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ABSTRACT  The geology of London is surprisingly poorly understood and, until recently, has been accepted as that of an unfaulted subsi-

ding intraplate basin. The detection of deformation in such quiescent intraplate regions is, however, rather difficult since the movement 
rates are at least an order of magnitude less than those at plate margins. Growing evidence from across the capital indicates that London's 

ground conditions are considerably more complex than expected and that faulting is almost always involved. 

PSInSAR is a developing technique widely used to detect and monitor ground subsidence, especially in urban settings, the movements of 
which may be up to tens of millimetres.  This work focuses on the detection of smaller scale ground movements (of a few millimetres), 

which we believe are caused by fault-controlled intraplate adjustments, using PSInSAR.  

The London PSInSAR dataset derives from an imaging SAR archive spanning 18 years (1992 - 2000 and 2001 to 2010). Our preliminary 
findings have revealed systematic patterns of both vertical and horizontal ground displacement. These displacements appear to be fault 

constrained and fit the predicted framework of Caledonian, Variscan/Alpine structures known to exist across southern Britain. More detai-

led analysis has revealed some surprising patterns, which hint at discrete movements rather than continuous 'creep' over the 18 year period; 
we believe these are driven by basement faults beneath an inverting London basin. 

RÉSUMÉ  La géologie de Londres est étonnamment mal comprise et, jusqu’à récemment, le consensus s’établissait autour d’un bassin in-

traplaques en affaissement et sans failles. La détection de déformations au sein de telles zones intraplaques quiescentes est en effet difficile 
car les taux de déplacement sont au moins un ordre de grandeur en dessous de ceux aux frontières de plaques. Des données de plus en plus 

nombreuses provenant de toute la capitale indiquent que la situation du terrain londonien est bien plus complexe qu’attendue et des failles 

ou fractures sont presque toujours impliquées.  

PSInSAR est une technique en développement déjà largement utilisée pour détecter et surveiller la subsidence du sol, en particulier dans les 

zones urbaines où les mouvements correspondant peuvent êtres de l’ordre de la dizaine de millimètres. Grâce à cette technique, cette étude 

se concentre sur la détection de mouvements du sol de plus petite magnitude (de quelques millimètres), que nous pensons être causés par 
des ajustements intraplaques contrôlés par failles.  

La série de données PSInSAR de Londres provient d’une archive d’images SAR [radar à synthèse d’ouverture] couvrant 18 ans (1992-2000 

et 2001-2010). Nos résultats préliminaires ont révélés des profils systématiques de déplacement du sol verticalement et horizontalement. 
Ces déplacements paraissent contraint par des failles et correspondent au cadre prévu de structures calédoniennes, varisques/alpines dont 

l’existence est connue au sud de la Grande Bretagne. Une analyse plus détaillée a révélé des schémas surprenant qui suggèrent des mouve-

ments discrets plutôt qu’un rampement continu pendant les 18 ans. Nous pensons que ce phénomène est dû à des failles au niveau du socle 

sous un bassin londonien en inversion. 
 



1 INTRODUCTION 

The London Basin is a wedge-shaped asymmetric 

depression extending from Newbury to Rochester 

and Great Yarmouth in southern England. It has ex-

perienced no significant geological activity in the last 

50 Ma (Ellison et al., 2004) and has one of the lowest 

probabilistic seismic hazard assessments in Great 

Britain (Musson, 2007) (Figure 1). Nonetheless, it is 

one of a number of post-Variscan sedimentary basins 

(Busby and Smith, 2001), others of which were in-

verted during the Neogene (Chadwick, 1993). These 

Permo-Triassic basins opened by reverse movement 

above Variscan-age basement transcurrent (strike-

slip) and thrust faults (Chadwick and Evans, 1995) 

and, while each opened at different times, they were 

generally depositional during the Mesozoic. NW-SE 

trending basement faults were reactivated as dextral 

transcurrent faults at various points in the Palaeogene 

and Neogene, causing inversion of the Hampshire 

and Weald basins (Blundell, 2002; Chadwick, 1993). 

