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Abstract

Indexes — also known as associative arrays, dictionaries,
maps, or hashes — are abstract data-structures with myr-
iad applications, from databases to dynamic languages. Ab-
stractly, an index is a partial function from keys to values.
Values can be queried by their keys, and the index can be
mutated by adding or removing mappings. While appeal-
ingly simple, this abstract view is insufficient for reasoning
about indexes that are accessed concurrently.

In this paper, we introduce an abstract specification which
views an index as a divisible resource. Multiple threads can
access the index concurrently, yet threads can still reason lo-
cally. We show that this specification can be used to verify
a number of client applications. Our abstract specification
would mean little if it were not satisfied by the implementa-
tions of concurrent indexes. We verify that our specification
is satisfied by linked list, hash table and B%" tree index im-
plementations. During verification, we uncovered a subtle
bug in the BY"* tree algorithm.

General Terms Algorithms, Concurrency, Theory, Verifi-
cation.

Keywords B-Trees, Concurrent Abstract Predicates, Sepa-
ration Logic.

1. Introduction

Indexes are ubiquitous in computer systems: they are used in
the implementations of databases, caches, file systems, and
even the objects of dynamic languages such as JavaScript.
To a sequential client, an index can be viewed as a partial
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function from keys to values. The client can query the index
by key, or mutate it by adding or removing mappings. A
client can use an index in terms of this abstract specification,
irrespective of the complexities of its implementation. The
simplicity of this abstract view accounts for a large part of
the popularity of indexes.

However, this simple abstraction breaks down if an index
is accessed concurrently. When several threads insert, re-
move and query keys, clients can no longer model the whole
index by a single partial function. Each client must take ac-
count of potential interference from other threads.

In this paper, we propose an abstract specification for
concurrent indexes which takes account of interference be-
tween threads. Our specification allows a thread to reason
locally if each key is manipulated by one thread. However,
it also allows threads to share access to keys if necessary.
Crucially, clients can reason entirely abstractly using our
specification, without considering an index’s implementa-
tion. However, we establish that our specification is satisfied
by actual index implementations.

In §3| we propose a simple specification which treats the
index as a resource divided up by its keys. Intuitively, if
each key in an index is manipulated by a single thread then
we can verify each thread in terms of the keys it uses, and
combine the results to understand the composed system. In
our specification, each key k can either be absent from the
index h — represented by the predicate out(h, k) — or it can
be present with some value v — represented by in(h, k, v).
Inserting and removing a key is completely independent
from operations on other keys. Disjointness is enforced by
the fact that only one thread can hold the resource out(h, k)
or in(h, k,v) for a particular k; that thread then has the
exclusive right to read or mutate the value of the key. Using
this disjoint specification, we verify a variety of clients,
including a map procedure which concurrently applies a
function to keys in a particular range (§3.1).

Our simplified specification assumes that each key is
held by at most one thread at a time. In g4 we propose a
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more refined specification which allows sharing of keys be-
tween threads. Once again, keys are represented by predi-
cates. However, our refined specification can express subtle
patterns of behaviour over individual keys. For example, a
thread may have the right to remove a key from the index, but
other threads may also have that right. If no thread removes
the key, our specification allows us to infer that the key is
still present. With this specification, we can verify exam-
ples such as function memoization (§4.2) and a concurrent
implementation of Eratosthenes’ prime number sieve (§4.3).

We then discuss how our specification can be extended to
represent iteration over indexes (§5). We show how to use
this to reason about applications such as a more general ver-
sion of map and a caching mechanism for a social network-
ing website.

In order to justify our proposed specification, we have
verified that it is satisfied by three concurrent index imple-
mentations: a simple linked list with coarse-grained locking
(§6.1); a hash table linking to a set of secondary indexes
(46.2); and Sagiv’s complicated BX"* tree algorithm [18]
(§6.3). Our specification allows clients to reason disjointly
about individual keys, even when the implementation re-
quires underlying sharing between threads. For the BX"* tree
algorithm in particular, the underlying sharing mechanism is
exceedingly complex, so as to permit non-blocking reads.
We use the concurrent abstract predicate methodology [6]
to hide low-level sharing from clients. The benefits of our
approach are illustrated by the fact that we discovered a bug
in the BX"* algorithm.

Paper contributions:

1. An abstract specification for concurrent indexes that al-
lows thread-local reasoning, while capturing the addition
and removal of shared values. We also present an exten-
sion of this specification giving support for iteration over
the keys of an index.

2. Verifications of a number of client algorithms based on
indexes, including a map function, a memoisation func-
tion, and an implementation of the sieve of Eratosthenes.
Our proofs demonstrate that our proposed specification
allows us to reason about high-level coordination be-
tween threads.

3. Proofs that three different index implementations satisfy
our proposed specification. Our implementations vary in
complexity from a simple globally-locked list, to Sagiv’s
Bl tree algorithm. Our abstract specification allows us
to present an identical interface to clients, irrespective of
the complexity of these implementations.

Related Work

We build most immediately on concurrent abstract predi-
cates [6], a logic for modular verification based on separa-
tion logic. This approach developed from a line of concur-
rent logics, including RGSep [21] and concurrent separation

logic [14]. The index specification we propose is descended
from the set specification verified in [6]. However, in that
paper we focussed on building a sound logic, and verified
only simple specifications against naive implementations. In
this paper we propose a specification which allows clients to
reason straightforwardly about challenging features such as
indexes and sharing, and we verify our specification against
realistic implementations such as the BL"* tree.

Others have worked on reasoning abstractly about index-
like data-structures for sequential clients. For example, Dil-
lig et al. propose a static analysis for C-like programs which
represents the abstract content of containers [3]. Kuncak
et al. propose an analysis that represents various kinds of
data by set abstractions, while proving these abstractions for
modules [12].

Our specification for iterators (§5) resembles the one pro-
posed by Krishnaswami [[L1]. As in this work, we represent
an iterator by a predicate, and we permit many iterators for
a single index. Unlike Krishnaswami, our specification iter-
ators on an index to run concurrently, and allows keys to be
released once they have been iterated over. Furthermore, we
can reason without the use of the separating implication (the
‘magic wand’) — an operator that has proved challenging for
automated reasoning.

One of the most challenging parts of our work was veri-
fying the concurrent BX"* tree implementation. Some prior
work exists on verifying sequential B-trees. In [19] B-tree
search and insert operations are verified as fault-free in a
simplified sequential setting. In [13] a sequential B-tree
implementation is verified in Coq as part of a relational
database management system. The authors comment that
the proof was “particularly difficult, despite previous work
in this area”, and that “verifying the correctness of high-
performance, concurrent B+ trees will be a particularly chal-
lenging problem”.

The only prior verification of a concurrent B-tree we
are aware of is [16]. This paper verifies a highly-abstracted
version of the algorithm modelled in process algebra, rather
than C-like code. It also verifies a global specification, rather
than allowing elements to be divided between threads.

2. Separation Logic & Abstraction

This paper is based on separation logic [17]], a Hoare-style
program logic for reasoning locally about programs that ma-
nipulate resource: for example, C programs that manipulate
the heap. Local reasoning focusses on the specific part of
the resource that is relevant at each point in the program.
This supports scalable and compositional reasoning, since
disjoint resource neither impinges upon nor is affected by
the behaviour of the program at that point.

Separation logic specifications have a fault-avoiding
partial-correctness interpretation. Consider the following
specification for a command C (here P and () are asser-

2011/5/18



tions):
{PC{Q}

The interpretation of this specification is that (1) executing
C in a state satisfying assertion P will result in a state
satisfying assertion @), if the command terminates; and (2)
the resources represented by P are the only resources needed
for C to execute successfully.

Other resources can be conjoined with such a specifica-
tion without affecting its validity. This is expressed by the
following proof rule:

{r} C{Q}
{P+F} C{Q«F}

FRAME (side-condition)
This rule allows us to extend a specification on a small re-
source with an unmodified frame assertion F', giving a larger
resource. Here, ‘%’ is the so-called separating conjunction.
Combining two assertions P and F' into a separating con-
junction P x F' asserts that both resources are independent of
each other. The side-condition simply states that no variable
occurring free in the frame F is modified by the program C.
Separation logic provides straightforward reasoning about
sequential programs. It also handles concurrency [14]], using
the following rule:

{Pi} Ci{@Qi} {2} Ca {Q2}
{Pr+ P2} Cp||Co {Q1 % Q2}

In a concurrent setting, the precondition and post-condition
are interpreted as resources owned exclusively by the thread.
Reasoning using PAR is thread-local: each thread reasons
purely about the resources that are mentioned in its precondi-
tion, without requiring global reasoning about interleaving.
As with sequential reasoning, locality is the key to composi-
tional reasoning about threads.

PAR

Abstraction. Abstract specifications are a mechanism for
specifying the external behaviour of a module’s functions,
while hiding their implementation details from clients. Re-
sources are represented by abstract predicates [15]]. Clients
do not need to know the concrete definitions of these predi-
cates; they can reason purely in terms of the module’s oper-
ations. For example, insert in a set module might be spec-
ified as:

{set(x,S) } {set(x,SU{v})}

insert updates the abstract contents of the set at address x
from S to S U {v}. A client can reason about the high level
behaviour of insert without knowing about the concrete
definition of the set predicate.

Abstract predicates can only represent the set as a single
entity, because implementation details disrupt finer-grained
abstractions. Concurrent abstract predicates [6], on the
other hand, can achieve finer abstractions. We can break the
set down into predicates representing individual elements:

insert(x,v)

in(x,v) if v belongs to the set x; out(z,v) if it does not.
Different threads can hold access to different set elements.
insert might now be specified as:

{out(x,v) } {in(x,v) }

Concurrent abstract predicates provide a finer granularity of
local reasoning, whilst still hiding implementation details
from clients. We follow the concurrent abstract predicate
approach in our reasoning about concurrent indexes. In
§4]and §5] we work at the abstract level; in §6] we prove our
abstraction is respected by implementations.

insert(x,v)

3. Index Specification: Disjointness

We start by giving a simple specification which divides an
index up into its constituent keys. Our specification ensures
that each key is accessed by at most one thread (in §4] we
discuss a refined specification that supports sharing). Our
specification hides the fact that each key is part of an under-
lying shared data structure, allowing straightforward high-
level reasoning about keys and values.

Abstractly, the state of an index can be seen as a partial
function mapping keys to value

H: Keys — Vals

There are three basic operations on an index — search,
insert and remove — which operate on index h (with cur-
rent state H) as follows:

¢ search(h, k) looks for the key k in the index. It returns
H (k) if it is defined, and nil otherwise.

¢ insert(h,k, v) tries to modify H to associate the key k
with value v. If k € dom(H) then insert does nothing.
Otherwise it modifies the shared index to H & {k > v}.

¢ remove(h, k) tries to remove the value of the key k from
the index. If k ¢ dom(H) then remove does nothing.
Otherwise it rewrites the index to H \ {k}.

This view of operations on the index is appealingly simple,
but cannot be used for practical concurrent reasoning. This
is because it depends on global knowledge of the underlying
index H. To reason in this way, a thread would require
perfect knowledge of the behaviour of other threads.

To avoid this, we give a specification that breaks the
index up by key value. Our specification allows threads to
hold the exclusive ownership of an individual key. (In §4]
we will extend this approach to allow reasoning about keys
that are shared). Each key in the index is represented by a
predicate, either in or out depending on whether the key
is associated with a value or not. The predicates have the

! Where possible, we treat the key and value sets abstractly. Implementa-
tions require certain properties of these sets, however: all require keys to be
comparable for equality, hash tables require the ability to compute hashes
of keys, and B-trees require a linear ordering on keys.
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following intuitive interpretation:

in(h, k,v): there is a mapping in the index h from & to v.

out(h, k): there is no mapping in the index A from k.

These predicates combine knowledge about state — whether
a key is in the index — with knowledge about ownership
— whether the thread is allowed to alter that key. A thread
holding the predicate for a given key knows the value of the
key, and can be sure that no other thread will modify key.
This entangling of state with ownership is essential to our
approach: each predicate is invariant under the behaviour
of other threads, meaning that its implementation can be
abstracted.

The index operations have the following specifications
with respect to these predicates:

{in(h,k,v)} r:=search(h,k) {in(h,k,v) Ar=v}
{out(h,k)} r:=search(h,k) {out(h,k) Ar = nil}

{in(h,k,v")} insert(h,k,v) {in(h,k,v)}
{out(h,k)} insert(h,k,v) {in(h,k,v)}
{in(h,k,v)} remove(h, k) {out(h,k)}
{out(h,k)} remove(h, k) {out(h,k)}

Predicates can be composed using the separating conjunc-
tion *, indicating that they hold independently of each other.
Note that our specification allows us to reason about an in-
dex as a collection of disjoint, independent elements, despite
the fact that indexes are generally implemented as a single
shared data structure.

