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Abstract: PANDORA is a three year project that is developing new computational methods
to make underwater robots Persistently Autonomous, significantly reducing the frequency of
assistance requests. The aim of the project is to extend the range of tasks that can be carried on
autonomously and increase their complexity while reducing the need for operator assistances.
Dynamic adaptation to the change of conditions is very important while addressing autonomy
in the real world and not just in well-known situation. The key of Pandora is the ability to
recognise failure and respond to it, at all levels of abstraction. Under the guidance of major
industrial players, validation tasks of inspection, cleaning and valve turning will be trialled with

partners’ AUVs in Scotland and Spain.

1. INTRODUCTION

Whilst humans and animals perform effortlessly doing
complicated tasks in unknown environments, our human-
built robots are not very good at being similarly in-
dependent. Operating in real environments, they easily
get stuck, often ask for help, and generally succeed only
when attempting simple tasks in well-known situations.
We want autonomous robots to be much better at being
autonomous for a long time (persistent autonomy), and
to be able to carry out more complicated tasks without
getting stuck, lost or confused. Following the Deep Water
Horizon disaster in the BP Macondo oilfield in the Gulf of
Mexico in 2010, Oil Companies are developing improved
ways to cost effectively and safely carry out more frequent
inspection, repair and maintenance tasks on their subsea
infrastructure. This is particularly challenging in deep
water. To date, Autonomous Underwater Vehicles (AUVs)
have been deployed very successfully for various forms of
seabed and water column transit survey. First commercial
units will soon be applied to simple hovering inspection
tasks, with future units expected to address much harder
intervention where contact is made to turn a valve or
replace a component. Because these vehicles reduce or
remove the need for expensive ships, their adoption is
expected to grow over the next 5 to 10 years.

* The research leading to these results has received funding from
the European Union Seventh Framework Programme FP7/20072013
Challenge 2 Cognitive Systems, Interaction, Robotics under grant
agreement No 288273 PANDORA

To be successful commercially, these hovering AUVs must
operate for extended periods (12-48 hours +) without the
continual presence of a surface vessel. They must therefore
demonstrate persistent autonomy in a challenging envi-
ronment. We therefore choose this application focus to
evaluate the projects research, with guidance from BP,
Subsea? and SeeByte Ltd. on the project’s Industrial Ad-
visory Group. Three essential areas have been identified:

e Describing the World
e Directing and Adapting Intentions
e Acting Robustly

We believe that they are core research areas in which sig-
nificant advancements is pivotal for Persistent Autonomy.
This paper is structured as follow: section II briefly de-
scribes the system architecture and the relations between
different core fields; section III presents the scenario tasks
Pandora is working on; section IV presents the preliminary
results of the network; section V presents the validation
metrics developed to evaluate the work of the network.

2. ARCHITECTURE

Figure 1 outlines the computational architecture designed
for development and study of persistent autonomy. Key
is the notion that the robots response to change and the
unexpected takes place at one or a number of hierarchical
levels. At an Operational level, sensor data is processed in
Perception to remove noise, extract and track features, lo-
calise using SLAM, in turn providing measurement values
for Robust Control of body axes, contact forces/torques
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Fig. 1. PANDORA: Computational architecture to develop and study persistent autonomy

