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Abstract

We study the geometry of unitary Shimura varieties without assuming the existence of an
ordinary locus. We prove, by a simple argument, the existence of canonical subgroups on
a strict neighborhood of the µ-ordinary locus (with an explicit bound). We then define the
overconvergent modular forms (of classical weight), as well as the relevant Hecke operators.
Finally, we show how an analytic continuation argument can be adapted to this case to prove
a classicality theorem, namely that an overconvergent modular form which is an eigenform for
the Hecke operators is classical under certain assumptions.
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Introduction

A modular form is defined as a global section of a certain sheaf on the modular curve. To
study congruences between modular forms, one is led to introducing new objects, namely p-adic
and overconvergent modular forms. These are sections of a sheaf respectively on the ordinary locus
of the modular curve, and on a strict neighborhood of the ordinary locus. A lot of work has been
done using these objects, one can for example construct families of overconvergent modular forms.

It is possible to generalize the definition of p-adic and overconvergent modular forms to other
varieties. One can for example consider the Hilbert modular variety, or the Siegel variety. The
natural definition for an overconvergent modular form is a section of a certain sheaf on a strict
neighborhood of the ordinary locus. In greater generality, one can consider Shimura varieties with
a non-empty ordinary locus.

But for Shimura varieties without ordinary locus, this definition fails. Recall that for Shimura
varieties of PEL type, the criterion for the existence of an ordinary locus at p is that p splits com-
pletely in its reflex field. For Shimura varieties of PEL type (C) (associated to symplectic group),
the reflex field is Q, so there is always an ordinary locus. But if one considers Shimura varieties of
type (A) (associated to unitary groups), then the reflex field may not be Q and the ordinary locus
may be empty.
Let us look at an example. Let F be a CM field with totally real subfield F0, and consider the
special fiber of the Shimura variety associated to an unitary group with signature (aσ, bσ) at each
real place σ of F0. Suppose for simplicity that p is a prime number inert in F0, and which splits in
π+π− in F . The choice of π+ gives an order for the elements of the couple (aσ, bσ) for each real
place σ of F0. The existence of the ordinary locus at p is then equivalent to the fact that there exist
integers a and b such that aσ = a and bσ = b for each real place σ. The structure of the p-torsion of
the abelian variety is then well known on the ordinary locus. In our setting, the p-divisible group
A[p∞] splits in A[(π+)∞]⊕A[(π−)∞], and A[(π−)∞] is the dual of A[(π+)∞]. On the ordinary locus,
the p-divisible group A[(π+)∞] is an extension of a multiplicative part of height da, and an étale
part of height db (d is the degree of F0 over Q). In particular, there exists a multiplicative subgroup
Ha ⊂ A[π+] of height da. Actually, this property characterizes the ordinary locus : if there exists
a multiplicative subgroup Ha of height ha, then the abelian variety is ordinary at p. On the rigid
space associated to the Shimura variety (i.e. the generic fiber of its formal completion along its
special fiber), then one can define the ordinary locus. There is still a multiplicative subgroup of
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A[π+] of height da on this locus, and work of Fargues ([Fa2]) shows that this subgroup extends to
a canonical subgroup on a strict neighborhood of the ordinary locus.

If the (aσ) are not equal to a certain integer a, then the ordinary locus is empty. There is
always a special locus in the special fiber of the Shimura variety, called the µ-ordinary locus, but
the situation is more involved. Suppose we are in the same setting as before, and let us order the
elements a1 ≤ a2 ≤ · · · ≤ ad. Then the µ-ordinary locus is characterized by the fact that the
p-divisible group A[(π+)∞] is an extension has a filtration 0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xd+1 = A[(π+)∞],
such that Xi+1/Xi is a p-divisible group of height d(ai+1−ai) with its structure explicitly described
(by convention we set a0 = 0 and ad+1 = ad+ bd). The fact that A is µ-ordinary is then also equiv-
alent to the existence of subgroups 0 ⊂ Ha1

⊂ . . . Had
⊂ A[π+], with Hai

of height dai, and the
structure of Hai+1

/Hai
explicitly described.

If one looks at the rigid space of the Shimura variety, then one can define the µ-ordinary locus.
There are several canonical subgroups in A[π+] on this locus. We lack a good theory for these
canonical subgroups, which should be analogous to the one dealt by Fargues in [Fa2]. However, by
simple arguments, one can prove the following fact.

Theorem. On a strict neighborhood of the µ-ordinary locus, there exist canonical subgroups Ha1
⊂

· · · ⊂ Had
in A[π+]. These subgroups are characterized by the fact their degree (in the sense of [Fa])

is maximal among the subgroups of the same height of A[π+].

The proof is actually very simple : let us consider XIw the variety with Iwahori level at p, and
denote f : XIw → X the projection. The µ-ordinary locus is the image by f of the locus where
the subgroups Hai

are of maximal degree. Let 0 < ε < 1/2, and consider the locus in XIw where
the degree of Hai

is bigger than the maximal degree minus ε. The image by f of this locus is a
strict neighborhood of the µ-ordinary locus. The existence of canonical subgroups follows from the
definition. Their uniqueness is a simple computation using the properties of the degree function
(see the proposition 1.24).

If we consider the space XIw, then one can call the locus where the degree of each Hai
is

maximal the µ-ordinary-multiplicative locus. It then makes sense to define an overconvergent mod-
ular form as the section of a certain sheaf on a strict neighborhood of the µ-ordinary-multiplicative
locus.
The Hecke algebra at p acts both on the rigid space and on the space of modular forms. In the case
of existence of the ordinary locus, there is one relevant Hecke operator, parametrizing complements
of the canonical subgroup. In the general case, there will be as many relevant Hecke operators as
the number of canonical subgroups. We will denote by Up,ai

these Hecke operators. One can show
that these operators increase the degrees of all the subgroups of A[π+], then act on the space of
overconvergent modular forms.
We can now state the main result of the paper, mainly that an overconvergent modular form, which
is an eigenform for the Hecke operaotrs Up,ai

can be analytically continued to the whole variety
under a certain assumption, and thus is classical. Let κ be a weight ; explicitly, it is a collection
of integers (κi,1 ≥ · · · ≥ κi,ai

, λi,a ≥≥ λi,bi)1≤i≤d. Let S = {a1, . . . , ad} ∩ [1, ad + bd − 1]. The
cardinality of S is exactly the number of canonical subgroups. Let us note Σi = {j, aj = ai} for all
i.

Theorem (Theorem 3.17). Let f be an overconvergent modular form of weight κ. Suppose that f
is an eigenform for the Hecke operators Up,ai

, with eigenvalue αi for ai ∈ S, and that we have the
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relations
ni + v(αi) < inf

j∈Σi

(κj,aj
+ λj,bj )

Then f is classical.

Here ni is a constant depending on the variety. It actually comes from the normalization factor
of the Hecke operator Up,ai

. This theorem is a classicality result, analogous to the one proved by
Coleman ([Co]) in the case of the modular curve. Actually, this result has been also proven by Buz-
zard ([Bu]) and Kassaei ([Ka]) using an analytic continuation method, from which we inspire here.
Note that there has been extensive work for the classicality problem in the case of the existence
of ordinary locus. We can cite the work of Sasaki ([Sa]), Johansson ([Jo]), Tian et Xiao ([T-X])
and Pilloni and Stroh ([P-S]) in the case of Hilbert varieties, and the work of the author ([Bi1]) for
more general PEL Shimura varieties (one can also cite the thesis of the author [Bi2] for Shimura
varieties with ramification).
In this introduction, we have assumed that p is inert in F0 and splits in F . The group associated
to the Shimura variety is then a linear group at p. If p is inert in F , then the group is an unitary
group at p. Everything we have said adapts to that context : the desciption of the µ-ordinary locus,
the existence of the canonical subgroups, and the analytic continuation theorem. Note that the
geometry is more involved in that case : for example, to define Hecke operators, one has to deal
with subgroups of A[p2].
Of course, the assumption that p is inert in F0 is for simplicity, so what we have said can be for-
mulated for any prime p unramified in F . In the redaction of the paper, we have tried to formulate
propositions valid both in the linear and unitary case as much as possible, but of course we often
had to treat separately the proofs.

Let us now talk briefly about the text. In the first part, we introduce the varieties we are
dealing with, define the µ-ordinary locus and study the canonical subgroups. In the section 2 we
define the classical and overconvergent modular, as well as the Hecke operators. In the third part,
we prove the analytic continuation result. For simplicity, we have suppose that the prime p is inert
in the sections 2 and 3, and the section 4 shortly shows how to handle the general case.

The author would like to thank Benoît Stroh, Valentin Hernandez and Vincent Pilloni for
helpful discussions.

1 Shimura varieties of type (A)

1.1 The moduli space

1.1.1 Shimura datum

We will introduce the objects needed to define the Shimura variety of unitary type we will work
with. We refer to [Ko] for more details.
Let F0 be a totally real field of degree d, and F a CM -extension of F0. Let (UQ, 〈, 〉) be a non-
degenerate hermitian F -module, and G its automorphism group. For all Q-algebra R, we have

G(R) = {(g, c) ∈ GLF (UQ ⊗Q R)×R∗, 〈gx, gy〉 = c〈x, y〉 for all x, y ∈ UQ ⊗Q R}
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Let τ1, . . . , τd be the embeddings of F0 into R, and let σi and σi the two embeddings of F into
C extending τi.The choice of σi gives an isomorphism F ⊗F0

R ≃ C. Let Ui = UQ ⊗F0,τi R. We
note (ai, bi) the signature of the anti-hermitian structure on Ui. Then GR is isomorphic to

G

(
d∏

i=1

U(ai, bi)

)

where ai + bi is independent of i, and is equal to 1
2ddimQUQ. We’ll call a+ b this quantity.

We also give ourselves a morphism of R-algebra h : C →EndFUR such that 〈h(z)v, w〉 = 〈v, h(z)w〉
and (v, w) → 〈v, h(i)w〉 is positive definite. This morphism gives a complex structure on UR : let
U1,0
C be the subspace of UC on which h(z) acts by multiplication by z.

We then have U1,0
C ≃

∏d
i=1(C)

ai⊕(C)
bi

as F⊗QR ≃ ⊕d
i=1C-module (the action of C on (C)ai⊕(C)

bi

is the standard action on the first factor and the conjugated action on the second).

The ring OF is a free Z-module. Let α1, . . . , αt be a basis of this module, and

detU1,0 = f(X1, . . . , Xt) = det(X1α1 + · · ·+Xtαt;U
1,0
C ⊗C C[X1, . . . , Xt])

We can show that f is polynomial with algebraic coefficients. The number field E generated by its
coefficients is called the reflex field.

Remark 1.1. We chose for simplicity to work with a central algebra. One can easily adapt the
arguments here replacing F by an simple algebra B with center F .

1.1.2 The Shimura variety

Let us define now the PEL Shimura variety of type (A) associated to G. Let K be an extension of
Qp containing the images of all the embeddings F →֒ Qp. Assume that p is unramified in F . We
also fix an integer N ≥ 3 prime to p.

Definition 1.2. Let X be the moduli space over OK , which S-points are the isomorphism classes
of (A, λ, ι, η) where

• A → S is an abelian scheme

• λ : A → At is a prime to p polarization.

• ι : OF → End A is compatible with complex conjugation and the Rosati involution, and the
polynomials detU1,0 and detLie(A) are equal.

