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Abstract 

This paper presents a new domain decomposition method for nonlinear finite element 

analysis introducing the concept of dual partition super-elements. The method extends ideas 

from the displacement frame method and is ideally suited for parallel nonlinear 

static/dynamic analysis of structural systems. In the new method, domain decomposition is 

realised by replacing one or more subdomains in a ‘parent system’ each with a placeholder 

super-element, where the subdomains are processed separately as ‘child partitions’ each 

wrapped by a dual super-element along the partition boundary. The analysis of the overall 

system including the satisfaction of equilibrium and compatibility at all partition boundaries 

is realised through direct communication between all pairs of placeholder and dual super-

elements. The proposed method has particular advantages for matrix solution methods based 

on the frontal scheme, and can be readily implemented for existing finite element analysis 

programs to achieve parallelisation on distributed memory systems with minimal 

intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-

scale problems. Several examples are presented in this paper, which demonstrate the 

computational benefits of the proposed parallel domain decomposition approach and its 

applicability to the nonlinear structural analysis of realistic structural systems. 
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1 Introduction 

It is well established that the computing time of nonlinear finite element analysis applied to 

large and complex structural systems can be significantly reduced by parallelisation. One way 

of achieving this is by dividing the problem into sub-problems and then processing these sub-

problems simultaneously on parallel processors connected to a network. Within this context, 

parallelisation can either be based on shared memory systems or distributed memory 

computing systems. The use of shared memory systems, however, can lead to memory 

bottlenecks for problems of very large size, a shortcoming which is easily addressed with 

parallel domain decomposition on distributed memory systems.  

Several domain decomposition techniques exist which can be divided into two main 

categories: mathematical and physical [1,2]. In mathematical domain decomposition, the 

various mathematical functions of the problem are divided into sub-problems. This kind of 

problem subdivision, however, requires the development of new solution methods and 

techniques if it is to be implemented for the purpose of nonlinear structural analysis. The 

most effective approach for problem decomposition which requires least interference with 

existing FEA codes is based on physical domain decomposition. The physical domain 

decomposition is often referred to as the data-decomposition, rather than problem 

decomposition, and involves the creation of subdomains or partitions with interfaces at the 

partition boundaries. In the context of structural analysis, it is then necessary to make sure 

that equilibrium and compatibility are not only satisfied within the partitions but also at the 

interfaces between partitions. Indeed, this latter issue tends to be the defining feature for the 

various domain decomposition techniques. 

Different approaches used for solving the physical domain decomposition problems include 

the staggered approach and iterative coupling methods. The staggered approach is invariably 

applicable to dynamic analysis, where the partitioned subdomains utilise a predictor to 

predict the interface boundary conditions using values from the previous time-step [3,4]. Due 

to the fact that the displacements at the interface boundary of one subdomain are predicted 

without the communication of actual boundary interface displacements between subdomains, 

this approach does not necessarily satisfy compatibility. Another major disadvantage with the 
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staggered approach is its conditional stability [5], which can require an excessively small 

time-step size, leading to considerable computational inefficiency. 

To overcome the time-step size dependence of the staggered approach, corrective iterations 

have been introduced, resulting in the development of iterative coupling methods [4,6], which 

support parallel computations and can be applied to both static and dynamic problems. In 

these methods, the solution of the governing equations of the partitioned subdomains is 

carried out individually at each load or time step using predicted boundary conditions at the 

interface, which are successively subjected to iterative corrections until the satisfaction of 

equilibrium and compatibility. The convergence of such a procedure, however, is not 

guaranteed, particularly if the corrections to the interface boundary conditions are obtained 

without due consideration of the coupled system response. The solution dependency in this 

case shifts from time-step size to the type of iterative update employed for the 

displacement/force interface boundary conditions for each subdomain [4]. 

To improve the convergence of the iterative coupling methods, boundary conditions can be 

updated using an ‘interface relaxation approach’ [7,8], though the optimal relaxation 

parameter is problem dependent [4]. The convergence characteristics of iterative coupling 

methods can be significantly improved with the use of the condensed tangent stiffness matrix 

at the interface boundary, which can be approximated using such techniques as the reduced-

order method [9]. Of course, even better convergence can be achieved with the use of the 

exact tangent stiffness matrix, and this will be sought in the present work. 

Besides the iterative method used to ensure convergence to compatibility and equilibrium at 

the interface boundary, domain decomposition in finite element analysis also raises the 

question of linking subdomains with non-matching meshes at the interfaces. Kron [10] 

presented a method for linking subdomains for elasticity problems by using Lagrange 

multipliers, where discretisation of interface displacements in each of the linked subdomain 

and of the Lagrange multipliers, also referred to as interface tractions, yields a system of 

simultaneous equations. Based on this method, Farhat and Roux [11] presented a method of 

finite element tearing and interconnecting, more commonly known as the FETI method. 

Numerous researchers have since worked on the further development of the FETI method and 

its applications to different types of problem [12,13]. 
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An alternative to domain decomposition methods based on Lagrange multipliers is an 

approach where subdomains are linked by a displacement field that is defined only on the 

interface. This approach is generally termed as the ‘frame method’, in which a displacement 

frame is made to surround the subdomain completely so that when all the internal variables 

are eliminated, the frame yields a stiffness matrix which can be used directly in coupling with 

any other element with similar displacement assumptions [14]. 

Based on a related concept, a new method is proposed for domain decomposition in nonlinear 

finite element analysis, which facilitates scalable parallel processing over distributed memory 

systems, thus overcoming memory bottlenecks for large scale problems. The proposed 

method introduces the concept of dual partition super-elements, where the term ‘dual’ takes 

here its literal meaning of ‘double/mirror image’ rather than the mathematical meaning of 

‘duality’ as applied in such areas as linear mathematical programming. In this respect, a 

placeholder super-element represents a child partition in a parent subdomain, and this maps to 

a dual super-element that wraps the child partition at the interface boundary in a separate 

child process. The enforcement of compatibility and equilibrium at the interface boundary is 

thus achieved through communication between pairs of dual and placeholder super-elements, 

where multiple subdomains and scalable parallel processing are readily accommodated with a 

parent subdomain having multiple child partitions. It is worth noting that despite the 

conceptual similarity between the dual super-element and displacement frame methods [14], 

the discrete response of the dual super-element is readily recovered at the subdomain 

boundary following condensation operations, as opposed to the frame method in which the 

tractions are integrated over the boundary considering frame-specific shape functions.  

An important benefit of the proposed method is that it allows the recovery of child partition 

forces and condensed tangent stiffness matrix at the interface boundary relatively easily, 

which can be achieved in a frontal solution method [15,16] by placing the child dual super-

element at the end of the element ordering list. When all the other elements of the partition 

have been assembled and the associated interior freedoms are eliminated, the remaining 

equilibrium equations contain the forces and condensed tangent stiffness matrix for the dual 

super-element only, which can be communicated to the placeholder super-element that 

presents these as its forces and tangent stiffness in the parent partition. In this respect, the 

parent process treats the placeholder super-element similar to other finite elements, providing 
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it with displacements that can be communicated to the child dual super-elements and 

receiving interface forces and the condensed tangent stiffness matrix in return. This results in 

a domain decomposition method which can be implemented with minimal intervention into 

existing nonlinear finite element analysis program, providing an overall convergence rate 

which is identical to the monolithic approach, and achieving very high speed-ups due to 

parallel processing. 