Each predicate represents exclusive ownership of a par-
ticular key. Our specification represents this fact by exposing
the following axiom:

(in(h, k,v) V out(h, k)) =
( (in(h, k') Vout(h k) ) — false
Given the above specifications, we can reason locally
about programs that use concurrent indexes. Consider for
example the following simple program:

r := search(h, ky);
insert(h,ks,r) || remove(h, k)

This program retrieves the value v associated with the key
k. It then concurrently associates v with the key k; and
removes the key ko. When the program completes, k; will
be associated with v, and k, will have been removed from
the index. This specification can be expressed as:

{out(h, k) xin(h, ko, v)} — {in(h, ki, v) % out(h, ko) }

We can prove this specification as follows:

{out(h, k;) xin(h, ko, v) }
r := search(h, ky);
{out(h, k1) *in(h, ks, v) AT = v}
{out(h, ki) A =0} {in(h,kz,v)}
insert(h, ki, 1) remove(h,k,)

{in(h,kq,v)} {out(h, ks)}

{in(h, ky,v) % out(h, kg)}

In this proof, the search operation first uses the predicate
in(h,ky, v) to retrieve the value v. Then the parallel rule
hands insert and remove the out(h,k;) and in(h,ky,v)
predicates respectively. The postcondition of the program
consists of the separating conjunction of the two thread
postconditions.

3.1 Example: Map

A common operation on a concurrent index is applying a
particular function to every value held in the index: mapping
the function onto the index. We consider a simple algorithm
rangeMap that maps function f (implemented by f) onto
keys within a specified range. We implement rangeMap with
a divide-and-conquer approach, which splits the key range
into sub-intervals on which the map operation is recursively
applied in parallel.

rangeMap(h, ki, ko) {
if (k1 = ko) {
r := search(h, ki);
if (r # nil) {
remove (h, ki);
r ;= £f(r);
insert(h, ki, r);
}
} else {
rangeMap(h, ki, ki+((kz2-k1)/2))
|| rangeMap(h, ki+((k2-k1)/2)+1, ko)
i3

We specify rangeMap as follows, where S is a set of key-
value pairs:

{®k1<i<k2. (out(h,7) Ai ¢ keys(S)) V }
(Fuv.in(h,i,v) A (i,v) € S)
rangeMap(h, kq, ky)

{®k1<i<k2- (out(h, ’L) A1 ¢ keys(S)) V }

(Fu.in(h, i, f(v)) A (i,v) € 5)

(Here ® is the iterated separating conjunction. That is,
®,eq1,2,3)- P is equivalent to P[1/x] x P[2/x]  P[3/x].
keys(S) is the set of keys associated with values in S.)

In the specification, the logical variable S’ describes the
initial state of the index (in the key range [k4, k»]). Assuming
that S contains at most one key-value pair for each key, the
key 7 (for k;y < ¢ < ky) initially has value v if and only if
(i,v) € S. After execution of rangeMap, the postcondition
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(Fv.in(h,i,v) A (i,v) € S)
rangeMap(h, ki, ka2, v) {
if (k1 = ko) {
{k1 =Jo A ((out(h, k1) A ks ¢ keys(S)) V }
(Fu.in(h, k1, v) A (ki,v) € 5))
r := search(h, ki);
{(out(h, ki) A&y ¢ keys(S) Ar = nil) v }
(in(h,ki,) A (ki,T) € 5)
if (r # nil) {
{in(h, k1, 1) A (ky,T) € S}
remove(h, ki);
{out(h, k‘l) AN (kl.,r) eSNk = k’z}
r ;= f£f(r);
{3v.out(h, ki) A (k1,v) € SAT = f(v)}
insert(h, ki, r);
{3v.in(h, ki, f(v)) A (k1,v) € S}
}

{@kigigkz. (out(h, i) A ¢ keys(S)) V }

{k1 =Xk, A ((out(h, k1) Aky & keys(S)) V }
(Fu.in(h, ke, f(v)) A (ki,v) € 5))
} else {

(out(h,i) A i ¢ keys(S)) V .
®klsi§{@y ((31}. in(h,i,v) A (i,v) € S))

® (out(h, i) A i ¢ keys(S)) V
|92 |<i<ie \ (Ju.in(h,4,v) A (i,v) € S)
// Apply the PAR rule.
rangeMap(h, ki, ki+((ka-k1)/2))
|| rangeMap(h, ki+((k2-k1)/2)+1, ko)
® (out(h,i) A i ¢ keys(S)) vV .
m<i<| 952 |\ (Ju.in(h, i, f(v)) A (4,0) € S)

((out(h7 1) Ni ¢ keys(S)) vV )
"\ (Fv.in(h, i, f(v)) A (i,v) € S)

{®k1§i§k2' (out(h,i) A i ¢ keys(S)) V }
(Fu.in(h, 4, f(v)) A (i,v) € S)

Figure 1. Proof for rangeMap.

ensures that if the key ¢ had and initial value v, then it now
has value f(v), and if it had no value then it still has no
value. A proof that rangeMap conforms to this specification
is given in Figure[T]

rangeMap might not be considered truly typical of map
operations, as it maps over a range of keys rather than the
entire index. In @ we introduce a specification for iterators,
allowing all keys in an index to be enumerated. Using an
iterator, we implement and verify a map function over all
values in the index.

4. Index Specification: Sharing

The specification we defined in the previous section requires
that each key in the index is accessed by at most one thread.
However, often threads read and write to keys at the same
time. In this section, we define a refined specification that
allows for concurrent access to keys. As before, our speci-

fication hides implementation details and allows threads to
reason locally.
Consider the following program:

r := search(h,k) || remove(h, k) ()

If we know at the start of the program that key k maps to
some value v, we should be able to establish that there will
not be a mapping from the key k at the end. However, we
will not know the value of r, because we do not know at
which point during the remove operation that the search
operation will read the value associated with k.

Implementations have many different ways of handling
the sharing of keys (for example using mutual exclusion
locks or transactions), but at the abstract level they all behave
in the same way. If a thread reads a key multiple times, the
reads all return the same result, unless another thread also
writes to that key.

Our refined specification is based on abstract predicates
that express three facts about a given key:

1. whether there is a mapping from the key to some value in
a set;

2. whether the thread holding the predicate can add or re-
move the value of the key in the index;

3. whether any other concurrently running threads (the en-
vironment) can add or remove the value of the key in the
index.

These facts are related. If a key maps to a value in the index,
but other threads are allowed to remove the value of the key,
the current thread cannot assume the value will remain in
the index. Our predicates therefore reflect the uncertainty
generated by sharing in a local way.

2011/5/18



We define the following set of predicates, parametric on
key k and index h.

inger(h, k,v); : there is a mapping from key & to value v
and a thread can only modify this key if

it has exclusive permission (i = 1).

outgef(h, k); : there is no mapping from key %k and a
thread can only modify this key if it has

exclusive permission (i = 1).

inins(h, k,.5); : there is a mapping from key & to a value
in set S and threads can only insert val-

ues in set S’ at this key.

outins(h, k, S); : there may be a mapping from key & to a
value in set S and threads can only insert

values in set S at this key.

iNrem(h, k,v); : there may be a mapping from key & to
value v and threads can only remove the

value at this key.

outyem(h, k); : there is no mapping from key k and
threads can only remove the value at this

key.

unk(h, k,S); : there may be a mapping from key % to a
value v in set S and threads can search,
remove and insert any value in set S at

this key.

read(h, k) : there may be a mapping from key k to
some value and the current thread may
not change it, but other threads can make

any modification.

The subscripts def, ins and rem and the fractional component
i € (0,1] record the behaviours allowed by the current
thread and its environment on key k.

Access to keys can be shared between threads. We rep-
resent this in our specification by splitting predicates. Our
specification includes axioms defining the ways that predi-
cates can be split and joined. For example:

indef(h, k’, ’U)H_j <~ indef(h, ]{J,U)i * indef(h, k,’U)j
ifi+j<1

As in Boyland [2]], fractional permissions are used to record
splittings. A permission value ¢ € (0, 1) records that a key
is shared with other threads, while 7 = 1 records it is held
exclusively by the current thread.

When a thread holds exclusive access to a key (when
i = 1) the thread can add or remove the key freely. The
subscripts def, ins and rem specify what a thread can do
when it shares access to the key — that is, when ¢ € (0, 1).
Subscript def specifies that no thread is able to modify the
key. Subscript ins specifies that both thread and environment
can insert on the key, but not remove, while subscript rem
specifies the converse.

Modifying keys concurrently can result in different threads
holding different predicates for the same key. For example,
suppose a thread holds the inem(h, k,v); predicate, denot-
ing that the key k is associated with v in the index. We
can split this predicate into two halves, inrem(h, &, v)% and
iNyem (R, k,v) 1 and give one each to two sub-threads. As-
sume the first thread does not modify the key, but the second
calls remove(h, k), which has the following specification:

{inrem(h,k,v);} remove(h,k) {outrem(h,k);}

The result is uncertainty: one thread holds the outyem (A, k)%
predicate, while the other holds the inyem (h, k, v) 1 predicate.
We define joining axioms that resolve this uncertainty. Since
rem allows removal but not insertion, we know that once the
key has been removed from the index, it stays removed. So
outyem dominates inym, Which is reflected in the following
axiom:

iNrem (R, k,v); * outrem(h, k); = Outrem(h, k)it;
ifitj<1

Some predicates take sets of value arguments, while some
take singleton values. We use singleton values when we
know a key has that value. We use a set of values when con-
current inserts are possible (i.e. in the ins and unk environ-
ments), because we cannot know which thread will be the
first to insert. However, if a value is inserted, it will be one
of the values in the set S.

Our choice of predicates is not arbitrary; each represents
a stable combination of facts about the key k and the be-
haviours permitted by the thread and environment. Figure
shows how various combinations of fractional permissions
and subscripts correspond to various behaviours. Our pred-
icates give almost a complete coverage of all possible com-
binations. The missing combinations are either cases where
the current thread has no access to a key, or where it is only
safe to conclude that a key has an unknown value, in which
case we can use one of the read or unk predicates.

Our full specification is given in Figure [3] In the defi-
nition of the axioms, X is used to stand for inger(h, k, v),
outgef(h, k), inins(h, k,S), outins(h,k,S), inem(h,k,v),
outrem (h, k) and unk(h, k, S).

4.1 Proving Simple Examples

Recall the program labelled with which we began this
section. This program satisfies the following specifications:

{indef(h,k,vh} - {OUtdef(h7k)1}
{outger(h, k)1 } — {outaer(h,k)1}
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SPECIFICATIONS:

{lndef (h,k,v Z} T := search(h,
{outdef (h, k) Z} r := search(h,
{ln,nS (h,k, 5) Z} r := search(h,
outins(h, k, 5);} r:= search(h,
{ )i} (
{lnrem (h,k,v 2} T := search(h,
{outrem (h,k) Z} r := search(h,
{unk(h,k, S);} r:=search(h,
{read(h,k)} r:=search(h,

{Indef (h,k,v Z} insert(h,k,v’)

{Outdef (h, k) } insert(h,k,v)
{(inins(h, k, 5); V outins(h, k, S);) Av € S} insert(h,k,v)
{unk(h,k7 Sl AvE S} insert(h,k,v)

(
(
(
{inger(h, k,v)1} remove(
(
(
(

h, k)
{Outdef (h,k); } remove(h, k)
{inrem(h, k,v); V outrem(h,k);} remove(h, k)
{unk(h,k, S);} remove(h, k)
AXIOMS:
XixX; &
iNins(h, k, S); * outing(h, k, S); =
iNrem (R, k, v); * outrem(h, k); =
ingef(h, k,v)1 <
Juv € S.inges(h, k,v)1 <
Outdef(h,k)l =
X, &
read(h, k) &
unk(h,k,5)1 <

CONTRADICTION AXIOMS:

k) {indef(h,k,v)i AT = ’U}

k) {Outdef(h,k)i ANr = nil}

k) {inins(h,k,9); AT €S}

k) {(outins(h,k, S)i Ar = nil) V (inins(h, k, S); AT € S’)}
k) {(inrem(h,k,0); AT =v) V (OUtrem(h,k); AT = nil)}
k) {outrem(h,k); AT = nil}

k) {unk(h,k,S); A(reSVr=nil)}

k) {read(h,k)}

{indef (b, k, v)z}
{indef h k V)l}
{ln,nS (h,k, 5) Z}
{unk(h,k,5); }

{outger(h, k)1 }
{outdef h k }
{outrem(h,k); }
{unk (h,k, 5) ,}

Xitj ifi+5<1
inins(h,k,S)iH lfl-i-j < 1
outrem (h, k‘)i_;,_j ifi+57<1
iNrem (R, K, v)1

inins(h, k, S)1

out,em(h7 k)l - out;ns(h, k, S)l

X; = read(h, k)

read(h, k) = read(h, k)

outdef(h, k)l Vv esS. indef(h, k, ’0)1

X;ixX; = false ifi+j5>1
ingef (R, k,v); * X; = false  if X % inger(h, k,v)
outger(h, k); * X; = false  if X # outger(h, k)
(iNins(h, k, S); V outins(h, k, S);) * = false if X # inijs(h, Kk, S) A X # outins(h, k, S)
(inrem (R, k,v); V outrem(h, k);) * X; = false  if X # ingem(h, k,v) A X # outrem(h, k)
(iNins(h, k, .S)i * inins (R, K, S");) V (outins(h, k, S); * outins(h, k S’) ) = false if S#5’
unk(h, k, S); * = false if X # unk(h,k,S)

Figure 3. Full specification for concurrent indexes.
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Thread Env.
Predicate Perm. | Ins. | Rem. | Ins. | Rem.
iNgef / OUtger 1 Yes | Yes No No
iNgef / OUtger 1 No No No No
iNjns / OUtjns 1 Yes No No No
iNjns / OUtjns ) Yes No Yes No
inrem /OUtrem 1 No Yes No No
iNyem / OUtem i No Yes No Yes
unk 7 Yes | Yes | Yes | Yes
read - No No Yes | Yes

Figure 2. Predicates and their interference.

