A Pilot Study to Determine if Using a Lightweight, Wearable Micro-camera Improves Dietary Assessment Accuracy and Offers Information on Macronutrients and Eating Rate.

Claire Pettitt a1 c1, Jindong Liu a2, Richard. M. Kwasnicki a2, Guang-Zhong Yang a2, Thomas Preston a3 and Gary Frost a1

a1 Nutrition and Dietetic Research Group, Faculty of Medicine, Imperial College London, United Kingdom
a2 The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, United Kingdom
a3 Stable Isotope Biochemistry Laboratory, Scottish Universities Environmental Research Centre, The University of Glasgow, East Kilbride, United Kingdom

Abstract

A major limitation in nutritional science is the lack of understanding of the nutritional intake of free living people. There is an inverse relationship between accuracy of reporting of energy intake by all current nutritional methodologies and body weight. In this pilot study we aim to explore whether using a novel lightweight, wearable micro-camera improves accuracy of dietary intake assessment. Doubly-labelled water (DLW) was used to estimate energy expenditure and intake over a 14-day period over which time participants (n = 6) completed a food diary and wore a micro-camera on 2 of the days. Comparisons were made between the estimated energy intake from reported food diary alone and together with the images from the micro-camera recordings. There was an average daily deficit of 3912kJ using food diaries to estimate energy intake compared to estimated energy expenditure from DLW (p=0.0118) representing an under-reporting rate of 34%. Analysis of food diaries alone showed a significant deficit in estimated daily energy intake compared to estimated intake from food diary analysis with images from the micro-camera recordings (405kJ). Use of the micro-camera images in conjunction with food diaries improves the accuracy of dietary assessment and provides valuable information on macronutrient intake and eating rate. There is a need to develop this recording technique to remove user and assessor bias.

Shortened Title: Improving Dietary Recording with a Microcamera.

Key Words: Dietary Recording; Doubly-Labelled Water; Micro-camera device; Energy Intake

Correspondence: c1 Corresponding author: Claire Pettitt, email c.petitt@imperial.ac.uk

Abbreviations: DLW, Doubly-labelled water; RMR, Resting Metabolic Rate; REE, Resting Energy Expenditure; TEE, Total Energy Expenditure; TBW, Total Body Water; PAL, Physical Activity Level; EEA, Energy Expenditure of Activity; IQR, Interquartile Range; IPAQ, International Physical Activity Questionnaire.
INTRODUCTION:

A common weakness of nutritional research is not being able to accurately assess dietary intake of people in their home environments. To understand the impact of nutritional health in the population there is a need to understand and measure energy expenditure and intake accurately. Common techniques mainly include self-reported questionnaires and dietary records, which are subjective and known to have varying degrees of accuracy, and for this reason some have argued that all memory-based techniques should not be used in nutrition research and objective measures should be developed in their place (1,2). Estimates from a sample of adults aged 19-65 years participating in the 2000 UK National Diet and Nutrition Survey suggest that under-reporting occurs in up to 88% of the sample depending on the method used to calculate under-reporting and the various sub-samples examined (3).

Studies using the gold standard method of doubly-labelled water to measure energy expenditure (and on the principle of energy balance, energy intake), have demonstrated under-reporting rates of between 2-59% depending on the method of dietary assessment and population sample being studied (4–7).

Propensity towards under-reporting using food records is far higher in obese compared to lean individuals (8–11) (19% and 2% respectively (8)). Furthermore, evidence of weight loss during study periods indicates under-eating. This under-eating, along with the under-reporting observed in multiple studies, further complicates the accuracy of dietary recording and assessment methodologies (12).

Other characteristics of under reporters have been found to be relevant including: dietary restraint; gender; age; percentage body fat; and attitudes to food (13–15). Buhl et al (16) and Lichtman et al (17), for example, demonstrated under-reporting levels of between 47% and 59% in individuals with high dietary restraint.

