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The elastodynamic image forces on edge and
screw dislocations in the presence of a planar
free surface are derived. The explicit form of the
elastodynamic fields of an injected, quiescent screw
dislocations are derived as well. The resulting
image forces are affected by retardation effects:
the dislocations experience no image force for a
period of time defined by the arrival and reflection
at the free surface of the dislocation fields. For
the case of injected, stationary dislocations, it is
shown that the elastodynamic image force tends
asymptotically to the elastotatic prediction. For the
case of injected, moving dislocations, it is shown
that the elastodynamic image force on both the
edge and screw dislocations is magnified by inertial
effects, and becomes increasingly divergent with
time; this additional effect, missed in the elastostatic
description, is shown to be substantial even for slow
moving dislocations. Finally, it is shown that the
elastodynamic image force of an edge dislocation
moving towards the surface at the Rayleigh wave
speed becomes repulsive, rather than attractive; this is
suggestive of instabilities at the core of the dislocation,
and likely resonances with the free surface.

1. Introduction
In the presence of a free surface, dislocations experience
a force that drives them towards it; this results in
the minimum energy configuration for the material,
whereby dislocations become steps on its free surface
[?]. Linear elasticity provides an accurate description of
the magnitude of the attractive force between and a
dislocation and a free surface, which is usually called the
image force due to the ‘image dislocation’ construction
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Figure 1. Geometrical configurations of edge and screw dislocations for the derivation of the image forces.

employed in its derivation. This construction, analogous to the image charge construction
employed in electromagnetism, computes the force as if it were due to an image dislocation,
equidistant from the surface but outside the material, and of the same magnitude as the original
dislocation, but of opposite sign.

In the past, image forces have been calculated for a wide range of different geometrical
configurations (see [?]). However, to the authors’ knowledge, all previous attempts to derive
image forces on dislocations have been elastostatic, i.e, have considered only static equilibrium
conditions for both the dislocation and its medium.

The elastostatic derivations identify the presence of an attractive force that usually grows in
inverse proportion to the distance between the dislocation and the free surface, l [?]. For instance,
for straight dislocations parallel to a planar surface in an elastic half space, it is found that

Fx =
µB2

4π

[
1

l

]
for screw, and Fx =

µB2

4π(1− ν)

[
1

l

]
for edge (1.1)

where B is the magnitude of the Burgers vector, µ the shear modulus and ν Poisson’s ratio, and
Fx is the image force in the glissile direction per unit length.

This article derives the elastodynamic image forces experienced by both straight screw and
edge dislocations, moving and quiescent, in the presence of a planar free surface. Time is included
as an explicit field variable in the linear elastic description of the problem and, as a result, inertial
effects affecting both the dislocation and the medium are accounted for.

The configurations studied in this article are shown in fig.??. Section ?? considers the case
of an injected, quiescent (non-moving) screw dislocation; section ?? that of an injected, moving
screw dislocation; section ?? the general formulation employed for tackling the case of edge
dislocations; section ?? that of an injected, quiescent (non-moving) edge dislocation; section ??
that of an injected, moving edge dislocation.

Throughout the article, and unless otherwise stated, the Cartesian coordinate systems shown
in fig.?? will be adopted: the dislocation’s injection site is located at the origin of the (x, z) basis;
the image dislocation’s injection site is located at (x= 2l, z = 0) with respect to that coordinate
system. The image dislocation can be simulated as a negative dislocation with respect to the
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(x, z) basis or, equivalently, as a positive dislocation with respect to a rotated Cartesian coordinate
system (x′, z′), with its origin at the image dislocation’s injection site, whereby x′ 7→ x− 2l and
z′ 7→ −z. This is advantageous because in that way the moving image dislocation advances along
the positive direction of its local x′ axis. All Cartesian bases are considered to be right-handed.
Accordingly, a positive dislocation has its Burgers vector oriented along the positive direction of
the out-of-plane y-axis for screw dislocations, and the x-axis for edge dislocations.

2. Image force on an injected, quiescent screw dislocation
Consider the straight, infinite screw dislocation shown in fig.??.a. The dislocation is injected
(created) at time t= 0 at a distance l from a planar free surface in an elastic half space. The
dislocation line, and the Burgers vector, are oriented along the y-axis in an elastic half space;
the dislocation line is perpendicular to the surface’s normal vector. The free surface imposes the
boundary condition that

σijnj = 0

where nj is the surface’s normal vector. As will be seen below, the elastodynamic fields of a screw
dislocation consist solely of its shear components, which are therefore required to vanish at the
surface.

As in the elastostatic analogue, the boundary conditions can be satisfied by considering an
image screw dislocation, of the same magnitude as the original but of opposite sign, which is shown
in fig.??.a; the image dislocation is also injected at time t= 0 at a distance l away from the free
surface. The elastodynamic fields of the image dislocation can be derived in the same way as for
the injected dislocation’s.

(a) Elastodynamic fields of an injected, quiescent screw dislocation
The injected, quiescent screw dislocation was first studied by Jokl et al. [?], although they did not
provide an explicit expression for its elastodynamic fields; these fields are therefore derived here.

Following the coordinate system shown in fig.??.a, consider the injected dislocation at position
x= 0; the free surface is at position x= l, and the image dislocation is at position x= 2l.

Consider the governing equation [?]:

∂2uy
∂x2

+
∂2uy
∂z2

= b2
∂2uy
∂t2

(2.1)

where b= 1/ct is the transverse slowness of sound, and subject it to the following boundary
condition

uy =BH(x)H(t) (2.2)

and
σzz = 0 (2.3)

where B is the magnitude of the Burgers vector, H(·) the Heaviside function, and uy the
displacement component in the y-th direction.

Define the following Laplace transforms, applied successively to any function f(x, z, t)

f̂(x, z, s) =

∫∞
0
f(x, z, t)e−stdt (2.4)

and

F (λ, z, s) =

∫∞
0
f̂(x, z, s)e−sλxdx (2.5)

Applying these two transforms to eqn.??, one obtains

∂2Uy
∂z2

= (b2 − λ2)s2Uy (2.6)
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the solution of which will be of the form

Uy(λ, z, s) =C · e−sβz (2.7)

where β2 = b2 − λ2, and C is an integration constant that can be found from the boundary
conditions as follows.

Applying the successive Laplace transforms to the displacement boundary condition (eqn.??),
one obtains

Uy(λ, 0, s) =
B

2λs2
(2.8)

whereby the integration constant must be C = B
2λs2

. Hence, the general solution is of the form

Uy(λ, z, s) =
B

2λs2
e−sβz (2.9)

This solution can be inverted employing the Cagniard-de Hoop technique (vid. [?,?,?,?]).
Only the σxy stress component is of interest; it is given σxy = µuy,x. Following that, the

transformed stress field component is given by

Σxy =
µB

2s
e−sβz (2.10)

where Σxy =Lx{σ̂xy}=Lx{Lt{σxy}}.
The first inverse Laplace transform is the following integral,

σ̂xy =
1

2πi

∫ i∞
−i∞

µB

2s
e−sβzeλsxsdλ (2.11)

By appropriate change of variable, the Bromwich integral can be given the form of a forward
Laplace transform. Thus, call τ = βz − λx. Invoking Cauchy’s theorem and Jordan’s lemma, the
value of the integral along the (−i∞, i∞) integration contour can be equated to that along the

hyperbola branches defined by λ+ =
−τx+iz

√
τ2−(x2+z2)b2

x2+z2
. The hyperbola branch corresponds

with an integration path from τ = b
√
x2 + z2 to τ →∞with respect to τ .

