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Abstract The frequency matching method defines a closed form expression for a
complex prior that quantifies the higher order statistics of a proposed solution model
to an inverse problem. While existing solution methods to inverse problems are ca-
pable of sampling the solution space while taking into account arbitrarily complex a
priori information defined by sample algorithms, it is not possible to directly compute
the maximum a posteriori model, as the prior probability of a solution model cannot
be expressed. We demonstrate how the frequency matching method enables us to
compute the maximum a posteriori solution model to an inverse problem by using
a priori information based on multiple point statistics learned from training images.
We demonstrate the applicability of the suggested method on a synthetic tomographic
crosshole inverse problem.

Keywords Geostatistics - Multiple point statistics - Training image - Maximum a
posteriori solution

1 Introduction

Inverse problems arising in the field of geoscience are typically ill-posed; the avail-
able data are scarce and the solution to the inverse problem is therefore not well-
determined. In probabilistic inverse problem theory the solution to a problem is given
as an a posteriori probability density function that combines states of information
provided by observed data and the a priori information (Tarantola 2005). The ambi-
guities of the solution of the inverse problem due to the lack of restrictions on the
solution is then reflected in the a posteriori probability.

K. Lange (&) - J. Frydendall - K.S. Cordua - T.M. Hansen - Y. Melnikova - K. Mosegaard

Center for Energy Resources Engineering, Department of Informatics and Mathematical Modeling,
Technical University of Denmark, Richard Petersens Plads, Building 321,

2800 Kongens Lyngby, Denmark

e-mail: katla@imm.dtu.dk

@ Springer


mailto:katla@imm.dtu.dk

784 Math Geosci (2012) 44:783-803

A priori information used in probabilistic inverse problem theory is often
covariance-based a priori models. In these models the spatial correlation between
the model parameters is defined by two-point statistics. In reality, two-point-based a
priori models are too limited to capture curvilinear features such as channels or cross
beddings. It is therefore often insufficient to rely only on the two-point statistics,
and thus higher order statistics must also be taken into account in order to correctly
produce geologically realistic descriptions of the subsurface. It is assumed that ge-
ological information is available in the form of a training image. This image could
for instance have been artificially created to describe the expectations for the solution
model or it could be information from a previous solution to a comparable inverse
problem. The computed models should not be identical to the training image, but
rather express a compromise between honoring observed data and comply with the
information extracted from the training image. The latter can be achieved by ensuring
that the models have the same multiple point statistics as the training image.

Guardiano and Srivastava (1993) proposed a sequential simulation algorithm that
was capable of simulating spatial features inferred from a training image. Their ap-
proach was computationally infeasible until Strebelle (2002) developed the single
normal equation simulation (snesim) algorithm. Multiple point statistics in general
and the snesim algorithm in particular have been widely used for creating models
based on training images and for solving inverse problems, see for instance Caers and
Zhang (2004), Arpat (2005), Hansen et al. (2008), Peredo and Ortiz (2010), Suzuki
and Caers (2008), Jafarpour and Khodabakhshi (2011). A method called the proba-
bility perturbation method (PPM) has been proposed by Caers and Hoffman (2006).
It allows for gradual deformation of one realization of snesim to another realization
of snesim. Caers and Hoffman propose to use the PPM method to find a solution to an
inverse problem that is consistent with both a complex prior model, as defined by a
training image, and data observations. PPM is used iteratively to perturb a realization
from snesim while reducing the data misfit. However, as demonstrated by Hansen et
al. (2012), as a result of the probability of the prior model not being evaluated, the
model found using PPM is not the maximizer of the posterior density function, but
simply the realization of the multiple point based prior with the highest likelihood
value. There is no control of how reasonable the computed model is with respect to
the prior model. It may be highly unrealistic.

The sequential Gibbs sampling method by Hansen et al. (2012) is used to sample
the a posteriori probability density function given, for example a training image based
prior. However, as with the PPM it cannot be used for optimization and locating the
maximum a posteriori (MAP) model, as the prior probability is not quantified. The fo-
cus of our research is the development of the frequency matching (FM) method. The
core of this method is the characterization of images by their multiple point statistics.
An image is represented by the histogram of the multiple point-based spatial event
in the image; this histogram is denoted the frequency distribution of the image. The
most significant aspect of this method, compared to existing methods based on multi-
ple point statistics for solving inverse problems, is the fact that it explicitly formulates
an a priori probability density distribution, which enables it to efficiently quantify the
probability of a realization from the a priori probability.

The classical approach when solving inverse problems by the least squares meth-
ods assumes a Gaussian prior distribution with a certain expectation. Solution models
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to the inverse problem are penalized depending on their deviation from the expected
model. In the FM method, the frequency distribution of the training image acts as
the expected model and a solution image is penalized depending on how much its
frequency distribution deviates from that of the training image. To perform this com-
parison we introduce a dissimilarity measure between a training image and a model
image as the x? distance between their frequency distributions. Using this dissimilar-
ity measure for quantifying the a priori probability of a model the FM method allows
us to directly compute the MAP model, which is not possible using known techniques
such as the PPM and sequential Gibbs sampling methods.

