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Abstract 

A new micro-mechanical model is proposed for describing the bridging actions exerted by 

through-thickness reinforcement on delaminations in prepreg based composite materials, 

subjected to a mixed-mode (I-II) loading regime. The model applies to micro-fasteners in the 

form of brittle fibrous rods (Z-pins) inserted in the through-thickness direction of composite 

laminates. These are described as Euler-Bernoulli beams inserted in an elastic foundation that 

represents the embedding composite laminate. Equilibrium equations that relate the 

delamination opening/sliding displacements to the bridging forces exerted by the Z-pins on 

the interlaminar crack edges are derived. The Z-pin failure meso-mechanics is explained in 

terms of the laminate architecture and the delamination mode. The apparent fracture 

toughness of Z-pinned laminates is obtained from as energy dissipated by the pull out of the 

through-thickness reinforcement, normalised with respect to a reference area. The model is 

validated by means of experimental data obtained for single carbon/BMI Z-pins inserted in a 

quasi-isotropic laminate.  
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Nomenclature 

α  : insertion asymmetry (Eq. 1) 

A : cross-sectional area of the Z-pin 

β  : relative stiffness constant (Eq. 12) 

D 
 

: Z-pin diameter 

δ  : total displacement during pull out tests (Eq. 39) 

E : Young’s modulus of the Z-pin material in the axial direction 

d : normalised pull out displacement (Eq. 2) 

f : enhancement coefficient for the residual frictional force (Eq. 9) 

φ  : mode-mixity coefficient (Eq. 3) 

GLT : longitudinal-transversal shear stiffness for the Z-pin material 

G* : apparent delamination toughness of Z-pinned laminate (Eq. 35) 

GIC
f  : fracture toughness for the tensile fibre failure of a single Z-pin 

I : second moment of area of the Z-pin cross-section 

Is  : second moment of area of the Z-pin cross-section with longitudinal splits 

κ  : shear correction factor in Timoshenko’s beam theory 

kx
− , kx

+  : foundation stiffness for the lower and upper sub-laminates (Eq. 8) 

L : Z-pin overall length 

L− , L+  : insertion lengths in lower and upper sub-laminates (Fig. 8) 

m : Weibull’s exponent 

M : resultant bending moment along the Zpin 

M  : bridging bending moment (Eq. 32) 

λ  : ratio of second moments of area for the split/pristine configuration 

µ  : Coulomb’s friction coefficient 

N : resultant normal force along the Z-pin 

n : normalised resultant normal force along the Z-pin (Eq. 10) 

νLT  : longitudinal-transversal Poisson’s ratio for the Z-pin material 

ξ  : normalised abscissa along the Z-pin axis (Eq. 10) 

p : distributed axial force along the Z-pin  
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p− , p+  : distributed axial forces in the lower and upper sub-laminates (Eq. 9) 

p0 , p1  : residual frictional forces per unit length (Eq. 9) 

P : total applied load during pull out tests (Eq. 38) 

PF : failure probability according to Weibull’s criterion (Eq. B.9) 

π
−
,π

+
 : normalised residual frictional forces along the Z-pin axis (Eqs. 14, 19) 

q : distributed transversal force along the Z-pin 

q− , q+  : distributed transversal forces in the lower and upper sub-laminates (Eq. 7) 

ρ  : areal density of Z-pins (Eq. 34) 

σ  : normal stress in the Z-pin cross section 

σ max  : maximum normal stress in the Z-pin cross section 

 : scaling constant for Weibull’s failure probability (Eq. 26) 

σ max  : Z-pin strength from Weibull’s criterion (Eq. 27) 

τ  : maximum shear stress in the Z-pin cross section 

θ  : rotation of the Z-pin cross-section (Eq. A.6) 

T : resultant shear force along the Z-pin (Eq. A.8) 

τmax  : maximum cross-sectional shear stress (Eq. 40) 

u : transversal displacement of the Z-pin 

U : delamination sliding displacement at Z-pin location 

V0, Veff : reference volume and effective volume for Weibull’s failure criterion (Eq. B.6) 

W : delamination opening displacement at the Z-pin location 

x : abscissa on transversal axis 

XT : tensile strength according to ASTM D3039  

X  : shear bridging force (Eq. 32) 

y : normalised transversal displacement (Eq. 10) 

Y : normalised delamination sliding displacement (Eq. 10) 

 : energy dissipated via bridging (Eq. 33) 

z : abscissa on longitudinal axis 

Z  : axial bridging force (Eq. 36) 

ω  : tension to bending ratio (Eq. B.1) 

 

 

σ s

Ψ
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1. Introduction 

1.1 Literature Review 

Through-thickness reinforcement has proved an effective means for inhibiting delamination 

growth in fibre-reinforced laminated composites [17]. It can be applied in the form of sub-

millimetre diameter rods, tufts or stitches.  

The through-thickness insertion of solid rods into an uncured laminate is commonly denoted 

as Z-pinning [24]. The rods can be either metallic or composite [8]. The insertion is usually 

performed with an ultrasonic gun [18, 24]. The Z-pins can be selectively inserted in areas 

prone to delamination. Several authors have carried out extensive experimental work for 

assessing the damage tolerance capability of Z-pinned composites. Single Z-pin pull out tests 

have also been performed  in order to characterise the individual Z-pin response under mode 

I, II and mixed-mode loading [6-7, 35-36]. The increase in the apparent fracture toughness 

due to Z-pinning has been demonstrated using standard double cantilever beam (DCB), 

mixed-mode bending (MMB) and end-notch flexure (ENF) coupons [3, 6, 10-11, 26, 30-31].   

Z-pinning has also been shown to improve the damage tolerance of composite lap-joints and 

T-joints [1-3, 9, 21], subjected to static and fatigue loading. Moreover, it has been 

demonstrated that Z-pinning augments the low-velocity impact performance of both 

monolithic and sandwich laminates [38]. However, in Z-pinned composites, there exists a 

significant trade-off between the reduction of in-plane stiffness and strength and the 

improved delamination tolerance [25].  

Large scale interlaminar crack bridging [12, 22] is the basic mechanism that allows the 

through-thickness reinforcement to inhibit delamination growth. Whilst most of the existing 

literature is focussed on stiches and on Z-pins, it is becoming recognised that the nature of the 

bridging action is strongly dependent on the specific kind of through-thickness reinforcement, 

the laminate architecture and the delamination mode.  
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Massabò [23] demonstrated how through-thickness reinforcement can induce a transition 

from mode I delamination opening to mode II sliding. In this case, large-scale bridging 

prevents the propagation of interlaminar cracks and the final failure is due to ply micro-

buckling. The occurrence of large-scale bridging and local buckling failure poses severe 

limitations on the applicability of linear elastic fracture mechanics (LEFM) for modelling 

progressive delamination in through-thickness reinforced laminates. Ratcliffe and O’Brien 

[28] employed an empirical bi-linear bridging law to predict the mechanical response of Z-

pinned DCB specimens. Cartié et al [6-7] considered Z-pinned ASTM coupons and T-joints. 

They derived an empirical pull out law from single Z-pin tests and represented the through-

thickness reinforcement in FE analyses via a distributed nonlinear springs on the delaminated 

interface. Yan et al. [35-36] adopted a similar approach, using the J-integral to compute the 

energy release rate at the bridged delamination tip.  

Cox [13-14] developed an analytical micro-mechanical model for a through-thickness tow 

subjected to mixed-mode loading. The tow was assumed to behave as a linear-elastic/perfect-

plastic body, while the embedding laminate was described as a perfectly plastic medium. The 

constitutive response of the through-thickness reinforcement was obtained in the form of non-

linear implicit functions, relating the crack opening displacements to the bridging forces. 

Cox’s model [13-14] allows a description of various through-thickness reinforcement 

architectures, including inclined tows, by simply changing the boundary conditions for the 

equilibrium equations. Grassi and Zhang [19] employed Cox’s model to predict the response 

of Z-pinned DCB specimens via FE analyses.  Allegri and Zhang [1-2] proposed a meso-

mechanical model where individual through-thickness rods are considered as perfectly rigid 

and embedded in a Winkler's type elastic foundation. This model has been applied to the FE 

analysis of tee and cruciform joint configurations.  Most recently Bianchi and Zhang [3-4] 

have developed a meso-mechanical constitutive model for individual Z-pins subjected to 
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mode II fracture. The embedded segment of the through-thickness reinforcement is modelled 

as an Euler-Bernoulli beam embedded in an elastic-plastic foundation.  

 

1.2 Paper Overview 

This paper presents a micro-mechanical model of individual Z-pins subjected to mixed-mode 

(I-II) loading. It summarises the results of a series of experiments on single Z-pin coupons 

[37], complemented with observations of the Z-pin in-situ morphology and failure mode. A 

new model of delamination bridging due to Z-pins is introduced, in which the Z-pins are 

described as Euler-Bernoulli beams undergoing small but finite rotations upon elastic 

deformation. The insertion of the Z-pins is assumed to be orthogonal to the delamination 

plane. The approach proposed in this paper is valid for a general mixed-mode regime and it 

includes the modes I and II as special cases. Expressions for the bridging forces exerted by Z-

pins and for the apparent fracture toughness of Z-pinned laminates are derived. The paper 

also presents the calibration and validation of the aforementioned Z-pin model by means of 

the experimental data provided by Ref. [37].  