This entails that the inverse Laplace transform can be rewritten as

σ̂xy =
µB

2π

∫∞
0

Im
[
∂λ+
∂τ

]
H
(
τ − b

√
x2 + z2

)
e−sτdτ (2.12)

which is the Cagniard form of the solution. Upon applying the inverse Laplace transform in time,

σxy =
1

2πi

∫
Br

{∫∞
0

µB

2π
Im
[
∂λ+
∂τ

]
H
(
τ − b

√
x2 + z2

)
e−sτdτ

}
estdt (2.13)

it becomes clear that the solution is obtained by inspection as

σxy(x, z, t) =
µB

2π
Im
[
∂λ+
∂τ

]
H
(
τ − b

√
x2 + z2

)
(2.14)

Expanding the imaginary part, the stress field is found to be

σxy(x, z, t) =
µB

2π

tx

r2
√
t2 − b2r2

H(t− br) (2.15)

where r2 = x2 + z2.
It is interesting to notice that in the t→∞ limit, this field converges to the elastostatic field of

a screw dislocation:

σxy(x, z) =
µB

2π
lim
t→∞

tx

(x2 + z2)
√
t2 − b2 (x2 + z2)

H
(
t− b

√
x2 + z2

)
=
µB

2π

x

x2 + z2
, (2.16)

which is the expression of the static σxy stress field component of a screw dislocation (see [?]).
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Having found the field component, the image stress field exerted by the image dislocation will
be (with respect to the coordinate system centred at the original dislocation),

σimxy (x, z, t) =
µB

2π

t(x− 2l)

((x− 2l)2 + z2)
√
t2 − b2 ((x− 2l)2 + z2)

H

(
t− b

√
(x− 2l)2 + z2

)
(2.17)

It is immediate to see that due to the symmetry of σxy , at the surface (x= l) the image field cancels
that of the dislocation:

σtotalxy (x= l, z, t) = σdislocxy (x= l, z, t) + σimxy (x= l, z, t) =

=
µB

2π

[
tl

(l2 + z2)
√
t2 − b2 (l2 + z2)

H(t− br)− tl

(l2 + z2)
√
t2 − b2 (l2 + z2)

H(t− br)

]
= 0

thereby satisfying the boundary condition that σtotalxy = 0 at the free surface.

(b) Image force
The image force exerted by the image dislocation on the real dislocation’s line depends on the
σxz component of stress, which can be derived using the same procedure described above1. It is
found to be

σyz(x, z, t) =
µB

2π

t
[
2t2x− b2(2x3 + x2z + 2xz2 + z3)

]
r2
√
t2 − b2r2(2t2 − b2r2)

H(t− br) (2.19)

As before, this stress component converges to its elastostatic counterpart in the t→∞ limit.
The image component will then be, with respect to the (x, z) axes,

σimyz (x, z, t) =−
µB

2π

t
[
2t2(x− 2l)− b2(2(x− 2l)3 + (x− 2l)2z + 2(x− 2l)z2 + z3)

]
((x− 2l)2 + z2)

√
t2 − b2((x− 2l)2 + z2)(2t2 − b2((x− 2l)2 + z2)

H

(
t− b

√
(x− 2l)2 + z2

)
(2.20)

Thus, the image force on the injected, quiescent screw dislocation, given by Fx(t) =

Bσyz(0, 0, t), will be

Fx(t) =
µB2

2π

t
√
t2 − 4b2l2

2lt2 − 4b2l3
H(t− 2bl) (2.21)

As with the stress fields, in the t→∞ limit, the image force converges to its elastostatic
counterpart. It is perhaps more revealing to rewrite the image force in terms of non-dimensional
time τ = t/bl:

Fx(τ) =
µB2

2π

[
1

l

] [
1

2

τ
√
τ2 − 4

τ2 − 2
H(τ − 2)

]
︸ ︷︷ ︸

Dynamic contribution

(2.22)

One can easily identify two factors. The factor depending on τ in the second bracket is the
elastodynamic contribution to the image force. For t > 2bl, this elastodynamic contribution
increases monotonically, and as t→∞, it tends to 1/2. Hence, the image force asymptotically
converges to its elastostatic counterpart, which as can be noticed in eqn.?? is proportional to 1/l.
The term in the first bracket, 1/l, bears the same proportionality also found in the elastostatic
image force.
1The displacement field, derived using the same procedure, is given by

uy(x, z, t) =
B

2π

[
tan

−1

(√
t2 − b2 (x2 + z2)

t

)
+ tan

−1

(
tz

x
√
t2 − b2 (x2 + z2)

)

+
bx

√
b2x2 − 2t2

tanh
−1

(
btz

√
b2x2 − 2t2

√
t2 − b2 (x2 + z2)

)]
H(t− br) (2.18)
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Figure 2. Evolution of the magnitude of the image force with time.

The evolution in the magnitude of the image force is shown in fig.??. As can be readily deduced
from the elastodynamic contribution in eqn.??, Fx takes no values prior to t= 2bl. This is a result
of the retardation principle underlying the elastodynamic formulation presented here. As a result
of the finite propagation time of the elastodynamic shear waves, the elastic field of a dislocation
injected at time t= 0 at a distance l from the free surface will reach the free surface only at time
t= bl; any reflected elastic wave incoming from the surface will require an additional bl to reach
the dislocation, so until t= 2bl the dislocation does not feel the presence of the free surface, and
does not experience an image force.

3. Image force on an injected, moving screw dislocation
The solution for the image force of an injected, quiescent screw dislocation displays a behaviour
very similar to that predicted by elastostatics. This should come as no surprise because in either
case the fields describe a dislocation that does not move from its position. However, image forces
are introduced to show that in the presence of a free surface, the dislocation will be attracted
towards it as a way of minimising the elastic energy of the system. Hence, one should expect the
dislocation to move towards the surface.

The problem of the image fields of an injected, screw dislocation moving along the x-axis (see
fig.??.b.) is explored in this section.

(a) Elastodynamic fields of a moving screw dislocation
The elastodynamic fields of a pre-existing, moving screw dislocation were derived by
Markenscoff (1980) [?] by employing the Cagniard-de Hoop methodology. As argued by
Gurrutxaga-Lerma et al. (2013) [?] when exploring the case of an injected, non-uniformly moving
edge dislocation, the problem of the injected non-uniformly moving screw dislocation can be
solved by superposition of two terms, arising from two separate boundary value problems:

(i) The mobile contribution, which in the screw case is of the form (vid. [?])

uy(x, 0, t) =B [H(x− l(t))−H(x)]H(t) (3.1)

(ii) The injection contribution,
uy(x, 0, t) =BH(x)H(t) (3.2)

which has in fact been solved in section ??.
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Here, l(t) is the past history function, a function that relates the position of the dislocation line
to the instant in time t when it was occupied by the dislocation line. The governing equation is
still eqn.??. It is mathematically advantageous to transform the H(x− l(t)) function to take its
inverse argument, H(t− η(x)), where η(x) = l−1(t) is the inverse of the past history function,
i.e., the function that returns the instant in time when the dislocation line was at position x.