The Weald, for example, has been uplifted by more 

than 1500 m since the Cretaceous (Jones, 1999). The 

inversion is likely a result of the combined compres-

sive effects of the Alpine collision and North Atlantic 

ridge push (Musson, 2007). The London Basin was 

thought to have been unaffected by inversion but a 

reappraisal of the evidence indicates recent and ongo-

ing inversion of the basin (Royse et al., 2012; Ghail 

et al., 2015). 

Conventional GPS monitoring provides neither the 

temporal coverage nor the spatial density of observa-

tions necessary to resolve such small scale ground 

movement patterns. We therefore turn to PSInSAR, 

which was developed initially to detect and monitor 

ground subsidence, on a scale of 10s of millimetres, 

especially in urban settings.  Using PSI we focus on 

the detection of smaller scale ground movements (of 

only a few millimetres) which we believe are caused 

by fault-controlled intraplate adjustments, using 

PSInSAR; a technique which we refer to as MicroPSI 

or MPSI. 

Our MPSI investigations of London have been 

driven by numerous cases of unexpected ground con-

ditions encountered at various site investigations 

across the capital. These unexpected conditions usu-

ally reveal more structurally complex geology than 

was expected, and in most cases the materials are 

faulted and fractured to a surprising degree. Our geo-

logical understanding, based on field evidence, bore-

hole logs, geophysical survey data, Quaternary geol-

ogy and fluvial evolution, has led us to believe that 

the ground movements we have detected are caused 

by discrete tectonic events on basement faults be-

neath an inverting London basin. 

1.1 Background geological setting 

The London Basin (Figure 1) differs from other 

sedimentary basins in southern England by lying 

north of the 'Variscan Front', on the margin of the 

Midlands microcraton, and in having a distinctive 

wedge-shape, bounded by the chalk hills of the Chil-

terns and the North Downs. It was a subaerial high 

throughout much of the Mesozoic but underwent 

complex and rapid deformation during the late 

Palaeogene (Knox, 1996), since which time it has 

remained subaerial and quiescent (Gibbard and 

Lewin, 2003). Although Wooldridge (1923) recog-

nised its structural complexity nearly a century ago, 

the prevailing simple synclinal model (Sherlock, 

1947) persisted into the 1990s (Sumbler, 1996). 

Faults are rarely recognised in London (Aldiss, 2013) 

and evidence for recent fault displacement is rarer 

still. Yet countless site investigations have revealed 

brittle failures in Palaeocene materials all over Lon-

don. A Neolithic trackway, dating from between 

1520 and 1100 BC, unearthed in 1993 in Beckton 

[TQ 427 820] was found to be cut by a fault which is 

infilled with clay (Greenwood and Maloney, 1994), 

implying a significant London earthquake within the 

last 3000 years. The Colchester Earthquake of 1884, 

which occurred at the NE edge of the London Basin, 

was probably the most damaging in Britain in the last 

400 years (Musson and Winter, 1996).  

The surface drainage network and connectivity 

within the chalk aquifer in London reflect a complex 

pattern of faulting (de Freitas, 2009) related to Varis-

can basement fractures. The many instances of unex-

pected ground conditions, encountered in London 

since Victorian times (Chandler et al., 1998; Lenham 

et al., 2006; Mortimore et al., 2011; Newman, 2009) 

also point to greater structural complexity. A variety 

of Pleistocene (Berry, 1979; Hutchinson, 1980) and 

Holocene features (Akeroyd, 1972) mask deeper tec-

tonic changes but nonetheless, a regional uplift of at 

least 0.07 mm a⁻¹ across the Thames valley in the last 



900 ka has been detected (Maddy et al., 2000), with 

perhaps a higher rate in the last 400 ka, despite recent 

deglaciation (Nunn, 1983). A reappraisal of new and 

existing data (Royse et al., 2012; Ghail et al., 2015) 

in light of these observations indicates incipient in-

version of the London Basin.  
 