Use of doubly-labelled water to measure dietary intake would allow accurate measurement of dietary energy expenditure (and on the principle of energy balance, energy intake), however, this is not feasible in large studies or in clinical practice due to its high cost. Moreover, the only dietary variable measurable is energy intake and it does not provide any information about nutrient intake or eating behavior.

Alternative novel dietary assessment methodologies such as audio-recording, electronic diaries, bar code catalogues and mobile device applications (18,19) are being developed to try to improve dietary
intake recording. However, even in some of these innovative technologies, the burden on participants (to complete diaries or enter data into a system) remains and may therefore introduce individual bias and affect their eating behaviour\(^{(19)}\).

It is important to develop a non-intrusive method of recording dietary intake in order to gain a better understanding of nutritional intake and the food choices of the obese and overweight without introducing any bias or burden or relying on memory. We have recently developed a wearable sensor platform that provides detailed information about dietary habits. The sensor consists of a microphone and camera and is worn discretely on the ear. Sound features, such as chewing, are extracted in real-time and the camera captures a video sequence\(^{(20)}\). The purpose of this pilot study was to assess if this platform would improve dietary assessment accuracy and if the additional features of the camera add valuable information about dietary habits. The camera records video images of food consumed and has an in-built microphone that records sound transmitted through the jaw when eating and drinking. We hypothesised that use of the micro-camera device would improve the accuracy of energy intake assessment compared to a food diary alone, and that useful information would be provided on other aspects of dietary habits including macronutrient intake and speed of eating.

EXPERIMENTAL METHODS:

Recruitment of Participants: Six healthy and willing volunteers from Imperial College London were recruited in 2012 by word of mouth (Table 1). This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects were approved by the Imperial College Research Ethics Committee (ICREC_12_2_6). Written informed consent was gained from all participants prior to commencement of the study. This pilot study was run in conjunction with another investigation using doubly-labelled water to validate an ear worn activity recognition device (eAR) to measure energy expenditure described elsewhere\(^{(21)}\).

Anthropometry & Resting Metabolic Rate: Participants attended the Hammersmith Campus of Imperial College following an overnight fast on 2 occasions, once at the beginning and once at the end of the 14-day study period. At each visit, participants completed the International Physical Activity Questionnaire (IPAQ) and had their weight and height measured. Resting metabolic rate was measured at each visit by indirect calorimetry using a ventilated hood (Gas Exchange Monitor, GEM Nutrition, Daresbury, UK). After abstaining from strenuous exercise and alcohol in the 24 hours preceding the visit, participants lay in the supine position for over 20 mins after which RMR was measured for approximately 30 mins in an isolated room. Before each test the
calorimeter was calibrated with ‘zero’ (0.00% O$_2$ and 0.00% CO$_2$) and ‘span’ gases (20% O$_2$ and 1.00% CO$_2$) (BOC gases, Surrey, UK). RMR was defined as the mean of measurements taken during the final 20 minutes of the measurement phase.

Dietary Recording - Micro-camera: Each participant was provided with a micro-camera which was worn on the ear (Figure 1) to make audiovisual recordings during meal times for 3 of the study days (2 week days and 1 weekend day). The bespoke micro-camera had a wide-angle lens attached to the front of the camera to increase the camera’s view angle to 170 degrees. Participants were given a demonstration of how to use the device and provided with written instructions. Recorded audiovisual files were downloaded when the cameras were returned at the final visit where participants were also asked for feedback about their experience using the device using a scale of 1-5 where 1=strongly disagree and 5=strongly agree.

Dietary Recording – Food Diary: Participants were instructed by a trained researcher to complete a food diary for the duration of the study, recording all food and drink consumed at the time of eating. Mean daily energy intake throughout the 14-day study period was determined using dietary analysis software (DietPlan 6.0, Forestfield Software Ltd) using standard portion size estimations if details were not given. The food diary entries for the 2-days of microcamera use were also analysed in DietPlan with and without access to the images from the audio-visual micro-camera recordings which provided more detail regarding food type, exact portion size and order and speed of eating (examples shown in Figures 2 and 3).