The solution procedure is analogous to that employed in the case of the injected, quiescent
screw dislocation. It results in the following stress field components:

σmobyz (x, z, t) =
µB

2π

∂

∂t

∫∞
0
H(t̃− r̃b)

t2
(
x̃2 − z2

)
− b2r̃2x̃2

r̃4Tb
dξ (3.3)

and

σmobxy (x, z, t) =
µB

2π

∂

∂t

∫∞
0
H(t̃− r̃b)

x̃z
(
b2r̃2 − 2t̃2

)
r̃4Tb

dξ (3.4)

where x̃= x− ξ, t̃= t− η(ξ), r̃=
√
x̃2 + z2 and Tb =

√
t̃2 − r̃2b2. The order of integration and

differentiation cannot generally be interchanged because some of the integration terms contain a
square-root singularity along the integration path.

The special case when the dislocation’s speed is constant, i.e., when η(ξ) = d · ξ, where d= 1/v
is the slowness of the dislocation, and v its speed, allows for a direct integration of the solutions
above, yielding:

σmobyz (x, z, t) =
µB

2π

b2dr2x2 − b2tx
(
x2 + 2z2

)
+ dt2

(
z2 − x2

)
+ t3x

r2
√
t2 − b2r2 (−b2z2 + d2r2 − 2dtx+ t2)

H(t− rb) (3.5)

and

σmobxy (x, z, t) =
µB

2π

z
(
b2dr2x− b2tz2 − 2dt2x+ t3

)
r2
√
t2 − b2r2 (−b2z2 + d2r2 − 2dtx+ t2)

H(t− rb) (3.6)

As mentioned above, these fields must be superimposed with the fields of an injected screw
dislocation derived in the previous section.

(b) Image forces
Once the fields of a moving screw dislocation have been derived, the image forces can be
computed for the case of a flat free surface. As indicated in fig.??, the screw dislocation is moving
towards a planar free surface with a speed defined by the past history function l(t) (or its inverse,
η(x)). As shown in fig.??.b, and in direct analogy with the case of the quiescent dislocation, the
image force can be computed by employing an image dislocation of opposite sign located outside
the material, moving towards the surface with a past history function l(t) that prescribes the
mirror-image of the motion of the actual dislocation.

As shown in fig.??.b, the image dislocation is defined as a positive dislocation moving its local
x′-axis2. It must then be born in mind that the following coordinate transformations apply: x′ 7→
x− 2l and z′ 7→ −z.

The free surface boundary condition requires that σxy(x= l, z, t) = 0. The system is made
up of a dislocation and its image, the fields of which consist of two contributions: the mobile
contribution derived above and the injection contribution derived in section ??. In that section
it was proven that for the present configuration of a dislocation and its image the injection
contributions vanish at the free surface (x= l) as required. Hence, it only remains to prove that
the mobile contributions vanish as well.

2Notice that the rotation of the coordinate system suffices to change the sign of the dislocation; i.e., the image dislocation is
positive with respect to its local axes, but negative with respect to the actual dislocation’s
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Considering the image dislocation’s field in the local coordinate system:

σim,mobxy (x′ = l, z′, t) =
µB

2π

∂

∂t

∫∞
0
H(t̃− r̃′b)

lz′
(
b2r̃′2 − 2t̃2

)
r̃′4Tb

dξ (3.7)

and the dislocation’s

σdis,mobxy (x= l, z, t) =
µB

2π

∂

∂t

∫∞
0
H(t̃− r̃b)

lz
(
b2r̃2 − 2t̃2

)
r̃4Tb

dξ (3.8)

and transforming coordinates for the image dislocation (i.e., inverting the sign of z′) and summing
both contributions,

σtot,mobxy (x= l, z, t) =
µB

2π

∂

∂t

∫∞
0
H(t̃− r̃b)

l(−z)
(
b2r̃2 − 2t̃2

)
r̃4Tb

dξ+

+
µB

π

∂

∂t

∫∞
0
H(t̃− r̃b)

lz
(
b2r̃2 − 2t̃2

)
r̃4Tb

dξ (3.9)

It is clear that the first integral is the negative of the second, so the sum vanishes, as expected.
The image force is then given by Fx(t) =Bσim,mob+injxy (x′ = 2l, z′ = 0, t), which in this case is

formed by,

Fx(t) =
µB2

2π

∂

∂t

∫∞
0
H(t− η(ξ)− (2l − ξ)b)

√
(t− η(ξ))2 − b2(2l − ξ)2

(2l − ξ)2
dξ+

+
µB2

2π

t
√
t2 − 4b2l2

4b2l3 − 2lt2
H(t− 2bl) (3.10)

It is worth noticing that in this case the order of integration and differentiation can be exchanged
because all singularities are integrable, whereby

Fx(t) =
µB2

2π

∫∞
0
H(t− η(ξ)− (2l − ξ)b) t− η(ξ)

(2l − ξ)2
√

(t− η(ξ))2 − b2(2l − ξ)2
dξ+

+
µB2

2π

t
√
t2 − 4b2l2

4b2l3 − 2lt2
H(t− 2bl) (3.11)

This is the general form of the image force experienced by a non-uniformly moving injected screw
dislocation, moving towards the surface with a past history prescribed by t= η(ξ).

The case of the uniformly moving dislocation can be more revealing. Following the same
procedure, one finds that when η(ξ) = d · ξ where d= 1/v is the dislocation’s uniform slowness,

Fx(t) =
µB2

2π

√
t2 − 4b2l2

(
b2l − dt

)
(t2 − 2b2l2) (t− 2dl)

H(t− 2bl) (3.12)

Figure ?? shows the magnitude of the image force for dislocations moving towards the surface
at different uniform speeds, which in the figure are represented via Mt = v/ct, the transverse
Mach number. The quiescent, injected dislocation’s case is recovered when Mt = 0. Otherwise,
as can be seen in fig.??, the magnitude of the image force is seen to increase with increasing
speed and time, suggesting that once the retardation entailed by the finite propagation of the
elastodynamic fields is overcome, the time-dependent image force is of larger magnitude than
the corresponding quiescent dislocation’s.

Necessarily, in this framework the dislocation will reach the surface; this occurs when t= 2dl;
at that instant of time, the image force in eqn.?? diverges (notice the (t− 2dl) term in the
denominator). In figure ?? this is signalled with vertical dashed lines. Necessarily as well, a
dislocation moving at the transverse speed of sound (i.e., Mt = 1) cannot experience an image
force: it will reach the surface at the same time as its elastic fields.
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Figure 3. Evolution of the time-dependent image force’s magnitude (non-dimensional) with time. The dashed vertical lines

represent the instant in time when the dislocation reaches the free surface; for Mt = 0.2, the line is not represented, as

the dislocation reaches the free surface when t= 10bl.