 
Figure 1. The Cretaceous/Tertiary transtensional basins and Varis-
can basement fractures of southern England. The region is histori-

cally aseismic but nonetheless influenced by north-directed Alpine 

stresses. Black rectangle indicates approximate coverage of the 
London PSI dataset. (Developed from Musson 2007, with Geologi-

cal Map Data BGS © NERC 2013 and Ordnance Survey Data © 

Crown copyright/database right 2012. An Ordnance Survey/EDINA 
supplied service) 

 

1.2 Persistent Scatterer InSAR 

Persistent or Permanent Scatterer Interferometry 

(PSI) is the most advanced development of Differen-

tial Interferometric Synthetic Aperture Radar (DIn-

SAR) and provides millimetre scale measurements of 

vertical ground movements on an approximately 

monthly timescale (Ferretti, 2001, Tele-Rilevamento 

Europa, 2013). The technique is well established and 

is ideal for detecting small, gradual (and abrupt) 

ground movements. PSI is widely used for detecting 

and monitoring ground subsidence, is increasingly 

being used for monitoring landslide (Collesanti et al, 

2003; Ng, 2012; Meisina et al., 2006, 2007 & 2008) 

and fault movements, especially in earthquake prone 

areas (Ferretti et al. 2006). PSI has also been used to 

estimate rates of sea level change along the Thames 

estuary (Bingley, 2008) for long-term flood risk and 

to characterise subsidence along the Jubilee Line ex-

tension (NPA & ESA, 2006).  

The main advantage of PSI is that it compares a 

very large stack of interferograms (usually a mini-

mum of 14) which reduces noise and error consid-

erably (Tele-Rilevamento Europa, 2013). The tech-

nique requires the identification of a selection of 

permanent or persistent scatterers (PS), which in-

volves comparing the pixels in several acquisitions of 

the same scene, initially selecting those with stable 

amplitude using an amplitude dispersion index (Fer-

retti et al. 2001). A time series analysis of pixel phase 

values is then used to identify any remaining candi-

date pixels (Ferretti, 2001).  

A great advantage of PSI is its ability to record 

vertical as well as eastward or westward movements 

(Eastward on the ascending orbit from a ‘right-

looking’ aperture, and westward ('left-looking') on 

the descending orbit) (Wright, 2004). Movements 

towards or away from the sensor can, however, only 

be detected in the line of sight. It is therefore not yet 

possible to measure North-South movement, which 

would require images from at least 3 different view-

ing geometries and look angles (Tele-Rilevamento 

Europa, 2013). 

Once identified, the persistent scatterers are used 

as spatial reference points between acquisition dates, 

from which to detect small displacements toward or 

away from the SAR antenna (the orbital geometry of 

which is known precisely). In this way different ob-

servations of the same area can be compared even 

with very large baselines or from images with differ-

ent radar band properties. Using this large image 

dataset allows for a significantly better correction for 

the different factors that normally cause decorrelation 

between SAR acquisitions (Tele-Rilevamento Eu-

ropa, 2013).  

The main influences on PSI data quality include 

the spatial density and quality of the persistent scat-

terers, the weather conditions during and between 

acquisition and the distance between a measurement 



point and its nearest reference point. The precision of 

PSI is much greater than that of DInSAR and is typi-

cally able to detect a ground displacement rate of 

<1 mm a
-1

, and individual displacements of ~5 mm 

(Tele-Rilevamento Europa, 2013). The errors are 

lowest in central London where the PS point density 

is greatest. 

2 MPSI ANALYSIS OF THE LONDON 

DATASET 

The London PSInSAR dataset is collected from an 

imaging SAR archive spanning 18 years (1992 - 

2000 and 2001 to 2010). Each PSI dataset contains 

the ground movement of permanent scatterers over 

several years, their average velocity (in the line of 

sight) over those years and errors for both height and 

velocity measurements. The earliest of the two data-

sets covers the period from 5th May 1992 to 12th 

January 2001 and contains 760,274 permanent scat-

terers measured on 68 irregularly spread dates; its 

baseline is the 5th May 1992 and later measurements 

are relative to the measurements of that date. The 

second dataset covers the period 13th December 

2002 to 17th September 2010 and contains 45 meas-

urements on irregularly spread dates, and 1,048,575 

permanent scatterers; its baseline is the 13th Decem-

ber 2002.  