Another class of methods are the Markov random fields (MRF) methods (Tjelme-
land and Besag 1998). The prior probability density given by Markov methods in-
volves a product of a large number of marginals. A disadvantage is therefore, despite
having an expression for the normalization constant, that it can be computationally
expensive to compute. Subclasses of the MRF methods such as Markov mesh mod-
els (Stien and Kolbjgrnsen 2011) and partially ordered Markov models (Cressie and
Davidson 1998) avoid the computation of the normalization constant, and this advan-
tage over the MRF methods is shared by the FM method. Moreover, in contrast to
methods such as PMM and MRF, the FM method is fully non-parametric, as it does
not require probability distributions to be written in a closed form.

This paper is ordered as follows. In Sect. 2 we define how we characterize im-
ages by their frequency distributions, we introduce our choice of a priori distribution
of the inverse problem and we elaborate on how it can be incorporated into tradi-
tional inverse problem theory. Our implementation of the FM method is discussed in
Sect. 3. In Sect. 4 we present our test case and the results when solving an inverse
problem using frequency matching-based a priori information. Section 5 summarizes
our findings and conclusions.

2 Method

In geosciences, inverse problems involve a set of measurements or observations d°®®
used to determine the spatial distribution of physical properties of the subsurface.
These properties are typically described by a model with a discrete set of parameters,
m. For simplicity, we will assume that the physical property is modeled using a reg-
ular grid in space. The model parameters are said to form an image of the physical
property.

Consider the general forward problem,

d=g(m), ey

of computing the observations d given the perhaps non-linear forward operator g
and the model parameters m. The values of the observation parameters are computed
straightforwardly by applying the forward operator to the model parameters. The as-
sociated inverse problem consists of computing the model parameters m given the
forward operator g and a set of observations d°. As the inverse problem is usually
severely under-determined, the model m that satisfies d°® = g(m) is not uniquely
determined. Furthermore, some of the models satisfying d°® = g(m) within the re-
quired level of accuracy will be uninteresting for a geoscientist as the nature of the
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forward operator g and the measurement noise in d°® may yield a physically unre-

alistic description of the property. The inverse problem therefore consists of not just
computing a set of model parameters satisfying Eq. 1, but computing a set of model
parameters that gives a realistic description of the physical property while honoring
the observed data. The FM method is used to express how geologically reasonable a
model is by quantifying its a priori probability using multiple point statistics. Letting
the a priori information be available in, for instance, a training image, the FM method
solves an inverse problem by computing a model that satisfies not only the relation
from Eq. 1 but a model that is also similar to the training image. The latter ensures
that the model will be geologically reasonable.

2.1 The Maximum A Posteriori Model

Tarantola and Valette (1982) derived a probabilistic approach to solve inverse prob-
lems where the solution to the inverse problem is given by a probability density func-
tion, denoted the a posteriori distribution. This approach makes use of a prior distri-
bution and a likelihood function to assign probabilities to all possible models. The
a priori probability density function p describes the data independent prior knowl-
edge of the model parameters; in the FM method we choose to define it as follows

p(m) = const. exp(—a f(m)),

where o acts as a weighting parameter and f is a dissimilarity function presented in
Sect. 2.4. Traditionally, f measures the distance between the model and an a priori
model. The idea behind the FM method is the same, except we wish not to compare
models directly but to compare the multiple point statistics of models. We therefore
choose a traditional prior but replace the distance function such that instead of mea-
suring the distance between models directly, we measure the dissimilarity between
them. The dissimilarity is expressed as a distance between their multiple point statis-
tics.

The likelihood function L is a probabilistic measure of how well data associated
with a certain model matches the observed data, accounting for the uncertainties of
the observed data,

L(m, dObs) = const. eXp(-% ||d0bs — g(m) ||2Cd) .

Here, Cj4 is the data covariance matrix and the measurement errors are assumed to be
independent and Gaussian distributed with mean values 0. The a posteriori distribu-
tion is then proportional to the product of the prior distribution and the likelihood

o (m) = const.p(m)L (m, dObS) .

The set of model parameters that maximizes the a posteriori probability density is
called the maximum a posteriori (MAP) model

mMAP = arg max {0 (m) }
m
=arg min{— loga(m)}
m

1
= argn,l,i,n{g @™ — gam)¢, +a f(m)}.
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The dissimilarity function f is a measure of how well the model satisfies the
a priori knowledge that is available, for example from a training image. The more
similar, in some sense, the image from a set of model parameters m is to the training
image the smaller the function value f(m) is. Equivalently to the more traditional
term ||m — mpri°r||%m, stemming from a Gaussian a priori distribution of the model

parameters with mean values mP"°" and covariance matrix C,, f(m) can be thought
of as a distance. It is not a distance between m and the training image ( f (m) may be
zero for other images than the training image), but a distance between the multiple
point statistics of the image formed by the model parameters and the multiple point
statistics of the training image.