More importantly however, the fact that the magnitude of the image force increases with time
for any one uniform speed suggests that the image force should in fact accelerate the dislocation
towards the surface. This is because, in the absence of additional dissipative mechanisms, the
image force will attract the dislocation towards the surface with increasing magnitude, which
should translate in an increase in the speed of the dislocation as it approaches the surface. This
effect is different from the increase in the magnitude of the image force that one sees in the
elastostatic (and quiescent injected) case; the latter is captured here as well, and is the result of the
decrease in the distance l (notice the 1/l scaling factor in the vertical axis in fig.??). The difference
can be best seen by rewriting eqn.?? as follows

Fx(t) =
µB2

2π

[
1

l

] [
(Mt − τ)

√
τ2 − 4

(2−Mtτ) (τ2 − 2)

]
H(τ − 2)︸ ︷︷ ︸

Dynamic contribution

(3.13)

where τ = t/(bl). Clearly the 1/l term in the first bracket corresponds with the prediction provided
by the elastostatic image force; the term in the second bracket, dependent on the speed of
the dislocation, is a dynamic contribution to the image force which multiplies the elastostatic
contribution. As discussed above, for any Mt > 0 this contribution invariably makes the image
force larger as time advances, and increases in magnitude with increasing speed. Thus, as a result
of their dynamic, time-dependent fields, moving screw dislocations will be subjected to an image
force stronger than that predicted by elastostatics, once the retardation time is overcome.

The significance of the dynamic contribution to the magnitude of the image force is great, even
at very low dislocation speeds. For instance, for Mt = 0.05, corresponding to dislocation speeds
of about ≈ 100− 200m/s for most metals, the dynamic contribution doubles the magnitude of
the image force with respect to that of the elastostatic prediction’s at time t≈ 10bl; for systems
of the order of magnitude of microns, this timescale is of the order of 1− 5ns. Thus, due to
elastodynamic effects, the magnitude of the image force doubles with respect to the elastostatic
prediction even for very low dislocation speeds, and well within the time scale of a quasi-
static discrete dislocation dynamics simulation (cf. [?]). This suggests that even in quasi-static
applications of plasticity, dislocations will tend towards free surfaces at a much faster rate than
predicted by elastostatics.
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4. General formulation of the elastodynamic image field
components of an edge dislocation

The fields of an edge dislocation were derived, for the injected case, by Gurrutxaga-Lerma
et al. (2013) [?], and for the mobile case by Markenscoff and Clifton (1981) [?]. The solution
procedure mirrors that described in the previous section for the screw dislocation. In this section,
a general procedure is given for the derivation of the elastodynamic image forces of a straight
edge dislocation in the presence of a free surface, both for a quiescent, injected edge dislocation
and for an injected, moving edge dislocation.

As in the well-known elastostatic case (cf. [?]), the problem of edge dislocations in the presence
of a free surface cannot simply be solved, as done in the screw case, by employing the image
dislocation construction. This is because the σxz shear stress components of the dislocation and
its image do not vanish on the surface. Hence, further considerations are necessary before an
expression of the image forces acting on an edge dislocation can be computed.

The general problem to solve is be the following:

(A) Governing equations:
∂2φ

∂x2
+
∂2φ

∂z2
= a2

∂2φ

∂t2
(4.1)

and
∂2ψ

∂x2
+
∂2ψ

∂z2
= b2

∂2ψ

∂t2
(4.2)

where a= 1/cl is the longitudinal slowness of sound, and where φ and ψ are the Kelving-
Helmholtz potentials, defined such that

ux =
∂φ

∂x
− ∂ψ

∂z
(4.3)

uz =
∂φ

∂z
+
∂ψ

∂x
(4.4)

σxx =Λ

(
∂2φ

∂x2
+
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂x2
− ∂2ψ

∂x∂z

)
(4.5)

σxz = µ

(
2
∂2φ

∂x∂z
+
∂2ψ

∂x2
− ∂2ψ

∂z2

)
(4.6)

(B) Boundary conditions:

ux(x, 0, t) =BH(−x)H(t) or ux(x, 0, t) =BH(l(t)− x)H(t) (4.7)

σzz(x, 0, t) = 0 (4.8)

σxz(l, z, t) = 0 ∀z, t∈R (4.9)

The displacement boundary condition models the dislocation as a Volterra discontinuity with
Burgers vector parallel to the positive x-axis; the σzz boundary condition ensures that the
dislocation causes no normal stress anywhere on the slip plane. The σxz boundary condition
(eqn.??) corresponds with the free surface requirement. It is important to notice that it applies for
any value of z, whilst the rest of boundary conditions apply for any value of x.

The usual solution method (vid. [?,?,?]) involves the successive use of a Laplace transform in
time and a bilateral Laplace transform (or Fourier transform) in the spatial variable (in the case
of a dislocation injected in an infinite medium, x). In this case, this is not possible because σxz is
applied ∀z and ux, ∀x.

Still, the problem can be solved invoking the image dislocation construction, in a manner akin
to how it is done for the elastostatic case. As shown in fig.??.c and ??.d, the image construction
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considers an image edge dislocation of opposite sign but the same magnitude located at a distance
l from the surface.

It can be shown that, as in the elastostatic case, due to symmetry about x, all stress components
acting on the surface vanish except for σxz (see [?]). The distribution of σxz(z, t) at the free surface
can be obtained by superimposing the contributions due to the image and the actual dislocations.
For brevity this stress distribution at the free surface will be called σxz(l, z, t) = ζ(z, t).

Thus, one needs to solve Lamb’s problem for the following boundary conditions:

σxz(0
+, z, t) = ζ(z, t), σxx(0

+, z, t) = 0 (4.10)

where the following translation in x has been used for simplicity:

x 7→ x− l

The same successive Laplace transforms in time and bilateral Laplace transform in space
defined in eqns.?? and ?? are employed here. Apply them successively to the governing equations
to obtain

∂2Φ

∂x2
= α2s2Φ (4.11)

where α2 = a2 − λ2, and

∂2Ψ

∂x2
= β2s2Ψ (4.12)

where β2 = b2 − λ2.
The solution to these equations are

Φ(x, λ, s) =Cφ(λ, s)e
−sαx (4.13)

Ψ(x, λ, s) =Cψ(λ, s)e
−sβx (4.14)

Here, Cφ(λ, s) and Cψ(λ, s) are integration constants, to be found from applying the boundary
conditions.

Applying the transforms to the boundary conditions (eqn.??), one obtains

Σxz(0
+, λ, s) =Z(λ, s), Σxx(0

+, λ, s) = 0 (4.15)

where Z(λ, s) =Lx{Lt{ζ(z, t)}}.
Recall that

σxz = µ

(
2
∂2φ

∂x∂z
+
∂2ψ

∂x2
− ∂2ψ

∂z2

)
and σxx =Λ

(
∂2φ

∂x2
+
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂x2
− ∂2ψ

∂x∂z

)
In transformed space they become:

Σxz = µ

(
2sλ

∂Φ

∂x
+
∂2Ψ

∂x2
− s2λ2Ψ

)
(4.16)

and

Σxx =Λ

(
∂2Φ

∂x2
+ λ2s2Φ

)
+ 2µ

(
∂2Φ

∂x2
− λs∂Ψ

∂x

)
(4.17)

Substituting eqns.?? and ?? in eqns.?? and ??, then equating this to the boundary conditions
(eqn.??) for x= 0+, and using the fact that (Λ+ 2µ)/µ= b2/a2, one obtains the following system
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of equations, with Cφ(λ, s) and Cψ(λ, s) as unknowns:[
−2µλαs2 µ(b2 − 2λ2)s2