• η : A[N ] → U/NU is an OF -linear symplectic similitude, which lifts locally for the étale
topology in a OF -linear symplectic similitude

H1(A,A
p
f ) → U ⊗Z A

p
f

We will make a slight hypothesis on the variety we consider.

Hypothesis 1.3. We suppose that we are not in the case d = 1 and (a, b) = (1, 1).

This condition is technical, and will ensure that one can neglect the cusps in the definition of
the modular forms. The case we exclude corresponds essentially to the modular curve, which is
well known.
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1.1.3 Iwahori level

Let π be a prime of F0 above p, we will call f the residual degree and note q := pf . Since p is
unramified in F , we have two possibilities for the behavior of p in F :

• π splits in π+π− in F . We say that π is in case L.

• π is inert in F . We say that π is in case U .

The terminology L and U becomes from the fact that the group G at π is respectively a linear
or an unitary group according to the different cases. To define the Iwahori structure, we will break
into the two cases.

Definition 1.4. Let XIw,π be the moduli space of isomorphism classes of (A, λ, ι, η,H•), where

• (A, λ, ι, η) is a point of X .

• 0 ⊂ H1 ⊂ · · · ⊂ Ha+b = A[π+], where each Hi is subgroup of A[π+] of height fi and stable
by OF in the case L.

• 0 ⊂ Hi ⊂ · · · ⊂ Ha+b = A[π], where each Hi is subgroup of A[π] of height 2fi, stable by OF

and such that Ha+b−i = H⊥
i in the case U .

We also define the full Iwahori space by XIw = XIw,π1
×X XIw,π2

×X · · · ×X XIw,πg
, where

π1, . . . , πg are the primes of F0 above p, and the maps XIw,πi
→ X are the natural morphisms

corresponding to forgetting the (Hi).

Remark 1.5. In the case L, the subgroups A[π+] and A[π−] are Cartier duals. This comes from
the compatibility between the complex conjugation and the Rosati involution. Therefore, each of
these groups is totally isotropic. A flag (H•) of A[π+] give naturally a flag (H⊥

• ) of A[π−], with
H⊥

i = (A[π+]/Hi)
D ⊂ A[π+]D = A[π−]. Choosing the prime π− instead of π+ would have given

the same definition.

Now we will explicitly describe the determinant condition for the abelian scheme A. We are still
working with a prime π of F0 above p, and assume it is of type L. Let Σπ be the decomposition
group at π, i.e. the elements σ ∈ Hom(F0,Qp), such that σ sends π into the maximal ideal of Qp.
For every σ ∈ Σπ, there are two embeddings σ+ and σ− of F into Qp above σ ; the embedding σ
sends π+ into the maximal ideal of Qp, and similarly for π−. To σ we have a couple of integers
(aσ, bσ), and the choice of the embedding σ+ gives an order for the two elements of the couple. Let
A → R be an abelian scheme over a OK -algebra R. If we denote ωπ := e∗Ω1

A[π∞], then we have

ωπ = ω+
π ⊕ ω−

π , where ω+
π := e∗Ω1

A[(π+)∞]. The determinant condition for A implies then that

ω+
π =

⊕

σ∈Σπ

Raσ

with OF acting on Raσ by σ+. Similarly, we have

ω−
π =

⊕

σ∈Σπ

Rbσ

with OF acting on Rbσ by σ−.
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Now suppose that π is of type U. We still denote by Σπ the decomposition group at π of F0.
For each σ ∈ Σπ, there are two embeddings σ1 and σ2 of F above σ ; the choice of σ1 gives an order
for the elements of the couple (aσ, bσ). Let A → R be an abelian scheme over a OK -algebra R. If
we denote ωπ := e∗Ω1

A[π∞], then the determinant condition for A implies

ωπ =
⊕

σ∈Σπ

Raσ ⊕Rbσ

where OF acts by σ1 on Raσ and by σ2 on Rbσ .

1.2 µ-ordinary locus

We will describe in this section the µ-ordinary locus of the Shimura variety. Let us first introduce
some notations.
Let L be an unramified extension of Qp of degree f0, and k a field of characteristic p containing the
residue field of L. Let D be the Galois group of L over Qp ; there is a isomorphism D ≃ Z/f0Z,
where 1 is identified with the Frobenius σ of L. We will note W (k) the ring of Witt vectors of k.
Let ε = (ετ )τ∈D be a sequence of integers equal to 0 or 1. We define a Dieudonné module Mε in
the following way : it is a free W (k)-module of rank f0, and if (eτ )τ∈D is a basis of this module,
then the Frobenius and Verschriebung are defined by

Feσ−1τ = pǫieτ V eτ = p1−ǫieσ−1τ

The module Mε is given an action of the ring of integers of L : OL acts on W (k) · eτ by τ .
We’ll note BTε the p-divisible group over k corresponding to the Dieudonné module Mε, and Hε

the p torsion of this p-divisible group.

1.2.1 Linear case

Now we come back to our Shimura variety. Consider first the case L ; we are still considering a
place π of F0 above π which splits in π = π+π− in F . If k is a field containing the residue field of
OK , and if x = (A, λ, ι, η) is a k-point of X , then the fact that the abelian variety A is µ-ordinary
at π will depend on the p-divisible group A[(π+)∞]. Recall that this p-divisible group has an action
of OF,π+ , the completion of OF at π+ ; this is an unramified extension of Qp of degree f . If Σπ

denotes as before the decomposition group of π in F0, then there is a bijection between Σπ and the
Galois group of OF,π+ , and for each σ ∈ Σπ, we have a couple of integers (aσ, bσ). We order the
elements (aσ) by increasing order : we then have a1 ≤ a2 ≤ · · · ≤ af . For each integer 0 ≤ i ≤ f
we define the sequence εi = (εi,j)1≤j≤f par εi,j = 1 if j ≥ i+ 1 and εi,j = 0 otherwise. We also set
by convention a0 = 0 and af+1 = a+ b.

Definition 1.6. Let k be an algebraically closed field of characteristic p, and x = (A, λ, ι, η) be a
k-point of X . Then x is µ-ordinary at π if there is an isomorphism of p-divisible group with OF,π+

action

A[(π+)∞] ≃

f∏

i=0

BT ai+1−ai
εi

7



Remark that the term in the right-hand side is explicitly

BT a1

(1,...,1) ×BT a2−a1

(0,1,...,1) × · · · ×BT
af−af−1

(0,...,0,1) ×BT
bf
(0,...,0)

Let X0 denote the special fiber of X , and Xµ−π−ord
0 the µ-ordinary locus at the place π. We

have the following proposition due to Wedhorn ([We]).

Proposition 1.7. The µ-ordinary locus Xµ−π−ord
0 is open and dense in X0.

We also have the following characterization of the µ-ordinary locus.

Proposition 1.8 ([Mo], Theorem 1.3.7). Let k be an algebraically closed field of characteristic
p, and x = (A, λ, ι, η) be a k-point of X. Then x is µ-ordinary at π if and only if there is an
isomorphism of finite flat group schemes with OF,π+ action

A[π+] ≃

f∏

i=0

BT ai+1−ai
εi

[π+]

Since BTεi
is multiplicative for i = 0, étale for i = f and bi-infinitesimal otherwise, we have the

following criterion for the existence of the ordinary locus at π.

Proposition 1.9. The µ-ordinary locus equals the ordinary locus (at the place π) if and only if
there exists an integer a such that aσ = a for all σ ∈ Σπ.

This last condition is also equivalent to the fact that the local reflex field at π is equal to Qp

(one can see [We] section 1.6 for more details).

1.2.2 Unitary case

Let us now consider the unitary case. Let k be a field containing the residue field of OK , and
x = (A, λ, ι, η) be a k-point of X . The fact that the abelian variety A is µ-ordinary at π will
depend on the p-divisible group A[π∞]. Recall that this p-divisible group has an action of OF,π,
the completion of OF at π ; this is an unramified extension of Qp of degree 2f . Recall that Σπ is
the decomposition group at π of F0 and it is of cardinal f . If σ ∈ Σπ, there are two embeddings σ1

and σ2 of F into Qp, and the choice of one of the two gives elements aσ and bσ. We suppose that
the choice is made such that aσ ≤ bσ ; we also order the elements in Σπ such that the sequence
(aσ) is increasing. We then have

a1 ≤ a2 ≤ · · · ≤ af ≤ bf ≤ bf−1 ≤ · · · ≤ b1

This gives an order on the embeddings of F into Qp. For each integer 0 ≤ i ≤ 2f we define the
sequence εi = (εi,j)1≤j≤2f par εi,j = 1 if j ≥ i + 1 and εi,j = 0 otherwise. We define a sequence
(αi)0≤i≤2f+1 by α0 = 0, αi = ai for 1 ≤ i ≤ f , αi = b2f+1−i for f + 1 ≤ i ≤ 2f and α2f+1 = a+ b.

Definition 1.10. Let k be an algebraically closed field of characteristic p, and x = (A, λ, ι, η) be a
k-point of X . Then x is µ-ordinary at π if there is an isomorphism of p-divisible groups with OF,π

action

A[π∞] ≃

2f∏

i=0

BTαi+1−αi
εi
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Remark that the term in the right-hand side is explicitly

BT a1

(1,...,1) ×BT a2−a1

(0,1,...,1) × · · · ×BT
af−af−1

(0,...,0,1,1...,1) ×BT
bf−af

(0,...,0,1...,1) ×BT
af−af−1

(0,...,0,0,1...,1) × · · · ×BT a1

(0,...,0)

(We have used the fact that bi − bi−1 = ai−1 − ai, since the quantity aj + bj is independent of j.)
Let X0 denote the special fiber of X , and Xµ−π−ord

0 the µ-ordinary locus. We have the following
proposition due to Wedhorn ([We]).

Proposition 1.11. The µ-ordinary locus Xµ−π−ord
0 is open and dense in X0.

We also have the following characterization of the µ-ordinary locus.

Proposition 1.12 ([Mo]). Let k be an algebraically closed field of characteristic p, and x =
(A, λ, ι, η) be a k-point of X. Then x is µ-ordinary at π if and only if there is an isomorphism of
finite flat group schemes with OF,π action

A[π] ≃

2f∏

i=0

BTαi+1−αi
εi

[π]

Since BTεi
is multiplicative for i = 0, étale for i = 2f and bi-infinitesimal otherwise, we have

the following criterion for the existence of the ordinary locus at π.

Proposition 1.13. The µ-ordinary locus equals the ordinary locus (at the place π) if and only if
aσ = bσ = (a+ b)/2 for all σ ∈ Σπ.

Again, this last condition is equivalent to the fact that the local reflex field at π is equal to Qp.

We’ll need later to work with the rigid space associated to X . Let us note Xrig this rigid space ; it
is the generic fiber of the formal completion of X along its special fiber. We refer to [Be] for more
details on rigid spaces. We have a specialization map sp : Xrig → X0, and we’ll note Xµ−π−ord

rig

the inverse image of the µ-ordinary locus under the specialization map. We’ll also note XIw,rig the
rigid space associated to XIw.

1.3 Canonical subgroups

1.3.1 Degrees and partial degrees

Before introducing the canonical subgroups on the µ-ordinary locus, we’ll define the degree for a
finite flat group scheme defined over a finite extension of Qp, and the partial degrees for these
endowed with an action of a ring of integers of an unramified extension of Qp.