 

2. Experimental Characterisation 

This section summarises and complements the experimental evidence gathered by Yasaee et 

al. [37] regarding the morphology and the mechanical behaviour of single composite Z-pins, 

subjected to mixed-mode loading. The aim is to provide a rationale for the modelling 

framework later described in Sec. 3.  The specimen configuration adopted in the tests in Ref. 

[37] is presented in Fig. 1. The specimens were built by laying up 64 plies of IM7/8552 fibre-

reinforced carbon/epoxy, for a total thickness of 8.1 mm. The laminate was split into two 

symmetric blocks by inserting a 16µm release film, in order to prevent bonding of the 

through-thickness mid-plane interface during cure. The stacking sequences were respectively 
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[90°/-45°/0°/45°]4s for the lower block and [0°/45°/90°/-45°]4s for the upper sub-laminate. 

Fully cured T300/BMI Z-pins, having a diameter D of 0.28mm, were inserted orthogonally 

into the laminate. The mixed-mode tests were carried out using a custom-built loading jig, 

shown in Fig. 2. Diametral tension was applied to the coupons in order to simultaneously pull 

out and shear the Z-pins.  

 

2.1 Z-pin morphology 

Extensive X-ray computed tomography (CT) and Scanning Electron Microscope (SEM) 

investigations were carried out in order to assess the in-situ morphology of the Z-pin after 

insertion and cure [37]. CT revealed that, consistently with what has already been reported in 

the literature [24], the Z-pins are misaligned with respect to the nominal insertion direction. 

The average misalignment angle with respect to the through-thickness direction for the 

coupons considered here was 13°, with a standard deviation of 4°. Misalignment is due to the 

tip chamfering of commercially available Z-pins. Tip chamfering eases the standard 

ultrasound-assisted insertion but it also prevents from controlling the actual orientation of the 

inserted rod [6, 26]. A CT scan of a coupon containing a highly misaligned Z-pin is shown in 

Fig. 3; this specimen was not included in the tested batch. It is also worth observing that the 

Z-pin in Fig. 3 is bent, possibly due to the resin flow and consequent ply slippage during 

cure. Other characteristic defects associated with Z-pin are resin rich areas, i.e. “pockets” 

surrounding the through thickness rods, and crimping of the laminate plies [6, 24, 26]. These 

cannot be visualised in the CT scan image in Fig. 3 due to low contrast, but are evident in 

SEM micrographs [37]. The excess lengths of the Z-pin on the laminate surfaces are sheared 

away before curing [18, 24, 26]. This causes a permanent bending of the Z-pin heads and a 

residual indentation on the resin pockets that surround the Z-pins, as sketched in Fig. 4.a. Fig 

4.b shows a micrograph of one of the coupons tested in Ref. [37], where both the bending of 
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the Z-pin head and the resin pocket indentation are evident. Asymmetric pull out of 

symmetrically inserted Z-pins has been extensively reported in the literature [6, 24, 26]. This 

can be explained by considering that one of the bent heads offers less “anchoring” than the 

other. When one of the bent tips is dragged into the laminate, an increase of friction may be 

observed. If the Z-pin is not fully inserted within the laminate, it is natural that the chamfered 

tip will tend to experience pull out [6, 26]. 

 

2.2 Z-pin failure 

Three point bending tests have been carried out on individual T300/BMI Z-pins using the 

miniature rig shown in Fig. 5.a. These tests are not suitable for identifying the actual 

mechanical properties of Z-pins, since the rollers have too large a diameter compared to the 

Z-pin cross sectional radius. However, the tests provide a qualitative indication of the failure 

mode experienced by the Z-pin under combined bending and shearing. As shown in Fig. 5.a, 

the Z-pin ultimately breaks due to tensile fibre failure, with a characteristic “brooming” of 

carbon splinters. Splitting of the Z-pin, which is governed by the matrix shear strength, was 

observed well before ultimate failure without any significant loss of bending stiffness. 

Compressive failure did not occur at all. Tensile fibre failure is also observed in single Z-pin 

coupons under mixed-mode loading [37], as shown in Fig. 5.b.  

For the T300/BMI Z-pins, Cartié et al [6, 8] reported a Young’s modulus E = 115 GPa and a 

tensile strength of 1100 MPa. The strength value is well below what basic composite micro-

mechanics would suggest for a composite with a 57% volumetric fraction of T300 fibre. The 

typical strength of a unidirectional T300 composites tested in tension (ASTM D3039 [39]) is 

1860 MPa [40] for a 57% fibre volume fraction. However, the volume of a single Z-pin is at 

least 2000 times smaller than that of an ASTM standard coupon and, according to the 

Weibull’s failure criterion [5, 29, 34], the Z-pin tensile strength should be much higher than 
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the reported 1860 MPa. This discrepancy may be attributed to the difficulty of testing single 

Z-pins in tension, particularly in terms of avoiding stress concentrations at the loading grips. 

  

Fig. 1. Coupons for single Z-pin testing. 

 

 

Fig. 2. Mixed-mode fixture for single Z-pin testing; (a) back view; (b) front view;  

(c) assembled jig during a Z-pin pull out test. 

 

 

Fig. 3. CT scan image of a Z-pin and evaluation of the associated misalignment angle.  
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2.3 Mechanical response of a single Z-pin 

In Ref. [37], the mechanical response of single Z-pin coupons was characterised by recording 

the load-displacement curves at a range of mode-mixities φ  between 0 (mode I) and 1 (mode 

II). The mode-mixity was defined as the ratio of the delamination sliding displacement to the 

total displacement. Rotating of the loading jig shown in Fig. 2.c allowed varying the mode-

mixity.  All the experimental tests were performed in displacement-control. The nominal 

mode-mixity was corrected considering the actual Z-pin misalignment angle, obtained for 

each of the coupons tested via CT scans. The detailed procedure for calculating the actual test 

mode-mixity for misaligned Z-pins is described in Ref. [37].  

Fig. 6 presents a plot of the apparent toughness G*  from the experimental tests on single Z-

pin coupons as a function of the corrected mode-mixity φ  [37]. 

In Fig. 6, the apparent toughness is calculated by computing the overall work spent to pull out 

the Z-pin, divided by a reference area associated to a nominal 2% aerial density of through-

thickness reinforcement. Note that, due to the inherent misalignment of the Z-pins, it was not 

possible to test in pure mode I and mode II. The experimental data show an increase of the 

apparent toughness in single Z-pin coupons for mode-mixity values ranging from 0 to 0.4. In 

the aforementioned range, all the Z-pins experienced complete pull out during the tests. The 

enhancement of apparent fracture toughness with mode-mixity is due to Coulomb friction 

[14]. 
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Fig. 4. Tip morphology of a fibrous Z-pin (Z-pin) after manufacturing: (a) sketch of the Z-pin 

configuration (tip deformation exaggerated); (b) top view of the Z-pin tip on the insertion 

side of a laminate, with the area (B) showing the bent Z-pin tip. The shearing direction for 

removing the excess length on the insertion side is denoted by s. 

 

  

Fig. 5. Failure mode of a single Z-pin; (a) three point bending test; (b) SEM image of a failed 

single Z-pin coupon. 
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Fig. 6. Apparent fracture toughness of single Z-pin coupons normalised for a 2% aerial 

density versus mode-mixity. Results from the calibrated model (Sec. 5) in red line. 

 

In Fig. 6, for φ  ranging from 0.4 to 0.8, there exists a “transition” region [37], where the        

Z-pin behaviour progressively switches from complete pull out to early failure. In other 

words, some of the tested Z-pins prematurely failed, while others still experienced full pull 

out. The associated apparent toughness steadily decreases with the mode-mixity. Finally, for 

φ > 0.8 , i.e. in a mode II dominated regime, all the Z-pins failed before pull out had been 

completed and the apparent toughness plateaued to a minimum.  

Fig. 7a shows that the Z-pin response in a mode I dominated regime, i.e. φ = 0.189 , is 

characterised by two main stages. At first the force required to pull-put the Z-pin steadily 

grows. This suggests that the frictional forces exerted by the laminate on the Z-pin initially 

increase, as it has to be expected if one of the Z-pin bent tips is dragged into the laminate. 

Then the frictional forces reach a limit value and, consequently, the pull out progresses with a 

decreasing applied force, since the embedded length of the Z-pin gets shorter.  
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 (a) 

 (b) 

Fig. 7. Comparison of load-displacement plots for calibration; average experimental values 

[37] in thick black lines; results from the calibrated model (Sec. 5) in thick red lines. The thin 

black lines represent plus/minus one standard deviation from the mean experimental load. 

The blue vertical lines in (b) represent the bounds of plus/minus one standard deviation from 

the average displacement to failure. 
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Fig. 7b shows the Z-pin response in a mode II dominated regime, i.e. φ = 0.983 . For all the 

specimens tested in this case (8 in total), the load increased almost linearly with the sliding 

displacement, until sudden failure occurred in the pulled-out segment, close to the 

delamination surface.  

The scatter of the experimental data presented in Figs. 6 and 7 is large. The apparent 

toughness values have a considerable coefficient of variation, particularly in the transition 

region, despite the fact that the nominal mode-mixity was corrected for the actual 

misalignment angle. This suggests that misalignment alone is not sufficient to explain the 

observed variability of the Z-pin behaviour. The Z-pin residual curvature shown in Fig. 3 and 

the defects due to the insertion, i.e. resin pockets and ply crimping, also play a major role in 

determining the mechanical response of the through-thickness reinforcement [24]. The 

residual curvature induces a pre-stress in the Z-pin, which influences its apparent strength 

under applied mechanical loading. The resin rich areas and local ply crimpling also affect the 

stress transfer from the laminate to the Z-pin. Overall, these defects represent inherent 

“features” of Z-pinned laminates. Characterising these features at single Z-pin level is not 

possible in structural applications, where thousands of Z-pins may be used. Therefore, the 

emphasis here is on establishing a modelling framework that allows representing the average 

trends of apparent fracture toughness and load-displacement response of single Z-pins. 