Added Value of Micro Camera – Macronutrient Intake Assessment: Macronutrient intake was also determined using dietary analysis software (DietPlan 6.0, Forestfield Software Ltd) from the food diary entries completed on days the micro-camera was used.

Added Value of Micro Camera - Eating Rate: The length of each eating episode was measured using both the sound recordings and video recordings from the microcamera.

Doubly-Labelled Water: At the first visit, on day 0, participants collected their second bladder void of the day and stored a 20 ml aliquot with the time of collection clearly noted on the bottle. Each participant then consumed the predetermined doubly-labelled water dose comprising 55g 10 Atom % H$_2^{18}$O and 9g 99.9 Atom % 2H$_2$O. The container was rinsed with tap water and the contents drunk by the participants to ensure all the labelled water had been consumed. The unique code of the dose container was recorded as was the time and date of its consumption. Further urine samples were collected on days 1, 2, 3, 7, 12, 13 and 14 and a 20ml aliquot from each sample stored
in a clearly labeled, well-sealed, collection tube. Samples were stored in a refrigerator until returned
to the research team when all samples were frozen at -20° prior to analysis.

Analysis of Urine Samples: Samples were prepared for 2H analysis by continuous-flow isotope
ratio mass spectrometry according to the method of Scrimgeour *et al* (22). Urine samples were
thawed completely, shaken and allowed to settle. Samples were prepared in triplicate. Urine (300µl)
was pipetted into 10 ml Exetainer glass tubes (Labco, High Wycombe, Berks); plastic cups (150µl,
Chromacol, Welwyn Garden City, Herts) containing platinum catalyst (platinum 5% on alumina
powder, 325 surface area 4250 m2 g$^{-1}$, Sigma Aldrich, Gillingham, Dorset) were added to each vial,
taking care not to wet the catalyst. Each tube was capped with a new screw cap. Reference waters (0
and 310 ppm excess 2H) and 2 quality control waters were prepared and analysed with each batch
of unknown samples. Exetainer vials were placed on a 220 place manifold, where they were each
flushed with equilibration gas for 1 min (20% hydrogen in helium, Air Products Special Gases,
Crewe). Tubes were left to equilibrate at room temperature for 72 hours prior analysis. During this
time the deuterium in the water phase equilibrates with the hydrogen in the gas phase. The
abundance of deuterium in the gas phase was measured using a continuous flow isotope ratio mass
spectrometer (20-22 Hydra, PDZ Europa, Crewe). The abundance of 2H in urine sample and
gravimetric dilutions of the tracer solution were calculated with reference to the known abundance
of the reference waters.

Samples were prepared for 18O analysis according to the method of Prosser *et al* (23). Following
deuterium analysis, the same sample and standard water tubes were flushed in turn with CO$_2$
equilibration gas for 1 min (3% CO$_2$ in nitrogen, Air Products Special Gases, Crewe). Reference
waters (0 and 160 ppm excess 18O) and 2 quality control waters were included with each sample
batch. Samples were left to equilibrate for 24 hours at ambient temperature. The abundance of 18O
in the gas phase was measured by continuous-flow IRMS (AP2003, Analytical Precision,
Manchester, UK). The 18O abundance of patients’ samples was calculated with reference to the
known abundance of the reference samples.