Definition 1.14. Let L be a finite extension of Qp and G be a finite flat group scheme of p-power
order over OL. Let ωG be the conormal module along the unit section. The the degree of G is by
definition

degG := v(Fitt0 ωG)

where Fitt0 denotes the Fitting ideal, and the valuation of an ideal is defined by v(xOL) = v(x),
normalized by v(p) = 1.

9



We now state some propositions of this function. We refer to the work of Fargues [Fa] for more
details.

Proposition 1.15. The degree function has the following properties.

• Let G be as before. Then, if GD denotes the Cartier dual of G, we have

degGD = htG− degG

In particular, degG ∈ [0, ht G].

• The degree function is additive : if we have an exact sequence

0 → G1 → G2 → G3 → 0

with Gi finite flat, then degG2 = degG1 + degG3.

• Let G and G′ be two finite flat group schemes, and suppose that there exists a morphism
f : G → G′ which is an isomorphism in generic fiber. Then degG ≤ degG′, and we have
equality if and only if f is an isomorphism.

We deduce from the last property the following corollary.

Corollary 1.16. Let G be a finite flat group scheme of p-power order defined over a finite extension
of Qp. Suppose that H1 and H2 are two finite flat subgroups of G. Then we have

degH1 + degH2 ≤ deg(H1 +H2) + deg(H1 ∩H2)

Proof. By diving everything by H1∩H2, we are reduced to the case H1∩H2 = {0}. The morphism
H1 ×H2 → H1 +H2 is an isomorphism in generic fiber, thus by the previous proposition, we get

deg(H1 ×H2) ≤ deg(H1 +H2)

But since the degree function is additive, we have deg(H1 ×H2) = degH1 + degH2.

Let G be as in the previous definition and suppose now that G has an action of OM , where M
is a finite unramified of Qp. Let Σ be the set of embeddings of M into Qp. The the module ωG has
an action of OM and has the decomposition

ωG =
⊕

σ∈Σ

ωG,σ

where OM acts on ωG,σ by σ.

Definition 1.17. The partial degree of G is defined for all σ ∈ Σ as

degσ G = v(Fitt0 ωG,σ)

Proposition 1.18. The partial degree functions have the following properties.

• We have degG =
∑

σ∈Σ degσ G.

10



• Suppose that G has height [M : Qp]h. If GD denotes the Cartier dual of G, we have for all
σ ∈ Σ

degσ G
D = h− degσ G

In particular, degσ G ∈ [0, h].

• The partial degree functions are additive : if we have an exact sequence

0 → G1 → G2 → G3 → 0

with Gi finite flat with action of OM , then degσ G2 = degσ G1 + degσ G3 for all σ ∈ Σ.

We refer to [Bi2] for more details.

Remark 1.19. If we are in the situation of the third point of the proposition 1.15, i.e. if we have a
morphism of finite flat groups schemes f : G → G′, which is an isomorphism in generic fiber and if
G and G′ have an action of OM , then it is not true that the partial degrees increase. Indeed, the
functions who increase are linear combinations of the partial degrees. For example, if [M : Qp] = 2,
there are two partial degrees deg1 and deg2, and the functions who increase are deg1 +p deg2 and
p deg1 +deg2. See [Bi2] for more details.

Example 1.20. Let us apply what we have said to our Shimura variety. Let x = (A, λ, ι, η) be a
OL-point of X (where L is a finite extension of Qp) and suppose that π is a place of F0 above p in
case L. Then A[π+] has an action of OF0,π. Moreover, we have

degσ A[π
+] = aσ

for all σ ∈ Σπ. If H is a OF -stable subgroup of A[π+] of height fh, then the orthogonal H⊥ is
subgroup of A[π−] of height f(a+ b− h). We have H⊥ ≃ (A[π+]/H)D, and thus

degσ H
⊥ = (a+ b− h)− (aσ − degσ H) = bσ − h+ degσ H

for all σ ∈ Σπ. We see that one has the inequalities

degσ H ≥ h− bσ and degσ H
⊥ ≥ bσ − h

for all σ ∈ Σπ.

Example 1.21. Suppose now that π is in case U . Then the group scheme A[π] has an action of
OF,π. Recall if σ ∈ Σπ is an embedding of F0 into Qp above π, then there are two embeddings σ1

and σ2 of F extending σ. With our previous conventions, we have

degσ1
A[π] = aσ and degσ2

A[π] = bσ

If H is a OF -stable subgroup of A[π] of height 2fh, then the orthogonal H⊥ is subgroup of A[π] of
height 2f(a+ b − h). We have H⊥ ≃ (A[π]/H)D,c, where the subscript c means that the action of
OF on (A[π]/H)D,c is the conjugate of the natural one. This comes from the compatibility between
the Rosati involution and the complex conjugation. Thus

degσ1
H⊥ = aσ − h+ degσ2

H and degσ2
H⊥ = bσ − h+ degσ1

H

for all σ ∈ Σπ. We see that one has the inequalities

degσ1 H ≥ h− bσ and degσ2
H ≥ h− aσ

for all σ ∈ Σπ.
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1.3.2 Siegel variety

Let us now recall some facts for the canonical subgroup for the Siegel variety.
Let g ≥ 1 be an integer, and Ag the Siegel variety. There is a universal abelian scheme A on Ag.
There is also a Hasse invariant Ha on Ag. We quote the main result obtained by Fargues [Fa2] on
the canonical subgroup.

Proposition 1.22. Let A be an abelian scheme of dimension g defined OL (L is finite extension
of Qp). Suppose that the valuation w of the Hasse invariant is strictly less than 1/2. Then there is
a canonical subgroup H ⊂ A[p], of height g, totally isotropic, with

degH = g − w

Let Ag,rig be the rigid space associated to Ag. Then the ordinary locus of Ag,rig is defined as
the locus where the associated abelian scheme is ordinary ; it is also the locus where the Hasse
invariant is invertible. The proposition says that on a strict neighborhood on the ordinary locus,
there exists a canonical subgroup of high degree in A[p]. We propose a simple reformulation of this
property. We have the following observation.

Proposition 1.23. Let A be an abelian scheme of dimension g defined OL (L is finite extension
of Qp). There exists at most one subgroup H of height g of A[p] with

degH > g −
1

2

Proof. Suppose not, and let H1 and H2 be two subgroups, with degHi > g − 1/2. Then we have

2g − 1 < degH1 + degH2 ≤ deg(H1 +H2) + deg(H1 ∩H2)

But deg(H1 + H2) ≤ degA[p] = g, and since H1 ∩ H2 is of height h ≤ g − 1, we have
deg(H1 ∩ H2) ≤ g − 1. We get a contradiction.

This can be used to prove the existence of the canonical subgroup in the following way. Let A′
g be

the Siegel variety parametrizing a g-dimensional abelian scheme with polarization and a subgroup
H totally isotropic of height g. We have a map f : A′

g → Ag corresponding to forgetting H . If we
denote A′

g,rig the rigid space associated to A′
g, we still have a morphism f : A′

g,rig → Ag,rig. Define
Xr = {x ∈ A′

g,rig, degH(x) ≥ g − r} for any rational r, it is an admissible open of A′
g,rig. Then

the ordinary locus of Ag,rig is f(X0), and the (f(Xr))r>0 form a basis of strict neighborhoods of
the ordinary locus. The previous proposition shows that on f(Xr) there is exactly one subgroup of
height g of degree greater or equal to g − r for r < 1/2, this is the canonical subgroup.

1.3.3 Linear case

Now let’s get back to our Shimura varieties. Suppose we are in case L. Then we have the following
proposition.

Proposition 1.24. Let L be a finite extension of Qp, and x = (A, λ, ι, η) a OL-point of X. Let
1 ≤ i ≤ f be an integer. Then there exists at most one subgroup H ⊂ A[π+] stable by OF of height
fai such that

degH >

f∑

j=1

min(aj , ai)−
1

2

12



Proof. Suppose not, and let H1, H2 be two such subgroups. Let us denote by fh the height of
H1 ∩H2 ; the height of H1 +H2 is then f(2ai − h). We have

degH1 + degH2 ≤ deg(H1 +H2) + deg(H1 ∩H2)

But

deg(H1 +H2) ≤

f∑

j=1

min(aj , 2ai − h) ≤

i∑

j=1

aj +

f∑

j=i+1

(2ai − h)

and

deg(H1 ∩H2) ≤

f∑

j=1

min(aj , h) ≤

i−1∑

j=1

aj +

f∑

j=i

h

We finally get

degH1 + degH2 ≤ 2

i−1∑

j=1

aj + 2

f∑

j=i+1

ai + ai + h ≤ 2

f∑

j=1

min(aj , ai)− 1

since h ≤ ai − 1. We get a contradiction.

The proposition shows that there exists at most one subgroup of height fai and of big degree.
The next proposition shows that if two such subgroups exists (with different heights), then we
automatically have an inclusion.

Proposition 1.25. Let i < j be two integers between 1 and f . Let x = (A, λ, ι, η) be a OL-point
of X, and suppose there exists that for l ∈ {i, j} a subgroup Hl ⊂ A[π+] stable by OF of height fal
such that

degHl >

f∑

k=1

min(ak, al)−
1

2

Then we have Hi ⊂ Hj.

Proof. Let fh denote the height of Hi ∩Hj . We have the following inequalities.

deg(Hi +Hj) ≤

f∑

k=1

min(ak, ai + aj − h) ≤

j∑

k=1

ak +

f∑

k=j+1

(ai + aj − h)

deg(Hi ∩Hj) ≤

f∑

k=1

min(ak, h) ≤
i−1∑

k=1

ak +

f∑

k=i

h

We the get

degHi + degHj ≤ deg(Hi +Hj) + deg(Hi ∩Hj) ≤ 2

i−1∑

k=1

ak +

j∑

k=i

(ak + h) +

f∑

k=j+1

(ai + aj)

If we do not have the inclusion Hi ⊂ Hj , then h ≤ ai − 1. We then get

degHi + degHj ≤

f∑

k=1

(min(ak, ai) + min(ak, aj))− (j − i+ 1)

We get a contradiction with the hypothesis stating that Hi and Hj have big degrees.
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As a consequence, we directly get the existence of canonical subgroups for µ-ordinary abelian
scheme. Let s be the cardinal of {a1, . . . , af} ∩ [1, a + b − 1], and denote by A1 < · · · < As the
different elements of this set.

Corollary 1.26. Let L be a finite extension of Qp, and let x = (A, λ, ι, η) be a OL-point of X.
Assume that x is µ-ordinary (i.e. the special fiber of A is µ-ordinary). Then for any integer
1 ≤ k ≤ s, there exists a unique subgroup Hk ⊂ A[π+] of height fAk, with

degσ Hk = min(aσ, Ak)

for all σ ∈ Σπ.

Proof. We can work over Qp. Since A is µ-ordinary, we have by [Mo] a filtration on A[(π+)∞] :

X0 = 0 ⊂ X1 ⊂ · · · ⊂ Xf+1 = A[(π+)∞]

with Xi p-divisible groups such that (Xi+1/Xi) × Fp ≃ BT
ai+1−ai
εi for 0 ≤ i ≤ f . This gives a

filtration of A[π+], hence the existence of the desired subgroups. The uniqueness follows from the
previous proposition.

