
IMA Journal of Applied Mathematics (2015) Page 1 of 30
doi:10.1093/imamat/hxv019
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A new general transform method for the solution of mixed boundary value problems (BVPs) for Laplace’s
equation in multiply connected circular domains is formulated. Circular domains are those with bound-
aries that are a union of circular arcs and/or straight line segments. Constructive schemes based on the
method are showcased by application to some concrete problems in fluid mechanics. In particular, a BVP
of topical interest in the study of superhydrophobic surfaces is solved and compared with an existing
numerical solution.
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1. Introduction

Consider the 2D domain D in an (x, y)-plane shown in Fig. 1: the region exterior to a circular disc in a
channel of uniform width running parallel to the x-axis (a ‘disc-in-channel’ geometry). This geometry
arises in many physical science applications and it is often required to solve mixed boundary value
problems (BVPs) for various partial differential equations in such a domain. One such application, of
current interest in the field of microfluidics, is treated in Section 8 where the so-called slip lengths over
a class of superhydrophobic ‘bubble mattresses’ are found using the new techniques to be presented in
this paper. Despite the simplicity and ubiquity of this domain, it is difficult to find in the literature any
constructive analytical techniques to solve basic BVPs defined in it, although a number of attempts have
been made. Richmond (1923), for example, derived a conformal mapping, in terms of elementary func-
tions, to a domain that is close to the disc-in-channel geometry of Fig. 1 (the boundary of the ‘disc’ in his
study is only approximately circular) and used it to solve the BVPs of interest to him (see also Martin &
Dalrymple, 1988). Poritsky (1960) proposed a quasi-analytical approach for a problem of electrostatics
in the disc-in-channel geometry based on the idea of expanding one natural basis set in terms of another.
Often, purely numerical schemes are used such as boundary integral, domain decomposition or finite
element methods (e.g. Teo & Khoo, 2010; Ng & Wang, 2011).

It is not even obvious how one might best represent a simple analytic function f (z) defined in D.
If the circular disc is absent, Fourier transform representations of f (z) in a channel geometry come to
mind; but then possible singularities of f (z) inside the disc must be accounted for. On the other hand,
if just the disc is present (with no confining channel walls), one might think to represent f (z) using a
Laurent series about the disc centre; but then its radius of convergence will be limited by the channel
walls and will not give a uniformly valid representation in the whole of D. Intuitively, one ideally needs
some amalgam, or hybrid, of these two ideas.
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Fig. 1. The ‘disc-in-channel’ geometry D is a doubly connected circular domain.

The purpose of this paper is to present a new transform technique that is ideally suited to D, and
to other, more general, circular geometries like it. The new method leads to uniformly valid (spectral)
representations of analytic functions in the relevant domains as well as to concomitant global relations
that can be analysed to solve BVPs posed in them. Circular domains are defined to be domains, possibly
multiply connected, whose boundaries are a mixture of circular arcs and/or straight lines. The domain
D in Fig. 1 qualifies as a doubly connected circular domain.

It is not usual to associate ‘transform methods’ with circular domains, let alone bounded ones.
Traditionally, Fourier and Mellin transforms, and their variants (e.g. sine/cosine transforms), are applied
in unbounded channel or wedge geometries having straight line boundaries with special techniques,
such as Wiener–Hopf methods, invoked to tailor those transform methods to other geometries (e.g.
semi-strips, or half-wedges).

However, in a recent paper Crowdy (2015) the author has presented what he argues are the natural
analogues of Fourier–Mellin transforms for general circular domains. There, the focus is on simply
connected circular domains of general type. It was also shown in that work how the new transforms are
a natural generalization of the transform pairs for simply connected, convex polygonal domains first
written down by Fokas & Kapaev (2003). As such, the new transforms of Crowdy (2015) fit neatly into
the armoury of new transform techniques that have become known collectively as the unified transform
method pioneered in recent years by Fokas (2008) (see also Fokas & Spence, 2012). The formulation
in Crowdy (2015) appears to be the first to extend the Fokas unified transform technique to a PDE in
general circular domains.

Going further, the present paper gives an extension of the new transform approach of Crowdy (2015)
to the case of multiply connected circular domains (again, providing what appears to be the first exten-
sion of the unified transform method to domains with such non-trivial topology). Here we restrict atten-
tion to BVPs for Laplace’s equation defined in such domains. The construction of the transform pairs is
given in general in Sections 3 and 4, but the possibilities of the method are best showcased by dint of
application to concrete problems as given in Sections 7 and 8.

2. Transform pairs for polygons

This section presents an elementary derivation of the transform method for convex polygons first intro-
duced by Fokas & Kapaev (2003), who used other techniques. The material in this section is borrowed
from Crowdy (2015), but this background is needed to formulate the multiply connected generalization.