The left-looking PSI data covering the two time 

periods were obtained from the descending orbits of 

ERS (1992-2001) and ENVISAT (2002-2010). In 

addition, right-looking PSI data were obtained from 

the ascending orbit of ERS only, which covers the 

1992-2000 period, although these data were only 

available for the northern half of the study area. 

Buildings and other structures make urban areas par-

ticularly suitable for PSI data and consequently there 

is a particularly high concentration across the London 

region but parks and other open areas are notably ab-

sent in the PS data. Locally, the displacement veloci-

ties and directions (towards or away from the satel-

lite) obtained at PS points can vary considerably as a 

result of construction, road resurfacing, localised set-

tlement, etc. but small-scale regional patterns are dis-

cernible geographically regardless of these high 

magnitude changes.  

The PSI data points are irregularly distributed and 

the scatterers in the ERS and ENVISAT datasets are 

not necessarily located at the same geographic posi-

tion. To compare velocities between these datasets 

continuous velocity surfaces were produced by inter-

polation of the point velocity values of each acquisi-

tion, using an automated inverse distance weighted 

(IDW) method. The interpolated surfaces were pro-

duced at 10 m spatial resolution and the interpolation 

was restricted to an area of 140 m radius around each 

input PS point to prevent the prediction of unrepre-

sentative values in data gaps. One interpolated raster 

is made for each date of measurement thus producing 

113 velocity surfaces over the 20 year period. 

The PSI velocity rasters were then clipped, to re-

duce  'noise' or 'speckle' (related to movements 

caused by construction, etc.), removing values of  

more than ±3 mm a⁻¹. This seemingly arbitrary cut-

off was chosen on the basis of the 1997 to 2005 data 

(Bingley, 2008), which indicated natural ground 

movements in the range approximately from +0.5 to 

−2.5 mm a⁻¹, and is relevant for this dataset only. 

2.1 Detecting lateral and vertical movements 

 The SAR imaging geometry allows us to derive 

rates of east-west displacement from right- and left-

looking ERS PSI data. Values that are positive in the 

left-looking data and negative in the right-looking 

data indicate eastward ground motion (towards 

098N), and those which are negative in left-looking 

and positive in right-looking indicate westward mo-

tion. Values that are positive or negative in both 

datasets indicate vertical displacement only with no 

horizontal movement. The latter are likely related to 

changes in groundwater level, construction, and other 

non-tectonic effects, which have been illustrated in 

the PanGeo interpretation of PSI data for London 

(Cigna et al, 2014).  

 To highlight the lateral component we colour-

coded the ERS PSI values to indicate pixels with 

consistent westward motion in red, and consistent 

eastward motion in blue (Figure 2). This reveals sur-

prisingly consistent patterns in which large blocks 

show relatively uniform eastward or westward 

movement. When the known arrangement of fault 

orientations is considered (Ghail et al., 2015), these 

patterns of movement seem to fit very well into loz-



enge-shaped blocks bounded by strike-slip and thrust 

faults (see also Figure 5). 

To highlight vertical (and temporal) changes in the 

direction of ground displacement, the interpolated 

ERS and ENVISAT PSI data were combined and 

colour-coded such that red areas show continuous 

positive displacement of the ground surface (uplift, 

toward the sensor), blue areas show continuous nega-

tive displacement (subsidence, away from the sen-

sor), and green areas reveal uplift in one dataset and 

subsidence in the other (Figure 3). 

 
Figure 2. PSI lateral data - ascending and descending mode ERS 
data combined to isolate the east-west component of displacement. 

Two large west-moving blocks are identified in the west and NE, 

and two east-moving blocks in the NW and SE; patterns of dis-
placement in the centre and far SE are less clear.  