Remark 1.27. We also have the following description of the canonical subgroups in the special fiber.
Let L be a finite extension of Qp, and let x = (A, λ, ι, η) be a µ-ordinary point of X defined over
OL. Let As denote the special fiber of A ; then the Frobenius acts on As[(π

+)∞], and we can form
the subgroups

Ci := (π+)f−iAs[F
f , (π+)f−i+1]

for 1 ≤ i ≤ f , where F is the Frobenius. Then we have 0 ⊂ C1 ⊂ · · · ⊂ Cf ⊂ As[π
+], and the

special fiber of the canonical subgroups are equal to one of the Ci. More precisely, we have for
1 ≤ k ≤ s, Hk × k(L) = Cr(k), with k(L) the residue field of L and r(k) = min(l, al = Ak).

We can then define the relevant degree functions on XIw,π. For each integer k, define

dk =
∑

σ∈Σπ

min(aσ, Ak)

Let XIw,π,rig be the associated rigid space. We define the degree function Deg : XIw,π,rig →
∏s

k=1[0, dk]
on this space by

Deg(A, λ, ι, η,H•) := (degHAk
)1≤k≤s

We also define the k-th degree function by Degk(A, λ, ι, η,H•) := degHAk
for 1 ≤ k ≤ s.

Remark 1.28. The integers s, dk as well as the functions Deg and Degk depend on the place π. If
the context is clear, we choose not to write the the dependance on π to lighten the notations.

We then have the following description of the µ-ordinary locus.

Proposition 1.29. The space Xµ−π−ord
rig ⊂ Xrig is exactly the image of Deg−1({d1} × · · · × {ds})

by the map XIw,π,rig → Xrig.
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Proof. If x is a µ-ordinary point, it then follows from the previous corollary that there exist sub-
groups Hk with degHk = dk for all 1 ≤ k ≤ s. Conversely, suppose that (A, λ, ι, η) is a point
of Xrig, with A defined over the ring of integers of an extension L of Qp, and that there exists
subgroups Hk with degHk = dk for all 1 ≤ k ≤ s. We want to show that A is µ-ordinary ; it
suffices to show that A[π+] has a nice description. Define H0 = 0, Hs+1 = A[π+], and let H ′

j be a
complement of Hj−1 in Hj for all 1 ≤ j ≤ s + 1. This is possible if the field L is big enough. We
claim that

Hj ≃ H ′
j ×Hj−1

Indeed we have a morphism Hj−1 → Hj/H
′
j , which is an isomorphism in generic fiber. The degree

of the image of Hj−1 in Hj/H
′
j thus increases ; but since the degree of Hj−1 is maximal, it must

be an equality. We deduce that degHj = degH ′
j +degHj−1, and that the morphism H ′

j ×Hj−1 is
an isomorphism.
We finally get

A[π+] ≃ H ′
1 ×H ′

2 × · · · ×H ′
s+1

But we can explicitly describe the groups H ′
j . We then conclude that A is µ-ordinary by the

proposition 1.8.

1.3.4 Unitary case

Suppose now we are in case U. Then we have the following proposition.

Proposition 1.30. Let L be a finite extension of Qp, and x = (A, λ, ι, η) a OL-point of X. Let
1 ≤ i ≤ f be an integer. Then there exists at most one subgroup H ⊂ A[π] stable by OF of height
2fai such that

degH >

2f∑

j=1

min(αj , ai)−
1

2

Moreover, if such a subgroup exists, it is totally isotropic.

Proof. The proof of the first part of the proposition is exactly the same as in the linear case (see
proposition 1.24). To prove that the subgroup is totally isotropic, we will use the same argument
as in the proof of the proposition 1.25. We only need to get a bound for the degree of H⊥. But we
have H⊥ ≃ (A[π]/H)D, so

degH⊥ = 2fbi − deg(A[π]/H) = degH +

2f∑

j=1

(bi − αj) >

2f∑

j=1

(bi − αj +min(αj , ai))−
1

2

But bi−αj+min(αj , ai) = min(bi, ai+bi−αj), and since ai+bi is constant, we have ai+ bi− αj = α2f+1−i.
In conclusion, we get

degH⊥ >

2f∑

j=1

min(bi, αj)−
1

2

We conclude that H ⊂ H⊥ by applying directly the proof of the proposition 1.25 (note that H⊥ is
of height 2fbi).
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The proposition shows that there exists at most one subgroup of height 2fai and of big degree.
The next proposition shows that if two such subgroups exists (with different heights), then we
automatically have an inclusion.

Proposition 1.31. Let i < j be two integers between 1 and f . Let x = (A, λ, ι, η) be a OL-point
of X, and suppose there exists that for l ∈ {i, j} a subgroup Hl ⊂ A[π] stable by OF of height 2fal
such that

degHl >

2f∑

k=1

min(αk, al)−
1

2

Then we have Hi ⊂ Hj.

Proof. The proof is the same as in the linear case (see the proposition 1.25).

As a consequence, we directly get the existence of canonical subgroups for µ-ordinary abelian
scheme. Let s be the cardinal of {a1, . . . , af} ∩ [1, (a + b)/2], and denote by A1 < · · · < As the
different elements of this set.

Corollary 1.32. Let L be a finite extension of Qp, and let x = (A, λ, ι, η) be a OL-point of X.
Assume that x is µ-ordinary (i.e. the special fiber of A is µ-ordinary). Then for any integer
1 ≤ k ≤ s, there exists a unique totally isotropic subgroup Hk ⊂ A[π] of height 2fAk, with

degσ Hk = min(ασ, Ak)

for all σ ∈ Σπ.

Proof. The proof is similar to the linear case (see 1.26).

Remark 1.33. We also have the following description of the canonical subgroups in the special fiber.
Let L be a finite extension of Qp, and let x = (A, λ, ι, η) be a µ-ordinary point of X defined over
OL. Let As denote the special fiber of A ; then the Frobenius acts on As[π

∞], and we can form the
subgroups

Ci := π2f−iAs[F
2f , π2f−i+1]

for 1 ≤ i ≤ 2f , where F is the Frobenius. Then we have 0 ⊂ C1 ⊂ · · · ⊂ C2f ⊂ As[π], and the
special fiber of the canonical subgroups are equal to one of the Ci. More precisely, we have for
1 ≤ k ≤ s, Hk × k(L) = Cr(k), with k(L) the residue field of L and r(k) = min(l, al = Ak). Note
also that C⊥

i = C2f+1−i.

We can then define the relevant degree functions on XIw,π. For each integer k, define

dk =

2f∑

j=1

min(αj , Ak)

Let XIw,π,rig be the associated rigid space. We define the degree function Deg : XIw,π,rig →
∏s

k=1[0, dk]
on this space by

Deg(A, λ, ι, η,H•) := (degHAk
)1≤k≤s

We also define the k-th degree function by Degk(A, λ, ι, η,H•) := degHAk
for 1 ≤ k ≤ s. We

then have the following description of the µ-ordinary locus.
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Proposition 1.34. The space Xµ−ord
rig ⊂ Xrig is exactly the image of Deg−1({d1}× · · · × {ds}) by

the map XIw,π,rig → Xrig.

Proof. If x is a µ-ordinary point, it then follows from the previous corollary that there exist sub-
groups Hk with degHk = dk for all 1 ≤ k ≤ s. Conversely, suppose that (A, λ, ι, η) is a point of
Xrig, with A defined over the ring of integers of an extension L of Qp, and that there exists sub-
groups Hk with degHk = dk for all 1 ≤ k ≤ s. We want to show that A is µ-ordinary ; it suffices
to show that A[π] has a nice description. Define H0 = 0, Hi = H⊥

2s+1−i for s+ 1 ≤ i ≤ 2s+ 1, and
let H ′

j be a complement of Hj−1 in Hj for all 1 ≤ j ≤ 2s+ 1. This is possible if the field L is big
enough. We claim that

Hj ≃ H ′
j ×Hj−1

Indeed we have a morphism Hj−1 → Hj/H
′
j , which is an isomorphism in generic fiber. The degree

of the image of Hj−1 in Hj/H
′
j thus increases ; but since the degree of Hj−1 is maximal, it must

be an equality. We deduce that degHj = degH ′
j +degHj−1, and that the morphism H ′

j ×Hj−1 is
an isomorphism.
We finally get

A[π] ≃ H ′
1 ×H ′

2 × · · · ×H ′
2s+1

But we can explicitly describe the groups H ′
j . We then conclude that A is µ-ordinary by the

proposition 1.12.

2 Modular forms and Hecke operators

2.1 Modular forms

Let us now define the modular forms for the Shimura variety X . Let π be a place of F0 above p,
and suppose it is in case L. Then we define the OF ⊗OK-module Stπ by

Stπ := Oaσ

K ⊕Obσ
K

where OF acts on Oaσ

K by σ+ and on Obσ
K by σ−. If π is in case U , we define the OF ⊗OK-module

Stπ by
Stπ := Oaσ

K ⊕Obσ
K

where OF acts on Oaσ

K by σ1 and on Obσ
K by σ2. Finally, we define the OF ⊗OK -module St by

St =
⊕

π

Stπ

where π runs over the places of F0 above p. If R is a OK-algebra, and if (A, λ, ι, η) is a R-point of
X , then the R⊗OF -module e∗Ω1

A/R is isomorphic to St⊗OK
R. The sheaf ωA := e∗Ω1

A/X is then
isomorphic to St⊗OK

OX (it is a locally free sheaf on OX).
Define

T = IsomOF⊗OX
(St⊗OX , ωA)

It is a torsor on X under the group defined over OK

M =
∏

π∈P

∏

σ∈Σπ

GLaσ
×GLbσ
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where P is the set of primes of F0 above π. Let BM be the upper Borel of M , UM its unipotent
radical, and TM its maximal torus. Let X(TM ) be the character group of TM , and X(TM )+ the
cone of dominant weights for BM . If κ ∈ X(TM)+, we note κ′ = −w0κ ∈ X(TM )+, where w0 is the
element of highest length in the Weyl group of M relatively to TM .
Let φ : T → X be the projection morphism.

Definition 2.1. Let κ ∈ X(TM )+. The sheaf of modular forms of weight κ is ωκ = φ∗OT [κ
′],

where φ∗OT [κ
′] is the subsheaf of φ∗OT where BM = TMUM acts by κ on TM and trivially on UM .

A modular form of weight κ on X with coefficients in a OL-algebra R is thus a global section
of ωκ, so an element of H0(X ×OK

R,ωκ). Using the projection XIw → X , we define similarly the
sheaf ωκ on XIw, as well as the modular forms on XIw.

2.2 Overconvergent modular forms

For simplicity, we will now assume that there is only one place π of F0 above p, that is to say that
p is inert in F0. The case with several places doesn’t add any difficulty, and will be treated in the
last paragraph.
We can then define the space of overconvergent modular forms. These will be sections of the sheaf
of modular forms defined over a strict neighborhood of the µ-ordinary locus. Recall that we have
defined in both cases a degree function.

Deg : XIw,rig →
s∏

k=1

[0, dk]

Since there is only one place above p in F0, we have XIw = XIw,π.
We define the µ-ordinary-multiplicative locus as Deg−1({d1}× · · ·×{ds}). By the proposition 1.29
or 1.34, this locus lies in the µ-ordinary locus.