We start with a basic geometrical observation. If z′ lies on some finite length slit on the real axis and
z is in the upper-half plane, see Fig. 2, then

0< arg[z − z′]<π . (2.1)

 at Im
perial C

ollege L
ondon on O

ctober 8, 2015
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


TRANSFORM METHOD FOR MULTIPLY CONNECTED CIRCULAR DOMAINS 3 of 30

Fig. 2. Geometrical positioning of z and z′ for the validity of (2.3).

Fig. 3. Geometrical positioning of z and z′ for the validity of (2.7).

It follows trivially that ∫ ∞

0
eik(z−z′) dk =

[
eik(z−z′)

i(z − z′)

]∞

0

= 1

i(z′ − z)
(2.2)

or,
1

z′ − z
= i

∫ ∞

0
eik(z−z′) dk, 0< arg[z − z′]<π . (2.3)

It is easy to check that the contribution from the upper limit of integration vanishes for the particular
choices of z′ and z to which we have restricted consideration.

On the other hand, suppose that z′ lies on some other finite length slit making angle χ with the
positive real axis and suppose that z is in the half-plane shown in Fig. 3 (the half-plane ‘to the left’ of
the slit as one follows its tangent with uniform inclination angle χ ). Now the affine map

z′ �→ z′ e−iχ − α, z �→ z e−iχ − α, (2.4)
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Fig. 4. A convex polygon P as an intersection of N = 3 half-planes with N angles {χj | j = 1, 2, 3}. Formula (2.7) can be used in
the Cauchy integral formula with χ = χj when z′ is on side Sj (for j = 1, 2, 3).

for example, where the (unimportant) constant α is shown in Fig. 3, takes the slit to the real axis, and z
to the upper-half plane, and

0< arg[e−iχ (z − α)− e−iχ (z′ − α)]<π . (2.5)

Hence, on use of (2.3) with the substitutions (2.4), we can write

1

e−iχ (z′ − α)− e−iχ (z − α)
= i

∫ ∞

0
eik(e−iχ (z−α)−e−iχ (z′−α)) dk, (2.6)

or, on cancellation of α and rearrangement,

1

z′ − z
= i

∫ ∞

0
ei e−iχ k(z−z′) e−iχ dk. (2.7)

This expression is valid uniformly for all z and z′ having the geometrical positioning depicted in Fig. 3.
Now consider a bounded convex polygon P with N sides {Sj | j = 1, . . . , N}. Figure 4 shows an

example with N = 3. For a function f (z) analytic in P, Cauchy’s integral formula provides that for
z ∈ P,

f (z)= 1

2π i

∮
∂P

f (z′) dz′

z′ − z
. (2.8)

We can separate the boundary integral into a sum over the N sides:

f (z)= 1

2π i

N∑
j=1

∫
Sj

f (z′)
1

(z′ − z)
dz′. (2.9)
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But if side Sj has inclination χj, then (2.7) can be used, with χ �→ χj, to re-express the Cauchy kernel
uniformly for all z ∈ P and z′ on the respective sides:

f (z)= 1

2π i

N∑
j=1

∫
Sj

f (z′)
{

i
∫ ∞

0
ei e−iχj k(z−z′) e−iχj dk

}
dz′. (2.10)

On reversing the order of integration, we can write

f (z)= 1

2π

N∑
j=1

∫
L
ρjj(k) e−iχj ei e−iχj kz dk, (2.11)

where, for integers m, n between 1 and N , we define the spectral matrix to be

ρmn(k)≡
∫

Sn

f (z′) e−i e−iχm kz′
dz′, (2.12)

and where L = [0, ∞) is the fundamental contour for straight line edges.

2.1 The global relations

Observe that, for any k ∈ C, and for any m = 1, . . . , N ,

N∑
n=1

ρmn(k)=
N∑

n=1

∫
Sn

f (z′)e−i e−iχm kz′
dz′ =

∫
∂P

f (z′) e−i e−iχm kz′
dz′ = 0, (2.13)

where we have used Cauchy’s theorem and the fact that f (z′) e−i e−iχm kz′
(for m = 1, . . . , N) is analytic

inside P. There are N such global relations relating different elements of the spectral matrix, but each is
an equivalent statement of the analyticity of f (z) in the domain P.

While the global relations relate all elements of the spectral matrix, it is worth emphasizing that only
the diagonal elements of the spectral matrix appear in the integral representation (2.11).