Calculation of Total Energy Expenditure (TEE): ‘Multipoint’ calculations were used to derive
turnover rates and initial enrichments of each isotope, to estimate CO$_2$ production and TBW,
respectively. Schoeller’s equation for estimating TEE was used in the form given by Goran *et al* (24).
A resampling procedure was used to estimate the errors in total body water (TBW) and TEE
measurement (25). TBW averaged 38.8 kg with an error of 0.11 kg (s.d.) and a CV of 0.29%. Fat Free
Mass averaged 53.0 kg and body Fat averaged 25.1 kg. Average TEE was 12.7 Mj/day and TEE error, estimated by the resampling procedure, averaged 2.4% (s.d. 0.30 Mj/day). The ratio of tracer elimination rates was normal ($k_L/k_H = 1.315$, s.d. 0.076) and the average 2H : 18O distribution volume or pool space ratio was 1.038 (s.d. 0.010).

Estimated Energy Expenditure and Predicted Energy Intake: Predicted values for TEE were derived from predicted REE values\(^\text{(26)}\) multiplied by 1.5. This prediction derives from the lifestyle category defined as ‘Seated work with no option of moving around and little or no strenuous activity’ given a PAL range of 1.4–1.5 by Black et al (1996)\(^\text{(27)}\). Predicted energy intake equalled predicted TEE as subjects were weight stable.

Data Analysis: The GraphPad Prism 5 statistical package (version 5.01 for Windows, GraphPad Software, San Diego California USA, www.graphpad.com) was used for data analyses. Non-parametric analysis (including Wilcoxon Signed Rank Test) was carried out on the participant data given the small sample size (n=6). Parametric (Paired T-test) or non-parametric analysis (Wilcoxon Signed Rank Test) was performed on the food diary vs. food diary plus camera data as appropriate (the distribution of the data was assessed using D’Agostino & Pearson omnibus normality test K2) to explore whether there was a difference between the mean energy intake from the food diary entry alone and the food diary record with the micro-camera images. Differences were considered significant at P<0.05. Bland Altman plots were used to assess the level of agreement between estimated energy expenditure from DLW and estimated energy intake from 14-day food diary records, and 2-day food diary records (both with and without the camera images), as well as a comparison between 2-day food diary records with and without the camera images.

RESULTS:

Participant Data: Over the 14-day study period body weight (kg) and physical activity (IPAQ Score) remained stable (median change in body weight 0.05 kg (IQR: -0.5 to + 0.35kg), p = 0.8750, and median IPAQ score change was 69 (IQR: -1565 to +1618), p=0.8438, with no change in physical activity category for any participants during the study period).

Although all participants completed the study, one participant was removed from further analysis as the camera failed to record usable data. Of the 5 remaining participants, a total of 10 days’ worth of eating episodes were recorded completely using the micro-camera. This was equivalent to 2 days per participant out of the 3 days of attempted recording (due to limitations in the battery life of the camera).
Daily Dietary Records and Micro-Camera Data: Mean estimated daily energy intake measured by 2 day food diary analysis was compared to measured energy expenditure from doubly-labelled water analysis showing a statistically significantly different mean deficit of -3912kJ (±1996kJ) (p=0.0118), as shown in Figure 4. This represents an under-reporting of energy intake rate of 34% when compared to the gold-standard of DLW. Estimated average energy intake from 2 day food diary entries in conjunction with micro-camera images was also compared to measured energy expenditure from DLW. Use of the camera in conjunction with the diaries improved the dietary assessment, reducing under-reporting of energy intake rate to 30% with a mean deficit of -3507kJ (±2170kJ) (p=0.0225). A two-tailed paired t-test comparing energy intake (kJ) estimated from food diary entries alone and food diary entries plus micro-camera images showed a significant difference between the estimated intakes (7757kJ vs. 8162kJ, p=0.0436). The differences between all measures of energy intake are shown in Figure 5.

Use of the camera in its current state could have affected eating behaviours, as we saw a reduction in average reported energy intake in the 2 days where the camera was used compared to the average reported energy intake from the complete 14 day study period (7757kJ and 10165kJ respectively). Feedback from participants confirmed that in its current state, although it was easy to use (average rating of 3, where 1=strongly disagree and 5=strongly agree), the device did affect peoples activities (rating of 4) and participants would not be comfortable wearing the device in public (rating of 4).

