho_0 - \rho^0 \|_{L^\infty(\Omega)} \leq C(\alpha) \quad \text{and} \quad \nabla_x \rho^0 \cdot n = 0 \text{ on } \partial \Omega.
\]

(4.71)

On noting (4.71) and the first bound in (4.67), we can now apply to (4.5a) the parabolic regularity result, Lemma 7.37 in Novotný & Straškraba\(^{24}\) (or Lemma G.1 in Appendix G in Barrett & Suli\(^{12}\)), to obtain that the solution \(\rho_{\kappa,\alpha,L}^{[\Delta t]} \) satisfies the last two bounds in (4.67).

Next, we note that

\[
\left\| \rho_{\kappa,\alpha,L}^{[\Delta t]} \right\|_{L^\infty(\Omega)}^2 = \int_0^T \int_\Omega \| \rho_{\kappa,\alpha,L}^{[\Delta t]} \|_{L^\infty}^2 dx dt
\]

(4.72)
It follows from (4.36) and (4.21) that

\[
\left\| \sqrt{\rho_{k,\alpha,L}} \sqrt{\Delta_t} \frac{\Delta_t^+ \rho_{\kappa,\alpha,L} - \Delta_t^- \rho_{\kappa,\alpha,L}}{\Delta_t} \right\|_{L^2(0,T;L^2(\Omega))} \\
\leq \left\| \sqrt{\rho_{k,\alpha,L}} \right\|_{L^\infty(0,T;L^1(\Omega))} \left\| \sqrt{\rho_{k,\alpha,L}} \left(\rho_{\kappa,\alpha,L} - u_{\kappa,\alpha,L} \right) \right\|_{L^2(0,T;L^2(\Omega))} \\
\leq C (\Delta t)^{\frac{1}{2}}.
\]

(4.73)

Similarly, it follows from (4.51), (4.36) and (4.52a) and that

\[
\left\| \sqrt{\rho_{k,\alpha,L}} \frac{\Delta_t^+ \rho_{\kappa,\alpha,L} - \Delta_t^- \rho_{\kappa,\alpha,L}}{\Delta_t} \right\|_{L^2(0,T;L^2(\Omega))} \\
\leq \left\| \sqrt{\rho_{k,\alpha,L}} \rho_{\kappa,\alpha,L} \right\|_{L^\infty(0,T;L^\frac{2}{3}(\Omega))} \left\| \sqrt{\rho_{k,\alpha,L}} \left(\rho_{\kappa,\alpha,L} - u_{\kappa,\alpha,L} \right) \right\|_{L^2(0,T;L^2(\Omega))} \\
\leq C \left\| \sqrt{\rho_{k,\alpha,L}} \right\|_{L^\infty(0,T;L^\frac{2}{3}(\Omega))} \left\| \sqrt{\rho_{k,\alpha,L}} \left(\rho_{\kappa,\alpha,L} - u_{\kappa,\alpha,L} \right) \right\|_{L^2(0,T;L^2(\Omega))} \leq C.
\]

(4.74)

We deduce from (4.73), (4.74) and (3.1) as \(\frac{\delta r}{\Gamma + 2} > 2 > \frac{2\Gamma}{\Gamma + 2} \) that

\[
\lim_{\Delta t \to 0^+ (L \to \infty)} \left\| \sqrt{\rho_{k,\alpha,L}} \frac{\Delta_t^+ \rho_{\kappa,\alpha,L} - \Delta_t^- \rho_{\kappa,\alpha,L}}{\Delta_t} \right\|_{L^2(\Omega_T)} = 0,
\]

(4.75)

and so the first term on the right-hand side of (4.72) converges to zero, as \(\Delta t \to 0^+ \) (\(L \to \infty \)).

Next, we deal with the second term on the right-hand side of (4.72). It follows from (4.67) that

\[
\left\| \rho_{k,\alpha,L} \right\|_{L^2(0,T;L^2(\Omega))} \leq \Delta t \left\| \frac{\partial \rho_{k,\alpha,L}}{\partial t} \right\|_{L^\infty(0,T;L^\infty(\Omega_T))} \leq C \Delta t,
\]

(4.76)

and from (4.36) and (4.52a) that

\[
\left\| \rho_{k,\alpha,L} \right\|_{L^2(0,T;L^2(\Omega))} \leq C.
\]

(4.77)

Hence, the bounds (4.76) and (4.77) yield, on noting (3.1) and as \(\Gamma \geq 8 \), that

\[
\lim_{\Delta t \to 0^+ (L \to \infty)} \left\| \rho_{k,\alpha,L} \rho_{\kappa,\alpha,L} \right\|_{L^\infty(0,T;L^r(\Omega))} = 0, \quad \text{for any } v \in [1, \infty), \ r \in [1, 4).
\]

(4.78)

As \(\frac{\delta r}{\Gamma + 2} > \frac{4\Gamma}{\Gamma + 2} > 4 \) for \(\Gamma \geq 8 \), it follows from (3.1) and (4.52a) that

\[
\left\| \sqrt{\rho_{k,\alpha,L}} \frac{\Delta_t^+ u_{\kappa,\alpha,L} - \Delta_t^- u_{\kappa,\alpha,L}}{\Delta_t} \right\|_{L^2(0,T;L^2(\Omega))} \leq \left\| \sqrt{\rho_{k,\alpha,L}} \frac{\Delta_t^+ u_{\kappa,\alpha,L} - \Delta_t^- u_{\kappa,\alpha,L}}{\Delta_t} \right\|_{L^2(0,T;L^2(\Omega))} \leq C.
\]

(4.79)
Lemma 4.4. There exists a $C \in \mathbb{R}_{>0}$, independent of Δt and L, such that
\begin{align*}
\|m^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^\infty(0,T;L^2_{\text{per}}(\Omega))} + \|m^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^2(0,T;L^6_{\text{per}}(\Omega))} + \|\Delta t^{\pm} m^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^3(\Omega)} & \leq C, \\
\|\Delta t^{\pm} m^{\Delta t(\pm)}_{\kappa,\alpha,L} \otimes u^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^2(0,T;L^6_{\text{per}}(\Omega))} & \leq C.
\end{align*}

In addition, (4.52b) and (4.51) yield that
\begin{align*}
& \left\| \sqrt{\rho^{\Delta t}_{\kappa,\alpha,L}} u^{\Delta t,+}_{\kappa,\alpha,L} \right\|_{L^6(0,T;L^{12}_{\text{per}}(\Omega))} \\
& \quad \leq \left\| \sqrt{\rho^{\Delta t}_{\kappa,\alpha,L}} u^{\Delta t,+}_{\kappa,\alpha,L} \right\|_{L^6(0,T;L^3(\Omega))} \leq C.
\end{align*}

As $\frac{\Delta t}{\Gamma + 6} \geq \frac{\Delta t}{\Gamma}$ for $\Gamma \geq 8$, it then follows from (3.1), (4.80) and (4.52b) that
\begin{align*}
& \left\| \sqrt{\rho^{\Delta t}_{\kappa,\alpha,L}} u^{\Delta t,+}_{\kappa,\alpha,L} \right\|_{L^6(0,T;L^{12}_{\text{per}}(\Omega))} \\
& \quad \leq \left(\int_0^T \left\| \sqrt{\rho^{\Delta t}_{\kappa,\alpha,L}} u^{\Delta t,+}_{\kappa,\alpha,L} \right\|_{L^6(\Omega)}^{12} \left\| \sqrt{\rho^{\Delta t}_{\kappa,\alpha,L}} u^{\Delta t,+}_{\kappa,\alpha,L} \right\|_{L^6(\Omega)}^{12/13} \frac{dt}{\Gamma + 6} \right)^{1/2} \\
& \quad \leq \left(\int_0^T \left\| \sqrt{\rho^{\Delta t}_{\kappa,\alpha,L}} u^{\Delta t,+}_{\kappa,\alpha,L} \right\|_{L^6(\Omega)}^{12} \left\| \sqrt{\rho^{\Delta t}_{\kappa,\alpha,L}} u^{\Delta t,+}_{\kappa,\alpha,L} \right\|_{L^6(\Omega)}^{12/13} \frac{dt}{\Gamma + 6} \right)^{1/2} \leq C.
\end{align*}

Combining (4.78), (4.79) and (4.81) yields that the second term on the right-hand side of (4.72) converges to zero, as $\Delta t \to 0_+$ ($L \to \infty$). Therefore, we have the desired result (4.68a).

We now adapt the argument above to prove the desired result (4.68b). The bounds (4.72)-(4.75) remain true with $\rho^{\Delta t}_{\kappa,\alpha,L}$ replaced by $\rho^{\Delta t}_{\kappa,\alpha,L}$. Similarly, (4.76) remains true with $\rho^{\Delta t}_{\kappa,\alpha,L}$ on the left-hand side of the inequality replaced by $\rho^{\Delta t}_{\kappa,\alpha,L}$. Hence, the bounds (4.77) and (4.78) remain true with $\rho^{\Delta t}_{\kappa,\alpha,L}$ replaced by $\rho^{\Delta t}_{\kappa,\alpha,L}$. Therefore, on combining all these modified bounds with (4.79), we obtain the desired result (4.68b).

4.4. L, Δt-independent bounds on the time-derivatives of $m^{\Delta t}_{\kappa,\alpha,L}$ and $\psi^{\Delta t}_{\kappa,\alpha,L}$

On noting from (4.4a,b) that
\begin{align*}
m^{\Delta t}_{\kappa,\alpha,L} &= \frac{t - t_n - 1}{\Delta t} m^{\Delta t(-)}_{\kappa,\alpha,L} + \frac{t_n - t}{\Delta t} m^{\Delta t(+)}_{\kappa,\alpha,L}, \quad t \in (t_{n-1}, t_n), \quad n = 1, \ldots, N, \quad \text{(4.82)}
\end{align*}

an elementary calculation yields, for any $s \in [1, \infty]$, that
\begin{align*}
\int_0^T \|m^{\Delta t}_{\kappa,\alpha,L}\|_{L^s(\Omega)} dt & \leq \frac{1}{2} \int_0^T \left(\|m^{\Delta t(+)}_{\kappa,\alpha,L}\|_{L^s(\Omega)}^2 + \|m^{\Delta t(-)}_{\kappa,\alpha,L}\|_{L^s(\Omega)}^2 \right) dt. \quad \text{(4.83)}
\end{align*}

In order to pass to the limit $\Delta t \to 0_+$ ($L \to \infty$) in the momentum equation (4.5b), we require the following result.

Lemma 4.4. There exists a $C \in \mathbb{R}_{>0}$, independent of Δt and L, such that
\begin{align*}
& \|m^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^\infty(0,T;L^2_{\text{per}}(\Omega))} + \|m^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^2(0,T;L^6_{\text{per}}(\Omega))} + \|\Delta t^{\pm} m^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^3(\Omega)} \leq C, \\
& \|\Delta t^{\pm} m^{\Delta t(\pm)}_{\kappa,\alpha,L} \otimes u^{\Delta t(\pm)}_{\kappa,\alpha,L}\|_{L^2(0,T;L^6_{\text{per}}(\Omega))} \leq C.
\end{align*}

\text{Lemma 4.4.}
where $v = \frac{10r - 6}{3(r + 1)} \geq \frac{74}{27}$ as $\Gamma \geq 8$.

Proof. The first bound in (4.84a) for $\delta_{k,\alpha,L}^{\Delta t,\pm}$ follows immediately from the third bound in (4.52a). The corresponding bound for $\kappa_{k,\alpha,L}^{\Delta t}$ is a direct consequence of (4.82). Similarly to (4.58a), it follows from (4.52a) and (4.51) that

$$
\|\kappa_{k,\alpha,L}^{\Delta t,\pm} \|_{L^2(0,T;L^2(\Omega))} \leq \|\kappa_{k,\alpha,L}^{\Delta t,\pm} \|_{L^\infty(0,T;L^2(\Omega))} \|u_{k,\alpha,L}^{\Delta t,\pm} \|_{L^2(0,T;L^5(\Omega))} \leq C,
$$

(4.85)

and hence the second bound in (4.84a) for $\delta_{k,\alpha,L}^{\Delta t,\pm}$. The corresponding bound for $\kappa_{k,\alpha,L}^{\Delta t}$ is then a direct consequence of (4.83). Similarly to (4.59), it follows from (3.1) with $v = \frac{10r - 6}{3(r + 1)}$, $r = \frac{2}{r + 1}$ and $s = \frac{6r}{r + 1}$ that $v \vartheta = 2$ (with $\vartheta \in (0, 1)$ thanks to $\Gamma \geq 8$), and so

$$
\|\kappa_{k,\alpha,L}^{\Delta t,\pm} \|_{L^\infty(\Omega T)} \leq \|\kappa_{k,\alpha,L}^{\Delta t,\pm} \|_{L^\infty(0,T;L^\vartheta(\Omega))} \|\kappa_{k,\alpha,L}^{\Delta t,\pm} \|_{L^\vartheta(0,T;L^6(\Omega))}.
$$

(4.86)

Hence (4.86) and the first two bounds in (4.84a) yield the third bound in (4.84a). Finally, combining the first bound in (4.84a) and (4.51) yields (4.84b).

Next, we need to bound the time-derivative of $\kappa_{k,\alpha,L}^{\Delta t}$ independently of Δt and L. It follows from (4.39) that we will need to choose at least $w \in L^4(0, T; W_0^{1,4}(\Omega))$ in (4.5b). We now rewrite the time-derivative of $\kappa_{k,\alpha,L}^{\Delta t}$ in (4.5b) using (4.5a). Adopting the notation (4.48), we have for any $w \in L^4(0, T; W_0^{1,4}(\Omega))$ that $\kappa_{k,\alpha,L}^{\Delta t,\pm} \cdot w^{\Delta t} \in L^2(0, T; H^1(\Omega))$, and so (4.5b) yields that

$$
- \int_0^T \int_\Omega \frac{\partial \kappa_{k,\alpha,L}^{\Delta t}}{\partial t} u_{k,\alpha,L}^{\Delta t,\pm} \cdot w \, dx \, dt = - \int_0^T \left(\frac{\partial [\Delta t]}{\partial t} \kappa_{k,\alpha,L}^{\Delta t,\pm} \cdot w^{(\Delta t)} \right) \left(\kappa_{k,\alpha,L}^{\Delta t,\pm} \cdot w^{(\Delta t)} \right) \, dt
$$

$$
= \int_0^T \int_\Omega \left(\alpha \kappa_{k,\alpha,L}^{\Delta t} \cdot \nabla x (u_{k,\alpha,L}^{\Delta t,\pm} \cdot w^{(\Delta t)}) \right) \, dx \, dt
$$

$$
- \int_0^T \int_\Omega \kappa_{k,\alpha,L}^{\Delta t,\pm} \cdot \nabla x (u_{k,\alpha,L}^{\Delta t,\pm} \cdot w) \, dx \, dt
$$

$$
= \int_0^T \int_\Omega \left(\alpha \kappa_{k,\alpha,L}^{\Delta t} \cdot \nabla x (u_{k,\alpha,L}^{\Delta t,\pm} \cdot w^{(\Delta t)}) \right) \, dx \, dt
$$

$$
- \int_0^T \int_\Omega \kappa_{k,\alpha,L}^{\Delta t,\pm} \cdot \nabla x (u_{k,\alpha,L}^{\Delta t,\pm} \cdot w) \, dx \, dt
$$

(4.87)

Next we note that, for all $w \in L^4(0, T; W_0^{1,4}(\Omega))$,

$$
\int_0^T \int_\Omega \left(\alpha \kappa_{k,\alpha,L}^{\Delta t,\pm} \cdot \nabla x (u_{k,\alpha,L}^{\Delta t,\pm} \cdot w) \right) \, dx \, dt
$$

$$
= \int_0^T \int_\Omega (\kappa_{k,\alpha,L}^{\Delta t,\pm} - \kappa_{k,\alpha,L}^{\Delta t,\pm}) \cdot \nabla x (u_{k,\alpha,L}^{\Delta t,\pm} \cdot w) \, dx \, dt
$$

(4.88)
Therefore, on combining (4.5b), (4.87) and (4.88), one can rewrite (4.5b) as
\[
\int_0^T \int_\Omega \left[\frac{\partial m_{k,\alpha,L}^{\Delta t}}{\partial t} \cdot w + \frac{\alpha}{2} \nabla x \rho_{k,\alpha,L} \cdot \nabla x (u_{k,\alpha,L}^{\Delta t} \cdot w^{(\Delta t)}) \right] \, dx \, dt \\
- \left[(m_{k,\alpha,L}^{\Delta t}, \nabla x) w \right] \cdot u_{k,\alpha,L}^{\Delta t} \right] \, dx \, dt \\
+ \int_0^T \int_\Omega S(u_{k,\alpha,L}^{\Delta t}) : \nabla x w \, dx \, dt \quad - \int_0^T \int_\Omega f^{(\Delta t)} \cdot \nabla x w \, dx \, dt \\
- \frac{1}{2} \int_0^T \int_\Omega \left(\rho_{k,\alpha,L} u_{k,\alpha,L}^{\Delta t} - \rho_{k,\alpha,L} u_{k,\alpha,L}^{\Delta t} \right) \cdot \nabla x (u_{k,\alpha,L}^{\Delta t} \cdot w) \, dx \, dt \\
+ \frac{1}{2} \int_0^T \int_\Omega \rho_{k,\alpha,L} u_{k,\alpha,L}^{\Delta t} \cdot \nabla x (u_{k,\alpha,L}^{\Delta t} \cdot (w - w^{(\Delta t)})) \, dx \, dt \\
= \int_0^T \int_\Omega \left[\rho_{k,\alpha,L}^{\Delta t} f^{(\Delta t)} \cdot w - \tau_1 M^{\Delta t}_{\alpha,L} \cdot \nabla x w \right] \, dx \, dt \\
- 2 \lambda \int_0^T \int_\Omega \left(\int_D M^{\Delta t}_{\alpha,L} \, dx \right) \nabla x \rho_{k,\alpha,L}^{\Delta t} \cdot w \, dx \, dt \\
\quad \forall w \in L^4(0, T; W_{0}^{1,4}(\Omega)). \tag{4.89}
\]

We have the following result.

Lemma 4.5. There exists a \(C \in \mathbb{R}_{>0} \), independent of \(\Delta t \) and \(L \), such that
\[
\left\| \frac{\partial m_{k,\alpha,L}^{\Delta t}}{\partial t} \right\|_{L^1(0, T; W_0^{1,4}(\Omega))} \leq C, \tag{4.90}
\]
where \(s = \frac{8\Gamma - 12}{\Gamma - 6} \geq \frac{36}{25} \) as \(\Gamma \geq 8 \).

Proof. Let \(v = \frac{8\Gamma - 12}{\Gamma - 6} \geq \frac{13}{6} \) as in Lemma 4.2. Then for \(s' = \frac{\Gamma}{s-1} = \frac{8\Gamma - 12}{\Gamma - 6} \geq 8 \), we have that
\[
\frac{1}{s'} + \frac{1}{v} + \frac{1}{\gamma} = 1. \tag{4.91}
\]

It follows from (4.89), (4.91), \(W^{1,4}(\Omega) \hookrightarrow L^\infty(\Omega), H^1(\Omega) \hookrightarrow L^v(\Omega), (4.52a-c), (4.51), (4.84a) \), on noting that \(\frac{10\Gamma - 6}{8\Gamma - 12} \geq \frac{8\Gamma - 12}{\Gamma - 6}, (4.39), (4.28b), (1.19), (4.21) \) and (3.29a) that, for any \(w \in L^v(0, T; W_{0}^{1,4}(\Omega)) \),
\[
\left\| \int_0^T \int_\Omega \frac{\partial m_{k,\alpha,L}^{\Delta t}}{\partial t} \cdot w \, dx \, dt \right\|_{L^1(0, T; L^v(\Omega))} \leq C \left\| \nabla x \rho_{k,\alpha,L}^{\Delta t} \right\|_{L^v(\Omega)} \left\| u_{k,\alpha,L}^{\Delta t} \right\|_{L^2(0, T; H^1(\Omega))} \left\| w^{(\Delta t)} \right\|_{L^v(0, T; W_{0}^{1,4}(\Omega))}.
\]
The desired result (4.90) then follows immediately from (4.92) on noting, as $s' \geq 4$, that, for any $w \in L^{s'}(0, T; W^{1,4}_0(\Omega))$,
\[
\|w^{(\Delta t)}\|_{L^{s'}(0, T; W^{1,4}_0(\Omega))} = \Delta t \sum_{n=1}^{N} \left\| \frac{1}{\Delta t} \int_{t_{n-1}}^{t_n} w \, dt \right\|_{W^{1,4}_0(\Omega)}^{s'} \\
\leq C \Delta t \sum_{n=1}^{N} \left(\frac{1}{\Delta t} \int_{t_{n-1}}^{t_n} \|w\|_{W^{1,4}_0(\Omega)}^{4} \, dt \right)^{\frac{s'}{4}} \leq C \|w\|_{L^{s'}(0, T; W^{1,4}_0(\Omega))}^{s'}.
\] (4.93)
That completes the proof. \qed

Next, we bound the time derivative of $\hat{\psi}^{\Delta t}_{k,\alpha,L}$.

Lemma 4.6. There exists a $C \in \mathbb{R}_{>0}$, independent of Δt and L, such that
\[
\left\| M \frac{\partial \hat{\psi}^{\Delta t}_{k,\alpha,L}}{\partial t} \right\|_{L^2(0,T;H^s(\Omega \times D))} \leq C,
\] (4.94)
where $s > 1 + \frac{1}{2}(K + 1)d$.

Proof. It follows from (4.5c), (4.21), (1.19) and (4.27) that, for any $\varphi \in L^2(0, T; W^{1,\infty}(\Omega \times D))$,
\[
\left| \int_{0}^{T} \int_{\Omega \times D} M \frac{\partial \hat{\psi}^{\Delta t}_{k,\alpha,L}}{\partial t} \varphi \, dq \, dx \, dt \right| \\
\leq 2\varepsilon \left| \int_{0}^{T} \int_{\Omega \times D} M \nabla \hat{\psi}^{\Delta t}_{k,\alpha,L} \cdot \nabla \varphi \, dq \, dx \, dt \right| \\
+ \frac{1}{2} \varepsilon \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \left| \int_{0}^{T} \int_{\Omega \times D} M \sqrt{\hat{\psi}^{\Delta t}_{k,\alpha,L} \nabla q_i} \sqrt{\hat{\psi}^{\Delta t}_{k,\alpha,L}} \cdot \nabla q_j \varphi \, dq \, dx \, dt \right| \\
+ \frac{1}{2} \varepsilon \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \left| \int_{0}^{T} \int_{\Omega \times D} M \sqrt{\hat{\psi}^{\Delta t}_{k,\alpha,L} \nabla q_i} \sqrt{\hat{\psi}^{\Delta t}_{k,\alpha,L}} \cdot \nabla q_j \varphi \, dq \, dx \, dt \right|.
\]
The desired result (4.94) then follows on noting that \(H^s(\Omega \times D) \hookrightarrow W^{1,\infty}(\Omega \times D) \) for the stated bound on \(s \).

Remark 4.2. We note that allowing \(\beta = 0 \) would impact on the proof of Lemma 4.5. As is already clear from the formal energy inequality (1.18), by setting \(\beta = 0 \) one loses control over the \(L^\infty(0,T;L^2(\Omega)) \cap L^2(0,T;H^1(\Omega)) \) norm of \(\hat{\omega}^{\Delta t, +}_{k,\alpha,L} \); instead, one can only control weaker norms of \(\hat{\omega}^{\Delta t, +}_{k,\alpha,L} \), leading to (4.32) in place of (4.28b).