The formulation above differs slightly from that given in Fokas & Kapaev (2003) where the
notions of spectral matrix and fundamental contour are not introduced. Note that, by defining, for each
j = 1, . . . , N , the change of spectral variable given by

λj = e−iχj k (2.14)

in both the spectral functions and the integral representation then, rather than a sum of N contributions
over the single fundamental contour in the spectral plane, it is easy to check that the transform pair (2.11)
and (2.12) can be written as a sum of contributions from N (generally distinct) rays in the spectral plane:

f (z)= 1

2π

N∑
j=1

∫
Lj

ρ̃j(λ) eiλz dλ, ρ̃j(λ)≡
∫

Sj

f (z′) e−iλz′
dz′, (2.15)

where Lj = [0, ∞e−iχj) is the ray defined by arg[λ] = −χj (these coincide with the definitions given in
Fokas & Kapaev, 2003). Figure 5 shows the rays for the polygon shown in Fig. 4.
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6 of 30 D. CROWDY

Fig. 5. The fundamental contour L for straight line edges (shown left). The spectral rays {Lj | j = 1, 2, 3} from Fokas & Kapaev
(2003) for the N = 3 polygon P shown in Fig. 4 (left). The latter rays are images of L under the N transformations (2.14).

Transform pairs for unbounded polygons, such as semi-strips, can also be derived (Fokas & Kapaev,
2003) with minor modifications to the derivation above (the only difference is that the global relations
are now valid only in restricted parts of the spectral k-plane).

3. Transform pairs for circular domains

The following integral representation, established by the author in Crowdy (2015), is uniformly valid
for |z|< 1:

1

1 − z
=

∫
L1

1

1 − e2π ik
zk dk +

∫
L2

zk dk +
∫

L3

e2π ik

1 − e2π ik
zk dk. (3.1)

The integrals are taken around the so-called fundamental contour for circular edges. The contour L1 is
the union of the negative imaginary axis (−i∞, −ir], where 0< r< 1, and the arc of the quarter circle
|k| = r in the third quadrant traversed in a clockwise sense; the contour L2 is the real interval [−r, ∞);
the contour L3 is the arc of the quarter circle |k| = r in the second quadrant traversed in a clockwise
sense together with the portion of the positive imaginary axis [ir, i∞). These contours are illustrated
in Fig. 6. All integrals in (3.1) are non-singular and it is easy to verify directly that all integrands are
exponentially decaying as |k| → ∞ uniformly for all |z|< 1.

3.1 Transform pair for interior of unit disc

Let z′ be a point on the unit circle and let |z|< 1 be a point inside the unit disc as depicted in Fig. 7.
Then |z/z′|< 1 and it follows on letting z �→ z/z′ in (3.1) that

z′

z′ − z
=

∫
L1

1

1 − e2π ik

zk

z′k dk +
∫

L2

zk

z′k dk +
∫

L3

e2π ik

1 − e2π ik

zk

z′k dk. (3.2)

The Cauchy kernel is therefore given by the spectral representation

1

z′ − z
=

∫
L1

1

1 − e2π ik

zk

z′k+1
dk +

∫
L2

zk

z′k+1
dk +

∫
L3

e2π ik

1 − e2π ik

zk

z′k+1
dk. (3.3)
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Fig. 6. The fundamental contour for circular edges.

Fig. 7. Geometry of z′ and z for derivation of (3.6).

The Cauchy integral formula for some function f (z) analytic in the unit disc D is

f (z)= 1

2π i

∮
|z′|=1

f (z′)
z′ − z

dz′. (3.4)
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On substitution of the representation (3.3) for the Cauchy kernel, which is uniformly valid for the chosen
z′ and z, we find

f (z)= 1

2π i

∮
|z′|=1

f (z′)
[∫

L1

1

1 − e2π ik

zk

z′k+1
dk +

∫
L2

zk

z′k+1
dk +

∫
L3

e2π ik

1 − e2π ik

zk

z′k+1
dk

]
dz′. (3.5)

On swapping the order of integration, we arrive at the transform pair⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (z)= 1

2π i

{∫
L1

ρ(k)

1 − e2π ik
zk dk +

∫
L2

ρ(k)zk dk +
∫

L3

ρ(k)e2π ik

1 − e2π ik
zk dk

}
,

ρ(k)=
∮

|z′|=1

f (z′)
z′k+1

dz′.

(3.6)

The global relation is
ρ(k)= 0, k ∈ −N, (3.7)

since, for this discrete set of k-values, the integrand of the integral defining ρ(k) is analytic in the
unit disc.