Added Value of the Microcamera – Macronutrient Intake and Eating Rate

Macronutrient Intake: As this pilot study did not employ the use of biomarkers of protein, fat or carbohydrate intake we could not assess validity of using one dietary assessment method over another, however we did see an increased estimated intake of all three macronutrients when the microcamera images were used alongside the food diaries compared to the food diary entries alone: carbohydrate intake (219g vs. 242g), protein intake (73g vs. 79g) and fat intake (66g vs. 71g).

Eating Rate: Mean length of all eating episodes, length of meals and length of snacks are shown in Table 2. Although the sample size of this pilot study was too small to show any significant correlations, there is a trend towards faster eating being associated with higher energy intake.

These results demonstrate under-reporting of all energy intake by assessment of self-reported dietary records compared to assessment of their intake from their dietary records in addition to images from the micro-camera. Use of the camera in its current form enhances dietary assessment...
using food diaries, improving estimated energy intake. It also may provide valuable information on macronutrient intake and eating behaviours such as speed of eating and order of eating.

DISCUSSION:

Accurate dietary assessment is an essential part of understanding and monitoring the diet at both the population and individual level. A major issue around current dietary recording and assessment methods is that they rely on the individual to recall and record their food intake and under-reporting is extremely common using the food diary method\(^1,3\). The classic method of dealing with under-reporting is by applying the Goldberg Equation to identify outliers and remove them, which improves the quality of the data set whilst sacrificing quantity\(^28\). We found an under-reporting rate of 34% using food diaries as a method of dietary recording, compared to doubly labelled water. This was improved to 30% by use of a micro-camera in conjunction with the food diaries, a similar improvement as seen in a recent review of image-assisted dietary assessments\(^29\), however both estimates represented a statistically significant deficit compared to DLW method, most likely due to only 2 full days of dietary recording being collected per participant, (typically a 3-day food diary including 2 week days and 1 weekend day is acceptable as most representative of energy intake whilst being manageable from a completion and compliance perspective). This under-reporting rate is however in line with previous literature and supports the need for improved dietary recording and assessment techniques.

Dietary recording methods also rely on accurate assessment of the portion size consumed by both the consumer/reporter and the assessor. Our results have shown that by providing a written record of the foods eaten in conjunction with images of the same, the accuracy of assessment of the dietary recording can be improved. We acknowledge that this does not account for interpretation error in estimating intake by the assessor (in this case the dietitian analysing the food diary records and images), though it does remove much of the consumer/reporter error. Further studies would be needed to address the degree of error in the researchers interpretations of intake compared to actual dietary intake. Future research should also assess participants self-reported dietary intake and the interpretation of this by a trained nutrition professional in comparison to weighed food records as an accurate measure of actual intake.

There have been a number of reported studies using camera technology in dietary analysis\(^30–35\), some of which have shown similar improvements in under-reporting, however, the majority of these studies involve the consumer capturing the image of the meal. Therefore the choice remains as to whether the consumer records the eating episode and the problem of under-reporting also remains.
These methods include the SenseCam which captures digital images to use alongside a 24hr recall improving dietary recording of energy intake by 12.5% \cite{30} and a web-based food record which reduced under-reporting to 20% \cite{31}.

The need for active consumer use of a camera device also introduces bias by affecting behaviour, i.e. whether to actually take the food or not\cite{36}. For this study the micro-camera device does not yet remove user bias as it still requires subjects to turn the camera on to begin recording dietary intake and is currently limited by its battery life, needing regular charging. In fact, our results show that use of the camera in its current state could have affected eating behaviours as demonstrated by a reduction in average reported energy when the camera was worn compared to that of the complete 14 day study period. We have developed the technology to upgrade the camera to allow automatic initiation of image capturing triggered by the sound of eating and to extract images of the eating episode using sound recognition. This is discussed in a previous paper outlining the sound recognition and image extraction algorithm\cite{20}. Future work involves combining this development with a hardware upgrade to enable us to lengthen battery life. This will enable automatic activation on eating and drinking which will remove any user bias (the choice of whether the subject records the meal or not) and will provide a more accurate measure of dietary intake\cite{20,37}.