While this weaker control is not sufficient to prove (4.90) as stated, one can prove a weaker result by replacing the \(W^{1,4}(\Omega) \) norm on the test function \(w \) by the \(W^{1,2d}(\Omega) \) norm throughout the proof. Admitting \(\beta = 0 \) in Lemma 4.6, on the other hand, results in unsurmountable difficulties: the proof of the lemma cannot be completed without an \(L^r(0,T;L^2(\Omega)) \) norm bound on \(\hat{\omega}^{\Delta t, +}_{k,\alpha,L} \), with \(r > 2 \) at least; in particular, we are unable to prove (4.94), or a weaker result on the time-difference of \(\hat{\psi}^{\Delta t}_{k,\alpha,L} \), when \(\beta = 0 \). Remark 4.1, and equation (4.31) in particular, indicate that an \(L^r(0,T;L^2(\Omega)) \) norm bound on \(\hat{\omega}^{\Delta t, +}_{k,\alpha,L} \), with \(r > 2 \), is unlikely to hold without requiring \(\beta > 0 \), regardless of the choice of \(\ell \) in (1.15).

4.5. Passing to the limit \(\Delta t \to 0^+ \) \((L \to \infty)\) in the momentum equation (4.5b) and the Fokker–Planck equation (4.5c)

We are now ready to pass to the limit \(\Delta t \to 0^+ \) \((L \to \infty)\) in the momentum equation (4.5b) and the Fokker–Planck equation (4.5c). We have the following convergence results.

Lemma 4.7. We have that

\[
m_{k,\alpha} := \rho_{k,\alpha} u_{k,\alpha} \in L^r(\Omega_T) \cap W^{1,s}(0,T;L^1(\Omega)) \cap C_w([0,T];L^{2\Gamma}(\Omega)), \tag{4.96}
\]

where \(\nu = \frac{10\Gamma - 6}{3(\Gamma + 1)} \) and \(s = \frac{8\Gamma - 12}{11 - \nu} \), with \(\Gamma \geq 8 \). In addition, for a further subsequence
of the subsequences of Lemmas 4.1 and 4.2 it follows that, as $\Delta t \to 0^+$ ($L \to \infty$),

\begin{align}
 m_{\kappa,\alpha,L}^{\Delta t} &\to m_{\kappa,\alpha} \quad \text{weakly in } L^r(\Omega_T), \quad (4.97a) \\
 m_{\kappa,\alpha,L}^{\Delta t} &\to m_{\kappa,\alpha} \quad \text{weakly in } W^{1,r}(0,T; W^{1,4}_0(\Omega)'), \quad (4.97b) \\
 m_{\kappa,\alpha,L}^{\Delta t} &\to m_{\kappa,\alpha} \quad \text{strongly in } L^2(0,T; H^1(\Omega)'), \quad (4.97c) \\
 m_{\kappa,\alpha,L}^{\Delta t} \otimes \nabla u_{\kappa,\alpha,L}^{\Delta t} &\to m_{\kappa,\alpha} \otimes u_{\kappa,\alpha} \quad \text{weakly in } L^2(0,T; L^{\infty}(\Omega)), \quad (4.97d) \\
 m_{\kappa,\alpha,L}^{\Delta t} &\to m_{\kappa,\alpha} \quad \text{in } C_w([0,T]; L^{\infty}(\Omega)). \quad (4.97e)
\end{align}

Proof. The weak convergence result (4.97a) for some limit function $m_{\kappa,\alpha} \in L^r(\Omega_T)$, which is the common limit of $m_{\kappa,\alpha,L}^{\Delta t}$, $u_{\kappa,\alpha,L}^{\Delta t}$ and $u_{\kappa,\alpha,L}^{\Delta t}$, follows immediately from (4.84a), (4.68b), (4.3) and (4.82). The weak convergence result (4.97b) and the strong convergence result (4.97c) for $m_{\kappa,\alpha,L}^{\Delta t}$ follow immediately for $m_{\kappa,\alpha} \in L^r(\Omega_T) \cap W^{1,r}(0,T; W^{1,4}_0(\Omega)')$ from (4.84a), (4.90) and (3.11), on noting that $L^r(\Omega)$ is compactly embedded in $H^1(\Omega)'$, which is in turn continuously embedded in $W^{1,4}(\Omega)'$. The corresponding result (4.97c) for $m_{\kappa,\alpha,L}^{\Delta t}$ then follows from (4.97c) for $m_{\kappa,\alpha,L}^{\Delta t}$ and (4.68b). It follows from (4.53b), (4.44) and (4.97c) for $m_{\kappa,\alpha,L}^{\Delta t}$ that $m_{\kappa,\alpha} = \rho_{\kappa,\alpha} u_{\kappa,\alpha}$, and hence (4.96). The result (4.97d) follows immediately from (4.84b), (4.97c) and (4.44). Finally (4.97e) follows from the bound on the first term in (4.84a), (4.90) and (3.12a,b).

Next, noting (4.4a,b), a simple calculation yields that [see (6.32)–(6.34) in Barrett & S"uli\(^5\) for details]:

\begin{align}
 \int_0^T \int_{\Omega \times D} M |\nabla_x \sqrt{\psi_{\kappa,\alpha,L}^{\Delta t}}|^2 \, dq \, dx \, dt \\
 \leq 2 \int_0^T \int_{\Omega \times D} M \left[|\nabla_x \psi_{\kappa,\alpha,L}^{\Delta t} + \nabla_x \sqrt{\psi_{\kappa,\alpha,L}^{\Delta t}}|^2 + |\nabla_x \sqrt{\psi_{\kappa,\alpha,L}^{\Delta t}}|^2 \right] \, dq \, dx \, dt, \quad (4.98)
\end{align}

and an analogous result with ∇q replaced by ∇q. Then, the bound (4.21), on noting (3.21a), (4.98) and the convexity of \mathcal{F}, imply the existence of a $C \in \mathbb{R}_{>0}$, independent of Δt and L, such that:

\begin{align}
 \text{ess.sup}_{t \in [0,T]} \int_{\Omega \times D} M \mathcal{F}(\psi_{\kappa,\alpha,L}^{\Delta t}(t)) \, dq \, dx \\
 + \frac{1}{\Delta t L} \int_0^T \int_{\Omega \times D} M (\psi_{\kappa,\alpha,L}^{\Delta t,+} - \psi_{\kappa,\alpha,L}^{\Delta t,-})^2 \, dq \, dx \, dt \\
 + \int_0^T \int_{\Omega \times D} M |\nabla_x \sqrt{\psi_{\kappa,\alpha,L}^{\Delta t}}|^2 \, dq \, dx \, dt \\
 + \int_0^T \int_{\Omega \times D} M |\nabla_q \sqrt{\psi_{\kappa,\alpha,L}^{\Delta t}}|^2 \, dq \, dx \, dt \\
 \leq C. \quad (4.99)
\end{align}

Lemma 4.8. For a further subsequence of the subsequences of Lemmas 4.1, 4.2
and 4.7, there exists a function
\[\hat{\psi}_{k,\alpha} \in L^v(0, T; Z_1) \cap H^1(0, T; M^{-1}(H^s(\Omega \times D))'), \tag{4.100a} \]
where \(v \in [1, \infty) \) and \(s > 1 + \frac{1}{2}(K + 1)d \), with finite relative entropy and Fisher information, i.e.,
\[F(\hat{\psi}_{k,\alpha}) \in L^\infty(0, T; L^1_M(\Omega \times D)) \quad \text{and} \quad \sqrt{\hat{\psi}_{k,\alpha}} \in L^2(0, T; H^1_M(\Omega \times D)), \tag{4.100b} \]
\[\text{such that, as } \Delta t \to 0_+ \quad (L \to \infty), \]
\[M^\frac{1}{2} \nabla_x \hat{\psi}_{k,\alpha, L} \to M^\frac{1}{2} \nabla_x \hat{\psi}_{k,\alpha} \quad \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \tag{4.101a} \]
\[M^\frac{1}{2} \nabla_q \hat{\psi}_{k,\alpha, L} \to M^\frac{1}{2} \nabla_q \hat{\psi}_{k,\alpha} \quad \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \tag{4.101b} \]
\[M \frac{\partial \hat{\psi}_{k,\alpha, L}}{\partial t} \to M \frac{\partial \hat{\psi}_{k,\alpha}}{\partial t} \quad \text{weakly in } L^2(0, T; H^s(\Omega \times D)'), \tag{4.101c} \]
\[\hat{\psi}_{k,\alpha, L} \to \hat{\psi}_{k,\alpha} \quad \text{strongly in } L^s(0, T; L^1_M(\Omega \times D)), \tag{4.101d} \]
\[\beta^r(\hat{\psi}_{k,\alpha, L}) \to \beta^r(\hat{\psi}_{k,\alpha}) \quad \text{strongly in } L^r(0, T; L^1_M(\Omega \times D)), \tag{4.101e} \]
\[\tau(M \hat{\psi}_{k,\alpha, L}) \to \tau(M \hat{\psi}_{k,\alpha}) \quad \text{strongly in } L^r(\Omega_T), \tag{4.101f} \]
where \(r \in [1, \frac{4(d+2)}{3d+1}] \); and, for a.a. \(t \in (0, T) \),
\[\int_{\Omega \times D} M(q) F(\hat{\psi}_{k,\alpha}(x, q, t)) \, dq \, dx \leq \liminf_{\Delta t \to 0_+ \quad (L \to \infty)} \int_{\Omega \times D} M(q) F(\hat{\psi}_{k,\alpha, L}(x, q, t)) \, dq \, dx. \tag{4.101g} \]

In addition, we have that
\[\varrho_{k,\alpha} := \int_{\Omega \times D} M \hat{\psi}_{k,\alpha} \, dq \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)), \tag{4.102} \]
and, as \(\Delta t \to 0_+ \quad (L \to \infty) \),
\[\varrho^{\Delta t,+}_{k,\alpha, L} \to \varrho_{k,\alpha} \quad \text{weakly* in } L^\infty(0, T; L^2(\Omega)), \tag{4.103a} \]
\[\text{weakly in } L^2(0, T; H^1(\Omega)), \tag{4.103a} \]
\[\varrho^{\Delta t,+}_{k,\alpha, L} \int_{\Omega \times D} M \beta^L(\hat{\psi}_{k,\alpha, L}) \, dq \to \varrho_{k,\alpha} \quad \text{strongly in } L^\infty(0, T; L^2(\Omega)), \tag{4.103b} \]
for any \(\varsigma \in (1, 6) \).

Proof. In order to prove the strong convergence result (4.101d), we will apply Dubinskiši’s compactness theorem (Theorem 3.1 in Barrett & Sülı12) with \(\mathfrak{X} = L^1_M(\Omega \times D), \mathfrak{X}_1 = M^{-1} H^s(\Omega \times D)' \) and
\[\mathfrak{M} = \left\{ \varphi \in Z_1 : \int_{\Omega \times D} M \left[|\nabla_q \sqrt{\varphi}|^2 + |\nabla_x \sqrt{\varphi}|^2 \right] \, dq \, dx < \infty \right\}. \tag{4.104} \]
See Section 5 in Barrett & S"ul"i6 for the proof of the compactness of the embedding $\mathcal{M} \hookrightarrow \mathcal{X}$, and the continuity of the embedding $\mathcal{X} \hookrightarrow \mathcal{X}_1$. Hence, the desired result (4.101d) for $\hat{\psi}_{\kappa,\alpha,L}$ and $v = 1$ follows from Dubinski"i’s compactness theorem (cf. Theorem 3.1 in Barrett & S"ul"i12). The desired result (4.101d) for $\hat{\psi}_{\kappa,\alpha,L}$ and $v = 1$ then follows from (4.101d) for $\hat{\psi}_{\kappa,\alpha,L}^\pm$ and $v = 1$, (4.82) with $m_{\Delta t,\pm}$ replaced by $\hat{\psi}_{\kappa,\alpha,L}^\pm$, the second bound in (4.99) and (4.40). The desired result (4.101d) for $v \in (1, \infty)$ then follows from (4.101d) for $v = 1$, the first bound in (4.99) (note that $\mathcal{F}(s) \geq [s - e + 1]_+$ for all $s \geq 0$, since $\mathcal{F}(s) \geq 0$ and, by convexity of \mathcal{F}, $\mathcal{F}(s) \leq \mathcal{F}(e) + (s - e) \mathcal{F}'(e) = s - e + 1$) and an interpolation result, see Lemma 5.1 in Barrett & S"ul"i6. The weak convergence result (4.101c) follows immediately from (4.94). The weak convergence results (4.101a,b) follow immediately from the last two terms in (4.99), on noting an argument similar to that in the proof of Lemma 3.3 in Barrett & S"ul"i6 in order to identify the limit. The result (4.101e) follows from (4.101d) and the Lipschitz continuity of β^L, see (5.8) in Barrett & S"ul"i9 for details. The result (4.101g) follows from (4.101d) and Fatou’s lemma, see (6.46) in Barrett & S"ul"i6 for details. In addition, the convergence results (4.101a–d,g) yield the desired results (4.100a,b).

The results (4.103a) for some limit function $g_{\kappa,\alpha}$ follow immediately from the bounds on $g_{\kappa,\alpha}^\pm$ in (4.21). The fact that $g_{\kappa,\alpha} = \int_D M \hat{\psi}_{\kappa,\alpha} dq$ follows from (3.91), (4.4b) and (4.101d), and hence the desired result (4.102). The strong convergence results (4.103b) follow from noting the embedding $H^1(\Omega) \hookrightarrow L^6(\Omega)$, (1.19), (4.101d,e) and (3.1).

Finally, we need to prove (4.101f). Similarly to (4.25)–(4.28a,b), we deduce from (4.100b), (4.102), (3.2) and (4.24) that
\begin{equation}
\|g_{\kappa,\alpha}\|_{L^{2(\frac{\alpha+2}{\alpha})}(\Omega_T)} + \|\tau_1(M \hat{\psi}_{\kappa,\alpha})\|_{L^{4(\frac{\alpha+2}{\alpha})}(\Omega_T)} \leq C. \tag{4.105}
\end{equation}
On recalling (1.11) and (4.22), we have that
\begin{equation}
\tau_1(M \varphi) = k \int_D M \left(\sum_{i=1}^{K} \nabla_q q_i \otimes q_i \right) dq - k \int_D M \varphi dq \leq I. \tag{4.106}
\end{equation}
Let $D_0 \subset \overline{D_0} \subset D$ be an arbitrary Lipschitz subdomain of D, then (4.106) yields that
\begin{align*}
\int_{\Omega_T} \tau_1(M \hat{\psi}_{\kappa,\alpha,L}^\pm) - \tau_1(M \hat{\psi}_{\kappa,\alpha}) |dx dt | & \leq C[T|\Omega \setminus \Omega_0]|\frac{\Delta t}{\pi^2} | \\
& \leq k |b|^\frac{1}{2} \int_0^T \int_D \int_D \int_D M \sum_{i=1}^{K} \left(\nabla_q \hat{\psi}_{\kappa,\alpha,L}^\pm + \nabla_q \hat{\psi}_{\kappa,\alpha,L}^\pm \right) dq dx dt \\
& \quad + k \int_0^T \int_D \int_D M \sum_{i=1}^{K} q_i \otimes \nabla_q q_i (\hat{\psi}_{\kappa,\alpha,L}^\pm - \hat{\psi}_{\kappa,\alpha}) dq dx dt \\
& \quad + k d^\frac{1}{2} \int_0^T \int_{\Omega_T} M \hat{\psi}_{\kappa,\alpha,L}^\pm - \hat{\psi}_{\kappa,\alpha} |dq dx dt | =: T_1 + T_2 + T_3, \tag{4.107}
\end{align*}
where we have recalled (3.4). Further, we deduce from (4.10b,d) that
\[
M \nabla_q \hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} = 2M \sqrt{\hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} \nabla_q \sqrt{\hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+}}} \rightarrow 2M \sqrt{\hat{\psi}_{\kappa,\alpha} \nabla_q \sqrt{\hat{\psi}_{\kappa,\alpha}}} = M \nabla_q \hat{\psi}_{\kappa,\alpha},
\]
for \(i = 1, \ldots, K \), weakly in \(L^1(0,T; L^1(\Omega \times D)) = L^1(\Omega_T \times D) \) as \(\Delta t \to 0_+ \) (\(L \to \infty \)). By the Dunford–Pettis theorem the sequence \(\{M \nabla_q \hat{\psi}_{\kappa,\alpha,L}^{\Delta t}\}_{\Delta t>0} \) is therefore equi-integrable in \(L^1(\Omega_T \times D) \); hence, for any \(\delta > 0 \) there exists a \(\delta_0 = \delta_0(\delta) \) such that for any set \(D_0 \subset D \) with \(T|\Omega| |D \setminus D_0| < \delta_0 \),
\[
|b|^\frac{1}{2} \int_0^T \int_{D_0} M \sum_{i=1}^K q_i \nabla_q \left(\hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right) \, dx \, dt < \frac{\delta}{3}.
\]
We therefore select \(D_0 \subset \overline{D_0} \subset D \) to be a Lipschitz subdomain of \(D \) such that \(T|\Omega| |D \setminus D_0| < \delta_0 \), which implies that \(0 < T_1 < \frac{\delta}{3} \); that, now, fixes our choice of \(D_0 \).

Next, we bound \(T_2 \). By performing partial integration over \(D_0 \), we have that
\[
T_2 = k \int_0^T \int_{D_0} M \sum_{i=1}^K q_i \nabla_q \left(\hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right) \, dx \, dt
\]
\[
\leq k \int_0^T \int_{\Omega} \left[- \int_{D_0} \sum_{i=1}^K \left(\nabla_q M \otimes q_i \right) \left(\hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right) \, dx \right] \, dt
\]
\[
+ k \int_0^T \int_{\Omega} \left[- \int_{D_0} \sum_{i=1}^K \left(\nabla_q M \otimes q_i \right) \left(\hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right) \, dx \right] \, dt
\]
\[
+ k \int_0^T \int_{\Omega} \left[\int_{\partial D_0} \sum_{i=1}^K (n_i \otimes q_i) \left(\hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right) \, d\sigma \right] \, dx \, dt,
\]
where the \(d \)-component column vector \(n_i \) is the \(i \)-th component of the \(K \)-component unit outward (column) normal vector \(n = (n_1^T, \ldots, n_K^T)^T \) to the boundary \(\partial D_0 \) of \(D_0 \). As the closure of the Lipschitz subdomain \(D_0 \) is a strict subset of the open set \(D \), we have, on noting (1.6a) and (1.7a,b), that \(\sup_{q \in D_0} \left(\frac{1}{\mu(q)} |\nabla_q M(q)| \right) \leq C(\delta_0) < \infty \). Hence,
\[
T_2 \leq k \int_0^T \int_{\Omega} \int_{D_0} \left[|b|^\frac{1}{2} |\nabla_q M| + K d^\frac{3}{2} M \right] \left| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right| \, dx \, dt
\]
\[
\leq k \left(|b|^\frac{1}{2} C(\delta_0) + K d^\frac{3}{2} \right) \int_0^T \int_{\Omega} \int_{D_0} M \left| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right| \, dx \, dt
\]
\[
+ k |b|^\frac{1}{2} \|M\|_{L^\infty(D)} \int_0^T \int_{\partial D_0} \left| \hat{\psi}_{\kappa,\alpha,L}^{\Delta t^+} - \hat{\psi}_{\kappa,\alpha} \right| \, d\sigma \, dx \, dt
\]
\[
=: T_{21} + T_{22}.
\]
Thus, thanks to (4.101d) with \(v = 1 \), there exists a \(\Delta t_0 \) such that for all \(\Delta t \leq \Delta t_0 \), we have that \(0 < T_2 \) and we have from (1.7a) that

\[
\sup_{q \in D_0} [M(q)]^{-1} \leq C(D_0) < \infty. \tag{4.109}
\]

We begin by noting that (4.99) and (4.109) imply that \(\{ \sqrt{\psi_{\kappa,\alpha,L}} \}_{\Delta t > 0} \) is a bounded sequence in \(L^2(0,T;H^1(\Omega \times D_0)) \); hence, by Sobolev embedding, it is also a bounded sequence in \(L^2(0,T;L^{2((K+1)d+2)}(\Omega \times D_0)) \). Further, by (4.99) and (4.109) we have that \(\{ \sqrt{\psi_{\kappa,\alpha,L}} \}_{\Delta t > 0} \) is a bounded sequence in the function space \(L^\infty(0,T;\psi_{\kappa,\alpha,L}) \).