2.2 The Multiple Point Statistics of an Image

Consider an image Z = {1,2, ..., N} with N voxels (or pixels if the image is only
two dimensional) where the voxels can have the m different values 0, 1,...,m — 1.
We introduce the N variables, z1,z2,...,2zny and let z; describe the value of the
kth voxel of the image. It is assumed that the image is a realization of an unknown,
random process satisfying:

1. The value of the kth voxel, zx, is, given the values of voxels in a certain neigh-
borhood N, around voxel k, independent of voxel values not in the neighborhood.
Voxel k itself is not contained in NV. Let z; be a vector of the values of the ordered
neighboring voxels in A ; we then have

Sz @rlaN, ooy Tkt 1y Th=15 - -5 21) = f7(2k|Zi),

where fz denotes the conditional probability distribution of the voxel z; given the
values of the voxels within the neighborhood.

2. For an image of infinite size the geometrical shape of all neighborhoods N are
identical. This implies that if voxel k has coordinates (ky, ky, k;), and voxel [ has
coordinates (Iy, ly,l;), then

(nXanyan)ENk =  (nx —ky +lx,ny_ky+ly'snz_kz+lz)€/\/l-

3. If we assume ergodicity, that is, when two voxels, voxel k£ and voxel /, have the
same values as their neighboring voxels, then the conditional probability distribu-
tion of voxel k and voxel [ are identical

w=z = fz(zlm) = fz(zlz).

Knowing the conditionals f7(zx|zx) we know the multiple point statistics of the
image, just as a variogram would describe the two-point statistics of an image. The
basis of sequential simulation as proposed by Guardiano and Srivastava (1993) is
to exploit the aforementioned assumptions to estimate the conditional probabilities
fz(zk|zx) based on the marginals obtained from the training image, and then to
use the conditional distributions to generate new realizations of the unknown ran-
dom process from which the training image is a realization. The FM method, on the
other hand, operates by characterizing images by their frequency distributions. As
described in the following section, the frequency distribution of voxel values within
the given neighborhood of an image is given by its marginal distributions. This means

@ Springer



788 Math Geosci (2012) 44:783-803

that comparison of images is done by comparing their marginals. For now, the train-
ing image is assumed to be stationary. With the current formulation of the frequency
distributions this is the only feasible approach. Discussion of how to avoid the as-
sumption of stationarity exists in literature, see for instance the recent Honarkhah
(2011). Some of these approaches mentioned here might also be useful for the FM
method, but we will leave this to future research to determine.

2.3 Characterizing Images by their Frequency Distribution

Before presenting the FM method we define what we denote the frequency distri-
bution. Given an image with the set of voxels Z = {1,..., N} and voxel values
71, ..., 2y we define the template function §2 as a function that takes as argument
a voxel k and returns the set of voxels belonging to the neighborhood N, of voxel k.
In the FM method, the neighborhood of a voxel is indirectly given by the statistical
properties of the image itself; however, the shape of a neighborhood satisfying the
assumptions from Sect. 2.2 is unknown. For each training image one must therefore
define a template function 2 that seeks to correctly describe the neighborhood. The
choice of template function determines if a voxel is considered to be an inner voxel.
An inner voxel is a voxel with the maximal neighborhood size, and the set of inner
voxels, Ziy, of the image is therefore defined as
Zin={k € Z: Wil =max A1},
leZ

where |N)| denotes the number of voxels in Ny. Let n denote the number of voxels
in the neighborhood of an inner voxel. Typically, voxels on the boundary or close to
the boundary of an image will not be inner voxels. To each inner voxel z; we assign a
pattern value py; we say the inner voxel is the center voxel of a pattern. This pattern
value is a unique identifier of the pattern and may be chosen arbitrarily. The most
obvious choice is perhaps a vector value with the discrete variables in the pattern, or
a scalar value calculated based on the values of the variables. The choice should be
made in consideration of the implementation of the FM method. The pattern value is
uniquely determined by the value of the voxel z; and the values of the voxels in its
neighborhood, z;. As the pattern value is determined by the values of n + 1 voxels,
which can each have m different values, the maximum number of different patterns
is m"t1,

Letm;, fori=1,..., m"*1, count the number of patterns that have the ith pattern
value. The frequency distribution is then defined as &

=7, ..., Tyl

Let pg denote the mapping from voxel values of an image Z to its frequency distri-
bution &, thatis, po(z1,...,2N8) =T.

Figure 1 shows an example of an image and the patterns it contains for the template
function that defines neighborhoods as follows

Ne={leZ\{k}: Iy — k| < L ]Iy —ky| < 1}.
Recall from Sect. 2.2 that (I;,l,) are the coordinates of voxel [ in this two-

dimensional example image. We note that for a given template function the frequency
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Image Patterns
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Fig. 1 Example of patterns found in an image. Notice how the image is completely described by the
(ordered) patterns in every third row and column; the patterns are marked in red

distribution of an image is uniquely determined. The opposite, however, does not
hold. Different images can, excluding symmetries, have the same frequency distribu-
tion. This is what the FM method seeks to exploit by using the frequency distribution
to generate new images, at the same time similar to, and different from, our training
image.