Definition 2.2. The space of overconvergent modular forms of weight κ is defined as

M † := colimVH
0(V , ωκ)

where V runs over the strict neighborhoods of the µ-ordinary-multiplicative locus in XIw,rig.

An overconvergent modular form is then defined over a space of the form

Deg−1([d1 − ε, d1]× · · · × [ds − ε, ds])

for some ε > 0.

2.3 Hecke operators

We now define the Hecke operators. These operators will both act on the rigid space, and on the
space of modular forms. We will fix the weight κ. Explicitly, κ is a collection of integer

((κσ,1 ≥ · · · ≥ κσ,aσ
), (λσ,1 ≥ · · · ≥ λσ,bσ ))σ∈Σπ

We recall that we still assume that π is the only place of F0 above p. To simplify the notation, we
define κσ := κσ,aσ

and λσ := λσ,bσ .
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2.3.1 Linear case

Assume that π is in case L. Let 1 ≤ i ≤ a+ b− 1 be an integer, and define Ci be the moduli space
defined over K parameterizing (A, λ, ι, η,H•, L), with (A, λ, ι, η,H•) a point of XIw and L = L0⊕L⊥

0

is a subgroup of A[π], where L0 is an OF -stable subgroup of A[π+] with A[π+] = Hi⊕L0. We have
two morphisms p1, p2 : Ci → XIw ×OK

K. The morphism p1 correspond to forgetting L, and the
morphism p2 is defined as p2(A, λ, ι, η,H•, L) = (A/L, λ′, ι′, η′, H ′

•), with

• H ′
j = (Hj + L0)/L0 if j ≤ i.

• H ′
j = ((π+)−1(Hj ∩ L0))/L0 if j > i.

We take the polarization λ′ to be equal to p · λ, which is a prime to p polarization. Let Can
i be

the analytic space associated to Ci, and define Ci,rig := p−1
1 (XIw,rig). The morphisms p1, p2 give

morphisms Ci,rig → XIw,rig.

Definition 2.3. The i-th Hecke operator acting on the subsets of XIw,rig is defined by

Uπ,i(S) = p2(p
−1
1 (S))

This operator preserves the admissible open subsets, and quasi-compact admissible open subsets.

Let us denote by p : A → A/L the universal isogeny over Ci. This induces an isomorphism
p∗ : ω(A/L)/X → ωA/X , and thus a morphism p∗(κ) : p∗2ω

κ → p∗1ω
κ. For every admissible open U

of XIw,rig, we form the composed morphism

Ũπ,i : H
0(Uπ,i(U), ω

κ) → H0(p−1
1 (U), p∗2ω

κ)
p∗(κ)
→ H0(p−1

1 (U), p∗1ω
κ)

Trp1→ H0(U , ωκ)

Definition 2.4. The Hecke operator acting on modular forms is defined by Uπ,i = 1
pNi

Ũπ,i with

Ni =
∑

σ∈Σπ

(
min(i, aσ)min(a+ b− i, bσ) + max(aσ − i, 0)κσ +max(i− aσ, 0)λσ

)

We will also write
ni =

∑

σ∈Σπ

min(i, aσ)min(a+ b− i, bσ)

the constant term of Ni, which is independent of the weight.
Let us explain briefly the meaning of the normalization factor Ni. Then term min(i, aσ)min(a+ b− i, bσ)
comes from the inseparability degree of the projection p1. The term max(aσ−i, 0)κσ+max(i− aσ, 0)λσ

comes from the morphism p∗(κ). Indeed, we have the following proposition.

Proposition 2.5. Let M be a finite extension of Qp, let (A, λ, ι, η,H•) be an OM -point of XIw and
L = L0⊕L⊥

0 a subgroup of A[π], where L0 is an OF -stable subgroup of A[π+] with A[π+] = Hi⊕L0

in generic fiber. Then we have for all σ ∈ Σπ

degσ L0 ≥ aσ − i and degσ L
⊥
0 ≥ i− aσ

Proof. The group A[π+]/L0 is of height fi, and has partial degree (aσ−degσ L0)σ. Hence aσ− degσ L0 ≤ i,
and degσ L0 ≥ aσ− i. We get the other equality by duality (note that bσ − (a+ b− i) = i−aσ).
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We have the following proposition concerning the behavior of the Hecke operator regarding the
degree function.

Proposition 2.6. Let x = (A, λ, ι, η,H•) be a point of XIw,rig, and y ∈ Uπ,i(x) corresponding to
a subgroup L ∈ A[π] as before. Write y = (A/L, λ, ι, η,H ′

•) ; then we have

degH ′
j ≥ degHj

for all 1 ≤ j ≤ a+ b− 1. Moreover, we have

degH ′
i = degA[π+]− degL0

If degH ′
i = degHi, then degHi ∈ Z.

Proof. For all 1 ≤ j ≤ i, the morphism Hj → H ′
j is an isomorphism in the generic fiber. Thus the

inequality degH ′
j ≥ degHj . If i < j ≤ a+ b− 1, we have

degH ′
j = deg((π+)−1(Hj ∩ L0))− degL0

Since deg((π+)−1H) = degA[π+] + degH for every subgroup H of A[π+], we get

degH ′
j = degA[π+] + deg(Hj ∩ L0)− degL0 = deg(Hj + L0) + deg(Hj ∩ L0)− degL0 ≥ degHj

from the properties of the degree function.
We have H ′

i = (A[π+]/L0), hence the formula for the degree of H ′
i. If degH ′

i = degHi, then we
have degHi + degL0 = degA[π+], and A[π+] = Hi × L. Since A[π+] is a BT1, so is Hi, and its
degree is an integer.

2.3.2 Unitary case

Assume now that π is in case U . Let 1 ≤ i ≤ (a+ b)/2 be an integer, and define Ci be the moduli
space defined over K parameterizing (A, λ, ι, η,H•, L), with (A, λ, ι, η,H•) a point of XIw and

• L is a OF -stable, totally isotropic subgroup of A[π2] such that A[π] = Hi ⊕ L[π] = H⊥
i ⊕ πL

if i < (a+ b)/2.

• L is a OF -stable, totally isotropic subgroup of A[π] such that A[π] = Hi ⊕ L if i = (a+ b)/2.

We have two morphisms p1, p2 : Ci → XIw ×OK
K. The morphism p1 correspond to forgetting L,

and the morphism p2 is defined as p2(A, λ, ι, η,H•, L) = (A/L, λ′, ι′, η′, H ′
•), with

• H ′
j = (Hj + L)/L if j ≤ i.

• H ′
j = (π−1(Hj ∩ L) + L)/L if i < j ≤ (a+ b)/2.

We take the polarization λ′ to be equal to p · λ, which is a prime to p polarization. Let Can
i be

the analytic space associated to Ci, and define Ci,rig := p−1
1 (XIw,rig). The morphisms p1, p2 give

morphisms Ci,rig → XIw,rig.

Definition 2.7. The i-th Hecke operator acting on the subsets of XIw,rig is defined by

Uπ,i(S) = p2(p
−1
1 (S))

This operator preserves the admissible open subsets, and quasi-compact admissible open subsets.
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Remark 2.8. The condition A[π] = H⊥
i ⊕πL is actually redundant with the condition A[π] = Hi⊕ L[π].

Indeed, since L is totally isotropic, we have πL ⊂ L[π]⊥ (we denote by L[π]⊥ the orthogonal in
A[π] of L[π]). Comparing the heights, we see that we have the equality πL = L[π]⊥.

Let us denote by p : A → A/L the universal isogeny over Ci. This induces an isomorphism
p∗ : ω(A/L)/X → ωA/X , and thus a morphism p∗(κ) : p∗2ω

κ → p∗1ω
κ. For every admissible open U

of XIw,rig, we form the composed morphism

Ũπ,i : H
0(Uπ,i(U), ω

κ) → H0(p−1
1 (U), p∗2ω

κ)
p∗(κ)
→ H0(p−1

1 (U), p∗1ω
κ)

Trp1→ H0(U , ωκ)

Definition 2.9. The Hecke operator acting on modular forms is defined by Uπ,i = 1
pNi

Ũπ,i with

Ni =
∑

σ∈Σπ

(
(a+ b)min(i, aσ) + max(aσ − i, 0)κσ +max(bσ − aσ, bσ − i)λσ

)

if i < (a+ b)/2, and

N(a+b)/2 =
∑

σ∈Σπ

( (a+ b)

2
aσ +

(bσ − aσ)

2
λσ

)

We will also write
ni =

∑

σ∈Σπ

(a+ b)min(i, aσ)

if i < (a+ b)/2, and

n(a+b)/2 =
∑

σ∈Σπ

(a+ b)

2
aσ

the constant term of Ni, which is independent of the weight.
Again, the reason for the normalization factor ni comes into two parts. Then term (a+b)min(i, aσ)
comes from the inseparability degree of the projection p1. The term max(aσ−i, 0)κσ+max(bσ− aσ, bσ− i)λσ

comes from the morphism p∗(κ). Indeed, we have the following proposition.

Proposition 2.10. Let M be a finite extension of Qp, let (A, λ, ι, η,H•) be an OM -point of XIw

and L a subgroup of A[π2] as before. If i < (a+ b)/2, we have

degσ1
L ≥ aσ − i and degσ2

L ≥ max(bσ − i, bσ − aσ)

If i = (a+ b)/2, we have

degσ2
L ≥

bσ − aσ
2

Proof. Suppose first that i < (a+ b)/2. The subgroup L being totally isotropic, we get

degσ2
L = degσ1

L+ bσ − aσ

The group A[π]/L[π] is of height 2fi, hence we have degσ1
A[π]/L[π] ≤ i. We get

degσ1
L ≥ degσ1

L[π] ≥ aσ − i

We deduce that degσ2
L = degσ1

L+ bσ − aσ ≥ max(bσ − i, bσ − aσ).
If i = (a+ b)/2, then L is a maximal totally isotropic subgroup of A[π]. Thus we have

degσ2
L =

bσ − aσ
2

+ degσ1
L ≥

bσ − aσ
2
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We have the following proposition concerning the behavior of the Hecke operator regarding the
degree function.

Proposition 2.11. Let x = (A, λ, ι, η,H•) be a point of XIw,rig, and y ∈ Uπ,i(x) corresponding to
a subgroup L ∈ A[π2] as before. Write y = (A/L, λ, ι, η,H ′

•) ; then we have

degH ′
j ≥ degHj

for all 1 ≤ j ≤ (a+ b)/2. Moreover, if i < (a+ b)/2, we have

degH ′
i = 2fi− deg(L/L[π])

If degH ′
i = degHi, then degHi ∈ Z.

If i = (a+ b)/2, then
degH ′

(a+b)/2 = f(a+ b)− deg(L)

If degH ′
(a+b)/2 = degH(a+b)/2, then d(a+b)/2 − degH(a+b)/2 ∈ 2Z.

Proof. Suppose first that i < (a + b)/2. For all 1 ≤ j ≤ i, the morphisms Hj → H ′
j is an

isomorphism in the generic fiber. Thus the inequality degH ′
j ≥ degHj . Suppose i < j ≤ (a+ b)/2.

