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Summary. This paper introduces a new method for estimating variance matrices.

Starting from the orthogonal decomposition of the sample variance matrix, we exploit the

fact that orthogonal matrices are never ill-conditioned and therefore focus on improving the

estimation of the eigenvalues. We estimate the eigenvectors from just a fraction of the data,

then use them to transform the data into approximately orthogonal series that deliver a

well-conditioned estimator (by construction), even when there are fewer observations than

dimensions. We also show that our estimator has lower error norms than the traditional

one. Our estimator is design-free: we make no assumptions on the distribution of the

random sample or on any parametric structure the variance matrix may have. Simulations

confirm our theoretical results and they also show that our simple estimator does very well

in comparison with other existing methods.

Keywords : Variance matrices, ill-conditioning, mean squared error, mean absolute de-

viations, resampling, U -statistics.
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1 Introduction

Apart from calculating the mean, estimating the variance of a random vector is the most

basic problem in statistics. It has numerous applications in sciences, social sciences, and

humanities. Examples go from financial time series, where variance matrices are used as a

measure of risk, to molecular biology, where they are used for gene classification purposes.

Yet the estimation of variance matrices is a statistically challenging problem, since the num-

ber of parameters grows as a quadratic function of the number of variables. To make things

harder, conventional methods deliver nearly-singular (ill-conditioned) estimators when the

dimension k of the matrix is large relative to the sample size n. As a result, estimators

are very imprecise and operations such as matrix inversions amplify the estimation error

further.

One strand of the literature has tackled this problem by trying to come up with methods

that are able to achieve a dimensionality reduction by exploiting sparsity, imposing zero

restrictions on some elements of the variance matrix. Wu and Pourahmadi (2003) and Bickel

and Levina (2008a) propose banding methods to find consistent estimators of variance

matrices and their inverse. Other authors resort to thresholding (Bickel and Levina, 2008b,

El Karoui, 2008 and Fan, Liao, and Mincheva, 2013) or penalized likelihood methods (see,

e.g., Fan and Peng, 2004 for the underlying general theory) to estimate sparse large variance

matrices. Notable examples of papers using the latter method are Huang, Pourahmadi, and

Liu (2006), Rothman, Bickel, Levina, and Zhu (2008), Rothman, Levina, and Zhu (2009).

Recently, Lam and Fan (2009) proposed a unified theory of estimation, introducing the

concept of sparsistency, which means that (asymptotically) the zero elements in the matrix

are estimated as zero almost surely.

An alternative approach followed by the literature is to achieve dimensionality reduction

using factor models. The idea is to replace the k individual series with a small number of

unobservable factors such that they are able to capture most of the variation contained in

the original data. Interesting examples are given by Fan, Fan, and Lv (2008), Wang, Li,

Zou, and Yao (2009) and Lam and Yao (2012). Fan, Liao, and Mincheva (2011) combine a

factor structure with sparsity of the variance matrix.

A third route is given by shrinkage, which entails substituting the original ill-conditioned
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estimator with a convex combination including it and a target matrix. The original idea is

due to Stein (1956), where it was applied to the estimation of the mean vector. Applications

to variance matrix estimation include Jorion (1986), Muirhead (1987) and Ledoit and Wolf

(2003, 2004a,b, 2012). Intuitively, the role of the shrinkage parameter is to balance the

estimation error coming from the ill-conditioned variance matrix and the specification error

associated with the target matrix. Ledoit and Wolf (2003) propose an optimal estimation

procedure for the shrinkage parameter, where the chosen metric is the Frobenius norm

between the variance and the shrinkage matrix. An alternative approach whereby off-

diagonal elements are downweighted towards zero is given in McMurry and Politis (2010)

and Politis (2011) in the context of time series. See also an approach to shrinkage via

condition-number regularization in Won, Lim, Kim, and Rajaratnam (2013).

In this paper, we introduce a new method to estimate nonsingular variance matrices.

We propose a different approach for tackling this problem. Starting from the orthogonal

decompositions of symmetric matrices, we exploit the fact that orthogonal matrices are

never ill-conditioned (they have the perfect condition number of 1), thus identifying the

source of the problem as the eigenvalues. Our task is then to come up with an improved

estimator of the eigenvalues. We achieve this by estimating the eigenvectors from just a

fraction of the data (a subsample), then using them to transform the data into approxi-

mately orthogonal series that we use to estimate a well-conditioned matrix of eigenvalues.

Effectively, this simple idea reduces the multivariate problem to k univariate ones that are

easy to solve. Moreover, we improve precision further by repeating our procedure over dif-

ferent subsamples, and we show that averaging the resulting estimators leads to a superior

performance.

Even though we only use the simple traditional formula for the sample variance matrix

in both steps of our basic orthogonalization-estimation procedure, the result is a well-

conditioned and precise estimator. Because of the orthogonalization of the data, the re-

sulting estimate is positive definite with probability one, even when the dimension of the

matrix is larger than the sample size: k > n. Our estimator outperforms the traditional

one, not only by achieving a substantial improvement in the condition number, but also

by large improvements in error norms that measure its deviation from the true variance

matrix. We also show that our simple estimator does very well in comparison to other
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existing methods.

Our method has a number of other attractive features. First, it is design-free, in the

sense that no assumptions are made on the densities of the random sample or on any under-

lying parametric model for the structure of the variance matrix. Second, it always delivers

nonsingular well-conditioned estimators, hence remaining precise when further operations

(such as inversions) are required. Such operations are trivially easy to implement in our

setup, since matrix functions are efficiently written in terms of eigenvalues and eigenvectors;

e.g., see Abadir and Magnus (2005, Ch. 9).

This paper is organized as follows. Section 2 introduces the proposed estimator in

its simplest baseline then general versions, and establishes its main properties. Section 3

studies in a Monte-Carlo experiment the finite-sample properties of our estimator and how

it compares with other methods. It also provides further guidance on its use in practice.

Section 4 concludes. The derivations are collected in the Appendix.

2 The new estimator

This section contains two parts. First, we briefly present the setup and the intuition for why

the new estimator will perform well. Second, we investigate the properties for the simplest

baseline formulation of our estimator, and afterwards we tackle the full version of it as

an extension for which the properties are then easily obtained. We describe the optimal

choice of two subsampling parameters (one for each step of the baseline orthogonalization-

estimation procedure), first in the case of fixed k, then when k expands as n increases.

2.1 The setup and the main idea behind the orthogonalization-

estimation procedure

Let Σ := var(x) be a finite k × k positive definite variance matrix of x. Suppose we have

an i.i.d. sample {xi}ni=1, arranged into the n × k matrix X := (x1, . . . ,xn)′ on which we

base the usual estimator (ill-conditioned when k is large relative to n)

Σ̂ ≡ v̂ar(x) :=
1

n
X ′MnX,

4



where Mn := In − 1
n
ını
′
n is the de-meaning matrix of dimension n and ın is a n× 1 vector

of ones. The assumption of an i.i.d. setup is not as restrictive as it may seem: the data can

be filtered by an appropriate model (rather than just de-meaning by Mn) and the method

applied to the residuals; for example, fitting a VAR model (if adequate) to a vector of time

series and applying the method to the residuals. We will stick to the simplest setup, so as

to clarify the workings of our method.

We can decompose this symmetric matrix as

Σ̂ = P̂ Λ̂P̂ ′, (1)

where P̂ is orthogonal and has typical column p̂i (i = 1, . . . , k), Λ̂ being the diagonal

matrix of eigenvalues of Σ̂. The condition number of any matrix is the ratio of the largest

to smallest singular values of this matrix, a ratio of 1 being the lowest (best numerical)

condition. By orthogonality, all the eigenvalues of P̂ lie on the unit circle and this matrix is

always well-conditioned for any n and k. This leaves Λ̂ as the source of the ill-conditioning

of the estimate Σ̂. We will therefore consider an improved estimator of Λ: a simple

estimator of P will be used to transform the data to achieve approximate orthogonality of

the transformed data (in variance terms), hence yielding a better-conditioned estimator of

the variance matrix.