It is worth noting here that MPI based parallel finite element approaches [17, 18] have also 

been developed for implicit nonlinear dynamic analysis utilising linear preconditioned 

conjugate gradient (PCG) solvers for the iterative analysis as opposed to the frontal solver, 

conventionally considered to be direct solution method [19]. The use of PCG solvers requires 

significant modification of existing finite element programs as most of these utilise direct 

solvers based on Gaussian elimination. Indeed, the typical requirement for a symmetric 

positive definite stiffness matrix with PCG solvers cannot be usually realised in nonlinear 

finite element analysis, which, in addition to the need for evaluating a conditioner matrix 

associated with a changing tangent stiffness matrix, discourages the use of PCG solvers in 

nonlinear finite element analysis. Furthermore, the domain decomposition in these 

approaches is carried out using graph partitioning techniques making it difficult to adapt 

domain decomposition to different mesh sizes or dimensions and to consider different time-

integration schemes within the partitions. In the present approach, the solution of the 

nonlinear structural analysis problem can be developed using any solver based on Gaussian 

elimination, where specific consideration is given in this work to the frontal solver. 

Furthermore, the introduction in the present approach of the concept of parent-child 

partitions, with the parent partition acting also as a coordinator, creates the possibility of the 

use of mixed dimensional element coupling as well as mixed integration schemes across the 

partitions. Additionally, unlike the previous approaches [17, 81], neighbouring partitions in 

the present approach do not exchange boundary displacement/force entities directly; instead 

information flow is controlled by the parent coordinator, which is responsible for ensuring 

compatibility and equilibrium at the partition boundaries. A clear and natural extension of the 

proposed approach is hierarchic multi-level partitioning, which cannot be accommodated by 

previous approaches [17, 18], and which maps readily to hierarchic HPC architecture with 

ensuing reduction in inter-processor communication overheads. 
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It should be noted here that the present approach of domain decomposition is not limited to 

either 2D or 3D analysis. Rather, the approach is general and can be implemented for any 

existing finite element analysis program with different element libraries with only minor 

modifications. The approach can be also extended to include multi-physics modelling [20], 

which is becoming increasingly important role in various field of engineering. 

Previous work by the authors [21] illustrated the application and overall benefits of the newly 

developed approach for parallel nonlinear finite element analysis. The current paper presents 

the complete method formulation, which may be directly used to upgrade virtually any 

monolithic finite element analysis program with parallel capabilities based on domain 

decomposition. This would not only enhance the speed of computations using such programs 

but would also overcome serious memory bottlenecks faced in the analysis of large scale 

problems. A further important aim of this paper is to demonstrate that the enhanced 

computing speed does not only arise in the proposed method from parallelisation of element 

computations but also from solving the simultaneous equations of the overall system. In this 

respect, the application of the proposed approach with a frontal solution procedure for 

individual child partitions presents a practical implementation and instance of a parallel 

multifrontal solution scheme [22] that is driven by physical partitioning. Besides these 

computational and practical benefits, the proposed partitioning approach also provides a 

natural framework for hierarchic partitioning, where a child partition can be decomposed into 

further partitions, and for mixed-dimensional coupling between heterogeneous subdomains 

[23]. 

The paper proceeds with presenting the components of the proposed approach, highlights the 

sources of computational efficiency, and provides several examples which demonstrate its 

excellent performance as a parallel domain decomposition method for nonlinear finite 

element analysis on distributed memory systems. 

2 Partitioning with Dual Super-Elements 

To facilitate the presentation of the developed partitioning approach, a structural domain 

(Figure 1) is considered subject to arbitrary restraint and loading conditions, and which is to 

be partitioned into three subdomains by introducing two partitions along the dotted lines.  

Without loss of generality, it is assumed here that each node has 2 degrees of freedom (DOF), 
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hence this domain with 40 nodes has a total of 80 DOF when considering a monolithic 

treatment. In nonlinear finite element analysis, the tangent stiffness matrix relates the 

infinitesimal increments of resistance and displacements, thus for the overall structural 

domain under consideration: 

     80 8080 80
R K d 


          Eq. 1 

where d  is infinitesimal increment of nodal displacements, K  is the tangent stiffness 

matrix, and R  is the infinitesimal change in resistance. The subscripts in brackets indicate 

the respective size of arrays with curly brackets { } representing a column vector and square 

brackets [ ] representing a matrix. If 
 80

P  is the vector of applied loads, and 
 80

R  is the total 

resistance offered by the structure, then the out-of-balance 
 80

G  is defined as: 

     80 80 80
G R P           Eq. 2 

The structure is said to be in equilibrium if the out-of-balance vanishes to within an 

acceptable tolerance: 

   80 80
G O           Eq. 3 

where O  is a zero vector. Note that the treatment of restrained DOF at supports is easily 

accommodated by replacing the equilibrium conditions in G  with the essential nodal 

displacement conditions, though this is excluded from the following discussion without loss 

of generality to simplify the method presentation. 

A non-zero G  for a given set of nodal displacements d  indicates lack of equilibrium and 

necessitates iterative correction of the displacements, which is obtained (for load control) as: 

      1

80 8080 80
d K G 


          Eq. 4 

leading to: 

     80 80 80
 

n
d d d          Eq. 5 
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where d  and nd  are the previous and current iterative displacement vectors, respectively. 

The new resistance forces vector R  is evaluated again for the current displacements (i.e. 

 nd d ), and the iterative process is repeated until Eq. 3 is satisfied to within an acceptable 

tolerance. 

It is noted here that Eq. 4 becomes different when the load at the end of the step is unknown, 

such as in displacement or arc length control as elaborated later in Section 2.4. 

2.1 Partitioning Method – Solution at Parent Level 

With the structural domain partitioning, let the three new subdomains be named as 0 , 1  

and 2 , where the zero-indexed partition represents the parent structure, while the rest 

represent children partitions. The three partitions are illustrated in Figure 2. 

After partitioning, the parent subdomain 0  has 37 nodes, of which 15 are connected to two 

partition placeholder super-elements. For the child partitions, partition 1  has 12 nodes with 

10 nodes at the boundary connected to a dual super-element, while partition 2  has 9 nodes 

with 8 at the partitioned boundary connected to a dual super-element. Generally, the nodes in 

the parent subdomain that are connected to the partition super-elements may or may not be 

connected to conventional elements. In the example under consideration, one node is 

connected to partition super-elements only, and 14 nodes are connected to conventional finite 

elements in addition to partition super-elements. The parent subdomain is still complete with 

the response of the removed partitions being represented by the partition super-elements. The 

stiffness matrix for the parent subdomain can be assembled in the normal way by first 

accounting for the contribution from the conventional elements: 

   074,74 74,74
K K


          Eq. 6 

In the above equation the terms associated with node 31 are zero because there is no 

conventional element attached to this node. The contributions from the partition super- 

elements are then assemble into the stiffness matrix. The first partition super-element is 

connected to 10 nodes, which are numbered consecutively from 23 to 32 for presentational 

convenience, leading to the following additional assembled contribution: 
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    1[20,20]45:64,45:64 45:64,45:64

cK K K          Eq. 7 

where 
1[20,20]

cK
 is the condensed stiffness matrix of child partition 1  after the internal 

nodes have been eliminated using the conditions of internal equilibrium. As discussed in the 

next section, the condensed stiffness matrix is recovered easily in a frontal solution method 

from the child analysis process as the ‘Grandpa’ [15] associated with the remaining active 

freedoms of the dual super-element on the partitioned boundary. Similarly the contribution 

from the second partition super-element, which is connected to 8 nodes numbered from 30 to 

37, is assembled as: 

    2 [16,16]59:74,59:74 59:74,59:74

cK K K          Eq. 8 

It is evident that super elements are treated in an identical way to conventional finite elements 

with regard to assembly of element contributions, and therefore the order of element 

assembly in the parent subdomain may be varied from what is assumed in the above 

discussion without loss of generality. Indeed, in a frontal solution method, the order of 

assembly at the parent level, considering super-elements and conventional elements 

individually, would typically be determined as one that minimises the front width. 