µ(b2 − 2λ2)s2 2µλβs2

][
Cφ(λ, s)

Cψ(λ, s)

]
=

[
Z(λ, s)

0

]
, (4.18)

the solution to which is
Cφ(λ, s) =

1

s2µR(λ)
[−2λα]Z(λ, s) (4.19)

and
Cψ(λ, s) =

1

s2µR(λ)

[
2λ2 − b2

]
Z(λ, s), (4.20)

where
R(λ) =−4αβλ2 −

(
b2 − 2λ2

)2
(4.21)

is the Rayleigh function.
It follows that,

Φ(x, λ, s) =
1

s2µR(λ)
[−2λα]Z(λ, s)e−sαx (4.22)

and
Ψ(x, λ, s) =

1

s2µR(λ)

[
2λ2 − b2

]
Z(λ, s)e−sβx (4.23)

It is clear that the form ofCφ andCψ is heavily dependent on the form ofZ(λ, s). An inspection
of ζ(z, t) (see eqns.?? and ?? in sections ?? and ??) suggests that for the current case, its Laplace
transforms in time alone will be exceedingly complex, taking the form of Bessel and Struve
functions in s (cf. [?]).

An alternative approach can, however, be considered. The stress component relevant to the
derivation of the image force on an edge dislocation is σxz . Substituting eqns.?? and ?? in eqn.??,
one finds

Σxz(x, λ, s) = Γ (x, λ, s)Z(λ, s), (4.24)

where
Γ (x, λ, s) =

1

R(λ)

[
4λ2α2e−sαx − (b2 − 2λ2)2e−sβx

]
.

From eqn.??, it is clear that the desired stress component is expressed as the product of two
Laplace transforms, whereby the stress component σxz in the cartesian space (x, z, t) must be the
double convolution of the untransformed functions,

σxz(x, z, t) =

∫∞
−∞

∫∞
0

[G(x, ς − z, ϑ− t)ζ(ς, ϑ)]dϑdς (4.25)

where G(x, z, t) =L−1t
{
L−1z {Γ (x, λ, s)}

}
. It is worth noticing that G(x, z, t) is in fact the first

derivative of the system’s elastodynamic half-space Green’s tensor.
All that remains is therefore to invert Γ (x, λ, s), which can be achieved applying the Cagniard-

de Hoop method. For simplicity, split Γ (x, λ, s) into two terms, Γ = Γa + Γb, where

Γa(x, λ, s) =
4λ2α2

R(λ)
e−sαx and Γb(x, λ, s) =

−(b2 − 2λ2)2

R(λ)
e−sβx (4.26)

The inversion procedure is analogous for both. Consider Γa,

Ĝa(x, z, s) =
1

2πi

∫ i∞
−i∞

[
4λ2α2

R(λ)

]
e−s(αx−λz)sdτ (4.27)

The Cagniard path will be given by τ = αx− λz, whereby

λ=
−τz ± ix

√
τ2 − (x2 + z2)a2

x2 + z2
, α=

τx± iz
√
τ2 − (x2 + z2)a2

x2 + z2
, and β =

√
b2 − λ2

(4.28)
Following the Cagniard-de Hoop method, the path is distorted as done in section ??. The

positive branch (λ> 0) is chosen, leading to analogous results. It is worth noticing that R(λ)
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has roots for λR = 1/cR where cR is the Rayleigh wave speed; however λR > b, so the branch
cut defined by (−∞,−λR] ∪ [+λR,∞) is contained in both (−∞,−b] ∪ [+b,∞) and (−∞,−a] ∪
[+a,∞).

Thus, define

Fa(τ) = Im

[
4λ2+α

2
+

R(λ+)

∂λ+
∂τ

]
(4.29)

Then, it is found that

Ĝa(x, z, s) =
s

π

∫∞
ra
Fa(τ)e

−sτdτ =
s

π

∫∞
0
H(τ − ra)Fa(τ)e−sτdτ (4.30)

so that the fully inverted function will be

Ga(x, z, t) =
1

π
H(t− ra)dFa(t)

dt
(4.31)

Repeating the same process for Gb, one would define the Cagniard path as τ = βx− λz, and
accordingly define

λ=
−τz ± ix

√
τ2 − (x2 + z2)a2

x2 + z2
, β =

τx± iz
√
τ2 − (x2 + z2)b2

x2 + z2
, and α=

√
a2 − λ2

(4.32)
In this case, it is found that

Fb(τ) = Im

[
−(b2 − 2λ2+)2

R(λ+)

∂λ+
∂τ

]
(4.33)

Following the same procedure as above, one would finally be able to construct G(x, z, t) as

G(x, z, t) =
1

π

[
H(t− ra)dFa(t)

dt
+H(t− rb)dFb(t)

dt

]
(4.34)

The explicit form of both Fa(t) and Fb(t) is somewhat lengthy and can be written as

Fa(t) =
Na
Da

and Fb(t) =
Nb
Db

(4.35)

after defining:

Na = 8

{
tx

[
Taz

(
b4r8

(
t2 + T 2

a

)(
x2 − z2

)
+ 4b2r4

(
t2z2 + T 2

ax
2
)2
−

−4
(
t2 − T 2

a

)(
x2 + z2

)(
t2z2 + T 2

ax
2
)2)

+ 2r2ρa sin(θa)
(
t2x2 + T 2

a z
2
)(

t2z2 + T 2
ax

2
)2]
−

−2r2ρaTaz cos(θa)
(
t2z2 + T 2

ax
2
)2 (

t2x2 + T 2
a z

2
)}

(4.36)

Da = r16
{
b8 +

1

r4
8b6(Tax− tz)(tz + Tax) +

1

r8

[
8b4
(
r2ρa

(
Taz sin(θa)

(
x2
(
2t2 + T 2

a

)
− t2z2

)
+

tx cos(θa)
(
z2
(
t2 + 2T 2

a

)
− T 2

ax
2
))

+ 3t4z4 − 2t2T 2
ax

2z2 + 3T 4
ax

4
)]

+

+
1

r12

[
32b2

(
t2z2 + T 2

ax
2
)2 (

r2ρa(Taz sin(θa)− tx cos(θa)) + (tz + Tax)(Tax− tz)
)]

+

+
1

r16

[
16
(
t2z2 + T 2

ax
2
)2 (

r4ρ2a

(
t2x2 + T 2

a z
2
)
+ 2r2ρa

(
Taz sin(θa)

(
T 2
ax

2 − t2
(
2x2 + z2

))
+

+tx cos(θa)
(
t2z2 − T 2

a

(
x2 + 2z2

)))
+
(
t2z2 + T 2

ax
2
)2)]}

(4.37)
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Nb = tx
{
−b8r16 − 16b6r12T 2

b z
2 + 8b4r8

(
t4z4 + 10t2T 2

b x
2z2 + T 4

b x
4
)
−

−8r2ρbTbz sin(θb)
(
t2x2 + T 2

b z
2
)(

b4r8 − 4
(
t2z2 + T 2

b x
2
)2)