Using our abstract specifications, we can prove the first of
these specifications as follows:

{indef(h7 k, U)l}
{read(h, k) * inger(h, k, v); }
{read(h,k)} {inger(h, k, v)1 }
r := search(h, k) remove(h, k)
{read(h,k)} {outgef(h, k)1 }
{read(h, k) * outgef(h, k)1 }
{Outdef(h7 k)l}

The proof starts with the predicate ingef(h,k,v);, which
specifies that there is a mapping from key k to a value v in
the index. The def subscript asserts that no other thread can
modify the value mapped by this key. We use the following
axiom to create a read(h, k) predicate:

X; <= X, xread(h,k)

This allows the left-hand thread to perform a simple search
operation, although the postcondition establishes nothing
about the result. This captures the fact that we do not know
at which point during the remove operation the search op-
eration will read the key’s value. The ingef(h, k, v); predi-
cate allows the right-hand thread to remove the value suc-
cessfully, as we know that it is the only thread changing the
shared state for the key k. When both threads finish their
execution we use the same axiom to merge the read(h, k)
predicate back into the outqer(h, k)1 predicate.
We can prove the second specification as follows:

{outdef h k) }
{Outdef h k)é *Outdef h k %}
{Outdef h, k)j } {Outdef( , k)% }
r := search(h, k) remove(h, k)
{outgef (b, k)% Ar = nil} {outdef(h, k)1 }
{outqef (b, k)% * outdef(h,k)% AT = ml}

{outdef (h, k) 1 }

Here we use the splitting axiom discussed on the previous
page. Unlike the previous proof-sketch, the remove opera-
tion does not modify the index in this case.

We can establish specifications for various combinations
of insert, remove and search. For example, consider the
parallel composition of two removes:

remove(h,k) || remove(h, k)

In this program, we do not know which remove will succeed
and which will fail, but we do know that there will definitely
not be a mapping from key k afterwards. By splitting the
predicates, we can communicate this knowledge between the
threads.

{indef(hak5 U)l}
{inrem(h, Xk, v)1 }
{inrem(h,k,v)% * iNpem (h, k, v) 1 }
{inrem(h,k,v)%} {lnrem (h, k V) }
remove(h, k) remove(h, k)
{outrem(h, k)%} {outrem(h, k)%}
{outrem(h, k)1 * OUtrem (b, k)1 }
{OUtdef(h’ k)1 }

We sometimes cannot establish the exact state of an index
after a program has run. For example, consider the following
program:

[N

remove(h,k) || insert(h,k,v)

When run in a state where key k is initially unassigned, we
will not know if there is a mapping from key k in the index.
However, we can still establish that the program does not
fault and that if the key is assigned, then it will have value v

{OUtdef(h7 k)l }
{OUtdef(h’ k)l V ingef (h7 k, V)l }
{unk(h,k, {v})}
{unk(b,k, {v})1 * unk(h,k, {v})1}
{unk(n,k, {v}), } {unk(h, k, {V})g}

remove(h, k) insert(h,k,v)

{unk(h, Xk, {v})1} {unk(h, %, {v})1}
{unk(h, k, {v})s *unk(h,k, {v})1}

{unk(h,k, {v})1}

We now consider a pair of more complex examples: function
memoization, and the sieve of Eratosthenes.

4.2 Example: Memoization

A common application of indexes is memoization: storing
the results of expensive computations to avoid having to
recompute them. Our specification can be used to verify that
a memoized function gives the same result as the original
function.

Suppose that £ is a side-effect free procedure implement-
ing the (mathematical) function f. A memoized version of
f, memoized_f, can be implemented using the index memo
as follows:
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{3i € (0,1]. @, . unk(memo, ', {f@"Hhi}
memoized_f(v) {
{&®,. unk(memo, v', { f(v')}): }
// framing the irrelevant values off
{unk(memo, v, {f(v)}):}
r := search(memo, v);
{unk(memo, v, {f(v)})i A (x = f(v) VT =nil)}
if (r = null) {
{unk(memo, v, {f(v)})i}
r = f(v);
{unk(memo, v, {f(v)}): Ax = f(v)}
insert(memo, v, r);
{unk(memo, v, {f(v)})i Ax = f(v)}
}
{unk(memo, v, {f(v)})i AT = f(v)}
// framing the other values back on
{r =f(v)A @v/. unk(memo, v’, {f(v/)})z}
return r;
}
{ret = f(v) AJi € (0,1]. ®&®, . unk(memo, ', {f@"H D}

Figure 4. Proof outline for memoized_f.

memoized_f (v) {

r := search(memo, v);
if (r = null) {
r := f(v);
insert(memo, v, r);
}
return r;

}
We give memoized_f the following specification:
{memo} r := memoized_£(v) {r = f(v) A memo}

Here memo is some splittable abstract predicate (that is,
memo = memo * memo). Such a specification allows calls
to £ to be replaced with memoized_f, even in parallel. We
define memo as follows:

Ji € (0,1]. @, . unk(memo, v', { f(v')})i

A proof of the specification for memoized_f is shown in
Figure ]

4.3 Example: The Sieve of Eratosthenes

A
memo =

Let us consider an example where many threads require
write access to the same shared value in a concurrent index.
We choose the Sieve of Eratosthenes [[1,|10], an algorithm for
generating all of the prime numbers up to a given maximum
value max.

We use an index to represent the set of (candidate) prime
numbers. A set can be viewed as an instance of an index
where the set of values is a singleton (in this example, we
use {0}). A key is either present, representing that it is in the
set, or not: the value itself conveys no information.

sieve(max) {
idx := idxrange(2, max);
parwork(2, max, idx);
return idx;

}
parwork(v, max, idx) { worker (v, max, idx) {
if (v < sqrt(max)) { c =V + v;
worker (v, max, idx) while (¢ < max)
[ remove (idx, c);
parwork(v+1l, max, idx) c = c + v;
} }
} }

Figure 5. Prime sieve functions.

The algorithm starts by constructing a set of integers from
2 (since 1 is not a prime number) to max. (We assume a
function idxrange that creates an index with mappings for
keys in a specified range.) For each integer in the range
2 .. |v/max|, a thread is created that removes multiples of
that integer from the set. Once all threads have completed,
the remaining elements of the set are exactly those with no
factors in the range 2 .. | y/max | (excluding themselves), and
hence exactly the prime numbers less than or equal to max.

The code for the implementation is given in Figure[5] The
procedure sieve is the main sieve function, which uses the
recursive parwork procedure to run each worker thread in
parallel. The procedure worker is the implementation of the
worker threads.

The specification for sieve is

{emp A max > 1}
X := sieve(max)
®;ic[2. max]- iSPrime(i) = ingef(x,,0);
A —isPrime(i) = outger(x, 7)1
where the predicate ‘emp’ denotes no resource at all, and
the predicate ‘isPrime(4)’ holds exactly when ¢ is a prime
number. We also define the predicate ‘fac(i,v,v’)’, which

holds when ¢ has a factor (distinct from itself) in the range
[v.. V]

A

fac(i,v, ") Fjv< i<V Aj#iA(imodj)=0

The proof that sieve meets its specification is given in
Figure [6] This proof requires we establish the following
specification for worker.

{2 S v A ®i6[2..max]' inrem(idx, ’L'7 O)f}
worker(v,max, idx)

{@ie[gumax].fac(i, V,V) = outger(idx, i) A }

—fac(i,v,v) = inyem(idx, 4, 0);

This specification expresses that the worker removes all mul-
tiples of v from the set; any other elements will still be
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present unless they are removed by another thread. The fact
that (for v < v’)

fac(i,v,v) V fac(i,v + 1,v") <= fac(i,v,v’)

allows us to conclude that the parwork procedure eliminates
exactly the set elements with factors different from them-
selves in the range v .. max. Since p > 1 is prime if and only
if it has a factor in the range 2 .. | \/p|, for i € [2 .. max]

—fac(i, 2, [vmax|) <= isPrime(i).

Together with the index axioms that allow rem predicates to
be switched to def predicates when full permission is held,
this lets us establish the postcondition of sieve.

5. Iterating an Index

The high level specification discussed so far does not allow
us to explore the contents of an arbitrary index. To use
search, we must know which keys we seek. If we do not
(and the set of keys is infinite) we cannot write a program
that examines all the values stored in the index. To handle
this case, we add imperative iterators, based loosely on those
in Java. Iterators have three operations:

e it := createIter(h) creates a new iterator for index h.

¢ (k,v) := next(it) returns some key-value pair in the
index for which it is an iterator. The returned pair will be
one that has not been returned by a previous call to next
on it. When all key-value pairs have been returned, the
call returns (nil, nil).

¢ destroyIter(it) frees the iterator it.

To iterate an index, one creates a new iterator, calls next
until it returns (nil, nil), then frees the iterator. Notice that
the next procedure just returns some key-value pair, placing
no order on the iteration. This keeps the iterator specifica-
tion general, as many underlying implementations have no
natural ordering.

As in Java, we do not allow full mutability of an index be-
ing iterated. We allow partial mutability: keys can be safely
modified once they have been returned by the next proce-
dure.

Iterator specification. An iterator is represented by the ab-
stract predicate iter(it, h, S, K, 1), which describes an itera-
tor it, iterating over index h. The set S contains the key-
value pairs that are in the index and have not yet been re-
turned by next; while K is the set of keys that are not as-
signed in the index. The iterator has definite permission % for
every key in keys(S) U K.

Our specification for the three iterator operations is
shown in Figure|[/] Creating an iterator for an index requires
definite information about the state of each key in that index,
in the form of inger and outqes predicates for all keys. It is not
sensible for two threads to share the same iterator, as each

{emp A max > 1}
sieve(max) {
idx := idxrange(2, max);
{®ici. max- iNvem(idx,7,0)1 }
parwork(2, max, idx);
®'L€[24.max]' fac(i7 25 L\/HEJ) = OUt"em(idX7 L)l A
—fac(4, 2, [v/max|) = inrem(idx,,0);

// By properties of prime numbers and
// index axzioms

®i€[2_max]. isPrime(i) = ingef(idx,%,0)1
A —isPrime(i) = outger(idx, 7)1

return idx;

}
ret = idx A ®i6[2umax]' isPrime(i) = ingef(1dx, 4, 0)1
A ﬂisPrime(i) = outdef(idx, i)1

{2 S v A ®i€[24.max]' infem(idxa iy O)f}
parwork(v, max, idx) {
if (v < sqrt(max)) {

2<vA ®ie[2”max]. iNrem (1dx, 7, O)%) *
2< v+ 1A ®ic. nax- iNrem(1dx, 1, o)%>
worker (v, max, idx) || parwork(v+l, max, idx)
(@ie[gﬁmax].fac(i,v, v) = out,em(idx,i)% /\) .

—fac(i, v, v) = inem(idx, 1, O)%
®ic(o. max)- fac(i, v+1, [ /max)) = outiem(idx, )
A —fac(i, v+1, [y/max]) = inrem(idx, 4, 0)

// Using permission combination axioms

®i6[2”max]. fac(i, v, [v/max]) = outrem(idx,i): A
—fac(i, v, | /max]) = inrem(idx, i,0)¢

S

ol

}
}
{@ie[z“max],fac(i, v, |[v/max|) = outrem(idx, )¢ A }

—fac(i, v, | y/max]) = inrem(idx,7,0);

{2 S vA ®i€[24.max]' inrem(idxﬁi? O)t}
worker (v, max, idx) {
c =V + v;
while (¢ < max) {
@ie[?n(c71>]. fac(i,v, V) = outdef(idx,i)t A
—fac(i,v,v) = inrem(idx,,0):
* ®je[c“max]- inrem(idx>j7 O)t
remove (idx, c);
c = c + v;
}
}

{@iep_.max].fac(i, V,V) = outder(idx, )¢ A }

—fac(i,v,v) = inrem(idx, 7, 0);

Figure 6. Proofs for the sieve and worker programs.

2011/5/18



{® (k,v)es indef (B, k, v); % Bgieys(s) Outdef (b, k)i } it := createlter(h) {iter(it,h, S, keys(S),)}

{iter(it,h, S, K,i) A S # 0} (k,v) := next(it) {

{iter(it,h,0, K i)} (k,v) := next(it)
{iter(it, h, S, K, i)} destroyIter(it)

(k,v) € S Aiter(it, h, S\ {(k,v)}, K,7) x }
indef(h,k,v)i

{iter(it, h,0, K,i) Nk =nil Av = nil}
{® 1, v)es indet (h, k,v); ¥ @ ek outaer(h, k)i }

Figure 7. Specification for iterators.

thread will iterate over an unknown subset of the underlying
index. As such, the iter predicate cannot be split for sharing
between threads. However, notice that we can create multi-
ple iterators for a single index, as createIter requires only
fractional permission for each key.