Considering the assembled tangent stiffness matrix, the change in resistance due to the 

iterative corrections of displacements, including the contribution from the partition super 

elements, may be approximated for the purpose of iteration as: 

     74 7474,74
R K d           Eq. 9 

where d  and R  refer here to finite iterative increments of nodal displacement and 

resistance at the parent level, respectively. 

Similar to the tangent stiffness matrix, the resistance forces vector R  is assembled as 

contributions from conventional finite elements and super elements, where in the latter case 

the condensed resistance forces at the partitioned boundary 
m

cR  are considered. The out-of-

balance at the parent level is then obtained as: 

     74 74 74
G R P            Eq. 10 
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It is worth noting here that the load vector 
 74

P  in the above equation does not contain the 

loads that are applied to the internal nodes of the partitions, as these are dealt with inside the 

child partitions. If there is any out-of-balance remaining, the correction to the displacements 

at the parent level is obtained as: 

      1

74 7474 74
d K G 


           Eq. 11 

The corrections to the displacements for the nodes connected to the partition super-elements 

are communicated to the dual super-elements: 

1{20} {45:64} cd d           Eq. 12 

and:  

2{16} {59:74}

cd d            Eq. 13 

so as to determine the displacement corrections for the internal nodes, as discussed in the next 

section. Once the partition displacements are updated with the iterative corrections, the 

condensed resistance forces and tangent stiffness from the dual super-elements are provided 

to the parent structure for the next iteration. The process is repeated until convergence to an 

acceptably small out-of-balance is achieved at both the parent and child levels. 

2.2 Frontal Method – Solution at Child Level 

The solution of the linearised system of equations at the parent level, as discussed in the 

previous section, may be obtained efficiently using a variety of techniques, such as skyline 

solution methods [24, 25] or the frontal method [15, 16, 26]. At the child level, however, 

there is a marginal benefit in using the frontal method, which is based on optimal element 

ordering for minimum front width. In this respect, the use of a wrapper element over the 

partitioned boundary, so-called dual super-element, and its placement as the last element in 

the frontal order of assembly allows the straightforward recovery of the condensed resistance 

forces and tangent stiffness matrix required at the parent level. 

The solution technique in the frontal method, or in any other method based on Gaussian 

elimination, consists of two phases: forward elimination and backward substitution. In the 
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forward elimination phase, the augmented matrix consisting of the coefficient matrix and the 

right hand side is converted into row echelon form by a succession of elementary row 

operations. The system of linearized equations for the example under consideration can be 

represented as: 

1,1 1,2 1, 1 1

2,1 2,2 2, 2 2

,1 ,2 ,

n

n

n n n n n n

K K K d G

K K K d G

K K K d G

     
     

         
 

   
 

       

      Eq. 14 

where n depends on the partition size. 

The augmented matrix form for the above equation can be represented as: 

1,1 1,2 1, 1 1

2,1 2,2 2, 2 2

,1 ,2 ,

   
   

  
 

 
 

 
   

n

n

n n n n n n

K K K G d

K K K G d

K K K G d

       Eq. 15 

where the displacement vector is tagged along in order to label the matrix rows. 

When the contributions of all elements are available, such as at the parent level, a succession 

of elementary row operations, namely forward elimination, is used to convert this matrix into 

its upper triangular form: 

1,1 1,2 1, 1

2,2 2, 2

,

0

0 0

    
 
   
 
 
 

   

n

n

n n n

K K K G

K K G

K G

       Eq. 16 

which can immediately be followed by backward substitution to determine the iterative 

displacement corrections: 

,






n
n

n n

G
d

K
           Eq. 17 
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,

1
,

1

 

 
    

  


n

i i i j j

j i
i i

d G K d
K

         Eq. 18 

For a child partition, however, the forward elimination process cannot include elimination of 

the freedoms at the partitioned boundary, since these are attached to the parent partition. In 

this respect, the use of a wrapper dual super element attached to the partitioned boundary 

nodes, and which is placed at the end of the frontal ordering list, allows the forward 

elimination process to be conveniently terminated at the point where only the partitioned 

boundary freedoms remain active. If h represents the number of freedoms on the partitioned 

boundary, and assuming without loss of generality that these are the last h of a total of n 

freedoms, the following augmented matrix is obtained at the point when the dual super 

element is being considered in the frontal solution: 

1,1 1,2 1, 1

2,2 2, 2

1, 1 1, 2 1, 1

2, 1 2, 2 2, 2

, 1 , 2 ,

0

0 0

0 0

           

           

   

    
 
   
 
 
 

    
    




   
 

n

n

n h n h n h n h n h n n h

n h n h n h n h n h n n h

n n h n n h n n n

K K K G

K K G

K K K G

K K K G

K K K G






  Eq. 19 

The resulting ‘Grandpa’ associated with the active freedoms [ 1: , 1: ]   


n h n n h nK  is returned as the 

condensed tangent stiffness matrix 
m

cK  for child partition m, while the associated right hand 

side vector { 1: } 


n h nG  is returned as the corresponding condensed resistance forces 
m

cR . In 

this respect, the condensed tangent stiffness and resistance forces for a child partition, which 

are obtained at the point of considering the dual super-element in the frontal solution, are 

communicated exclusively to the placeholder super-element to present these as its 

contributions at the parent level. 

Once all child contributions are returned and assembled at the parent level, the iterative 

displacement corrections can be determined for the parent structure through a contiguous 

process of forward elimination followed by backward substitution. The iterative 
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displacements at the partitioned boundary can then be provided to the child partitions via the 

dual super-elements, and only at this point can the iterative displacements inside the child 

partitions be determined via backward substitution. Clearly therefore, the forward elimination 

and backward substitution phases at the child level are interrupted by returning 
m

cK  along 

with 
m

cR  to the parent and then receiving 
m

cd  from the parent following the solution at the 

parent level. Once 
m

cd  is established, which corresponds at the child level to the iterative 

displacements of the active freedoms 
{ 1: } n h nd , backward substitution proceeds in 

accordance with Eq. 18 using the augmented matrix of Eq. 19 to establish the remaining 

iterative displacements starting from freedom n h  to freedom 1. 

It should be clear that the present partitioning method shares some concepts with the Schur 

Complement Method [27], where the assembled stiffness matrix K following Eqs. (6-8) can 

be considered as the Schur Complement of the sub-matrix associated with freedoms of the 

parent sub-domain 0  in the stiffness matrix of the overall domain  . However, unlike the 

Schur Complement Method, the assembled matrix K not only relates to interface freedoms 

but also to interior freedoms of the parent sub-domain 0 . In this respect, the adopted 

partitioning approach presents an effective generalisation of the Schur Complement Method 

that also facilitates hierarchic partitioning, in the sense that a child partition can be 

decomposed into further partitions leading to significant computational benefits on parallel 

systems. 