+ 64b2r4
(
t2Tbz

3 + T 3
b x

2z
)2
−

−16
(
t2z2 + T 2

b x
2
)4}

− 4r2ρb cos(θb)
(
t2x2 + T 2

b z
2
)[
b4r8

(
t2z2 − T 2

b x
2
)
+ 4b2r4

(
t2z2 + T 2

b x
2
)2
−

−4
(
T 2
b x

2 − t2z2
)(

t2z2 + T 2
b x

2
)2]

(4.38)

Db = r2Tb

{
b8r16 + 8b6r12(tz + Tbx)(Tbx− tz) + 8b4r8

(
3t4z4 − 2t2T 2

b x
2z2 + 3T 4

b x
4
)
+

+32b2r4(tz + Tbx)(Tbx− tz)
(
t2z2 + T 2

b x
2
)2

+ 8r2ρb

[
Tbz sin(θb)

(
b4r8

(
x2
(
2t2 + T 2

b

)
− t2z2

)
+

+4b2r4
(
t2z2 + T 2

b x
2
)2
− 4

(
t2z2 + T 2

b x
2
)2 (

t2
(
2x2 + z2

)
− T 2

b x
2
))

+

+tx cos(θb)

(
b4r8

(
z2
(
t2 + 2T 2

b

)
− T 2

b x
2
)
− 4b2r4

(
t2z2 + T 2

b x
2
)2
−

−4
(
t2z2 + T 2

b x
2
)2 (

T 2
b

(
x2 + 2z2

)
− t2z2

))]
+

+16
(
t2z2 + T 2

b x
2
)2(

r4ρ2b

(
t2x2 + T 2

b z
2
)
+
(
t2z2 + T 2

b x
2
)2)}

(4.39)

where Ta =
√
t2 − a2r2, Tb =

√
t2 − b2r2, and

ρa(x, z, t) =

 t4 − 2t2
(
a2x2 + b2

(
z2 − x2

))
+
(
a2x2 − b2

(
x2 + z2

))2
(x2 + z2)

2


1
4

(4.40)

tan [2θa(x, z, t)] =
2txz

√
t2 − a2 (x2 + z2)

t2 (x2 − z2)− (x2 + z2) (a2x2 − b2 (x2 + z2))
(4.41)

ρb(x, z, t) =

 t4 − 2t2
(
b2x2 + a2

(
z2 − x2

))
+
(
b2x2 − a2

(
x2 + z2

))2
(x2 + z2)

2


1
4

(4.42)

tan [2θb(x, z, t)] =
2txz

√
t2 − b2 (x2 + z2)

t2 (x2 − z2)− (x2 + z2) (b2x2 − a2 (x2 + z2))
(4.43)

Having found Fa and Fb one can procede to compute their time derivatives (not reproduced
here due to their length, but reproduced in the Supplementary material) and construct G(x, z, t) as
defined in eqn.??. One can then obtain the image field as the convolution described in eqn.??. Of
interest here is to notice that G(x, z, t) is antisymmetric (odd) with respect to z.
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5. Image force on an injected, quiescent edge dislocation
For the case of an injected, quiescent dislocation, the σxz(z, t) = ζ(z, t) distribution at the free
surface can be calculated to be (see [?]):

σxz(l, z, t) = ζ(z, t) =− µB

2πb2

4
2lt
(
a2
(
−l4 + l2z2 + 2z4

)
+ t2

(
l2 − 3z2

))
(l2 + z2)

3√
t2 − a2 (l2 + z2)

H
(
t− a

√
l2 + z2

)
+

+
2lt
(
b4
(
−l6 − 7l4z2 + l2z4 + 7z6

)
+ 4b2t2

(
l4 − 5z4

)
− 4t4

(
l2 − 3z2

))
(l2 + z2)

3
(t2 − b2z2)

√
t2 − b2 (l2 + z2)

H
(
t− b

√
l2 + z2

)
(5.1)

The problem can be slightly simplified by noting that the dislocation core lies along the
epicentral x-axis, so eqn.?? needs be solved for z = 0 alone. Thus, one needs to find

σxz(−l, 0, t) =
∫∞
−∞

∫∞
0

[G(−l, ς, ϑ− t)ζ(ς, ϑ)]dϑdς (5.2)

The value of this double convolution is zero for σxz(−l, 0, t). This is in direct analogy with the
elastostatic case (cf. [?]). One can check this is true by direct integration of the double convolution.

Alternatively, one can convince oneself of the veracity of this assertion by invoking the
symmetries in both G(x, z, t) and ζ(z, t). For simplicity, rewrite eqn.?? as follows

σxz(−l, 0, t) =
∫
R
[G(−l, ς, ϑ− t)ζ(ς, ϑ)]dϑdς =∫

R
ζa(ς, ϑ)Ga(−l, ς, ϑ− t)dϑdς +

∫
R
[Ga(−l, ς, ϑ− t)ζb(ς, ϑ) +Gb(−l, ς, ϑ− t)ζa(ς, ϑ)]dϑdς+

+

∫
R
Gb(−l, ς, ϑ− t)ζb(ς, ϑ)dϑdς (5.3)

where R≡ (−∞,∞)× [0,∞), and

ζa(ς, ϑ) =−
µB

2πb2

8lϑ
(
a2
(
−l4 + l2ς2 + 2ς4

)
+ ϑ2

(
l2 − 3ς2

))
(l2 + ς2)

3√
ϑ2 − a2 (l2 + ς2)

H
(
ϑ− a

√
l2 + ς2

)
(5.4)

ζb(ς, ϑ) =−
µB

2πb2

2lϑ
(
b4
(
−l6 − 7l4ς2 + l2ς4 + 7ς6

)
+ 4b2ϑ2

(
l4 − 5ς4

)
− 4ϑ4

(
l2 − 3ς2

))
(l2 + ς2)

3
(ϑ2 − b2ς2)

√
ϑ2 − b2 (l2 + ς2)

H
(
ϑ− b

√
l2 + ς2

)
(5.5)

so that ζ(ς, ϑ) = ζa(ς, ϑ) + ζb(ς, ϑ).
As remarked in section ??, Ga(−l, ς, ϑ− t) and Gb(−l, ς, ϑ− t) are odd functions with respect

to ς , and ζa(ς, ϑ) and ζb(ς, ϑ) are both even functions with respect to ς . Hence, the Cauchy
principal values of the convolution integral with respect to ς must vanish and so must, it follows,
the whole convolution integral. It must be stressed that this is only true in this case because
the convolution is being evaluated along the epicentral line (z = 0); for any other value of z the
convolution need not generally vanish.

Since the convolution integrals vanish, the term due to the free surface’s boundary condition
vanishes as well. This situation mirrors that occurring in the elastostatic case, where the image
force terms due to the free surface are proved to vanish for the dislocation [?].