Then, observing that π−1(Hj ∩ L) ∩ L = L[π], we get

degH ′
j = deg(π−1(Hj ∩ L) + L)− degL ≥ deg(π−1(Hj ∩ L))− degL[π]

≥ degA[π] + deg(Hj ∩ L)− degL[π] = deg(Hj + L[π]) + deg(Hj ∩ L[π])− degL[π]

≥ degHj

from the properties of the degree function.
Let us calculate the degree of H ′

i. We have

degH ′
i = deg(A[π] + L)/L = deg(π−1L[π]⊥)/L = degA[π] + degL[π]⊥ − degL

= 2fi+ degL[π]− degL = 2fi− deg(L/L[π])

If degH ′
i = degHi, then we have degHi + degL[π] = degA[π], and A[π] = Hi × L[π]. Since A[π]

is a BT1, so is Hi, and its degree is an integer.
Suppose now that i = (a+b)/2. The same argument as before shows that we still have degH ′

j ≥ degHj ,
for all 1 ≤ j ≤ (a+ b)/2. Since H ′

(a+b)/2 = A[π]/L, we have

degH ′
(a+b)/2 = degA[π]− degL = f(a+ b)− deg(L)

If we have the equality degH ′
(a+b)/2 = degH(a+b)/2, then H(a+b)/2 is a BT1, and all its partial

degrees are integers. Since H(a+b)/2 is totally isotropic, we have the relations

degσ2
H(a+b)/2 = degσ1

H(a+b)/2 + (bσ − aσ)/2

for all σ ∈ Σπ. If we note hσ = degσ1
H(a+b)/2, which is an integer under the previous assumption,

we have

d(a+b)/2 − degH(a+b)/2 =
∑

σ∈Σπ

(
aσ +

(a+ b)

2
− 2hσ −

(bσ − aσ)

2

)
= 2

∑

σ∈Σπ

(aσ − hσ) ∈ 2Z
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We will also need the following useful lemma.

Lemma 2.12. Let x = (A, λ, ι, η,H•) be a point of XIw,rig, and let L ∈ A[π2] be a totally isotropic
subgroup as before, corresponding to a point of Uπ,i(x), with i < (a+ b)/2. We have the inequality

deg(L/L[π]) ≤ 2fi− degA[π] + degL[π]

Proof. The multiplication by π gives a morphism L/L[π] → πL. But L being totally isotropic, we
have the relation πL = L[π]⊥. We thus get a morphism L/L[π] → L[π]⊥, which is an isomorphism
in generic fiber. Thus the relation

deg(L/L[π]) ≤ degL[π]⊥ = 2fi− degA[π] + degL[π]

3 A classicality result

We will now prove a control theorem, that is to say that an overconvergent modular form is indeed
classical under a certain assumption.

3.1 Decomposition of the Hecke operators

Fix a rational ε > 0. We will fix rationals εk ∈ {ε, dk} for 1 ≤ k ≤ s. Fix also an integer i between
1 and s such that εi = ε. Since we have assumed that there is only one place π of F0 above p, we
will simply note Σ = Σπ . We define a partition of this set. First, we note for 1 ≤ k ≤ s

Σk := {σ ∈ Σ, aσ = Ak}

We will also note Σ0 := {σ ∈ Σ, aσ = 0}, and Σs+1 := {σ ∈ Σ, aσ = a+b} (of course Σs+1 is always
empty in case U). The sets (Σk)0≤k≤s+1 form a partition of Σ.
From the collection of (εk)1≤k≤s, we define another partition of Σ. The set S1 is defined to be

S1 = Σ0 ∪
⋃

k 6=i
εk=ε

Σk ∪ Σs+1

The complement is the set
S2 = Σi ∪

⋃

k,εk=dk

Σk

Define

U0 := Deg−1([d1 − ε1, d1]× · · · × [ds − εs, ds]) =
s⋂

k=1

Deg−1
k [dk − εk, dk]

U1 :=
⋂

k 6=i

Deg−1
k [dk − εk, dk]

We will define a decomposition of the Hecke operator Uπ,Ai
on subsets of U1. Fix a rational

α > 0, and define the integer t to be 1, except in the unitary case and if i = (a + b)/2, where we
set t = 2. For simplicity, we will simply write Ui for Uπ,Ai

. Define

U := Deg−1
i ([0, di − t(1− α)]) ∩ U1
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Theorem 3.1. Let N ≥ 1 and β < ε be a positive rational. There exists a finite set SN , and
a decreasing sequence of admissible open (Uk(N))k∈SN

of U such that for all k ≥ 0, we have a
decomposition of UN

i on Uk(N)\Uk+1(N)

UN
i =




N−1∐

j=0

UN−1−j
i ◦ Tj



∐

TN

with T0 = Ugood
i,k,N , and for 0 < k < N

Tj =
∐

k1∈SN−1,...,kj∈SN−j

Ugood
i,kj ,N

U bad
i,kj−1,kj ,N . . . U bad

i,k,k1,N

and
TN =

∐

k1∈SN−1,...,kN−1∈S1

U bad
i,kN−1,NU bad

i,kN−2,kN−1,N . . . U bad
i,k,k1,N

such that

• the images of Ugood
i,j,N (j ∈ Sk) are in Deg−1

i (]di − t(1− β), di]).

• the images of U bad
i,l,l′,N (l ∈ Sk, l

′ ∈ Sk−1) and U bad
i,l,N (l ∈ S1) are in Deg−1

i ([0, di − t(1− β]))

3.2 Analytic continuation

Let f be a section of the sheaf ωκ on U0. We will show that f can be extended to U1 under a certain
condition. More precisely, suppose in this paragraph that f is an eigenform for the Hecke operator
Ui with eigenvalue αi, and that

v(αi) + nAi
< (1− 2fε) inf

σ∈S2

(κσ + λσ)

The first step is to extend f to Deg−1
i (]di − t, di]) ∩ U1. We will use the following proposition.

Proposition 3.2. Let 0 < γ < 1 be a rational. Then there exists an integer N such that

UN
i (Deg−1

i ([di − tγ, di]) ∩ U1) ⊂ Deg−1
i ([di − ε, di]) ∩ U1

Proof. The key point is that on Deg−1
i ([di − tγ, di]) ∩ U1, the operator Ui increases strictly the

degree function Degi. We then apply the argument in [Pi].

Corollary 3.3. The overconvergent form f can be extended to Deg−1
i (]di − t, di]) ∩ U1.

Proof. Let 0 < γ < 1 be a rational. By the previous proposition, there exists an integer N such
that

UN
i (Deg−1

i ([di − tγ, di]) ∩ U1) ⊂ Deg−1
i ([di − ε, di]) ∩ U1

The quantity α−N
i UN

i f is thus defined on Deg−1
i ([di−tγ, di])∩U1. This formula allows us to extend

f to Deg−1
i (]di − t, di]) ∩ U1.

The second step is to define some series on U := Deg−1
i ([0, di− t(1−α)])∩U1, for some rational

α sufficiently small. We will use the decomposition of the Hecke operator Ui.
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Theorem 3.4. Suppose that all the operators U bad
i introduced in the theorem 3.1 satisfy the relation

||α−1
i U bad

i || < 1

Then it is possible to construct sections fN ∈ H0(U , ωκ/pAN ), such that AN → ∞. Moreover, the
functions fN can be glued together and with the initial form f to give an element of H0(U1, ω

κ).

We refer to [Bi1] for the details of the theorem and the constructions of the series fN . We will
now prove that, under the assumption made in the beginning of the paragraph, the condition in
the theorem is fulfilled, that is to say that the norm of the operators α−1

i U bad
i is strictly less than

1. We will split the discussion between the linear and unitary cases.

3.2.1 Linear case

We recall that the integer t is equal to 1 in that case. Let M be a finite extension of Qp, let
x = (A, λ, ι, η,H•) be a point of U defined over OM , and L = L0 ⊕ L⊥

0 be a subgroup of A[π],
where L0 is an OF -stable subgroup of A[π+] with A[π+] = HAi

⊕L0 in generic fiber. Let us denote
A′ = A/L, and let H ′

Ai
be the image of HAi

in A/L. Thus

H ′
Ai

= A[π+]/L0

We suppose that the subgroup L correspond to a bad point. That is to say that degH ′
Ai

≤ di−1+α
for a certain rational α > 0. We write degσ L0 = max(aσ −Ai, 0) + lσ for all σ ∈ Σ. As it is shown
by the proposition 2.5, lσ is a positive rational for all σ. We then have for all σ

degσ H
′
Ai

= aσ − degσ L0 = min(Ai, aσ)− lσ

We deduce that degH ′
Ai

= di −
∑

σ∈Σ lσ. The condition of being a bad point gives

∑

σ∈Σ

lσ ≥ 1− α

Actually, we can control some of the lσ. First, we prove the following technical lemma.

Lemma 3.5. Let x = (A, λ, ι, η,H•) be a point as before, and let H ⊂ A[π+] be a OF -stable
subgroup. If H is of height fAk and degH ≥ dk − ε, then degσ H ≥ min(aσ, Ak)− ε for all σ ∈ Σ.
If H is of height f(a+ b−Ak), and degH ≤ degA[π+]−dk+ε, then degσ H ≤ max(aσ−Ak, 0)+ε
for all σ ∈ Σ.

Proof. Suppose that H is of height fAk and degH ≥ dk − ε. If degσ H < min(aσ, Ak)− ε for some
σ ∈ Σ, then

degH =
∑

σ′∈Σ

degσ′ H < min(aσ, Ak)− ε+
∑

σ′ 6=σ

min(aσ′ , Ak) = dk − ε

and we get a contradiction.
If H is of height f(a + b − Ak), and degL ≤ degA[π+] − dk + ε, then we can apply the previous
argument to A[π+]/H . We get degσ(A[π

+]/H) ≤ min(aσ, Ak) − ε for all σ ∈ Σ, and therefore
degσ H ≥ max(aσ −Ak, 0) + ε.
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Now we prove a bound for some of the lσ.

Lemma 3.6. If σ ∈ S1, we have lσ ≤ ε.

Proof. If σ ∈ Σ0 ∪ Σs+1, then lσ = 0. If not, σ ∈ Σk, with 1 ≤ k ≤ s, k 6= i and εk = ε. Since
x is a point of U , we have degHAk

≥ dk − ε. Suppose first that k < i. Since HAk
and L0 are

disjoint, the morphism HAk
→ H ′

Ak
:= (HAk

+L0)/L0 is an isomorphism in the generic fiber. Thus
by the properties of the degree function degH ′

Ak
≥ degHAk

≥ dk − ε. By the lemma 3.5, we get
degσ H

′
Ak

≥ Ak − ε. But we also have degσ H
′
Ak

≤ degσ H
′
Ai

= min(Ai, aσ) − lσ = Ak − lσ. In
conclusion, we get lσ ≤ ε.
The case k > i can be treated by duality, considering the group A[π−]. We can also give a direct ar-
gument. Let us denote the group L0/(L0∩HAk

) by L′
k. Since HAk

and L0 generate A[π+], the mor-
phism L′

k → A[π+]/HAk
is an isomorphism in generic fiber, so we get degL′

k ≤ deg(A[π+]/HAk
).