2.3 Control and Convergence 

The control of the incremental iterative solution procedure for tracing the equilibrium path is 

most effectively undertaken at the parent level. For proportional static loading, where all the 

loads are scaled by a single parameter , nonlinear analysis may be undertaken using load 

control, in which case   is prescribed for each increment at the parent level and propagated 

to child partitions. For non-proportional static loading, nonlinear analysis is most effectively 

undertaken over the time (or pseudo-time) domain, where the time t is also prescribed for 

each increment at the parent level and propagated to child partitions. An almost identical 

solution procedure is adopted for dynamic loading using time-marching over the time 

domain. In all these cases, the loads are prescribed over the incremental step under 
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consideration, and the expressions for the iterative displacement corrections are identical to 

those provided in the previous two sections for the parent structure and child partitions. For 

proportional static loading, however, displacement or arc-length control is often employed to 

trace the nonlinear response following buckling or softening, where the load factor   is 

unknown. This requires a modification of the expressions for iterative displacement 

corrections, as elaborated in the next section. 

As mentioned before, overall convergence to equilibrium should be established with due 

consideration of the out-of-balance at the parent and child levels. Different measures of 

convergence may be used, such as the norm of the out-of-balance G, the norm of iterative 

displacements d  or the scalar product of G with d . Convergence would then be 

considered to have been achieved when one or more of such measures are below a predefined 

tolerance . In this respect, convergence can be checked separately at the parent and child 

levels, with overall convergence required at all levels, as expressed by:  

 {1: } {1: },  n h n hf G d          Eq. 20 

where f is a scalar function that returns the desired convergence measure for the partition 

under consideration, n is the total number of freedoms for the partition, and h is the number 

of freedoms on the partition boundary, with 0h  for the parent structure. 

It should be noted that for a child partition the above expression deals with convergence to 

equilibrium inside the partition, since equilibrium at the partition boundary is dealt with at the 

parent level. This is reflected by the omission of the terms 
{ 1: } n h nG , representing the 

resistance forces of the dual super element that are not typically zero at equilibrium, along 

with the corresponding 
{ 1: } n h nd  on the partition boundary. 

2.4 Displacement Control 

For static proportional loading, displacement control is typically applied to trace the 

equilibrium path following buckling, the formation of plastic mechanisms or the initiation of 

softening. The simplest variant of displacement control [24] prescribes over the current step 

an increment  jd  for a specific freedom j, which can be at the parent or child levels. In 

return, the load factor   becomes unknown and is therefore subject to iterative corrections 
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  similar to displacements. Accordingly, the previous expressions for the iterative 

displacement corrections are modified at the parent and child levels to: 

 1   od K G P          Eq. 21 

where 
oP  is a vector representing the nominal (un-scaled) proportional loads. 

The solution of the resulting system of equations is most effectively undertaken by including 

oP  as an additional vector along with G in the augmented matrix, at both the parent and child 

levels. The solutions associated with these vectors are then obtained using the proposed 

partitioned approach using the process of forward elimination followed by backward 

substitution, with:  

 1 Gd K G          Eq. 22 

 1P od K P           Eq. 23 

 G Pd d d            Eq. 24 

Given that the increment of the controlled displacement increment 
jd  is either the 

prescribed value  jd  at the start of the increment or 0 for subsequent iterations, with 

 G P

j j jd d d   , this condition can be used with Eq. 24 to determine   and hence d . 

A more sophisticated variant of displacement control is the arc-length method [28], where the 

scalar product of the incremental displacements is typically controlled. The main difference 

between this method and basic displacement control is that   is determined from a 

quadratic equation involving scalar products of 
Gd  and

Pd , which are still obtained as 

above. 

3 Parallelisation Efficiency with Partitioning Approach 

While the proposed partitioning approach can be implemented as a sequential procedure on a 

single computing processor, the main purpose behind its development is to achieve 

significant computational savings and reduction in memory demands via implementation on 

parallel processing systems with distributed memory. The computational savings that arise 
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from undertaking element computations in parallel are obvious and are not addressed in this 

section. Instead, the following investigation aims at demonstrating through simple examples 

the conditions under which significant computational savings may be expected in the solution 

of the simultaneous equations of the overall system. 

Focus is placed in this study on the computational cost of the forward elimination process 

using the frontal method, where the proposed partitioning approach is compared to the 

monolithic approach. The effectiveness of the frontal method is significantly enhanced when 

used with several partitions running in parallel on different processors. While the total CPU 

time required for the forward elimination phase does not always decrease as a result of 

partitioning, it is shown that the wall-clock time can be significantly reduced, as 

demonstrated in the following two examples. It should be noted that the influence of other 

computational aspects, such as backward substitution, element response calculation and inter-

processor communication, are not considered here, though their implications are investigated 

later using the ADAPTIC implementation of the partitioned approach. 

3.1 4×4 Grid 

A basic mesh of 16 2D elements with 4 nodes each connected in the form of a 4×4 grid is 

considered, as shown in Figure 3(a). For presentational simplicity, it is assumed that each 

node has 1 DOF. Three possible scenarios are considered for the solution of this mesh, 

namely, the solution of full 25×25 matrix, frontal solution without partitioning, and frontal 

solution with partitioning. The computational efficiency of each scenario is considered in 

terms of both CPU time and wall-clock time. The exact time taken by the CPU depends upon 

numerous variables including the architecture of the particular machine and the 

communication network available for parallelisation; however, the count of multiplication 

operations required for the forward elimination phase of a system of equations provides a 

reasonably good comparison of efficiency. 

In order to bring a matrix of size n n  to its upper triangular form, the number of 

multiplication operations required is approximately given by: 

   1 1

3

n n n
MOps

 
         Eq. 25 
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The full matrix for the grid under consideration is of size 25×25, thus the number of 

multiplication operations required to bring this matrix to its upper triangular form is 5200. 

In the second scenario, the frontal method is considered for the solution of the same system. 

If the order of element assembly follows the numbering shown in Figure 3(a), there are a total 

of 16 reduction (or elimination) operations to be performed in order to bring the matrix to its 

upper triangular form, the details of which are shown in Table 1. The total number of 

multiplication operations required for carrying out all the 16 reduction operations is 704, 

which is approximately 14% of what is required for the full 25×25 matrix using conventional 

Gaussian elimination. This saving of approximately 86% demonstrates the efficiency of the 

frontal method in solving a system of algebraic equations arising from finite element 

discretisation. 

In the third scenario, the frontal method is considered along with the proposed partitioning 

approach, where partitions are processed in parallel. Three cases of partitioning are 

considered: 2 partitions, 4 partitions, and 16 partitions, as illustrated in Figure 3(b,c,d). 

In the first case, the mesh is partitioned in 2 halves, each consisting of 2×4 element grids, as 

shown in Figure 3(b). In this case, the 5 interface nodes on the partitioned boundary cannot 

be eliminated from the Grandpa at the child partition level but are eliminated at the parent 

level, as discussed in Sections 2.1 and 2.2. For solving each partition of 2×4 elements, 8 

reduction operations are required (Table 2). Using the assembly order shown in Figure 3(b), 

the number of multiplication operations required is 332 per partition. In addition, 40 

multiplication operations are required for the 5 interface nodes. Thus a total number of 704 

multiplication operations are required for this method, which is identical in terms of CPU 

time to the frontal method using the 4×4 grid without partitioning. However, in terms of wall-

clock time with parallel processing of the partitions, the number of multiplication operations 

undertaken sequentially is 372 (i.e. 332+40), which is only 53% of that required by the 

frontal solution without partitioning. 