2.4 Computing the Similarity of Two Images

The FM method compares a solution image to a training image by comparing its
frequency distribution to the frequency distribution of the training image. How dis-
similar the solution image is to the training image is determined by a dissimilarity
function, which assigns a distance between their frequency distributions. This dis-
tance reflects how likely the solution image is to be a realization of the same un-
known process as the training image is a realization of. The bigger the distance, the
more dissimilar are the frequency distributions and thereby also the images, and the
less likely is the image to be a realization of the same random process as the training
image. The dissimilarity function can therefore be used to determine which of two
images is most likely to be a realization of the same random process as the training
image is a realization of.

The dissimilarity function is not uniquely given but an obvious choice is the x2
distance also described in Sheskin (2004). It is used to measure the distance between
two frequency distributions by measuring how similar the proportions of patterns in
the frequency distributions are. Given two frequency distributions, the x? distance
estimates the underlying distribution. It then computes the distance between the two
frequency distributions by computing each of their distances to the underlying dis-
tribution. Those distances are computed using a weighted Euclidean norm where the
weights are the inverse of the counts of the underlying distribution, see Fig. 2. In our
research, using the counts of the underlying distribution turns out to be a favorable
weighting of small versus big differences instead of using a traditional p-norm as
used by Peredo and Ortiz (2010).
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Fig. 2 Tlustration of the x2 D2
distance between two frequency
distributions  and nTI, each
containing the counts of two P
different pattern values, py and
2. The difference between the
frequency distributions is
computed as the sum of the el
length of the two red line
segments. The length of each
line segment is computed using
a weighted Euclidean norm. The
counts of the underlying P
distribution are found as the
orthogonal projection of the
frequency distributions onto the
a line going through the origin
such that

I —€lla =™ — €™,

P1

Hence, given the frequency distributions of an image, &, and of a training image,
7™ and by letting

I = {i c {1, ...,m”“}: nl-TI >0} U {i € {l,...,m"“}: T >O}, 2)
we compute what we define as the dissimilarity function value of the image

TI _ TI\2 2
c(n)=x2(n,7tn)=2(nl+l)+zu, (3)
iel €i iel &
where €; denotes the counts of the underlying distribution of patterns with the ith
pattern value for images of the same size as the image and el.TI denotes the counts
of the underlying distribution of patterns with the ith pattern value for images of the
same size as the training image. These counts are computed as

T + nl.TI
€ =—-"ng, 4)
nz +nTr
TI
T+
TI __ "t i
€ nTI, (5)

~nz+nm
where nz and ntr are the total number of counts of patterns in the frequency distri-
butions of the image and the training image, that is, the number of inner voxels in the
image and the training image, respectively.

2.5 Solving Inverse Problems

We define the frequency matching method for solving inverse problems formulated
as least squares problems using geologically complex a priori information as the fol-
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lowing optimization problem

. 2
i o =g o [, e

w.rt. T = po(z1,...,2N), (6)
ztk€{0,....m—1} fork=1,...,N,

where c(ir) is the dissimilarity function value of the solution image defined by Eq. 3
and « is a weighting parameter. The forward operator g, which traditionally is a
mapping from model space to data space, also contains the mapping of the categorical
values zx € {0,...,m — 1} for k =1, ..., N of the image into the model parameters
m that can take m different discrete values.

The value of « cannot be theoretically determined. It is expected to depend on
the problem at hand; among other factors its resolution, the chosen neighborhood
function and the dimension of the data space. It can be thought of as playing the
same role for the dissimilarity function as the covariance matrix Cq does for the data
misfit. So it should in some sense reflect the variance of the dissimilarity function
and in that way determine how much trust we put in the dissimilarity value. Variance,
or trust, in a training image is difficult to quantify, as the training image is typically
given by a geologist to reflect certain expectations to model. Not having a theoretical
expression for « therefore allows us to manipulate the « value to loosely quantify the
trust we have in the training image. In the case where we have accurate data but only
a vague idea of the structures of the subsurface the o can be chosen low, in order to
emphasize the trust we have in the data and the uncertainty we have of the structure
of the model. In the opposite case, where data are inaccurate but the training image is
considered to be a very good description of the subsurface, the o value can be chosen
high, to give the dissimilarity function more weight.

Due to the typically high number of model parameters, the combinatorial opti-
mization problem should be solved by use of an iterative solution method; such a
method will iterate through the model space and search for the optimal solution.
While the choice of solution method is less interesting when formulating the FM
method, it is of great importance when applying it. The choice of solution method
and the definition of how it iterates through the solution space by perturbing images
has a significant impact on the feasibility of the method in terms of its running time.
As we are not sampling the solution space we do not need to ensure that the method
captures the uncertainty of the model parameters, and the ideal would be a method
that converges directly to the maximum a posteriori solution. While continuous op-
timization problems hold information about the gradient of the objective function
that the solution method can use to converge to a stationary solution, this is not the
case for our discrete problem. Instead we consider the multiple point statistics of the
training image when perturbing a current image and in that way we seek to generate
models which better match the multiple point statistics of the training image and thus
guide the solution method to the maximum a posteriori model.