 

3. Model Formulation 

3.1 Problem statement 

A Z-pin having a total length L is embedded into a composite laminate. A mixed-mode 

delamination propagates within the laminate and intersects the Z-pin at a known depth. The 

two sub-laminates split by the delamination are assumed to have the same elastic properties. 

The Z-pin counteracts the delamination opening/sliding displacements by exerting bridging 
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forces on the interlaminar crack surfaces. These forces are tangential and normal to the 

delamination plane. Considering the reference configuration in Fig. 8a, the delamination 

plane cuts the Z-pin in two segments, “lower” and “upper”, having respectively length 

and ; is the Z-pin total length. Without loss of generality, it is hereby 

assumed that pull out affects the lower embedded segment . The following “insertion 

asymmetry” parameter (IAP) is introduced 

 
(1) 

If a delamination intersects the Z-pin at half of the insertion length, i.e. in the case of 

symmetric insertion, one has . 

The opening displacement in the wake of the delamination tip is responsible for the Z-pin     

pull out, as shown in Fig. 8b. It is here assumed that the delamination opening is entirely 

accommodated by a “rigid” pull out displacement W, as shown in Fig. 8b. During pull out, 

the length of the “lower” embedded segment of the Z-pin is reduced to L− −W .  A 

normalized pull out displacement is thus defined as:  

d = W
L−

 
(2) 

The sliding displacement of the delamination surface causes the Z-pin to shear and bend, as 

qualitatively illustrated in Fig. 8c. While deforming in the transverse direction relative to the 

laminate, the embedded Z-pin segments are supported by foundation forces exerted by the 

surrounding composite. Let U be the relative transversal displacement of the two sub-

laminates surrounding the Z-pin; U is measured with respect to the Z-pin tips, as shown in 

Fig. 8c.  

The mode-mixity  at the Z-pin location is defined as the ratio of the sliding displacement to 

the total displacement [37], i.e.  

L−

L+ L L L− += +

L−

α = L−

L− + L+

α = 1/ 2

φ
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φ = U
U 2 +W 2

 
(3) 

The pull-out displacement U and the local mode-mixity  are here considered as 

independent variables, with the exception of pure mode II. Consequently the overall sliding 

displacement is expressed as:  

U = φ
1−φ 2

W  
(4) 

for . In the special case , i.e. for a local pure mode II regime, U must be 

considered as the independent variable since W = 0.  

 

3.2 Equilibrium equations for a single Z-pin 

The Z-pin is modelled as an Euler-Bernoulli beam subjected to small but finite rotations. 

Therefore, the equilibrium equations for an infinitesimal segment of the Z-pin can be stated 

in the following form: 

 
(5) 

 
(6) 

Eqs. (5-6) are derived in Appendix A. In Eqs. (5-6), E is the Z-pin Young’s modulus and I is 

the cross-sectional second moment of area; u is the transversal elastic displacement of the Z-

pin, directed along the x axis in Fig. 8a. N represents the resultant axial force on the Z-pin 

cross-section; p and q are distributed loads per unit length, respectively collinear and normal 

to the Z-pin longitudinal axis z. The distributed loads represent the frictional and foundation 

forces exerted on the Z-pin by the embedding laminate. The bending moment M and cross-

sectional shear force T associated with Eqs. (5-6) are given in Eqs. (A.7-8). 

 

φ

1φ < 1φ =

EI d
4u
dz4

− N d 2u
dz2

+ q = 0

dN
dz

= −EI d
3u
dz3

d 2u
dz2

− p
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3.3 Foundation and Frictional Forces 

We consider three different types of distributed forces acting on the Z-pin in a mixed-mode 

regime, namely: 1) Winkler’s foundation forces; 2) “residual” frictional forces;                           

3) Coulomb frictional forces. In the following discussion,  [...]- and [...]+ respectively indicate 

quantities evaluated within the lower and the upper embedded segments. 

A Winkler’s foundation provides a support force whose magnitude is proportional to the 

relative displacement between the Z-pin and the surrounding laminate and opposite in 

direction. 

 

Fig. 8. Assumed bridging kinematics of the Z-pin; (a) reference configuration; (b) opening 

mode; (c) sliding mode. 
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By virtue of the sign conventions adopted in Appendix A, one can therefore write 

q− = k−u, q+ = k+ u −U( )  (7) 

where  and  are foundation stiffness constants associated with the lower and upper sub-

laminates in Fig. 8. In principle, the foundation stiffness constants depends on the ply elastic 

constants and laminate stacking sequence, as well as on the Z-pin elastic properties and 

diameter. In a quasi-isotropic laminate  and should be independent of the direction of 

the transverse displacement, i.e. the foundation itself should be quasi-isotropic. In the 

literature, the assumption of Winkler’s foundation has been already employed for the analysis 

of single Z-pin behaviour [1-4]. Here, since it has been assumed that the lower and upper sub-

laminates have the same elastic properties, one has: 

kx
− = kx

+ = kx  (8) 

where kx  is the foundation stiffness value for both the sub-laminates. 

Thermal residual stresses on the Z-pin lateral surface are compressive [24]. These induce a 

residual friction, which is usually modelled as a tangential load per unit length. The latter is 

usually assumed independent from the pull out displacement W [2, 6, 8, 13-14]. In practise, 

depending on the Z-pin tip morphology, the residual friction may vary during pull out, as 

discussed in Sec. 2.1. In a mixed-mode regime, the Coulomb friction associated with the 

transversal foundation forces in Eq. (7) will increase the distributed tangential load [14]. 

Therefore, the tangential forces acting on the Z-pin are assumed as follows: 

p− = − p0 − p1 − p0( )e− fW − µkx
− u p+ = p1 + µkx

+ U − u  (9) 

where µ  is the coefficient of Coulomb friction; p0  and p1  are residual frictional forces per 

unit length; f is a positive scaling constant, whose unit is an inverse length. If p0 = p1 ,             

Eq. (9) leads to the constant residual friction scenario already discussed in the literature [2, 6, 

xk
−

xk
+

xk
−

xk
+
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8, 13-14].  However, assuming p0 > p1  it is possible to account for an increase of residual 

friction during pull out, while for p0 < p1  the residual friction decreases. 

 

3.4 Equilibrium equations for the lower embedded Z-pin segment 

The following normalized variables are here defined respectively for the axial abscissa z, the 

transverse displacement u, the normal force N and the relative displacement U of the Z-pin 

tips  

ξ = z
L

y = u
D

n = NL2

EI
Y = U

D
 

(10) 

By substituting the first of Eqs. (7) into Eq. (5) and rearranging the latter in terms of the 

normalized variables defined in Eq. (10), the following differential equation is obtained for 

the normalized transverse displacement 

yIV − nyII + 4β
4
y = 0  (11) 

Where the constant β  is defined as:  

β = L
2

kx
EI

4  
(12) 

Similarly, substituting the first of Eqs. (7) and the first of Eqs. (9) into the axial equilibrium 

equation (6) and switching to the normalized variables from Eq. (10), the non-linear 

differential equation governing the distribution of the normalized axial force n in the lower 

embedded segment is sought 

nI = − D
L

⎛
⎝⎜

⎞
⎠⎟
2

yII yIII + 4β
4
π

−
d( ) + µ D

L
⎛
⎝⎜

⎞
⎠⎟ y

⎡
⎣⎢

⎤
⎦⎥

 
(13) 

where 

π
−
d( ) = p0 + p1 − p0( )e−α fdL

kx L
 

(14) 
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Let us assume that the Z-pins are moderately slender, i.e.  

D
L

⎛
⎝⎜

⎞
⎠⎟
2

<< 1 
(15) 

Thus Eq. (13) can be approximated as follows: 

nI = +4β
4
π

−
d( ) + µ D

L
⎛
⎝⎜

⎞
⎠⎟ y

⎡
⎣⎢

⎤
⎦⎥

 
(16) 

 

3.5 Equilibrium equations for the upper embedded Z-pin segment 

Considering the normalized variables defined in Eq. (10) and substituting the second of         

Eqs. (7) and the second of Eqs. into Eq. (5) yields the following differential equation for the 

transverse displacement of the upper embedded segment of the Z-pin 

yIV − nyII + 4β
4
Y − y( ) = 0  (17) 

where the constant β  is the same given by Eq. (15). Similarly, substituting the second of 

Eqs. (7) and the second of Eqs. (9) into Eq. (6) and considering the normalized variables in       

Eq. (10) yield the non-linear differential equation ruling the normalized axial force n in the 

upper embedded segment 

nI = − D
L

⎛
⎝⎜

⎞
⎠⎟
2

yII yIII − 4β
4
π

+
d( ) + µ D

L
⎛
⎝⎜

⎞
⎠⎟ Y − y⎡

⎣⎢
⎤
⎦⎥

 
(18) 

where 

π
+
= p1
kxL

 
(19) 

Therefore, for moderately slender Z-pins, i.e. if the condition stated in Eq. (15) holds, Eq. 