We can rewrite the decomposition (1) as

Λ̂ = P̂ ′Σ̂P̂ = diag(v̂ar(p̂′1x), . . . , v̂ar(p̂′kx)) (2)

the last equality following since Λ̂ is diagonal by definition. Now suppose that, instead

of basing P̂ on the whole sample, we base it on only m observations (say the first m

ones, since the i.i.d. setup means that there is no gain from doing otherwise), use it to

approximately orthogonalize the rest of the n −m observations (as p̂′ix did in (2) for all

the observations) which are then used to reestimate Λ. Taking m→∞ and n−m→∞ as

n → ∞, standard statistical analysis implies that the resulting estimators are consistent.

Notice that the choice of basing the second step on the remaining n−m observations comes

from two considerations. First, it is inefficient to discard observations in an i.i.d. setup,

so we should not have fewer than these n −m observations. Second, we should not reuse

some of the first m observations because they worsen the estimate of Λ: this will be seen
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in Proposition 2 (for the condition number) and implied by the estimators’ expansions

in Propositions 3–4 (for the error norms). As a result, m becomes the only remaining

subsampling parameter in question. Propositions 3–4 will show that the precision of the

new estimator is optimized by expressing m as a function of n asymptotically. Proposition

5 then extend these results to the case when k varies as n increases, and only then do we

consider the alternative definition of consistency as convergence in mean square. These

propositions are followed by a concluding discussion of how to calculate the optimal m by

resampling in any finite sample, not just asymptotically.

Intuitively, by orthogonalizing the data, our estimator reduces the multivariate problem

of ill-conditioning and imprecision to a univariate one for each of the diagonal elements of

(2), for which there is a simple positive definite solution even by traditional methods of

estimation. The result is a well-conditioned estimator of Σ, even when k ≥ n and the

traditional Σ̂ is not positive definite. We will prove this in the next subsection.

Another advantage of our procedure is that we can estimate the matrix itself as well

as any function thereof in one go from the eigenvalue decomposition. The other methods

seen in the introduction focus on the variance matrix, and if a function is needed (such

as the inverse), one has to make further multivariate calculations to obtain it. This can

be imprecise if the dimension is large. In addition to the advantages seen so far, we will

show that also the precision of our estimator is an advantage, even though we only use the

simple traditional sample variance estimator in both steps of our procedure.

2.2 Properties of the baseline estimator and its general version

To summarize the procedure in equations, we start by writing

X ′ = (x1, . . . ,xn) =: (X ′1,X
′
2) , (3)

where X1 and X2 are m × k and (n−m) × k, respectively. Calculating v̂ar(x) based on

the first m observations yields

Σ̂1 :=
1

m
X ′1MmX1 = P̂1Λ̂1P̂

′
1, (4)
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whence the desired first-step estimator P̂1. Then, estimate Λ from the remaining observa-

tions by

Λ̃ := dg
(

v̂ar(P̂ ′1x)
)
≡ dg

(
P̂ ′1Σ̂2P̂1

)
=

1

n−m
dg
(
P̂ ′1X

′
2Mn−mX2P̂1

)
(5)

to replace Λ̂ of (1) and obtain the new estimator

Σ̃ := P̂ Λ̃P̂ ′ = P̂ dg
(
P̂ ′1Σ̂2P̂1

)
P̂ ′. (6)

Note that we use the simple traditional estimator of variance matrices v̂ar(·) in each of the

two steps of our procedure. When we wish to stress the dependence of Σ̃ on the choice

of m, we will write Σ̃m instead of Σ̃. There are three remarks to make here. First, we

choose to de-mean X2 by its own mean (rather than the whole sample’s mean) mainly

for robustness considerations in practice, in case the i.i.d. assumption is violated, e.g., due

to a break in the level of the series. Second, by standard statistical analysis, efficiency

considerations imply that we should use dg(v̂ar(P̂ ′1x)) rather than v̂ar(P̂ ′1x) in the second

step given by (5)–(6), since by doing so we impose the correct restriction that estimators

of Λ should be diagonal, restricting off-diagonal elements to be zero. Third, the estimator

Σ̃ is almost surely nonsingular, like the true Σ, as we now show.

Proposition 1 For any k,m, n and positive definite Σ, the estimators Λ̃ and Σ̃ are pos-

itive definite with probability 1.

We now turn to the issue of the choice of the last n−m observations, rather than reusing

some of the first m observations in addition to the last n−m in (5). The following relies on

asymptotic results, rather than the exact finite-sample arguments based on i.i.d. sampling

that we have used so far.

Proposition 2 Define yi := xi − x, where x := 1
n

∑n
i=1 xi, and consider the estimator

Λ̃j :=
1

n− j
dg

(
P̂ ′1

n∑
i=j+1

yiy
′
iP̂1

)

for j = 0, 1, . . . ,m. It is assumed that the fourth-order moment of x exists and that Σ is

positive definite. As n −m → ∞ and m → ∞, the condition number within the class of

estimators Λ̃j is minimized with probability 1 by choosing j/m→ 1.
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The estimator Λ̃j differs slightly from the one used in (5) for j = m, because of the

de-meaning by the whole sample’s mean x in the proposition, as opposed to X ′2Mn−mX2

of (5) de-meaning the last n −m observations by their own sample mean. The difference

tends to zero with probability 1 as n − m → ∞ and does not affect the leading term of

the expansions required in this proposition. Also, the assumption of the existence of the

fourth-order moments for x is sufficient for the application of the limit theorem that we

used to prove the proposition (Anderson, 1963, for the case of x normal and its extension

in Davis, 1977), but we conjecture that it is not a necessary condition.

Note the conditions n − m → ∞ and m → ∞, needed for the consistency of the

estimator in the sense of its stochastic convergence to the true value. We now turn to the

question of inquiring how large m should be, relative to n. As in the previous proposition,

the approach will be asymptotic. We start by assuming that k is fixed, but we relax this

condition by the end of this section. However, we will need to assume the existence of

fourth-order moments for x when we consider l2-norm precision criteria for the estimation

of Σ.

Define the following criteria that are inversely related to the precision of the new esti-

mator Σ̃:

Rl(Σ̃) := E(|| vec(Σ̃ −Σ)||ll), l = 1, 2, (7)

and

Rl,S(Σ̃) := E(|| vech(Σ̃ −Σ)||ll), l = 1, 2, (8)

where the l-th norm is ||a||l := (
∑j

i=1 |ai|l)1/l for any j-dimensional vector a. In the case

of k = 1, these criteria reduce to the familiar mean absolute deviation (MAD) and mean

squared error (MSE) for l = 1 and l = 2, respectively. The half-vec operator, vech, selects

only the distinct elements of a general symmetric matrix.

There is asymptotically no difference in considering the usual or the S version for each

l. However, we advocate the use of the relevant criterion in finite samples, depending on

the application for which the estimator Σ̃ is to be used; e.g., if we require the same weight

to be given to each distinct element in the estimators of Σ then the S version is the one to

use. At the end of this section, we will discuss the choice of m in finite samples, in which

case the criterion’s selection makes a difference.
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Proposition 3 As n−m→∞ and m→∞, the precision criteria in (7)–(8) are optimized

asymptotically for Σ̃ by taking m/
√
n→∞ and m/n→ 0, if the positive definite Σ is not

a scalar matrix.

The case of a scalar matrix Σ = σ2Ik is essentially the case of the estimation of one

scalar σ2 that is the same for every variate; which is rare and even more restrictive than

assuming that the variates are uncorrelated (diagonal Σ). In (21) in the proof, the sums

included in the Op(m
−1) terms are empty sums when Σ = σ2Ik = λIk, so the optimal

choice of m is to take n − m as large as possible to minimize the leading term. This

result is obtained more easily and more generally for finite samples as follows. We have

Q(σ2Ik)Q
′ = σ2Ik for any orthogonal Q. In other words, Σ = σ2Ik implies that the

precision of its estimation is invariant to P and the optimal choice of m is as small as

possible (m = 2) to increase the precision of the eigenvalues estimated in the second step.

This also shows that the exclusion only applies to scalar matrices but not to the diagonal

Σ = σ2D, since Q(σ2D)Q′ 6= σ2D in general. Special treatment of the scalar-matrix

case is not an artefact of our approach: it leads to a singularity in the distribution theory

(empty sums arise) and is common to the literature on the asymptotics of sample variance

matrices cited after Proposition 2.