But we have
deg(A[π+]/HAk

) = degA[π+]− degHAk
≤ degA[π+]− dk + ǫ

From the lemma 3.5, we get degσ L
′
k ≤ ε. Since L0 ∩HAk

is of height f(Ak −Ai), we have

lσ = degσ L0 − (Ak −Ai) = degσ L
′
k + degσ(L0 ∩HAk

)− (Ak −Ai) ≤ ε

Remark 3.7. Actually, we can have more control on the lσ. Indeed, suppose that there exists
σ ∈ Σk ∩ S1. If k < i, then we have lσ ≤ ε for all σ ∈ Σj , with j ≤ k. If k > i, then we have lσ ≤ ε
for all σ ∈ Σj , with j ≥ k.

Putting together all the calculations made, we get the following result.

Proposition 3.8. We have ∑

σ∈S2

lσ ≥ 1− α− fε

Proof. If σ ∈ S1, we have lσ ≤ ε, and we also have
∑

σ∈Σ lσ ≥ 1− α. Thus

∑

σ∈S2

lσ ≥ 1− α−
∑

σ∈S1

lσ ≥ 1− α− fε

We can now prove the bound for the norm of the operator U bad
i .

Proposition 3.9. We have

||α−1
i U bad

i || ≤ pv(αi)+nAi
−(1−α−2fε) infσ∈S2

(κσ+λσ)

Proof. The term pv(αi) is the norm of the element α−1
i . Recall also the normalization factor for the

Hecke operator

NAi
= nAi

+
∑

σ∈Σπ

(
max(aσ −Ai, 0)κσ +max(Ai − aσ, 0)λσ

)
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The first term will come in the bound, and the second term will be canceled out by the bounds for
the partial degrees of L0 and L⊥

0 .
Indeed, let us calculate the norm of the morphism ωκ

A → ωκ
A/L. We recall that L = L0 ⊕ L⊥

0 . We
can easily assume that the sheaf ωκ is a line bundle, in which case we have

ωκ
A =

⊗

σ∈Σ

(detω+
A,σ)

κσ ⊗ (detω−
A,σ)

λσ

where ω+
A,σ is the sub-module of ωA where OF acts on σ+, and similarly for ω−

A,σ. In this case, the
norm of map ωκ

A → ωκ
A/L is exactly pA, with

A = −
∑

σ∈Σ

(
κσ degσ L0 + λσ degσ L

⊥
0

)

But recall that degσ L0 = max(aσ −Ai, 0) + lσ, and that

degσ L
⊥
0 = Ai − aσ + degσ L0 = max(Ai − aσ, 0) + lσ

Thus

A = −
∑

σ∈Σ

(max(aσ −Ai, 0)κσ +max(Ai − aσ, 0)λσ + lσ(κσ + λσ)) = −(NAi
− nAi

) +B

with

B = −
∑

σ∈Σ

(lσ(κσ + λσ)) ≤ −
∑

σ∈S2

(lσ(κσ + λσ)) ≤ − inf
σ∈S2

(κσ+λσ)
∑

σ∈S2

lσ ≤ −(1−α−fε) inf
σ∈S2

(κσ+λσ)

Hence the bound for the operator α−1
i U bad

i , noting that 1− α− fε ≥ 1− α− 2fε.

Since we have made the assumption

v(αi) + nAi
< (1− 2fε) inf

σ∈S2

(κσ + λσ)

we see that if α is small enough, the norm of the operator α−1
i U bad

i is strictly less than 1.

Remark 3.10. Actually, we only needed the weaker hypothesis

v(αi) + nAi
< (1− fε) inf

σ∈S2

(κσ + λσ)

but we used it to have the same condition on both linear and unitary cases.

3.2.2 Unitary case

We now turn to the unitary case. We first assume that i < (a+ b)/2, so that the integer t is equal
to 1. Let M be a finite extension of Qp, let x = (A, λ, ι, η,H•) be a point of U defined over OM ,
and L be a totally isotropic OF -stable subgroup of A[π2], such that we have A[π] = Hi ⊕L[π]. Let
us denote A′ = A/L, and let H ′

Ai
be the image of HAi

in A/L. Thus

H ′
Ai

= (A[π] + L)/L
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We suppose that the subgroup L correspond to a bad point. That is to say that degH ′
Ai

≤ di−1+α
for a certain rational α > 0. We write degσ1

L = max(aσ −Ai, 0) + lσ, and

degσ2
L = bσ − aσ + degσ1

L = max(bσ −Ai, bσ − aσ) + lσ

for all σ ∈ Σ. As it is shown by the proposition 2.10, lσ is a positive rational for all σ. We then
have degH ′

Ai
= 2fAi − deg(L/L[π]), therefore

deg(L/L[π]) ≥ 2fAi − di + 1− α

We also have by the lemma 2.12 the inequality deg(L/L[π]) ≤ 2fAi − degA[π] + degL[π]. Thus

degL[π] ≥ degA[π]− di + 1− α

We conclude that
degL ≥ 2fAi − 2di + degA[π] + 2(1− α)

By an explicit computation, one checks that the equality

2fAi − 2di + degA[π] =
∑

σ∈Σ

(max(aσ −Ai, 0) + max(bσ −Ai, bσ − aσ))

We conclude that the condition of being a bad point gives

∑

σ∈Σ

lσ ≥ 1− α

Actually, we can control some of the lσ. First, we prove the following technical lemma.

Lemma 3.11. Let x = (A, λ, ι, η,H•) be a point as before, and let H ⊂ A[π] be a OF -stable
subgroup. If H is of height 2fAk and degH ≥ dk − ε, then degσ1

H ≥ min(aσ, Ak) − ε for all
σ ∈ Σ.
If H is of height 2f(a+b−Ak), and degH ≤ degA[π]−dk+ε, then degσ1

H ≤ max(aσ−Ak, 0)+ε
for all σ ∈ Σ.

Proof. Suppose that H is of height 2fAk and degH ≥ dk − ε. If degσ1
H < min(aσ, Ak) − ε for

some σ ∈ Σ, then

degH =
∑

σ′∈Σ

(degσ′

1
H + degσ′

2
H) < min(aσ, Ak)− ε+Ak +

∑

σ′ 6=σ

(min(aσ′ , Ak) +Ak) = dk − ε

and we get a contradiction.
If H is of height 2f(a + b − Ak), and degL ≤ degA[π] − dk + ε, then we can apply the previous
argument to A[π]/H . We get degσ1

(A[π]/H) ≤ min(aσ, Ak) − ε for all σ ∈ Σ, and therefore
degσ1

H ≥ max(aσ −Ak, 0) + ε.

Now we prove a bound for some of the lσ.

Lemma 3.12. If σ ∈ S1, we have lσ ≤ 2ε.
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Proof. If σ ∈ Σ0, then lσ = 0. If not, σ ∈ Σk, with 1 ≤ k ≤ s, k 6= i and εk = ε. Since x is a
point of U , we have degHAk

≥ dk − ε. Suppose first that k < i. Since HAk
and L[π] are disjoint,

the morphism HAk
→ H ′

Ak
:= (HAk

+ L[π])/L[π] is an isomorphism in the generic fiber. Thus
by the properties of the degree function degH ′

Ak
≥ degHAk

≥ dk − ε. By the lemma 3.11, we
have degσ1

H ′
Ak

≥ Ak − ε. But we also have degσ1
H ′

Ak
≤ degσ1

A[π]/L[π] = aσ − degσ1
L[π], and

therefore degσ1
L[π] ≤ ε. Next, we study H ′′

Ak
:= (H ′

Ak
+L/L[π])/(L/L[π]). Using the lemma 3.11,

we get
Ak − ε ≤ degσ1

HA′′

k
≤ Ak − degσ1

L/L[π]

Therefore degσ1
(L/L[π]) ≤ ε. In conclusion, we get lσ ≤ 2ε.

The case k > i cannot be treated by duality in this case. Let us denote the group L[π]/(L[π]∩HAk
)

by L′
k. Since HAk

and L[π] generate A[π], the morphism L′
k → A[π]/HAk

is an isomorphism in
generic fiber, so we get degL′

k ≤ deg(A[π]/HAk
). But we have

deg(A[π]/HAk
) = degA[π]− degHAk

≤ degA[π]− dk + ǫ

The lemma 3.11 gives degσ1
L′
k ≤ ε. Since L[π] ∩HAk

is of height 2f(Ak −Ai), we have

degσ1
L[π] = degσ1

L′
k + degσ1

L[π] ∩HAk
≤ ε+ Ak −Ai

Now we study A′ := A/L[π] and set H ′
Ak

:= (π−1(HAk
∩ L[π]))/L[π]. If H ′′

Ak
is the image of the

morphism H ′
Ak

→ A′[π]/(L/L[π]), then we get degH ′′
Ak

≥ dk − ε. The lemma 3.11 gives

Ak − ε ≤ degσ1
H ′′

Ak
≤ Ak − degσ1

(L/L[π])

We deduce that degσ1
L/L[π] ≤ ε. Finally, we have

lσ = degσ1
L− (Ak −Ai) ≤ 2ε

Remark 3.13. Actually, we can have more control on the lσ. Indeed, suppose that there exists
σ ∈ Σk ∩ S1. If k < i, then we have lσ ≤ ε for all σ ∈ Σj with j ≤ k. If k > i, then we have lσ ≤ ε
for all σ ∈ Σj with j ≥ k.

Putting together all the calculations made, we get the following result.

Proposition 3.14. We have ∑

σ∈S2

lσ ≥ 1− α− 2fε

Proof. If σ ∈ S1, we have lσ ≤ 2ε, and we also have
∑

σ∈Σ lσ ≥ 1− α. Thus
∑

σ∈S2

lσ ≥ 1− α−
∑

σ∈S1

lσ ≥ 1− α− 2fε

We can now prove the bound for the norm of the operator U bad
i .

Proposition 3.15. We have

||α−1
i U bad

i || ≤ pv(αi)+nAi
−(1−α−2fε) infσ∈S2

(κσ+λσ)
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Proof. The proof is exactly the same as in the linear case.

Since we have made the assumption

v(αi) + nAi
< (1− 2fε) inf

σ∈S2

(κσ + λσ)

we see that if α is small enough, the norm of the operator α−1
i U bad

i is strictly less than 1.

We now deal with the case i = (a + b)/2 : the integer t is now equal to 2. The subgroup
L is now a maximal totally isotropic subgroup of A[π]. We write degσ1

L = lσ, and we have
degσ2

L = (bσ − aσ)/2 + lσ, for all σ ∈ Σ. Recall that we have the relation

degH ′
(a+b)/2 = f(a+ b)− degL =

∑

σ∈Σ

(aσ +
(a+ b)

2
− 2lσ)

so that
d(a+b)/2 − degH ′

(a+b)/2 = 2
∑

σ∈Σ

lσ

The condition of being a bad point gives

∑

σ∈Σ

lσ ≥ 1− α

for a certain α > 0. The calculations are now exactly the same as previously, and the bound
obtained in the proposition 3.15 is still valid in the case i = (a+ b)/2.

3.2.3 Conclusion

We now recall the analytic continuation result we got, putting together all the results of the past
sections.
Recall that we have defined subsets

U0 := Deg−1([d1 − ε1, d1]× · · · × [ds − εs, ds]) =

s⋂

k=1

Deg−1
k [dk − εk, dk]

U1 :=
⋂

k 6=i

Deg−1
k [dk − εk, dk]

We also have defined a partition Σ = S1

∐
S2. The result of this section is thus contained in the

following theorem.