The two specifications for next handle the case where
the client has not yet seen all key-value pairs in the iterator
(in which case, a pair is returned non-deterministically), and
when it has (in which case, nil is returned for both the key
and value). Destroying an iterator liberates all of the index
predicates that have not been returned by next, including
the outger predicates.

Example: a more powerful map. In §3.1] we verified
rangeMap, an algorithm that mapped all values in an in-
dex from a given key range through a function, replacing
the values with the result. Using an iterator, we can define a
concurrent map that does not require a key range, and works
over all entries in an index. To avoid having to reason about
function pointers, we assume the particular function f is
baked into the algorithm source.

map_£f (h) { map_worker (it, h) {
it := createlter(h); (k,v) := next(it);
map_worker (it, h); if (k # nil) {
destroyIter(it); ( remove(h, k);
} insert(h, k, £(v));)
|| map_worker(it, h);
}
}

A proof of map_f is given in Figure 8]

Example: website caching. Our specification does not re-
strict the type of value that can be stored in an index. If
we store pointers to other indexes, we can create an n-
dimensional index. If we view indexes as tables, we can in-
terpret such an index structure as a rudimentary database.
Such structures, sometimes called ‘NOSQL’ databases, have
recently become popular [22]]. Compared to standard SQL-
based databases, they trade robustness for speed and concep-
tual simplicity. NOSQL databases are often used by large
websites for caching queries to their more traditional SQL-
style back-end database. Our iterator specification allows us
to verify a simple NOSQL-style cache.

{® (r,0)es inaer (B, k,0)1 % Bgieys(s) OUtaer (b, k)1 }
map_f(h) {
it := createlter(h);

{iter(it7 h, S, keys(.9), 1)}

map_worker (it, h);

{iter(it,h, 0, keys(S), 1) * @ (4 ,ycs inder (b, &, f(v))1}

destroyIter(it);
}
{@(k,v)gs indef(h7 k7 f(U))l * @kgkeys(s) OUtdef(h7 k)l}

{iter(it,h, S, K, 1)}
map_worker (it, h) {
(k, v) := next(it);
(k,v) € S Aiter(it,h, S\ {(k,v)}, K, 1) * ingef (b, k, v)
Viter(it,h, 0, K,1) Ak = nil A v = nil
if (x # ni) {
{(x,v) € S Aiter(it,h, S\ {(k,v)}, K, 1) * inges (b, k, v) }
(
{indef(h7 k, V)}
remove (h, k); insert(h, k, f(v));
{indef(h7 k,f(V))}
) |
{iter(it,h, S\ (k,v),K,1)}
map_worker(it, h);
{iter(it,h,0, K, 1) * @(k/,v/)eS\(k,v) ingef (b, &', f(v'))1}
}
}

{iter(it7h, 0,K,1) @(k,v)es ingef (h, k, f(v))l}

Figure 8. Sketch-proof for map_f.

Consider a Facebook-like site where users upload and
comment on pictures. Each picture has a unique identifier,
and each user is associated with an index. In a user index
there are two keys: pics, mapping picture identifiers to pic-
ture data and; cmts, mapping pairs of user index identifiers
and picture identifiers to a comment string. An instance of
this database with two users, four pictures and one comment
(from the second user to the first, about picture ID 3) would
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be:

user,: [pics — P, cmts — Cf]
usery: [pics — Py, cmts — Ch)
Py: [1— (data),3 — (data)]

Cli
CQZ

(users, 3) — “Great picture!”
]

A user can add a comment on a picture by making a request
to the web server. We do not model the entire server, but
assume it will eventually invoke a function cmtPic to update
the cache:

[
[
1
Py: |2~ (data),4 — (data)]
[
[

cmtPic(by, on, pID, cmt){
commId := search(on, cmts);
picsId := search(on, pics);
pic := search(picsId, pID);
if (pic # niD{
insert(commId, (by, pID), cmt);
}
return pic # nil;
}
This function retrieves the comments and pictures index
from the user. It then checks to see if the picture is still in the
database and, if so, inserts the comment. Using our specifi-
cation for iterators, we can prove the following specification:

ingef (on, cmts, C'); * ingef(om, pics, P);j
{read(P7 pID) * outins(C, (by, pID), {cmt})k}
cmtPic(by, on, pID, cmt)
ingef (om, cmts, C'); * ingef(om, pics, P); *
read(P, pID) * ((ﬂret A Ol.Jtins(C7 (by, pID), {cmt})k))
V (ret A inins(C, (by, pID), {cmt})x)

Users may want to delete embarrassing pictures that they
have uploaded by accident. We can define a deletePic
function as follows:

deletePic(on, pID) {

commId := search(on, cmts);
picsId := search(on, pics);
remove (picsId, pID);

it := createlter(commId);

(k, v) := next(it);
while (k # nil) {
(o, p) = k;
if (p = pID){
remove (commId, k);

}

(k, v) := next(it);
}
destroyIter(it);
}

To ensure user privacy, our web site should make strong
guarantees that once deletion is requested, both the picture
and the comments pertaining to the picture are destroyed.
We can prove the following specification for deletePic:

{indef(on7 cmts, C); * indef(on, pics, P); * inger (P, pID)l}
* @(k,v)és in(C7 k7 ,U)l * ®k€keys(s) OUt(C’ k)l
deletePic(on, pID)

ingef (on, cmts, C'); * ingef (on, pics, P); * outqer (P, pID)1

* ®(k,1))65\5’ indef(C7 k7 U)l * ®kz€keys(5\5') OUtdef(C7 k)l

A8 = (K0 )|’ = pID}

In isolation, both of these functions perform their functions
correctly. However, our specifications reveal a defect. We
may have a situation where a user is attempting to delete
a picture, whilst another user is adding a comment:

cmtPic(p2,p1,3,c) || deletePic(pl,3)
The appropriate precondition for this case is the following:

{indef(plv cmts, C) * indef(plvpicsap) * indef(P; 3)1 }
* @ (k,0)e5 INdef (C, b, )1 % @ pgreys(s) Outaer (C, k)1

To ensure the correct behaviour of deletePic, we must give
the deletion thread sufficient permissions to ensure any key
representing a comment on picture 3 is removed. This is re-
flected in the pre-condition as the iterated conjunction of full
permission inges and outges predicates for every key. How-
ever, the comment insertion thread requires a least a frac-
tional out;,s predicate for one key of the comments index.
We cannot split the index resource to prove the parallel com-
position of the two procedures. The two processes are not
thread-safe with respect to each other.

Revised caching. We can correct this problem with a lock,
enforcing mutual exclusion on the comments table. How-
ever, this goes against the ethos of a cache, where speed of
access is critical. Instead, we redesign the index structure
so that rather than picture identifiers mapping to just pic-
tures, they map to a picture along with comments about it.
Deleting a picture now implicitly removes the comments as-
sociated with it; if a comment thread accesses this resource
concurrently no harm occurs, as it has become disassociated
from the picture and will eventually fall out of the cache.
The revised code for deletePic and cmtPic is as follows:

deletePic2(on,pID){ cmtPic2(by,on,pID,cmt){
picsId:=search(on,pics); picsId:=search(on,pics);
remove (picsId,pID); pic:=search(picsId,pID);
} if (pic#nil){
insert(pic,by,cmt);
}
return pic#nil;

}

We can prove the following specifications for the revised
functions:

2011/5/18



{inger(on, pics, P); x inrem (P, pID, C); }
deletePic2(on, pID)
{ingef(om, pics, P); * outrem (P, pID); }

{indef(on,pics, P); * inrem (P, pID, C’)]}
* outins (C, by, {cmt })
cmtPic2(by, on, pID, cmt)
ingef(om, pics, P); * inrem (P, pID, C);
. ((—\ret A outins(C, by, {cmt})k))
V (ret A inins(C, by, {cmt })r)
The new deletePic, even when run in parallel with the
new cmtPic, can successfully acquire the needed resource
to remove the comments without requiring locks.

6. Verifying Index Implementations

In this section we verify three quite different concurrent in-
dex implementations against our abstract specification. Note
that proving implementations is an obligation on the writer
of the module — clients can reason using our specification
without any knowledge of such proofs. We first introduce a
simple list-based implementation and use it to develop our
approach. We then prove a hash-table implementation satis-
fies our full specification. Finally, we show that our approach
scales to quite complex implementations by outlining our
proof of the BL"* tree algorithm.

Approach: Concurrent Abstract Predicates. 'We use con-
current abstract predicates (CAP) [6]] to prove that index im-
plementations satisfy our specification. This approach ex-
tends separation logic with both explicit reasoning about
sharing within modules, and a powerful abstraction mech-
anism that can hide sharing from clients.

Sharing between threads is represented in CAP by shared
regions, denoted by boxed assertions, ; The assertion
P denotes the contents of the region, r is the name of the
region, and [ is an environment specifying what mutations
threads can perform on P. Assertions on shared regions
behave additively under *, that is:

T T A r
I * 1 = 1
A shared region can be mutated by other threads, meaning
that assertions about shared regions must be stable — invari-
ant under other threads’ interference.

Often, different threads can perform different operations
over a shared resource — for example, they may be able
to mutate different keys in a shared index. To represent
this, CAP introduces capabilities. These are resources giv-
ing a thread the ability to perform particular operations.
Threads can hold both non-exclusive and exclusive capabil-
ities. When an exclusive capability is held, no other thread
can perform the associated operation.

Shared regions and capabilities can be abstracted using
predicates in the manner described in §2| Each predicate rep-
resents both some information about a shared region, and

search(h, k) { remove(h, k) {

lock(h.1k); lock(h.1k);
e := h.nxt; e := h.nxt;
while (e # nil) { prev := h;

if (e.key = k) {
unlock(h.1k);

while (e # nil) {
if(e.key = k) {

return e.val; prev.nxt := e.nxt;
} disposeNode(e) ;
e := e.nxt; unlock(h.1lk);
} return;
unlock(h.1lk); }
return nil; prev = e;
} e := e.nxt;
}
insert(h, k, v) { unlock(h.1lk);
lock(h.1k); }
e := h.nxt;

while (e # nil) {
if (e.key = k) {
unlock(h.1k);
return;
}
e := e.nxt;
}
e := makeNode(k,v,h.nxt);
h.nxt = e;
unlock(h.1lk);
}

Figure 9. Linked list operations.

some ability held by the thread to modify the shared re-
gion. If the combination of capabilities held ensures that the
shared assertion is invariant, then stability need not be con-
sidered by clients, and the predicate can be treated abstractly.

In the discussion below, we assume the proof system and
semantics given in [6], and only give details necessary for
understanding the proof structure. The interested reader is
referred to [6] for other technical details, including a proof
of soundness for the CAP logic.

6.1 Linked List Implementation

To illustrate our approach, we first consider a simple index
implementation: a linked list with a single lock protecting
the entire lisﬂ The code for this implementation is given
in Figure [0 In order to simplify the presentation, in this
section we only consider the simplified specification from
Some additional measures are required to handle the full
specification given in 4] which we take in §6.3]to verify the
BEk tree implementation against the full specification.
Before performing any operation on the list, the thread
first acquires the lock. The search operation traverses the
list checking if an element matches the keys; if so, it returns
the corresponding value. The insert operation is similar

2 This example is quite similar to the coarse-grained set example from [6].
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to search. However, if it cannot find the key, it creates a
new node and adds it to the head of the list. The remove
operation searches for the key to be removed. When it finds
it, it updates the previous node in the list to point to the
following node. The node having been thus removed from
the list, is then deleted.

Interpretation of abstract predicates. In order to prove
that the operations of the implementation are correct with
respect to our specification, we first give concrete interpreta-
tions to the abstract predicates.

We begin by defining a predicate Is(a, S), corresponding
to list with first element « and key-value elements S.

node(a, k,v,n) = akeyr— kxa.val — v * a.nxt —n

1>

Iseg(a, b, S) Ik, v,n. (k,v) € SA
node(a, k,v,n) *Is(n, S\ (k,v))

V(ia=bAS=0)
Is(a, S) £ Iseg(a, nil, S)

Using the Is predicate, we can give a concrete interpretation
to our index predicates for the linked list implementation of
an index. For example, we give the following definition for
the in(h, k, v) predicate:

in(h, k,v) 2 3,1, 8. (k,v) € SA
[lock(h.1k, 7, k) * hnxt v [ % Is(l, S) \;(T "
* [LOCK(k)]]

(out(h, k,v) is defined analogously by replacing € with ¢.)

Here the assertion surrounded by a box describes the
region r shared between all the threads that can access the
list. The boxed assertion says that region r contains a lock at
h.1k (we define the predicate lock below) and a dummy next
pointer h.nxt, pointing to the main list — this is needed for
in-place node removal. The set representing the content of
the list is existentially quantified. However, we require that
(k,v) is a member of the set.