3.2 Transform pair for exterior of unit disc

The transform pair for the exterior of the unit disc follows similarly. For z′ on the unit circle with |z|> 1
then |z′/z|< 1 and setting z �→ z′/z in (3.1) gives the identity

z

z − z′ =
∫

L1

1

1 − e2π ik

(
z′

z

)k

dk +
∫

L2

(
z′

z

)k

dk +
∫

L3

e2π ik

1 − e2π ik

(
z′

z

)k

dk. (3.8)

Hence, we have the spectral representation of the Cauchy kernel given by

1

z − z′ =
∫

L1

1

1 − e2π ik

z
′k

zk+1
dk +

∫
L2

z
′k

zk+1
dk +

∫
L3

e2π ik

1 − e2π ik

z
′k

zk+1
dk. (3.9)

For |z|> 1, the Cauchy integral formula

f (z)= − 1

2π i

∮
|z′|=1

f (z′)
z′ − z

dz′ (3.10)

holds for a function analytic outside the unit disc and is O(1/z) as z → ∞. Use of (the uniformly valid)
expression (3.9) in the Cauchy integral formula then produces the following transform pair for such a
function: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f (z)= 1

2π i

{∫
L1

ρ(k)

1 − e2π ik

dk

zk+1
+

∫
L2

ρ(k)
dk

zk+1
+

∫
L3

ρ(k) e2π ik

1 − e2π ik

dk

zk+1

}
,

ρ(k)=
∮

|z′|=1
f (z′)z

′k dz′.
(3.11)

The global relation is
ρ(k)= 0, k ∈ −N (3.12)
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TRANSFORM METHOD FOR MULTIPLY CONNECTED CIRCULAR DOMAINS 9 of 30

since, for this discrete set of k-values, the integrand of the integral defining ρ(k) is analytic outside the
disc and is O(1/z2) as z → ∞.

If, instead, we are interested in the unbounded region exterior to the disc of radius q and centred at
z = δ the modified transform pair is easily shown to be

f (z)= 1

2π i

{∫
L1

ρ(k)

1 − e2π ik

[
q

z − δ

]k+1

dk +
∫

L2

ρ(k)

[
q

z − δ

]k+1

dk

+
∫

L3

ρ(k) e2π ik

1 − e2π ik

[
q

z − δ

]k+1

dk

}
,

ρ(k)= 1

q

∮
|z′−δ|=q

f (z′)
[

z′ − δ

q

]k

dz′. (3.13)

For future use, we prefer to write (3.13) with the addition of two minus signs:

f (z)= − 1

2π i

{∫
L1

ρ(k)

1 − e2π ik

[
q

z − δ

]k+1

dk +
∫

L2

ρ(k)

[
q

z − δ

]k+1

dk

+
∫

L3

ρ(k) e2π ik

1 − e2π ik

[
q

z − δ

]k+1

dk

}
,

ρ(k)= −1

q

∮
|z′−δ|=q

f (z′)
[

z′ − δ

q

]k

dz′, (3.14)

which clearly does not affect the transform pair. The reason for this is to preserve the convention that
the spectral function is the integral around the boundary of the domain with that domain on the left as
the boundary is traversed.

3.3 Transform pairs for multiply connected domains

What follows is new, and extends the ideas of Crowdy (2015). Consider now the multiply connected
circular region D bounded by M + 1 circles {Cj | j = 0, . . . , M } as shown schematically in Fig. 8 for
M = 2. Suppose now that some function f (z) is both analytic and single-valued in D. The Cauchy
integral formula for f (z) is

f (z)= 1

2π i

∮
∂D

f (z′)
z′ − z

dz′ = 1

2π i

∮
C0

f (z′)
z′ − z

dz′ − 1

2π i

M∑
j=1

∮
Cj

f (z′)
z′ − z

dz′, (3.15)

where the integral around ∂D has been separated into the M + 1 integrals around the circular arcs
{Cj | j = 0, . . . , M }. The domain D is the intersection of the interior of circle C0 and the exterior of the
circles {Cj | j = 1, . . . , M }.
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10 of 30 D. CROWDY

Fig. 8. A multiply connected circular domain D (for M = 2).

By substituting the relevant spectral representations of the Cauchy kernel for z′ on each boundary
circle, and for z ∈ D, it can be deduced that the required integral representation is

f (z)= 1

2π i

{∫
L1

ρ00(k)

1 − e2π ik
zk dk +

∫
L2

ρ00(k)z
k dk +

∫
L3

ρ00(k) e2π ik

1 − e2π ik
zk dk

}

−
M∑

j=1

1

2π i

{∫
L1

ρjj(k)

1 − e2π ik

(
qj

z − δj

)k+1

dk +
∫

L2

ρjj(k)

(
qj

z − δj

)k+1

dk

+
∫

L3

ρjj(k)e2π ik

1 − e2π ik

(
qj

z − δj

)k+1

dk

}
, (3.16)

where the spectral matrix (Crowdy, 2015) is defined for n = 0, 1, , . . . , M by

ρ0n(k)≡
∮

Cn

f (z′)[z′]−k−1 dz′,

ρmn(k)≡ − 1

qm

∮
Cn

f (z′)
[

z′ − δm

qm

]k

dz′, m = 1, . . . , M .