Up to now, we constructed our simple estimator Σ̃ by basing P̂1 on the first m ob-

servations and using it to approximately orthogonalize the remaining n−m observations.

This is, of course, only one out of q :=
(
n
m

)
possibilities of choosing the m observations

to calculate P̂1, all of them being equivalent due to the i.i.d. assumption. Averaging our

estimates of Λ̃ over these different possibilities implies that we can write the leading term

of (21) as a U -statistic (that is centred around zero by the independence of the subsam-

ples generating Z2 and Q̂1,ii in (21)) and reduce its magnitude as we will now show. The

sampling intuition behind this additional step is that averaging will reduce the variability

that comes with the choice of any one specific combination of m observations.

To define our general estimator, let X ′s := (X ′1,s,X
′
2,s), where X ′1,s :=

(
xs1,1, . . . ,x

s
1,m

)
is obtained by randomly sampling without replacement m columns from the original X ′,

and X ′2,s :=
(
xs2,1, . . . ,x

s
2,n−m

)
is filled up with the remaining n−m columns from X ′ that

9



were not selected for X ′1,s. Let Σ̃m,s denote our estimator calculated from Xs, and let

Σ̃m,S :=
1

S

S∑
s=1

Σ̃m,s (9)

denote the average over S different resamples. Computational burden makes the choice S =

q prohibitive for large n, but we will see in the next section that a relatively small number

of samples S suffices to reap most of the benefits of averaging. Except for Proposition 3,

the properties derived earlier for our simpler estimator apply also to our general estimator

(9). As for the choice of m, we get the following result to complement Proposition 3.

Proposition 4 As n−m→∞ and m→∞, the precision criteria in (7)–(8) are optimized

asymptotically for the general estimator Σ̃m,q by taking m/n → γ with γ ∈ (0, 1), if the

positive definite Σ is not a scalar matrix.

The leading term of Λ̃ − Λ is now Op(n
−1/2) independently of m, which we will show

numerically in the next section to give a very stable performance of our general estimator

as we vary m/n within a wide range of asymptotic proportionality factors γ. Furthermore,

the leading terms are now smaller than in the case of our baseline estimator Σ̃, as we will

now show. Let Σ have r distinct eigenvalues, λ1 > λ2 > . . . > λr > 0 with multiplicities

k1, k2, . . . , kr. When we use Σ̃ and do not average, applying Q̂1,ii = Qii + Op(m
−1/2) to

the asymptotic expansion (21) in the Appendix gives

Λ̃i − λiIki = Op

(
1√

n−m

)
+Op

(
1√

(n−m)m

)
+Op

(
1

m

)
, (i = 1, . . . , r).

By choosing m/n→ 0 with m/
√
n→∞ as in Proposition 3, this becomes

Λ̃i − λiIki = Op

(
1√
n

)
+Op

(
1√
nm

)
+Op

(
1

m

)
= Op

(
1√
n

)
+Op

(
1

m

)
.

The resulting sum of two orders is the same as the one obtained in the proof of Proposition

4, but the Op(m
−1) term is bigger in the baseline case because the optimal m is such that

m/n→ 0 in Proposition 3 while m/n→ γ ∈ (0, 1) in Proposition 4.

Why is there an increase in the precision of the averaging estimator Σ̃m,q compared to

the traditional estimator Σ̂? Without repeating the algebra of the proof of Proposition 3

where we got

Λ̃i−λiIki
a
= (n−m)−1/2 dg(Q̂′1,iiP

′
iZ2PiQ̂1,ii)+m−1

∑
j 6=i

λj dg(R̂′1,jiR̂1,ji)−m−1λi dg(Ŵ1,ii),
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we can write the expansion for the traditional estimator as

Λ̂i − λiIki
a
= n−1/2Q̂′iiP

′
iZPiQ̂ii + n−1

∑
j 6=i

λjR̂
′
jiR̂ji − n−1λiŴii, (10)

where Z is normal, like Z2 was for Σ̃ and Σ̃m,q, but is now pertaining to the full sample

rather than the second subsample only. No resampling-and-averaging will reduce the lead-

ing term in (10), because Q̂ii and Z are (cor)related in general, unlike in the case of our

procedure’s Q̂1,ii and Z2 being from the two independent subsamples.1 Furthermore, this

correlation means that the leading term of Λ̂ − Λ is not centred around zero when n is

finite, unlike in the case of our estimators. This also confirms, from the different angle of

error norms, what Proposition 2 implied earlier that we should not reuse data from step 1

in step 2 of our estimators.

Now consider the case where k expands as n increases, and note the following about the

setup. First, clearly k is a natural number, which is not dense in R+ where λ takes values.

As a result, when k increases with n, there is no reason to assume that some distinct λ’s

would have to converge to a common real number. Therefore, in the proposition below,

when some of the λ’s are distinct, they will remain so as k increases. Second, we tackle the

three questions of the definition of consistency, maximum speed at which k can grow, and

optimal choice of m when k expands.

We start by addressing the question of how quickly k can be allowed to grow as n

increases, a case where one could use a sieve version of our estimator subject to a restriction

on the speed of growth of k. For example, the mean vector can be estimated by a sieve as in

Antoniadis (1988, Theorem 3.1) and Ackerberg, Chen, and Hahn (2012), then the variance

matrix obtained consistently as in Lemma 2 of the latter reference. Using the element-wise

definition of convergence employed so far, consistency requires k = o(n) for both estimators

Σ̃ and Σ̃m,q. But the more commonly-used convergence mode in the literature on large

variance matrices is convergence in mean square (l = 2 in our notation), in which case

the order under our norms in (7)–(8) would be k = o(min{
√
m,
√
n−m}) (equivalently,

k = o(
√
m) and k = o(

√
n−m)) since we are using the traditional sample variance in both

1Designing an alternative to Σ̃m,q that allows sampling with replacement would have led to an estimator

inferior to Σ̃m,q (which samples without replacement) for the same reason of overlap in Z· and Q̂·ii, and

also because of the increase in condition numbers that arises from reusing observations (see Proposition 2).
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steps of our procedure. To determine the optimal m, we now need the following proposition

to complement the previous two.

Proposition 5 Assume that the positive definite Σ is not a scalar matrix. As n−m→∞

and m→∞, the precision criteria in (7)–(8), with l = 2, are optimized asymptotically:

1. for Σ̃ by taking m growing as fast as possible subject to m/n→ 0;

2. for Σ̃m,q by taking m/n→ γ with γ ∈ (0, 1);

when k is allowed to grow at any rate subsumed by k = o(
√
n).

The result for our simple Σ̃ has changed compared to Proposition 3: we now require

m to grow as fast as possible (not just that m grows faster than
√
n) subject to it growing

slower than n. On the other hand, the result for our general Σ̃m,q is unchanged compared

to Proposition 4: as the proof shows, we could have allowed m/n → 1 with n −m → ∞,

such as m = n− log n, but this would be a case where

k = o(min{
√
m,
√
n−m}) = o(

√
n−m) = o(

√
log n)

and hence the rate at which k is allowed to grow is substantially diminished without any

efficiency gain in return. (Remember that m is a subsampling parameter that the user

chooses, and this selection should not be detrimental to other performances.) This is why

we restrict γ ∈ (0, 1) and exclude the case γ = 1, hence allowing k to grow at any rate

subsumed by k = o(
√
n).

Because of the i.i.d. setup, we can use resampling methods as a means of automation

of the choice of m for any sample size. Standard proofs of the validity of such procedures

apply here too. We shall illustrate with the bootstrap in the next section.

3 Simulations

In this section, we run a Monte Carlo experiment to study the finite-sample properties of our

estimator, to compare its performance with its most popular competitors, and to automate

the choice of m by resampling. In Subsection 3.1, we investigate how large m should be

relative to n in order to balance the estimation of P (need large m) and the estimation

of Λ (need small m). In Subsection 3.2, we investigate the reduction in the condition
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number of our estimator relative to the sample variance matrix benchmark. Subsection 3.3

compares the performance of our estimator to its leading competitors. Finally, Subsection

3.4 investigates the automation of the choice of m by using the bootstrap.