and relative positions. One of the goals is to further explore
some of the current approaches (Aulinas et al. [2011], Lee
et al. [2012]) and integrate them on a real vehicle. In the
cases where a map is given, localisation techniques will be
used (Petillot et al. [2010]), with a specific attention to ac-
tive localisation (Maurelli et al. [2010]). Relevant work on
robust control can be found in Panagou and Kyriakopoulos
[2011], Karras et al. [2011]. At a Tactical Level, Status
Assessment uses status information from around the robot
in combination with expectations of planned actions, world
model and observed features to determine if actions are
proceeding satisfactorily, or have failed. Alongside this, re-
inforcement and imitation learning techniques are used to
train the robot to execute pre-determined tasks, providing
reference values to controllers. Fed by measurement values
from Perception, they update controller reference values
when disturbance or poor control causes action failure.
The learning block will be lead by IIT, with relevant
expertise in the field (Kormushev et al. [2011], Calinon
et al. [2010]) Finally at a Strategic level, sensor features
and state information are matched with geometric data
about the environment to update a geometric world model.
These updates include making semantic assertions about
the task, and the world geometry, and using reasoning to
propagate the implications of these through the world de-
scription. Task Planning uses both semantic and geometric
information as pre-conditions on possible actions or action
sequences that can be executed. When Status Assessment
detects failure of an action, Task Planning instigates a
plan repair to asses best response, if any. Where there is
insufficient data to repair, Task Planning specifies Focus
Areas where it would like further sensor attention directed.
These are recorded in the World Model and propagated

through Status Assessment as Focus of Attention to di-
rect the relevant sensors to make further measurements.
Relevant work on Planning has been performed by Fox
et al. [2011, 2012].

3. TEST SCENARIOS

The goal of the Pandora project is to use the architecture
defined in section 2 for the following three tasks:

8.1 Task A: Autonomous inspection of a submerged structure
e.g. a ship hull (FPSO) or manifold (Fig. 2)

A hover capable autonomous underwater vehicle is equipped
with a forward looking sonar, a video camera and dead
reckoning navigation system. The structure is partially
known, but there are inconsistencies between it and the
geometric world model. The vehicles high-level goal is to
autonomously inspect the entire structure with no data
holidays, and bring back a complete data set of video and
sonar for mosaicking and post processing. There may be
a current running, and the optical visibility may be very
poor. In some cases, the sonar inspection sensors must be
kept at a constant grazing angle relative to the structure,
for best performance. In the absence of a pan and tilt
unit, the vehicle must dynamically pitch, yaw and roll to
maintain this orientation.

8.2 Task B: Autonomous location, cleaning and inspection
of an anchor chain (Fig. 3)

A hover capable autonomous underwater vehicle is equipped
as above, but in addition carries a high-pressure water jet.



- w4
- -ﬂL e

d qﬁ\)
3

N

-~
A
N

Fig. 4. Task C: Valve Turning: (a) Docked ROV (b) Hover-capable Inspection AUV Prior to Launch

Its goal is to locate the correct anchor chain of an FPSO
and traverse it to remove the marine growth on all sides
using the water jet. Thereafter it revisits the chain and
brings back complete video inspection data for subsequent
post processing. The reaction forces from the water jet
introduce significant forces and moments onto the vehicle,
and also disturb the anchor chain. Both are therefore in
constant disturbed motion. The optical visibility drops
to zero during jetting as the marine growth floats in the
water. There may be sea currents moving over the anchor,
creating minor turbulence downwind of the chain. The
chain is located adjacent to flexible risers of slightly larger
dimension bringing oil to the surface.

3.8 Task C: Autonomous grasping and turning of a valve
from a swimming, undocked vehicle (Fig. 4)

A hover capable autonomous underwater is equipped as
in Task A, with a simple robot arm at the front. Its goal
is to locate the correct valve panel of a subsea manifold
and open the correct valve. On each panel a selection of

valve heads are exposed, each with a T bar attached for
grasping. The vehicle must identify the state of the valves
(open, close, in-between) from the T bar orientations, and
if appropriate, use the robot arm to grasp the correct valve
and open it. The vehicle does not dock, because there
are no docking bars on the panel. It must therefore hover
by swimming, counteracting any reaction forces from the
turning. It must also ensure that the gripper position and
orientation of the gripper after grasping does not cause
significant shear forces in the T bar, and break it off.
The visibility is generally good, but there may be sea
currents running and minor turbulence down current from
the manifold.