Accordingly, the image force on an injected, quiescent edge dislocation located at a distance
l from a flat free surface can be obtained from the image dislocation’s σxz stress field alone,
evaluated at the position of the actual dislocation’s core in the same manner it was done for the
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Figure 4. Elastodynamic image force on an injected, quiescent edge dislocation, for different R= a/b ratios. Note that

the values R ∈ [0,
√
3/2] because R=

√
(1− 2ν)/(2(1− ν)), so the value of this ratio is limited by the value that

Poisson’s ratio ν can take, ν ∈ [−1, 0.5].

screw dislocation’s case. It is found to be given by:

Fx(t) =
µB2

2πb2

− t√t2 − 4a2l2

2l3
H(t− 2al)−

(
t2 − 2b2l2

)2
2l3t
√
t2 − 4b2l2

H(t− 2bl)

 (5.6)

In order to allow easy comparison with the elastostatic image force (eqn.??), this equation can be
rewritten as

Fx(κ) =
µB2

2π(1− ν)

[
1

l

] 1

2(1−R2)

R2κ
√
κ2 − 4

2
H(κ− 2)−

(
R2κ2 − 2

)2
2Rκ
√
R2κ2 − 4

H

(
κ− 2

R

)


︸ ︷︷ ︸
Dynamic term

(5.7)
where in this case κ= t/al, and R= a/b.

The magnitude of the image force, Fx, is represented in fig.??. As can be seen both in fig.??
and eqn.??, the image force consists of two separate wave fronts: one corresponding to the
longitudinal wave, which arrives at the dislocation at t= 2al, and a second one corresponding
to the transverse wave, which arrives at the dislocation at t= 2bl= 2al/R. Both arrival times are
the retardation times incurred by the initial longitudinal and transverse wavelets that are emitted
from the injected dislocation’s core, reach the surface at t= al and t= bl respectively, and are
reflected back to the core. The arrival of the transverse wave front is marked by a 1/t singularity,
which is a feature of the fields of an injected edge dislocation [?].

As can be seen in fig.??, right after the arrival of the transverse wave front at t= 2bl, the image
force experiences a brief, transient reversal of its sign—for the duration of this transient event
the image force becomes repulsive. This reversal has finite duration that depends solely on the
material’s elastic constants: the reversal begins at t= 2bl and finishes at time tR which depends
solely on the value of the ration R= a/b, and can in fact be shown to be the arrival time of an
elastic wave propagating with the Rayleigh wave speed; i.e., tR = 2l/cR where cR is the Rayleigh
wave speed. This is because Fx(t) and the σxz stress component of an edge dislocation vanish
along the epicentral line only for the Rayleigh wave.
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Once the Rayleigh wave arrives at the dislocation core, the image force becomes attractive
again, and it is immediate to prove that Fx converges to its elastostatic value, because

lim
κ→∞

 1

2(1−R2)

R2κ
√
κ2 − 4

2
H(κ− 2)−

(
R2κ2 − 2

)2
2Rκ
√
R2κ2 − 4

H

(
κ− 2

R

)
=

1

2
(5.8)

and therefore the elastostatic solution (eqn.??) is recovered in that limit.

6. Image force on an injected, moving edge dislocation
As was described by Gurrutxaga-Lerma et al. [?], and in a manner similar to the solution
for a non-uniformly moving screw dislocation, the elastodynamic fields of an injected, non-
uniformly moving edge dislocation are formed by superposition of an injection contribution
and an additional contribution describing the non-uniform motion. The injection contribution
corresponds with the fields of an injected, quiescent edge dislocation, and was obtained by
Gurrutxaga-Lerma et al. (2013) [?]. The mobile contributions were derived by Markenscoff and
Clifton (1981) [?].

The problem of image forces for injected quiescent edge dislocations was solved in section ??.
The image force for the moving edge dislocations is modelled employing the image dislocation
construction shown in fig.??.d; the dislocation is modelled at a distance l from the free surface, and
gliding towards the free surface along the x-axis with past history function t= η(x) (or x= l(t));
the image dislocation is a dislocation of same magnitude but opposite sign, located at a distance
l from the surface in the initial instant, that glides towards the surface with the same past history
function.

Under the image dislocation construction, it is trivial to check that all stress components
cancel at the free surface except for, again, the σxz stress component. As in section ??, the σxz
stress distribution at the surface leads to the need of solving a Lamb’s problem analogous to
the injected, quiescent dislocation’s. Following the formulation employed in section ??, the free
surface’s contribution to the σxz component of stress will be eqn.??,

σxz(x, z, t) =

∫∞
−∞

∫∞
0

[G(x, ς − z, ϑ− t)ζ(ς, ϑ)]dϑdς

where all that changes in this case is the mathematical form of ζ(z, t), i.e., the distribution of σxz
on the free surface due to the superposition of the image dislocation and the actual dislocation.

For the case of a non-unifomly moving edge dislocation, the form of ζ(z, t) can be found from
the σxz component of stress of a non-uniformly moving edge dislocation. It is given by (vid. [?]):

ζ(z, t) = µ
4B

πb2
∂

∂t

∫∞
0
H
(
t̃− r̃a

) a4x̃2z2r̃4 − T̃ 2
a

(
8t̃2x̃2z2 − r̃4t̃2

)
T̃ar̃8

dξ

− µ B

πb2
∂

∂t

∫∞
0
H
(
t̃− r̃b

) b4 (x̃4 − z4)2 + T̃ 2
b

(
8t̃2x̃2z2 − r̃4t̃2

)
T̃br̃8

dξ (6.1)

where x̃= l − ξ, r̃=
√
x̃2 + z2, T̃a =

√
t̃2 − a2r̃2, T̃b =

√
t̃2 − b2r̃2. This form of the stress

distribution at the free surface is slightly problematic because the order of integration and
differentiation cannot be freely interchanged due to the presence of T−3a non-integrable
singularities. As described in [?] and in [?], by rearranging terms and integrating by parts one
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Figure 5. Magnitude of the image force for a uniformly moving edge dislocation. HereR= a/b= 0.5. The dashed vertical

lines signal the instant in time the dislocation reaches the free surface, for each dislocation speed.

can achieve the following working form

ζ(z, t) = µ
4B

πb2


∫∞
0
H
(
t̃− r̃a

) −t̃(x̃4 − 6x̃2z2 + z4
)(

3t̃2 − 2a2r̃2
)

r̃8T̃a
dξ

−
a6x2z2

(
−tx+ r2η′(0)

)
r4Ta (a2x− tη′(0))2

H (t− ar)−
∫∞
0
H(t̃− ar̃) ∂

∂t

[
T̃a

∂

∂ξ

[
a4z2x̃2

r̃4
(
a2x̃− t̃η′(ξ)

)]]dξ


− µ B

πb2


∫∞
0
H
(
t̃− r̃b

) 4t̃(x̃4 − 6x̃2z2 + z4
)(

3t̃2 − 2b2r̃2
)

r̃8T̃b
dξ

− b4(x2 − z2)2Tb
r4 (b2x− η′(0)t)

H(t− br) +
∫∞
0
H(t̃− br̃) ∂

∂t

T̃b ∂∂ξ
 b4

(
x̃2 − z2

)2
r̃4
(
b2x̃− t̃η′(ξ)

)

dξ

 (6.2)

Similarly to the injected, quiescent dislocation’s case, here ζ(z, t) is even with respect to z, so
the convolution integral along the epicentral line must vanish.