Our simulation design is as follows. The random vector x is drawn either from the

normal distribution or from the multivariate Student t distribution with five degrees of

freedom, denoted by t(5), such that the first four moments exist. The population mean

is taken to be zero, without loss of generality because of the location invariance of our

estimators. We take k ∈ {30, 100, 250} as the dimension of the random vector x, and

report three values of n accordingly. All simulations are based on 1,000 Monte Carlo

replications, to save computational time. For example, we repeated the calculations for

k = 30 with 10,000 replications and essentially identical results were obtained.

We consider three alternative designs for the true variance matrix Σ. First, we let it

have a Toeplitz structure with typical element given by σij = ρ|i−j| for i, j = 1, . . . , k, with

ρ ∈ {0.0, 0.5, 0.75, 0.95}. Note that our estimation method is invariant to rotations and

reflections (orthogonal transformations of x), hence not affected by changing the implicit

ordering that follows from the Toeplitz structure. Second, we take an equicorrelation

matrix σii = 1 and σij = ρ for i 6= j, with ρ ∈ {0.0, 0.5, 0.75, 0.95} again. Third, we take

a perturbation of the equicorrelation matrix, which we call a “uniform” design: σii = 1

and σij = αU(0,1) for i 6= j, where U(0,1) is a standard uniform variate. We take α ∈

{0.0, 0.05, 0.1}, as higher values of α lead to violations of positive definiteness in our setup.

Recalling the definition of our general estimator (9), we illustrate the choice of S with

a preliminary simulation. In Figure 1, we vary S on the horizontal axis (with the simple

no-averaging baseline case of our estimator at the origin of the axis) and report the cor-

responding changes in our estimator’s condition number c̃n−m relative to the traditional

estimator’s ĉn, as well as changes to the precision R2,S of Σ̃m,S. Each curve represents a

different value of m. We can see that, whatever the choice of m which we will analyze

later, the benefits to be achieved occur very quickly for small S and there is not much to

be gained from taking a large S, so we use S = 20 henceforth. This is true for various

values of ρ, and we simulated S = 10, 20, . . . ., 100 but only plotted up to 50. The same

pattern of results also repeats for different n, k, and distributions. This choice of S was

for convenience in our simulations. In practice, S could be chosen alternatively such that
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increasing it does not affect the numerical value of Σ̃m,S to some required digits.

3.1 Estimator’s Precision

The results are summarized in Tables 1–3, where the line labelled “av” will be introduced

and analyzed in the next paragraph. For now, we focus on the lines for the traditional

estimator Σ̂ and our Σ̃m,S (the rest of the table). The shaded boxes highlight the best-

performing case. We see that our estimator dominates, except in the case when ρ equals

the extreme 0.95 and the data are Gaussian. But even in this case, ours dominates as

k increases relative to n. In all other cases, the achieved reduction in the mean squared

error is very large and is more pronounced for data generated from the fat-tailed Student

t distribution and/or smaller ρ. The gains are truly massive in the cases of Toeplitz and

uniform designs, e.g., R2,S is better for our estimator by a factor of eleven in the case of

t(5), n = 100, k = 250, ρ = 0.5 in Table 1 and, for the same t(5), n, k, by a factor of 32

when α = 0.05 in Table 3 (the factor even reaching 36 when n = 50 and k = 100). In

the case of a scalar matrix (the same Σ for the three tables) and k = 250, the result is

an improvement factor that ranges between 1361–3155 (increasing with n) in the Gaussian

case, and around 180 in the case of t(5).

Throughout the tables, we see a robust performance as m varies around its optimal

value, more specifically around approximately m ∈ [0.2n, 0.8n]; recall the asymptotic pro-

portionality of m to n, which was obtained in Proposition 4 and was discussed immedi-

ately afterwards. This suggests to construct an estimator based on averaging Σ̃m,S over

m ∈ [0.2n, 0.8n]. This “grand average” estimator is defined as

Σ̃M,S :=
1

M

∑
m∈M

Σ̃m,S, (11)

where M is the number of elements in the grid M := {m1,m2, . . . ,mM}, where 1 < m1 <

· · · < mM < n − 1. Results are reported in the line labelled “av”. The performance of

Σ̃M,S is very good in terms of precision. In most cases, Σ̃M,S is the most precise estimator

or close to being so, hence providing an estimator with good overall risk.

For the alternative precision measures, R2, R1, and R1,S, the results are qualitatively

similar and are omitted to save space. The main difference is that the optimal m for the
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MAD criteria are determined largely by n, and are robust to the dimensions k, to the

distribution (Gaussian or t(5)), and to ρ as long as it was not the extreme ρ = 0.95.

3.2 Reduction in ill-conditioning

Moving to analyze the reduction in ill-conditioning, Tables 4–6 report the average ratio of

condition numbers c̃n−m/ĉn for k, n and m. Note that for n ≤ k, the sample variance matrix

is singular and hence its condition number is not defined. We find that choosing small m

delivers the largest improvements in the conditioning of the estimated variance matrix, but

the gains remain even if m increases. These are massive: our estimator achieves up to 100

times smaller condition number than the sample variance matrix. The improvements are

uniform over the different values of ρ and α.

We found in the previous subsection that the efficiency of the grand-averaging estimator

Σ̃M,S of (11) was often the best, compared to the baseline estimator where m is to be chosen

optimally. We now see that the price to pay for this increase in precision is an occasional

slight increase in the condition number (because it rises with m).

An attractive feature of our estimator is that the reduction in ill-conditioning is pre-

served even in situations where k ≥ n and the conventional estimator Σ̂ is not positive

definite. Unreported simulations for the Toeplitz case show that, for example, when n = 20,

k = 30, m = 5, condition numbers for Σ̃ are on average 40% higher than the corresponding

ones obtained when n = 50, k = 30, m = 5, but still much lower than those of the sample

variance matrix Σ̂ with n = 50.

3.3 Comparison with leading existing estimators

We also compare the performance of our estimator with its most popular competitors, in

Tables 7–9 for the MSE-type R2,S and Tables 10–12 for condition numbers. We consider

the shrinkage towards identity or equicorrelation estimators proposed by Ledoit and Wolf

(2004a,b), setting the shrinkage parameters to their respective optimal values derived in the

aforementioned papers. We also consider the hard and soft thresholding estimators due to

Bickel and Levina (2008b) and Rothman, Levina, and Zhu (2009). The various fine-tuning

parameters required to calculate these estimators are set in accordance with the default
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values of the R code kindly shared with us by Adam J. Rothman.

When Σ is a Toeplitz matrix, Table 7 indicates that our estimator is usually the best

in the case of fat-tailed data. In the case of Gaussian data, it is dominated sometimes

by thresholding and sometimes by shrinkage, but is never far from the best-performing

method. Compare this to the R2,S loss of our best-performing competitor in this table,

soft thresholding, when k = 250 and ρ = 0.95: we dominate by a factor of two. In

unreported simulations, we experimented with a few skewed distributions and the result

was the dominance of our estimator again, suggesting that the thickness of either tail is

what may be driving the fat-tailed rankings, regardless of whether it is one or both tails

that are thick. When large, a Toeplitz matrix is sparse by construction, which gives the

best shot to thresholding method. We now turn to the remaining two designs of Σ that

give shrinking the best shot.

When Σ is an equicorrelation matrix, it is natural to expect the method that shrinks

towards the true Σ to perform better in Table 8. It turns out that this is true when

the data are Gaussian, but that shrinking towards an identity matrix is even better as ρ

increases towards the singularity region and MSE increases, especially under fat tails. In

fact, when ρ is high or when the tails are fat, our estimator often beats shrinking towards

an equicorrelation matrix.

When Σ is a random perturbation of an equicorrelation matrix, Table 9 reveals that

shrinkage towards an equicorrelation is best when the dimensions are large, followed by our

method, then shrinking towards an identity matrix. The ranking of those three methods is

reversed when the dimensions are smaller. This stable overall performance of our estimator

seen in Tables 7–9 confirms the comment about the low overall risk of our estimator at the

end of Subsection 3.1.

We now turn to comparing the condition numbers of estimators of Σ in Tables 10–12.