It then follows from (3.1) that \(\{ \sqrt{\psi_{\kappa,\alpha,L}} \}_{\Delta t > 0} \) is a bounded sequence in the space \(L^{2((K+1)d+2)}(0,T; L^{2((K+1)d+2)}(\Omega \times D_0)) \); thus,

\[
\int_0^T \int_{\Omega \times D_0} [\sqrt{\psi_{\kappa,\alpha,L}}]^d \, dq \, dx \, dt \leq C(D_0), \tag{4.110}
\]

where the constant \(C(D_0) \) is independent of \(\Delta t \) and \(L \). Now, for any \(s \in (1,2) \), we have by Hölder’s inequality, (4.99), (4.109) and the inequality \((a^2 + b^2) \leq 2^{1-\frac{d}{2}}(a+b)^{\frac{d}{2}} \) with \(a, b \geq 0 \), which follows from the concavity of the function \(x \rightarrow x^{\frac{d}{2}} \) in \((0,\infty) \rightarrow x^{\frac{d}{2}} \in (0,\infty) \), that

\[
\int_0^T \int_{\Omega \times D_0} \left(\sqrt{\psi_{\kappa,\alpha,L}} \right)^d \, dq \, dx \, dt \leq 2^{\frac{d}{2}} \int_0^T \int_{\Omega \times D_0} \left(\sqrt{\psi_{\kappa,\alpha,L}} \right)^d \, dq \, dx \, dt
\leq 2^{\frac{d}{2}+1} \left(\int_0^T \int_{\Omega \times D_0} \left(\sqrt{\psi_{\kappa,\alpha,L}} \right)^d \, dq \, dx \, dt \right)^{\frac{2}{2+d}}
\times \left(\int_0^T \int_{\Omega \times D_0} \left(\sqrt{\psi_{\kappa,\alpha,L}} \right)^d \, dq \, dx \, dt \right)^{\frac{2}{2+d}}
\leq C \left(\int_0^T \int_{\Omega \times D_0} \left(\sqrt{\psi_{\kappa,\alpha,L}} \right)^d \, dq \, dx \, dt \right)^{\frac{2}{2+d}}.
\]

Comparing this with (4.110) indicates that \(s \in (1,2) \) should be chosen so that

\[
\frac{s}{2-s} \leq \frac{(K+1)d+2}{(K+1)d+1}.
\]

The largest such \(s \) is \(s = \frac{(K+1)d+2}{(K+1)d+1} \); using this value of \(s \), we then deduce on noting (4.110) that

\[
\| \sqrt{\psi_{\kappa,\alpha,L}} \|_{L^q(0,T;W^{1,q}(\Omega \times D_0))} \leq C(D_0). \tag{4.111}
\]
Note further that, thanks to (4.109) and (4.101d), we have, for any \(v \in [1, \infty)\), that
\[
\|\hat{\psi}_{k,\alpha,L}^\Delta t, + - \hat{\psi}_{k,\alpha}^\Delta t, +\|_{L^v(0,T;L^1(\partial \Omega\times D_0))} \to 0, \quad \text{as } \Delta t \to 0_+ (L \to \infty).
\] (4.112)

We shall now use (4.111) and (4.112) to show that \(T_{22}\) converges to 0 as \(\Delta t \to 0_+ (L \to \infty)\). To this end, we shall make use of the following sharp trace inequality, established recently by Auchmuty (cf. Theorem 6.3 inequality (6.3) in Auchmuty\(^2\)):

Motivated by the bound (4.111), we fix \(\Delta t, t \approx 0\) such that for all \(\Delta t, t \to 0_+\) as \(L \to \infty\).

\[
\int_\partial \Omega |\varphi|^{2 - \frac{1}{r}} \, d\sigma \leq \frac{\|\varphi\|_{L^\infty(\partial \Omega)}^2 - \frac{1}{r}}{L^\infty(\partial \Omega)} + \left(2 - \frac{1}{r}\right) k_\Omega \|\varphi\|_{L^1(\partial \Omega)} \|\nabla \varphi\|_{L^r(\partial \Omega)},
\] (4.113)

where \(k_\Omega\) is a positive constant, which depends on \(\partial \Omega\) only. We deduce from (4.113) and (3.1) for any \(r \in (1, 2)\) that
\[
\int_\partial \Omega |\varphi|^{2 - \frac{1}{r}} \, d\sigma \leq C(\Omega, r) \|\varphi\|_{L^1(\partial \Omega)} \|\nabla \varphi\|_{W^{1,r}(\partial \Omega)} \quad \forall \varphi \in W^{1,r}(\partial \Omega).
\] (4.114)

We apply (4.114) with \(\partial \Omega = D_0\), integrate the resulting inequality over \((0,T) \times \partial \Omega\) and apply Hölder’s inequality; this yields for any \(r \in (1, 2)\) and for all \(\varphi \in L^r(0,T;W^{1,r}(\partial \Omega \times D_0))\) that
\[
\int_0^T \int_{\partial \Omega \times D_0} |\varphi|^{2 - \frac{1}{r}} \, d\sigma(q) \, dx \, dt \leq C(D_0, r) \|\varphi\|_{L^1(0,T;L^1(\partial \Omega \times D_0))} \|\nabla \varphi\|_{L^r(0,T;W^{1,r}(\partial \Omega \times D_0))}.
\] (4.115)

Motivated by the bound (4.111), we fix
\[
r = s = \frac{(K + 1)d + 2}{(K + 1)d + 1} \in (1, 2)
\]
in (4.115). It follows from (4.115), (4.111) and (4.112) that
\[
\int_0^T \int_{\partial \Omega \times D_0} |\hat{\psi}_{k,\alpha,L}^\Delta t, + - \hat{\psi}_{k,\alpha}^\Delta t, +|^{2 - \frac{1}{r}} \, d\sigma(q) \, dx \, dt \to 0, \quad \text{as } \Delta t \to 0_+ (L \to \infty).
\] (4.116)

Since \(2 - \frac{1}{r} > 1\), it follows from (4.116) that \(T_{22}\) converges to 0, as \(\Delta t \to 0_+ (L \to \infty)\). We thus deduce that there exists a \(\Delta t_0\) such that for all \(\Delta t \leq \Delta t_0\), we have that \(0 < T_{22} < \frac{\delta}{6}\). Finally, by recalling the inequalities (4.107) and (4.108) and the bounds on \(T_1, T_2, T_2, T_2, T_3\), it then follows that for each \(\delta > 0\) there exists a \(\Delta t_0\) such that for all \(\Delta t \leq \Delta t_0\), we have that
\[
\int_{\Omega_T} \tau_1(M \hat{\psi}_{k,\alpha,L}^\Delta t, +) - \tau_1(M \hat{\psi}_{k,\alpha}^\Delta t, +) \, dx \, dt < \delta.
\]
Thus we have proved that
\[
\tau_1(M \hat{\psi}_{k,\alpha,L}^\Delta t, +) \to \tau_1(M \hat{\psi}_{k,\alpha}) \quad \text{strongly in } L^1(\Omega_T), \quad \text{as } \Delta t \to 0_+ (L \to \infty).
\]
This, together with (4.28b), (4.105) and (3.1), implies that, as $\Delta t \to 0_+$ ($L \to \infty$),

$$
\tau_1(M\hat{\psi}_{\kappa,\alpha,L}) \to \tau_1(M\hat{\psi}_{\kappa,\alpha}) \text{ strongly in } L^r(\Omega_T) \text{ for all } r \in \left[1, \frac{4(d+2)}{d + 4} \right].
$$

(4.117)

We note further that, according to (4.103b) with $\varsigma = 2$, $\psi_{\kappa,\alpha,L}^{\Delta t} \to \psi_{\kappa,\alpha}$ strongly in $L^\infty_T(0; L^2(\Omega))$ as $\Delta t \to 0_+$ ($L \to \infty$); therefore $(\psi_{\kappa,\alpha,L}^{\Delta t})^2 \to \psi_{\kappa,\alpha}^2$ strongly in $L^2_T(0; L^1(\Omega))$, and thus strongly in $L^1(0, T; L^1(\Omega)) = L^1(\Omega_T)$, as $\Delta t \to 0_+$ ($L \to \infty$). Also, by (4.27), since $\frac{a(d+2)}{d+4} < \frac{2(d+2)}{d+4}$ for $d \in \{2, 3\}$, we have that $\{(\psi_{\kappa,\alpha,L}^{\Delta t})^2\}_{\Delta t > 0}$ is a bounded sequence in $L^{\frac{4(d+2)}{d+4}}(\Omega_T)$; consequently from (4.105) and (3.1), $(\psi_{\kappa,\alpha,L}^{\Delta t}) \to (\psi_{\kappa,\alpha})^2$ strongly in $L^r(\Omega_T)$ for all $r \in \left[1, \frac{4(d+2)}{d + 4} \right]$. Combining this with (4.117) we deduce (4.101f) thanks to (1.10).

We are now ready to pass to the limit with $\Delta t \to 0_+$ ($L \to \infty$) in (4.5a–c) to prove the existence of a weak solution to the regularized problem $(P_{\kappa,\alpha})$.

Theorem 4.1. The triple $(\rho_{\kappa,\alpha}, u_{\kappa,\alpha}, \hat{\psi}_{\kappa,\alpha})$, defined as in Lemmas 4.1 and 4.8, is a global weak solution to problem $(P_{\kappa,\alpha})$, in the sense that

$$
\int_0^T \left\langle \frac{\partial \rho_{\kappa,\alpha}}{\partial t}, \eta \right\rangle_{H^1(\Omega)} + \int_0^T \int_\Omega \left(\alpha \nabla_x \rho_{\kappa,\alpha} - \rho_{\kappa,\alpha} u_{\kappa,\alpha} \right) : \nabla_x \eta \, dx \, dt = 0
$$

for every $\eta \in L^2(0, T; H^1(\Omega))$, (4.118a)

with $\rho_{\kappa,\alpha}(\cdot, 0) = \rho^0(\cdot)$,

$$
\int_0^T \left\langle \frac{\partial \rho_{\kappa,\alpha} u_{\kappa,\alpha}}{\partial t}, \varphi \right\rangle_{W^{1,4}_0(\Omega)} \, dt + \frac{\alpha}{2} \int_0^T \int_\Omega \nabla_x \rho_{\kappa,\alpha} : \nabla_x (u_{\kappa,\alpha} \cdot \varphi) \, dx \, dt
$$

$$
+ \int_0^T \int_\Omega \left[S_{\kappa,\alpha}(u_{\kappa,\alpha}) - \rho_{\kappa,\alpha} u_{\kappa,\alpha} \otimes u_{\kappa,\alpha} - p_{\kappa}(\rho_{\kappa,\alpha}) I \right] : \nabla_x \varphi \, dx \, dt
$$

$$
= \int_0^T \int_\Omega \left[\rho_{\kappa,\alpha} f \cdot \varphi - \left(\tau_1(M\hat{\psi}_{\kappa,\alpha}) - \beta \psi_{\kappa,\alpha}^2 I \right) : \nabla_x \varphi \right] \, dx \, dt
$$

for every $\varphi \in L^r(0, T; W^{1,4}_0(\Omega))$, (4.118b)

with $(\rho_{\kappa,\alpha} u_{\kappa,\alpha})(\cdot, 0) = (\rho^0 u_0)(\cdot)$ and $r = \frac{8\Gamma-12}{4\Gamma}$, $\Gamma \geq 8$, and

$$
\int_0^T \left[M \frac{\partial \hat{\psi}_{\kappa,\alpha}}{\partial t}, \varphi \right]_{H^1(\Omega \times D)} \, dt
$$

$$
+ \frac{1}{4\lambda} \sum_{i=1}^K \sum_{j=1}^K A_{ij} \int_0^T \int_{\Omega \times D} M \nabla_{ij} \hat{\psi}_{\kappa,\alpha} : \nabla_{ij} \varphi \, dq \, dx \, dt
$$

$$
+ \int_0^T \int_{\Omega \times D} M \left[\varepsilon \nabla_x \hat{\psi}_{\kappa,\alpha} - u_{\kappa,\alpha} \hat{\psi}_{\kappa,\alpha} \right] : \nabla_x \varphi \, dq \, dx \, dt
$$
with \(\tilde{\psi}_{\kappa,\alpha}(.0) = \tilde{\psi}_0(.) \) and \(s > 1 + \frac{1}{2} (K + 1) d \).

In addition, the weak solution \((\rho_{\kappa,\alpha}, \tilde{y}_{\kappa,\alpha}, \tilde{\psi}_{\kappa,\alpha}) \) satisfies, for a.a. \(t' \in (0, T) \), the following energy inequality:

\[
\frac{1}{2} \int_0^{t'} \rho_{\kappa,\alpha}(t') \left| u_{\kappa,\alpha}(t') \right|^2 \, dx + \int_{\Omega} P_{\kappa}(\rho_{\kappa,\alpha}(t')) \, dx + k \int_{\Omega \times D} M F(\tilde{\psi}_{\kappa,\alpha}(t')) \, dq \, dx + \frac{4}{\Gamma} \int_{\Omega} \left\| \nabla_x(\rho_{\kappa,\alpha}) \right\|^2 \, dx \, dt + \mu \int_0^{t'} \left| u_{\kappa,\alpha} \right|^2 \, H_1(\Omega) \, dt \\
+ k \int_0^{t'} \int_{\Omega \times D} M \left[\frac{\alpha_0}{2\lambda} \left\| \nabla_q \tilde{\psi}_{\kappa,\alpha} \right\|^2 + 2\varepsilon \left\| \nabla_x \tilde{\psi}_{\kappa,\alpha} \right\|^2 \right] \, dq \, dt \\
+ 3 \left\| q_{\kappa,\alpha}(t') \right\|^2 \, L^2(\Omega) + 2 \varepsilon \int_0^{t'} \left\| \nabla_x q_{\kappa,\alpha} \right\|^2 \, L^2(\Omega) \, dt \\
\leq e^{t'} \left[\frac{1}{2} \int_0^T \rho_0 \, dx + \int_{\Omega} \left| f \right|^2 \, dx \right] + \frac{1}{2} \int_0^{t'} \left\| f \right\|^2 \, L^2(\Omega) \, dt \int_\Omega \rho_0 \, dx \leq C,
\]

where \(C \in \mathbb{R}_{>0} \) is independent of \(\alpha \) and \(\kappa \).

Proof. The limit equation (4.118a) has already been established in Lemma 4.1, see (4.45).

We now pass to the limit \(\Delta t \to 0_+ \) \((L \to \infty) \), subject to (4.40), for the subsequence of \(\{ (\rho_{\kappa,\alpha,L}, \tilde{y}_{\kappa,\alpha,L}, \tilde{\psi}_{\kappa,\alpha,L}) \}_{\Delta t \to 0} \) of Lemma 4.8 in (4.89) initially for a fixed test function \(\psi \in \mathcal{C}_0^\infty(\Omega_T) \). We consider first the five terms on the left-hand side of (4.89). On noting (4.97b,d), (4.53a), (4.44), (4.52c) and (4.49), we obtain the first two terms on the left-hand side of (4.118b) and the \(\rho_{\kappa,\alpha} \tilde{y}_{\kappa,\alpha} \otimes y_{\kappa,\alpha} \) term from the first term on the left-hand side of (4.89). The second and third terms on the left-hand side of (4.89) give rise to the remaining terms on the left-hand side of (4.118b), on noting (4.44) and (4.43b). The fourth and fifth terms on the left-hand side of (4.89) converge to zero, on noting (4.68a), (4.51), (4.52b) and (4.49).

We now consider the two terms on the right-hand side of (4.89). The first term gives rise to the \(f \) and \(\tau_1 \) contributions on the right-hand side of (4.118b), on noting (4.53b), (3.29b) and (4.101f). The second term on the right-hand side of (4.89) converges to the \(\rho_{\kappa,\alpha}^2 \tilde{\psi}_{\kappa,\alpha} \) term on the right-hand side of (4.118b), on noting (4.103a,b) and performing integration by parts. Therefore, we have obtained (4.118b) for any \(\psi \in \mathcal{C}_0^\infty(\Omega_T) \). The desired result (4.118b) for any \(\psi \in L^r(0, T; W_0^{1,4}(\Omega)) \) then follows from the denseness of \(\mathcal{C}_0^\infty(\Omega_T) \) in \(L^r(0, T; W_0^{1,4}(\Omega)) \), (4.96), (4.53a,b), (4.44),
Next, on noting (4.99) and that \(|\sqrt{c_1} - \sqrt{c_2}| \leq \sqrt{|c_1 - c_2|}\) for all \(c_1, c_2 \in \mathbb{R}_{\geq 0}\), we have that

\[
|T_1| \leq C \|\sqrt{\psi_{\kappa,\alpha,L}^{t+1}} - \hat{\psi}_{\kappa,\alpha,L}\|_{L^2(0,T;L^2(\Omega \times D))} \|\nabla q_{\kappa,\alpha,L}\|_{L^\infty(0,T;L^\infty(\Omega \times D))},
\]

and so (4.101d) yields that \(T_1 \to 0_+\). Similarly, as \(M\sqrt{\psi_{\kappa,\alpha,L}} \nabla q_{\kappa,\alpha,L} \in L^2(0,T;L^2(\Omega \times D))\), it follows from (4.101b) that, as \(\Delta t \to 0_+\),

\[
T_2 \to 2 \int_0^T \int_{\Omega \times D} M \sqrt{\psi_{\kappa,\alpha,L}} \nabla q_{\kappa,\alpha,L} \cdot \nabla q_{\kappa,\alpha,L} \nabla q_{\kappa,\alpha,L} \varphi \, dx \, dt
\]

Hence the second term in (4.5c) converges to the second term in (4.118c). For the fourth term in (4.5c), we note that

\[
\int_0^T \int_{\Omega \times D} M \left(\sigma(u_{\kappa,\alpha,L}^{t+1}, q_{\kappa,\alpha,L}^{t+1}) \right) \beta^L(\sqrt{\psi_{\kappa,\alpha,L}^{t+1}}) \cdot \nabla q_{\kappa,\alpha,L} \varphi \, dx \, dt
\]

Next, on noting (4.51), (3.1), (1.19), (4.29) and (4.102), we have that

\[
|T_3| \leq C \left(\int_{\Omega} M \beta^L(\sqrt{\psi_{\kappa,\alpha,L}^{t+1}}) \nabla q_{\kappa,\alpha,L} \varphi \, dx \right) \|\nabla q_{\kappa,\alpha,L}\|_{L^\infty(0,T;L^\infty(\Omega \times D))}
\]

For the second term of (4.5c), we note that

\[
\int_0^T \int_{\Omega \times D} M \left(\sqrt{\psi_{\kappa,\alpha,L}^{t+1}} - \hat{\psi}_{\kappa,\alpha,L} \right) \nabla q_{\kappa,\alpha,L} \cdot \nabla q_{\kappa,\alpha,L} \varphi \, dx \, dt
\]

Similarly, we now pass to the limit \(\Delta t \to 0_+\) for the subsequence in (4.5c) initially for a fixed test function \(\varphi \in C([0,T];C^\infty(\Omega \times D))\). The first term of (4.5c) converges to the first term of (4.118c), on noting (4.101c). For the second term of (4.5c), we note that

\[
\int_0^T \int_{\Omega \times D} M \nabla \hat{q}_{\kappa,\alpha,L} \cdot \nabla \varphi \, dx \, dt
\]

yields, similarly to (4.26) and (4.27), that \(\hat{q}_{\kappa,\alpha,L} \in L^2(0,T;L^2(\Omega))\).

Similarly, we now pass to the limit \(\Delta t \to 0_+\) for the subsequence in (4.5c) initially for a fixed test function \(\varphi \in C([0,T];C^\infty(\Omega \times D))\). The first term of (4.5c) converges to the first term of (4.118c), on noting (4.101c). For the second term of (4.5c), we note that

\[
\int_0^T \int_{\Omega \times D} M \nabla \hat{q}_{\kappa,\alpha,L} \cdot \nabla \varphi \, dx \, dt
\]

Next, on noting (4.51), (3.1), (1.19), (4.29) and (4.102), we have that

\[
\int_0^T \int_{\Omega \times D} M \left(\sqrt{\psi_{\kappa,\alpha,L}^{t+1}} - \hat{\psi}_{\kappa,\alpha,L} \right) \nabla q_{\kappa,\alpha,L} \cdot \nabla q_{\kappa,\alpha,L} \varphi \, dx \, dt
\]

Finally, we obtain

\[
\int_0^T \int_{\Omega \times D} M \left(\sqrt{\psi_{\kappa,\alpha,L}^{t+1}} - \hat{\psi}_{\kappa,\alpha,L} \right) \nabla q_{\kappa,\alpha,L} \cdot \nabla q_{\kappa,\alpha,L} \varphi \, dx \, dt
\]
According to (4.94), there exists a \(\rho \) for \(\hat{\psi}_{\kappa,\alpha} \) in a weighted Orlicz space with Young's function \(\Phi(\cdot) \). That \(\hat{\psi}_{\kappa,\alpha} \in C_w([0,T]; L^2_M(\Omega \times D)) \) follows from \(\mathcal{F}(\hat{\psi}_{\kappa,\alpha}) \in L^\infty(0,T; L^2_M(\Omega \times D)) \) and \(\hat{\psi}_{\kappa,\alpha} \in H^1(0,T; M^{-1}(H^s(\Omega \times D))) \) (cf. (4.100b) and (4.94)) with \(s > 1 + \frac{1}{2}(K+1)d \), by Lemma 3.1(b) in Barrett & Süli, and taking \(\mathcal{X} := L^\infty_M(\Omega \times D) \). We are now ready to prove that \(\rho_{\kappa,\alpha} \) and \(\hat{\psi}_{\kappa,\alpha} \) satisfy the initial conditions \(\rho_{\kappa,\alpha}(\cdot,0) = (\rho^0)_{\kappa,\alpha}(\cdot,0) \) in the sense of \(C_w([0,T]; L^2_M(\Omega) \) and \(C_w([0,T]; L^2_M(\Omega \times D)) \), respectively. The desired result for \(\rho_{\kappa,\alpha} \) follows immediately from (4.97e) and (3.18b). Next we shall verify the attainment of the respective initial data by \(\rho_{\kappa,\alpha} \) and \(\hat{\psi}_{\kappa,\alpha} \). We have already established that \(\rho_{\kappa,\alpha} \) in \(C_w([0,T]; L^2_M(\Omega \times D)) \), see (4.96). That \(\hat{\psi}_{\kappa,\alpha} \in C_w([0,T]; L^2_M(\Omega \times D)) \) follows from \(\mathcal{F}(\hat{\psi}_{\kappa,\alpha}) \in L^\infty(0,T; L^2_M(\Omega \times D)) \) and \(\hat{\psi}_{\kappa,\alpha} \in H^1(0,T; M^{-1}(H^s(\Omega \times D))) \) (cf. (4.100b) and (4.94)) with \(s > 1 + \frac{1}{2}(K+1)d \).}

Hence the last term in (4.5c) converges to the last term in (4.118c). Similarly to the second and last terms, the third term in (4.5c) converges to the third term in (4.118c). Therefore, we have obtained (4.118c) for any \(\varphi \in C([0,T]; C^\infty(\Omega \times D)) \). And finally, we have obtained (4.118c) for any \(\lambda \in \mathcal{X} \), see (4.96). We now consider \(\mathcal{F}(\hat{\psi}_{\kappa,\alpha}) \in L^\infty(0,T; L^2_M(\Omega \times D)) \), and then adapting Theorem 3.17.7 ibid. to deduce \(\mathcal{F} \rightarrow L^\infty(\Omega \times D) \rightarrow E^M_\theta(\Omega \times D) \). We have now ready to prove that \(\rho_{\kappa,\alpha} \) and \(\hat{\psi}_{\kappa,\alpha} \) satisfy the initial conditions \(\rho_{\kappa,\alpha}(\cdot,0) = (\rho^0)_{\kappa,\alpha}(\cdot,0) \) in the sense of \(C_w([0,T]; L^2_M(\Omega \times D)) \) and \(C_w([0,T]; L^2_M(\Omega \times D)) \), respectively. The desired result for \(\rho_{\kappa,\alpha} \) follows immediately from (4.97e) and (3.18b). We now consider \(\hat{\psi}_{\kappa,\alpha} \). According to (4.94), there exists a \(C \in \mathbb{R}_{>0} \), independent of \(\Delta t \) and \(L \), such that, for all \(\varphi \in L^2(0,T; H^s(\Omega \times D)) \),

\[
\begin{align*}
\int_0^T \int_{\Omega \times D} \left. \frac{d}{dt} \hat{\psi}_{\kappa,\alpha,L}(\cdot,\cdot,t) \right|_{t=\infty} \varphi \, dx \, dt
\leq C \| \varphi \|_{L^2(0,T; H^s(\Omega \times D))},
\end{align*}
\]

where \(s > 1 + \frac{1}{2}(K+1)d \). Choosing, in particular \(\varphi(\cdot,\cdot,T) = \phi(\cdot,\cdot) \) \((1 - \frac{1}{4})_+ \), with \(\phi \in H^s(\Omega \times D) \), \(0 < \delta < T \), integrating by parts with respect to \(t \) and using that \(\hat{\psi}_{\kappa,\alpha,L}(\cdot,\cdot,t) = \hat{\psi}(\cdot,\cdot) \), we have that, for all \(\phi \in H^s(\Omega \times D) \),

\[
\begin{align*}
\int_0^\delta \int_{\Omega \times D} M \hat{\psi}_{\kappa,\alpha,L}(\cdot,\cdot,t) \phi \, dx \, dt - \int_{\Omega \times D} M \hat{\psi}(\cdot,\cdot) \phi \, dx
\leq C \delta \| \phi \|_{H^s(\Omega \times D)}.
\end{align*}
\]
For $\delta \in (0, T)$ and ϕ fixed, we now pass to the limit $\Delta t \to 0_+$ ($L \to \infty$) in this inequality using (4.101d) and (3.21b) to deduce that, for all $\phi \in H^s(\Omega \times D)$,

$$
\frac{1}{\delta} \int_0^\delta \int_{\Omega \times D} M \hat{\psi}_{t,\alpha} \phi \, dq \, dx \, dt - \int_{\Omega \times D} M \hat{\psi}_0 \phi \, dq \, dx \leq C \delta \frac{1}{\delta} \|\phi\|_{H^s(\Omega \times D)},
$$

where we have recalled that $H^s(\Omega \times D) \hookrightarrow W^{1,\infty}(\Omega \times D)$. Thus, noting the weak continuity result $\hat{\psi}_{t,\alpha} \in C_0([0,T]; L^1_M(\Omega \times D))$ established above, it follows on passing to the limit $\delta \to 0_+$ that

$$
\int_{\Omega \times D} M \hat{\psi}_{t,\alpha}(0) \phi \, dq \, dx = \int_{\Omega \times D} M \hat{\psi}_0 \phi \, dq \, dx \quad \forall \phi \in H^s(\Omega \times D).
$$

Hence, we have $\hat{\psi}_{t,\alpha}(\cdot, 0) = \hat{\psi}_0$ in $L^1_M(\Omega \times D).