(3.17)

Global relations are
M∑

n=0

ρmn(k)= 0, k ∈ −N, m = 0, . . . , M . (3.18)

An important remark is in order. In contrast to the situation for simply connected domains treated
in Crowdy (2015), the global relations (3.18) for different m = 0, . . . , M are not equivalent since they
are associated with disconnected boundary components. This is a crucial distinction from the simply
connected case where there is only a single boundary component. This means that all the relations
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(3.18) must be analysed simultaneously to solve a given BVP. We will show explicitly how to go about
this in the examples of Sections 7 and 8.

4. BVPs for Laplace’s equation

Suppose that we seek the single-valued harmonic function φ satisfying

∇2φ(x, y)= 0, (x, y) ∈ D, (4.1)

and some given set of boundary conditions on the boundary circles of a typical multiply connected
circular domain D similar to that shown in Fig. 8. These conditions might be of Dirichlet, Neumann or
Robin type, or some combination thereof, even including the possibility of several conditions of mixed
type on the same boundary circle. For now, it is not necessary to specify the precise nature of these
boundary conditions.

For Laplace’s equation in a multiply connected domain D, we can still write

φ = Re[g(z)] (4.2)

for some function g(z) that is analytic in D, but the non-trivial topology of the domain now means that
g(z) is not necessarily single-valued in D. But the single-valuedness of φ implies that the derivative
g′(z)= dg/dz is both analytic and single-valued in D [see Crowdy (2008) for a discussion of these
matters with respect to the so-called Schwarz problem in multiply connected domains]. Therefore, from
earlier results, we can write the following transform representation for g′(z):

g′(z)= 1

2π i

{∫
L1

ρ00(k)

1 − e2π ik
zk dk +

∫
L2

ρ00(k)z
k dk +

∫
L3

ρ00(k) e2π ik

1 − e2π ik
zk dk

}

− 1

2π i

M∑
j=1

{∫
L1

ρjj(k)

1 − e2π ik

(
qj

z − δj

)k+1

dk +
∫

L2

ρjj(k)

(
qj

z − δj

)k+1

dk

+
∫

L3

ρjj(k) e2π ik

1 − e2π ik

(
qj

z − δj

)k+1

dk

}
, (4.3)

where the spectral matrix is defined for n = 0, 1, , . . . , M by

ρ0n(k)≡
∮

Cn

g′(z′)[z′]−k−1 dz′,

ρmn(k)≡ − 1

qm

∮
Cn

g′(z′)
[

z′ − δm

qm

]k

dz′, m = 1, . . . , M .

(4.4)

Global relations are
M∑

n=0

ρmn(k)= 0, k ∈ −N, m = 0, . . . , M . (4.5)
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12 of 30 D. CROWDY

A transform representation for g(z) now follows on integration with respect to z:

g(z)= 1

2π i

{∫
L1

ρ00(k)

1 − e2π ik

zk+1

(k + 1)
dk +

∫
L2

ρ00(k)
zk+1

(k + 1)
dk +

∫
L3

ρ00(k) e2π ik

1 − e2π ik

zk+1

(k + 1)
dk

}

+ 1

2π i

M∑
j=1

{∫
L1

ρjj(k)

k(1 − e2π ik)

(
qj

z − δj

)k

dk +
∫

L2

ρjj(k)

k

(
qj

z − δj

)k

dk

+
∫

L3

ρjj(k) e2π ik

k(1 − e2π ik)

(
qj

z − δj

)k

dk

}
. (4.6)

The corresponding spectral matrix (4.4) can also be re-expressed in terms of g(z) (instead of g′(z)) on
use of integration by parts.

It is interesting to remark that the integration with respect to z has increased by one the order of
the singularity of the integrand at k = 0 in the M spectral integrals associated with the interior holes in
formula (4.6) (but not, on the other hand, in the integral associated with the outer boundary). Removing
these M additional singularities would clearly require the conditions

ρjj(0)= 0, j = 1, . . . , M (4.7)

to hold. On use of the definitions of the spectral functions in (4.4), this is equivalent to the conditions∮
Cj

g′(z) dz = [g(z)]Cj = 0, j = 1, . . . , M , (4.8)

where square brackets denote the change in the contained quantity on an anticlockwise traversal of
the subscripted contour. The conditions (4.8), in turn, are clearly a statement that g(z) is single-valued
in the multiply connected domain D (in which case we can, from the outset, start with a transform
representation of g(z) having the form (4.3) originally assumed only to hold for g′(z) which is always
known, a priori, to be single-valued).

For generic BVPs, however, conditions (4.7) will not pertain and it is easy to verify that the second
order pole at k = 0 forces logarithmic singularities of g(z) associated with each hole, as expected from
more general considerations of BVPs in multiply connected domains (Gakhov, 1990; Crowdy, 2008).