As an alternative partitioning scenario, the mesh is divided into 4 quarters of 2×2 element 

meshes, as shown in Figure 3(c). The solution of each partition following the depicted 

assembly order, and retaining the interface nodes for elimination at the parent level, consists 

of 4 reduction operations requiring 92 multiplications, as detailed in Table 3. The global 
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solution in this case also requires 4 reduction operations, where the number of multiplication 

operations required for the global solution is 184. Thus the total number of multiplication 

operations in terms of CPU time required in this case is 552, which is interestingly much less 

than the CPU time required for the previous two cases. This highlights the absolute efficiency 

of the proposed partitioning approach as a practical implementation of a multifrontal solution 

scheme [22]. In terms of wall-clock time with parallel processing of the partitions, the 

number of multiplication operations undertaken sequentially is 276 (ie. 92+184), which is 

39% and 74% of the wall-clock times of the cases with no partitions and with 2 partitions , 

respectively. 

The last scenario considered is partitioning the mesh into 16 parts each consisting of a single 

element, as shown in Figure 3(d). This option does not offer much advantage with regard to 

the forward elimination process because all of the original nodes except for the four corner 

nodes are interface nodes and are carried into the global solution. The number of 

multiplication operations for solving all the partitions is 48, while that for the global solution 

is 596, as detailed in Table 4. Accordingly, the total number of multiplication operations 

related to CPU time is 644, and the sequential multiplication operations associated with wall-

clock time is 608. The wall-clock efficiency is not commensurate in this case with the 

deployed computational resources consisting of 16 processors, since the wall-clock time 

reduces by a mere 14% compared to the frontal solution without partitioning. Importantly, the 

speedup deteriorates in comparison with the two previous partitioned cases, where the wall-

clock time of the 16 partitions is 163% and 220% that of the cases with 2 and 4 partitions, 

respectively. 

A summary of the speedup, defined as the ratio of the wall-clock time without partitioning to 

that with partitioning, is provided in Table 5. It should be emphasised again that this speedup 

is based on the computational demand of the forward elimination process, ignoring such 

factors as the inter-processor communication overhead and the computational demand of the 

element response calculations. 

3.2 2×8  Strip 

The same 16 2D elements used in the previous example are rearranged to constitute a mesh 

for a structure in the shape of a strip as shown in Figure 4(a), where the computational 
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efficiency is again illustrated by considering the monolithic model and a partitioned model 

with two partitions. For the monolithic structure and considering an element assembly order 

as shown in Figure 4(a), there are 16 reduction operations required as detailed in Table 6. The 

total number of multiplication operations required in this case is 408. 

For the partitioned model, as shown in Figure 4(b), there are 8 reduction operations required 

for each partition, as detailed in Table 7. In relation to CPU time, the total number of 

multiplication operations required is 408, which is same as for the full structure. In terms of 

wall-clock time, however, the number of sequential multiplication operations required in the 

partitioned analysis is 208 (ie. 200+8), which is around 51% that of the full structure as 

against 53% when the 4×4 grid structure of the previous example was divided into two 

partitions. This difference between the efficiency gained when the two example meshes are 

partitioned in two is partly because of their respective shapes. However, it also noted that for 

the same structure and number of partitions, improved wall-clock efficiency is typically 

achieved for a lower ratio between the number of interface nodes and the number of internal 

partition nodes, both in respect of solving the linearized system of equations and the inter-

processor communication overhead. 

3.3 Remarks on Efficient Partitioning 

It is well established that parallelisation over an increasing number of processors eventually 

becomes less effective leading to a reduction in speedup rates due to the inter-processor 

communication overhead [29]. This fact aside, the above study has shown that even the 

solution of the linearized system of equations reaches a maximum wall-clock speedup at a 

specific level of partitioning, where excessive partitioning to the level of individual elements 

attains virtually no speedup. This result is consistent with Amdahl’s Law [30], which states 

that the speedup of parallelisation is limited by the portion of the program that cannot be 

parallelised. From the perspective of solving the overall system of equations, optimal 

partitioning is typically achieved when there is a balance between the number of interface 

freedoms at the parent level 0n  and the number of freedoms internal to the child partitions 

i in h . For a rough guide, which assumes computational demand to be proportional to the 

number of eliminated freedoms, optimal partitioning is often realised when 0n  is equal to 
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 max i i
i

n h . However, there are real examples where at this point the front width at the 

parent may still be much less than that at the child level, in which case further partitioning 

can still enhance computational efficiency. This accords with the established benefits of the 

multifrontal solution method [22], and could even lead to computational efficiency that 

surpasses the optimal speedup (i.e. the number of processors). Indeed, this has already been 

demonstrated in practical applications of the proposed partitioning approach to the seismic 

assessment of multi-storey buildings [31], where a super-optimal speedup of 27 was achieved 

with 14 partitions running in parallel on an equal number of processors. Similarly, where the 

computational demand is dominated by the element response calculations, as opposed to the 

solution of equilibrium equations or inter-processor communication, optimal speedup may be 

achieved at relatively fine partitioning where  0 max i i
i

n n h . 

Of course, the above discussion assumes that hardware resources in terms of the number of 

processors are unlimited. In practice, the number of processors that can be used is limited, 

and this might at first sight limit the number of partitions, since ideally only one partition 

should be attached to a specific processor so as to maximise the wall-clock speedup arising 

from parallelisation. However, there are numerous real problems where it is beneficial from a 

modelling perspective to employ more partitions than available processors, in which case 

more than one partition would be attached to a single processor. While this can have an 

adverse effect on speedup with the simultaneous processing of multiple partitions on one 

processor, this can be significantly ameliorated if these partitions are scheduled for sequential 

processing using their frontal ordering at the parent level. This refinement, however, is 

outside the scope of the present paper. 

4 Implementation of Partitioning Method 

The proposed partitioning approach has been implemented in ADAPTIC [16], an advanced 

nonlinear structural analysis program developed at Imperial College London by Izzuddin and 

co-workers over the past 25 years. 

ADAPTIC consists of two programs: i) READ which reads, checks and processes the 

problem data file, and ii) ANALYSE which takes as input intermediate processed files 

generated by READ to perform the required analysis. A shell script is used to run ADAPTIC, 
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which launches the READ program and, subject to the absence of errors in the data syntax 

and structural model, starts the ANALYSE program subsequently. 

For the purpose of implementing the proposed partitioned approach on a parallel processing 

system with distributed memory, the Message Passing Interface (MPI) [32] paradigm is 

employed. In this respect, MPI commands are included within the ADAPTIC shell script to 

launch several parallel processes of ANALYSE after the execution of READ. The number of 

processes of ANALYSE is one more than the number of partitions supplied by the user, 

where the additional process represents the parent subdomain including the placeholder 

super-elements and serves as the ‘coordinator’, with the remainder serving as ‘child partition 

processes’. 

The process ranked 0 in the default MPI communicator is designated as the ‘coordinator’ and 

is responsible for processing the parent subdomain with the child partitions represented by 

the placeholder super-elements. This process assumes the control of the analysis and issues 

instructions to all the other processes, which are responsible for one child structure each and 

are designated as ‘partition processes’ (PPs). The incremental solution procedure followed by 

the coordinator is illustrated in the flowchart of Figure 5 for static proportional loading under 

load control, with similar procedures used for displacement control and time-history 

static/dynamic loading. Clearly, the coordinator control procedure is almost identical to what 

is followed in a monolithic approach, where placeholder super-elements are processed similar 

to conventional elements via task instructions to the corresponding dual super-elements in 

child partition processes. These instructions can be easily introduced in the solution 

procedure of existing nonlinear finite element analysis programs with minimal intervention, 

where Task 2 is the main instruction by which the response of the placeholder super-element 

is determined in accordance with Section 2.2. 