It remains to prove the inequality (4.119). For $t' \in (0, T)$ fixed, let $n = n(t', \Delta t)$ be a positive integer such that $0 < (n-1)\Delta t < t' \leq n\Delta t \leq T$. It follows from (4.21) and (4.4b), on noting that the interval $(0, t']$ is contained in $(0, t_n)$, that

$$
\frac{1}{2} \int_{\Omega} \rho^{\Delta t,+, t}(t') |w^{\Delta t,+, t}(t')|^2 \, dx + \int_{\Omega} P_n(\rho^{\Delta t,+, t}(t')) \, dx + k \int_{\Omega \times D} M F(\hat{\psi}_{t,\alpha, L}(t')) \, dq \, dx
$$

$$
+ \alpha \kappa \int_{0}^{t'} \left[\left\| \nabla_x [(\rho^{t,\alpha, L}(t'))^2] \right\|_{L^2(\Omega)}^2 + \frac{4}{\Gamma} \left\| \nabla_x [(\rho^{t,\alpha, L}(t'))^2] \right\|_{L^2(\Omega)}^2 \right] \, dt
$$

$$
+ \mu \kappa \int_{0}^{t'} \left\| w^{\Delta t,+, t}(t') \right\|_{H^1(\Omega)}^2 \, dt
$$

$$
+ k \int_{0}^{t'} \int_{\Omega \times D} M \left[\frac{\alpha_0}{2\lambda} \left\| \nabla_q \sqrt{\psi_{t,\alpha, L}(t')} \right\|_{L^2(\Omega)}^2 + 2\varepsilon \left\| \nabla_x \sqrt{\psi_{t,\alpha, L}(t')} \right\|_{L^2(\Omega)}^2 \right] \, dq \, dx \, dt
$$

$$
+ 3 \left\| \psi_{t,\alpha, L}(t') \right\|_{L^2(\Omega)}^2 + 2\varepsilon \int_{0}^{t'} \left\| \nabla_x \psi_{t,\alpha, L}(t') \right\|_{L^2(\Omega)}^2 \, dt
$$

$$
\leq e^{t_n} \left[\frac{1}{2} \int_{\Omega} \rho^0 |w^0|^2 \, dx + \int_{\Omega} P_n(\rho^0) \, dx + k \int_{\Omega \times D} M F(\hat{\psi}_0) \, dq \, dx \right]
$$

$$
+ \frac{1}{2} \int_{\Omega} \rho^0 |f^0|^2 \, dx \int_{\Omega} \rho^0 \, dx \leq C,
$$

where $C \in \mathbb{R}_{>0}$ is independent of α and κ. Clearly $n = n(t', \Delta t) \geq \frac{t'}{\Delta t} \to \infty$ as $\Delta t \to 0_+$. Since $t' \in (t_{n-1}, t_n]$ and $t_n - t_{n-1} = \Delta t$, we deduce that as $\Delta t \to 0_+$ (and, hence, $n = n(t', \Delta t) \to \infty$) both t_{n-1} and t_n converge to t'; hence

$$
e^{t_n} \to e^{t'} \quad \text{and} \quad \int_{0}^{t_n} \left\| f \right\|_{L^2(\Omega)}^2 \, dt \to \int_{0}^{t'} \left\| f \right\|_{L^2(\Omega)}^2 \, dt, \quad \text{as} \quad \Delta t \to 0_+. \quad (4.127)
$$

We multiply (4.126) by any nonnegative $\eta \in C_0^\infty(0, T)$, integrate over $(0, T)$, and pass to the limit $\Delta t \to 0_+$ (and $L \to \infty$) in the resulting inequality. It then follows from (4.97d), (4.53c), (4.101g); weak lower-semicontinuity, via the weak convergence
results (4.42a,c), (4.44), (4.101a,b) and (4.103a); and (4.127), that we obtain the inequality (4.119) multiplied by η and integrated over $(0,T)$. The desired result (4.119) then follows from the well-known variant of du Bois-Reymond’s lemma according to which, if $\phi \in L^1(0,T)$, then
\[
\int_0^T \phi \eta \, dt \geq 0 \quad \forall \eta \in C^\infty_0(0,T) \text{ with } \eta \geq 0 \text{ on } (0,T) \Rightarrow \phi \geq 0 \text{ a.e. in } (0,T).
\]
(4.128)

That completes the proof of the theorem.

5. Existence of a solution to (P_κ)

It follows from the bounds on $\varrho_{\kappa,\alpha}$ in (4.119), similarly to (4.26) and (4.27), that
\[
\|\varrho_{\kappa,\alpha}\|_{L^\infty(0,T;L^2(\Omega))} + \|\varrho_{\kappa,\alpha}\|_{L^2(0,T;L^{\nu(d+2)}(\Omega_T))} + \|\varrho_{\kappa,\alpha}\|_{L^4(0,T;L^{4/3}(\Omega))} \leq C,
\]
where throughout this section C is a generic positive constant, independent of α. Hence, we deduce from (5.1), (4.24) and (4.119), similarly to (4.28b), that
\[
\|\tau_1(M\hat{\psi}_{\kappa,\alpha})\|_{L^2(0,T;L^4(\Omega))} + \|\tau_1(M\hat{\psi}_{\kappa,\alpha})\|_{L^{4/3}(\Omega_T)} \leq C.
\]
(5.2)

Similarly to (4.94), it follows from (5.1) and (4.119) that
\[
\left\|M \frac{\partial\hat{\psi}_{\kappa,\alpha}}{\partial t}\right\|_{L^2(0,T;H^s(\Omega \times D)'')} \leq C,
\]
where $s > 1 + \frac{1}{2}(K+1)d$. We have the following analogue of Lemma 4.8.

Lemma 5.1. There exist functions
\[
\hat{u}_\kappa \in L^2(0,T;H^1_0(\Omega)) \quad \text{and} \quad \hat{\psi}_\kappa \in L^\nu(0,T;Z_1) \cap H^1(0,T;M^{-1}(H^s(\Omega \times D))'),
\]
(5.4a)

where $\nu \in [1,\infty)$ and $s > 1 + \frac{1}{2}(K+1)d$, with finite relative entropy and Fisher information,
\[
\mathcal{F}(\hat{\psi}_\kappa) \in L^\infty(0,T;L^1_4(\Omega \times D)) \quad \text{and} \quad \sqrt{\hat{\psi}_\kappa} \in L^2(0,T;H^{1/2}_1(\Omega \times D)),
\]
(5.4b)

and a subsequence of $\{(\rho_{\kappa,\alpha}, \hat{u}_{\kappa,\alpha}, \hat{\psi}_{\kappa,\alpha})\}_{\alpha > 0}$ such that, as $\alpha \to 0+$,
\[
\hat{u}_{\kappa,\alpha} \to \hat{u}_\kappa \quad \text{weakly in } L^2(0,T;H^1_0(\Omega)),
\]
(5.5)
and

\[M^\frac{1}{2} \nabla_x \sqrt{\tilde{\psi}_{\kappa, \alpha}} \rightarrow M^\frac{1}{2} \nabla_x \sqrt{\tilde{\psi}_{\kappa}} \quad \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \]
\[M^\frac{1}{2} \nabla_q \sqrt{\tilde{\psi}_{\kappa, \alpha}} \rightarrow M^\frac{1}{2} \nabla_q \sqrt{\tilde{\psi}_{\kappa}} \quad \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \]
\[M \frac{\partial \tilde{\psi}_{\kappa, \alpha}}{\partial t} \rightarrow M \frac{\partial \tilde{\psi}_{\kappa}}{\partial t} \quad \text{weakly in } L^2(0, T; H^s(\Omega \times D)'), \]
\[\tilde{\psi}_{\kappa, \alpha} \rightarrow \tilde{\psi}_{\kappa} \quad \text{strongly in } L^2(0, T; L^1(\Omega \times D)), \]
\[\tau(M \tilde{\psi}_{\kappa, \alpha}) \rightarrow \tau(M \tilde{\psi}_{\kappa}) \quad \text{strongly in } L^r(\Omega_T), \]

where \(r \in \left[1, \frac{4(d+2)}{4d+1} \right) \) and, for a.a. \(t \in (0, T) \),
\[\int_{\Omega \times D} M(q) F(\tilde{\psi}_{\kappa}(x, q, t)) \, dq \, dx \leq \liminf_{\alpha \to 0_+} \int_{\Omega \times D} M(q) F(\tilde{\psi}_{\kappa, \alpha}(x, q, t)) \, dq \, dx. \]

In addition, we have that
\[\varrho_{\kappa} := \int_D M \tilde{\psi}_{\kappa} \, dq \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)), \]
and, as \(\alpha \to 0_+ \),
\[\varrho_{\kappa, \alpha} \rightarrow \varrho_{\kappa} \quad \text{weakly-* in } L^\infty(0, T; L^2(\Omega)), \]
\[\varrho_{\kappa, \alpha} \rightarrow \varrho_{\kappa} \quad \text{weakly in } L^2(0, T; H^1(\Omega)), \]
\[\varrho_{\kappa, \alpha} \rightarrow \varrho_{\kappa} \quad \text{strongly in } L^{\frac{4d+1}{2d+1}}(0, T; L^2(\Omega)), \]

for any \(\varsigma \in (1, 6) \).

Proof. The convergence result (5.5) and the first result in (5.4a) follow immediately from the bound on \(\varrho_{\kappa, \alpha} \) in (4.119). The remainder of the results follow from the bounds on \(\tilde{\psi}_{\kappa, \alpha} \) and \(\varrho_{\kappa, \alpha} \) in (4.119) in the same way as those of Lemma 4.8. \(\square \)

We have the following analogue of Lemmas 4.2 and 4.4.

Lemma 5.2. Let \(\Gamma \geq 8 \); then, there exists a \(C \in \mathbb{R}_{>0} \), independent of \(\alpha \), such that
\[\| \varrho_{\kappa, \alpha} \|_{L^\infty(0, T; L^1(\Omega))} + \| \varrho_{\kappa, \alpha} \|_{L^2(0, T; H^1(\Omega))} + \| \sqrt{\varrho_{\kappa, \alpha}} \varrho_{\kappa, \alpha} \|_{L^\infty(0, T; L^2(\Omega))} \]
\[+ \| \sqrt{\varrho_{\kappa, \alpha}} \varrho_{\kappa, \alpha} \|_{L^\infty(0, T; L^{\frac{2d+1}{d+1}}(\Omega))} + \| \varrho_{\kappa, \alpha} \varrho_{\kappa, \alpha} \|_{L^2(0, T; L^{\frac{2d+1}{d+1}}(\Omega))} \leq C, \]
\[\sqrt{\varrho} \| \nabla_x \varrho_{\kappa, \alpha} \|_{L^2(\Omega_T)} + \alpha \| \nabla_x \varrho_{\kappa, \alpha} \|_{L^{\frac{2d+1}{d+1}}(\Omega_T)} + \alpha \left(\| \nabla_x \varrho_{\kappa, \alpha} \cdot \nabla_x \varrho_{\kappa, \alpha} \|_{L^{\frac{4d+3}{2d+1}}(\Omega_T)} \right) \]
\[+ \alpha \| \nabla_x \varrho_{\kappa, \alpha} \otimes \varrho_{\kappa, \alpha} \|_{L^{\frac{4d+3}{d+1}}(\Omega_T)} \leq C, \]
\[\| \frac{\partial \varrho_{\kappa, \alpha}}{\partial t} \|_{L^2(0, T; H^1(\Omega)_')} \leq C. \]
Hence, there exists a function \(\rho_\kappa \in \mathcal{C}_w([0,T];L^\Gamma(\Omega)) \cap H^1(0,T;H^1(\Omega)'), \) and for a further subsequence of the subsequence of Lemma 5.1, it follows that, as \(\alpha \to 0_+ \),

\[
\rho_{\kappa,\alpha} \to \rho_\kappa \quad \text{in } C_w([0,T];L^\Gamma(\Omega)),
\]

weakly in \(H^1(0,T;H^1(\Omega)') \),

\[
\rho_{\kappa,\alpha} \to \rho_\kappa \quad \text{strongly in } L^2(0,T;H^1(\Omega)'),
\]

\[
\alpha \nabla_x \rho_{\kappa,\alpha} \to 0 \quad \text{weakly in } L^{\frac{4\Gamma-2}{4\Gamma}}(\Omega_T),
\]

\[
\alpha (\nabla_x \rho_{\kappa,\alpha} \cdot \nabla_x) u_{\kappa,\alpha} \to 0 \quad \text{weakly in } L^{\frac{4\Gamma-2}{4\Gamma}}(\Omega_T),
\]

\[
\alpha \nabla_x \rho_{\kappa,\alpha} \otimes u_{\kappa,\alpha} \to 0 \quad \text{weakly in } L^1(0,T;L^2(\Omega)),
\]

and, for any nonnegative \(\eta \in C[0,T], \)

\[
\int_0^T \left(\int_\Omega P_\kappa(\rho_\kappa) \, dx \right) \eta \, dt \leq \liminf_{\alpha \to 0_+} \int_0^T \left(\int_\Omega P_\kappa(\rho_{\kappa,\alpha}) \, dx \right) \eta \, dt.
\]

Proof. The first three bounds in (5.9a) follow directly from (4.119). The last four bounds in (5.9a) follow, similarly to (4.84a,b), from the first two bounds in (5.9a). On recalling (4.41), we choose \(\eta = \rho_{\kappa,\alpha} \) in (4.45) to obtain, on noting (5.9a), that

\[
\frac{1}{2} \|\rho_{\kappa,\alpha}(\cdot,T)\|^2_{L^2(\Omega)} + \alpha \|\nabla_x \rho_{\kappa,\alpha}\|^2_{L^2(\Omega_T)}
\]

\[
= \frac{1}{2} \left[\|\rho^0\|^2_{L^2(\Omega)} - \int_0^T \int_\Omega (\nabla_x \cdot u_{\kappa,\alpha}) \rho^2_{\kappa,\alpha} \, dx \right]
\]

\[
\leq C \left[1 + \|u_{\kappa,\alpha}\|_{L^2(0,T;H^1(\Omega))} \|\rho_{\kappa,\alpha}\|^2_{L^2(0,T;L^4(\Omega))} \right] \leq C.
\]

Hence the first bound (5.9b). On noting the sixth bound in (5.9a) and recalling from (3.4) that \(\partial\Omega \in C^{2,\theta}, \theta \in (0,1), \) and \(\rho^0 \in L^\infty(\Omega) \) satisfying (3.16a), we can now apply the parabolic regularity result, Lemma 7.38 in Novotný & Straškraba\(^2\) (or Lemma G.2 in Appendix G in Barrett & Süli\(^1\)), to (4.118a) to obtain that the solution \(\rho_{\kappa,\alpha} \) satisfies the second bound in (5.9b). The third and fourth bounds in (5.9c) follow from the second bounds in (5.9a,b), similarly to (4.70). The bound (5.9c) follows immediately from (4.118a), the fifth bound in (5.9a) and the first bound in (5.9b).

The convergence results (5.10a,b) follow immediately from the first bound in (5.9a,c), (3.12a,b) and (3.11). The first two bounds in (5.9b) and (3.1) yield the desired result (5.10c). The convergence result (5.10d) and the first result in (5.10e) follow from the final two bounds in (5.9b), the second bound in (5.9a) and (5.10c). The second result in (5.10e) also follows from the second bound in (5.9a) and (5.10c).
with \(r = 2 \) on noting that, for all \(\eta_1 \in L^2(\Omega_T) \) and \(\eta_2 \in L^2(0,T; H^1(\Omega)) \),

\[
\|\eta_1 \eta_2\|_{L^2(0,T;L^2(\Omega))} \leq \|\eta_1\|_{L^2(\Omega_T)} \|\eta_2\|_{L^2(0,T;L^2(\Omega))} \leq C \|\eta_1\|_{L^2(\Omega_T)} \|\eta_2\|_{L^2(0,T;H^1(\Omega))}.
\]

(5.12)

Finally, the result (5.10f) follows, similarly to (4.66), from (5.10a) and the convexity of \(P_\kappa \).

Next, we set \(v = \tfrac{10r-6}{4(1+r)} \geq \tfrac{24}{27} \), which appears in Lemma 5.2, and \(s' = \tfrac{5r-3}{8} \geq 5 \) so that (4.91) holds. Then, similarly to (4.92), it follows from (4.118b), (4.91), \(W^{1,4}(\Omega) \hookrightarrow L^\infty(\Omega), H^1(\Omega) \hookrightarrow L^6(\Omega) \), (5.9a,b), (5.1), on noting that \(\frac{24}{d-3} > \frac{8}{3} \), (5.2), and (3.4) that, for any \(w \in L^r(0,T;W^1_{0,4}(\Omega)) \),

\[
\int_0^T \left(\frac{\partial (\rho_{\kappa,\alpha} u_{\kappa,\alpha})}{\partial t}, w \right)_{W^1_{0,4}(\Omega)} \, dt - \int_0^T \int_\Omega p_\kappa(\rho_{\kappa,\alpha}) \nabla_x \cdot w \, dx \, dt \leq C \left[\alpha \|\nabla_x \rho_{\kappa,\alpha}\|_{L^r(\Omega_T)} + \|\rho_{\kappa,\alpha} u_{\kappa,\alpha}\|_{L^r(\Omega_T)} + 1 \right] \times \|u_{\kappa,\alpha}\|_{L^2(0,T;H^1(\Omega))} \|w\|_{L^{r}(0,T;W^{1,4}(\Omega))} + C \left[\|\tau (M \widehat{\psi}_{\kappa,\alpha})\|_{L^2(0,T;L^4(\Omega))} + \|\theta_{\kappa,\alpha}\|_{L^4(0,T;L^{24/7}(\Omega))} \right] \|w\|_{L^2(0,T;W^{1,4}(\Omega))} \\
+ \|\rho_{\kappa,\alpha}\|_{L^\infty(0,T;L^2(\Omega))} \|f\|_{L^2(0,T;L^\infty(\Omega))} \|w\|_{L^2(\Omega_T)} \leq C \|w\|_{L^{r}(0,T;W^{1,4}(\Omega))}.
\]

(5.13)

For \(r, s \in (1, \infty) \), let

\[
L^r_0(\Omega) := \{ \zeta \in L^r(\Omega) : \int_\Omega \zeta \, dx = 0 \}, \quad E^{r,s}(\Omega) := \{ w \in L^r(\Omega) : \nabla_x \cdot w \in L^s(\Omega) \}
\]

and

\[
E^{r,s}_{0}(\Omega) := \{ w \in E^{r,s}(\Omega) : \nabla_x \cdot w = 0 \text{ on } \partial\Omega \}.
\]

(5.14)

The equality \(w \cdot n = 0 \) on \(\partial\Omega \) should be understood in the sense of traces of Sobolev functions, with equality in \(W^{1-d/2} \hookrightarrow H^r(\partial\Omega)' \), where \(\frac{1}{r} + \frac{1}{s'} = 1 \) and \(v = \min\{r, s\} \); cf. Lemma 3.10 in Novotný & Straškraba\(^{24}\).

We now introduce the Bogovskiĭ operator \(\mathcal{B} : L^r_0(\Omega) \to W^{1,4}_{0,4}(\Omega), \) \(r \in (1, \infty) \), such that

\[
\int_\Omega \left(\nabla_x \cdot \mathcal{B}(\zeta) - \zeta \right) \eta \, dx = 0 \quad \forall \eta \in L^{\frac{1}{r-1}}(\Omega);
\]

(5.15)

which satisfies

\[
\|\mathcal{B}(\zeta)\|_{W^{1,4}(\Omega)} \leq C \|\zeta\|_{L^r(\Omega)} \quad \forall \zeta \in L^r_0(\Omega),
\]

(5.16a)

\[
\|\mathcal{B}(\nabla_x \cdot w)\|_{L^{1,4}(\Omega)} \leq C \|w\|_{L^{r}(\Omega)} \quad \forall w \in E^{r,s}_{0}(\Omega),
\]

(5.16b)

see Lemma 3.17 in Novotný & Straškraba\(^{24}\) (or Lemma C.1 in Appendix C in Barrett & Suli\(^{12}\)).
Lemma 5.3. There exists a $C(\alpha) \in \mathbb{R}_{>0}$ such that
\[
\| \nabla_{\sim} \cdot (\rho_{\kappa,\alpha} u_{\kappa,\alpha}) \|_{L^s(\Omega_T)} + \left\| \frac{\partial \rho_{\kappa,\alpha}}{\partial t} \right\|_{L^r(\Omega_T)} + \| \Delta_{\sim} \rho_{\kappa,\alpha} \|_{L^r(\Omega_T)} \leq C(\alpha),
\] (5.17)
where $s = \frac{5\Gamma-3}{4\Gamma}$. In addition, there exists a $C \in \mathbb{R}_{>0}$, independent of α, such that
\[
\| \rho_{\kappa,\alpha} \|_{L^{r+1}(\Omega_T)} \leq C.
\] (5.18)

Proof. We prove (5.17), similarly to (4.67). The first bound in (5.17) follows from (5.9b). On noting (4.71) and the first bound in (5.17), we can now apply the parabolic regularity result, Lemma 7.37 in Novotný & Straškraba (or Lemma G.1 in Appendix G in Barrett & Suli), to (4.118a) to obtain that the solution $\rho_{\kappa,\alpha}$ satisfies the last two bounds in (4.67). It follows from (5.17), (5.9a,b) and (4.118a) that
\[
\frac{\partial \rho_{\kappa,\alpha}}{\partial t} = \nabla_{\sim} \cdot \left(\alpha \nabla_{\sim} \rho_{\kappa,\alpha} - \rho_{\kappa,\alpha} u_{\kappa,\alpha} \right) \in L^s(\Omega_T)
\] with \(\left(\alpha \nabla_{\sim} \rho_{\kappa,\alpha} - \rho_{\kappa,\alpha} u_{\kappa,\alpha} \right) \cdot n = 0 \) on $\partial \Omega \times (0, T)$, (5.19)
and hence, on recalling (5.14) and that $s = \frac{5\Gamma-3}{4\Gamma} < \frac{10\Gamma-6}{3(\Gamma+1)} = r$, we have that
\[
\alpha \nabla_{\sim} \rho_{\kappa,\alpha} - \rho_{\kappa,\alpha} u_{\kappa,\alpha} \in L^r(0, T; E^{r,s}_{\sim}(\Omega)).
\] (5.20)
Therefore (5.19), (5.20), (5.16b) and (5.9a,b) yield that
\[
\left\| B \left(\frac{\partial \rho_{\kappa,\alpha}}{\partial t} \right) \right\|_{L^r(0, T; L^r(\Omega))} = \left\| B(\nabla_{\sim} \cdot (\alpha \nabla_{\sim} \rho_{\kappa,\alpha} - \rho_{\kappa,\alpha} u_{\kappa,\alpha})) \right\|_{L^r(0, T; L^r(\Omega))} \leq C \left\| \alpha \nabla_{\sim} \rho_{\kappa,\alpha} - \rho_{\kappa,\alpha} u_{\kappa,\alpha} \right\|_{L^r(0, T; L^r(\Omega))} \leq C.
\] (5.21)

On recalling the notation used in (3.86), then, similarly to (4.15), we obtain, on choosing $\eta = 1$ in (4.118a) and noting (3.16a), that, for all $t \in [0, T]$,
\[
0 \leq \int \rho_{\kappa,\alpha}(t) = \int \rho^0 \leq \| \rho_0 \|_{L^\infty(\Omega)}.
\] (5.22)
We now choose $w = \eta B((I - \int \cdot) \rho_{\kappa,\alpha})$ in (5.13), where $\eta \in C^\infty_0(0, T)$, to obtain, on
Lemma 5.4. Let \[\eta \] as \[\alpha \rightarrow 0_+ \],

\[\rho_{\kappa,\alpha} u_{\kappa,\alpha} \xrightarrow{\text{weakly}} \rho_\kappa u_\kappa \quad \text{in} \quad L^{\frac{4\alpha}{3}}(\Omega_T), \]

\[\rho_{\kappa,\alpha} u_{\kappa,\alpha} \xrightarrow{\text{weakly}} \rho_\kappa u_\kappa \quad \text{in} \quad W^{1,\frac{4\alpha}{3}}(0, T; W_0^{1,\frac{4\alpha+1}{3}}(\Omega)), \]

\[\rho_{\kappa,\alpha} u_{\kappa,\alpha} \xrightarrow{\text{strongly}} \rho_\kappa u_\kappa \quad \text{in} \quad L^2(0, T; H^1(\Omega)'), \]

\[\rho_{\kappa,\alpha} \otimes u_{\kappa,\alpha} \xrightarrow{\text{weakly}} \rho_\kappa \otimes u_\kappa \quad \text{in} \quad L^2(0, T; L^{\frac{4\alpha}{3}}(\Omega)), \]

\[p_\kappa(p_\kappa) \xrightarrow{\text{weakly}} p_\kappa(p_\kappa) \quad \text{in} \quad L^{\frac{4\alpha+1}{3}}(\Omega_T), \]

where \[p_\kappa(p_\kappa) \in L^{\frac{4\alpha+1}{3}}(\Omega_T) \] remains to be identified.