2.6 Properties of the Frequency Matching Method

The FM method is a general method and in theory it can be used to simulate any
type of structure, as long as a valid training image is available and a feasible template
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function is chosen appropriately. If neighborhoods are chosen too small, the method
will still be able to match the frequency distributions. However, it will not reproduce
the spatial structures simply because these are not correctly described by the cho-
sen multiple point statistics and as a result the computed model will not be realistic.
If neighborhoods are chosen too big, CPU cost and memory demand will increase,
and as a result the running time per iteration of the chosen solution method will in-
crease. Depending on the choice of iterative solution method, increasing the size n
of the neighborhood is likely to also increase the number of iterations needed and
thereby increase the convergence time. When the size of neighborhoods is increased,
the maximum number of different patterns, m”“, is also increased. The number of
different patterns present is, naturally, limited by the number of inner voxels, which
is significantly smaller than m” %!, In fact, the number of patterns present in an image
is restricted further as training images are chosen such that they describe a certain
structure. This structure is also sought to be described in the solutions. The structure
is created by repetition of patterns, and the frequency distributions will reveal this
repetition by having multiple counts of the same pattern. This means, the number of
patterns with non-zero frequency is greatly smaller than m"*! resulting in the fre-
quency distributions becoming extremely sparse. For bigger test cases, with millions
of parameters, patterns consisting of hundreds of voxels and multiple categories, this
behavior needs to be investigated further.

The dimension of the images, if they are two or three dimensional, is not im-
portant to the FM method. The complexity of the method is given by the maximal
size of neighborhoods, n. The increase in n as a result of going from two- to three-
dimensional images is therefore more important than the actual increase in physical
dimensions. In fact, when it comes to assigning pattern values a neighborhood is,
regardless of its physical dimension, considered one dimensional where the ordering
of the voxels is the important aspect. Additionally, the number of categories of voxel
values m does not influence the running time per iteration. As with the number of
neighbors, 7, it only influences the number of different possible patterns m"*! and
thereby influences the sparsity of the frequency distribution of the training image.
The higher m is, the sparser is the frequency distribution. It is expected that the spar-
sity of the frequency distribution affects the level of difficulty of the combinatorial
optimization problem.

Strebelle (2002) recommends choosing a training image that is at least twice as
large as the structures it describes; one must assume this advice also applies to the
FM method. Like the snesim algorithm, the FM method can approximate continuous
properties by discretizing them into a small number of categories. One of the advan-
tages of the FM method is that by matching the frequency distributions it indirectly
ensures that the proportion of voxels in each of the m categories is consistent between
the training image and the solution image. It is therefore not necessary to explicitly
account for this ratio. Unlike the snesim algorithm, the computed solution images
therefore need very little post treatment—in the current implementation the solution
receives no post treatment. However, the o parameter does allow for the user to spec-
ify how strictly the frequency distributions should be matched. In the case where the
data are considered very informative or the training image is considered far from re-
ality, decreasing the o allows for the data to be given more weight and the multiple
point statistics will not be as strictly enforced.
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Constraints on the model parameters can easily be dealt with by reducing the fea-
sible set {0, ..., m — 1} for those values of k in the constraints of the problem stated
in Eq. 6. The constrained voxels remain part of the image Z and when computing the
frequency distribution of an image they are not distinguished from non-constrained
voxels. However, when perturbing an image all constraints of the inverse problem
should at all times be satisfied and conditioned to the hard data. The additional con-
straints on the model parameters will therefore be honored.

3 Implementation

This section describes the current implementation of the frequency matching method.
Algorithm 1 gives a general outline of how to apply the FM method, that is, how to
solve the optimization problem from Eq. 6 with an iterative optimization method.
In the remainder of the section, the implementation of the different parts of the
FM method will be discussed. It should be noted that the implementation of the
FM method is not unique; for instance, there are many options for how the solu-
tion method iterates through the model space by perturbing models. The different
choices should be made depending on the problem at hand and the current imple-
mentation might not be favorable for some given problems. The overall structure in
Algorithm 1 will be valid regardless of what choices are made on a more detailed
level.

Algorithm 1: The Frequency Matching Method

Input: Training image, ZT', Starting image Z
Output: Maximum a posteriori image Z"™
Compute frequency distribution of training image 1! and pattern list p
(Algorithm 2)
Compute partial frequency distribution of starting image & (Algorithm 3)
while not converged do
Compute perturbed image Z based on Z (Algorithm 4)
Compute partial frequency distribution of perturbed image ™ (Algorithm 5)
if accept the perturbed image then
| SetZ <« Zandm <7
end
end

The current implementation is based on a Simulated Annealing scheme. Simu-
lated Annealing is a well-known heuristic optimization method first presented by
Kirkpatrick et al. (1983) as a solution method for combinatorial optimization prob-
lems. The acceptance of perturbed images is done using an exponential cooling rate
and the parameters controlling the cooling are tuned to achieve an acceptance ratio
of approximately 15 accepted perturbed models for each 100 suggested perturbed
models. A perturbed model is generated by erasing the values of the voxels in a part
of the image and then re-simulating the voxel values by use of sequential simula-
tion.
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3.1 Reformulation of the Dissimilarity Function