 

The latter are therefore rising and falling periodi-

cally in response to seasonal and annual changes in 

surface levels, probably as a result of groundwater 

changes and the presence of recent compressible ma-

terials. The more persistent vertical displacements 

(either positive or negative) are inferred to result 

from inversion of the London Basin, caused by dex-

tral movement on basement transcurrent faults, and 

blocked by thrust faults parallel to the Variscan 

Front. These (expected) low rates of horizontal dis-

placement are difficult to measure by conventional 

methods, particularly given that the faults themselves 

have, in general, not yet been identified (Aldiss, 

2013). 

 
Figure 3. PSI vertical data - differences in vertical displacements 

over two decades reveal a consistent pattern of subsidence in the 
Thames valley, with uplift in the north, south and west. A mixed 

signal (v, in green) in west central London indicates uplift in one 

time period and subsidence in the other. 

 

Particularly noticeable are the contiguous blocks 

of movement in a consistent direction (either up or 

down), see Figure 3. The hills to the south and NE 

are consistently uplifting over the 20 year period, 

whereas the east and parts of Surrey and NW Lon-

don, are consistently subsiding. Subsidence in the 

Thames Gateway may also be partly attributable to 

compressible ground materials. Again central Lon-

don rises and falls periodically (seasonally). 

2.2 Detailed analysis of ground movements 

 Detailed analysis of the individual PSI velocity 

datasets, allowing monthly measurements to be ex-

amined in some cases, revealed a complex pattern of 

movements. Unsurprisingly these prove to be far 

more difficult to interpret and show gradual but occa-

sionally consistent fluctuations within confined 

zones; these zones coincide with inferred fault block 

boundaries in many cases. Comparison with rainfall 

data reveals extremely complex patterns which may 

never be fully understood. There is no obvious corre-

lation between the fluctuations of ground movements 

and the rainfall records (which are considered here as 

a partial proxy for groundwater).  

  



 There are however several data intervals which 

show more abrupt changes and which hint at periodic 

discrete movements that might be fault controlled. 

The most notable of these occurred in 2005, between 

October and December 2005, when a significant drop 

in ground level, of unusual spatial geometry, oc-

curred across central, eastern and northern London. 

Subsidence of between 5 mm and 12 mm in less than 

4 months has been detected (Figure 4). The driving 

force is unclear but the change is too sudden to be 

explained simply by seasonal groundwater changes. 

Between December 2005 and May 2007 there is a 

gradual and complex rebound, in some but not all ar-

eas, of as much as 20 mm. It is possible that con-

struction-related groundwater pumping is at least par-

tially responsible for such changes but clearly further 

investigations are necessary to verify any interpreta-

tions. Although the ground movements in these indi-

vidual acquisitions are comparable in magnitude to 

the predicted PSI errors, any systematic movements 

or movements which are consistent over large areas, 

and especially those with sharp boundaries, can be 

considered to reflect real movements rather than sto-

chastic noise. 

3 GEOMORPHOLOGICAL SIGNIFICANCE 

The mean displacement rates of the blocks identi-

fied in the PSI lateral and vertical data (Table 1) are 

consistent with independent data derived from GPS 

monitoring (Teferle, 2009). Assuming that the PSI-

derived lateral movements are generated by dis-

placement on NW-SE oriented basement transcurrent 

faults, the true mean dextral displacement vector is 

1.6 ± 2.3 mm a⁻¹ to 326N ± 12˚; the GPS derived 

mean rate is 0.7 ± 1.6 mm a⁻¹ to 323N ± 15˚ after 

correction for the absolute plate motion vector of 

24 mm a⁻¹ to 051N. These rates are of comparable 

magnitude and are at least an order of magnitude 

lower than plate boundary rates, yet they are still 

fault controlled. 