Current literature is not conclusive, though does suggest that speed of eating is positively related to body weight, amount of food eaten\cite{38}, and energy intake\cite{39,40} however many of these studies have been carried out in small Asian populations and/or have used a self-reported eating rate (e.g. very fast, relatively fast, medium, relatively slow and very slow) making the results difficult to apply to the UK population. A recent systematic review and meta-analysis found that slower eating rate was associated with lower energy intake in comparison to a faster eating rate\cite{41} and our pilot data seem to follow this trend. The advantage of the microcamera method of recording eating rate is that, in a free-living environment, the length of the eating episode can be automatically captured as the recognition of the sound of eating triggers the activation of the camera.

The benefits of this micro-camera device are that it is small and easily worn on the ear, therefore non-invasive, whereas other devices are more obvious and onerous to wear or carry, e.g. use of a mobile phone to capture images or wearing a camera in a box around the neck\cite{32,42}. It captures videos from the view point of the participant using it, of dietary intake episodes which can be used by the researchers to look at many aspects of eating behaviours, e.g. rate of chewing and eating speed, order of eating\cite{20} as well as improving accuracy of dietary recording and assessment.
In the longer term, the development of food recognition technologies would greatly enhance dietary recording methods, however, this is very challenging to achieve, given the enormous variety of foods available, their multiple shapes, forms and textures, e.g. carrots could be mashed, raw, chopped, as well as cooking methods e.g. fried, boiled, steamed which may or may not change their appearance and alter their nutritional value\(^{(43)}\).

Conclusion: Use of the micro-camera imaging in conjunction with food diaries improves the accuracy of dietary assessment however in its current format, it introduces user bias. There is a need to develop this automatic data capturing technique to remove user and assessor bias.

Acknowledgements:

Thanks to colleagues at Imperial College for taking part in the study and to the Dietitians in the Nutrition & Dietetics Department at Hammersmith Hospital for their assistance with analysis of the food records. The authors wish to thank Sandra Small for DLW sample preparation at SUERC.

The study was supported by internal funding from Imperial College London.

The authors declare no conflict of interest.

The authors contributions are as follows: C.P, R.M.K, J.L, T.P and G.F designed the study; C.P and R.M.K conducted the research; C.P performed the statistical analyses of the data and wrote the manuscript. All authors reviewed and approved the final manuscript.

Figures:

Figure 1: Micro-camera device used in this pilot study, as worn over the ear.

Figure 2: Example of a micro-camera image accompanying an eating episode food diary entry, captured from the micro-camera audiovisual recordings.

Figure 3: A time lapse video sequence of an eight minute eating episode of a rice with chashu pork lunch. Order of eating can be seen as well as speed of eating.

Figure 4: Comparison of estimated energy expenditure and intake from various methods including Doubly Labelled Water (DLW), 14-day food diary, 2-day food diary and 2-day food diary in conjunction with micro-camera recordings (n=5). Paired t-test was used with *Significance at p<0.05, ***Significance at p<0.001. Figures shown as Mean +/-SEM.

Figure 5: Bland Altman plots of energy intake (EI) measurements (average and difference between A- DLW and 14dFD, B- DLW and 2dFD, C- DLW and 2dFDC, and, D- 2dFD and 2dFDC. Dotted line represents +/- 2SD from the mean (limits of agreement).
Table 1: Baseline characteristics of volunteers recruited to the study. Means stated (±SD).