We now consider (5.23) with \[\eta = \eta_m \in C_0^\infty(0, T), \ m \in \mathbb{N}, \] where \[\eta_m \in [0, 1] \] with \[\eta_m(t) = 1 \] for \[t \in \left[-\frac{1}{m}, \frac{T}{m} - \frac{1}{m} \right] \] and \[\|\frac{d\eta_m}{dt}\|_{L^\infty(0, T)} \leq 2m \] yielding \[\|\frac{d\eta_m}{dt}\|_{L^1(0, T)} \leq 4. \]

As \[\eta_m \rightarrow 1 \] pointwise in \[(0, T) \], as \[m \rightarrow \infty \], we obtain (5.18). \(\square \)

We have the following analogue of Lemmas 4.5 and 4.7.

Lemma 5.4. Let \(\Gamma \geq 8 \); then, there exists a \(C \in \mathbb{R}_{>0} \), independent of \(\alpha \), such that

\[\left\| \frac{\partial (\rho_{\kappa,\alpha} u_{\kappa,\alpha})}{\partial \kappa} \right\|_{L^{\frac{4\alpha}{3}}(0, T; W_0^{1,\frac{4\alpha+1}{3}}(\Omega)')} \leq C. \] (5.24)

Hence, for a further subsequence of the subsequence of Lemma 5.2, it follows that, as \(\alpha \rightarrow 0_+ \),

\[\rho_{\kappa,\alpha} u_{\kappa,\alpha} \rightarrow \rho_\kappa u_\kappa \quad \text{weakly in} \quad L^{\frac{4\alpha}{3}}(\Omega_T), \]

\[\rho_{\kappa,\alpha} \rightarrow \rho_\kappa \quad \text{weakly in} \quad W^{1,\frac{4\alpha}{3}}(0, T; W_0^{1,\frac{4\alpha+1}{3}}(\Omega)'), \] (5.25a)

\[\rho_{\kappa,\alpha} \rightarrow \rho_\kappa \quad \text{in} \quad C_0([0, T]; L^{\frac{4\alpha}{3}}(\Omega)), \]

\[\rho_{\kappa,\alpha} \rightarrow \rho_\kappa \quad \text{strongly in} \quad L^2(0, T; H^1(\Omega)'), \] (5.25b)

\[\rho_{\kappa,\alpha} \otimes u_{\kappa,\alpha} \rightarrow \rho_\kappa \otimes u_\kappa \quad \text{weakly in} \quad L^2(0, T; L^{\frac{4\alpha}{3}}(\Omega)), \] (5.25c)

\[p_\kappa(p_\kappa) \rightarrow p_\kappa \quad \text{weakly in} \quad L^{\frac{4\alpha+1}{3}}(\Omega_T), \] (5.25d)

\[p_\kappa(p_\kappa) \in L^{\frac{4\alpha+1}{3}}(\Omega_T) \] remains to be identified.
Proof. We deduce from (5.13), (5.18) and as \(4 < s' < \Gamma + 1 \) that
\[
\left| \int_0^T \left\langle \frac{\partial (\rho, u)}{\partial t}, w \right\rangle_{W^{1, \Gamma+1}_0(\Omega)} \right| dt
\leq C \| w \|_{L^{\Gamma+1}(0, T; W^{1, \Gamma+1}_0(\Omega))} \quad \forall w \in L^{\Gamma+1}(0, T; W^{1, \Gamma+1}_0(\Omega)),
\] (5.26)
and hence the desired result (5.24).

The results (5.25a–c) follow similarly to (4.97a–e) from (5.9a), (5.24), (3.12a,b), (3.11), (5.10b) and (5.5). The results (5.25d–f) follow immediately from (5.18), (2.3) and (1.3).

We have the following analogue of Theorem 4.1.

Lemma 5.5. The triple \((\rho, u, \hat{\psi})\), defined as in Lemmas 5.1 and 5.2, satisfies
\[
\int_0^T \left\langle \frac{\partial \rho}{\partial t}, \eta \right\rangle_{H^1(\Omega)} dt - \int_0^T \int_\Omega \rho u \cdot \nabla \eta \, dx \, dt = 0
\forall \eta \in L^2(0, T; H^1(\Omega)),
\] (5.27a)
with \(\rho(\cdot, 0) = \rho_0(\cdot) \),
\[
\int_0^T \left\langle \frac{\partial \rho u}{\partial t}, w \right\rangle_{W^{1, \Gamma+1}_0(\Omega)} dt
+ \int_0^T \int_\Omega \left[S(\rho u) - \rho u \otimes u - \rho \bar{\rho}(\hat{\rho}) I \right] : \nabla_x w \, dx \, dt
= \int_0^T \int_\Omega \rho u \cdot w - (\tau(M) \hat{\psi} - \gamma^2 u \hat{\psi}) \cdot \nabla_x w \, dx \, dt
\forall w \in L^{\Gamma+1}(0, T; W^{1, \Gamma+1}_0(\Omega)),
\] (5.27b)
with \((\rho, u)(\cdot, 0) = (\rho_0, u_0)(\cdot) \), and
\[
\int_0^T \left\langle M \frac{\partial \hat{\psi}}{\partial t}, \varphi \right\rangle_{H^1(\Omega \times D)} dt + \frac{1}{4\lambda} \sum_{i=1}^K \sum_{j=1}^K A_{ij} \int_0^T \int_{\Omega \times D} M \nabla_{x'} \hat{\psi}_i \cdot \nabla_{x'} \varphi \, dq \, dx \, dt
+ \int_0^T \int_{\Omega \times D} M \left[\varepsilon \nabla_{x'} \hat{\psi}_i - u_{\hat{\psi}} \hat{\psi}_i \right] \cdot \nabla_{x'} \varphi \, dq \, dx \, dt
- \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \left[\sigma(u_{\hat{\psi}}) q_i \right] \hat{\psi}_i \cdot \nabla_{x'} \varphi \, dq \, dx \, dt = 0
\forall \varphi \in L^2(0, T; H^s(\Omega \times D)),
\] (5.27c)
with \(\hat{\psi}_i(\cdot, 0) = \hat{\psi}_0(\cdot) \) and \(s > 1 + \frac{1}{2}(K + 1)d \).
In addition, the triple \((\rho_\alpha, y_\alpha, \psi_\alpha)\) satisfies, for a.a. \(t' \in (0, T),\)
\[\frac{1}{2} \int_\Omega \rho_\alpha(t') |u_\alpha(t')|^2 \, dx + \int_\Omega P_\alpha(\rho_\alpha(t')) \, dx + k \int_{\Omega \times D} \mathcal{M}F(\psi_\alpha(t')) \, dq \, dx \]
\[+ \mu^2 c_0 \int_0^{t'} \|u_\alpha\|^2_{H^1(\Omega)} \, dt \]
\[+ k \int_0^{t'} \int_{\Omega \times D} M \left[\frac{d_0}{2\lambda} \left| \nabla_q \sqrt[4]{\bar{\psi}_\alpha} \right|^2 + \left| \nabla_x \sqrt[4]{\bar{\psi}_\alpha} \right|^2 \right] dq \, dx \, dt \]
\[+ \frac{3}{2} \int_0^{t'} \left| \frac{1}{2} \int_\Omega |\rho_\alpha|^2 \, dx + \int_\Omega P_\alpha(\rho_\alpha) \, dx + k \int_{\Omega \times D} \mathcal{M}F(\psi_\alpha) \, dq \, dx \right|^2 \, dt \]
\[+ \frac{3}{2} \int_\Omega \left(\int_D M \bar{\psi}_0 \, dq \right)^2 \, dx + \frac{1}{2} \int_0^{t'} \|f\|_{L^\infty(\Omega)}^2 \, dt \int_\Omega \rho_\alpha \, dx \leq C, \quad (5.28) \]

where \(C \in \mathbb{R}_{>0}\) is independent of \(\kappa\).

Proof. Passing to the limit \(\alpha \to 0_+\) for the subsequence of Lemma 5.4 in (4.118a) yields (5.27a) subject to the stated initial condition, on noting (5.10a,c), (5.25a) and (3.16b).

Similarly to the proof of (4.118b), passing to the limit \(\alpha \to 0_+\) for the subsequence of Lemma 5.4 in (4.118b) yields (5.27b) subject to the stated initial condition, on noting (5.5), (5.10a,d,e), (5.25a–c,e), (5.6e), (5.8b) and (3.16b). Similarly to the proof of (4.118c), passing to the limit \(\alpha \to 0_+\) for the subsequence of Lemma 5.4 in (4.118c) yields (5.27c) subject to the stated initial condition, on noting (5.5), (5.6a–d), (5.7) and (3.2). Similarly to the proof of (4.119), we deduce (5.28) from (4.119) using the results (5.25c), (5.10f), (5.6a,b,l), (5.5), (5.8a) and (3.16c). \(\square\)

Finally, to obtain the complete analogue of Theorem 4.1, we have to identify \(\bar{p}_\alpha(\rho_\alpha),\) which appears in (5.27b) and (5.25e), by establishing that \(\bar{p}_\alpha(\rho_\alpha) = p_\alpha(\rho_\alpha).\) Due to the presence of the extra stress term in the momentum equation, we require a modification of the effective viscous flux compactness result, Proposition 7.36 in Novotný & Straškraba. Such results require pseudodifferential operators identified via the Fourier transform \(\mathfrak{F}.\) We briefly recall the key ideas, and refer to Section 4.4.1 in Novotný & Straškraba for the details. With

\[\mathfrak{S}(\mathbb{R}^d) := \left\{ \eta \in C_0^\infty(\mathbb{R}^d) : \sup_{x \in \mathbb{R}^d} \left| x_1^{\lambda_1} \cdots x_d^{\lambda_d} \frac{\partial^{|\lambda|}}{\partial x_1^{\lambda_1} \cdots \partial x_d^{\lambda_d}} \eta \right| \leq C(|\lambda|, |\lambda|) \quad \forall \zeta, \lambda \in \mathbb{N}^d \right\}, \]

(5.29)

the space of smooth rapidly decreasing (complex-valued) functions, we introduce the Fourier transform \(\mathfrak{F} : \mathfrak{S}(\mathbb{R}^d) \to \mathfrak{S}(\mathbb{R}^d),\) and its inverse \(\mathfrak{F}^{-1} : \mathfrak{S}(\mathbb{R}^d) \to \mathfrak{S}(\mathbb{R}^d),\)
defined by

$$\int_{\mathbb{R}^d} e^{-ix \cdot y} \eta(x) \, dx$$ and $$\int_{\mathbb{R}^d} e^{-i x \cdot y} \eta(y) \, dy.$$

(5.30)

These are extended to $$\mathfrak{S}^{-1} : \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)'$$, where $$\mathcal{S}(\mathbb{R}^d)'$$, the dual of $$\mathcal{S}(\mathbb{R}^d)$$, is the space of tempered distributions, via

$$\langle \mathfrak{S}(\eta), \xi \rangle_{\mathcal{S}(\mathbb{R}^d)} = \langle \eta, \mathfrak{S}^{-1}(\xi) \rangle_{\mathcal{S}(\mathbb{R}^d)'} \quad \forall \xi \in \mathcal{S}(\mathbb{R}^d)$$

(5.31)

We now introduce the inverse divergence operator $$\mathcal{A}_j : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)'$$, $$j = 1, \ldots, d$$, such that

$$\mathcal{A}_j(\eta) = -\mathfrak{S}^{-1}\left(\frac{i y_j}{|y|^2} [\mathfrak{S}(\eta)](y) \right).$$

(5.32)

It follows from Theorems 1.55 and 1.57 in Novotný & Straškraba24 (or Lemmas B.1 and B.2 in Appendix B in Barrett & Süli12) and Sobolev embedding that, for $$j = 1, \ldots, d$$,

$$\|\nabla \mathcal{A}_j(\eta)\|_{L^r(\mathbb{R}^d)} \leq C(r) \|\eta\|_{L^r(\mathbb{R}^d)} \quad \forall \eta \in \mathcal{S}(\mathbb{R}^d), \quad r \in (1, \infty)$$

(5.33a)

$$\|\mathcal{A}_j(\eta)\|_{L^{\infty}(\mathbb{R}^d)} \leq C(r) \|\eta\|_{L^r(\mathbb{R}^d)} \quad \forall \eta \in \mathcal{S}(\mathbb{R}^d), \quad r \in (1, d)$$

(5.33b)

Hence, we deduce from (5.33a,b) that $$\mathcal{A}_j$$ can be extended to $$\mathcal{A}_j : L^r(\mathbb{R}^d) \to D^{1,r}(\mathbb{R}^d)$$ for $$r \in (1, \infty)$$, $$j = 1, \ldots, d$$, where $$D^{1,r}(\mathbb{R}^d)$$ is a homogeneous Sobolev space; see Section 1.3.6 in Novotný & Straškraba24 (or Appendix A in Barrett & Süli12). In addition, by duality, $$\mathcal{A}_j$$ can be extended to $$\mathcal{A}_j : D^{1,r}(\mathbb{R}^d)' \to D^{1,r}(\mathbb{R}^d)'$$ for $$r \in (1, \infty)$$, $$j = 1, \ldots, d$$, see (4.4.4) in Novotný & Straškraba24. Moreover, as $$\mathcal{A}_j(\eta)$$ is real, for a real-valued function $$\eta$$, and from the Parseval–Plancherel formula we have, for all $$\eta \in L^r(\mathbb{R}^d)$$ and $$\xi \in L^{r^{-1}}(\mathbb{R}^d)$$, $$r \in (1, \infty)$$, having compact support that

$$\int_{\mathbb{R}^d} \mathcal{A}_j(\eta) \xi \, dx = -\int_{\mathbb{R}^d} \eta \mathcal{A}_j(\xi) \, dx, \quad j = 1, \ldots, d.$$

(5.34)

Finally, we introduce the so-called Riesz operator $$\mathcal{R}_{kj} : L^r(\mathbb{R}^d) \to L^r(\mathbb{R}^d)$$, $$r \in (1, \infty)$$, defined by

$$\mathcal{R}_{kj}(\eta) = \frac{\partial}{\partial x_k} \mathcal{A}_j(\eta), \quad j, k = 1, \ldots, d.$$

(5.35)

We note for all $$\eta \in L^r(\mathbb{R}^d)$$ and $$\xi \in L^{r^{-1}}(\mathbb{R}^d)$$, $$r \in (1, \infty)$$, that

$$\sum_{j=1}^d \mathcal{R}_{jj}(\eta) = \sum_{j=1}^d \frac{\partial}{\partial x_j} \mathcal{A}_j(\eta) = \eta,$$

(5.36a)

$$\mathcal{R}_{kj}(\eta) = \mathcal{R}_{jk}(\eta)$$ and $$\int_{\mathbb{R}^d} \mathcal{R}_{jk}(\eta) \xi \, dx = \int_{\mathbb{R}^d} \eta \mathcal{R}_{jk}(\xi) \, dx, \quad j, k = 1, \ldots, d.$$

(5.36b)
Below we use the notation $\mathcal{A}(\cdot)$ and $\mathcal{R}(\cdot)$ with components $\mathcal{A}_i(\cdot)$ and $\mathcal{R}_{ij}(\cdot)$, $i, j = 1, \ldots, d$, respectively. We shall adopt the convention that whenever any of these operators is applied to a function or a distribution that has been defined on Ω only, it is tacitly understood that the function or distribution in question has been extended by 0 from Ω to the whole of \mathbb{R}^d.

We now have the following modification of Proposition 7.36 in Novotný & Straškraba\ref{NS94}, which is adequate for our purposes.

Lemma 5.6. Given $\{(g_n, y_n, u_n, p_n, \tau_n, f_n, F_n)\}_{n \in \mathbb{N}}$, we assume for any $\zeta \in C_0^\infty(\Omega)$ that, as $n \to \infty$,

\begin{align*}
g_n &\to g & \text{in } C_w([0,T]; L^q(\Omega)), \\
u_n &\to u & \text{weakly } (\ast) \text{ in } L^{\infty}(\Omega_T), \\
m_n &\to m & \text{in } C_w([0,T]; L^\infty(\Omega)), \\
p_n &\to p & \text{weakly in } L^1(\Omega_T), \\
\tau_n &\to \tau & \text{strongly in } L^1(0,T; L^\infty(\Omega)), \\
f_n &\to f & \text{weakly in } L^2(0,T; H^1(\Omega)'}, \\
A(\zeta f_n) &\to A(\zeta f) & \text{strongly in } L^2(0,T; L^\infty(\Omega)), \\
F_n &\to F & \text{weakly in } L^\ast(\Omega_T),
\end{align*}

where $q \in (d, \infty)$, $r, s \in (1, \infty)$, $\omega \in \left[\max\{2, \frac{r}{r-1}\}, \infty\right]$ and $z \in \left(\frac{6u}{5q-1}, \infty\right)$.

In addition, suppose that

\begin{align*}
\frac{\partial g_n}{\partial t} + \nabla_x \cdot (u_n g_n) &= f_n & \text{in } C_0^\infty(\Omega_T)', \\
\frac{\partial m_n}{\partial t} + \nabla_x \cdot (m_n \otimes u_n) - \mu \Delta_x u_n - (\mu + \lambda) \nabla_x (\nabla_x \cdot u_n) + \nabla_x p_n &= F_n + \nabla_x \cdot \tau_n & \text{in } C_0^\infty(\Omega_T)',
\end{align*}

Then it follows that, for any $\zeta \in C_0^\infty(\Omega)$ and $\eta \in C_0^\infty(0,T)$,

\begin{align*}
\lim_{n \to \infty} \int_0^T \eta \left(\int_{\Omega} \zeta g_n [p_n - (2\mu + \lambda) \nabla_x \cdot u_n] \, dx \right) \, dt &= \int_0^T \eta \left(\int_{\Omega} \zeta g [p - (2\mu + \lambda) \nabla_x \cdot u] \, dx \right) \, dt.
\end{align*}

Proof. We adapt the proof of Proposition 7.36 in Novotný & Straškraba\ref{NS94}, by just pointing out the key differences. As $q > d$, then q', the Sobolev conjugate of q in the notation (1.3.64) of Novotný & Straškraba\ref{NS94}, is such that $q' = \infty$. Hence our restrictions on r, s, ω and z satisfy the restrictions of Proposition 7.36 in Novotný &
Stráskraba 24. With any $\zeta \in C_0^\infty(\Omega)$, it follows from (5.38a) and properties (5.34)–(5.36a,b) of A_j and R_{kj} that, for $i = 1, \ldots, d,$

$$
\frac{\partial}{\partial t} A_i(\zeta g_n) + \sum_{j=1}^{d} R_{ij}(\zeta g_n u_n^j) = A_i(\zeta f_n) + A_i(g_n u_n \cdot \nabla_x \zeta) \quad \text{in} \ C_0^\infty(\Omega_T'), \tag{5.40}
$$

where we adopt the notation u_n^j for the j-th component of u_n. With any $\zeta, \tilde{\zeta} \in C_0^\infty(\Omega)$ and $\eta \in C_0^\infty(0, T)$, we now consider $\eta \zeta A(\tilde{\zeta} g_n)$ as a test function for (5.38b). It follows from (5.37a) and (5.33a,b) that $A(\tilde{\zeta} g_n) \in L^\infty(0, T; W^{1,q}(\Omega)) \cap L^\infty(0, T; W^{1,\omega}(\Omega))$, and hence $A(\zeta g_n) \in L^\infty(\Omega_T)$ as $q > d$. Similarly to (5.9a), $g_n u_n \in L^2(0, T; L^{\frac{mn}{q+6}}(\Omega))$ and $m_n \otimes u_n \in L^2(0, T; L^2(\Omega))$. As $z \in (\frac{6q}{mn-q}, \infty)$, and therefore $\frac{1}{z-1} \in (1, \frac{6q}{q+6})$ and $\frac{1}{z^2-1} \in (\frac{6q}{q+6}, 6)$, it follows from (5.40), (5.33a,b), (5.35) and (5.37g) that

$$
\frac{\partial}{\partial t} A(\zeta g_n) \in L^2(0, T; L^{\frac{q}{q+6}}(\Omega)).
$$