So far, the analysis of improvements in the condition numbers has been within the class

of estimators that are based on the sample variance matrix. Now that we are comparing

across different types of estimators, we should keep in mind that the numerical criterion of

condition numbers should be read in conjunction with the improvements in precision seen

earlier. For an explicit way of combining these two measures, see for example DeMiguel,

Martin-Utrera, and Nogales (2013). The user may wish to apply their method by combining
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our Tables 7–9 and Tables 10–12 with any chosen combination parameter. Tables 10–12

show that our estimator does best overall, except when ρ or α lead to a nearly singular

matrix. We do not report our simulations for thresholding because it does not guarantee the

positive definiteness of the estimated matrix (unlike our Proposition 1) and, with nonzero

probability in finite samples, it generates negative estimates of the smallest eigenvalues.

In our calculations, we have not used the estimator with optimal m, but rather the

grand-averaging estimator Σ̃M,S of (11). The next subsection will show how to get closer

to the optimal m for our estimator. In terms of computation times, the eigenvalue problem

is not an onerous one; rather, it is the resampling and averaging that is time consuming.

Even so, our numerical procedure is much faster than thresholding. For example, when

Σ is a Toeplitz matrix with ρ = 0.75, n = 100, k = 100, and Gaussian distribution, the

following run times (in seconds) were obtained:

• Sample variance: 0.0028s

• Shrinkage to identity: 0.0029s

• Shrinkage to equicorrelation: 0.0053s

• Our estimator: 0.8247s

• Hard thresholding: 4.0232s

• Soft thresholding: 8.5715s.

Our method and thresholding can be made more or less computationally heavy, depending

on the various parameters; e.g., in our case by varying the coarseness of the grid or the

number of subsamples over which we average.

3.4 Data-dependent procedure to choose m

We next turn to the optimal choice of m in practical applications. One possibility is

to use the grand-averaging estimator Σ̃M,S of (11). Another one is to use resampling

techniques to make an explicit choice about one value for m, which is what we consider

in this subsection. The i.i.d. setup of the previous section (and the moment existence
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condition) implies that standard bootstrap applies directly to our estimator (see Davison

and Hinkley, 2009). We denote by Xb :=
(
xb1, . . . ,x

b
n

)′
a bootstrap sample obtained by

drawing independently n observations with replacement from the original sample X =

(x1, . . . ,xn)′. The corresponding bootstrap versions of Σ̂ and Σ̃m are denoted by Σ̂b and

Σ̃m,b, respectively. Given B independent replications of Σ̂b and Σ̃m,b, we define

Σ̂B :=
n

(n− 1)B

B∑
b=1

Σ̂b, and Σ̃m,B :=
1

B

B∑
b=1

Σ̃m,b,

where Σ̂B is the average bootstrapped sample variance matrix rescaled in order to remove

the bias (which is O(1/n)), and Σ̃m,B is the average bootstrapped Σ̃m. To balance the

trade-off between variance and bias, we find the m that minimizes

1

B

B∑
b=1

(vech(Σ̃m,b − Σ̃m,B))′(vech(Σ̃m,b − Σ̃m,B)) (12)

+

(
1

B

B∑
b=1

vech(Σ̃m,b − Σ̂B)

)′(
1

B

B∑
b=1

vech(Σ̃m,b − Σ̂B)

)
,

where the first term estimates the “variance” associated with the distinct elements of

Σ̃m, while the second term approximates the squared “bias”. Simple algebra shows that

minimizing this objective function with respect to m is equivalent to minimizing

1

B

B∑
b=1

||vech(Σ̃m,b − Σ̂B)||22, (13)

which is computationally more convenient (it is also possible to use the l1 norm instead of

l2 norm). In practice, we set up a grid M := {m1,m2, . . . ,mM} like before, and calculate

the objective function for each m ∈M. The grid may be coarser or finer depending on the

available computational resources. The bootstrap-based optimal m is then given by

mB := argmin
m∈M

1

B

B∑
b=1

||vech(Σ̃m,b − Σ̂B)||22, (14)

whose performance will now be illustrated. Before we do so, recall that the derivations of

the previous section excluded the case of a scalar matrix which leads to a singularity in the

distributional results. If we were to allow scalar matrices, we need a modification of (12)

that takes care of the asymptotics for both types of Σ.

When Σ = σ2Ik, the optimal m is 2 and the bias is O(1/n). When Σ 6= σ2Ik,

the asymptotic expansions in the previous section show that the bias is O (1/m) because
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the expectation of the first term in the expansion is zero. Since Proposition 4 gives the

optimal m as asymptotically proportional to n, a factor of the form (m/n)d (with d > 0)

multiplying the squared bias in (12) should combine both cases and ensure that the bias

vanishes asymptotically without altering the rate for the main case of Σ 6= σ2Ik. It also

has the effect of dampening the finite-sample bias (since d > 0 and m/n < 1), and the

simulations will reveal what d to choose in practice.

Results are reported in Table 13 for our Σ̃m,S of (9), with Σ a Toeplitz matrix. We see

a very good performance of the suggested bootstrap procedure. When d = 1
4
, the adjusted

bootstrap makes a selection very close to the optimal m and the percentage increase in the

mean squared error of our bootstrap-based estimator is minimal. When Σ 6= σ2Ik, clearly

the best choice would be to use the unmodified bootstrap and set d = 0 as in (14), with no

adjustment factor needed.

4 Conclusion

In this paper, we provide a novel approach to estimating variance matrices. Exploiting

the properties of symmetric matrices, we are able to identify the source of ill-conditioning

related to the standard sample variance matrix and hence provide an improved estimator.

Our approach delivers more precise and well-conditioned estimators, regardless of the di-

mension of the problem and of the sample size. Theoretical findings are confirmed by the

results of a Monte-Carlo experiment, which also offers some guidance on how to use the

estimator in practice.

Because our estimator is nonsingular with probability 1 even for k ≥ n, a case where the

traditional estimator of Σ is singular, our approach opens up a host of other applications.

This is for example the case in longitudinal analysis (like panel data) if one does not wish

to impose restrictive assumptions on the covariance structure of the model.

The very large reduction in ill-conditioning suggests that our estimator should perform

well in cases where matrix-inversion operations are required, as for example in portfolio

optimization problems. However, the simple sample variance formula that we use in both

steps of our procedure optimizes the LS criterion, which is not optimal for estimating for

example the inverse of a variance (the precision matrix). This is a general unsolved problem
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in statistical theory: there is no explicit solution for optimizing even simple loss criteria ex-

cept in some restricted cases such as normality; e.g., see Krishnamoorthy and Gupta (1989).

Here, one can do the following. Once the data have been asymptotically-orthogonalized

in the first step, the estimation in the second step can then be easily done one dimension

at a time and a chosen univariate loss criterion optimized numerically. Preliminary results

indicate that this approach and its application to empirical problems works very well, but

a full investigation is beyond the scope of this paper. An alternative approach is obtain-

able from the nonlinear shrinkage of Ledoit and Wolf (2012) as follows. Our variates are

asymptotically orthogonalized as a result of the first step, and the transformed variates

eventually have a diagonal variance matrix. Linear shrinkage of its estimate (by a scalar)

would not add much to the second step, but nonlinear shrinkage is a promising venue to

explore because it shrinks various eigenvalues to a different extent.
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Appendix: Proofs

Proof of Proposition 1. Because of the use of dg in (5), the eigenvalues of Σ̃ are

the diagonal elements λ̃i (i = 1, . . . , k) of Λ̃. Since var(x) is positive definite and λ̃i is the

sample variance of a nonzero (the columns of P̂1 are nonzero) linear combination of x, we

get λ̃i > 0 almost surely.

Proof of Proposition 2. For m > j + 2,

Λ̃j =
1

n− j
dg

(
P̂ ′1

m∑
i=j+1

yiy
′
iP̂1

)
+

1

n− j
dg

(
P̂ ′1

n∑
i=m+1

yiy
′
iP̂1

)
(15)

=
m− j
n− j

dg (Sj) +
n−m
n− j

Λ̃m,

which is a weighted average of dg (Sj) and Λ̃m with

Sj :=
1

m− j
P̂ ′1

m∑
i=j+1

yiy
′
iP̂1.

Notice the special case S0 = Λ̂1 by (4), which is the ill-conditioned estimator that arises

from the traditional approach. Intuitively, we should get a better-conditioned estimator

here by giving more weight to the latter component of the weighted average, the one that

Λ̃m represents. We will now show this by means of the law of iterated logarithm (LIL). See

Anderson (1963) and Davis (1977) for the asymptotic normality of the traditional estimator

on which the two steps of our procedure is based.