(22) can be approximated as follows 

nI = −4β
4
π

+
d( ) + µ D

L
⎛
⎝⎜

⎞
⎠⎟ Y − y⎡

⎣⎢
⎤
⎦⎥

 
(20) 
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3.6 Assembled governing equations 

The pulled-out portion of the Z-pin, defined by L− −W < z < L− , is free from the action of the 

lateral normal and tangential distributed forces, so p = q = 0  for L− −W < z < L− .   

Taking advantage of the definitions in Eqs. (3) and (10), the normalized total transversal 

displacement is obtained as a function of the nominal mode-mixity 

Y = αφd
1−φ 2

L
D

⎛
⎝⎜

⎞
⎠⎟

 
(21) 

Considering Eqs. (11), (16-17), (20-21), the governing equations for the normalized 

transverse displacement y and axial force n can now be recast in the following non-linear 

ordinary differential system 

yIV − nyII =

− 4β
4
y, 0 ≤ ξ ≤α 1− d( )

0, α 1− d( ) < ξ <α

− 4β
4
y − αφd

1−φ 2
L
D

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, α ≤ ξ ≤1

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

(22.a) 

nI =

4β
4
π

−
d( ) + µ D

L
⎛
⎝⎜

⎞
⎠⎟ y

⎡
⎣⎢

⎤
⎦⎥

0 ≤ ξ ≤α 1− d( )

0, α 1− d( ) < ξ <α

4β
4
π

+
+ µ D

L
⎛
⎝⎜

⎞
⎠⎟ y −

αφd
1−φ 2

L
D

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, α ≤ ξ ≤1

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

(22.b) 

 

Continuity conditions are imposed for the transverse displacement, rotation, bending 

moment, shear force and axial force at the interfaces between the lower embedded segment, 

the pulled out portion and the upper embedded segment.  
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3.7 Boundary Conditions 

Regarding the geometric boundary conditions, the relative transverse displacement at the 

lower embedded segment root of the Z-pin is here set to zero. On the other hand, the 

transverse displacement at the tip of the upper embedded segment must be equal to U, as 

shown in Fig. 8. Therefore in terms of normalized variables one has 

y 0( ) = 0 y 1( ) = αφd
1−φ 2

L
D

⎛
⎝⎜

⎞
⎠⎟

 
(23) 

Moreover, we assume that the bent head of the Z-pin constraints the rotation, i.e. 

yI 1( ) = 0  (24) 

Eq. (24) represents an idealization of the actual case, since the bent Z-pin head will have a 

finite compliance, albeit the latter is difficult to estimate due to the significant variability in 

the configuration of the sheared-off tips.   

In terms of natural boundary condition, the axial force and bending moment are set to zero at 

the tip of the lower embedded segment, since the latter is free to translate and rotate during 

pull out. Thus one has: 

nI 0( ) = yII 0( ) = 0  (25) 

The differential system of equations (22) must be solved with the boundary condition in        

Eqs. (23-25) for each pull out displacement W ∈ 0, L−⎡⎣ ⎤⎦  and mode-mixity coefficient  

φ ∈ 0, 1[ ) . For φ = 1 , i.e. the pure mode II case, there is no pull out displacement, so the 

overall transverse displacement U must be imposed directly as a geometric boundary 

condition.  However, the pull out may not take place completely, since the through-thickness 

Z-pin may experience failure forW =W * φ( ) < L− , or, equivalently, for d = d* φ( ) <1 , where 

the asterisk denotes the rupture condition of the through-thickness rod.  
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3.8 Failure criterion for brittle fibrous Z-pin 

According to the Weibull’s criterion [20, 29, 34], the probability of failure for a solid having 

volume V  and subjected to a stress field σ x, y, z( )  is given by 

PF = 1− e
−

σ x,y,z( )
σ S

⎡

⎣
⎢

⎤

⎦
⎥
m

dV
V∫ , σ x, y, z( ) > 0

0, σ x, y, z( ) ≤ 0

⎧
⎨
⎪

⎩⎪
 

(26) 

where σ x, y, z( )  is the stress within the solid, m is the Weibull’s modulus and σ s  is a scaling 

constant.  As demonstrated in Appendix B, for a Z-pin subjected to a distribution of axial 

force N z( )  and bending moment M z( ) , failure occurs when 

σ max = XT
V0
Veff

⎡

⎣
⎢

⎤

⎦
⎥

1
m

 
(27) 

where σ max is the average peak tensile stress along the Z-pin axis. In Eq. (27), XT is the 

average is fibre failure strength associated to a volume of material V0  subjected to pure 

tension, while Veff is the effective volume of the Z-pin subjected to variable tension and 

bending. The expressions of the effective volumeVeff  and the average peak tensile stress σ max  

for a beam having circular cross-section are given respectively in Eqs. (B.6) and (B.7).  

 

3.9 Remarks on the modelling assumptions 

3.9.1 Mode mixity-definition 

The mode-mixity definition in Eqs. (3-4) is strictly valid for an orthogonally inserted  Z-pin. 

As discussed in Sec. 2, the Z-pins are affected by some misalignment. Although in the model 

the pin is assumed to be orthogonal to the delamination plane, in the model calibration and 

validation (Sec. 5) the frame of reference of the loading is rotated to account for the pin initial 

misalignment. This correction procedure adopted is the same described in Ref. [37], where it 
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was introduced in order to factor out the effect of the initial misalignment from the 

experimental data. The correction is legitimate if the Z-pin misalignment angles are small, 

otherwise the laminate foundation stiffness may be significantly affected. 

 

3.9.2 Euler-Bernoulli beam hypothesis 

Adopting an Euler-Bernoulli beam model implies neglecting the cross-sectional shear 

deformation of the Z-pin. It is worth investigating the validity of this assumption in a 

quantitative fashion. A more refined approach to modelling the Z-pin response would be 

represented by the adoption of Timoshenko’s beam theory [33].  It is well known that 

Timoshenko’s theory reverts to the Euler-Bernoulli beam theory if the following condition is 

met: 

EI
κ L2AGLT

<<1  
(28) 

where  κ  is the shear correction factor  and GLT  is the material longitudinal-transversal shear 

stiffness. The condition stated in Eq. (28) is valid also for a beam embedded in an elastic 

foundation, as demonstrated in Appendix C. Considering the expression of the area and the 

second moment of area for circular cross-section, Eq.(28) can be rearranged as: 

D
L

⎛
⎝⎜

⎞
⎠⎟
2

<< 16kGLT

E
 

(29) 

The shear correction factor for a circular cross-section is given by [33] 

κ =
6 1+νLT( )
7 + 6νLT

 
(30) 

where νLT is the longitudinal-transversal Poisson’s ratio. Considering GLT = 5GPa and           

νLT  = 0.3 as representative values for the elastic properties of the T300/BMI Z-pin, Eq. (29) 

yields the following condition: 
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D
L

⎛
⎝⎜

⎞
⎠⎟
2

<< 0.617  
(31) 

The reader can observe that the assumption of moderately slender Z-pin given Eq. (15) 

implies that the condition in Eq. (31) is satisfied, so, in principle, the Euler-Bernoulli 

hypothesis is valid. For the Z-pin configuration in Ref. [37], the left hand side of Eq. (31) is 

in fact 500 times less than the right hand side.  

However, it must be noted that GLT is a matrix-dominated property. If the matrix is elastic 

and brittle, as in the case of the BMI resin used in the Z-pins considered here, GLT will be 

constant, the Euler-Bernoulli assumption is appropriate. On the other hand, if a matrix is 

ductile, GLT will drop in the post-yield regime.  

Given the Z-pin configuration considered here, even a 20-fold drop of GLT would not impact 

the validity of the Euler-Bernoulli assumption. However, this also implies that the condition 

in Eq. (28) should be checked in order for the model to be applied to different Z-pin diameter, 

insertion length and constituents. If Eq. (28) does not hold (e.g. in the limit case of a perfectly 

plastic matrix behaviour, for which composite micro-mechanics dictates that GLT = 0), then 

the Cox and Sridhar’s model in Ref. [14] must be adopted, since it is based on the assumption 

that the shear response of a through-thickness tow is perfectly plastic. The latter hypothesis is 

clearly most appropriate for metallic Z-pins at high sliding displacement, whilst this paper is 

focussed on brittle composite through-thickness reinforcement, for which sliding 

displacements are small, as shown in Fig. 7.b.  

 

3.9.3 Elastic foundation hypothesis 

The elastic foundation assumption summarised in Eq. (7) is valid for small delamination 

sliding displacements. From tests performed on metallic Z-pins in polycarbonate and carbon 

Z-pins in unidirectional laminates [8], it was observed that through-thickness tows can 
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actually plough across the laminate, thus withstanding large sliding. This scenario is well 

described by assuming that the foundation is perfectly plastic as in Refs. [13-14]. However, 

unidirectional laminates have limited practical applications. In a multi-axial laminate (e.g. in 

the case of the quasi-isotropic stacking sequence considered here) Z-pins are in a heavily 

constrained state, whereby fibres counteract the lateral displacements due to delamination 

sliding. In order to clarify this point, Fig. 9.a shows the typical arrangement of a Z-pin in a 

unidirectional laminate; the resin pocket surrounding the Z-pin is shaded in yellow and the in-

plane misalignment of the laminate fibres is also shown. If the Z-pin is sheared in the 

direction parallel to the fibres, its lateral displacement will be counteracted only by the 

matrix, which will yield. However, for a quasi-isotropic arrangement as that shown in Fig. 