Noting the above and (5.37b–e,h), we see that $\eta \zeta A(\tilde{\zeta} g_n)$ is a valid test function for (5.38b), and we obtain, on using integration by parts several times and properties (5.34)–(5.36a,b) of A_j and R_{kj}, that

$$
\int_0^T \eta \left(\int_\Omega \zeta \tilde{\zeta} g_n \left[p_n - (2\mu + \lambda) \nabla_x \cdot u_n \right] dx \right) dt
= \mu \int_0^T \eta \left(\int_\Omega \left(\nabla_x u_n : A(\tilde{\zeta} g_n) \otimes \nabla_x \zeta - u_n \otimes \nabla_x \zeta : \nabla(\tilde{\zeta} g_n) + \zeta g_n u_n \cdot \nabla_x \zeta \right) dx \right) dt
+ \int_0^T \eta \left(\int_\Omega \left(\tau_n - m_n \otimes u_n \right) \otimes \nabla_x \zeta
- \left[\tau_n - (\mu + \lambda) \nabla_x \cdot u_n \right] A(\zeta g_n) \cdot \nabla_x \zeta \right) dx \right) dt
+ \int_0^T \eta \left(\int_\Omega \zeta \left(\tau_n - m_n \otimes u_n \right) : \nabla(\tilde{\zeta} g_n) - F_n \cdot A(\tilde{\zeta} g_n) \right) dx \right) dt
- \int_0^T \frac{d\eta}{dt} \left(\int_\Omega \zeta m_n \cdot A(\tilde{\zeta} g_n) dx \right) dt
- \int_0^T \eta \left(\int_\Omega \zeta m_n \cdot \left[A(\zeta f_n) + A(g_n u_n \cdot \nabla_x \tilde{\zeta}) \right] dx \right) dt
+ \int_0^T \eta \left(\int_\Omega \sum_{i=1}^{d} g_n u_n^i R_{ij}(\zeta m_n) dx \right) dt. \tag{5.41}
$$

The equation (5.41) is exactly the same as (7.5.12) in Novotný & Stráskraba 24, except for the extra τ_n terms and the change of notation. We will therefore just concentrate on the terms involving τ_n, as the other terms are dealt with as in Novotný & Stráskraba 24.
It follows from (5.37a), (5.33a,b), see equations (7.5.18)–(7.5.20) in Novotný & Straškraba\(^{24}\) for the details, that
\[
\begin{align*}
\tilde{A}(\tilde{\zeta} g_n) & \rightarrow \tilde{A}(\tilde{\zeta} g) \quad \text{weakly in } L^\infty(0, T; W^{1,q}(\Omega)), \\
\text{strongly in } L^\nu(\Omega_T),
\end{align*}
\]
(5.42a)
\[
\begin{align*}
\mathcal{R}(\tilde{\zeta} g_n) & \rightarrow \mathcal{R}(\tilde{\zeta} g) \quad \text{weakly in } L^\infty(0, T; L^q(\Omega)), \\
\text{strongly in } L^\nu(0, T; H^{-1}(\Omega)),
\end{align*}
\]
(5.42b)
where \(v \in [1, \infty)\). It follows from (5.37e) and (5.42a,b) that, as \(n \rightarrow \infty\),
\[
\int_0^T \eta \left(\int_\Omega \tau : \left[\tilde{A}(\tilde{\zeta} g_n) \otimes \nabla_x \zeta + \mathcal{R}(\tilde{\zeta} g_n) \zeta \right] \, dx \right) \, dt \\
\rightarrow \int_0^T \eta \left(\int_\Omega \tau : \left[\tilde{A}(\tilde{\zeta} g) \otimes \nabla_x \zeta + \mathcal{R}(\tilde{\zeta} g) \zeta \right] \, dx \right) \, dt.
\] (5.43)

Combining (5.43) with the convergence, as \(n \rightarrow \infty\), of other terms in (5.41) as in the proof of Proposition 7.36 in Novotný & Straškraba\(^{24}\), which involves the use of the crucial ‘commutator lemma’ (Lemma 4.25 in Novotný & Straškraba\(^{24}\), or Lemma D.3 in Appendix D in Barrett & Süli\(^{12}\)), we obtain
\[
\lim_{n \rightarrow \infty} \int_0^T \eta \left(\int_\Omega \tilde{\zeta} g_n \left[p_n - (2\mu + \lambda) \nabla_x \cdot u_n \right] \, dx \right) \, dt \\
= \mu \int_0^T \eta \left(\int_\Omega \left(\nabla_x u : \tilde{A}(\tilde{\zeta} g) \otimes \nabla_x \zeta - u \otimes \nabla_x \zeta : \mathcal{R}(\tilde{\zeta} g) + \tilde{\zeta} g u \cdot \nabla_x \zeta \right) \, dx \right) \, dt \\
+ \int_0^T \eta \left(\int_\Omega \left(\tau - m \otimes u \right) : \tilde{A}(\tilde{\zeta} g) \otimes \nabla_x \zeta \\
\quad - \left[p - (\mu + \lambda) \nabla_x \cdot u \right] \tilde{A}(\tilde{\zeta} g) \cdot \nabla_x \zeta \right) \, dx \right) \, dt \\
+ \int_0^T \eta \left(\int_\Omega \zeta \left(\left(\tau - m \otimes u \right) : \mathcal{R}(\tilde{\zeta} g) - F \cdot A(\tilde{\zeta} g) \right) \, dx \right) \, dt \\
- \int_0^T \frac{\partial q}{\partial t} \left(\int_\Omega \zeta m \cdot A(\tilde{\zeta} g) \, dx \right) \, dt \\
- \int_0^T \eta \left(\int_\Omega \zeta m \left[\tilde{A}(\tilde{\zeta} f) + \tilde{A}(g u \cdot \nabla_x \tilde{\zeta}) \right] \, dx \right) \, dt \\
+ \int_0^T \eta \left(\int_\Omega \zeta \sum_{i=1}^d \sum_{j=1}^d g u_i^2 R_{ij}(\zeta m^j) \, dx \right) \, dt,
\] (5.44)
which is exactly the same as (7.5.25) in Novotný & Straškraba\(^{24}\), except for the extra \(\zeta\) terms and the change of notation.

In addition, the equations (5.38a,b) are exactly the same as in (7.5.7)–(7.5.8) in Novotný & Strakała\(^{24}\) except for the extra \(\zeta_n\) term. One can use (5.37a–h) to
pass to the limit $n \to \infty$ in (5.38a,b) to obtain
\begin{align}
\frac{\partial g}{\partial t} + \nabla_x \cdot (u g) &= f \quad \text{in } C^\infty_0(\Omega_T)', \\
\frac{\partial m}{\partial t} + \nabla_x \cdot (m \otimes u) - \mu \Delta_x u - (\mu + \lambda) \nabla_x (\nabla_x \cdot u) + \nabla_x p &= \nabla_x \cdot \tau \quad \text{in } C^\infty_0(\Omega_T)',
\end{align}
(5.45a)
(5.45b)
see Novotný & Stráškraba24 for details. Clearly, the $\tau \approx n$ term in (5.38b) is easily dealt with using (5.37e). Similarly to (5.40), we deduce that $\eta \zeta A(\tilde{\zeta} g)$ is a valid test function for (5.45b), for any $\zeta, \tilde{\zeta} \in C^\infty_0(\Omega)$ and $\eta \in C^\infty_0(0,T)$, and we obtain (5.41) without the subscript n. Combining this with (5.44), we deduce that, for any $\zeta, \tilde{\zeta} \in C^\infty_0(\Omega)$ and $\eta \in C^\infty_0(0,T)$,
\begin{align}
\lim_{n \to \infty} \int_0^T \eta \left(\int_\Omega \zeta \tilde{\zeta} g_n [p_n - (2\mu + \lambda) \nabla_x \cdot u_n] \, dx \right) \, dt = \int_0^T \eta \left(\int_\Omega \zeta \tilde{\zeta} g [p - (2\mu + \lambda) \nabla_x \cdot u] \, dx \right) \, dt.
\end{align}
(5.46)

Hence we arrive at (5.39) by taking $\tilde{\zeta} \in C^\infty_0(\Omega)$ such that $\tilde{\zeta} \equiv 1$ on the support of the function ζ.

We need also the following variation of Lemma 5.6 for later use in Section 6.

Corollary 5.1. The results of Lemma 5.6 hold with the assumptions (5.37f,g) replaced by
\begin{align}
f_n \to f \quad \text{weakly in } L^2(\Omega_T), \quad \text{as } n \to \infty.
\end{align}
(5.47)

Proof. One can still pass to the limit $n \to \infty$ in (5.38a) to obtain (5.45a) using (5.47) in place of (5.37f,g). We deduce from (5.47), (5.33b) and (5.34) that
\begin{align}
\tilde{A}(\tilde{\zeta} f_n) \to \tilde{A}(\tilde{\zeta} f) \quad \text{weakly in } L^2(0,T;L^6(\Omega)), \quad \text{as } n \to \infty.
\end{align}
(5.48)

As $\frac{d}{\mu + \lambda} < 6$, (5.48) ensures that one can still conclude from (5.40) that $\eta \zeta \tilde{A}(\tilde{\zeta} g_n)$ is a valid test function for (5.38b). Similarly, one can deduce that $\eta \zeta \tilde{A}(\tilde{\zeta} g)$ is a valid test function for (5.45b). The only other place where (5.37f,g) are used in the proof of Lemma 5.6 is in dealing with the term involving f_n on the right-hand side of (5.41); that is, the term
\begin{align}
- \int_0^T \eta \left(\int_\Omega \zeta m_n \cdot \tilde{A}(\tilde{\zeta} f_n) \, dx \right) \, dt = \int_0^T \eta \left(\int_\Omega \tilde{\zeta} f_n \sum_{i=1}^d A_i(\tilde{\zeta} m_n^i) \, dx \right) \, dt,
\end{align}
(5.49)

where we have noted (5.34). Similarly to (5.42a), it follows from (5.37c), (5.33a,b) and Sobolev embedding, as $z > \frac{d}{\mu + \lambda}$, that
\begin{align}
\tilde{A}(\tilde{\zeta} m_n) \to \tilde{A}(\tilde{\zeta} m) \quad \text{weakly in } L^\infty(0,T;W^{1,z}(\Omega)), \quad \text{strongly in } L^\nu(0,T;L^\lambda(\Omega)),
\end{align}
(5.50)
where \(v \in [1, \infty) \). Therefore, (5.50), (5.47) and (5.34) imply that we can pass to the limit \(n \to \infty \) in (5.49) to obtain the term involving \(f \) on the right-hand side of (5.44).

In order to identify \(p_\kappa(p_\kappa) \) in (5.27b) and (5.25e), we now apply Lemma 5.6 with (5.38a,b) being (4.118a,b) so that \(\mu = \frac{\mu^2}{2} \) and \(\lambda = \mu^B - \frac{\mu^2}{2} \), \(\gamma_n = p_\kappa, \alpha, \gamma_n = y_\kappa, \alpha \), \(m_n = \rho_\kappa y_\kappa, \alpha, p_n = p_\kappa(p_\kappa), \tau_n = \bar{\tau}(M \bar{\psi}_\kappa, \alpha) + \frac{\alpha}{2} (y_\kappa, \alpha \otimes \nabla \rho_\kappa), f_n = \alpha \Delta \rho_\kappa, \alpha \) and \(F_n = \rho_\kappa f - \frac{\alpha}{2} (\nabla \rho_\kappa, \alpha \cdot \nabla \rho_\kappa) y_\kappa, \alpha \). With \(\{(\rho_\kappa, \alpha, y_\kappa, \alpha, \psi_\kappa, \alpha)\}_{\alpha > 0} \) being the subsequence (not indicated) of Lemma 5.4, we have that (5.37a-d) hold with \(g = \rho_\kappa, \), \(u = y_\kappa, \, \mu = \rho_\kappa, \alpha, \) and \(p = p_\kappa(p_\kappa), \) and \(q = \Gamma, \omega = \Gamma + 1, \alpha = \frac{2\Gamma}{r + 2}, \) and \(r = \frac{r}{r + 1} \) on recalling (5.10a), (5.25b,d,e) and (5.5). We note that \(\omega = \Gamma + 1 = \frac{r}{r - 1} > 2 \) and, as \(\Gamma \geq 8, z = \frac{2\Gamma}{r + 2}, \frac{\alpha}{\alpha} \geq \frac{6r}{r - 6}, \frac{\alpha}{\alpha} \geq \frac{6r}{r - 6} \) Hence, the constraints on \(q, r, \omega, \) and \(z \) hold. The results (5.37e,h) hold with \(\bar{\tau} = \tau(M \bar{\psi}_\kappa), F = \rho_\kappa f \) and \(s = \frac{2\Gamma}{r + 3}, \) on recalling (5.6e), (5.10d,e) and (5.25d), and noting that \(\frac{4d + 2}{4d + 4} \geq \frac{20}{11} > \frac{8}{7} \geq \frac{4d}{4d + 4} \). Finally, the results (5.37f,g) hold with \(f = 0 \) on recalling (5.10c) and the properties of \(\mathcal{A} \) and \(\mathcal{B} \), on noting that \(\frac{r}{r - 1} = \frac{r}{r - 1}, 0 < \frac{r}{r - 6} \) see (7.9.21) in Novotný & Straskraba

Finally, we obtain from (5.39) for the subsequence of Lemma 5.4 that, for all \(\zeta \in C_0^\infty(\Omega) \) and \(\eta \in C_0^\infty(0, T) \),

\[
\lim_{\alpha \to 0^+} \int_0^T \eta \left(\int_\Omega \zeta \rho_\kappa, \alpha \left[p_\kappa(p_\kappa) - \mu^S - \frac{\mu^B}{2} \nabla \cdot u_\kappa \right] \right) \, dt = \int_0^T \eta \left(\int_\Omega \zeta \rho_\kappa \left[p_\kappa(p_\kappa) - \mu^S - \frac{\mu^B}{2} \nabla \cdot u_\kappa \right] \right) \, dt,
\]

where \(\mu^* := \left(\frac{d - 1}{d} \right) \mu^S + \mu^B \). The first two bounds in (5.9a) yield that

\[
\| \rho_\kappa, \alpha \nabla \cdot u_\kappa \|_{L^2(0, T; L^2(\Omega))} \leq C,
\]

and hence there exists a \(\rho_\kappa, \alpha \nabla \cdot u_\kappa \in L^2(0, T; L^2(\Omega)) \) such that for a subsequence (not indicated)

\[
\rho_\kappa, \alpha \nabla \cdot u_\kappa \rightharpoonup \rho_\kappa \nabla \cdot u_\kappa \quad \text{weakly in} \quad L^2(0, T; L^2(\Omega)), \quad \text{as} \ \alpha \to 0^+.
\]

It follows from the monotonicity of \(p_\kappa(\cdot) \) that

\[
\rho_\kappa, \alpha p_\kappa(p_\kappa, \alpha) = (\rho_\kappa, \alpha - \rho_\kappa, \alpha)(p_\kappa(p_\kappa, \alpha) - p_\kappa(p_\kappa)) + (\rho_\kappa, \alpha - \rho_\kappa, \alpha)p_\kappa(p_\kappa) + p_\kappa p_\kappa(p_\kappa, \alpha) \quad \text{a.e. in} \ \Omega_T.
\]

We deduce from (5.51), (5.54), (5.53) and (5.25d,e) that for all nonnegative \(\zeta \in C_0^\infty(\Omega) \) and \(\eta \in C_0^\infty(0, T) \),

\[
\int_0^T \eta \left(\int_\Omega \zeta \left[\rho_\kappa \nabla \cdot u_\kappa - \rho_\kappa \nabla \cdot u_\kappa \right] \right) \, dt \geq 0
\]

whence we have noted (4.128) with \((0, T) \) replaced by \(\Omega_T \) for the final implication.
Next, we introduce \(\mathcal{L}(s) = s \log s \) for \(s \in [0, \infty) \). On recalling (3.16a,b), we have for a subsequence (not indicated), via Lebesgue’s dominated convergence theorem, that
\[
\lim_{\alpha \to 0_+} \int_\Omega \mathcal{L}(\rho^0_t) \, dx = \int_\Omega \mathcal{L}(\rho_0) \, dx. \tag{5.56}
\]
We can now follow the discussion in Section 7.9.3 in Novotný & Stráskraba\(^{24}\) to deduce that \(\overline{p}_\kappa(p_\kappa) = p_\kappa(p_\kappa) \). For the benefit of the reader, we briefly outline the argument. One deduces from (5.27a) as \(p_\kappa \in C_w([0, T]; L^\infty_0(\Omega)) \), via renormalization and noting that \(s \mathcal{L}'(s) = \mathcal{L}(s) = s \) for \(s \in [0, \infty) \), that, for any \(t' \in (0, T] \),
\[
\int_\Omega \left[\mathcal{L}(p_\kappa)(t') - \mathcal{L}(\rho_0) \right] \, dx \leq -\int_0^{t'} \int_\Omega p_\kappa \nabla_x \cdot u_\kappa \, dx \, dt. \tag{5.57}
\]
On noting (5.17), one can choose, similarly to (4.8), \(\eta = \chi_{[0, \epsilon]} \log (p_{\kappa, \alpha} + \varsigma) - 1 \), where \(\varsigma \in \mathbb{R}_{>0} \), in (4.118a), and on passing to the limit \(\varsigma \to 0_+ \), obtain that, for any \(t' \in (0, T] \),
\[
\int_\Omega \left[\mathcal{L}(p_{\kappa, \alpha})(t') - \mathcal{L}(\rho_0) \right] \, dx \leq -\int_0^{t'} \int_\Omega p_{\kappa, \alpha} \nabla_x \cdot u_{\kappa, \alpha} \, dx \, dt. \tag{5.58}
\]
Subtracting (5.57) from (5.58), and passing to the limit \(\alpha \to 0_+ \), one deduces from (5.56), (5.53) and (5.55) that, for any \(t' \in (0, T] \),
\[
\int_\Omega \left[\overline{\mathcal{L}}(p_\kappa)(t') - \mathcal{L}(p_\kappa)(t') \right] \, dx \leq \int_0^{t'} \int_\Omega \left[p_\kappa \nabla_x \cdot u_\kappa - p_{\kappa, \alpha} \nabla_x \cdot u_{\kappa, \alpha} \right] \, dx \, dt \leq 0, \tag{5.59}
\]
where, by noting (5.10a),
\[
\mathcal{L}(p_{\kappa, \alpha})(t') \to \overline{\mathcal{L}}(p_\kappa)(t') \text{ weakly in } L^r(\Omega), \quad \text{for any } r \in [1, \Gamma), \quad \text{as } \alpha \to 0_+. \tag{5.60}
\]
As \(\mathcal{L}(s) \) is continuous and convex for \(s \in [0, \infty) \), it follows from (5.10a) and (5.60), see e.g. Corollary 3.33 in Novotný & Stráskraba\(^{24}\) (or Lemma D.1 in Appendix D in Barrett & Suli\(^{12}\)), that \(\overline{\mathcal{L}}(p_\kappa)(t') \geq \mathcal{L}(p_\kappa)(t') \) a.e. in \(\Omega \) for any \(t' \in (0, T] \). Hence, we deduce from (5.59) that \(\overline{\mathcal{L}}(p_\kappa)(t') = \mathcal{L}(p_\kappa)(t') \) a.e. in \(\Omega \) for any \(t' \in (0, T] \). Therefore, on applying Lemma 3.34 in Novotný & Stráskraba\(^{24}\) (or Lemma D.2 in Appendix D in Barrett & Suli\(^{12}\)), we conclude from the above, (5.60) and (5.10a) that \(p_{\kappa, \alpha}(t) \to p_\kappa(t) \) strongly in \(L^1(\Omega) \) for any \(t \in (0, T] \), as \(\alpha \to 0_+ \). It immediately follows from this, (5.18), (3.1) and (5.25e), on possibly extracting a further subsequence (not indicated), that, as \(\alpha \to 0_+ \),
\[
p_{\kappa, \alpha} \to p_\kappa \quad \text{strongly in } L^r(\Omega_T), \quad \text{for any } r \in [1, \Gamma + 1), \tag{5.61a}
p_{\kappa}(\kappa, \alpha) \to p_\kappa(p_\kappa) \quad \text{weakly in } L^{\frac{r+1}{r}}(\Omega_T), \quad \text{that is, } \overline{p}_\kappa(p_\kappa) = p_\kappa(p_\kappa). \tag{5.61b}
\]
Finally, we have the following complete analogue of Theorem 4.1.

Theorem 5.1. *The triple* \((p_\kappa, u_\kappa, \hat{\psi}_\kappa)\), *defined as in Lemmas 5.1 and 5.2, is a global weak solution to problem* \((P_\kappa)\), *in the sense that* (5.27a,c), *with their initial*
conditions, hold and
\[
\int_0^T \left(\frac{\partial (\rho_\kappa u_\kappa)}{\partial t}, w \right) \, \text{d}t + \int_0^T \int_\Omega \left[S(u_\kappa) - \rho_\kappa u_\kappa \otimes u_\kappa - \rho_\kappa (\rho_\kappa) \right] \cdot \nabla_x w \, \text{d}x \, \text{d}t = \int_0^T \int_\Omega \left[\rho_\kappa f \cdot w - \left(\tau_1 (M \hat{\psi}_\kappa) - \frac{1}{2} \hat{\kappa}^2 \right) \cdot \nabla_x w \right] \, \text{d}x \, \text{d}t
\]
for all \(w \in L^{1+1}(0, T; W_0^{1, r+1}(\Omega)) \),

(5.62)

with \((\rho_\kappa u_\kappa)(\cdot, 0) = (\rho_0 u_0)(\cdot)\). In addition, the weak solution \((\rho_\kappa, u_\kappa, \hat{\psi}_\kappa)\) satisfies (5.28).

Proof. The results (5.27a,c) and (5.28) have already been established in Lemma 5.5. Equation (5.62) was established in Lemma 5.5 with \(p_\kappa(\rho_\kappa)\) replaced by \(\overline{p}_\kappa(\rho_\kappa)\). See (5.27b). The desired result (5.62) then follows immediately from (5.27b) and (5.61b).

\[\Box \]

6. Existence of a solution to (P)

It follows from the bounds on \(q_\kappa\) in (5.28), similarly to (4.26) and (4.27), that
\[
\|q_\kappa\|_{L^\infty(0, T; L^2(\Omega))} + \|q_\kappa\|_{L^{\frac{2(d+2)}{d}}(\Omega_T)} + \|q_\kappa\|_{L^2(0, T; L^5(\Omega))} + \|q_\kappa\|_{L^1(0, T; L^{\infty}(\Omega))} \leq C,
\]

(6.1)

where throughout this section \(C\) is a generic positive constant, independent of \(\kappa\). Hence, we deduce from (6.1), (4.24) and (5.28), similarly to (4.28b), that
\[
\|\tau_1 (M \hat{\psi}_\kappa)\|_{L^2(0, T; L^\frac{4}{3}(\Omega))} + \|\tau_1 (M \hat{\psi}_\kappa)\|_{L^{\frac{4(d+2)}{d+2}}(\Omega_T)} + \|\tau_1 (M \hat{\psi}_\kappa)\|_{L^\frac{4}{3}(0, T; L^\frac{4}{3}(\Omega))} \leq C.
\]

(6.2)

Similarly to (4.94), it follows from (6.1) and (5.28) that
\[
\left\| M \frac{\partial \hat{\psi}_\kappa}{\partial t} \right\|_{L^2(0, T; H^s(\Omega \times D)'')} \leq C,
\]

(6.3)

where \(s > 1 + \frac{1}{2}(K + 1)d\). We have the following analogue of Lemma 5.1.