Recalling that m,n − m → ∞ and P̂1 asymptotically orthogonalizes the two
∑

i yiy
′
i

sums in (15), the two limiting matrices for the components in (15) are both diagonal and

we can omit the dg from Sj. This omission is of order 1/
√
m and will not affect the

optimization with respect to j, so we do not dwell on it in this proposition for the sake of

clarity. It will however affect the optimization with respect to m, as we will see in the next

propositions.

For any positive definite matrix, denote by λ1 the largest and λk the smallest eigenvalue.

The condition number is asymptotically equal to the ratio of the limsup to the liminf of the
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diagonal elements (which are the eigenvalues here because of the diagonality of the limiting

matrices) and is given with probability 1 by

cn :=
λ1 + ω1δn
λk − ωkδn

,

where the LIL yields δn :=
√

2 log (log (n)) /n and ω2
i /n as the asymptotic variance (which

exists by assumption) of the estimator of λi. Writing c for c∞ = λ1/λk,

cn =
λ1 + ω1δn
λk − ωkδn

=

(
c+

ω1δn
λk

)(
1 +

ωkδn
λk

+O(δ2
n)

)
= c+

ω1 + cωk
λk

δn +O(δ2
n). (16)

This last expansion is not necessary to establish our result, but it will clarify the objective

function. Applying this formula to the two matrices in (15) and dropping the remainder

terms, we get the asymptotic condition number of Λ̃j as

C := c+
ω1 + cωk
λk (n− j)

(√
2 (m− j) log (log (m− j)) +

√
2 (n−m) log (log (n−m))

)
,

which is minimized by letting j/m → 1 since lima→0 a log (log a) = 0 and n > m (hence

n − j ≥ 1). The condition m > j + 2, given at the start of the proof, ensures that

log (m− j) > 1 and that C is real. The cases m = j, j+ 1, j+ 2 are not covered separately

in this proof, because they are asymptotically equivalent to m = j + 3 as m→∞.

Proof of Proposition 3. Under the i.i.d. assumption and the existence of fourth

moments, Σ̂2 satisfies the CLT

Σ̂2 = Σ +
1√

n−m
Z2 (1 + op (1)) ,

where the elements of Z2 are jointly normal with mean zero and some finite positive definite

variance matrix; see Anderson (1963) and Davis (1977). Define

Ω̂1 := P ′Σ̂1P ,

whose eigenvalues are the same as those of Σ̂1 and its eigenvectors are Q̂1 := P ′P̂1. We

can write Ω̂1 = Q̂1Λ̂1Q̂
′
1 which satisfies the CLT

Ω̂1 = Λ+
1√
m
U1 (1 + op (1)) ,

where the elements of U1 are jointly normal with mean zero and some positive definite

variance matrix (these elements are uncorrelated when x is normal).
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Let Σ have r distinct eigenvalues, λ1 > λ2 > . . . > λr > 0 with multiplicities

k1, k2, . . . , kr. (One may also take the diagonal elements of P· to be positive for uniqueness

considerations, and similarly for other diagonalizations.) Now partition the matricesU1 and

Q̂1 into submatrices with k1, . . . , kr rows and columns as U1 = (U1,ij) and Q̂1 = (Q̂1,ij),

where i, j = 1, . . . , r. Also, partition P̂1 = (P̂1,i) and P = (Pi) as blocks of k1, . . . , kr

columns. Then, by defining the normalized R̂1,ij := m1/2Q̂1,ij (for i 6= j) like Anderson

(1963), we have

P̂1,i = PiQ̂1,ii +m−1/2
∑
j 6=i

PjR̂1,ji.

Turning to our estimator of Λ, partition it into the block diagonal Λ̃ = diag(. . . , Λ̃i, . . . ),

where Λ̃i is now the ki × ki matrix corresponding to the eigenvalue λi with multiplicity ki

(not the same Λ̃i as in Proposition 2). Then, by direct substitution, we get the leading

terms of the asymptotic expansion

Λ̃i = dg(P̂ ′1,iΣ̂2P̂1,i)

a
= dg((PiQ̂1,ii +m−1/2

∑
j 6=i

PjR̂1,ji)
′(Σ + (n−m)−1/2Z2)(PiQ̂1,ii +m−1/2

∑
j 6=i

PjR̂1,ji))

= dg(Q̂′1,iiP
′
iΣPiQ̂1,ii + (n−m)−1/2Q̂′1,iiP

′
iZ2PiQ̂1,ii (17)

+m−1/2
∑
j 6=i

R̂′1,jiP
′
jΣPiQ̂1,ii +m−1/2(n−m)−1/2

∑
j 6=i

R̂′1,jiP
′
jZ2PiQ̂1,ii (18)

+m−1/2
∑
j 6=i

Q̂′1,iiP
′
iΣPjR̂1,ji +m−1/2(n−m)−1/2

∑
j 6=i

Q̂′1,iiP
′
iZ2PjR̂1,ji (19)

+m−1
∑
j 6=i

∑
l 6=i

R̂′1,jiP
′
jΣPlR̂1,li +m−1(n−m)−1/2

∑
j 6=i

∑
l 6=i

R̂′1,jiP
′
jZ2PlR̂1,li). (20)

Using P ′ΣP = Λ, we have Q̂′1,iiP
′
iΣPiQ̂1,ii = λiQ̂

′
1,iiQ̂1,ii = λiIki − m−1λiŴ1,ii where

Ŵ1,ii is a sum obtainable as in Anderson (1963, p.128). The off-diagonals of P ′ΣP being

zero, the first term in each of (18) and (19) is zero, and the first double sum in (20) can be

written as a single sum. The second terms in (18), (19) and (20) will always be of smaller

order than the remaining terms, so we can drop them. We are therefore left with

Λ̃i−λiIki
a
= (n−m)−1/2 dg(Q̂′1,iiP

′
iZ2PiQ̂1,ii)+m−1

∑
j 6=i

λj dg(R̂′1,jiR̂1,ji)−m−1λi dg(Ŵ1,ii),

(21)

where λ· 6= 0 and, in general, the last two terms don’t cancel and the diagonal terms are

not all zero. From this we can deduce the following four cases:
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(a) If m/
√
n → ∞ and m/n → γ, where 0 ≤ γ < 1, the leading term of the expansion is

the first one.

(b) If m/
√
n → ∞ and m/n → 1 with n − m → ∞ (e.g., m = n − log n), the leading

term of the expansion is the first one but its order is larger than n−1/2 hence suboptimal

compared to case (a).

(c) If m/
√
n→ γ, where 0 < γ <∞, all terms are of the same order and we have the same

convergence rate as in case (a). Note that the estimator will have a finite-sample bias of

order n−1/2 in this case.

(d) If m/
√
n → 0, the leading term of the expansion is not the first one, but its order is

larger than n−1/2 hence suboptimal.

Since Q̂1,iiQ̂
′
1,ii

p−→ Iki , where the limit is independent of m, the optimal case for Λ̃

is (a) with γ = 0. Since P̂ is based on the full sample and hence does not depend on m,

we get the same optimal m for Σ̃ as for Λ̃.

Proof of Proposition 4. Following Anderson (1963) and Davis (1977), we have

Q̂1,ii = Qii + Op(m
−1/2) where Qii is an orthogonal matrix having the conditional Haar

invariant distribution independently of Z2, as they are based on independent samples. This

simplifies the asymptotic expansion in (21) to

Λ̃i − λiIki
a
= (n−m)−1/2 dg(Q′iiP

′
iZ2PiQii) + ((n−m)m)−1/2∆ (22)

+m−1
∑
j 6=i

λj dg(R̂′1,jiR̂1,ji)−m−1λi dg(Ŵ1,ii),

where ∆ = Op(1). The independence of Qii and Z2 allows an asymptotic U -statistic rep-

resentation of the first term of the expansion when resampling and averaging. Let us start

by conditioning on Qii. Since Z2 arises from the CLT for a sum of n−m i.i.d. observations,

we have the U -statistic kernel for its elements

h := (n−m)−1/2
(
si1 + · · ·+ sin−m

)
with i1, . . . , in−m distinct integers taken from {1, . . . , n}, and

(n−m)−1 var(s1 + · · ·+ sl + c) ∝ l/(n−m)

where c := (n − m)−1/2 E(sl+1 + · · · + sn−m). Then, the variance of our U -statistic is
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proportional to (
n

m

)−1 n−m∑
l=1

(
n−m
l

)(
m

n−m− l

)
l

n−m
=
n−m
n

(23)

and the leading term of the expansion of the averaging estimator has to be normalized by the

root of this fraction, so the term becomes Op(n
−1/2) independently of m, when we condition

on Qii. This variance-reduction factor is also unconditional (by var(y) = varq(Ez|q y) +

Eq varz|q(y) = Eq varz(y)) becauseZ2 is centred around zero andQii is distributed uniformly

on the unit sphere.