Table 1. Mean rates of ground displacement across London 

Region Vertical Lateral 

North east +0·17 ± 0·46 mm a⁻¹ 1·06 ± 1·60 mm a⁻¹ W 

Estuary −0·61 ± 0·74 mm a⁻¹ 1·09 ± 1·48 mm a⁻¹ E 

South east +0·09 ± 0·53 mm a⁻¹ 1·01 ± 1.49 mm a⁻¹ W 

West +0·28 ± 0·52 mm a⁻¹ 0·99 ± 1·41 mm a⁻¹ W 

 
Figure 4. PSI vertical velocity rasters showing differential ground 

movement in central London in the intervals between a) October 
and December 2005 and b) Dec2005 and May 2007. A ground 

subsidence movement begins in October 2005 and is most notice-

able in December 2005 (the relative drop is as much as 20 mm in 
places) and then uplifted again by May 2007 (rising again by as 

much as 30 mm in places). Black lines indicate the approximate 

positions of block-bounding faults (Ghail et al., 2015) 

 

  

In addition to a range of expected patterns, caused 

by sediment compaction, ground water abstraction, 

etc., the data demonstrate differential vertical dis-

placement of 1 mm a⁻¹ or more across the Wimble-

don fault and its lateral extensions, in line with pre-

viously inferred long-term trends (Maddy, 2000). 

 Our interpretation of the complex PSI patterns of 

ground movement across London, based on horizon-

tal and vertical displacements, and supported by 3D 

modelling from borehole records, limited seismic in-

terpretations and field observation, points towards a 

fascinating pattern of geological and geomorphologi-

cal changes over the past ~400 ka (Figure 5). 

The distribution and ages of Quaternary river ter-

race deposits reflects fault control on the migration of 

the Thames over that time; they mainly lie to the 



north of the modern Thames and to the NW of the 

River Lea (Figure 5a). The time-variant PSI vertical 

changes suggest uplift and subsidence caused by 

fluctuations in the depth of the lower aquifer (espe-

cially near A, Figure 5b). In the east (green shading 

at B, Figure 5b) the Thames appears to be 'ponding' 

in a consistently subsiding area, and with the older 

river sediments to the north and younger to the south. 

The sharp bend in the Lea valley (south of C, Fig-

ure 5b) occurs at the junction of the river and a 

boundary between areas of subsidence and uplift, i.e. 

a fault boundary, and is caused by block tilting. Simi-

larly, the Lea valley river sediments all lie to the NW 

of the river north of the sharp bend in its course at C 

(Figure 5a) indicating SE migration of the river over 

the last 400 ka. In the west, the marked southward 

displacement of the Thames over the last ~420 ka 

(indicated by the arrow at D, Figure 5b) may result 

from fault-bounded block tilting, causing uplift north 

of the M4 and subsidence to the south, and progres-

sive deposition of younger sediments southwards in 

this area.  

The PSI data are consistent with interpreted a pat-

tern of block displacements, defined by dextral 

transcurrent faults oriented NW-SE and ENE-WSW 

oriented normal faults (possibly reactivated as re-

verse faults and often with oblique slip); these form 

the boundaries of uplifting or subsiding blocks (Fig-

ure 5b). 

4 CONCLUSIONS 

The displacements detected here all occur within 

the interior of the European plate, more than 

1500 km from the plate boundary at the mid-Atlantic 

ridge, and are therefore genuinely intraplate dis-

placements. Globally, similar intraplate tectonic 

ground movements may be occurring in other seismi-

cally quiet regions, even those intensively investi-

gated by conventional means.  

Our results demonstrate the effectiveness of bidi-

rectional PSI at discriminating the very low rates of 

horizontal and vertical ground deformation in intra-

plate areas; rates impossible to measure by conven-

tional means. PSI is more effective than long-term 

GPS monitoring and is the only way to resolve pat-

terns, and therefore boundaries, between areas of 

consistent movement, i.e. the fault lines which are re-

sponsible for the deformation. Our preliminary PSI 

investigations of the London area are consistent with 

 

 
Figure 5. Geological change in the London region. a) River ter-
race and loess deposits of the last 420 ka nearly all lie to the north 

of the modern Thames and to the NW of the upper Lea. (b) Inter-

pretive cartoon of the major features observed in Figures 2, 3 and 4 
and in (a) above (adapted from Ghail et al., 2015). 

 



a wide range of other evidence for fault controlled 

geological activity (and basin inversion) in the rela-

tively recent past. PSI is particularly effective in ur-

ban areas, which are sensitive to such small but long-

term changes, and the technique could therefore be 

developed to complement existing risk models for 

other cities in intraplate regions. 
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