<table>
<thead>
<tr>
<th>Volunteer</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m2)</th>
<th>Age (years)</th>
<th>Sex</th>
<th>RMR from Calorimetry (kJ)</th>
<th>IPAQ Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1.69</td>
<td>77.5</td>
<td>27.1</td>
<td>30</td>
<td>F</td>
<td>5577</td>
<td>High</td>
</tr>
<tr>
<td>P2</td>
<td>1.69</td>
<td>63.2</td>
<td>22.1</td>
<td>27</td>
<td>F</td>
<td>5113</td>
<td>High</td>
</tr>
<tr>
<td>P3</td>
<td>1.79</td>
<td>80.5</td>
<td>25.1</td>
<td>34</td>
<td>M</td>
<td>5305</td>
<td>Mod</td>
</tr>
<tr>
<td>P4</td>
<td>1.82</td>
<td>74.4</td>
<td>22.5</td>
<td>27</td>
<td>M</td>
<td>7192</td>
<td>Mod</td>
</tr>
<tr>
<td>P5</td>
<td>1.81</td>
<td>94.1</td>
<td>28.7</td>
<td>29</td>
<td>M</td>
<td>7259</td>
<td>High</td>
</tr>
<tr>
<td>P6</td>
<td>1.75</td>
<td>79.5</td>
<td>26.0</td>
<td>24</td>
<td>M</td>
<td>5318</td>
<td>Mod</td>
</tr>
<tr>
<td>Mean</td>
<td>1.76</td>
<td>78.2</td>
<td>25.3</td>
<td>28.5</td>
<td>4M/2F</td>
<td>5961</td>
<td>(237)</td>
</tr>
</tbody>
</table>

BMI, Body Mass Index, RMR, Resting Metabolic Rate, IPAQ, International Physical Activity Questionnaire

Table 2: Speed of eating: Mean Length of all eating episodes, mean length of all meals and mean length of all snacking episodes. Means stated (± SD).

<table>
<thead>
<tr>
<th>Volunteer</th>
<th>BMI</th>
<th>Energy Intake</th>
<th>Speed of Eating (all eating episodes)</th>
<th>Speed of Eating (meals)</th>
<th>Speed of Eating (snacks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>27.1</td>
<td>9067</td>
<td>6.17 (1.93)</td>
<td>6.09 (1.99)</td>
<td>6.41 (2.44)</td>
</tr>
<tr>
<td>P3</td>
<td>25.1</td>
<td>7544</td>
<td>11.85 (3.04)</td>
<td>11.85 (3.04)</td>
<td>0</td>
</tr>
<tr>
<td>P4</td>
<td>22.5</td>
<td>11188</td>
<td>8.45 (6.04)</td>
<td>9.20 (5.99)</td>
<td>2.42</td>
</tr>
<tr>
<td>P6</td>
<td>26.0</td>
<td>13841</td>
<td>5.03 (2.51)</td>
<td>5.03 (2.51)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 1: Micro-camera device used in this pilot study, as worn over the ear.
54x40mm (220 x 220 DPI)
Figure 2: Example of a micro-camera image accompanying an eating episode food diary entry, captured from the micro-camera audiovisual recordings.

169x127mm (96 x 96 DPI)
Figure 3: A time lapse video sequence of an eight minute eating episode of a rice with chashu pork lunch. Order of eating can be seen as well as speed of eating.
209x297mm (150 x 150 DPI)
Figure 4: Comparison of estimated energy expenditure and intake from various methods including Doubly Labelled Water (DLW), 14-day food diary, 2-day food diary and 2-day food diary in conjunction with micro-camera recordings (n=5). Paired t-test was used with *Significance at p<0.05, ***Significance at p<0.001. Figures shown as Mean +/-SEM.
101x112mm (300 x 300 DPI)
Figure 5: Bland Altman plots of energy intake (EI) measurements (average and difference between A- DLW and 14dFD, B- DLW and 2dFD, C- DLW and 2dFDC, and, D- 2dFD and 2dFDC. Dotted line represents +/- 2SD from the mean (limits of agreement).