The definition of the dissimilarity function from Eq. 3 has one great advantage that
we for computational reasons simply cannot afford to overlook. As discussed previ-
ously, the frequency distributions are expected to be sparse as the number of patterns
present in an image is significantly smaller than m”*!. This means that a lot of the
terms in the dissimilarity function from Eq. 3 will be zero, yet the dissimilarity func-
tion can be simplified further. It will be shown that the dissimilarity function value of
a frequency distribution, c(x), given the frequency distribution of a training image,
7, can be computed using only entries of & where 71! > 0. In other words, to com-
pute the dissimilarity function value of an image we need only to know the count of
patterns in the image that also appear in the training image. Computationally, this is
a great advantage as we can disregard the patterns in our solution image that do not
appear in the training image and we need not compute nor store the entire frequency
distribution of our solution image, which is shown by inserting the expressions of the
counts for the underlying distribution defined by Eqs. 4 and 5

TI _ _TI\2
@ =€ (i — €)?
c(m) = Z I + Z
€; ; €
iel iel
2T 2
nem, waTi)
T @)
zEI jT T

This leads to the introduction of the following two subsets of 1
I =i eI:JTl-TI>0},
L=liel:x"=0}.

The two subsets form a partition of [ as they satisfy Iy Ul =1 and Iy N I, = . The
dissimilarity function Eq. 7 can then be written as

( nz TI Nl o
nT1 nz nTI
y 2

c(m) =
7TTI + 7
1611 lElz
( nz TI nTl
P nz nTI
nTI+n ”Z_Z”i ®)
1611 iel

recalling that ), ., m; =nz and that m; =0 fori ¢ I.

A clear advantage of this formulation of the dissimilarity function is that the entire
frequency distribution i of the image does not need to be known; as previously stated,
it only requires the counts 7; of the patterns also found in the training image, which
isfori e lj.

3.2 Computing and Storing the Frequency Distributions

The formulation of the dissimilarity function from Eq. 3 and later Eq. 8 means that
it is only necessary to store non-zero entries in a frequency distribution of a training
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image . Algorithm 2 shows how the frequency distribution of a training image is
computed such that zero entries are avoided. The algorithm also returns a list p with
the same number of elements as the frequency distribution and it holds the pattern
values corresponding to each entry of !,

Algorithm 2: Frequency Distribution of a Training Image

Input: Training Image ZT!
Output: Frequency distribution 11, list of pattern values p
Initialization: empty list 711, empty list p
for each inner voxel, i.e., k € Z;fll do
Extract pattern k
Compute pattern value py
if the pattern was previously found then
| Add 1 to the corresponding entry of 1!
else
Add py to the list of pattern values p

Set the corresponding new entry of 1! equal to 1
end

end

Algorithm 3 computes the partial frequency distribution m of an image that is
needed to evaluate the dissimilarity function c() = x2(w, ™) from Eq. 8. The
partial frequency distribution only stores the frequencies of the patterns also found in
the training image.

Algorithm 3: Partial Frequency Distribution of an Image

Input: Image Z, list of pattern values p from the training image
Output: Partial frequency distribution
Initialization: all zero list  (same length as p)

for each inner voxel, i.e., k € Zi, do
Extract pattern k

Compute pattern value py

if the pattern is found in the training image then
| Add 1 to the corresponding entry of &
end

end

3.3 Perturbation of an Image

The iterative solver moves through the model space by perturbing models and this is
the part of the iterative solver that leaves the most choices to be made. An intuitive
but naive approach would be to simply change the value of a random voxel. This
will result in a perturbed model that is very close to the original model, and it will
therefore require a lot of iterations to converge. The current implementation changes
the values of a block of voxels in a random place of the image.
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Before explaining in detail how the perturbation is done, let Z¢°"¢ C Z be the set
of voxels that we have hard data for, which means their value is known and should
be conditioned to. First a voxel k is chosen randomly. Then the value of all voxels in
a domain Dy C (Z \ Z°") around voxel k are erased. Last, the values of the voxels
in Dy are simulated using sequential simulation. The size of the domain should be
chosen to reflect how different the perturbed image should be from the current image.
The bigger the domain, the fewer iterations we will expect the solver will need to it-
erate through the model space to converge, but the more expensive an iteration will
become. Choosing the size of the domain is therefore a trade-off between number
of iterations and thereby forward calculations and the cost of computing a perturbed
image.

Algorithm 4 shows how an image is perturbed to generate a new image.

Algorithm 4: Perturbation of an Image

Input: Image Z, partial frequency distribution & of Z
Output: Perturbed image Z

Initialization: set @ = m

Pick random voxel k

for each voxel | around voxel k, i.e., | € Dy do
| Erase the value of voxel [, i.e., z; is unassigned

end

for each unassigned voxel | around voxel k, i.e., | € Dy do
| Simulate z; given all assigned voxels in V.

end

3.4 Updating the Frequency Distribution

As a new image is created by changing the value of a minority of the voxels, it would
be time consuming to compute the frequency distribution of all voxel values of the
new image when the frequency distribution of the old image is known. Recall that
n is the maximum number of neighbors a voxel can have; inner voxels have exactly
n neighbors. Therefore, in addiction to changing its own pattern value, changing the
value of a voxel will affect the pattern value of at most n other voxels. This means
that we obtain the frequency distribution of the new image by performing at most
n + 1 subtractions and n + 1 additions per changed voxel to the entries of the already
known frequency distribution.