Thus, for the non-uniformly moving edge dislocation the image force will be given by

Fx(t) =−
µB2

2πb2

− t√t2 − 4a2l2

2l3
H(t− 2al)−

(
t2 − 2b2l2

)2
2l3t
√
t2 − 4b2l2

H(t− 2bl)


+ µ

4B2

πb2
∂

∂t

∫∞
0
H
(
t̃− |x̃|a

) T̃at̃2
x̃4

dξ − µ B
2

πb2
∂

∂t

∫∞
0
H
(
t̃− |x̃|b

) b4x̃4 − T̃ 2
b t̃

2

T̃bx̃4
dξ

(6.3)

where x̃= 2l − ξ. Clearly the image force is expressed in terms of two waves, the longitudinal
and transverse waves, and is dependent on the past history of the dislocation (or its image’s).

As seen for the screw dislocation, the case of the uniformly moving edge dislocation is more
revealing. Consider the edge dislocation moving uniformly with speed v = 1/d; the image force
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Figure 6. Image force for an injected dislocation moving uniformly with speed v= 0.935ct, slightly larger than the

Rayleigh wave speed, cR. Here R= a/b= 0.5, so cR = 0.9325ct.

is found to be

Fx(t) =
µB2

2πb2

d
(
t2 − 2b2l2

)2
l2t
√
t2 − 4b2l2(t− 2dl)

H(t− 2bl)− dt
√
t2 − 4a2l2

l2(t− 2dl)
H(t− 2al)

 (6.4)

It might be more revealing to express it in non-dimensional terms as follows:

Fx(κ) =
µB2

2(1− ν)π

[
1

l

] 1

2 (R2 − 1)

R2κ
√
κ2 − 4

(MtRκ− 2)
H(κ− 2) +

(
R2κ2 − 2

)2
Rκ
√
R2κ2 − 4(MtRκ− 2)

H

(
κ− 2

R

)


︸ ︷︷ ︸
Dynamic term

(6.5)
where R= a/b and Mt = b/d= v/ct is the transverse Mach number with respect to the
dislocation’s speed.

The image force is represented in fig.??. As can be seen, for Mt = 0 the solution for the injected
dislocation shown in fig.?? is recovered. As in that case, the 1/l term in the first bracket in eqn.??
is the asymptotic value towards which the image force converges, but in this case only if Mt =

0. For Mt > 0, the situation is analogous to the case of the moving screw dislocation: the term
in the second bracket in eqn.??, representing the elastodynamic contribution to the image force,
inevitably diverges. This is clearly seen, for various Mt values, in fig.??.

Unlike in the case of screw dislocations, edge dislocations are influenced by the longitudinal
wave front first, which in all cases prescribes a force of increasing magnitude with time until
the arrival of the transverse wave front at time t= 4al. Thereafter, the dislocation experiences a
brief transient reversal of the sign of the image force; this reversal is analogous to the case of
the injected, quiescent edge dislocation. As can be seen in fig.??, the transient reversal is occurs
between t= 2bl and tR, which can be shown to be independent of d and to correspond with the
arrival time of the reflected Rayleigh wave (i.e., tR = 2l/cR). After the arrival of the Rayleigh
wave, and unlike the quiescent dislocation’s case, the image force quickly increases in magnitude
with time, diverging when the dislocation reaches the free surface. The reversal of the sign of
the image force in between the arrival of the transverse and the Rayleigh waves is significant,
as it suggests that dislocations could reverse their way towards the surface, and move inwards
towards the bulk instead.
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The case of an edge dislocation moving uniformly with speed greater than the Rayleigh wave
speed, cR, merits special consideration. As can be seen in fig.??, after the transverse wave front
reaches the dislocation at t= 2bl, the image force reverses its sign, becoming repulsive. This
is because the transverse component of σxz reverses its sign ahead of the dislocation’s core
for speeds larger than cR. This entails that after the arrival of the transverse wave front, the
dislocation can experience only a repulsive image force from the surface, which would suggest
that such dislocation would not be able to reach the surface.

This seems unlikely. On one hand, a dislocation experiencing a repulsive image force would
invariably tend to decelerate below the Rayleigh wave speed, at which point it could potentially
reach the surface. Furthermore, as pointed out in [?], above the Rayleigh wave speed the
dislocation’s core may become unstable, leading to kinematic generation of dislocations rather
than to dislocations moving faster than the Rayleigh wave speed.

Moreover, as postulated in [?], in the presence of a free surface, a dislocation moving faster than
the Rayleigh wave speed would resonate with the surface, making the system’s elastic energy
diverge; this would prevent the dislocation from acquiring such speed. The solution procedure
detailed in section ?? agrees with this: as can be seen in eqn.??, Σxz (i.e., the σxz stress field
contribution due to the image fields in Laplace space), diverges when the Rayleigh function
R(λ) vanishes. One of the roots of R(λ) = 0 is the Rayleigh wave speed; hence, when v = cR,
the σxz stress field of the moving dislocation in the presence of a free surface diverges, and so
must the elastic energy of the system. In that way, the formulation presented here shows that in
the presence of a free surface the Rayleigh wave speed is a limiting speed of edge dislocations
because, beyond possible core instabilities, the elastic energy of the system diverges.

Finally, as in the screw dislocation’s case, it is easy to check that the dynamic effects on the
image force increase its magnitude significantly even at very low speeds and within the timescale
and expected dislocation speeds of a quasi-static discrete dislocation dynamics simulation.

7. Conclusions
This article reports the derivation of the elastodynamic image forces experienced by straight
edge and screw dislocations, both injected and either quiescent or moving. Closed form, explicit
formulae of the image force for these four cases have been obtained.

The image forces computed here display features characteristic of an elastodynamic
description of the dislocation. For instance, the image forces are affected by marked retardation
effects; the dislocations have been shown not to feel the presence of the free surface until their
elastodynamic fields have had time to reach the free surface and be reflected back. This retardation
time can be significant; for example, screw dislocations moving towards the free surface at the
transverse speed of sound will not experience an image force at all.

Interestingly, the solutions presented here for moving dislocations diverge significantly both
from the elastostatic prediction and those derived here for the case of injected, quiescent
dislocations. Once a speed has been imparted on the dislocation, the image force is shown
invariably to increase far beyond the asymptotic values obtained for non-moving dislocations.
This increase in the magnitude of the elastodynamic image force is an inherently dynamic feature
of our solutions, and is relevant even at relatively low dislocation speeds. For instance, for
dislocations moving with a speed of the order of 100− 200m/s, it is estimated that the image
force will double its magnitude with respect to the elastostatic image force within 1− 5ns. These
speeds and timescales are easily achievable in quasi-static applications of plasticity. The reported
magnification is a consequence not of the injection process, but rather of the motion of the
dislocation, and will remain even if the latter were pre-existing.

Thus, the results presented here suggests that dislocations will tend to accelerate towards
the surface at a much faster rate than that predicted by elastostatics. Whether or not this
dynamic effect could alter results of quasi-static dislocation dynamics, which only account for the
elastostatic image force increasing in proportion to 1/l, is a topic worthy of further investigation.
Furthermore, the image force of a moving edge dislocation has been shown to display anomalous
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behaviour for dislocations moving faster than the Rayleigh wave speed, as in that case the image
force was shown to reverse its sign and become repulsive. In the presence of a free surface, the
Rayleigh wave speed has usually been assumed to be the limiting speed of edge dislocations
because the dislocation would resonate with the free surface; the results presented here are in
agreement with this.
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