Child partition processes have a rank greater than zero in the default MPI communicator and 

are each associated with a single partition, where the flowchart for the child partition solution 

procedure is illustrated in Figure 6, On start, each partition process reads the data for its 

partition, and then awaits instructions from the coordinator. For nonlinear static analysis 

under proportional loading using load control, a partition process can receive 7 task 

instructions, which are processed as follows: 



22 

 

 Task 0, New step: This task specifies that a new load step is to be started, where the 

partition process then expects to receive the load factor from the coordinator for the 

new load step. 

 Task 1, Start: This task specifies that the analysis for the new load step is to be 

started. The loads are as per the new load factor received and the partition boundary 

displacements are as per the last equilibrium state. The condensed tangent stiffness 

and resistance forces for the partition boundary (dual super element) nodes are 

obtained using forward elimination, and sent back to the coordinator.  

 Task 2, Iterate: This is the main task which establishes the response of the dual super-

element. It obtains the iterative incremental displacements for the partition boundary, 

employs backward substitution to obtain the internal partition displacements, and 

performs forward elimination to determine the corresponding tangent stiffness and 

resistance forces. 

 Task 3, Re-equilibrate: After achieving overall convergence at parent and child levels, 

the coordinator can instruct partition processes to re-equilibrate the current load step. 

This is typically required following automatic mesh refinement [33] at either the 

parent or child levels. 

 Task 4, Post-equilibrium: Under this task, the partition process updates the 

equilibrium state and stores the results for the current load step in a partition output 

file. 

 Task 5, Reset all: Under this task, the partition process resets the increments of 

displacement to zero. This is typically performed after convergence and update, or to 

initiate a new iterative procedure following lack of convergence. 

 Task 6, Finish: This instruction terminates the partition process.  

The child partition procedure in Figure 6 makes use of the same component routines 

employed in the parent procedure of Figure 5, except for two features. The first feature 

relates to the determination of the condensed resistance forces and tangent stiffness at the 

partitioned boundary, which are evaluated for the dual super-element under Tasks 1 and 2 in 

accordance with Section 2.2. The second important feature concerns the fact that control fully 

rests with the parent process, with the child process simply acting on control instructions 

from the parent process. Accordingly, both the parent and child partitions could make use of 

the same nonlinear analysis program, including the same library of elements, materials, 
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solution methods, etc., executed under different MPI processes, only the parent process takes 

active control (Figure 5) while child processes adopt passive control (Figure 6). This 

approach lends itself to implementation for existing finite element analysis programs with 

minimal modification using MPI. 

5 Verification and Application 

This section presents several examples employing ADAPTIC [16] with the newly developed 

partitioning approach, highlighting first the maintained accuracy of the proposed approach 

compared to the conventional monolithic treatment, followed by demonstrating the 

computational speedup and ease of modelling that it provides. 

5.1 Accuracy 

The following three examples are aimed at demonstrating the accuracy of the proposed 

domain decomposition approach in geometric and material nonlinear finite element analysis. 

5.1.1 Lee’s Frame 

The first example used to demonstrate the accuracy of the proposed partitioning approach is 

the well-known Lee’s frame [34] depicted in Figure 7(a). The frame is first analysed as a 

whole structure using conventional monolithic analysis, and then it is considered using 3 

partitions within a parent structure as shown in Figure 7(b) In both conventional monolithic 

analysis and parallel partitioned analysis, the frame is subjected to proportional loading, and 

the analysis is carried out in two phases. First, a load control phase is applied with 20 equal 

load factor steps  = 0.1. Then, automatic displacement control is used after the load control 

phase terminates with convergence problems near the limit point. The automatic 

displacement control phase is terminated with user-defined conditions on the values of the 

load factor and nodal displacements. Considering the predicted displacements of the loaded 

node 3 in the two directions in Figure 8, it is clear that there is an excellent match between 

the results of conventional monolithic analysis and the proposed partitioning method for this 

highly geometric nonlinear problem. 
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5.1.2 Four-Storey Frame 

The second example is a four-storey frame, as depicted in Figure 9, which is subject to 

ground excitation with the earthquake signal shown in Figure 10. The mass is lumped at 

nodes, and the frame is modelled using an adaptive elasto-plastic method, where elastic 

quartic elements are initially used, which are subsequently automatically subdivided into 

elasto-plastic cubic elements when and where necessary [33]. For the partitioned analysis, the 

frame is divided into one parent structure and 4 partitions as shown in Figure 11. Each storey 

is modelled as a separate partition, where the concept of modular modelling is utilised to take 

advantage of the fact that the top three stories are similar. The results obtained from 

partitioned analysis match exactly those obtained using the conventional monolithic 

approach, as shown in Figure 12. A similar favourable comparison of the deformed shapes is 

shown in Figure 13. 

5.1.3 RC Beam 

The third example verifying the accuracy of the present approach is a reinforced concrete 

beam subjected to static flexural loading, as shown in Figure 14. The concrete part is 

modelled with 1D cubic elasto-plastic elements that use inelastic uniaxial material response, 

while the reinforcement is also modelled with 1D elements that are linked to the concrete 

elements using rigid link elements. A simple trilinear model is used for concrete ignoring the 

tensile strength, while a bilinear model is used for steel [33], where the associated material 

properties are given in Table 8. The beam is modelled monolithically and with 4 partitions, 

where a favourable comparison of the deflected shapes is shown in Figure 15. A further 

comparison of the load-deflection response, as depicted in Figure 16, provides an exact match 

demonstrating the accuracy of the proposed partitioned approach in geometric and material 

nonlinear analysis. 

5.2 Computational and Modelling Benefits 

Three examples are presented hereafter to demonstrate the computational efficiency of the 

proposed parallel partitioning approach, as well as the modelling advantages that arise from 

its modular features.  
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5.2.1 I-Beam 

The first example considers an elastic I-beam modelled with 20-noded 3D brick element 

(Figure 17), where the flanges and web are discretised using 5 brick elements each, with 10 

element divisions used along the beam length leading to a total of 150 brick elements. The 

load is applied at mid-span in 200 steps with a constant increment of 60 kN to a total of 

12 MN. The beam is analysed as a single monolithic structure and as a partitioned structure 

with using 2, 3, and 5 partitions, as illustrated in Figure 17. Since the present partitioning 

scheme processes the partitions in parallel and requires their response before completion of 

the solution at the parent level, it is expected that the time taken is approximately equal to 

that required for analysing the largest partition, subject to the order of the partitions in the 

frontal solution at the parent level, in addition to the time required by the parent structure and 

some communication overhead. A comparison of the equivalent degrees of freedom that are 

processed sequentially (i.e. the sum of the freedoms of the largest partition and the parent 

structure) can give a good estimate of the expected time saved. For the current example, the 

number of equivalent degrees of freedom is provided in Table 9 for all cases. It should be 

noted that the communication overhead will be in direct proportion to the size of the parent 

structure, leading to more time required for the case of 5 partitions than stipulated by the 

comparison based on equivalent freedoms in Table 9. 

To investigate the correlation between the anticipated and actual wall-clock time savings, the 

various analyses are carried out 20 times for each case, and the time taken to perform each 

analysis is presented in Figure 18. The results show that the equivalent number of freedoms 

provides a reasonable first-order approximation of wall-clock time savings, as evidently the 

average savings of the partitioned cases are between 50% and 60%. Interestingly, the case 

with 2 partitions appears to be the most efficient in this case, contrary to the stipulation based 

on equivalent number of freedoms, which may be attributed to the lower communication 

overhead compared to the two other partitioned cases. 