Lemma 6.1. There exist functions
\[
u \in L^2(0; T; H^1_0(\Omega)) \quad \text{and} \quad \hat{\psi} \in L^\infty(0, T; Z_1) \cap H^1(0, T; M^{-1}(H^s(\Omega \times D))'),
\]

(6.4a)

where \(v \in [1, \infty)\) and \(s > 1 + \frac{1}{2}(K + 1)d\), with finite relative entropy and Fisher information,
\[
\mathcal{F}(\hat{\psi}) \in L^\infty(0, T; L^1_M(\Omega \times D)) \quad \text{and} \quad \sqrt{\hat{\psi}} \in L^2(0, T; H^1_M(\Omega \times D)),
\]

(6.4b)
and a subsequence of \(\{(\rho_{\kappa}, u_{\kappa}, \hat{\psi}_\kappa)\}_{\kappa > 0} \) such that, as \(\kappa \to 0^+ \),

\[
\begin{aligned}
\lim_{\kappa \to 0^+} u_{\kappa} & \to u & \text{weakly in } L^2(0, T; H^1_0(\Omega)), \\
\end{aligned}
\tag{6.5}
\]

and

\[
\begin{aligned}
M^{\frac{1}{2}} \nabla_x \sqrt{\psi_{\kappa}} & \to M^{\frac{1}{2}} \nabla_x \sqrt{\psi} & \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \\
M^{\frac{1}{2}} \nabla_q \sqrt{\psi_{\kappa}} & \to M^{\frac{1}{2}} \nabla_q \sqrt{\psi} & \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \\
M \frac{\partial \hat{\psi}_\kappa}{\partial t} & \to M \frac{\partial \hat{\psi}}{\partial t} & \text{weakly in } L^2(0, T; H^1(\Omega \times D')), \\
\hat{\psi}_\kappa & \to \hat{\psi} & \text{strongly in } L^r(0, T; L^1 \cap L^1_\kappa(\Omega \times D)), \\
\tau(\hat{\psi}_\kappa) & \to \tau(\hat{\psi}) & \text{strongly in } L^r(\Omega_T),
\end{aligned}
\tag{6.6}
\]

where \(r \in \left[1, \frac{4(d+2)}{3d+4} \right) \), and, for a.a. \(t \in (0, T) \),

\[
\begin{aligned}
\int_{\Omega \times D} M(q) \nabla(\hat{\psi}(x,q,t)) \, dq \, dx & \leq \liminf_{\kappa \to 0^+} \int_{\Omega \times D} M(q) \nabla(\hat{\psi}_\kappa(x,q,t)) \, dq \, dx.
\end{aligned}
\tag{6.6f}
\]

In addition, we have that

\[
\begin{aligned}
\varphi & := \int_D M(\hat{\psi}) \, dq \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)),
\end{aligned}
\tag{6.7}
\]

and, as \(\kappa \to 0^+ \),

\[
\begin{aligned}
\varphi_{\kappa} & \to \varphi & \text{weakly-* in } L^\infty(0, T; L^2(\Omega)), \\
\varphi_{\kappa} & \to \varphi & \text{weakly in } L^2(0, T; H^1(\Omega)), \\
\varphi_{\kappa} & \to \varphi & \text{strongly in } L^{\frac{6\kappa}{5\kappa - 17}}(0, T; L^5(\Omega)),
\end{aligned}
\tag{6.8}
\]

for any \(\varsigma \in (1, 6) \).

Proof. The convergence result (6.5) and the first result in (6.4a) follow immediately from the bound on \(u_{\kappa} \) in (5.28). The remainder of the results follow from the bounds on \(\hat{\psi}_\kappa \) and \(\varphi_{\kappa} \) in (5.28) in the same way as the results of Lemma 4.8. \(\Box \)

We have the following analogue of Lemma 5.2.

Lemma 6.2. Let \(\Gamma \geq 8 \); then, there exists a \(C \in \mathbb{R}_{>0} \), independent of \(\kappa \), such that, for any \(\gamma > \frac{3}{2} \) as in (1.3),

\[
\begin{aligned}
\|\rho_{\kappa}\|_{L^\infty(0,T;L^\Gamma(\Omega))} & + \|u_{\kappa}\|_{L^2(0,T;H^1(\Omega))} + \kappa^{\frac{1}{2}} \|\rho_{\kappa}\|_{L^\infty(0,T;L^\Gamma(\Omega))} \\
+ \left\|\sqrt{\mu_{\kappa}} u_{\kappa}\right\|_{L^\infty(0,T;L^2(\Omega))} & + \|\rho_{\kappa} u_{\kappa}\|_{L^\infty(0,T;L_{\kappa}^{\frac{2}{\gamma}}(\Omega))} \\
+ \|\rho_{\kappa} u_{\kappa}\|_{L^2(0,T;L_{\kappa}^{\frac{6}{5\kappa + 17}}(\Omega))} & + \|\rho_{\kappa} |\gamma|^{\frac{2}{3}}\|_{L^2(0,T;L_{\kappa}^{\frac{6}{5\kappa - 17}}(\Omega))} \leq C,
\end{aligned}
\tag{6.9a}
\]

\[
\begin{aligned}
\left\|\frac{\partial \rho_{\kappa}}{\partial t}\right\|_{L^2(0,T;W^{1,\gamma}(\Omega))} \leq C.
\end{aligned}
\tag{6.9b}
\]
Hence, there exists a function $\rho \in C_w([0,T];L^2_t(\Omega)) \cap H^1(0,T;W^{1,6}(\Omega))$, and for a further subsequence of the subsequence of Lemma 6.1, it follows that, as $\kappa \to 0^+$,

$$\rho_\kappa \to \rho \quad \text{in } C_w([0,T];L^7(\Omega))$$

weakly in $H^1(0,T;W^{1,6}(\Omega))$, \hspace{1cm} (6.10a)

and, for any nonnegative $\eta \in C[0,T]$,

$$\int_0^T \left(\int_\Omega P(\rho) \, dx \right) \eta \, dt \leq \liminf_{\kappa \to 0^+} \int_0^T \left(\int_\Omega P(\rho_\kappa) \, dx \right) \eta \, dt.$$ \hspace{1cm} (6.10c)

Proof. The first four bounds in (6.9a) follow immediately from (5.28). The last three bounds in (6.9a) follow, similarly to (4.84a,b), from the first two bounds in (6.9a). The bound (6.9b) follows immediately from (5.27a), the sixth bound in (6.9a), on noting that $\frac{6\gamma}{1+\gamma} > \frac{3}{2}$ as $\gamma > \frac{3}{2}$. The convergence results (6.10a,b) follow immediately from (6.9a,b), (3.12a,b) and (3.11). The result (6.10c) follows, similarly to (4.66), from (6.10a) and the convexity of P. \hfill \Box

Similarly to (5.13), it follows from (5.27b), (6.9a), (6.1), (6.2), (3.4), on noting that $\gamma > \frac{3}{2}$, and (3.2) that, for any $w \in L^\infty(0,T;W^{1,r}_1(\Omega))$ with $r = \max\{1,\gamma\}$ and $v = \max\{\frac{3\gamma}{2\gamma-3}, \frac{12}{5}\}$,

$$\left| \int_0^T \left(\frac{\partial(\rho_\kappa u_\kappa)}{\partial t} \right) \cdot w \right|_{W^{1,r+1}_1(\Omega)} \, dt - \int_0^T \int_\Omega p_\kappa(\rho_\kappa) \, \nabla w \cdot v \, dx \, dt \right|$$

$$\leq C \|\rho_\kappa\|_{L^\infty(0,T;L^7(\Omega))} \|u_\kappa\|_{L^2(0,T,L^6(\Omega))} \|w\|_{L^\infty(0,T;W^{1,\frac{3\gamma}{2\gamma-3}}_1(\Omega))}$$

$$+ C \left| u_\kappa \right|_{L^2(0,T;H^1(\Omega))} \|w\|_{L^2(0,T;H^1(\Omega))}$$

$$+ C \left\| \tau_1(M \psi_\kappa) \right\|_{L^{\frac{3}{2}}(0,T;L^\infty(\Omega))} + \|\psi_\kappa\|_{L^2(0,T;L^6(\Omega))} \|v\|_{L^\infty(0,T;L^\infty(\Omega))}$$

$$\leq C \|w\|_{L^\infty(0,T;W^{1,\gamma}_1(\Omega))}.$$ \hspace{1cm} (6.11)

We deduce from (6.11) with $w = \eta v$, where $\eta \in C_0^\infty(0,T)$ and $v \in L^\infty(0,T;W^{1,\gamma}_1(\Omega)) \cap H^1(0,T;L^{\frac{3\gamma}{2\gamma-3}}(\Omega))$ with $v = \max\{\frac{3\gamma}{2\gamma-3}, \frac{12}{5}\}$, on noting (6.9a) and (3.2) as $\frac{2\gamma}{\gamma-1} < 6$ for $\gamma > \frac{3}{2}$, that

$$\left| \int_0^T \eta \int_\Omega p_\kappa(\rho_\kappa) \, \nabla w \cdot v \, dx \, dt \right|$$

$$\leq \left| \int_0^T \int_\Omega p_\kappa u_\kappa \, \frac{\partial(\eta v)}{\partial t} \, dx \, dt \right| + C \|\eta\|_{L^\infty(0,T)} \|v\|_{L^\infty(1;W^{1,\gamma}_1(\Omega))}$$

$$\leq C \|\rho_\kappa u_\kappa\|_{L^\infty(0,T;L^{\frac{3\gamma}{2\gamma-3}}(\Omega))} \left\| \frac{d\eta}{dt} \right\|_{L^1(0,T)} \|v\|_{L^\infty(1;L^{\frac{3\gamma}{2\gamma-3}}(\Omega))}.$$
\[+ C \| \eta \|_{L^\infty(0,T)} \left[\| \rho_\kappa u_\kappa \|_{L^2(0,T;L^{\frac{6}{4}\gamma}(\Omega))} \left\| \frac{\partial u}{\partial t} \right\|_{L^2(I,L^{\frac{6}{4}\gamma}(\Omega))} + \| v \|_{L^\infty(I,W^{1,\gamma}(\Omega))} \right] \]
\[
\leq C \left[\left\| \frac{d\eta}{dt} \right\|_{L^1(0,T)} + \| \eta \|_{L^\infty(0,T)} \right] \left[\| v \|_{L^\infty(I,W^{1,\gamma}(\Omega))} + \left\| \frac{\partial v}{\partial t} \right\|_{L^2(I,L^{\frac{6}{4}\gamma}(\Omega))} \right],
\]
\[\text{where } I = \text{supp}(\eta) \subset (0,T). \]

With \(v = v(\gamma) \) thus defined, let
\[
\dot{\vartheta}(\gamma) := \frac{\gamma}{v(\gamma)} = \begin{cases} \frac{2\gamma}{3} & \text{for } \frac{2}{3} < \gamma \leq 4, \\ \frac{5}{12} \gamma & \text{for } 4 \leq \gamma. \end{cases}
\]

(6.13)

With \(\dot{\vartheta}(\gamma) \in \mathbb{R}_{>0} \) defined as above and \(\ell \in \mathbb{N} \), we now introduce \(b : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) and \(b_\ell : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) such that
\[
b(s) := s^\vartheta \quad \text{and} \quad b_\ell(s) := \begin{cases} b(s) & \text{for } 0 \leq s \leq \ell, \\ b(\ell) & \text{for } s > \ell. \end{cases}
\]

(6.14)

We note from (6.14), (6.9a) and (3.2) that, for \(v(\gamma) := \max\{\frac{3\gamma}{2\gamma-3}, \frac{12}{5}\} \) as in (6.12) and \(\dot{\vartheta}(\gamma) \) as in (6.13), we have that
\[
\| b_\ell(\rho_\kappa) \|_{L^\infty(0,T;L^{\gamma}(\Omega))} \leq \| \rho_\kappa \|_{L^\infty(0,T;L^{\gamma}(\Omega))} \leq \| \rho_\kappa \|_{L^\infty(0,T;L^{\gamma}(\Omega))} \leq C,
\]
\[\| b_\ell(\rho_\kappa) u_\kappa \|_{L^2(0,T;L^{\frac{6}{4}\gamma}(\Omega))} \leq \| \rho_\kappa \|_{L^\infty(0,T;L^{\gamma}(\Omega))} \| u_\kappa \|_{L^2(0,T;L^{\gamma}(\Omega))} \leq C,
\]
\[\| b_\ell(\rho_\kappa) \nabla_x \cdot u_\kappa \|_{L^2(0,T;L^{\frac{6}{4}\gamma}(\Omega))} \leq \| \rho_\kappa \|_{L^\infty(0,T;L^{\gamma}(\Omega))} \| u_\kappa \|_{L^2(0,T;H^1(\Omega))} \leq C,
\]
\[\text{for } \ell \in \mathbb{N}, \]
\[\text{where } C \in \mathbb{R}_{>0} \text{ is independent of } \kappa, \vartheta \text{ and } \ell. \]

As \(\Gamma > 2 \), it follows from (6.9a) and (5.27a), on extending \(\rho_\kappa \) and \(u_\kappa \) from \(\Omega \) to \(\mathbb{R}^d \) by zero, that
\[
\frac{\partial \rho_\kappa}{\partial t} + \nabla_x \cdot (\rho_\kappa u_\kappa) = 0 \quad \text{in } C^\infty_0(\mathbb{R}^d \times (0,T)),
\]
\[\text{see Lemmas } 6.8 \text{ in Novotný & Stráskraba}^{24} \text{ (or Lemma F.1 in Appendix F in Barrett & Süli)}^{12}. \]

Applying Lemma 6.11 in Novotný & Stráskraba24 (or Lemma F.3 in Appendix F in Barrett & Süli12) to (6.16), we have the renormalized equation, for any \(\ell \in \mathbb{N}, \)
\[
\frac{\partial b_\ell(\rho_\kappa)}{\partial t} + \nabla_x \cdot (b_\ell(\rho_\kappa) u_\kappa) + (\rho_\kappa (b_\ell)'(\rho_\kappa) - b_\ell(\rho_\kappa)) \nabla_x \cdot u_\kappa = 0 \]
\[\text{in } C^\infty_0(\mathbb{R}^d \times (0,T)),
\]
\[\text{where } (b_\ell)'(\cdot) \text{ is the right-derivative of } b_\ell(\cdot) \text{ satisfying}
\]
\[
(b_\ell)'(s) = \begin{cases} b'(s) & \text{for } 0 \leq s < \ell, \\ 0 & \text{for } s \geq \ell. \end{cases}
\]

(6.18)
For any $\delta \in (0, \frac{2}{q})$, we now introduce the Friedrichs mollifier, with respect to the time variable, $S_\delta: L^1(0,T; L^q(\Omega)) \to C^\infty(\delta, T - \delta; L^q(\Omega))$, $q \in [1, \infty],
\begin{equation}
S_\delta(\eta)(x,t) = \frac{1}{\delta} \int_0^T \omega \left(\frac{t-s}{\delta} \right) \eta(x,s) \, ds \quad \text{a.e. in } \Omega \times (\delta, T - \delta), \tag{6.19}
\end{equation}
where $\omega \in C_0^\infty(\mathbb{R})$, $\omega \geq 0$, $\text{supp}(\omega) \subset (-1, 1)$ and $\int_\mathbb{R} \omega \, ds = 1$. It follows from (6.17) and (6.19) that
\begin{equation}
\frac{\partial S_\delta(b_t(\rho))}{\partial t} + \nabla_x \cdot S_\delta(b_t(\rho) \, u) + S_\delta([\rho_c'(b_t)(\rho) - b_t(\rho)] \nabla_x \cdot u) = 0
\end{equation}
in $C^\infty(\mathbb{R}^d \times (\delta, T - \delta))^r$. \tag{6.20}
In addition, it follows from (6.19), (6.14), (6.9a), (3.2), (6.18) and (6.20) that
\begin{equation}
S_\delta(b_t(\rho)) \in C^\infty(\delta, T - \delta; L^\infty(\mathbb{R}^d)), \quad S_\delta(b_t(\rho) \, u) \in C^\infty(\delta, T - \delta; L^6(\mathbb{R}^d)), \quad S_\delta([\rho_c'(b_t)(\rho) - b_t(\rho)] \nabla_x \cdot u), \quad \nabla_x \cdot [S_\delta(b_t(\rho) \, u)] \in C^\infty(\delta, T - \delta; L^2(\mathbb{R}^d)).
\end{equation}

One can deduce from $u, \in L^2(0,T; H^1_0(\Omega))$ and (6.21) that
\begin{equation}
S_\delta(b_t(\rho)) \, u \in C^\infty(\delta, T - \delta; L^6_0(\Omega)),
\end{equation}
where we recall (5.14). We note from (5.16a), (6.19), (6.14) and (6.15a) that $B((S_\delta(b_t(\rho)))) \in L^\infty(\delta, T - \delta; W^{1,r}_0(\Omega)), \, r \in [1, \infty)$, and, for $v(\gamma) := \max \left\{ \frac{2\gamma}{2\gamma-1}, \frac{12}{7} \right\}$ as in (6.12), that
\begin{equation}
\| B((I - f) \, [S_\delta(b_t(\rho))]) \|_{L^\infty(\delta, T - \delta; W^{1,1}_0(\Omega))} \leq C \| S_\delta(b_t(\rho)) \|_{L^\infty(\delta, T - \delta; L^\infty(\Omega))}
\end{equation}
and from (6.20), Sobolev embedding, (6.22), (5.16a,b), (6.19), (6.14), (6.18) and (6.15b,c) with ϑ as in (6.13) that
\begin{align}
&\left\| \frac{\partial}{\partial t} B((I - f) \, [S_\delta(b_t(\rho))]) \right\|_{L^2(\delta, T - \delta; L^{\frac{6\gamma}{2\gamma-1}}(\Omega))} \\
&\leq \| B(\nabla_x \cdot [S_\delta(b_t(\rho) \, u)]) \|_{L^2(\delta, T - \delta; L^{\frac{6\gamma}{2\gamma-1}}(\Omega))} + \| B((I - f) \, [S_\delta([\rho_c'(b_t)(\rho) - b_t(\rho)] \nabla_x \cdot u)]) \|_{L^2(\delta, T - \delta; L^{\frac{6\gamma}{2\gamma-1}}(\Omega))} \\
&\leq \| B(\nabla_x \cdot [S_\delta(b_t(\rho) \, u)]) \|_{L^2(\delta, T - \delta; L^{\frac{6\gamma}{2\gamma-1}}(\Omega))} + \| B((I - f) \, [S_\delta([\rho_c'(b_t)(\rho) - b_t(\rho)] \nabla_x \cdot u)]) \|_{L^2(\delta, T - \delta; W^{1,\frac{2\gamma}{\gamma-1}}(\Omega))} \\
&\leq C \left[\| b_t(\rho) \, u \|_{L^2(0,T; L^{\frac{6\gamma}{2\gamma-1}}(\Omega))} + \| [\rho_c'(b_t)(\rho) - b_t(\rho)] \nabla_x \cdot u \|_{L^2(0,T; L^{\frac{2\gamma}{\gamma-1}}(\Omega))} \right] \leq C, \tag{6.23b}
\end{align}
where $C \in \mathbb{R}_{>0}$ in (6.23a,b) is independent of κ, ϑ, ℓ and δ. We now have the following analogue of Lemma 5.3.

Lemma 6.3. With $\vartheta(\gamma)$ as defined in (6.13), we have that

$$\|\rho_\kappa\|_{L^{\gamma+\delta}(\Omega_T)} + \kappa^{\frac{1}{\gamma}} \|\rho_\kappa\|_{L^{\gamma+\delta}(\Omega_T)} + \kappa^{\frac{1}{\Gamma}} \|\rho_\kappa\|_{L^{\Gamma+\delta}(\Omega_T)} \leq C.$$ \hfill (6.24)

Proof. For any $\ell \in \mathbb{N}$ and $\delta \in (0, \frac{T}{2})$, we choose $v \sim B((I - \int \cdot \cdot)\{S_\delta(b_\ell(\rho_\kappa))\}) \in L^\infty(\delta, T - \delta, \mathcal{W}^{1,r}(\Omega))$, any $r \in [1, \infty)$, and $\eta \in \mathcal{C}^\infty_0(0, T)$ with $\text{supp}(\eta) \subset (\delta, T - \delta)$, in (6.12) to obtain, on noting (6.23a,b), $6 \gamma^5 \leq 6 \gamma + 6 \vartheta$ as $\vartheta \leq \frac{2}{\gamma^3} - 1$, (6.9a) and (2.3), that

$$\left|\int_0^T \eta \int_\Omega p_\kappa(\rho_\kappa) S_\delta(b_\ell(\rho_\kappa)) dx \right| dt \leq C.$$ \hfill (6.25)

We now consider (6.25) with $\eta = \eta_\ell \in C^\infty_0(0, T)$ with $\text{supp}(\eta_\ell) \subset (\frac{1}{\ell}, T - \frac{1}{\ell})$, $\ell \in \mathbb{N}$ with $\ell > \frac{4}{\Gamma}$, where $\eta_\ell \in [0, 1]$ with $\eta_\ell(t) = 1$ for $t \in [\frac{T}{2}, T - \frac{T}{2}]$ and $\|\eta_\ell\|_{L^\infty(0, T)} \leq 2$ yielding $\|\frac{d\eta_\ell}{dt}\|_{L^1(0, T)} \leq 4$. For a fixed ℓ, we now let $\delta \to 0$ in (6.25) and using the standard convergence properties of mollifiers we obtain that

$$\left|\int_0^T \eta_\ell \int_\Omega p_\kappa(\rho_\kappa) b_\ell(\rho_\kappa) dx \right| dt \leq C,$$ \hfill (6.26)

where $C \in \mathbb{R}$ is independent of ℓ and κ. Letting $\ell \to \infty$ in (6.26), and noting that $\eta_\ell \to 1$ pointwise in $(0, T)$, $b_\ell(\rho_\kappa) \to b(\rho_\kappa) = \rho_\vartheta^\delta$ pointwise in Ω_T and Fatou's lemma, we obtain that

$$\int_0^T \int_\Omega p_\kappa(\rho_\kappa) \rho_\vartheta^\delta dx \ dt \leq C,$$ \hfill (6.27)

where $C \in \mathbb{R}$ is independent of κ. Hence the desired result (6.24) follows from (6.27), (2.3) and (1.3). \hfill \Box

Similarly to (6.11), it follows from (5.27b), (6.9a), (6.1), (6.2) and (3.4), on
noting $\gamma > \frac{d}{2}$, that for any $w \in L^{\Gamma+1}(0, T; W_0^1, \gamma(\Omega))$ with $v = \max(1, \frac{6s}{2\gamma-3})$,
\[
\left| \int_0^T \left\langle \frac{\partial(p_{\kappa} u_{\kappa})}{\partial t}, w \right\rangle_{W_0^{1,\Gamma+1}(\Omega)} \right| \leq C \left\| \Delta(p_{\kappa} u_{\kappa}) \right\|_{L^2(0, T; \frac{6s}{2\gamma-3}(\Omega))} + C \left\| p_{\kappa} \right\|_{L^2(0, T; H^1(\Omega))} \left\| w \right\|_{L^2(0, T; W_0^{1,\Gamma+1}(\Omega))} \right.
\]
\[
\quad + C \left\| \int_T^T \nabla \left(M \phi_{\kappa} \right) \right\|_{L^2(0, T; \frac{2}{3}(\Omega))} + C \left\| \phi_{\kappa} \right\|_{L^2(0, T; \frac{6s}{2\gamma-3}(\Omega))} \left\| \nabla w \right\|_{L^2(0, T; L^4(\Omega))} + C \left\| \int_T^T \frac{\kappa}{\Gamma} \right\|_{L^2(0, T; L^\infty(\Omega))} \left\| \nabla w \right\|_{L^2(0, T; L^3(\Omega))} \left\| w \right\|_{L^2(0, T; L^3(\Omega))} \leq C \left\| w \right\|_{L^2(0, T; W_0^{1,\Gamma+1}(\Omega))},
\]

(6.28)

where $s = \max\{4, \frac{6\gamma}{2\gamma-3}\}$. We now have the following analogue of Lemma 5.4.