In the following sections, we will proceed under the assumption that solving for the functions in the
spectral matrix will lead, on substitution of that spectral data into the integral representations for the
relevant analytic functions, to the solution of the stated BVP. That this is true is not obvious, but it has
been established for BVPs for Laplace equations in convex polygons by Fulton et al. (2004) and for
general elliptic equations in arbitrary convex domains by Ashton (2012).

5. Remark on multiply connected polygons

Before thinking of multiply connected circular domains one might ask: what is the generalization of the
results of Fokas & Kapaev (2003) to multiply connected polygons (having just straight line edges)?

The answer is as follows. We have just exploited the fact that a multiply connected circular region
can be understood as the intersection of the interior of one outer circle (denoted by C0) and the exterior
of M smaller interior circles (denoted by {Cj | j = 1, . . . , M }). A multiply connected polygonal region
can be defined similarly: it is the intersection of the interior of some outer polygonal boundary ∂P0,
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Fig. 9. A doubly connected polygonal domain P. There is no single transform expression valid uniformly in P; however, it can be
subdivided into the four convex polygonal subregions shown.

say, with the exterior of M smaller interior polygonal boundaries (denoted by {∂Pj | j = 1, . . . , M }, say).
However, as discussed in Crowdy (2015), for the unbounded region exterior to some bounded polygon
(e.g. one of the Pj’s) and enclosing the point at infinity, it is geometrically impossible for such a domain
to be an intersection of a finite collection of half-planes. Rather, such an unbounded polygonal region
can be split up into an atlas of convex polygons that are the intersection of half-planes; this was done,
for example, by Charalambopoulos et al. (2010) in the case of the exterior of an equilateral triangle.
Consequently, to formulate transform pairs for any multiply connected polygonal region, it is similarly
necessary to split that multiply connected domain into a finite union of convex polygonal subdomains
in each of which a different transform representation is valid (with continuity imposed across common
edges).

Figure 9 shows an example doubly connected domain P together with one way (there are many)
in which it can be decomposed into four convex polygonal regions {Pj | j = 1, . . . , 4} in which various
transform expressions can be written down. This is easily done, but we will not do so here. Continuity
of φ must be imposed over the common edges of distinct polygons in this atlas as done in the analysis,
using the unified transform method, of some problems of Wiener–Hopf type in Crowdy & Luca (2014)
(although there the splitting of the domain was done for different reasons).

The same feature just described is not necessarily true, however, for multiply connected circular
domains, as we have already seen for domains of the kind shown in Fig. 8. Moreover, it is even possible
to find circular domains having a mixture of circular and straight line edges for which the need to split
up the domain into smaller subdomains is unnecessary. Domain D of Fig. 1 is one such example.

By now, it should be clear to the reader how to combine the ideas of Section 2 (for straight line edges)
and Section 3 (for multiply connected circular-arc edges) to produce hybrid transform pairs for multiply
connected domains involving both circular and straight line edges. Essentially, starting from Cauchy’s
integral formula, for each edge of the domain one substitutes the appropriate spectral representations of
the Cauchy kernel, swaps the order of integration and arrives at the relevant transform pairs.

6. Modified Schwarz problem in multiply connected circular domains

In this section, we briefly indicate how to use the new transform approach to solve a very basic BVP: the
classic (modified) Schwarz problem in a multiply connected circular domain. This problem has already

 at Im
perial C

ollege L
ondon on O

ctober 8, 2015
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


14 of 30 D. CROWDY

been considered by the author in Crowdy (2008) where quite different special function theory methods
are employed. Here we tackle the same problem within the new transform approach.

Suppose that f (z) is analytic, and single-valued, in the multiply connected circular region D com-
prising the unit disc with M smaller discs excised. C0 denotes the unit circle, {Cj, j = 1, . . . , M } denote
the other interior circular boundaries. The centre of Cj is at δj ∈ C, its radius is qj ∈ R. Suppose that, on
Cj for j = 0, 1, . . . , M ,

f (z)= φj(z, z̄)+ irj(z, z̄), (6.1)

where rj(z, z̄) is a given function. It should be noted that, in order for the single-valued function f (z)
to exist, the given data rj(z, z̄) must satisfy certain compatibility conditions; these are precisely the
conditions (4.7) discussed earlier. We present the details below for the case M = 2 (triply connected)
shown in Fig. 8. The generalization to higher M will be obvious.

Since f (z) is analytic and single-valued in D, the global relations (3.18), which hold for all k ∈ −N,
are

∮
C0

f (z)z−k−1 dz −
∮

C1

f (z)z−k−1 dz −
∮

C2

f (z)z−k−1 dz = 0,

∮
C0

f (z)

[
z − δ1

q1

]k

dz −
∮

C1

f (z)

[
z − δ1

q1

]k

dz −
∮

C2

f (z)

[
z − δ1

q1

]k

dz = 0,

∮
C0

f (z)

[
z − δ2

q2

]k

dz −
∮

C1

f (z)

[
z − δ2

q2

]k

dz −
∮

C2

f (z)

[
z − δ2

q2

]k

dz = 0.