The total number of subtractions and additions can be lowered further by exploit-
ing the block structure of the set of voxels perturbed. The pattern value of a voxel
will be changed when any of its neighboring voxels are perturbed, but the frequency
distribution need only be updated twice for each affected voxel. We introduce a set
of voxels Z, which is the set of voxels who are affected when perturbing image Z
into Z, that is, the set of voxels whose pattern values are changed when perturbing
image Z into image Z

7% =k e Z: pr P} )

How the partial frequency distribution is updated when an image is perturbed is illus-
trated in Algorithm 5.
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Algorithm 5: Update Partial Frequency Distribution of an Image

Input: Image Z, partial frequency distribution 7 of Z, perturbed image Z, set
of affected voxels Z', set of pattern values p from the training image

Output: Partial frequency distribution 7 of Z

Initialization: set ¥ =&

for each affected voxel, i.e., k € Z*T do

Extract pattern k from both Z and Z

Compute both pattern values p; and p;

if the pattern py is present in the training image then

| Subtract 1 from the corresponding entry of @
end

if the pattern p, is present in the training image then
| Add 1 to the corresponding entry of ™

end

end

As seen in Algorithm 1, the FM method requires in total two computations of a
frequency distribution, one for the training image and one for the initial image. The
FM method requires one update of the partial frequency distribution per iteration.
As the set of affected voxels Z¥ is expected to be much smaller than the total im-
age Z, updating the partial frequency distribution will typically be much faster than
recomputing the entire partial frequency distribution even for iterations that involve
changing the values of a large set of voxels.

3.5 Multigrids

The multigrid approach from Strebelle (2002) that is based on the concept initially
proposed by Gémez-Hernandez (1991) and further developed by Tran (1994) can also
be applied in the FM method. Coarsening the images allows the capture of large-scale
structures with relatively small templates. As in the snesim algorithm, the results from
a coarse image can be used to condition upon for a higher resolution image.

The multigrid approach is applied by running the FM method from Algorithm 1
multiple times. First, the algorithm is run on the coarsest level. Then the resulting im-
age, with increased resolution, is used as a starting image on the next finer level, and
so on. The resolution of an image can be increased by nearest neighbor interpolation.

4 Example: Crosshole Tomography

Seismic borehole tomography involves the measurement of seismic travel times be-
tween two or more boreholes in order to determine an image of seismic velocities in
the intervening subsurface. Seismic energy is released from sources located in one
borehole and recorded at multiple receiver locations in another borehole. In this way
a dense tomographic data set that covers the interborehole region is obtained.
Consider a setup with two boreholes. The horizontal distance between them is A X
and they both have the depth AZ. In each borehole a series of receivers and sources
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Fig. 3 Training image 0
(resolution: 251 x 251 pixels)
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Table 1 Parameter values for
the test case AX 500 m
AZ 1,200 m
Ax 10 m
Az 10 m
ds 250 m
dy 100 m
Vlow 1,600 m/s
Vhigh 2,000 m/s

is placed. The vertical domain between the two boreholes is divided into cells of
dimensions Ax by Az and it is assumed that the seismic velocity is constant within
each cell. The model parameters of the problem are the propagation speeds of each
cell. The observed data are the first arrival times of the seismic signals. For the series
of sources and receivers in each borehole the distances between the sources are d; and
the distances between the receivers are d,,. We assume a linear relation between the
data (first arrival times) and the model (propagation speed) from Eq. 1. The sensitivity
of seismic signals is simulated as straight rays. However, any linear sensitivity kernel
obtained using, for example, curvilinear rays or Fresnel zone-based sensitivity, can
be used.

It is assumed that the domain consists of zones with two different propagation
speeds, viow and vhign. Furthermore a horizontal channel structure of the zones with
high propagation speed is assumed. Figure 3 shows the chosen training image with
resolution 251 cells by 251 cells where each cell is Ax by Az. The training image
is chosen to express the a priori information about the model parameters. The back-
ground (white pixels) represents a low velocity zone and the channel structures (black
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Fig. 4 Reference model 0
(resolution: 50 x 120 pixels)
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Fig. 5 Computed model for 0
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pixels) are the high velocity zones. The problem is scalable and for the example we
have chosen the parameters presented by Table 1.

The template function is chosen, such that the neighborhood of pixel k is the fol-
lowing set of pixels

Ne={le Z\{k}: |l — ke 4,11 — k| <3},

Recall that pixel / has the coordinates (I, I;); the first coordinate being the horizon-
tal distance from the left borehole and the second coordinate being the depth, both
measured in pixels. To compute a perturbed image, the domain used in Algorithm 4
is defined as follows

Dy={lezZ\Z° |l —ki| <7, |l — k| <7}

The values of all pixels [ € D; will be re-simulated using Sequential Simulation con-
ditioned to the remaining pixels / ¢ Dy. We are not using any hard data in the exam-
ple, which means Z°°" = .