Lemma 6.4. There exists a $C \in \mathbb{R}_{>0}$, independent of κ, such that
\[
\left\| \frac{\partial(p_{\kappa} u_{\kappa})}{\partial t} \right\|_{L^{2^{\frac{\Gamma+\sigma}{r}}}(0, T; W_0^{\frac{1}{r}}(\Omega))} \leq C,
\]
where $\vartheta(\gamma)$ is defined as in (6.13), $r = \max\{s, \frac{\Gamma+\sigma}{\sigma}\}$ and $s = \max\{4, \frac{6\gamma}{2\gamma-3}\}$.

Hence, for a further subsequence of the subsequence of Lemma 6.2, it follows that, as $\kappa \to 0$,

\[
\rho_{\kappa} u_{\kappa} \rightharpoonup \rho u \quad \text{weakly in } W_0^{1,\Gamma+1}(0, T; W_0^{1,\gamma}(\Omega)),
\]

(6.30a)

\[
\rho_{\kappa} u_{\kappa} \to \rho u \quad \text{in } C([0, T]; L^{\frac{2\Gamma}{\Gamma+\sigma}}(\Omega)),
\]

(6.30b)

\[
\rho_{\kappa} u_{\kappa} \rightharpoonup \rho u \quad \text{weakly in } L^{2}(0, T; L^{\frac{2\Gamma}{\Gamma+\sigma}}(\Omega)),
\]

(6.30c)

\[
\rho_{\kappa} u_{\kappa} \otimes u_{\kappa} \rightharpoonup \rho u \otimes u \quad \text{weakly in } L^{2}(0, T; L^{\frac{2\Gamma}{\Gamma+\sigma}}(\Omega)),
\]

(6.30d)

\[
\rho_{\kappa} \to \rho \quad \text{weakly in } L^{\Gamma+\sigma}(\Omega_T),
\]

(6.30e)

\[
\rho_{\kappa} \to \overline{\rho}, \quad \text{weakly in } L^{\frac{2\Gamma}{\Gamma+\sigma}}(\Omega_T),
\]

(6.30f)

\[
\kappa (\rho_{\kappa}^4 + p_{\kappa}^\Gamma) \to 0 \quad \text{weakly in } L^{\frac{2\Gamma}{\Gamma+\sigma}}(\Omega_T),
\]

(6.30g)

where $\overline{\rho}$ $\in L^{\frac{2\Gamma}{\Gamma+\sigma}}(\Omega_T)$ remains to be identified.

Proof. It immediately follows from (6.28), (2.3) and (6.24) that, for all functions $w \in L^{2^{\frac{\Gamma+\sigma}{r}}}(0, T; W_0^{1,\gamma}(\Omega))$, we have that
\[
\left| \int_0^T \left\langle \frac{\partial(p_{\kappa} u_{\kappa})}{\partial t}, w \right\rangle_{W_0^{1,\Gamma+1}(\Omega)} \right| \leq C \left\| w \right\|_{L^{2}(0, T; W_0^{1,\gamma}(\Omega))} + C \left\| p_{\kappa} \right\|_{L^{2}(0, T; H^1(\Omega))} \left\| w \right\|_{L^{2}(0, T; W_0^{1,\Gamma+1}(\Omega))} + C \left\| w \right\|_{L^{2}(0, T; W_0^{1,\Gamma+1}(\Omega))},
\]

(6.31)
where we have noted from (6.13) that \(\frac{\Gamma+\vartheta}{\varphi' \varphi} \geq \frac{\gamma+\vartheta}{\varphi' \varphi} \geq 2 \). The desired result (6.29) then follows from (6.31).

The results (6.30a–d) follow similarly to (4.97a–e) from (6.9a), (6.29), (3.12a,b), (3.11), (6.10b), and (6.5). The results (6.30e–g) follow immediately from (6.24) and (2.3).

We now have the following analogue of Lemma 5.5.

Lemma 6.5. The triple \((\rho, u, \hat{\psi})\), defined as in Lemmas 6.1 and 6.2, satisfies

\[
\begin{align*}
\int_0^T & \left< \frac{\partial \rho}{\partial t}, \eta \right>_{W^{1,0}(\Omega)} \ dt - \int_0^T \int_\Omega \rho u \cdot \nabla_x \eta \ dx \ dt = 0 \quad \forall \eta \in L^2(0,T; W^{1,6}(\Omega)), \\
\text{(6.32a)}
\end{align*}
\]

with \(\rho(\cdot, 0) = \rho_0(\cdot) \),

\[
\begin{align*}
\int_0^T & \left< \frac{\partial(\rho u)}{\partial t}, \varphi \right>_{W^{1,0}(\Omega)} \ dt + \int_0^T \int_\Omega \rho f \cdot w - \left(\tau_1(\hat{\psi}) - \frac{3}{2} \varphi^2 I \right) : \nabla_x w \ dx \ dt \\
= & \int_0^T \int_\Omega \rho f \cdot w - \left(\tau_1(\hat{\psi}) - \frac{3}{2} \varphi^2 I \right) : \nabla_x w \ dx \ dt \\
\forall w & \in L^2(0,T; W^{1,6}(\Omega)), \\
\text{(6.32b)}
\end{align*}
\]

with \((\rho u)(\cdot, 0) = (\rho_0 u_0)(\cdot), \vartheta(\gamma) \) defined as in (6.13) and \(r = \max\{4, \frac{6s}{2s-3}\} \), and

\[
\begin{align*}
\int_0^T & \left< M \frac{\partial \hat{\psi}}{\partial t}, \varphi \right>_{H^r(\Omega \times D)} \ dt + \frac{1}{4A} \sum_{i=1}^K \sum_{j=1}^K A_{ij} \int_0^T \int_{\Omega \times D} M \nabla_{q_i} \hat{\psi} \cdot \nabla_{q_i} \varphi \ dq \ dx \ dt \\
+ & \int_0^T \int_{\Omega \times D} M \left[\nabla_x \hat{\psi} - u \hat{\psi} \right] \cdot \nabla_x \varphi \ dq \ dx \ dt \\
- & \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sigma(u) q_i \hat{\psi} \cdot \nabla_{q_i} \varphi \ dq \ dx \ dt = 0 \\
\forall \varphi & \in L^2(0,T; H^r(\Omega \times D)), \\
\text{(6.32c)}
\end{align*}
\]

with \(\hat{\psi}(\cdot, 0) = \hat{\psi}_0(\cdot) \) and \(s > 1 + \frac{1}{2}(K+1)d \). In addition, the triple \((\rho, u, \hat{\psi})\) satisfies,
for a.a. $t' \in (0, T)$,
\[
\frac{1}{2} \int_{\Omega} \rho(t') |u(t')|^2 \, dx + \int_{\Omega} P(\rho(t')) \, dx + k \int_{\Omega \times D} M F(\psi(t')) \, dq \, dx \\
+ \mu^2 c_0 \int_0^{t'} \|u\|_{H^1(\Omega)}^2 \, dt \\
+ k \int_0^{t'} \int_{\Omega \times D} M \left[\frac{\mu_0}{2\lambda} \left| \nabla_x \sqrt{\psi} \right|^2 + 2\epsilon \left| \nabla_x \sqrt{\psi} \right|^2 \right] \, dq \, dx \, dt \\
+ \frac{3}{4} \int_0^{t'} \left(\int_{\Omega} M \psi_0 \, dq \right)^2 \, dx + \frac{1}{2} \int_0^{t'} \|f\|_{L^2(\Omega)}^2 \, dt \int_{\Omega} \rho_0 \, dx. \tag{6.33}
\]

Proof. Passing to the limit $\kappa \to 0_+$ for the subsequence of Lemma 6.4 in (5.27a) yields (6.32a) subject to the stated initial condition, on noting (6.10a), (6.30c) and that $\frac{\mu_0}{\lambda} > \frac{\gamma}{2}$ as $\gamma > \frac{3}{2}$.

Similarly to the proof of (4.118b), passing to the limit $\kappa \to 0_+$ for the subsequence of Lemma 6.4 in (6.62) for any $w \in C_0^\infty(\Omega_T)$ yields (6.32b) for any $w \in C_0^\infty(\Omega_T)$ subject to the stated initial condition, on noting (6.5), (6.10a), (6.30a,b,d,f,g), (6.6e) and (6.8b). The desired result (6.32b) for any $w \in L^{\frac{2d}{d-2}}(0, T; W_0^{1,r}(\Omega))$ then follows from (6.28), (6.30f) and noting from (6.13) that $r \geq \frac{2d}{d-2} \geq 2$. Similarly to the proof of (4.118c), passing to the limit $\kappa \to 0_+$ for the subsequence of Lemma 6.4 in (5.27c) yields (6.32c) subject to the stated initial condition, on noting (6.5), (6.6a–d), (6.7) and (3.2). Similarly to the proof of (4.119), we deduce (6.33) from (5.28) using the results (6.30d), (6.10c), (6.6a,b,f), (6.5) and (6.8a). \(\square \)

We need to identify $\bar{\rho}^7$ in (6.32b) and (6.30f). Similarly to (6.14), with $\ell \in \mathbb{N}$, we now introduce $t : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ and $t_\ell : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ such that
\[
t(s) := s \quad \text{and} \quad t_\ell(s) := \begin{cases}
 t(s) & \text{for } 0 \leq s \leq \ell, \\
 t(\ell) & \text{for } \ell \leq s.
\end{cases} \tag{6.34}
\]

Then, similarly to (6.17), we have the renormalized equation, for any $\ell \in \mathbb{N}$,
\[
\frac{\partial \nu(\rho_\ell)}{\partial t} + \nabla_x \cdot (\nu(\rho_\ell) u_\ell) + (\rho_\ell (t_\ell)'(\rho_\ell) - t_\ell(\rho_\ell)) \nabla_x \cdot u_\ell = 0 \\
in C_0^\infty(\mathbb{R}^d \times (0, T)), \tag{6.35}
\]
where $(t_\ell)'(\cdot)$ is defined similarly to (6.18). It follows from (6.34), (5.28) and (6.35)
that, for any fixed $\ell \in \mathbb{N}$,
\[
\|\mathbf{u}(\rho_{n})\|_{L^\infty(\Omega_T)} + \|(\rho_{\kappa}(\mathbf{u})_\kappa(\rho_{\kappa}) - \mathbf{u}(\rho_{\kappa})) \cdot \nabla x \cdot u_{n}\|_{L^2(\Omega_T)}
+ \left\| \frac{\partial \mathbf{u}(\rho_{n})}{\partial t}\right\|_{L^2(0,T;H^1(\Omega'))} \leq C(\ell).
\] (6.36)

In order to identify $\mathbf{\overline{p}}$ in (6.32b) and (6.30f), we now apply Corollary 5.1 with (5.38a,b) being (6.35) and (5.62) so that $\mu = \frac{\kappa}{\psi}$ and $\lambda = \mu^{B} - \frac{\kappa}{\psi}$, $g_{n} = \mathbf{t}r(\rho_{\kappa})$ for a fixed $\ell \in \mathbb{N}$, $u_{\kappa} = y_{\kappa}, w_{\kappa} = \rho_{\kappa} y_{\kappa}, p_{\kappa} = p_{\kappa}(\rho_{\kappa}), \zeta_{\kappa} = \zeta(M \hat{\psi}_{\kappa}), f_{n} = -(\rho_{\kappa}(\mathbf{u})_\kappa + \mathbf{u}(\rho_{\kappa})) \cdot \nabla x \cdot y_{\kappa}$ and $F_{n} = \rho_{\kappa} f$. With $\{(\rho_{\kappa}, w_{\kappa}, \hat{\psi}_{\kappa})\}_{\kappa \geq 0}$ being the subsequence (not indicated) of Lemma 6.4, we have that (5.37a-d) hold with $g = \mathbf{t}r(\rho), u = y, w = \rho y$ and $p = c_{p}(\mathbf{\overline{p}})$, and $\gamma < \infty, \omega = \infty, z = \frac{27}{4\gamma}$ and $r = \frac{\gamma + 3\omega}{\gamma - \omega}$ on recalling (6.36), (3.12a,b), (6.5), (6.30b) and (6.30f,g). We note that $z = \frac{27}{4\gamma} > \frac{3}{2}$ as $\gamma > \frac{3}{2}$. Hence, the constraints on q, r, ω and z hold. The results (5.37e,h) hold with $\gamma = \zeta(M \hat{\psi}), \mathbf{F} = \rho f \mathbf{f}$ and $s = \gamma + \vartheta$, on recalling (6.1c) and (6.30e), and noting that \[\frac{d(d+2)}{d+\vartheta} \geq \frac{3\gamma}{4\gamma}.\] Finally, the result (5.47) holds with $f = -(\rho(\mathbf{u})_\kappa + \mathbf{u}(\rho_{\kappa})) \cdot \nabla x \cdot u$ on recalling (6.36). Hence, we obtain from (5.39) for the subsequence of Lemma 6.4 that, for any fixed $\ell \in \mathbb{N}$ and for all $\zeta \in C_{0}^{\infty}(\Omega)$ and $\eta \in C_{0}^{\infty}(0,T)$,
\[
\lim_{\kappa \rightarrow 0} \int_{0}^{T} \int_{\Omega} \left(\int \zeta \mathbf{u}(\rho_{\kappa}) \left[\rho_{\kappa}(\mathbf{u})_\kappa - \mu^{*} \nabla x \cdot u_{n}\right] dx \right) dt = \int_{0}^{T} \int_{\Omega} \left(\int \zeta \mathbf{u}(\rho) \left[c_{p} \mathbf{\overline{p}}^{0} - \mu^{*} \nabla x \cdot u\right] dx \right) dt,
\] (6.37)
where $\mu^{*} := \frac{(d-1)}{d} \mu^{S} + \mu^{B}$.

We deduce from (6.37), (6.34), (2.3), (1.3), (6.30f,g) and (6.5) that, for any fixed $\ell \in \mathbb{N},$
\[
c_{p} \left[\mathbf{u}(\rho_{\kappa}) \mathbf{\overline{p}}^{0} - \mathbf{u}(\rho) \mathbf{\overline{p}}^{0}\right] = \mu^{*} \left[\mathbf{u}(\rho_{\kappa}) \nabla x \cdot u_{\kappa} - \mathbf{u}(\rho) \nabla x \cdot u\right] \quad \text{a.e. in } \Omega_T,
\] (6.38)
where, as $\kappa \rightarrow 0_{+},$
\[
\mathbf{u}(\rho_{\kappa}) \rho_{\kappa}^{n} \rightarrow \mathbf{u}(\rho) \mathbf{\overline{p}}^{0} \quad \text{weakly in } L^{\gamma + \vartheta}(\Omega_T),
\] (6.39a)
and
\[
\mathbf{u}(\rho_{\kappa}) \nabla x \cdot u_{\kappa} \rightarrow \mathbf{u}(\rho) \nabla x \cdot u \quad \text{weakly in } L^{2}(\Omega_T).
\] (6.39b)

We can now follow the discussion in Sections 7.10.2–7.10.5 in Novotný & Straškraba24 to deduce that $\mathbf{\overline{p}} = \mathbf{p}(\rho)$. For the benefit of the reader, we briefly outline the argument. First, it follows from (6.30f) and (6.39a) that, for any fixed $\ell \in \mathbb{N},$
\[
\int_{\Omega_T} \left[\mathbf{u}(\rho_{\kappa}) \mathbf{\overline{p}}^{0} - \mathbf{u}(\rho) \mathbf{\overline{p}}^{0}\right] dx dt = \lim_{\kappa \rightarrow 0_{+}} \left[\int_{\Omega_T} \left(\mathbf{u}(\rho_{\kappa}) - \mathbf{u}(\rho_{\kappa}) \rho_{\kappa}^{n} \right) dx dt \right] + \int_{\Omega_T} \left(\mathbf{u}(\rho) - \mathbf{u}(\rho_{\kappa}) \right) \left(\mathbf{\overline{p}}^{0} - \rho^{0}\right) dx dt \geq \limsup_{\kappa \rightarrow 0_{+}} \int_{\Omega_T} \left| \mathbf{u}(\rho_{\kappa}) - \mathbf{u}(\rho) \right|^{n+1} dx dt,
\] (6.40)
where we have noted that the second term on the second line is nonnegative as \(t_r(s) \) is concave and \(s^\gamma \) is convex for \(s \in [0, \infty) \).

We now introduce \(\mathcal{L}_\ell : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, \ell \in \mathbb{N} \), such that
\[
\mathcal{L}_\ell'(s) = t_\ell(s) \quad \text{for all} \quad s \in [0, \infty), \quad \text{so that}
\]
\[
\mathcal{L}_\ell(s) := \begin{cases}
\mathcal{L}(s) := s \log s & \text{for } 0 \leq s \leq \ell, \\
\ell \log \ell + s - \ell & \text{for } \ell \leq s.
\end{cases} \tag{6.41}
\]

Similarly to (5.57) and (6.17), one deduces, via renormalization, from (6.32a) and (5.27a) that, for any fixed \(\ell \in \mathbb{N} \) and for any fixed \(\ell' \in (0, T] \),
\[
\int_0^T \left[\mathcal{L}_\ell(t') - \mathcal{L}_\ell(t) \right] dt = -\int_0^{t'} \int_\Omega \nabla \cdot u \, dx \, dt, \tag{6.42a}
\]
\[
\int_0^T \left[\mathcal{L}_\ell(\rho_n(t)) - \mathcal{L}_\ell(\rho_n) \right] dt = -\int_0^{t'} \int_\Omega \nabla \cdot u_n \, dx \, dt. \tag{6.42b}
\]

Although establishing (6.42b) is straightforward as \(\rho_n \in C_0([0, T]; L^2(\Omega)) \), proving (6.42a) is not, since \(\rho \in C_0([0, T]; L^2(\Omega)) \), and so \(\rho \) may not be in \(L^2(\Omega_T) \) as \(\gamma > \frac{3}{2} \). Nevertheless, (6.42a) can still be established, see Lemma 7.57 in Novotný & Straškraba24. We note that our \(\vartheta(\gamma) \), recall (6.13), differs from the \(\vartheta(\gamma) \) in Novotný & Straškraba24 for \(\gamma \geq 4 \), due to the presence of the extra stress term in the momentum equation for our polymer model. However, as \(\rho \in L^2(\Omega_T) \) for \(\gamma \geq 4 \), Lemma 7.57 in Novotný & Straškraba24 is not required for such \(\gamma \). Subtracting (6.42a) from (6.42b), and passing to the limit \(\kappa \to 0_+ \), one deduces from (6.39b) that, for any fixed \(\ell \in \mathbb{N} \) and for any fixed \(\ell' \in (0, T] \),
\[
\int_0^T \left[\mathcal{L}_\ell(\rho)(t') - \mathcal{L}_\ell(\rho)(t) \right] dt = \int_0^{t'} \int_\Omega \nabla \cdot u \, dx \, dt, \tag{6.43}
\]
where, on noting (6.10a) and the convexity of \(\mathcal{L}_\ell \),
\[
\mathcal{L}_\ell(\rho_n(t')) \to \mathcal{L}_\ell(\rho(t')) \quad \text{weakly in } L^\gamma(\Omega), \quad \text{as } \kappa \to 0_+. \tag{6.44}
\]

It follows from (6.40), (6.38), (6.43), (6.44) and (6.4a) that, for any fixed \(\ell \in \mathbb{N} \),
\[
\limsup_{\kappa \to 0_+} \| t_\ell(\rho) - t_\ell(\rho_\kappa) \|_{L^{\gamma+1}(\Omega_T)}^{\gamma+1} \leq \frac{\mu^*_p}{c_p} \int_{\Omega_T} \nabla \cdot u \, dx \, dt \leq C \| t_\ell(\rho) - \bar{t}(\rho) \|_{L^2(\Omega_T)} \leq C \| t_\ell(\rho) - t_\ell(\rho_\kappa) \|_{L^2(\Omega_T)} \leq C \| t_\ell(\rho) - t_\ell(\rho_\kappa) \|_{L^{\gamma+1}(\Omega_T)},
\]
where \(C \in \mathbb{R}_{>0} \) is independent of \(\ell \) and \(\kappa \). It follows from (6.24), (6.30e) and (6.34) that, for all \(\ell \in \mathbb{N} \), \(\kappa > 0 \) and \(r \in [1, \gamma + \vartheta] \),
\[
\| \rho_\kappa - t_\ell(\rho_\kappa) \|_{L^r(\Omega_T)} + \| \rho - t_\ell(\rho) \|_{L^r(\Omega_T)} + \| \rho - \bar{t}(\rho) \|_{L^r(\Omega_T)} \leq C \ell^{1 - \frac{\gamma + \vartheta}{4r}}, \tag{6.46}
\]
where $C \in \mathbb{R}_{>0}$ is independent of ℓ and κ. It follows from (6.45), (6.46) and (3.1) that
\[
\lim_{\ell \to \infty} \lim_{\kappa \to 0_+} \|t_{\ell}(\rho) - t_{\ell}(\rho_\kappa)\|_{L^{\gamma+1}(\Omega_T)} = 0. \tag{6.47}
\]
It follows from (6.46), (6.47), (3.1) and (6.30f), on extracting a further subsequence (not indicated), that, as $\kappa \to 0_+$,
\[
\rho_\kappa \to \rho \quad \text{strongly in } L^s(\Omega_T), \quad \text{for any } s \in [1, \gamma + \vartheta(\gamma)), \tag{6.48a}
\]
\[
\rho_\gamma^\kappa \to \rho_\gamma \quad \text{weakly in } L^{\gamma+\vartheta}(\Omega_T), \quad \text{that is, } \rho_\vartheta = \rho_\gamma. \tag{6.48b}
\]
Finally, we have the analogue of Theorem 5.1.

Theorem 6.1. The triple $(\rho, u, \hat{\psi})$, defined as in Lemmas 6.1 and 6.2, is a global weak solution to problem (P), in the sense that (6.32a,c) hold and, letting $r = \max\{4, \frac{6}{2\gamma-3}\}$,
\[
\int_0^T \left\langle \frac{\partial (\rho u)}{\partial t}, w \right\rangle_{W^{1,r}_\gamma(\Omega)} \, dt + \int_0^T \int_{\Omega} \left[S(u) - \rho_\g u \otimes u - c_\rho \rho^\gamma I \right] : \nabla x w \, dx \, dt
\]
\[
= \int_0^T \int_{\Omega} \left[\rho f \cdot \nabla x w - \left(\tau_1(M \hat{\psi}) - \frac{3}{2} \rho^2 I \right) : \nabla x w \right] \, dx \, dt
\]
\[
\forall \omega \in L^{2+\vartheta}(0, T; W^{1,r}_0(\Omega)), \tag{6.49}
\]
with $(\rho u)(\cdot, 0) = (\rho_0 u_0)(\cdot)$, $\vartheta(\gamma)$ defined as in (6.13). In addition, the weak solution $(\rho, u, \hat{\psi})$ satisfies (6.33).

Proof. The results (6.32a,c) and (6.33) have already been established in Lemma 6.5. Equation (6.49) was established in Lemma 6.5 with ρ^γ replaced by ρ_ϑ, see (6.32b). The desired result (6.49) then follows from (6.32b) and (6.48b).

References