9.b, a different scenario arises. The fibres belonging to the adjacent laminae will bridge the 

resin pockets for any given ply orientation. The fibres will react to the lateral pressure exerted 

by the Z-pin by carrying axial loads. Even if the matrix yields, the laminate response to the 

lateral displacement of the Z-pin will be dominated by the stiffness of the fibres, which 

behave in a linear elastic fashion up to failure and are much stronger than the matrix. 

Therefore, it is reasonable to assume that the resulting response of the foundation will be 

linear elastic. Fig. 10 shows an SEM image of a single Z-pin coupon failed in a mode II 

dominated regime  (φ > 0.8) from the experimental tests described in Sec. 2. There is no 

evidence of Z-pin ploughing across the laminate.  Similarly, there is no evidence of plastic 

indentation of the laminate due to the lateral displacement of the Z-pin. Also, the Z-pin 

failure is brittle and fibre dominated. Thus the experimental evidence provides decisive 

support for the assumption of elastic foundation made in this paper. It is expected that an 

elastic foundation model will be generally adequate for multi-axial laminates made of 

structural grade fibre-reinforced composites, fabrics included, with typical fibre volume 

fractions in excess of 50%.  
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However, a plastic foundation model as that described in Ref. [14] represents a more 

appropriate choice for multi-axial laminates with low fibre volume fractions and/or compliant 

reinforcement fibres and for the aforementioned case of unidirectional composites. 

 

Fig. 9. Schematic architecture of the foundation arrangement for a Z-pin in:                               

a) a uni-directional laminate;  

b) a quasi isotropic laminate  (0° ply in blue/45° ply in green/-45° ply in red/90° ply in 

purple).  

 

 

Fig. 10. SEM image of Z-pin failed in pure mode II; the red arrows on the right give the 

shearing direction, visible from the scratch marks on the left. 

A

B

A B
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4. Bridging Laws 

4.1 Bridging forces 

 

Fig. 11. Bridging forces and moment during Z-pin pull out; the labels of bending moments 

have been omitted for simplicity.  

 

As shown in Fig. 11, the Z-pin bridging actions are represented by a force X  directed along 

the x  axis (i.e. parallel to the delamination surface), a through-thickness resultant Z  (i.e. 

normal to the interlaminar crack plane) and a bending moment M . These forces and moment 

are calculated at the mean delamination opening plane, i.e. for z = z := L− −W
2

 or, 

equivalently, for ξ = ξ =α 1− d
2

⎛
⎝⎜

⎞
⎠⎟ . The bridging forces here introduced can be represented 

by means of nonlinear springs or interface elements with custom traction/displacement laws 

in FE analysis [1-4, 6, 19, 35-36]. The bridging of the delamination edges occurs until the 

U

W / 2
W / 2

W
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normalised pull out displacement reaches the critical value d = d* φ( ) , at which the Z-pin 

failure occurs. Considering the projections of the beam cross-sectional resultants on the 

coordinate axes z and x given in Eq. (A.12) and the normalized variables in Eq. (10), one 

finds for D / L( )2 <<1 and 0 ≤ d < d* φ( ) : 

Z d, φ( ) = EI
L2
n α 1− d

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

X d, φ( ) = EID
L3

n α 1− d
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
yI α 1− d

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
− yIII α 1− d

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

M d, φ( )= EID
L2

yII α 1− d
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

(32) 

In Eq. (32), the dependency on the nominal local mode-mixity is implicit and it holds because 

of the geometric boundary condition stated in the second of Eq. (23). Since a value of the 

normalized sliding displacement Y in Eq. (21) can be associated to each combination of d and 

φ , it is also possible to formulate the bridging forces given in Eq. (32) as implicit functions 

of d and Y. Regarding the FE modelling of Z-pinning via interface elements, the implicit 

dependency of the bridging forces on the delamination opening and sliding displacements 

represents an additional issue. The latter may be circumvented by storing the bridging forces 

as functions of the opening and sliding displacements in lookup tables, from which 

interpolated values of Z d,Y( ) , X d,Y( )  and M d,Y( )  can be calculated during FE 

simulations. 

 

4.2 Energy absorbed via bridging 

A Z-pin bridging a delamination allows dissipating mechanical energy via two fundamental 

mechanisms: 1) the work done by frictional forces in Eq. (9), which arise during the 

progressive pull out of the Z-pin from the surrounding laminate; 2) the energy which is 
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instantaneously spent to fracture the Z-pin at the normalized pull out displacement for failure

d = d* φ( ) . Denoting as  the energy dissipated during the bridging process, we obtain 

Ψ φ( ) =αL Z dd
0

d* φ( )
∫ + π

4
GIC

f D2  
(33) 

where GIC
f  is the fibre-failure fracture toughness of the Z-pin. If complete pull out occurs, the 

second term on the right hand side of Eq. (33) disappears. 

Let us consider a rectangular array of uniformly distributed Z-pins. The aerial density of the 

Z-pins in the array is defined as 

 
(34) 

where W is the length of the side of the unit cell associated to a single Z-pin [6]. The apparent 

fracture toughness  of a Z-pin array is here defined as the energy absorbed by bridging 

per unit delamination area. Thus,  can be calculated as the energy absorbed by a single 

Z-pin in the array divided by the unit cell, i.e. 

 
(35) 

From Eqs. (33-35), the mode II apparent fracture toughness for a laminate reinforced by 

fibrous brittle Z-pin is given by 

G* 1( ) = ρGIC
f  (36) 

since no pull out occurs. 

Eq. (36) proves that the apparent toughness in mode II depends only on the fracture 

toughness associated with the tensile fibre failure of the Z-pin and the aerial density of 

through-thickness reinforcement.  

 

 

Ψ

ρ = πD2

4W 2

G* φ( )

G* φ( )

G* φ( ) = 4ρ
πD2 Ψ φ( )
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5. Model Calibration and Validation 

5.1 Model implementation and calibration 

The Z-pin model in Eqs. (22-25) has been implemented in MATLAB employing the built-in 

routine BVP4C that solves non-linear boundary value problems using an adaptive collocation 

method. The implementation is based upon discretising the normalised pull out displacement 

d  and mode-mixity φ  ranges. One hundred discretization points are considered in both 

cases. For each discretized value of d  and φ  the differential problem in in Eqs. (22-25) is 

solved, yielding the associated bridging forces in Eq. (32). At each mode-mixity φ , d  is 

incremented until either the Z-pin fails according to the criterion in Eq. (27) or full pull out is 

achieved. Once either of the latter conditions is met, the mode-mixity value is incremented 

and the simulation repeated.  Tab. 1 lists the Z-pin diameter D, total insertion length L and 

insertion asymmetry parameter α for the single Z-pin coupon in Fig. 1.  

 

D (mm) L (mm) α  

0.28 8 0.5 

Table 1: Z-pin insertion parameters 

 

Tab. 2 provides a list of the mechanical properties for the Z-pin stiffness, strength and 

friction. The reference strength XT reported in Tab. 2 is that declared by the manufacturer of 

T300 fibres for a generic T300/epoxy system [40] with 57% fibre volume fraction. The 

tensile strength is a fibre dominated property and it is not expected to vary significantly when 

different matrix systems are employed. The strength was measured according to the ASTM  

D3039 standard [39]; the associated specimen volume   is also reported in Tab. 2. The 

coefficient of friction µ  = 0.7 in Tab. 2 is that reported for HTA/6376 carbon/epoxy material 

V0
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system [32]. A similar value of the friction coefficient, i.e. µ  = 0.8, has also been measured 

on pure BMI resin coupons [16].  

 

E (GPa) XT (MPa) V0  (mm3) µ  

115(a) 1860(b) 2250(c) 0.7(c) 

(a) Refs. [6, 8]; (b) Ref. [40]; (c) Ref. [39]; (e) Ref. [16]; 

Table 2: Assumed stiffness, strength and friction properties for the Z-pin. 

 

Considering the data in Tabs. 1 and 2, there are 6 remaining parameters that need to be 

estimated. These are the foundation stiffness kx , the parameters describing the residual 

friction (i.e. p0, p1 and f ), the Weibull’s exponent m and finally the fracture toughness of the 

tensile fibre failure . The 6 unknown parameters have been identified by means of a 

parallelized genetic algorithm (GA). The cost function to be minimized in the GA 

optimization is defined as follows 

C = ε
G* φ( )
2 + εP φ1( ),δ φ1( )

2 + εP φ2( ),δ φ2( )
2  (37) 

In Eq. (37), ε
G* φ( )
2  is the relative mean square error of the apparent toughness obtained by          

Eq. (35) with respect to the experimental data. The reference aerial density value ρ  has been 

assumed at 2%.  Similarly εP φ1( ),δ φ1( )
2  and εP φ2( ),δ φ2( )

2  represent the mean square errors associated 

with the total load versus displacement curves obtained by the model with respect to the 

experimental data for the mode-mixity values φ1 = 0.189 and φ2 = 0.983 . Note that in the 

model the total load applied P  (Fig. 7) on the Z-pin is given by  

P d,φ( ) = Z
2
d,φ( ) + X 2

d,φ( )  (38) 

GIC
f
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whereZ d,φ( )  and X d,φ( )  are the bridging forces from Eq. (32). Similarly, by virtue of         

Eqs. (1), (2), (10) and (21), the total displacement δ  (Fig. 7) is given by: 

δ d,φ( ) = αdL
1−φ 2

 
(39) 

The genetic algorithm optimization has been run on a population of 100 individuals. 

Convergence was achieved after approximately 110 generations. The calibration yields the 

parameters given in Tab. 3. 