4. PRELIMINARY RESULTS
4.1 Work Package 1: Describing the World

Efforts have been made mainly on those areas:

(i) Ontologies: Ontology representation represents a very
good way to represent the reality and the relations among



different entities. The work is carried on building on previ-
ous work from the OSL lab, like Miguelanez et al. [2011].
Software tools like Protege have been used to represent
ontologies and to reason on the world representation. The
main challenges encountered are the computational load
and therefore the scalability of growing ontologies. Re-
garding this area, the work of Beetz’s group (Tenorth and
Beetz [2009]) is certainly very relevant. It looks a very
good tool to link sensor data into symbol, and to perform
computational methods associated to ontologies.

(ii) Feature Detection and World Model Update:
sensing the environment and analysing sensor data is
crucial for this work package, as the world representation
is intimately linked with the reality. Work towards 3D
SLAM has shown preliminary results in simulation, with
integration with ROS. Some optimisations are required
for the integration in the AUVs, but the results are very
promising. Regarding SLAM and World Modeling, the
issue of updating the World Model according to the sensor
data has been raised and discussed. Key factors are related
to the decision of updating existing information because
inconsistent with the sensor data, and when to take that
decision. It is to be noticed that the inconsistency not
necessarily means that the information in the World Model
is wrong, but it may mean an inconsistency in the vehicle

belief.

Additionally, the group has worked on an interface be-
tween the world modeling and the planning system (Work
Package 2).

4.2 Work Package 2: Directing and Adapting Intentions

The activities in WP2 mainly focused on the following
tasks:

(i) Definition of the link between planning and
control layers: in the initial phase of the project, WP2
focused on the inspection task. In this domain, the high-
level component is represented by the planner which has
the goal of defining the sequence of waypoints to visit in
order to inspect all the surface, while minimising the time
and the energy consumption. The low-level component
is represented by the controller that is responsible for
deciding the physical actions required to move the AUV
between different waypoints. This interaction raises an
important issue, which is the need for a communication
protocol between the planner and the controller. This
protocol needs to be defined both from a modelling point
of view (defining a model for describing the tasks and the
different actions), and from an architectural point of view
(implementing the integration of the planner within the
ROS architecture). This issue is an important challenge
that will be addressed in the next phase of the project.

(ii) Definition of the models required to describe
the different tasks: PDDL (Planning Domain Definition
Language) is the standard language for describing plan-
ning domains. As a first result in WP2, it has been agreed
that PDDL can be used to model both the missions and
the actions of the AUV. In the initial phase of the project,
WP2 focused on the inspection task. In particular, the
inspection task will be performed in two phases. In the
first phase, a low-level inspection of the structure provides

the set of relevant waypoints covering the structure. Then,
in the second phase, the planner is executed to decide the
optimal sequence of waypoints to visit and observations
to perform. This domain has been modelled in PDDL.
Some features of this domain are the set of waypoints
resulting from the low-level inspection and the cost of
moving between different waypoints, as well as the ob-
servability degree of each waypoint (i.e., which portion of
the structure can be observed from each waypoint). The
PDDL domain also includes the different actions the AUV
can perform. Some examples are: moving between two
waypoints (which can be done using a fast navigation or
hovering), observing, relocating, turning, etc. Part of this
activity has been used to solve a feature-tracking problem,
as described in the ICAPS12 paper ”Plan-Based Policy-
Learning for Autonomous Feature Tracking”.

(iii) Integration of the planning technology within
the ROS architecture: the architecture used in the
project is ROS, where all the AUV and sensor simulators
are already implemented. WP2 focused on integrating
a planner (namely POPF) into ROS. This integration
required the implementation of POPF as a node into
ROS, and the definition of a set of messages to allow the
communication between the planner and the simulators.
In particular, an executor has been implemented as well
as a well defined protocol for passing as parameters to the
planner actions the data received by the sensors. Currently,
a preliminary demo is available, where the planner receives
in input the domain description (i.e., a set of waypoints,
observability degree etc.), and decides the sequence of
actions to be performed. Then these actions are executed
by the AUV simulator.