(6.2)

We will use these global relations to find the unknown real parts {φj(z, z̄) | j = 0, 1, . . . , M } of f (z) on
the boundaries. On substitution of (6.1) into (6.2), we find, for k ∈ −N,

∮
C0

φ0z−k−1 dz −
∮

C1

φ1z−k−1 dz −
∮

C2

φ2z−k−1 dz = R0(k),

∮
C0

φ0

[
z − δ1

q1

]k

dz −
∮

C1

φ1

[
z − δ1

q1

]k

dz −
∮

C2

φ2

[
z − δ1

q1

]k

dz = R1(k),

∮
C0

φ0

[
z − δ2

q2

]k

dz −
∮

C1

φ1

[
z − δ2

q2

]k

dz −
∮

C2

φ2

[
z − δ2

q2

]k

dz = R2(k),

(6.3)

where

R0(k)≡ −
{∮

C0

ir0z−k−1 dz −
∮

C1

ir1z−k−1 dz −
∮

C2

ir2z−k−1 dz

}
,

R1(k)≡ −
{∮

C0

ir0

[
z − δ1

q1

]k

dz −
∮

C1

ir1

[
z − δ1

q1

]k

dz −
∮

C2

ir2

[
z − δ1

q1

]k

dz

}
,

R2(k)≡ −
{∮

C0

ir0

[
z − δ2

q2

]k

dz −
∮

C1

ir1

[
z − δ2

q2

]k

dz −
∮

C2

ir2

[
z − δ2

q2

]k

dz

}
.

(6.4)
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The latter are all known functions. To find the {φj(z, z̄) | j = 0, 1, . . . , M }, we decompose each as

φ0(z, z̄)= a0 +
∑
n�1

[
anzn + ān

zn

]
,

φ1(z, z̄)= b0 +
∑
n�1

[
bn

(
z − δ1

q1

)n

+ b̄n

(
q1

z − δ1

)n]
,

φ2(z, z̄)= c0 +
∑
n�1

[
cn

(
z − δ2

q2

)n

+ c̄n

(
q2

z − δ2

)n]
.

(6.5)

These are representations of the most general real functions on the respective boundaries. It is clear from
the BVP that f (z) will only be determined up to an additive real constant so, without loss of generality,
we can set, say,

a0 = 0. (6.6)

On substitution of (6.5) into (6.4), we arrive at a linear system for the unknown coefficients in (6.5);
indeed, the elements of the matrix system can be computed explicitly. The resulting system can be
solved by evaluating (6.4) at as many values of k ∈ −N as one likes to form an overdetermined system
that can be solved by a least-squares method. With f (z) now determined on the boundaries, Cauchy’s
integral formula can be used to evaluate f (z) at interior points of D.

In the special case where D is a concentric annulus one takes M = 1 and sets δ1 = 0 and q1 = ρ for
some 0<ρ < 1. The global relations (6.2) are then∮

C0

f (z)z−k−1 dz −
∮

C1

f (z)z−k−1 dz = 0, k ∈ −N,

∮
C0

f (z)

[
z

ρ

]k

dz −
∮

C1

f (z)

[
z

ρ

]k

dz = 0, k ∈ −N,

(6.7)

which, when combined, are equivalent to∮
∂D

f (z)zk dz = 0, k ∈ Z, (6.8)

where ∂D denotes the entire boundary of D. This is clearly just a statement of the analyticity of the
single-valued function f (z) in the annulus D.

7. Uniform flow past two cylinders

A more interesting example is to consider a problem of classical ideal (inviscid) fluid mechanics. We
seek the solution for the steady irrotational uniform flow, parallel to the real axis, past two unit radius
cylinders centred at (0, ±h) where h> 1 so that the fluid domain is doubly connected. Figure 10 shows
a schematic. Let z = x + iy and let the complex potential for the flow be

w(z)= φ + iψ , (7.1)

where φ is the velocity potential and ψ is the streamfunction.
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16 of 30 D. CROWDY

Fig. 10. Uniform flow with unit speed parallel to the x-axis past two equal unit radius cylinders with centres at y = ±h (left). By
the symmetry with respect to the x-axis, the problem can be studied in the domain D shown right.

There are two ways to proceed with this problem. One option is to exploit the transform pair for
the doubly connected exterior of the two circular discs. A second option is to exploit the symmetry
of the configuration with respect to reflection in the x-axis and to confine attention to the flow in the
region D defined as the upper-half plane exterior to the cylinder centred at ih: y> 0 with |z − ih|> 1 as
shown in Fig. 10. Since the latter option involves a combination of circular and straight line edges, and
is therefore deemed to be more instructive, we adopt the second approach.