5.2.2 Slab 

The second example is a square slab consisting of 1024 (32×32×1) 3D 20-noded brick 

elements. The slab is simply supported and the load is applied uniformly at all the nodes on 

the top surface in 200 steps. The slab is analysed as a single structure and is also considered 
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as a partitioned structure with 4 and 16 partitions, each consisting of 16×16×1 and 8×8×1 

elements, respectively, as illustrated in Figure 19. This example also demonstrates the ease of 

modelling achieved by the present domain partitioning approach. As can be seen in 

Figure 19, the partitions are similar and can be modelled easily by making copies. In the case 

of 4 partitions for example, partition 2 can be easily modelled by copying partition 1 and then 

making the necessary changes in the support conditions and the partitioned boundary. In the 

case of 16 partitions, some partitions are identical in all respects and need just copying 

without any modifications (e.g. partitions 5 and 12, or partitions 6, 7, 10 and 11). 

In order to study the effects of partitioning on computational efficiency in relation to the 

varying computational demand of evaluating the element response contributions compared to 

the solution of the system of equilibrium equations at structural level, the same slab models 

are analysed using different number of Gauss points. In the first set of runs, all cases 

(monolithic, 4 partitions, and 16 partitions) are analysed with 8 Gauss points per brick 

element for 10 times, where the comparison of results is shown in Figure 20. The average 

time taken by the monolithic models is 3587 seconds, which is about 7 times that taken by the 

structure modelled with 4 partitions that required an average of 495 seconds. The time taken 

by the structure modelled with 16 partitions is, however, greater than that of the 4 partitions, 

standing at an average of 798 seconds. This increase in the wall-clock time requirement is 

due to the increased size of the parent structure as the computational demand of the element 

response contributions is relatively low in this case. This fact is further verified by increasing 

the number of Gauss points from 8 to 27 in the second set of runs. The effects of this increase 

on the computational demand are not significantly visible, as the wall-clock time 

requirements of each case increased only slightly, as shown in Figure 20. A third set of runs 

is considered with 1000 Gauss points per element, representing a type of problem in which 

the evaluation of the element response is relatively computationally expensive. As observed 

from the results in Figure 21, the average time taken by the monolithic slab is now 7940 

seconds, which is about 5 times that of the 4 partitions standing at 1507 seconds. The time 

taken by the slab modelled with 16 partitions now stands at 1042 seconds, which is actually 

lower than that of the 4 partitions. This indicates that the computational efficiency of 

parallelisation can continue to improve with partitioning when the evaluation of the element 

or partition response continues to be associated with a significantly high computational 

demand compared to that of the solution of system of equations at the parent structural level. 
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5.2.3 Cellular Beam 

The final example is a cellular beam, a type of structural member that has gained increased 

popularity because of its ability to withstand gravitational loads over large spans whilst 

allowing the integration of services within the beam depth. The presence of holes in the web 

of the beam, however, causes local buckling in the web-post and/or compression regions 

around the openings. Work on the simplified and detailed analysis of this type of structure 

has been recently undertaken at Imperial College London as part of an independent PhD 

research programme [35]. This example is presented for illustrative purposes, demonstrating 

that the modelling of such seemingly complex structures is simplified with the use of modular 

modelling, and highlighting the computational efficiency of the proposed partitioned 

approach. 

The cellular beam under consideration spans over 30 meters and has a total of 32 holes in its 

web that are spaced 0.92 m apart centre to centre. The first hole is situated at a distance of 

0.74 m from the left end of the beam as shown in Figure 22(a). The beam has 25.4 mm thick 

and 268 mm wide flanges, 15.6 mm thick web, a total depth of 1165.2 mm and hole 

diameters of 800 mm each as shown in Figure 22(b,c). The web posts between two 

consecutive holes have a minimum width of 120 mm. 

The entire model consists of 9-noded shell elements [36] that are used to model the flanges 

and web regions. The domain partitioning for this example is relatively straightforward due to 

the fact that it consists of 31 identical unit cells in addition to the 2 end units. Therefore, it is 

advantageous to make each unit cell a child partition, resulting in the need to create only 3 

data files in addition to the parent structure which consists of nodes for the 32 cross-sections, 

equally spaced at 0.92 m. 

The cellular beam is subjected to a proportional vertical uniformly distributed load, with a 

nominal value of 10kN/m, which is specified internally at the partition level. Since this is a 

problem dominated by local buckling of the web-post, random imperfections are introduced 

via very small out-of-plane loads. Importantly, as the post-buckling response is associated 

with snap-back behaviour, the arc-length displacement control method is used beyond the 

limit point after an initial phase of load control. 
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Deflected shape at limit point is shown in Figure 23 whereas the final deflected shape is 

shown in Figure 24. For illustrative purposes, a close up of partition 29 with contours of the 

normal stress in the longitudinal direction is provided in Figure 25. It can be seen, as 

expected, that the web-posts buckle near the support due to significant shear forces combined 

with compression resulting from applying the UDL on top of the beam. 

The load-deflection response of the beam is provided in Figure 26, where it is clear that the 

arc-length method is successful with the proposed partitioning approach in tracing the snap-

back post-buckling response. Importantly, the whole analysis is undertaken on 34 processors 

in 23min 20sec of wall-clock time, while identical results are obtained with a single-

processor monolithic model in 4hr 57min, thus representing a significant speed-up of around 

13. 

6 Conclusions 

A new domain decomposition method for nonlinear finite element analysis introducing the 

concept of dual partition super-elements has been presented. The method is ideally suited for 

parallel nonlinear static/dynamic analysis of structural systems. The proposed method offers a 

practical approach which can be readily implemented for existing finite element analysis 

programs to achieve parallelisation on distributed memory systems with minimal 

intervention, thus overcoming memory bottlenecks typically faced in the analysis of large 

scale problems. The proposed partitioning method utilises the exact tangent stiffness matrix 

at the interface boundary, and therefore it has identical convergence characteristics to the 

monolithic approach.  

The examples presented in Section 5.1 have demonstrated that the results obtained from the 

proposed parallel partitioning approach are identical to those obtained from conventional 

monolithic analysis. It has also been demonstrated in Section 5.2 that the computational 

efficiency is congruent with the equivalent number of total freedoms, taken as the size of the 

largest partition in addition to the parent structure. This is particularly the case when the 

solution of the system of simultaneous equilibrium equations dominates the computational 

demand. Together with the inter-processor communication overhead, this has the effect of 

diminishing return with increased partitioning, where the wall-clock time may increases from 

its optimal value for partitions exceeding a problem-specific number. On the other hand, it 
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was shown that the optimal number of partitions can be significantly increased for problems 

where the computational demand is dominated by nonlinear finite element computations, 

simulated in a specific example by increasing the number of Gauss points.  