Next steps include the improvement of the simulator
integration as well as discussions about how ontology
can be used to improve the domain description and the
communication between planner and controller.

4.8 Work Package 3: Skill Learning for Persistent Autonomy

The ability to learn and adapt in dynamic underwater
environment is crucial for achieving persistent autonomy
of the AUVs. All three scenarios in the PANDORA project
- structure inspection, chain cleaning and valve turning -
can benefit from applying machine learning algorithms to
increase the AUV adaptability. So far, the research efforts
in skill learning have been mainly focused around the
third scenario, which consists of autonomous grasping and
turning of a valve with a free-floating AUV. In this task,
the AUV uses a manipulator to grasp the correct valve on a
panel and open or close it. Since the vehicle does not dock,
it needs to hover by swimming while counteracting reac-
tion forces from the turning and from the sea currents and
even minor turbulence. Also it must ensure that the grip-
per position and orientation of the gripper after grasping
does not cause significant shear forces in the valve handle
(T bar shape), and break it off. Initial experiments are
being conducted with a commercial manipulator (KUKA
Light Weight Arm) in lab conditions, not underwater. In
the current experiments, the valve position is being esti-
mated from the sensory input with an Extended Kalman
Filter. Imitation learning approach is used in order to
learn the trajectory to follow with the robotic arm. To



perform the task safely, a fuzzy system is developed which
generates appropriate decisions for the arm movement in
real-time according to the instant dynamics of the valve.
The ongoing research in skill learning focuses on achiev-
ing multiple important desired properties of movement
planning, which are: ease of representing and learning,
compactness of the representation, robustness against per-
turbations and changes in a dynamic environment, ease
of reuse for related tasks and easy modification for new
tasks, and ease of categorization for movement recognition.
Regarding the first scenario in PANDORA, where an AUV
has to inspect a submerged structure under potentially
unknown environment conditions, the controller can be
adapted in real-time using machine learning methods. This
task can be considered as a problem of searching in policy
space for episodic reinforcement learning. The ongoing
research in this direction focuses on developing derivative-
free optimization methods for this scenario.

4.4 Work Package 4: Robust Control Strategies for Efficient
Positioning and Interaction

A state feedback control approach for the motion of 3D
under-actuated UUVS was developed. The objective is to
steer the vehicle to a desired configuration w.r.t. a target
of interest. A vision-based sensor system is considered,
thus imposing configuration constraints due to the limited
field-of-view (FOV) of the onboard camera. The control
design is based on dipolar reference vector fields and tools
from viability theory, and guarantees the convergence of
the vehicle in a neighborhood of the desired configuration,
without violating the FOV constraints. Moreover, the non-
actuated DOF's are shown to be input-to-state stable. An
alternative approach to the aforementioned problem was
proposed based on Model Predictive Control (MPC). The
approach combines the notion of dipolar vector fields along
with a constrained nonlinear MPC formulation, which in-
corporates the visibility constraints. The proposed control
strategy falls into the class of dual-mode MPC schemes, i.e.
the system trajectories are forced by the model predictive
controller into a suitably defined terminal region that
contains the goal configuration. Therefore, convergence
of the system trajectories to the goal configuration is
guaranteed by switching to the dipolar vector field based
controller once in the terminal region. The problem of
autonomous inspection of an anchor chain has also been
dealt for under-actuated underwater vehicles. The dynam-
ics and the kinematics of the UUV as well as exogenous
disturbances representing ocean currents and waves were
included in the analysis. Employing the Prescribed Per-
formance Control technique, a robust time-varying control
scheme is designed incorporating visibility constraints as
well. Moreover, the non-actuated DOF (sway) is shown to
remain bounded. Finally, the off-line identification prob-
lem of the dynamic parameters of AUVs was approached.
Relevant information regarding the sensor suite of Girona
500 AUV has been gathered and various technical issues
have been tackled. Subsequently, a way-point tracking con-
troller for Girona 500 AUV has been designed. It utilizes
the estimated parameters from the off-line identification
procedure as well as a parameter tuning algorithm to
increase the closed loop performance.