The parts of the assertion not contained in a box are
thread-local, meaning they are accessible to only the current
thread. In the case of in(h, k, v) the local state contains the
capability [LOCK(k)]7. This says that the current thread is
allowed to acquire the lock, and to subsequently add or
remove the key k£ from the list. The superscript r denotes
that the capability is over region 7, while the subscript 1
denotes that this is an exclusive capability. No other thread
can perform this operation.

We define the predicate lock(x, r, k) as follows:

lock(z, 7, k) 2 2 0% @i ckeys- [MOD(4)]] V
x> 1 3] 7é k. ®i€Keys\{j}[MOD(i)H

This predicate contains a shared lock bit and a collection of
capabilities. Each capability [MOD(k)]7 controls the ability

to add or remove a particular key k from the shared list in
region 7. Intuitively, if the lock is held, one of the capabilities
is in use by some thread. If not, all the capabilities are
present.

Describing Interference. The meaning of the capabilities
[Lock(k)]; and [MOD(k)]] is controlled by an interference
environment. This defines the possible state mutations that
can occur over a given shared region. The environment de-
fines the meaning of capabilities in terms of actions, written
P ~~ Q. When a thread holds a capability mapped to an ac-
tion (P ~~ @), it is permitted to replace a part of the region
matching P with a part matching Q.

For the linked list implementation, the interference envi-
ronment I(r, h) is defined as follows:

h.nxt — U x1s(l,S) Ak ¢ keys(S)
~ haxt = U xIs(l', SU{(k,v)})

h.aoxt — [ x1s(l,.5)
~ haxt = U xls(l’', S\ {(k,v)})

Mob(k):

h.lk — 0% [MoD(k)]] ~ hlk—1
h.lk — 0% [MoD(k)]}

Lock(k): {

hlk+—1 ~

The definition of MOD(k) says that a thread holding a capa-
bility [MOD(k)]} is allowed to replace the list with one with
k added to or removed from the carrier set S. The definition
of LOCK(k) says that the thread is allowed to set or unset
the lock bit. Recall that actions replace part of the shared
state, so the definition of LOCK(k) also says that a thread
acquiring the lock also acquires the capability [MOD(k)]7,
and that when releasing the lock it must give up the capabil-
ity [MoD(k)]7. In this way, acquiring the lock gives a thread
the ability to modify the contents of the list.

Verifying the operations. Once we have given concrete
definitions to the index predicates, we can verify that the
module’s implementations of add, remove and search
match our high-level specification. Figure shows one
such proof, establishing that the implementation of insert
matches the following abstract specification:

{out(h,k)} insert(h,k,v) {in(hk,v)}

We write — to indicate an unknown, existentially quantified
value. Mutations of the shared state require that the thread
holds a capability permitting the mutation. These points in
insert are annotated by program comments. For example,
towards the end of insert, the assignment h.nxt:=e as-
signs to the shared location h.nxt. This mutation is allowed
because the thread holds the capability [MOD(k)]7. The def-
inition of the capability also generates the obligation that
h.nxt points to a list containing the same set of key-value
pairs, apart from k. This ensures that the assertions in the
proof are stable under interference from the environment. In
fact, once the list is locked we know that there can be no
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{out(h,k)}

insert(h, k, v) {

Ir i, S (k,—) ¢ SA

r

lock(h.1k, 7, k) * hanxt — L xIs(l, ) || -

1

* [LOCK(k)]T
ock(h.1k); // use the capability [LOCK(k)]T.
Ir i, S.(k,—) ¢ SA

h.lk — 1% ®ieKeys\{k} [MOD(’L)]{
*haxt — [ x1s(l,.5)

I(r,h)

e

* [MoD(k)]7 * [LOCK(k)]T
:= h.nxt;

while (e # nil) {

}

I 1S, K v n. (&, —) € SA
h1k — 1% @, cxepe (1 MOD(i)]7 # honxt > % |
Iseg(l, e, S1) x node(e, k', v’,n) * Is(n, S2)
AS1WSa W {(k v)} =S

if (e.key = k) {

{false} // this branch is for k in the set
unlock(h.1k);

return;

:= e.nxt;

}
e
{Hr,l,s. (k,—) ¢ SA

h.lk — 1% @iEKeys\{k} [MoD(7)]] * h.nxt +— [ * "
Iseg(l,e,S1) xIs(e, S2) AS1 WSy =5

* [MoD(k)]T * [LocK(k)]]

I,0,8. (k,—) ¢ S A

B1k 5 1% B ckeye 1y MOD(4)]] * hnxt 5 1]
x1s(l, S)

I(r,h)

e

* [MoD(k)]T * [Lock(k)]}
:= makeNode (k,v,h.nxt);
Ir i, S.(k,—) ¢ SA

h1k — 1% @ ckeps (1 MOD(3)]] * hnxt — 1]
#Is(,S) ], h)

* node(e, k, v, 1) * [MoD(k)]] * [LocK(k)]] (

h.nxt := e; // use the capability [MoD(k)]T.

Ir,1,8. (k,—) ¢ S A

Bk — 1% ®;cxee 1) [MOD(i)]] * hnxt > e
* node(e, k,v,1) xIs(l, S)

I(r,h)

unlock(h.1k); // use the capability [LOCK(k)]T.

* [MoD(k)]T * [LoCcK(k)]T

I i, S. (k,v) € SA

’ lock(h.1k,r, k) *« h.nxt — [ % Is(l, .S)

T

}

‘I(r,h)
* [LoCK (k)]T

{in(h,k,v)}

I(r,h)
* [MoD(k)]7T * [LoCcK(k)]]

I(r,h)

Figure 10. Proof outline for linked list insert.

interference from other threads, as we know all other MOD
capabilities are held by the lock.

Verifying the axioms. As well as proving the specifica-
tions for the operations, our other obligation in establishing
that implementation satisfies the axioms of the abstract spec-
ification. To do this, we use the concrete definitions for the
abstract predicates. To illustrate this, we will prove the fol-
lowing axiom from the disjoint specification:

in(h, k,v) * out(h, k) = false

If we expand the predicate definitions on the left-hand side
of this implication, we end up with the following assertion:

Ir, 1, S. (k,v) € S A[LOCK(k)]] *
[lock(h.1k, 7, k) * honxt — L xIs(1, S) \:(r ¥
I,1,8. (k,—) & S A [Lock(k)]; * ’

[lock(h.1k, 7, k)  h.nxt — Lx1Is(1, S) |

I(r,h)

The memory location h.nxt cannot belong to more than
one region at once, so we can infer that both existentially-
quantified rs must refer to the same shared region. The ca-
pability [LocK (k)]7 is exclusive, denoted by the 1 subscript.
Consequently:

[Lock(k)]] * [LOCK(k)]] = false
This establishes that the axiom holds.

6.2 Hash Table Implementation

We now consider a second index implementation: a hash
table. The hash table algorithm consists of a fixed-size array
and a hashing function mapping from keys to offsets in the
array. Each element of the array is a pointer to a secondary
index storing the key-value pairs that hash to the associated
array offset.

Secondary indexes are often implemented as linked lists,
but in fact any kind of index implementation can be used.
In this section, we assume that secondary indexes are imple-
mented by some module matching our abstract specification,
but do not specify which. (To avoid confusion, we rename
the methods of the secondary index to search’, insert’
and remove’.) We then show that the resulting hash-table
module also matches our abstract specification. That is, we
show that we can build a concurrent index using a (different)
concurrent index module.

The hash table implementations of search, insert and
remove are given in Figure [I2] This code assumes a pure
hashing function hash(k) which takes a key k and returns
an integer between 0 and max — 1, where max is the size of
the hash table array.

Interpretation of abstract predicates. All of our index
predicates — inj,s, OUtins, iNrem, and so on — consist of a shared
region containing a hash table pointer, and a local predicate
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search(h, k) { remove(h, k) {

w := hash(k); w := hash(k);
a := [h+w]; a := [h+w];
return (search’(a, k)); remove’ (a, k);
} }
insert(h, k, v) {
w := hash(k);
a := [h+w];
insert’(a, k, v);

}

Figure 11. Hash table operations.

{indef (h, k, 1))1' }
search(h, k) {

{El'r, h'.’ (h + hash(k)) — A’ * true ‘T * ingef (B, X, v)z}

w := hash(k);
a := [h+w];

{37».‘ (h + hash(k)) — a* true ‘T' * ingef (a, k,v)i}

return (search’(a, k)); // search specification.

{Hr, h’.‘ h + hash(k) — b’ * true ‘T s ingef (', k&, v); A ret = 1)}

}
{indef(h, k,v); Aret = v}

Figure 12. Proof outline for hash-table search.

representing the associated secondary index. Picking an ar-
bitrary example, we define the predicate inyem(h, k,v); as
follows:

Nem(hykyv); = 3,k .[h+ hash(k) — A x true "
% invem (1, K, 0);

(The definitions of the other predicates have exactly the same
form. Only the predicate pertaining to the secondary index
changes.)

The shared region contains a pointer from h 4 hash(k) to
the address of the secondary index, h’. The rest of the hash
table array also belongs to the shared region; it is represented
in the assertion by true. The array of pointers representing
the hash table is read only, so the interference environment
for the shared region is empty.

The secondary index is represented by the predicate
inrem(h’, k,v);. Note that this definition hides completely
the implementation of the secondary index. The hash table
simply knows that this element of the index can be queried
according to the abstract specifications. State mutations on
the secondary index are already captured by the predicate
representing it, meaning that they need not be considered
when verifying the hash table implementation.

A sketch-proof for the hash table implementation of
search is given in Figure Notice that this proof ap-
peals to the specification of search when retrieving a value
from the appropriate secondary index.

6.3 B Tree Implementation

Our final index implementation is a BY“"* tree algorithm,
based on Sagiv [18]. Search operations run on a BX"* tree
are lock-free, and insert and remove operations lock only
one node (or two if they are modifying the root node), mak-
ing this a highly concurrent implementation of an index. This
index algorithm is much more complex than the list or hash
table, and is therefore considerably more challenging to ver-
ify.

A B tree is a balanced search tree. An example is
shown in Figure Each node in the tree contains an or-
dered list of key-value pairs, which at the leaves form the
index represented by the tree. Non-leaf nodes map keys to
pointers to the node’s children. In addition, the final pointer
in each node’s list, the link pointer, points to the next node at
that level (if it exists). The tree is accessed through a prime
block which holds pointers to the first node at each level in
the tree.

This structure ensures that every key-value pair stored in
the tree can be reached by traversing from the leftmost node
at any level of the tree. If the value cannot be found by fol-
lowing a pointer down the tree, it can be found by following
the link pointer. This is important because insertion opera-
tions can create new nodes that can only be reached via the
link pointers until the higher levels of the tree are later re-
paired by the operation.

The B implementations of the index operations are too
lengthy to go into in detail here — details can be found in [4]].
In verifying the algorithm we discovered two subtle bugs
(see end of section for details).

Interpretation of abstract predicates. All of our index
predicates are defined as a shared region containing a BL"
tree and a collection of shared capabilities, as well as
some thread-local capabilities. For example, the predicate
ingef (R, k, v) is defined as follows:

A T
= 3r.|Be(hyk,v) Irih) * [LOCK]ZW-)

* [SWAP]ZM) * [REM(O0, k)}(d,i)

* ®evais INS(0, &, 0)]7, ;)

indef(ha ka U)i

The shared assertion B¢ (h, k,v) denotes a B/ tree at ad-
dress h containing the key-value pair (k,v). It is defined as
follows:

Y

Be(h, k,v) 3AD. BLTree(h, D) * —=3x. QisNode(z, 1)

A(k,v) € D A Tokens(h)

The thread-local assertions in inges consists of capabilities
associated with the current thread. The [LOCK], ;) capa-
bility says that the current thread is allowed to lock nodes
in the region 7. The [SWAP}fg}i) capability allows the the
predicate to be modified to represent different behaviour
when ¢ = 1 (for example, by converting to injem or unk).

The [REM(0, k)]{, ;) capability says that neither the current
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Figure 13. A BL"F tree.

thread, nor any other thread, is allowed to remove the key k
from the BX™ tree in region r. However, if i = 1, then the
current thread has the exclusive capability to remove key k
from the tree. The [INS(0, &, v)]{, ;) capabilities are similar
for insertion of a value v into the tree at key k.

In the definition of ingef, notice that capabilities have sub-
scripts which are not values in the interval [0..1]. Rather, we
have permissions 1, 0, and two non-exclusive permissions
(d,i) and (g,7) (where ¢ € (0..1)). We call the former a deny
and the latter a guarantee. A deny means that the thread can-
not perform the action allowed by the capability, but also that
no other thread can perform it either. Conversely, the guar-
antee means that the thread can perform the action, but so
can other threads. Deny-guarantee permissions form a lat-
tice with (d,1) = 1 = (g,1), (d,%) + (d,5) = (d,i + 7),
and (g,7) + (g,j) = (g,i+ 7). However, there is no relation
between (d,¢) and a (g, i) for i # 1. (For further details, see
Dodds et al. [[7].)