 

kx  (N/mm2) p0 (N/mm) p1 (N/mm) f (1/mm) m (kJ/m2) 

165 10.500 0.375 1.5 27 170 

Table 3: Calibrated model parameters 

 

Regarding the Weibull’s exponent, large variations of m are reported in the literature 

depending on the material system and the loading regime considered. The Weibull’s modulus 

typically ranges between 20 and 40, with most experimental values clustered around 30 [5, 

33]. Thus the value yielded by the calibration procedure, i.e. m = 27 as given in Tab. 3, can 

be considered reasonable.  

The value of fibre tensile fracture toughness obtained from the calibration and reported in 

Tab. 3 has the same order of magnitude of that measured on T300/epoxy composites, i.e. 

typically 130-150 kJ/m2 [27].  

Figs. 6 and 7 show that the results obtained from the calibrated model are within one standard 

deviation from the experimental data, both in terms of apparent fracture toughness and load-

displacement response.  

 

GIC
f

GIC
f
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5.2 Model validation 

Validation data are considered in Figs. 12a-f. These consist of 6 sets of load versus 

displacement curves for single Z-pin coupons obtained at mode-mixity values ranging from 

φ=0.243  to φ = 0.938 , which have not been included in the calibration set. The load-

displacement curves predicted by the model have been obtained using the calibrated 

parameters given in Tab. 3. Figs. 12a-c present the load versus displacement curves up to a 

mode-mixity of φ = 0.400 .  

 

(a) 3 specimens tested 

[Fig. 12; caption below] 
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(b) 3 specimens tested 

[Fig. 12; caption blow] 

 

 

(c) 3 specimens tested; [Fig. 12; caption below] 
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(d) 5 specimens tested; [Fig. 12; caption below] 

 

 

 

(e) 4 specimens tested; [Fig. 12; caption below] 
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(f) 3 specimens tested 

Fig. 12. Comparison of load-displacement plots for validation; average experimental values 

in thick black lines; model predictions in thick red lines. One standard deviation scatter bands 

on mean load in thin black lines. The blue vertical lines in (e-f) represent the bounds of 

plus/minus one standard deviation from the average displacement to failure. 

 

For φ ≤ 0.4 , all the Z-pin experienced complete pull out during the tests. There is an 

excellent agreement between the model prediction and the experimental results.  

Fig. 12e-f shows two examples of the Z-pin response in mode II dominated regimes. All the 

Z-pin tested in these conditions failed before experiencing complete pull out. There is 

significant scatter in the experimental load-displacement curves and in the associated failure 

loads/displacements. However, the model predictions fall within the bounds of plus/minus 

standard deviation from the experimental averages.   

A different scenario arises in Fig. 12.d, i.e. for a mode-mixity that falls in the transition 

region. For φ = 0.550 , 3 out of 5 Z-pins experienced full pull out, while 2 out of 5 failed 

prematurely. The deterministic model proposed here cannot capture this random failure 
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behaviour, which is due to the sources of uncertainty discussed in Sec 2.3. Consequently, as 

shown in Fig. 12.d, the predicted displacement to failure is significantly lower than the 

average one, while the peak force is overestimated with respect to the experimental data. 

Nonetheless, the apparent toughness value estimated by the model at φ = 0.550  is still within 

one standard deviation from the experimental mean, as it can be observed in Fig. 1. In mode 

II, the Coulomb term in Eq. (11) causes a significant enhancement of the frictional force per 

unit length; considering the case of φ = 0.983 , the Coulomb terms is 90 times larger than the 

residual friction in the neighbourhood of the delamination surfaces at the failure 

displacement. 

 

5.3 Analysis of the Z-pin failure mode 

The Weibull’s failure criterion in Eq. (30) is essentially nonlocal, i.e. failure may in principle 

occur anywhere within the body volume. Nonetheless, the probability of failure taking place 

in relatively low stressed regions is usually small enough to be neglected. Moreover, if 

significant stress concentrations arise within the body volume, the Weibull’s criterion would 

predict that failure is localised in these highly stressed areas [20].  

The sequence of pull out and failure for a single Z-pin coupon tested at φ = 0.550  is 

presented in Fig. 13, showing that the Z-pin is being dragged out of the sub-laminate “C”. 

The video frame in Figs. 13.a-b is the last before the sudden load drop associated with failure, 

while the image in Fig. 13.c is the first frame after failure. The red arrow in Fig. 13.a 

highlights the position of the Z-pin. The pull out displacement in Fig. 13.a-b is approximately 

1.2 mm; at a mode-mixity of , the associated sliding displacement is 0.8 mm (Eq. 

4). Hence the angle between the Z-pin and the through thickness direction should be

tan−1(0.8 /1.2) ≅ 33.7O . The actual orientation angle of the Z-pin is measured in Fig. 13.b and 

found to be approximately 35°, thus in good agreement with that dictated by the mode-mixity 

φ = 0.550
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value. Clearly this is not the “zero-load” misalignment angle of the Z-pin, since the 

orientation shown in Fig. 13.a-b is a consequence of the applied pull out and sliding 

displacements. The actual misalignment angle for the coupon shown in Fig. 13.a-b had been 

measured from CT scans and found to be approximately 5°. As already mentioned in           

Sec. 2.3, all the mode-mixity values reported in this paper have been corrected in order to 

account for the “zero-load” misalignment of the Z-pin, which was measured via CT scans for 

all the coupons [37].  From Fig. 13.c, it is observed that failure occurred on Z-pin half-length 

that is being pulled out from “C”. The failure location is very close to the lower delamination 

surface, i.e. the surface of sub-laminate “C”. The failure appears to take place within the 

laminate. This occurred consistently for all the mixed-mode specimens that failed by Z-pin 

fracture. At the highest mode-mixity values considered, i.e. φ = 0.938  and φ = 0.983 , the 

pull out displacement is negligible and the failure is again located within the laminate and 

very close to the delamination plane. Fig. 13.c also shows the characteristic “brooming” of 

the Z-pin failed end. This is again a clear indication of tensile fibre failure.  

 

 

Fig. 13. Sequence of Z-Pin pull out and failure at φ = 0.550 ;  (a) Z-pin arrangement at a pull 

out displacement of 1.2 mm; (b) measured orientation angle of the Z-pin during mixed-mode 

pull out; (c) Z-pin failure.  

The stress distribution in the Z-pin predicted by the model at the pull out failure 

displacement, η = 1.23mm, is presented in Fig. 14; σ max is the maximum tensile stress on the 
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Z-pin section, which is given in Eq. (B.2). The “lower” delamination surface, i.e. the surface 

of sub-laminate “C” in Fig. 14, located at z = L− −W = 2.8mm, while the “upper” 

delamination surface is at z = L− = 4mm . 

The model predicts the presence of two stress peaks, attained within the embedding sub-

laminates and both close to the delamination surfaces. The stress peak near the upper 

delamination surface is the largest in magnitude, albeit the difference between the two stress 

maxima is small, i.e. about 1%. Note that the maximum stress has through in the unsupported 

region, i.e. for L− −W < z < L− ; this occurs at the location where the bending moment acting 

on the Z-pin is zero, i.e. at the inflection point of the deformed Z-pin. There the stress is due 

only to the axial force and it is therefore constant on the Z-pin transversal section. This also 

demonstrates that the stress peaks shown in Fig. 14 are essentially due to the bending 

moment. In pure mode I, there will be no stress peaks, but a uniform stress region along the 

unsupported Z-pin length, i.e. L− −W < z < L− . In pure mode II, the stress peaks will be 

symmetric with respect to the delamination plane, with the zero bending moment inflection 

point located exactly above the latter.   

For the stress distribution shown in Fig. 14, the Weibull’s failure criterion in Eq. (31) predicts 

an average peak stress for failure  2887 MPa. Note that the latter value has been 

computed employing Eqs. (B.4), (B.6) and (B.7) and the calibrated Weibull’s exponent from 

Tab. 3. As observed in Fig. 14, the peak tensile stress along the Z-pin axis exceeds in a 

region located within the laminate, immediately below z = L− −W( )  and above z = L−( )  the 

delamination surfaces. These are the regions where the failure has the highest probability of 

occurring. In Fig. 15, the Weibull’s failure probability from Eq. (30) using the stress field in 

Fig. 14 is plotted along the Z-pin axis.  

σ max =

σ max
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Fig. 14. Predicted maximum normal stress distribution at failure for φ = 0.550 .  

Position of delamination surfaces in red continuous lines; the dashed red lines give the axial 

locations of the stress peaks. 

 

The cumulative probability of failure occurring in the Z-pin region below the lower 

delamination surface, i.e. for 2 mm < z <  L− −W = 2.8 mm, is 48.2%. Similarly, the failure 

probability above the upper delamination surface, i.e. 4 mm < z < 4.8 mm, is 51.8%.  Thus 

the Weibull’s failure criterion predicts that failures will localise exactly where these are 

experimentally observed, i.e. within the laminate at a small distance from the delamination 

surfaces. This proves the robustness of the modelling approach proposed here.  

 

6. Effects of cross-sectional shear 

6.1 Shear stress distribution 

During progressive pull out, the Z-pin is also subjected to a cross-sectional resultant shear 

force T, which is given by Eq. (A.8). From elementary beam theory, the resulting maximum 

L− −W W L+
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shear stress  is attained at the centre of the Z-pin and it is given by 4/3 the applied shear 

force over the cross-sectional area, i.e. 

 
(40) 

 

 

Fig. 15. Failure probability along the Z-pin axis for the stress distribution in Fig. 14.  