This choice of template function yields n = 34 where the geometrical shape of the
neighborhood of inner pixels is a 7 pixels by 5 pixels rectangle. This is chosen based
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Fig. 6 The computed models 0 0
for increasing values of o:
—10-3 — 102
(a)oz_loil,(b)a_lo , 200 200
@©a=10"",(d)a=10
400 400
E E
£ 600 £ 600
= =%
J+F] 5]
(=] (=)}
800 800
1000 1000
a
1200 1200
0 500 0 500
Distance [m] Distance [m]
(a) o= 1073. (b) a=10"2.
- e
200 200
400 * 400
E E
£ 600 £ 600
o o
5] <
=] =}
800 h 800
1000! 1000
1200 1200
0 500 0 500
Distance [m] Distance [m]
(¢) a=10"1. (d) a=10.

on the trends in the training image, where the distance of continuity is larger horizon-
tally than vertically. However, it should be noted that this choice of template function
is not expected to meet the assumptions of conditional independence of Sect. 2.2.
The distance of continuity in the training image appears much larger horizontally
than only seven pixels, and vertically the width of the channels is approximately ten
pixels. This implies that, despite matched frequency distributions, a computed so-
lution will not necessarily be recognized to have the same visual structures as the
training image. The goal is solve the inverse problem which involves fitting the data
and therefore, as our example will show, neighborhoods of this size are sufficient.
The data-fitting term of the objective function guides the solution method, such that
the structures from the training image are correctly reproduced. The low number of
neighbors constrains the small-scale variations, which are not well-determined by the
travel time data. However, the travel time data successfully determine the large-scale
structures. The template function does not need to describe structures of the largest
scales of the training image as long as the observed data are of a certain quality.

@ Springer



Math Geosci (2012) 44:783-803 801

Fig. 7 L-curve used to
determine the optimal « value.
Models have been computed for
13 logarithmically distributed
values of « ranging from 1
(upper left corner) to 103
(lower right corner). Each of the
13 models is marked with a blue
circle. See the text for further
explanation

Likelihood term

Prior term

Figure 4 shows the reference model that describes what is considered to be the
true velocity profile between the two boreholes. The image has been generated by the
snesim algorithm (Strebelle 2002) using the multiple point statistics of the training
image. The arrival times d for the reference model m™ are computed by a forward
computation, d = Gm™. We define the observed arrival times d°* as the computed
arrival times d added 5 % Gaussian noise. Figure 5 shows the solution computed us-
ing 15,000 iterations for ¢ = 1.8 x 1072, The solution resembles the reference model
to a high degree. The FM method detected the four channels; their location, width and
curvature correspond to the reference model. The computations took approximately
33 minutes on a Macbook Pro 2.66 GHz Intel Core 2 Duo with 4 GB RAM.

Before elaborating on how the o value was determined, we present some of the
models computed for different values of «. Figure 6 shows the computed models for
four logarithmically distributed values of o between 10~ and 10'. It is seen how
the model for lowest value of « is geologically unrealistic and does not reproduce
the a priori expected structures from the training image as it primarily is a solution
to the ill-posed, under-determined, data-fitting problem. As « increases, the channel
structures of the training image are recognized in the computed models. However, for
too large o values the solutions are dominated by the x2 term as the data have been
deprioritized, and the solutions are not geologically reasonable either. As discussed,
the chosen template is too small to satisfy the conditions from Sect. 2.2, yielding
models that do in fact minimize the X2 distance, but do not reproduce the structures
form the training image. The data misfit is now assigned too little weight to help
compensate for the small neighborhoods, and the compromise between minimizing
the data misfit and minimizing the dissimilarity that before worked out well is no
longer present.

We propose to use the L-curve method (Hansen and O’Leary 1993) to determine
an appropriate value of . Figure 7 shows the value of x>(m™) versus the value of
% | g (mfM) — gobs I|éd for 13 models. The models have been computed for logarithmi-

cally distributed values of « ranging from 1 (upper left corner) to 103 (lower right
corner). Each of the 13 models is marked with a blue circle. The models from Fig. 6
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are furthermore marked with a red circle. The model from Fig. 5 is marked with a red
star. We recognize the characteristic L-shaped behavior in the figure and the model
from Fig. 5 is the model located in the corner of the L-curve. The corresponding value
o = 1.8 x 1072 is therefore considered an appropriate value of c.

5 Conclusions

We have proposed the frequency matching method which enables us to quantify a
probability density function that describes the multiple point statistics of an image.
In this way, the maximum a posteriori solution to an inverse problem using training
image-based complex prior information can be computed. The frequency matching
method formulates a closed form expression for the a priori probability of a given
model. This is obtained by comparing the multiple point statistics of the model to the
multiple point statistics from a training image using a 2 dissimilarity distance.
Through a synthetic test case from crosshole tomography, we have demonstrated
how the frequency matching method can be used to determine the maximum a pos-
teriori solution. When the a priori distribution is used in inversion, a parameter « is
required. We have shown how we are able to recreate the reference model by choos-
ing this weighing parameter appropriately. Future work could focus on determining
the theoretically optimal value of « as an alternative to using the L-curve method.
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