We define other index predicates in a similar way to inges.
For example, the definition of the inem(h, k,v); predicate
will include a REM capability for k£ with permission (g, ),
so that any thread may remove the key from the tree, as well
as all INS capabilities for k with permission (d, 7), so that no
thread may insert values for the key into the tree. We give
the full definitions of the predicates in Appendix [A]

Describing Interference. The interference environment,
I(r, h), for the BL" tree implementation is markedly more
complex than for the list or hash table. It involves a sub-
stantial amount of capability swapping to track changes to
the shared state and to thread behaviour. Figure [14] gives a
few examples of definitions in the interference environment.
These definitions can be read as follows:

® LOCK allows a thread to lock a node in the B tree.
When locking, the thread acquires the exclusive capabil-
ity [UNLOCK(x)]7, allowing it to unlock the node again.

® REM(t, k) allows a thread to give up [REM(t7k;)]7("g N
and [UNLOCK(7)]} and acquire the exclusive capability

[MODLR(t, z, k,4)]]. This means that a thread which is
allowed to remove the key k from the tree and holds the

lock on a node x can acquire the right to remove the
key k from the leaf node = (the value ¢ is used to track
capability transfer in some environments).

e MODLR(t, z, k, ) allows a thread to remove a key-value
pair (k, —) from a leaf node. In doing so the thread gives
up the capability [MODLR(¢, x, k, ¢)]7 and reacquires the
capability [UNLOCK(x)]7, and, if ¢ = 0, the capability

[REM(K)]{, ;-

We give the full interference environment for the B tree
implementation in Appendix

Note that both [Rem/(0, k)]{, ;) and [Rem(1, k)], ;) ca-
pabilities allow a thread to remove the key k; however, the
latter requires the thread to leave a [Rem(1, k)]{, ;) capa-
bility behind in the shared state when it does so. This is
used to implement the in.p, predicate: if none of the threads
with in,em (K, v) predicates remove k then between them they
must still be able to produce the full [Rem(1, k)]] capabil-
ity, proving that none of them did so. Thus the in,em(k, v)1
can be converted to inges (K, v).

Verifying the operations. We give a sketch proof in Fig-
ure |15} showing that the B“"* tree implementation of search
matches the following specification:

{indef(h,k, U)L} r := search(h, k) {indef(h, k,v); Ax =

’U}

The search operation only mutates thread-local state, so
the thread does not require capabilities to perform actions.
However, by owning deny permissions (d, 7) on all the REM
and INS capabilities for key k, the thread can establish that
no other thread can modify the value associated with k.
Thus, the assertion that the key-value pair (k, v) is contained
in the BX" is stable.
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Lock :

REM(t,k) :  [MODLR(t, z, k,4)]] ~

x> leaf (1, ko, D, k', p’) * [UNLOCK ()]}
* ([REM(t,k)]fg_’i) At=0VempAt= 1> ~

MODLR(t, z, k, 1) :
A(k,—)eD

x + node(0, ko, p, D, k', p’) *x [UNLOCK(2)]]  ~

x + node(1, ko, p, D, k', p)

[REM(Z, K)]{, ;) * [UNLOCK ()]

T = |eaf(1, ko, D/7 ]g/’p/)
* [MODLR (¢, x, k, 1)}
AD=D"d(k,—)

Figure 14. Example actions from the BX"¥ tree interference environment.

The proof uses the predicate niceNode(N, k, v, r, h), de-
fined as follows:

niceNode(N, k,v,r, h) 2
E"I’, k07p07 D7 kl7pl'

k' =400V A
’p/ — node(—7 kly Ty Ty Ty _) * true ‘I(r,h)
N = inner(—, ko, po, D, k', p") AV(k,v) € D.
’p — node(*, k'; Ty Ty T 7) * true ‘;(r h)

y N = leaf(—, ko, D, k', p’) A
(ko <k <k = (k,v) € D)

(Here leaf and inner are predicates representing leaf and non-
leaf nodes respectively. node is defined as their disjunction.)

The definition of niceNode asserts that the node descrip-
tor IV contains legitimate information about the tree. If N is
anon-leaf (or inner) node, then the children and link pointers
of N must all point to extant nodes in the tree, which have
the minimum values specified by NV — this ensures that fol-
lowing a pointer reaches an appropriate node. If N is a leaf
node into whose range the key k falls, then the key-value
pair (k, v) must be stored in NV — this ensures that the search
will return the correct value.

Assertions in the proof must be stable — that is, invari-
ant under interference from other threads. The stability of
niceNode is ensured by the fact that the capabilities held by
the thread do not allow nodes to be removed, the minimum
values of nodes to change, or key k to be changed.

A bug in the BY" algorithm. While verifying the algo-
rithm, we discovered a subtle bug in the original presen-
tation [[18]. The bug can occur during an insert, when a
thread splits a tree node which itself was the result of another
thread splitting the tree root. In order to insert the new node
into the tree, the first thread will look in the primeblock for
the node’s parent. However, the second thread might not yet
have written a pointer to the new root, resulting in an invalid
dereference. Our solution was to require that a thread split-
ting the current the root locks the new node. A thread trying
to insert must wait until the creation of the root is complete.

{ingef (h, k, v); }
search(h, k) {

{;(T’h) % [LOCK](, ;) * [SWAP][, ;) * [REM(O,k)]{’d’i)}
* @UE\/BB[INS(O, k, U)H‘d,i)
PB := getPrimeBlock(h);
current := root(PB);
N := get(current);
Be(h, k, v) ;(M) # [LOCK][, ;) * [SWAP][, ;) * [REM(0,k)]7, ;)
* @UE\,alS[INS(O,k,v)]{‘d’,,-,) + niceNode(N, k, v, 7, h)
AN = node(—, ko, p, D, k', p’) A ko = —oc0
while(isLeaf(N) = false) {
current := next(N, k);

N := get(current);

}

;(r,h) % [LOCK]{, ;) * [SWAP][, ;) * [REM(0,K)]{, ;)
* ®uev3|s[INS(0:kav)]@ﬂ;) + niceNode(N, k, v, 7, h)
AN = leaf(—, ko, D,k',p") ANko <k
while(k > highValue(N)) {
current := next(N, k);
N := get(current);

}

I(nh) * [LOCK]{, ;) * [SWAP]{, ;) * [REM(0,k)]{, .
* @, cvais[INS(0, k, v)]{a,:) * niceNode(N, k, v, 7, h)
AN = leaf(—, k', D, k", ") Nk <k < k"

if (isIn(N, k)) {

;(r,h) % [LOCK](, ;) * [SWAP][, ;) * [REM(0,K)]{, ;)
* @)ve\,als[INs(O7 k,v)](4,q) * niceNode(N, k, v, 7, h)
AN = leaf(—, k', D, k", =) A (k,v) € D
return( lookup(N, k) );
} else {

{false}

return null;

}
{;mh) # [LOCK](, ;) * [SWAP][, ;) * [REM(O,k)]{dﬂ-)}
s @ pevais[INS (0, k, V)|{a, Aret = v
}
{indef(h, k,v); Aret = v}

Figure 15. Proof outline for B/ tree search.
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7. Conclusions

We have proposed a simple yet flexible specification for rea-
soning about concurrent indexes in the manner of concurrent
separation logic [[14]. We have shown how this specification
can be used to verify a range of client applications, ranging
from common programming patterns such as memoization
and map, to algorithms such as a prime number sieve. These
examples demonstrate the utility of our specification.

To demonstrate the relevance of our index specification,
we have shown that it is satisfied by three radically differ-
ent implementations: a simple linked-list, a hash table and
Sagiv’s complex and highly concurrent B tree. We used
concurrent abstract predicates (CAP) [6] to support highly-
disjoint abstractions for implementations that involve a great
deal of sharing under the hood. Any approach to reasoning
about concurrent programs in a compositional fashion will
naturally require some form of abstraction; our work vali-
dates the CAP approach to the problem.

Relationship to linearizability. Linearizability [9] is the
current de-facto correctness criterion for concurrent algo-
rithms. It requires that the methods of concurrent objects
behave as atomic operations, thus providing a proof tech-
nique for observational refinement [8]. We could employ lin-
earizability, or other atomicity refinement techniques such
as [20], as a proof technique for verifying that implementa-
tions meet our abstract specification: an implementation that
meets the sequential specification of an index and whose
operations behave atomically can easily be shown to meet
the concurrent specification. However, this simply shifts the
proof burden; our approach is able to verify clients and im-
plementations in a single coherent proof system.

While linearizability assures that index operations behave
atomically, our abstract specification makes no such guaran-
tee. Instead, our client proofs enforce abstract constraints on
the possible interactions between threads, such as only al-
lowing removals on a certain key. Consequently, while all
linearizable indexes can be shown to implement our speci-
fication, our specification also admits implementations that
are not linearizable. For instance, an index that implemented
removal by performing the operation twice in succession
could meet our specification, but would not be linearizable.
Our approach could therefore be seen as an alternative cor-
rectness criterion.

Future work. Our correctness proof for the BX* tree im-
plementation is at the limit of what can be achieved by hand.
We found a bug in Sagiv’s presentation, but our proof is so
complex that it would be hubristic to claim to have made no
mistakes ourselves. In order establish certainty and to scale
our approach to real-world applications we plan to develop
tools for automatically checking and generating proofs.
Tools based on separation logic can now verify hundreds
of thousands of lines of sequential code [3]]. In contrast, ver-
ification tools for concurrency have, up to now, lacked scal-

ability, in part due to a lack of modularly in the underlying
reasoning. We have demonstrated that our approach supports
strongly modular reasoning, in the sense that implementa-
tion details are completely hidden from the client’s view.
This abstraction mechanism offers the possibility of build-
ing truly scalable tools for verifying concurrent programs.
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A. B Tree Implementation Details

In this appendix we provide an in depth discussion of our
BEk tree index implementation, based on Sagiv’s BTree al-
gorithms, and how this implementation satisfies our abstract
specification. We give concrete interpretations to each of our
abstract predicates and define the interference environment
for the BL* tree. Together these allow us to prove the cor-
rectness of our implementation.

BLi"k Tree Data Structure

To begin the verification of our B/ tree implementation,
we first define a series of predicates representing the con-
crete BL"* tree data structure. There are two types of node
in a BY" tree: leaf nodes and inner nodes. Leaf nodes are
at the fringe of the structure and contain the key-value pairs
from the abstract interface. Inner nodes make up the rest of
the tree and contain key-pointer pairs that provide the search
structure of the tree. We assume two basic predicates for rep-
resenting these nodes in the tree: a leaf predicate, and an in-
ner predicate.

x v+ leaf(l, ko, D, k',p") x> inner(l, ko,p, D, k', p’)

Here, x is the address of the node. The value [ is the node’s
lock. If the node is unlocked then [ = 0 and if the node
is locked then | = 1. The ordered list D contains the key-
value pairs (k, v) represented by the node. In each node the
list D may contain up to 2K key-value pairs for some fixed
constant K given by the implementation (K is often chosen
so that a node fills a single page in memory). The values
ko and k" are the lower and upper bound, respectively, on
the keys contained in this list. So, for every key-value pair
(k,v) € D we have kg < k < k’. The pointer p (only
present in an inner node) points to the subtree which contains
all of the keys which are greater than the minimum value of
this node. The pointer p’, known as the link pointer, points
to the node’s right sibling, if it exists.

We define some additional notation for handling lists. We
require a notion of iterated concatenation which we denote

Ui, D; =Dy :: Dy :: ...D,,.

We also require an insertion operation D W (k, v) which adds
the key-value pair (k, v) to the ordered list D in the correct
place,

Dy (k,v) = Dy :: (k,v) :: Do

where D = Dy :: Dy and Dy = Dj :: (ky,v1) and Dy =
(ko,v9) :: Dj and k1 < k < ko (undefined otherwise).

A BLink tree is a superimposed structure made up of both
a tree and several layers of linked lists. At the leaf level the
linked list contains pointers to data entries, while at other
levels the linked list contains pointers to nodes deeper in
the tree structure. These linked lists always have at least one
element, the first node has minimum value —oo and the last
node has maximum value +oo. Each node in these linked
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lists is disjoint, so we can use a separation logic predicate
to define this structure precisely. Given ordered key-value
list 7" and D, which contain the key-value pairs that point
into the current level of the tree and the key-value pairs
contained in the current level of the tree respectively, we can
define the linked list structure for a layer of the B tree.
Let T = [(k1,v1), ..., (kn, vp)] then,

leafList(T, D) £ 3Dy, ..., D,,.
®?;11 Vi > Ieaf(—, k‘i, Di, ki+1, Ui—i—l)
* vy, > leaf(—, ky,, Dy, +00, nil)
ANky=—-c0oAn>0AD =D

innerList(T, D) £ 3Dy, ..., D,,.

n—1 .
@, vi > inner(—, ki, v}, Dy, kiy1,vi41)

* Uy, — inner(—, ky, vl Dy, 400, nil)
ANki=—00An>0
/\D:UZLZI( i, U z)UD

We choose not to define the tree structure directly, as at some
points in time the tree structure of the B/¥ tree can actually
be broken by the insert operation. When the insert oper-
ation creates a new node in the tree, it is added to the linked
list structure before it is given a reference in the layer above.
If the search operation did not use the link pointers as well
as the tree pointers, it would not be able to find this new
node at this point in time. To capture this behaviour we in-
stead choose to build up our tree predicate by layering our
lists on top of one another. Using our linked list predicates,
we can build up a predicate for the tree-like structure of the
BLink tree.