Position of delamination surfaces in red continuous lines; the dashed red lines give the 

locations of the stress peaks. 

 

A plot of the maximum shear stress from Eq. (40) and corresponding to the experimental 

failure load is shown in Fig. 16. One can immediately observe that the maximum shear stress 

is zero at the locations where the maximum normal stress is attained. The model predicts a 

maximum shear stress of 180 MPa in the unsupported segment of the Z-pin. Since the typical 

shear strength of fibre-reinforced plastics does not exceed 100 MPa [20], it has to be expected 

that longitudinal splitting of the through-thickness composite rod will occur, as already 

pointed out by the experimental tests in Ref. [8].  From the shear stress distribution shown in 

Fig. 16, it is reasonable to assume that the longitudinal splits will extend across the whole 

τmax

τmax = 16
3π

T
D2

L− −W W L+
48.2%

51.8%
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unsupported length of the Z-pin and also partially within the sub-laminates, as shown in Fig. 

17. Moreover, since the shear stress variations along the chords normal to the shearing 

direction are small, the split will span the whole chords, as shown in Fig. 17. 

 

Fig. 16. Predicted maximum shear stress distribution at failure for .  

Position of delamination surfaces in red continuous lines; the dashed red lines give the 

locations of the normal stress peaks. 

 

6.2 Analysis of the Z-pin splitting 

Fracture mechanics or a cohesive zone approaches would be required in order to investigate 

the actual split propagation once the initiation shear stress has been exceeded. Cui et al. [15] 

developed a 2D finite-element based modelling framework where potential splitting planes 

within the Z-pins were seeded with cohesive elements. They observed that the growth of the 

splits took place in mode II and it was also influenced by frictional stresses between the Z-pin 

strands separated by the splits. However it must be observed that the final results may depend 

on the pre-defined positions of the splits, as well as their overall number.  Moreover the 

longitudinal split surfaces may not be exactly planar, thus some mechanical interlocking may 

L− −W W L+

φ = 0.550
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take place between the Z-pin strands. The propagation of the splits within the laminate is 

limited by the radial compressive stresses that are associated with the residual friction terms 

in Eq. (9), which are further by the lateral support of the elastic foundation. Clearly the main 

effect of the splits is to reduce the Z-pin bending stiffness, while the load carrying capability 

in terms of axial stress will be largely unaffected. In this respect the splitting does not 

constitute a critical failure mode, since the Z-pin will behave as a “bundle of bundles” [34] 

and the pull out can proceed until tensile fibre failure occurs.  

 

Fig. 17. Assumed configuration for the internal split in a composite Z-pin;  

(a) side view; (b) cross-sectional view. 

 

In order to explore the effect of internal splitting on the Z-pin response, we hereby introduce 

the simplifying hypothesis that the split propagation is limited to the unsupported region of 

the Z-pin. Let it be assumed that the deformed split segments have the lateral displacement 

and same curvature at each location within the unsupported segment, which are sufficient 

conditions for mode II splitting.  By virtue of Eqs. (5) and (6), the equilibrium of the 

unsupported Z-pin segment is governed by the following differential equations 

EIs
d 4u
dz4

− N d 2u
dz2

= 0  
(41) 

dN
dz

= −EIs
d 3u
dz3

d 2u
dz2

 
(42) 

A A’ A’ A 

(a) (b) 
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where Is is a reduced second moment of area given by 

Is =
I
λ

 
(43) 

In Eq. (43), I is the second moment of area for the pristine Z-pin, while λ  is a damage 

variable, which accounts for the splitting of the Z-pin in multiple strands; Is  is given by the 

sum of the individual contributions to the second moment of area for each of the separated 

strands, calculated with respect to the neutral axis of each strand. For example, in the case of 

a single central split, the Z-pin is divided in two semi-circular halves; in this case, from 

elementary geometric considerations, one finds 

λ = π

π − 64
9π

≅ 3.578  
(44) 

Substituting into Eqs. (42) and (43) the normalised variables from Eq. (10) yields for the 

unsupported beam segment 

yIV − λnyII = 0  (45) 

and  

nI = − 1
λ

D
L

⎛
⎝⎜

⎞
⎠⎟
2

yII yIII ≅ 0  
(46) 

where the approximation holds by virtue of Eq. (15).  

Therefore, in order to account for the internal splitting of the Z-pin, Eq. (45) is substituted 

into Eq. (22.a), leading to: 

yIV =

nyII − 4β
4
y, 0 ≤ ξ ≤α 1− d( )

λnyII , α 1− d( ) ≤ ξ ≤α

nyII − 4β
4
y − αφd

1−φ 2
L
D

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, α ≤ ξ ≤1

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

(47) 
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Note that, by virtue of Eq. (46), the differential equations for the normalised axial force in 

Eqs. (22.b) are valid also for the split Z-pin case.  

The nonlinear differential system in Eqs.  (22.b-25) and (47) is here solved following exactly 

the same solution strategy described in Sec. (5.1), using the calibrated parameters from Tab. 

3. We consider here a worst-case scenario, whereby the splits are introduced in the entire 

unsupported length as soon as a shear stress of 100 MPa is reached within the Z-pin. This 

represents a limit case, but it would be extremely difficult to implement a realistic (either 

fracture mechanics of cohesive zone based) splitting initiation/propagation model within the 

semi-analytical framework introduced here. Three values of λ  are considered, namely 

λ = 3.578 (single split case), λ = 13  (3 splits, uniformly spaced across the diameter) and 

λ = 50  (7 splits, uniformly spaced across the diameter).  

The effect of the Z-pin splitting on the apparent fracture toughness is shown in Fig. 18. Up to 

a mode-mixity of 0.3, no longitudinal splitting occurs. For a mode-mixity between 0.3 and 

0.4, the assumed splitting of the entire unsupported length leads to predicted premature 

failures of the Z-pins with respect to what observed in the experimental tests. The premature 

failures however yield an increase of the apparent fracture toughness, since they occur when 

the pull out is almost complete, so that the work associated with the frictional pull out is 

almost entirely added up to the fracture energy associated with the Z-pin rupture. In the 

mode-mixity range between 0.4 and 0.7, the apparent fracture toughness also increases with 

respect to the pristine Z-pin case and it tends to approach the average experimental value 

within the “transition” region (experimental datum at φ = 0.55 ). However, the scatter in the 

experimental data is so large that it is not possible to conclude whether including the splits 

leads to an improvement of the model predictions. Notably, the presence of splits makes a 

negligible difference for φ > 0.7 . This is due to the fact that, when approaching mode II, 

G* φ( )  is dominated by the fracture toughness of the Z-pin tensile fibre failure. 
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Fig. 18. Effect of longitudinal splits on apparent fracture toughness 

 

 

Fig. 19. Effect of longitudinal splits on the mode II dominated response (φ  = 0.983).  

Average experimental load-displacement curve in black. 
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The results in Fig. 18 show that the instantaneous propagation of the splits in the whole 

unsupported region is a too severe assumption for φ  < 0.4. This suggests that, even if 

multiple splits initiate, the energy release rate available for their growth is relatively limited. 

Of course this scenario should be investigated in a fracture mechanics or a cohesive zone 

framework in order to provide a definitive answer. 

Fig. 19 shows the predicted mode II response for the split Z-pin. The onset of longitudinal 

splitting occurs for very small delamination sliding displacements and applied loads, 

respectively 0.13 mm and 10 N. This causes a sudden drop of stiffness with respect to the 

pristine Z-pin case, but, most interestingly, the predicted responses are insensitive to the 

number of splits, since the associated curves in Fig. 19 are almost coincident. The 

displacement to failure is also unaffected by the number of splits, whereas the failure load 

drops by almost 20%. However, the failure load is still within the scatter bands shown in Fig. 

7.b, while, as remarked above, the corresponding apparent fracture toughness is unaffected by 

the presence of the splits.  

 

7. Conclusions 

A new micro-mechanical model for describing the delamination bridging action exerted by Z-

pins has been presented and validated. The model is based on describing Z-pins as Euler-

Bernoulli beams embedded in an elastic foundation and subjected to small but finite rotations 

of the transversal cross-section. The response of Z-pins is obtained by solving a system of 

non-linear differential equations, which govern the Z-pin equilibrium for a set of prescribed 

pull out and sliding displacements. The model is valid for fibrous and brittle Z-pins, whose 

failure is described by the Weibull’s criterion.  

The apparent fracture toughness of a Z-pin reinforced composite is directly related to the 

energy dissipated by the frictional pull out of the Z-pins. Considering the specific case of 
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quasi-isotropic laminates, it has been demonstrated that the apparent fracture toughness 

provided by Z-pin insertion increases with the mode-mixity, until a critical value of the latter 

is reached. This is due to the fact that the residual friction experienced by the Z-pin is initially 

by Coulomb friction in a mixed-mode regime. The friction enhancement increases the axial 

tension and bending that the Z-pin must support during pull out, leading to failure of the 

through-thickness reinforcement once a characteristic critical mode-mixity is exceeded. The 

critical mode-mixity for the Z-pin/laminate arrangement considered here is φ = 0.400 . The 

transition from complete pull out to failure causes a progressive reduction of the apparent 

fracture toughness. In pure mode II, the apparent fracture toughness of a through-thickness 

reinforced laminate is entirely due to the fracture toughness associated with the tensile fibre 

failure of the Z-pins.  