The leading term is independent of m as a result of resampling and averaging, so the

choice of optimal m will be decided by equalizing the order of magnitude of the next terms:

if one is larger than the others, then it can be reduced until equality is achieved. The

third and fourth terms of (22) have positive-definite matrices, so resampling and averaging

has no effect on the order of magnitude which is still Op(m
−1). Unlike the first term, the

second one is not a U -statistic: ∆ contains (Q̂1,ii −Qii) and Z2 that are independent for

any given split of the sample, but the next resample will lead to a Z2 that is correlated

with the previous Q̂1,ii and so on. As a result, all the
(
n
m

)
terms will be correlated and

there is no fraction of reduction as in (23). Equalizing the orders ((n−m)m)−1/2 and m−1

leads to m/n→ γ with γ ∈ (0, 1) as optimal for averaging the Λ̃’s over s = 1, . . . , q. Since

P̂ is based on the full sample and hence does not depend on m, averaging over Λ̃m,s or

Σ̃m,s as in (21) leads to the same optimal m.

Proof of Proposition 5. For the baseline estimator Σ̃, consider again the orders of

magnitude in (17)–(20), recalling that P , Q̂1 are orthogonal (rotation/reflection matrices)

and that R̂′1,jiR̂1,ji = Op(1). The first term of (20) is now Op(k/m) instead of Op(1/m)

and, when k = o(
√
m), it dominates the second terms in (18)–(19). As for the final term,

it is dominated by the Op((n−m)−1/2) term in (17). The result is

Λ̃i − λiIki = op(m
−1/2) +Op((n−m)−1/2)

whose norm is minimized by taking m growing as fast as possible such that m/n → 0.

Unlike before, Op((n−m)−1/2) is not necessarily the leading term anymore when k grows

with n. Note that it is suboptimal to take m/n → γ 6= 0, as it makes the leading term
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larger. The same optimal m arises when imposing in addition that k = o(
√
n−m), and

we get k = o(
√
n).

Similarly, for the general estimator Σ̃m,q, (22) implies

Λ̃i − λiIki = Op(k/m) +Op(n
−1/2)

where we have dropped the Op(((n−m)m)−1/2) term which is now dominated. Consider

the case of m/n→ 1 with n−m→∞, such as m = n− log n. This is a case where

k = o(min{
√
m,
√
n−m}) = o(

√
n−m)

and hence the rate at which k is allowed to grow is substantially diminished without any

efficiency gain in return since the leading Op(n
−1/2) term is unaffected. If we exclude this

case, k = o(
√
m) and the optimal m is m/n→ γ with γ ∈ (0, 1), hence k = o(

√
n).
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Table 4: Average ratio c̃n−m/ĉn of condition numbers, Toeplitz design.

Gaussian t(5)

ρ ρ

n m 0 0.5 0.75 0.95 0 0.5 0.75 0.95

k = 30

50

10 0.028 0.023 0.023 0.028 0.014 0.012 0.014 0.020

20 0.030 0.030 0.036 0.047 0.015 0.015 0.021 0.031

30 0.034 0.037 0.048 0.061 0.017 0.020 0.029 0.041

40 0.045 0.050 0.063 0.076 0.023 0.027 0.039 0.051

av 0.028 0.029 0.035 0.044 0.014 0.014 0.019 0.028

k = 100

250

50 0.063 0.058 0.062 0.078 0.023 0.024 0.032 0.052

100 0.064 0.074 0.091 0.118 0.024 0.032 0.049 0.080

150 0.067 0.087 0.112 0.140 0.026 0.038 0.060 0.096

200 0.075 0.103 0.133 0.158 0.030 0.046 0.075 0.109

av 0.062 0.073 0.089 0.112 0.023 0.031 0.047 0.075

k = 250

500

100 0.034 0.032 0.034 0.042 0.009 0.010 0.014 0.025

200 0.035 0.040 0.049 0.066 0.009 0.013 0.021 0.041

300 0.036 0.048 0.061 0.081 0.010 0.015 0.027 0.051

400 0.039 0.055 0.073 0.092 0.011 0.018 0.033 0.059

av 0.034 0.041 0.048 0.063 0.009 0.013 0.021 0.039
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Table 5: Average ratio c̃n−m/ĉn of condition numbers, equicorrelation design.

Gaussian t(5)

ρ ρ

n m 0 0.5 0.75 0.95 0 0.5 0.75 0.95

k = 30

50

10 0.028 0.059 0.065 0.068 0.014 0.038 0.044 0.047

20 0.030 0.068 0.072 0.073 0.015 0.044 0.049 0.051

30 0.034 0.075 0.079 0.080 0.017 0.050 0.054 0.056

40 0.045 0.090 0.094 0.095 0.023 0.061 0.066 0.068

av 0.028 0.066 0.070 0.071 0.014 0.041 0.045 0.047

k = 100

250

50 0.063 0.148 0.150 0.152 0.023 0.103 0.107 0.108

100 0.064 0.153 0.154 0.155 0.024 0.108 0.110 0.111

150 0.067 0.158 0.158 0.159 0.026 0.112 0.114 0.115

200 0.075 0.168 0.168 0.170 0.030 0.121 0.123 0.123

av 0.062 0.150 0.151 0.152 0.023 0.103 0.106 0.106

k = 250

500

100 0.034 0.092 0.093 0.093 0.009 0.063 0.064 0.064

200 0.035 0.094 0.094 0.095 0.009 0.065 0.065 0.066

300 0.036 0.096 0.096 0.096 0.010 0.066 0.067 0.067

400 0.039 0.100 0.100 0.100 0.011 0.070 0.070 0.070

av 0.034 0.092 0.093 0.093 0.009 0.062 0.063 0.063
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Table 6: Average ratio c̃n−m/ĉn of condition numbers, uniform design.

Gaussian t(5)

α α

n m 0 0.05 0.1 0 0.05 0.1

k = 30

50

10 0.028 0.027 0.026 0.014 0.013 0.013

20 0.030 0.029 0.029 0.015 0.014 0.014

30 0.034 0.033 0.034 0.017 0.017 0.017

40 0.045 0.044 0.046 0.023 0.023 0.023

av 0.028 0.027 0.029 0.014 0.013 0.013

k = 100

250

50 0.063 0.069 0.087 0.023 0.023 0.028

100 0.064 0.092 0.109 0.024 0.027 0.040

150 0.067 0.105 0.120 0.026 0.031 0.051

200 0.075 0.116 0.129 0.030 0.039 0.062

av 0.062 0.091 0.106 0.023 0.027 0.042

k = 250

500

100 0.034 0.058 0.025 0.009 0.012 0.009

200 0.035 0.070 0.032 0.009 0.018 0.015

300 0.036 0.076 0.041 0.010 0.024 0.022

400 0.039 0.081 0.042 0.011 0.030 0.024

av 0.034 0.069 0.031 0.009 0.019 0.015
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Table 7: Comparison of alternative estimators’ precision R2,S for n = 100,

Toeplitz design.