T,D) £ Jp. leafList(z :: T, D)

Btree, (PB, x ::

© PB,x :: T,D) 2 3L, L' innerList(z :: T, L)
* Btree,, (PB, L', D)
ANz =(—oco,p) NLC L

Btree,,+1(p

The prime block PB contains a list of pointers to the leftmost
node at each level of the tree. The key-value list D is the
concatenation of all key-value pairs at the fringe of the tree
and corresponds to our abstract index view of the B tree
structure.

Finally, using these predicates, we can now define a pred-
icate for the complete BL"* tree structure.

BLTree(h, D) 2 3PB,n,T. Btree,(PB, T, D)  h — PB

This describes a BX" tree whose prime block is stored at
address h and contains a set of key-value pairs D. Figure[I3]
shows an example of a B/ tree. The fringe of the tree forms
a leafList that contains all of the key-value pairs mapped to
by the index. Each of the other layers of the tree forms an
innerList that makes up the search structure of the tree. Each
list has minimum value —oo and maximum value oo and the
primeblock points to the head of each layer’s list.
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Interpretation of Abstract Predicates

Now that we have a predicate describing a B/ tree, we can
turn our attention to providing concrete interpretations of our
abstract predicates. In § we introduced the interpretation
of the inger(h, k, v) predicate. Here we go into more detail
about the auxiliary predicates we used in our interpretations,
and then provide the concrete interpretations of the full ab-
stract specification.

First we define a number of predicates which will come
in useful for our later definitions:

oP
isNode(z,1)

true x P

dko, p, D, k'/;p/-

x — node(l, ko, p, D, k', p")
isNode(z, 1)

isNode(z, 0)

3l.isNode(z, 1)

A dp,ps. Oh — p: ps
ANx=p

e >

locked(x)
unlocked(x)
child(h, z)

> e e

V

Fy, ko, vo, D, k.

Oy +— inner(—, ko, vo, D, —, —)

A (k,x) € (ko,vo) :: D

—child(h, z)

Ip, D, k,p', D' h— x: x5

* 2 +— node(1, —oo,p, D, k,y)

* y — node(1, k,p’, D', 0o, nil)

Vi, t, k,v,y,i. isNode(z,1)

/\ O MODLR(t x, k, )]}
MobpLI(t, z, k,v,4)]}

[
ul
O[FIX(k, z)]y
ul
[

orphan(h, x)
dualRoot(h, z,y)

> >

1>

allMods(z)

MODH(:L‘ kE);
/\ OINEWR(z, k, y)]}

Informally, these predicates have the following meanings:

e OP describes a heap where P is satisfied somewhere in
the heap.

e isNode(z, 1) describes a node x in the BX" tree with lock
value [.

* locked () describes a locked node x in the B tree.

* unlocked(z) describes an unlocked node z in the BL"*
tree.

e child(h, x) describes a node  in the BX"* tree at address
h which is either at the root level, or has a parent in the
tree’s search structures; some node in the tree contains a
key-value pair (—, x).

e orphan(h, z) describes a node z in the BE"* tree at ad-
dress i which does not have a parent in the tree’s search
structure; it is not at the root and no node contains a key-
value pair (—, x).
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e dualRoot(h, z,y) describes a B"* tree at address h that
currently has two nodes at its root level (so an insert
operation has just split the root and is about to create a
new one).

¢ allMods(x) describes the set of all modification capabil-
ities, with excusive permission, for node x.

As we saw in §[6.3] our concrete interpretations describe
the shared state with one of the following assertions:

Be(h, k,v) 2 Ip. BLTree(h, D) x =3z, 1. QisNode(x, 1)

A(k,v) € D A Tokens(h)

3AD.BLTree(h, D) * =3z, 1. {isNode(z, )
Nk & keys(D) A Tokens(h)

>

Bg(h, k)

The assertion B¢ (h, k,v) describes a BL"* tree at address
h that contains the key-value pair (k,v). Similarly the as-
sertion B¢ (h, k,v) describes a BL tree at address h where
the key k is unassigned. However, both assertions also de-
scribe an additional part of the shared state. The assertion
=3z, 1. QisNode(x, ) ensures that there are no nodes in this
additional state; it consists only of capabilities. The assertion
Tokens(h) ensures that these capabilities are consistent with
the current state of the BX" tree at address h.

The Tokens(h) predicate is quite complex and is defined
in Figure The predicate describes the capabilities that
are in the shared state on a capability by capability basis
dependent on the current state of the B/ tree. The predicate
is built up of the conjunction of a number of disjuncts.

The first disjunct describes if a node’s [UNLOCK(z)[}
capability is present in the shared state. If x is not a node, or
if z is an unlocked node then the UNLOCK capability must
be present in the shared state. If = is a locked node then this
capability may be missing from the shared state. However,
it is also possible that the thread that has locked the node
may have acquired a MOD capability for that node, that is
it is about to make some change to the node. In this case
the UNLOCK capability will be present in the shared state,
but so will some REM or INS capability. This may appear to
allow some other thread to acquire the UNLOCK capability
for this node, but recall that the node is still locked. We shall
see later, when we define the interference environment, that
a thread may only acquire a nodes UNLOCK capability if that
node is unlocked and in doing so the thread locks the node.

The second and third disjuncts describe if we are in an
action tracking state or not. If ¢ = 0, then we are not tracking
the actions on this key (we are in a def or unk environment)
and all of the REM and INS capabilities for ¢ = 1 must be in
the shared state. If ¢ = 1, then we are tracking the actions on
this key (we are in an ins or rem environment) and all of the
REM and INS capabilities for £ = 0 must be in the shared
state. We shall see later, when we define the interference
environment, that when we are tracking the actions on a
key, threads leave behind some fraction of their REM or
INS capabilities after performing a modification action. This
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allows us to track if a value has been inserted or removed
from a given key value and return to a def state.

The fourth and final disjunct describes which of the mod-
ification capabilities are present in the shared state for each
node in the BE" tree. It is always the case that either all of
the modification capabilities are in the shared state, or one
such capability is missing. If one of the modification capabil-
ities is missing then the node must be locked and the locking
thread must have placed the UNLOCK capability and some
other capability, describing the action it is about to perform
on that node (e.g. REM or INS). This represents a thread that
has locked the node and is about to make some update to
that node. Due to the locking, it is only ever possible for at
most one thread to be in this state, hence why at most one
modification capability is ever missing for any given node.

We define the concrete interpretations of our abstract
predicates in Figure Each case describes the current
state of the shared B tree, as well as which capabilities
are known to be in the shared and thread local state. For
example, the definition of inger (1, k, v); states that the key-
value pair (k,v) must be stored in the tree. Notice that this
definition also gives the thread deny permission (d,¢) on
all REM and INS capabilities for k. When ¢ € (0..1) no
thread is able to modify the value of & in the tree, and when
1 = 1 only the current thread may modify the value of % in
the tree, so this assertion is self-stable. The thread also has
the [LOCK]{, ;) capability, which allows it to lock nodes in
the tree, and the [SWAP](, . capability, which allows it to
change between tracking actions or not (by swapping ¢t = 0
and ¢t = 1 capabilities).

Some of the other definitions make more complicated
assertions about the shared state. Take, for example, the
definition of the inwem(h, k, v); predicate. Recall from our
abstract specification that this predicate states that key k& was
assigned value v, but that any thread can remove this value.
We track which actions have occurred so far by using the
t = 1 capabilities. If a thread removes the value for the key,
then it must leave some [REM(1, k)](, ;) capability in the
shared state. The uncertainty about the current assignment
of k is represented by the disjunction in the shared state. In
the first case no thread has yet removed the key from the
tree, since there is no REM capability for that k in the shared
state. In the second case some thread has just acquired the
modification capability [MODLR(1, z, k, ¢’)]7 allowing it to
remove the key from the tree, but it has yet to perform this
action, so the key is still currently assigned. In the last case
some thread has removed the key from the tree and left part
of its REM capability in the shared state to signify this.

The other predicates are defined in similar ways.

We can now verify that our interpretations satisfy the
axioms from 4| for our abstract specification. For example
we can verify,

iNrem (h, k,v); % outrem(h, k); = oUtrem(h, k)it;
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Tokens(h) 2
Va. ( —3l. QisNode(z, 1) ) ( Qunlocked(z) )\/ ( Olocked () >

A Q[UNLOCK (2)]} A Q[UNLOCK (2)]] A =O[UNLOCK ()]}
Olocked(z) A O[UNLOCK ()]}
% [REM(t, k)]¥ [INS(t, k, v)]"
( Hk’”’”'( A =O[MODLR(t, 2, k, i)} )v< A =OIMODLI(t, 3, k, v, )]} ) )
A
Vk. O[REM(0, k)]7 vV O[REM(L, )]}
A
Yk, v. O[INS(0, &k, v)]5 V O[INS(1, k, v)]}
A
Vz. allMods(z) V 3t, k,i. O[REM(E, k)] A O[UNLOCK(z)]] A ([MODLR(¢, z, k, )]} —+allMods(x))
V3t k,v,4. O[INS(¢, k,v)]T A O[UNLOCK (z )] A ([MODLI(t, z, k, v, 1)]] —+allMods(x))
V 3k, y.orphan(h, z) A O[MoDII(y, k, 2)]] A ([Fix(k, )]} —*aIIMods( )
V 3k, y. orphan(h, y) A O[FIX(k,y)]7 A [UNLOCK(z)]} A ([MODII(z, k, y)]] —*allMods(x))
V 3k, y. dualRoot(h, z,y) A O[UNLOCK(z)]7 A O[UNLOCK(y)]5 A ([NEWR(z, k, y)]] —+allMods(x))

Figure 16. Definition of the Tokens(h) predicate.

inget (1, k, v); 2 3r.[Be(h, k,v) ;(T oy * [LOCKIT, ) [SWAPTT, ;) [REM(0, I)]7 1) * @uevaiINS(0,k, v)]7,
A K T T
outger(h, k); = Ir.|Bg(h, k)| I(rh) * [LOCK]{, ;) * [SWAP, ;) = [REM(0, k)]7, ;) * ®Uev3|s[INS(0,k,v)](d7i)

1>

inins (R, k,.9); Jv e S,ri,i". ’B (h, k,v) AO[INS(L, k, v)]% ;( ) * [LOCK]f, ;) * [SWAP(, ) = [REM(L, K)]7, ;)

* Bpes(INs(1, k 2 0)](gin) * @ ,gs[INS(1, & 0)|(g N =iVl +i" =)

By (h, k) A =O[INS(1, k, )], 41,

outins(h, k,S); 2 Jve S, ri.| V Bez(h k) A O[INS(1, k, v)]7, iy A O[UNLOCK ()]} A ~O[MODLI(L, , k, v,i')]]
Be(h, k,v) A O[INS(1,k,v)]7, ) A O[MODLI(1,z, k, v, )]}

* [LOCK], ) * [SWAP]E@%') # [REM(L, k)] 4 * ®UES[INS(17 ko)

* ®U€S[INS(1, k,v)}?d’i) A ,Z:/ >0

I(r,h)

Be (B k,0) A—=O[REM(L R)[[, , "
inem(h, k,0); 2 3r,i’.| V Be(h, k,v) A O[REM(I, k)](g i1 A O[UNLOCK (2)]] A =O[MODLR(1, 2, k, i')]}
V Bg(h, k) A O[REM(L, k)]7, ;i) A O[MODLR(1, 2, k,i')]} .
* [LOCK]{, ;) * [SWAP]{, ;) [REM(l k)] ) * ®pevais[INS(1, k 0)](gy N >0 7
Utrem (2, k) L ’Bg (h, k) A OIREM(L, )], ;i) . # [LOCK](,, ;) * [SWAP](, ;) * [REM(L, k)]7, ;1)
* @evais[INS(L, b, 0)]7, o A (=i Vil +i7 = i)
unk(h, k, S); 2 3v e S,r.[Be(h, k,v) VBg(h, k) \’"( wy * [LOCK]7, o)+ [SWAPJT, ;) + [REM(0, R)If, ;)
* ®UES[INS(O k ’U)] (9:) * ®v€5[INS(O k ’U)](d 0
read(h, k) = 3v,7.[Be(h,k,v) VBg(h k)]

I(r,h)

Figure 17. Concrete predicate interpretations for the BX"* tree implementation.
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since the assertion on the shared state from the out,e,, pred-
icate collapses the disjunction in the shared state from the
inem predicate into just one matching case, and the thread
local capabilities sum together as expected.

Describing Interference

We model the possible interference on the shared state by an
interference environment I(r, h). The interference environ-
ment is made up of a set of actions that can be performed by
the current thread, and other threads, so long as they posses
sufficient resources and capabilities for the actions.