There exists a significant amount of scatter in both the apparent toughness versus mode-

mixity data and the Z-pin load versus displacement curves. The scatter increases significantly 

in the transition region from complete pull out to failure, even if the misalignment angles 

associated with the Z-pin insertion are taken into account when calculating the actual mode-

mixity for each of the coupons tested. The post-insertion residual curvature of Z-pins may 

play a significant role in this respect, since it can induce residual axial stresses in the Z-pin 

that may promote or delay failure at a given value of the mode-mixity.  

The geometrically non-linear Euler-Bernoulli beam model presented in this paper requires 

calibration of 6 parameters in total. The identification of these parameters has been carried 

out via a genetic algorithm, considering the load-displacement curves for the Z-pins tested in 

a mode I and a mode II dominated regime, together with the overall trend of the apparent 

toughness with respect to the actual mode-mixity (i.e. considering the Z-pin misalignment 

angles for each coupon tested).  
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Employing the 6 parameters mentioned above, the modelling approach proposed here yielded 

results that are in excellent agreement with the mean experimental load-displacement curves 

and the average apparent fracture toughness over the whole mode-mixity range. Bridging 

force-opening/sliding displacement relationships (Eq. 36) have been defined, which are 

suitable for implementation in interface element formulations for the FE analysis of Z-pin 

reinforced composite structures. Similarly, the apparent toughness trend obtained from the 

model can be employed for modelling the Z-pin bridging via cohesive zone models. The 

implementation of the model presented in this paper to the definition of suitable interface 

element formulations and cohesive zone models will be addressed in future work.  
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Appendixes 

A. Equilibrium equations 

 

Fig. A.1. Equilibrium of forces and moments for the deformed beam segment. 
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An infinitesimal deformed beam segment is considered in Fig. A.1. N and T denote 

respectively the normal and shear force resultants on the beam section. M represents the local 

resulting bending moment. Distributed tangential p and normal q forces act on the beam 

lateral surface. The undeformed beam axis lays on the z Cartesian direction shown in Fig. 

A.1;  is the angle between the local tangent to the beam deformed axis and the z coordinate 

axis. The equilibrium equations for the deformed beam segment in terms of cross-sectional 

resultants are the following 

 

(A.1) 

For small axis rotations, i.e. θ << 1 ,  Eq. (A.1) can be linearized as follows 
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Expanding the derivatives in first of Eq. (A.2), solving with respect to  and multiplying 

both sides by  yields 

 
(A.3) 

since θ <<1  as assumed above. Expanding the derivatives in the second of Eq. (A.2), solving 

with respect to  and making use of Eq. (A.3) leads to  
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Thus, differentiating the third of Eq. (A.2) with respect to z and combining the result with Eq. 

(A.4) yields 

 
(A.5) 

Considering an Euler-Bernoulli beam, whose cross-sections stay normal to the deformed axis, 

the following relation holds between the rotation angle  and the beam transversal 

displacement in Cartesian coordinates u  

 
(A.6) 

Assuming that the beam material is linear elastic, Eq. (A.6) implies that the following relation 

holds between the cross-sectional resultant bending moment M and the curvature of the beam 

axis 

 
(A.7) 

where E is th Young’s modulus and I the cross-sectional second moment of area.  

Substituting Eq. (A.7) into the third of Eq. (A.2) leads to the relation between the beam 

transversal displacement u and the cross-sectional shear resultant 

 
(A.8) 

Combining Eq. (A.4), (A.6) and Eq. (A.8) leads to the following equation governing the 

beam transversal displacement 

 
(A.9) 

Solving the first of Eq. (A.2) with respect to , making use of Eq. (A.4) and neglecting the 

terms in 2θ  yields 

2

2

d M d
N q

dz dz
θ

= −

θ

=
du
dz

θ

2

2

d u
M EI

dz
=

3

3

d u
T EI

dz
=

4 2

4 2 0
d u d u

EI N q
dz dz

− + =

dN
dz
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(A.10) 

Substituting Eq. (A.6) and (A.8) into Eq. (A.10) leads to 

 
(A.11) 

Eq. (A.11) governs the beam axial equilibrium. By virtue of Eqs. (A.2), (A.6) and (A.8), the 

local projections of the axial and shear forces on the z and x axes for small rotations are given 

by  

Z = N + EI d
3u
dz3

du
dz

X = N du
dz

− EI d
3u
dz3

 

(A.12) 

B. Weibull’s failure criterion 

B.1 Strength scaling 

A beam having a constant circular cross section with diameter D is subjected to combined 

tension and bending along its longitudinal axis z. A representative section of the beam is 

sketched in Fig. B.1. The axial force is denoted asN z( ) and the bending moment is M z( ) . 

 

Fig. B.1. Cross section; the shaded area is assumed to be in tension. 

 

Let the following characteristic ratio of tension to bending be introduced 

dN d
T p

dz dz
θ

= − −

3 2

3 2

dN d u d u
EI p

dz dz dz
= − −
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ω z( ) = N z( )D
M z( )  

(B.1) 

Letσ max z( )be the peak tensile stress on the section, which is attained for x = − D
2

. With the 

help of some basic beam theory, it is straightforward to show that the axial stress distribution 

in the beam is given by 

σ x, z( ) =σ max z( )
ω z( )−16 x

D
ω z( ) + 8  

(B.2) 

The volume integral that appears in Eq. (32) can be calculated as follows 
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(B.3) 

where x* represent the bound of the cross-sectional sector subjected to tension, as shown in 

Fig. B.1. 

Defining  

G z( ) = 2
ω z( ) + 8⎡⎣ ⎤⎦

m ω z( )− 16x
D

⎡
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⎤
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⎧
⎨
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⎫
⎬
⎪

⎭⎪
 

(B.4) 

and applying the mean value theorem, the integral in Eq. (B.3) is equivalently expressed as 

σ x, y, z( )
σ s

⎡

⎣
⎢

⎤

⎦
⎥V∫
m

dV = σ max

σ s

⎡

⎣
⎢

⎤

⎦
⎥

m

Veff  
(B.5) 

where Veff  represents the beam effective volume 

Veff = G z( )
0

L

∫ dz  (B.6) 

In Eq. (B.5) σ max is the average peak tensile stress along the beam axis, which is given by 
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σ max =
σ max

m z( )G z( )dz
0

L

∫
Veff

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1
m

 

(B.7) 

Thus the Weibull’s failure probability given in Eq. (31) can be expressed simply as 

PF = 1− e
− σ max

σ s

⎛
⎝⎜

⎞
⎠⎟

m

Veff
 

(B.8) 

Let us consider a second body/load configuration, i.e. a cylindrical bar having arbitrary cross-

section and subjected only to constant tension along its longitudinal axis. The Weibull’s 

failure probability in this case is expressed as [33] 

PF = 1− e
− X

σ s

⎛
⎝⎜

⎞
⎠⎟

m

V0
 

(B.9) 

where V0  is the volume of the bar and X the applied tensile stress. The strengths at constant 

failure probability for the two configurations will therefore be related by the following 

identity 

XT
mV0 =σ max

m
Veff  (B.10) 

Assuming that XT represents the average tensile strength associated with the volume V0 , 

solving Eq. (B.10) with respect to σ max yields the failure criterion in Eq. (32). 

 

B.2 Further remarks on the effective volume 

As a special case, one can consider a circular bar subjected to constant axial force and 

bending along its length, i.e. ω z( ) =ω . Assuming that L0 is the length of the bar, the 

associated geometrical volume is V = πD2L0
4

. From Eqs. (B.4) and (B.6), the following 

expression of the ratio of the effective volume to the geometrical volume is sought for ω < 8  
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Veff
V

= 2
π

1
ω + 8[ ]m

ω − 8x '[ ]m 1− x '2 dx '
−1

ω
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(B.11) 

For ω ≥ 8  one has 

Veff
V

= 2
π

1
ω + 8[ ]m

ω − 8x '[ ]m 1− x '2 dx '
−1

1

∫  
(B.12) 

It is worth observing that in pure tension, i.e. ω →∞ , Eq. (B.12) yields 

lim
ω→∞

Veff
V

= 2
π

1− x '2 dx '
−1

1

∫ = 1  
(B.13) 

so the effective and geometrical volumes are the same,  as it must be expected. On the other 

hand when pure bending is applied, i.e. ω = 0 , one finds 

Veff
V

= 2
π

t m 1− t 2 dt
0

1

∫ = 1
π
β 3
2
, 1
2
m +1( )⎡

⎣⎢
⎤
⎦⎥

 
(B.14) 

where β  is the Euler Beta function.  

A plot of the ratio between the effective and geometrical volumes as a function of Weibull’s 

modulus for a subset ofω  values is presented in Fig. B.2. 

 

Fig. B.2. Ratio of the effective volume to the geometrical volume. 
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C. Timoshenko’s Beam in Winkler Foundation 

The Timoshneko’s beam equation in presence of an axial force N and a distributed transversal 

load q reads 

 

EI d
4u
dz4

− N d 2u
dz2

= −q + EI
κAGLT

d 2q
dz2

 
(C.1) 

 

From Eq. (C.1), switching to the normalised variables in Eq. (10) and considering the 

expression of the foundation forces from Eqs. (7), for the lower embedded segment one has: 

 

yIV − nyII = − 4β
4
y − EI

κGLT AL
2 y

II⎛
⎝⎜

⎞
⎠⎟

 
(C.2) 

Eq. (C.2) proves the Timoshenko’s model reverts to the Euler-Bernoulli theory if the 

condition stated in Eq. (28) holds even if the beam is embedded into an elastic foundation. It 

is straightforward to prove that the same holds true for the upper embedded segment of the Z-

pin. 

	
  