Theorem 3.16. Let κ be a weight, and f a section of ωκ on U0. Suppose that f is an eigenform
for the Hecke operators Ui, with eigenvalue αi for all 1 ≤ i ≤ s, and that we have the relations

nAi
+ v(αi) < (1− 2fε) inf

σ∈S2

(κσ + λσ)

Then f can be extended to a section of ωκ on U1.

30



3.3 The classicality theorem

We recall that we have made the assumption that p is inert in F0. We have defined integers
(Ai)1≤i≤s, and to each of these integers correspond a canonical subgroup, and a relevant Hecke
operator. We also have a partition

Σ = Σ0

s∐

j=1

Σj

∐
Σs+1

We can now state the classicality result.

Theorem 3.17. Let f be an overconvergent modular form of weight κ. Suppose that f is an
eigenform for the Hecke operators Uπ,Ai

, with eigenvalue αi, and that we have the relations

nAi
+ v(αi) < inf

σ∈Σi

(κσ + λσ)

for 1 ≤ i ≤ s. Then f is classical.

Before giving the proof of the theorem, let us make the conditions explicit. In the case L, the
conditions become

v(αi) +

f∑

j=1

min(aj , Ai)min(bj , Bi) < inf
σ∈Σi

(κσ + λσ)

In the special case where all the (ai) are distinct and different from 0 and a + b, we have s = d
conditions, which can be written

v(ασ) +
∑

σ′∈Σ

min(aσ, aσ′)min(bσ, bσ′) < κσ + λσ

where ασ is the eigenvalue of Uπ,aσ
.

In the case U , they become

v(αi) +

f∑

j=1

(a+ b)min(aj , Ai) < inf
σ∈Σi

(κσ + λσ)

if Ai < (a+ b)/2, and

v(αi) +

f∑

j=1

(a+ b)

2
aj < inf

σ∈Σi

(κσ + λσ)

if Ai = (a+ b)/2.
In the special case where all the (ai) are distinct and different from 0 and (a+ b)/2, we have s = d
conditions, which can be written

v(ασ) +
∑

σ′∈Σ

(a+ b)min(aσ, aσ′) < κσ + λσ

where ασ is the eigenvalue of Uπ,aσ
.
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Of course, in the case where the ordinary locus in non empty, we find the same conditions as
in [Bi1]. In the case L, the condition of ordinariness is aσ = a, bσ = b for some couple (a, b) and
for all σ ∈ Σ. There is one relevant Hecke operator, Uπ,a, and the classicality condition is

fab+ v(α) < inf
σ∈Σ

(κσ + λσ)

where α is the eigenvalue of Uπ,a.
In the case U , the condition of ordinariness is

aσ = bσ = (a+ b)/2

for all σ ∈ Σ. There is one relevant Hecke operator, Uπ,(a+b)/2, and the condition is

f
(a+ b)2

4
+ v(α) < inf

σ∈Σ
(κσ + λσ)

where α is the eigenvalue of Uπ,(a+b)/2.

Remark 3.18. Since we need to use all the Hecke operators Uπ,Ai
for the classicality result, maybe

the relevant operator is a product of these ones. For example, in the linear case the operator∏
σ Uπ,aσ

parametrizes complements of (a lifting of) the kernel of the f th-power of the Frobenius
on the µ-ordinary locus.

3.3.1 Proof of the theorem

Let us now prove the theorem. The overconvergent form f is a section of the sheaf ωκ defined over

V0 :=

s⋂

i=1

Deg−1
i ([di − ε, di])

for some ε > 0. Of course, ε can be taken as small as we want. Let us note Ki = infσ∈Σi
(κσ + λσ),

for all 1 ≤ i ≤ s. We order the elements (Ki)1≤i≤s by decreasing order : we have

Ki1 ≥ Ki2 ≥ · · · ≥ Kis

We will use the analytic continuation theorem successively for the operators Ui1 , . . . , Uis , in that
order.
We first consider the operator Ui1 (we recall that we noted Ui := Uπ,Ai

). We take all the rationals
εk to be equal to ε. In that case, S2 = Σi1 . We can apply the analytic continuation theorem if the
condition

nAi1
+ v(αi1) < (1− 2fε) inf

σ∈S2

(κσ + λσ)

is fulfilled. But infσ∈S2
(κσ + λσ) = Ki1 , and we have by hypothesis

nAi1
+ v(αi1 ) < Ki1

If ε is small enough, then we can apply the theorem. We can thus extend f to

V1 :=
⋂

i6=i1

Deg−1
i ([di − ε, di])
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We then use the operator Ui2 . In this case, we take all the rationals εk to be equal to ε, except
εi1 = di1 . In that case, S2 = Σi1 ∪ Σi2 . We can apply the analytic continuation theorem if the
condition

nAi2
+ v(αi2) < (1− 2fε) inf

σ∈S2

(κσ + λσ)

is fulfilled. But infσ∈S2
(κσ + λσ) = inf(Ki1 ,Ki2) = Ki2 , and we have by hypothesis

nAi2
+ v(αi2 ) < Ki2

If ε is small enough, then we can apply the theorem. We extend f to

V2 :=
⋂

i/∈{i1,i2}

Deg−1
i ([di − ε, di])

Repeating this argument, we can extend the overconvergent form f to the whole rigid variety
XIw,rig. We conclude by applying a Koecher’s principle, and a GAGA theorem, which proves that
the space

H0(XIw,rig, ω
κ)

consists of classical modular forms. This will be done in the next section.

3.3.2 Compactifications and Koecher’s principle

To complete the proof of the theorem, we need to prove a Koecher’s principle, and to introduce
compactifications of the Shimura variety.

Proposition 3.19. There exists a toroïdal compactification XIw of XIw defined over OK . It is a
proper scheme, and the sheaf ωκ extends to XIw.

This proposition combines work of Lan ([La]), who constructed integral models of compactifi-
cations for the variety X , and of Stroh ([St]), who proved that the constructions can be adapted
for the variety with Iwahori level XIw.
One can also construct the minimal compactification X∗

Iw of XIw. The Koecher’s principle states
that, under a certain condition, the sections on XIw automatically extend to the toroïdal compact-
ification.

Proposition 3.20 ([La2]). Suppose that the codimension of the boundary of X∗
Iw is greater than

2. Then for any OK -algebra R the restriction map

H0(XIw ×R,ωκ) → H0(XIw ×R,ωκ)

is an isomorphism.

From this, we deduce a rigid Koecher’s principle (under the same dimension assumption) :

H0(XIw,rig, ω
κ) ≃ H0(XIw,rig, ω

κ)

where XIw,rig is the rigid space associated to XIw. Finally, since XIw is proper, we have a GAGA
theorem.

33



Proposition 3.21. The analytification morphism

H0(XIw ×K,ωκ) → H0(XIw,rig, ω
κ)

is an isomorphism.

To conclude, we need to make explicit the dimension condition. We have the following cases.

• If there exists σ such that aσbσ = 0, then the varieties X and XIw are compact ([La], remark
5.3.3.2).

• If it is not the case, the codimension of the boundary of X∗
Iw is equal to d(a+ b− 1). Indeed,

the dimension of the variety is equal to
∑

σ aσbσ. From [La] theorem 7.2.4.1, there is a
stratification of X∗

Iw, and any top dimensional strata of the boundary is isomorphic to a
Shimura variety with signatures (aσ − 1, bσ − 1), hence has dimension

∑
σ(aσ − 1)(bσ − 1).

If d > 1 or a+ b ≥ 3, then the condition for the Koecher’s principle is fulfilled.

• If d = a = b = 1, we cannot apply the Koecher’s principle.

Since we have excluded the third case by the hypothesis 1.3, it follows from what have been said
before that we have an isomorphism

H0(XIw ×K,ωκ) ≃ H0(XIw,rig, ω
κ)

that is to say that the space H0(XIw,rig, ω
κ) consists of classical modular forms. If the vartiety is

compact, this is only the GAGA theorem, and in the non-compact case, it is a combination of the
rigid Koecher’s principle and the GAGA theorem. This concludes the proof of the theorem.
In the exceptional remaining case, the variety is essentially a modular curve. To prove the classicality
theorem, one has to take the cusps into account in the series constructed. We refer to [Ka] for more
details.

4 Case with several primes above p

In this section, we no longer assume that there is only one prime of F0 above p. We will define the
degree functions, the overconvergent modular forms, and prove the classicality result.

Let P be the set of primes of F0 above p. We write P = {π1, . . . , πg}. Recall that we have
defined the Shimura variety of Iwahori level at p

XIw = XIw,π1
×X XIw,π2

×X · · · ×X XIw,πg

We will denote XIw,rig the rigid space associated to the scheme XIw. Let π be an element of P .
In the previous sections, we have defined an integer sπ, integers Aπ,1 < · · · < Aπ,sπ , other integers
dπ,1, . . . , dπ,sπ , together with a degree function

Degπ : XIw,π,rig →

sπ∏

i=1

[0, dπ,i]
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We will define the degree function on XIw,rig by

Deg : XIw,rig →
∏

π∈P

sπ∏

i=1

[0, dπ,i]

x → (Degπ(pπ(x)))π∈P

Here pπ is the projection XIw,rig → XIw,π,rig.
Let Xµ−ord−mult

Iw be the space Deg−1({dπ,i}). Let us fix a weight κ.

Definition 4.1. The space of overconvergent modular forms of weight κ is defined as

M † := colimVH
0(V , ωκ)

where V runs over the strict neighborhoods of Xµ−ord−mult
Iw in XIw,rig.

We have defined Hecke operators Uπ,Aπ,1
, . . . , Uπ,Aπ,sπ

. There is a slight ambiguity for the
polarization λ′. If π is the only place above p, one can take p ·λ, which is a prime to p polarization.
In general, λ′ is not well defined. Let x be a totally positive element of OF such that vπ′(x) equals 1
if π′ = π, and 0 if π′ is a place of F0 above p different from π. Then one takes for λ′ the polarization
x · λ.
These operators act both on classical and overconvergent modular forms. We can finally state and
prove the classicality theorem.

Theorem 4.2. Let f be an overconvergent modular form. Suppose that f is an eigenform for the
Hecke operators Uπ,Aπ,i

, with eigenvalue απ,i. If we have the relations

nπ,Aπ,i
+ v(απ,i) < inf

σ∈Σπ,i

(κσ + λσ)

for all π ∈ P, 1 ≤ i ≤ sπ, then f is classical.

We recall that nπ,i is the constant term of the normalization factor for the Hecke operator Uπ,i,
and that Σπ,i = {σ ∈ Σπ, aσ = Aπ,i}.

Proof. We will use for each place π the analytic continuation theorem we got in the previous section
to extend the modular form to the whole rigid variety, and deduce its classicality. Hopefully, the
order of the places π is not important here.
We start with an overconvergent form f . It is a section of ωκ defined on a set of the form

Deg−1(
∏

π∈P

sπ∏

i=1

[dπ,i − ε, dπ,i])

Fist, we consider the place π1. Using the Hecke operators, and the relations satisfied by the
eigenvalues, by the previous section, one can extend f to

Deg−1(

sπ1∏

i=1

[0, dπ1,i]×
∏

π 6=π1

sπ∏

i=1

[dπ,i − ε, dπ,i])

Using successively this argument with the different places, one can extend f to the whole rigid
variety XIw,rig. Using a Koecher’s principle (if the variety is not compact), and a GAGA theorem
as in the section 3.3.2, one can prove that f is a classical modular form.
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