First, we introduce some additional predicates which will
help us describe the actions in our interference environment.
We have a node predicate for when we want to talk about a
node of arbitrary type (a leaf node or an inner node).

x > node(l, ko, p, D, k', p') =
(p = nil Az~ leaf(l, ko, D, k', p))
V (p # nil Az + inner(l, ko, p, D, k', p'))

We also have a root predicate which describes if a node is
the root of the B/ tree or not.

root(h, x) 2 325.Oh— PBAPB =1 :: x5

When the insertion operations tries to split a node (when
adding a pair to full node) it is important to know if that node
is the root or not. If the root is split, then a new root needs to
be created and the prime block updated accordingly.
Finally, when describing the insertion action for inner
nodes we require a notion of a list of nodes up to some point.

nodeList(p, N, p’) 2 (N =[]Ap=p Aemp)
3[,k0,p07D7/€17p1,N/.
N = (l7k07p07Dak17p1) o N/
Ap— nOde(Z,ko,po,D,k1,p1)
* nodeList(py, N, p’)

The actions that make up the interference environment
for the B tree implementation are given in Figure
The LocK and UNLOCK () actions control the locking and
unlocking of nodes in the tree. The INS(¢, &k, v), REM(, k)
and FIX(k, y) actions allow a thread to gain the modification
tokens for a node that they have locked. The SWAP action
allows a thread with full permission for some key change if
we are tracking actions for that key. The MODLI(¢, z, k, v, 1)
action allows a thread to insert a key-value pair (k, v) into
some leaf node x. If this node was full, then the thread
is given the [FIX(k,y)]] capability so that it may repair
the search structure of the tree. The MODLR(¢, x, k, )
action allows a thread to remove a key-value pair (k, —)
from some leaf node z. Notice that there is no way for
a thread to remove key-value pairs from inner nodes. The
MoblII(x, k, y) action allows a thread to insert a key-value
pair (k,y) into some inner node z. This action is used to
repair the search structure of the tree after a node has been
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split. The NEWR (z, k, y) action allows a thread to create a
new root, and update the prime block accordingly, after the
old root has been split. This action can only be used if the
thread has previously split the old root and thus acquired the
[NEW(z, k,y)]] capability.

Verifying the Operations

Our BX"* tree implementation uses a language which in-
cludes a set of heap update commands, which directly mod-
ify nodes in the shared heap, and a set of store update com-
mands, which work with nodes but do not manipulate the
shared state. We assume that variables in a thread’s local
store can contain integer, pointer, Boolean, stack and node
content information.
The heap update commands are:

lock(x)
unlock(x)
x := new()
N := get(x)

put(N, x)

PB := getPrimeBlock(h)
putPrimeBlock(h, PB)

Since these commands update the shared state, it is neces-
sary that they each behave atomically so that they do not
interfere with one another.

The store update commands are:

:= lowValue(N)

:= highValue(N)

:= next(N, k)

:= lookup(N, k)
addPair(N,k,v)
removePair(N, k)

M:= rearrange(N,k, v, x)
x := root(PB)

N := newRoot(k’,p, k, v,k”)
addRoot(PB, x)

x := getNodeLevel(PB, i)

b := isSafe(N)

b:= isIn(N, k)

b := isLeaf(N)

b := isRoot(PB, x)
stack := newStack()
push(stack, x)

x := pop(stack)

b := isEmpty(stack)

Lo I

The store update commands only modify the local store of
a thread, so it is not necessary for these commands to be
atomic.

We assume that these commands satisfy the specifications
given in Figure [19)and Figure 20l Our proof of the search
operation given in Figure then follows. The other
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z +— node(1, ko, p, D, k', p')
1

[UNLOCK ()]

* [UNLOCK ()]}

[REM(Ov k)]q * ®v€Vals [INS(Ov kv U)H

[REM(L k?)]q * @fueVals [INS(L kj? U)]T{

LoCK : x — node(0, ko, p, D, k', p’) * [UNLOCK(z)]} ~
UNLOCK(z) : =+ node(1,kg,p, D,K',p’) ~> 2+ node(0,ko,p, D, k', p") %
INS(t, k,v) : [MODLI(t,x, k,v,4)]] ~> [INS(t, k v)](g 0
REM(t, k) : [MODLR(t,2,k,i)]] ~  [REM(Z, k)], ;) * [UNLOCK(z)]]
Fix(k,y): [MobDIl(x,k,y)]5 ~ [Fix(k,y)]; * [UNLOCK(x)]}
[REM(L, K)]} * @yevas INS(L ko))
SWAP : [REM(0, k)]7 = [REM(1, k)]¥
* @y evais[INS(0, &, )]} ~
+ @pevas[INS(1, £, 0)]7

x > leaf(1, ko, D, k', p’) * [UNLOCK ()]}
* ([INs(t, ko)l7, . At=0VempAt=1

x > leaf(1, ko, D, k', p’) * [UNLOCK(z)]]

x ([INS(t, k)], At=0VempAt= 1)
« [FIX(k,y)]7 A |D| = 2K A —root(h, )

x > leaf(1, ko, D, K, p’)

* [NEWR (z, k, y)]}

* ([INS(t, k)], )y ANt=0VempAt= 1)
A |D| = 2K Aroot(h,x)

x> leaf (1, ko, D, k', p’) *

MoDLI(¢, z, k,v,1) :

[UNLOCK ()]}

) -

x v+ leaf (1, ko, D', k', p')

* [MODLI(¢, x, k, v, 1)]]
AND"'=Dw (k,v)

T +— Ieaf(l, k‘o, Dl, k’l, y)
*Y = |eaf(0, k17 D2a k/ap/)
*x [MODLI(¢, x, k, v, 1)]]
/\D1 o D2 =Du (k,?))

x > leaf(1, ko, D1, k1,y)
xy — leaf(1, k1, Do, K, p')
* [MODLI(t, z, k, v,4)]]
/\D1 s DQ ZDLﬂ(k,U)

x — leaf(1, ko, D', k', p)

MODLR(¢, z, k, 1) : * [REM(t k)](g pNt=0VempAt= 1) ~ « [MODLR(t, z, k, )]}
A AD=D"t(k, ~)
x +— inner(1, ko, p, D, k', p’) * [UNLOCK(z)[} x — inner(1, ko, D', k', p")
*y > node(l, k, py, Dy, ki, p,,) *y = node(l, k, py, Dy, ky,, pl,)
* nodeLlst (p1, N,vy) * nodeList(p1, N, y)
A (ko,p) :: D = Dy = (k1,p1) i (k2,p2) 2 D2 * [MoDII(z, k, y)]]
/\k1<k<k2 AD =D (k,y)
H !/
x > inner(1, ko, p, D, k', p') x [UNLOCK ()]} T lnr.Ier(Lk;O,p’ Dy, klz,zl) /
*yr—>nodel kpy Dy ]{3 p ) *szner(?7;Z7p2aDD2];/k7?)
) 3 y’ Yy
* nodeList(p1, N, y) * [F1X(k., 2)] Yy n.ode( ok, py, Dy, ky, py)
MopII(z, k, y) : * nodeList(py, N, y)
kOa D= Dl o (khpl) (k27p2) D2 % [MODII(LI,‘ 2 y)]a
Nk < k: < ky A |D| = 2K A —root(h, ) ADL e (koop) 2 DY = D (K v)
x> inner(1, ko, p, D, k', p') T inr.ler(l,k'o,p, D’l,k/z,z/) /
* y — node(l, k’p’y Dyvk o) *ZHlnner(l,kz,pZ,DQ,/k,%))
b ) y7 Yy
* nodeList(py, N,y) * [NEWR(z, k., 2)]] :?rJlo’:eEiZfF(le\’fpy), Dy, ky, piy)
A (ko,p) :: D = Dy = (k1,p1) it (K2, p2) =2 D2 . [MODH(:?II; y;]y
Nki1 <k < ks AN|D| = 2K Aroot(h, x) ADL e (koop) 2 Db = D (k. v)
x + node(1, —00, po, D1, k,y)  + node(1, —00, po, D1, k,y)
* 1y — node(1, k, p, Da, 0o, nil) *y + node(L, k, p, Dy, o0, nil)
NEWR(z, k,y) : ) [UNLOCK(.T}]T’*7[U12\I’LO(7JK(y)]T ~ * z — inner(0, —oo, z, [(k, y)], 0o, nil)
*hHPBAPé:x TS ' * [NEWR(x,k,y)H
h xh— z:: PB
Figure 18. The interference environment for the BX"* tree implementation.
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{x — node(0, ko, p, D, k?/vpl)}
{x — node(1, ko, p, D, k',p')}

{emp}

{x = node(l, ko, p, D, k', p') }

X = nOde(_v T Ty Ty T _)
AN = node(l, ko, p, D, k', p')

{h > stack} PB:= getPrimeBlock(h)

{h— — APB = stack}

lock(x)
unlock(x)

x := new()
N := get(x)

put(N, x)

putPrimeBlock(h,PB)

{x — node(17ko,p7D7k/7P/)}
{x > node(0, ko,p, D, K',p)}
{x > node(0, 0, nil, [], 0, nil)}

x — node(l, ko, p, D, k', p’)

AN = node(l, ko, p, D, k', p')

x — node(l, ko, p, D, k', p’)

AN = node(l, ko, p, D, k', p')
{h — stack N PB = Stack}

{h — stack N\ PB = stack‘}

Figure 19. Specification of the heap update commands.

implementations and cases can all be proven in a similar

style.
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{emp AN = node(l, ko, p, D, k', p') } k := lowValue(N)
{emp AN = node(l, ko, p, D, k', p/ } k := highValue(N)

empAN= |nner(l ko,vo, D, kni1,p’
AD = [(ki,v1), ..., (kn,vn)] x := next(N, k)
Nk <k < kipq

emp AN = node(l, ko, p, D, k', p")
ANk >k

emp AN = leaf(l, ko, D, k', p')
A (k,v) € D

x := next(N, k)
x := lookup(N, k)

A D] < 2K Ak ¢ keys(D addPair(N,k,v)

{emp/\N = node(l, ko, p, D, k: v }

{emp AN = node(l, ko,p,D K. p')

A, —) € D removePair(N, k)

M:= rearrange(N,k, v, x)

emp A N = leaf(l, ko, D, k', p')
Nko <k <K N|D|=2K

{emp AN = inner(l, ko, p, D, k', p')

Nko <k <k A|D|=2K } M:= rearrange(N,k, v, x)

{emp APB=p: ps} % := root(PB)

{emp} N := newRoot(k’,p, k, v, k")

{emp APB = s} addRoot (PB, x)

{emp APB = [2,,...,21] A1 <1i<n} x:=getNodeLevel(PB,1i)

emp AN = node(l, ko, p, D, k', p’)

AND = [(klavl)a---a(knavn)] b:= isSafe(N)
An < 2K
emp AN = node(l, ko, p, D, k', p’)
AND = [(k17vl)a"'7(knavn)] b:= 1sSafe(N)
An=2K
emp AN = node(l, ko, p, D, k', p) .
{ A(k,v) € D b := isIn(N, k)

— / /
{emp AN = node(l, ko, p, D, k', p )} b= 1sTn(N, k)

Ak & keys(D)

{emp AN = leaf(l, ko, D, K',p')} b := isLeaf(N)
{emp AN = inner(l, ko, p, D, k',p')} b := isLeaf(N)
{emp APB=x:uzs} b := isRoot(PB, x)
{emp APB=y:ysAx#y} b := isRoot(PB, x)
{emp} stack := newStack()
{emp A stack = x5} push(stack, x)
{emp A stack =y : ys} x := pop(stack)

{emp Astack =[]}  b:= isEmpty(stack)
{emp A stack = x: st} b := isEmpty(stack)

{emp AN = node(l, ko,p, D, k', p') Nk = ko }
{emp AN = node(l, ko,p, D, k',p') Nk = K}
{emp AN = inner(l,ko,vo,D,kn+1,p')}

AX =1;

emp/\N = node(l, ko, p, D, k' ,p)}

emp/\N—Ieaf(l ko, D, k' ,p)}

AND =D (k,v)

emp AN = node(l ko,p, D', K, p')
AD=D"w(k,—)

emp/\N Ieaf(l ko, D1, k", x)
Ieaf 0,k", Do, k', p')
/\D1 =Du(k,v)

emp AN = |nner(l,k;0,p, Dy, K" %)
AM=inner(0,k",p", Do, k', p')
ADy (K", p"):: Da = DW(k,v)

{emp/\PB:p:ps/\x:p}
{emp AN = inner(0,X’, p, [(k, v)], k", nil) }
{emp/\PB =x: ms}
{emp APB = [zn,...,21] Ax = a:}
emp AN = node(l, ko, p, D, k' 710)}

{
{
{emp AN = node(l ko,p, D', K", p/ )}
{

AND = [(klvvl)a ceey (knavn)]
An<2K Ab=tt

emp AN = node(l, ko, p, D, k', p’)
AN D = [(k1,v1),. .., (kn,vn)]
An=2K ANb=ff

emp AN = node(l, ko, p, D, k', p’)
Ab=1tt

emp AN = node(l, ko, p, D, k', p’)
Ab = ff

{emp AN = leaf(l, ko, D, K',p') A b = tt}
{emp AN =inner(l,ko,p, D,k ,p') ANb = fF}
{emp/\PB:x : stbztt}
{emp/\PB:y : ys/\b:ff}

{emp A stack =[]}

{emp N stack =x: xs}

{emp A stack =ys Ax =y}

{emp A stack =[] Ab=tt}

{emp Astack=z:xs\b= ff}

Figure 20. Specification of the store update commands.
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