Gaussian t(5)

ρ ρ

k Estimator 0 0.5 0.75 0.95 0 0.5 0.75 0.95

30

Sample variance 4.91 5.01 5.29 6.89 23.1 21.9 20.9 24.7

Our estimator 0.07 3.51 5.13 7.35 1.04 5.76 9.79 20.4

Shrinkage identity 0.04 3.38 4.76 7.01 1.19 6.16 9.93 16.4

Shrinkage equicorrelation 0.62 3.53 4.75 6.96 3.43 7.67 10.9 21.6

Hard thresholding 0.68 4.96 6.19 6.89 4.04 12.9 16.0 20.9

Soft thresholding 0.59 3.89 5.50 7.06 3.38 10.4 14.3 19.6

100

Sample variance 51.0 51.3 52.3 59.3 137 138 144 181

Our estimator 0.13 21.2 38.3 64.3 1.83 25.4 53.7 137

Shrinkage identity 0.07 20.3 37.6 57.0 1.77 27.1 61.7 123

Shrinkage equicorrelation 2.03 21.3 37.3 56.5 7.02 31.1 63.2 134

Hard thresholding 2.06 30.0 42.3 64.0 7.55 40.1 117 164

Soft thresholding 1.99 20.1 35.3 66.8 6.87 38.5 84.2 165

250

Sample variance 313 315 317 335 835 800 801 847

Our estimator 0.24 68.3 168 301 12.6 76.6 197 514

Shrinkage identity 0.19 66.1 161 295 10.7 79.4 222 588

Shrinkage equicorrelation 5.13 69.6 160 291 32.3 93.0 229 575

Hard thresholding 5.00 86.0 144 378 32.7 104 333 954

Soft thresholding 4.97 63.0 124 314 31.1 103 272 803
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Table 8: Comparison of alternative estimators’ precision R2,S for n = 100, equicor-

relation design.

Gaussian t(5)

ρ ρ

k Estimator 0 0.5 0.75 0.95 0 0.5 0.75 0.95

30

Sample variance 4.91 5.76 7.14 9.24 23.1 15.3 22.3 31.3

Our estimator 0.07 4.81 7.06 9.30 1.04 11.8 20.6 29.8

Shrinkage identity 0.04 5.79 7.22 9.21 1.19 12.6 17.3 21.3

Shrinkage equicorrelation 0.62 3.46 6.36 9.20 3.43 9.38 20.3 31.2

Hard thresholding 0.68 5.76 7.14 9.24 4.04 15.2 22.0 31.0

Soft thresholding 0.59 5.86 7.18 9.33 3.38 16.9 22.3 26.3

100

Sample variance 51.0 61.8 79.3 89.8 137 200 551 360

Our estimator 0.13 52.0 77.7 90.6 1.83 137 421 372

Shrinkage identity 0.07 63.0 79.2 90.2 1.77 137 180 224

Shrinkage equicorrelation 2.03 34.9 70.1 89.3 7.02 112 507 359

Hard thresholding 2.06 61.8 79.3 89.8 7.55 174 236 298

Soft thresholding 1.99 62.8 79.7 90.8 6.87 182 240 304

250

Sample variance 313 389 495 577 835 1256 1653 1734

Our estimator 0.24 320 481 574 12.6 794 1487 1647

Shrinkage identity 0.19 389 494 572 10.7 853 1124 1346

Shrinkage equicorrelation 5.13 218 437 574 32.3 618 1480 1725

Hard thresholding 5.00 389 495 577 32.7 1060 1544 1734

Soft thresholding 4.97 392 499 582 31.1 1069 1459 1835
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Table 9: Comparison of alternative estimators’ precision R2,S for n =

100, uniform design.

Gaussian t(5)

α α

k Estimator 0 0.05 0.1 0 0.05 0.1

30

Sample variance 4.91 4.91 4.92 23.1 22.7 22.2

Our estimator 0.07 0.39 0.99 1.04 1.61 2.43

Shrinkage identity 0.04 0.36 1.13 1.19 1.46 2.32

Shrinkage equicorrelation 0.62 0.72 1.00 3.43 3.42 3.72

Hard thresholding 0.68 1.03 2.06 4.04 4.18 5.20

Soft thresholding 0.59 0.94 1.98 3.38 3.57 4.56

100

Sample variance 51.0 51.0 51.1 137 125 125

Our estimator 0.13 3.37 9.11 1.83 5.55 15.2

Shrinkage identity 0.07 3.91 12.7 1.77 5.52 15.9

Shrinkage equicorrelation 2.03 3.20 6.35 7.02 7.64 11.4

Hard thresholding 2.06 6.21 18.7 7.55 10.82 23.2

Soft thresholding 1.99 6.13 18.6 6.87 10.31 22.7

250

Sample variance 313 313 314 835 910 909

Our estimator 0.24 18.7 53.6 12.6 29.4 90.3

Shrinkage identity 0.19 24.3 79.2 10.7 30.0 95.4

Shrinkage equicorrelation 5.13 12.2 31.6 32.3 27.8 51.0

Hard thresholding 5.00 31.1 109 32.7 45.9 124

Soft thresholding 4.97 31.0 109 31.1 44.9 123
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Table 10: Comparison of alternative estimators’ condition number for n = 100,

Toeplitz design.

Gaussian t(5)

ρ ρ

k Estimator 0 0.5 0.75 0.95 0 0.5 0.75 0.95

30

Sample variance 10.1 32.6 135 2082 23.6 56.8 203 2804

Our estimator 1.23 4.62 23.0 416 1.32 4.27 21.3 403

Shrinkage identity 1.08 7.07 37.6 445 1.09 5.19 23.8 258

Shrinkage equicorrelation 1.85 8.24 38.0 316 2.45 7.34 28.5 216

100

Sample variance - - - - - - - -

Our estimator 1.20 3.22 13.5 341 1.30 2.98 12.4 329

Shrinkage identity 1.08 4.86 25.1 481 1.20 4.30 16.8 254

Shrinkage equicorrelation 2.08 7.03 31.8 468 2.97 7.35 25.6 302

250

Sample variance - - - - - - - -

Our estimator 1.19 2.59 8.79 198 1.30 2.45 7.97 187

Shrinkage identity 1.13 3.47 15.0 291 1.50 4.11 13.1 164

Shrinkage equicorrelation 2.28 6.09 23.5 385 3.54 7.70 22.9 260
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Table 11: Comparison of alternative estimators’ condition number for n = 100,

equicorrelation design.

Gaussian t(5)

ρ ρ

k Estimator 0 0.5 0.75 0.95 0 0.5 0.75 0.95

30

Sample variance 10.1 135 394 2497 23.6 186 547 3422

Our estimator 1.23 32.6 97.5 622 1.32 31.9 97.5 621

Shrinkage identity 1.08 92.9 263 874 1.09 80.0 220 572

Shrinkage equicorrelation 1.85 40.5 112 635 2.45 44.9 123 669

100

Sample variance - - - - - - - -

Our estimator 1.20 104 319 2025 1.30 102 317 2020

Shrinkage identity 1.08 995 2786 4708 1.20 509 1444 2570

Shrinkage equicorrelation 2.08 140 390 2148 2.97 161 449 2295

250

Sample variance - - - - - - - -

Our estimator 1.19 261 795 5083 1.30 254 792 5055

Shrinkage identity 1.13 2518 6912 11756 1.50 1271 3565 6524

Shrinkage equicorrelation 2.28 368 1008 5484 3.54 418 1137 5795
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Table 12: Comparison of alternative estimators’ condition number

for n = 100, uniform design.

Gaussian t(5)

α α

k Estimator 0 0.05 0.1 0 0.05 0.1

30

Sample variance 10.1 10.9 14.0 23.6 25.0 27.9

Our estimator 1.23 1.32 1.93 1.32 1.36 1.63

Shrinkage identity 1.08 1.21 1.82 1.09 1.18 1.57

Shrinkage equicorrelation 1.85 2.48 3.55 2.45 2.99 4.09

100

Sample variance - - - - - -

Our estimator 1.20 2.03 4.63 1.30 1.47 2.72

Shrinkage identity 1.08 1.52 3.57 1.20 1.54 2.83

Shrinkage equicorrelation 2.08 5.34 9.54 2.97 6.10 10.7

250

Sample variance - - - - - -

Our estimator 1.19 4.06 10.5 1.30 1.88 5.07

Shrinkage identity 1.13 2.05 6.75 1.50 2.32 5.19

Shrinkage equicorrelation 2.28 11.5 22.7 3.54 13.2 25.3
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Figure 1: Ratio of condition numbers c̃n−m/ĉn (left panel) and R2,S(Σ̃m,S) (right panel),

averaged over S simulations (horizontal axes), for k = 30, n = 50, and x ∼ Nk(0,Σ).
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