The primary benefits of the proposed parallel partitioned approach include significant 

speedup due to parallelisation, overcoming memory bottlenecks on distributed memory 

systems, multi-frontal solution of the overall system of equations, and modelling benefits 

where identical partitions may be reused for modular/repetitive structures. The proposed 

parallel partitioning scheme also provides a natural framework to incorporate coupling of 

partitions with mixed element dimensions, mixed integration schemes and multi-level 

hierarchic partitioning, which are the focus of ongoing work. 
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Reduction 

operation 

Size of Grandpa 

before reduction 

Size of Grandpa 

after reduction 

Nodes 

eliminated 

Multiplication 

operations 

1 4×4 3×3 1 12 

2 5×5 4×4 1 20 

3 6×6 5×5 1 30 

4 7×7 5×5 2 72 

5 7×7 6×6 1 42 

6 7×7 6×6 1 42 

7 7×7 6×6 1 42 

8 7×7 5×5 2 72 

9 7×7 6×6 1 42 

10 7×7 6×6 1 42 

11 7×7 6×6 1 42 

12 7×7 5×5 2 72 

13 7×7 5×5 2 72 

14 6×6 4×4 2 50 

15 5×5 3×3 2 32 

16 4×4 0 4 20 

Total 25 704 

Table 1: Reduction operations for a 4×4 grid using frontal method 
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Reduction 

Operation 

Size of Grandpa Before 

Reduction 

Size of Grandpa 

After Reduction 

Nodes 

Eliminated 

Multiplication 

Operations 

Operations at Partition Level 

1 4×4 3×3 1 12 

2 5×5 4×4 1 20 

3 6×6 5×5 1 30 

4 7×7 5×5 2 72 

5 7×7 6×6 1 42 

6 7×7 6×6 1 42 

7 7×7 6×6 1 42 

8 7×7 5×5 2 72 

Total  10 332 

Operations at Global Level 

1 5×5 0 5 40 

Table 2: Reduction operations required for 2 partitions 
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Reduction 

Operation 

Size of Grandpa Before 

Reduction 

Size of Grandpa 

After Reduction 

Nodes 

Eliminated 

Multiplication 

Operations 

Operations at Partition Level 

1 4×4 3×3 1 12 

2 5×5 4×4 1 20 

3 6×6 5×5 1 30 

4 6×6 5×5 1 30 

Total 4 92 

Operations at Global Level 

1 5×5 5×5 0 0 

2 7×7 5×5 2 72 

3 7×7 5×5 2 72 

4 5×5 0 5 40 

Total 9 184 

Table 3: Reduction operations required for 4 partitions 
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Reduction 

Operation 

Size of Grandpa Before 

Reduction 

Size of 

Grandpa After 

Reduction 

Nodes 

Eliminated 

Multiplication 

Operations 

Operations at Partition Level 

1 4×4 3×3 1 12 

Total Multiplication Operations for Corner Partitions 12 

Operations at Global Level 

1 3×3 3×3 0 0 

2 5×5 4×4 1 20 

3 6×6 5×5 1 30 

4 6×6 5×5 1 30 

5 7×7 6×6 1 42 

6 7×7 6×6 1 42 

7 7×7 6×6 1 42 

8 7×7 5×5 2 72 

9 7×7 6×6 1 42 

10 7×7 6×6 1 42 

11 7×7 6×6 1 42 

12 7×7 5×5 2 72 

13 6×6 5×5 1 30 

14 6×6 4×4 2 50 

15 5×5 3×3 2 32 

16 3×3 0 3 8 

Total Multiplication Operations at Global Level 21 596 

Table 4: Reduction operations required for 16 partitions 
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Number of Partitions Sequential 

multiplications 

Speedup 

2 372 1.89 

4 276 2.55 

16 608 1.16 

Table 5: Summary of speed up 
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Reduction 

Operation 

Size of Grandpa 

Before Reduction 

Size of Grandpa 

After Reduction 

Nodes 

Eliminated 

Multiplication 

Operations 

1 4×4 3×3 1 12 

2 5×5 3×3 2 32 

3 5×5 4×4 1 20 

4 5×5 3×3 2 32 

5 5×5 4×4 1 20 

6 5×5 3×3 2 32 

7 5×5 4×4 1 20 

8 5×5 3×3 2 32 

9 5×5 4×4 1 20 

10 5×5 3×3 2 32 

11 5×5 4×4 1 20 

12 5×5 3×3 2 32 

13 5×5 4×4 1 20 

14 5×5 3×3 2 32 

15 5×5 3×3 2 32 

16 4×4 0 4 20 

Total Number of Multiplication Operations for all Reductions 408 

Table 6: Reduction operations for the strip of 16 2D elements 
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No. of Reduction 

Operation 

Size of Grandpa 

Before Reduction 

Size of Grandpa 

After Reduction 

Nodes 

Eliminated 

Multiplication 

Operations 

Operations at Partition Level 

1 4×4 3×3 1 12 

2 5×5 3×3 2 32 

3 5×5 4×4 1 20 

4 5×5 3×3 2 32 

5 5×5 4×4 1 20 

6 5×5 3×3 2 32 

7 5×5 4×4 1 20 

8 5×5 3×3 2 32 

Total Multiplication Operations for the Partition 200 

Operations at Global Level 

1 3×3 0 3 8 

Table 7: Reduction operations required for the strip in 2 partitions 
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Concrete 

Secant compressive stiffness 25,000 MPa 

Compressive strength 45 MPa 

Compressive softening stiffness -5,000 MPa 

Residual compressive strength 10 MPa 

Steel 

Young’s modulus 210,000 MPa 

Strength 300 MPa 

Strain-hardening factor 0.01 

Table 8: Material properties used for reinforced concrete beam 

  



41 

 

 Monolithic 2 Partitions 3 Partitions 5 Partitions 

DoFs for the largest partition 1178 628 518 298 

DoFs for the parent structure 0 78 156 312 

Total Equivalent DoFs 1178 706 674 610 

% of Monolithic 100 59.93 57.22 51.8 

Table 9: Comparison of equivalent DoFs 

 

 



 

Figure 1: An illustrative structural domain 

  



 

 

Figure 2: Partitioned structure (a) parent structure (b) child partitions 

  



 

 

Figure 3: A mesh of 16 2D elements (a) Original mesh (b) 2 partitions (c) 4 partitions (d) 16 

partitions 

  



 

 

Figure 4: Mesh of 16 2D elements (a) in the shape of a strip (b) the strip partitioned in two 

  



 

 

Figure 5: Flow chart of the coordinator process (PPs stands for partitions processes) 

  



 

 

Figure 6: Flow chart of a child partition process 

  



 

(a) 
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Figure 7: Lee’s frame (a) monolithic (b) partitioned 
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Figure 8: Comparison of displacement of node 3 
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Figure 9: Four storey frame structure with lumped mass 
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Figure 10: Ground acceleration record applied to 4 storey frame 

  

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
cc

e
le

ra
ti

o
n

 (
m

/s
2
)

Time (sec)



 

 

Figure 11: Partitioning of 4 storey frame for parallel analysis 
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Figure 12: Comparison of displacement at the top 
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Figure 13: Comparison of deformed shapes 
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Figure 14: Reinforced concrete beam 
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Figure 15: Deflected shapes for RC beam (a) whole beam (b) 4 partitions 

  



 

 

Figure 16: Load-deflection response of reinforced concrete beam 
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Figure 17: I-Beam geometric configuration and alternative partitions 

  



 

 

Figure 18: Comparison of wall clock times for I-beam 
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Figure 19: Slab and alternative partitioned models 

  



 

 

Figure 20: Wall clock times for 8 and 27 Gauss points 
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Figure 21: Wall clock times for 1000 Gauss points 
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Figure 22: Cellular beam (a) side elevation of the entire beam (b) side elevation of a typical 

unit cell (c) beam cross section 

  



 

 

 

Figure 23: Deflected shape of the cellular beam at limit point (displacement scale = 5) 

  



 

 

 

Figure 24: Final deflected shape of the cellular beam (displacement scale = 5) 

  



 

(a) Limit point 

 

 
 

(b) Final 

 

Figure 25: Contours of normal traction in longitudinal direction for partition 29 (Units: N/m) 

  



 

 

Figure 26: Displacement at mid-span in the cellular beam 
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