4.5 Work Package 5: Testbeds Integration and Experimental
Validation

The experimental validation has started by developing an
augmented reality framework that will be used to test
the systems in simulation before using the real test-beds.
Simulator and experimental testbeds are available with
the consortium, like for example Davis and Lane [2010].
Girona 500 AUV from UdG and Nessie VI AUV from
HWU will be used in the 3 scenarios of the project: a)
structure inspection, b) chain cleaning and c¢) valve turn-
ing. The simulator has been already set up and allows
the use of both AUVs in a first simplified version of the
scenarios. All the software is based on the ROS framework,
and this allows each partner to test and integrate their
systems in a cooperative and continuous way. In the fol-
lowing months, the 3 scenarios will be partially solved with
the simulator. As far as real test-bed experimentation, the
work has consisted till now in upgrading the vehicles with
new equipment. Both vehicles are right now completely
operative for pre-programmed autonomous missions and,
therefore, once the new equipment is integrated, the three
tasks will be able to be tested with the new methods
developed in the project. Nessie VI AUV will be used
in the structure inspection task. A multibeam imaging
Forward Looking Sonar (FLS) will be integrated for de-
tecting the structure and performing the correct inspection
movements accordingly. Girona 500 AUV will be used
in the chain cleaning and valve turning tasks. For the
first task, also a FLS will be integrated for detecting the
chain with zero visibility and generating the trajectories
for cleaning the surface with a high pressure water jet,
that will also be integrated. The valve turning tasks will
require the integration of a new underwater manipulator
that will allow the operation of the valves from the AUV
in free-floating mode. All the equipment has already been
chosen and it is planned to have it completely integrated
by mid 2013, following the plan of the project. Some of
the demonstration platforms are showed in Fig. 5.

5. VALIDATION

A comprehensive list of validation metrics have been devel-
oped to test the ability of each system to meet its criteria.
Ultimately the best all-encompassing metrics of persistent
autonomy is quantitative analysis of robot engineer inter-
actions, which will be greatly reduced by PANDORA’s
success. So overall, we measure our success by the reduc-
tion in the number of times the operator is called to assist
a stuck robot during execution of tasks and sequences
with noisy sensor data. We also count the number of
successful automatic recoveries the robot achieves from an
execution failure. These require world modelling to detect
the failure, task planning to indicate corrective action, and
reinforcement learning/adaptive control to successfully ex-
ecute once more.

Beyond this, the overarching performance indicators within
each core theme are:

e Describing the World:
- Trends in numerical errors of vehicle location
and object location/geometries (or other indirect
measures such as residuals, covariance, OSPA



Fig. 5. Demonstration Platforms: (a) top left: HWU Nessie VI AUV; (b) top right: UdG Girona 500 AUV; (c) HWU

Augmented Reality Testbed

error, Hellinger distance), and probabilities in
semantic relationships (ontologies).

- Number of correct and incorrect diagnoses of task

execution failure.
e Directing and Adapting Intentions:

Comparison of the number of failing actions in
an automated planning/re-planning system with the
number of failures produced by hand-built plans,
assuming given world information (efficiency and re-
source utilisation are therefore implicit)

e Acting Robustly:

Position and orientation error norm per unit dis-
tance, and the average wrench (force and torque)
error norm.

6. CONCLUSION

This paper has presented the challenges which the FP7
Project PANDORA is currently addressing, focusing on
persistent autonomy. Current existing autonomous sys-
tems require frequent operator intervention. The focus of
Pandora is to enhance the long-term autonomy of AUV
missions, through increased cognition, at all the levels of
abstraction. An agile development approach is used to
allow frequent measurements of development metrics to
rapidly optimize the system on the three main experi-
mental scenarios. The preliminary results after only a few
months from the start of the project are very encouraging.
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