As z → ∞, we require that dw/dz = 1 hence

w(z)∼ z + constant, as z → ∞. (7.2)

The streamline conditions (no penetration of the fluid into the cylinder, or across the symmetry line) are

ψ =
{

0, y = 0,

c, |z − ih| = 1,
(7.3)

for some real constant c. It is assumed that the circulation around each cylinder is zero, which is required
for consistency with the assumed symmetry of the flow. This requires that w(z) is single-valued in D.

Now let

w(z)= z + ŵ(z), (7.4)

where we will use a transform method to find ŵ(z) which is analytic and single-valued in D. The bound-
ary conditions on ŵ(z), following from (7.3), are

Im[ŵ(z)] =
{

0, y = 0,

c − Im[z], |z − ih| = 1.
(7.5)

ŵ(z) is only determined by these conditions up to a real constant to be specified later.
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7.1 Transform representation

Since ŵ(z) is single-valued in D, we can write the following integral transform representation for z ∈ D:

ŵ(z)= 1

2π

∫
L
ρ11(k) eikz dk − 1

2π i

{∫
L1

ρ22(k)

1 − e2π ik

1

(z − ih)k+1
dk

+
∫

L2

ρ22(k)
1

(z − ih)k+1
dk +

∫
L3

ρ22(k) e2π ik

1 − e2π ik

1

(z − ih)k+1
dk

}
, (7.6)

where L = [0, ∞) is the fundamental contour for straight line edges and the set {Lj | j = 1, 2, 3} consti-
tutes the fundamental contour for circular edges. The two spectral functions in this formula are

ρ11(k)=
∫ +∞

−∞
ŵ(z) e−ikz dz, ρ22(k)= −

∮
|z−ih|=1

ŵ(z)(z − ih)k dz. (7.7)

Other elements of the spectral matrix are

ρ12(k)= −
∮

|z−ih|=1
ŵ(z) e−ikz dz, ρ21(k)=

∫ +∞

−∞
ŵ(z)(z − ih)k dz. (7.8)

The global relations are then

ρ11(k)+ ρ12(k)= 0, k < 0 (7.9)

and

ρ21(k)+ ρ22(k)= 0, k ∈ −N. (7.10)

Owing to the doubly connected nature of the problem domain these global relations are independent
and both must be analysed in finding the unknown boundary data.

7.2 Analysis of global relations

To analyse the global relations, we will write

ŵ(z)= φ(x) for z = x ∈ R, (7.11)

for some as yet unknown φ(x), and

ŵ(z)= a0 +
∑
m�1

am(z − ih)m + ām

(z − ih)m
+ i(c − Im[z]), on |z − ih| = 1. (7.12)

The function φ(x), the coefficients a0 ∈ R, {am ∈ C} and c ∈ R are to be found.
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The global relation (7.9) implies that

∫ ∞

−∞
φ(x) e−ikx dx =

∮
|z−ih|=1

ŵ(z) e−ikz dz = B1(k)+ R1(k), k < 0, (7.13)

where we define

B1(k)≡
∮

|z−ih|=1

⎡
⎣a0 + ic +

∑
m�1

am(z − ih)m + ām

(z − ih)m

⎤
⎦ e−ikzdz

= 2π i
∑
m�1

ām
ekh(−ik)m−1

(m − 1)!
(7.14)

and

R1(k)≡
∮

|z−ih|=1
−i Im[z]e−ikz dz = iπ ekh. (7.15)

On taking a complex conjugate of (7.13), and letting k �→ −k, we find

ρ11(k)=
∫ ∞

−∞
φ(x) e−ikx dx = B̄1(−k)+ R̄1(−k), k > 0. (7.16)

But from the inverse Fourier transform for the upper-half plane (Fokas & Kapaev, 2003) (or see
Section 2) we can write

φ(x)= 1

2π

∫ ∞

0

[
B̄1(−k)+ R̄1(−k)

]
eikx dk. (7.17)

Now (7.17) can be substituted into the second global relation (7.10) to produce

∫ ∞

0
I(k, n)

[
B̄1(−k)+ R̄1(−k)

]
dk =

∮
|z−ih|=1

ŵ(z)

(z − ih)n
dz, n � 1, (7.18)

where

I(k, 1)≡ 1

2π

∫ ∞

−∞

eikx dx

(x − ih)n
=

⎧⎪⎨
⎪⎩

ie−kh, k > 0,

i/2, k = 0,

0, k < 0,

(7.19)

and, for n � 2,

I(k, n)≡ 1

2π

∫ ∞

−∞

eikx dx

(x − ih)n
=

⎧⎨
⎩

inkn−1 e−kh

(n − 1)!
, k � 0,

0, k < 0,
(7.20)
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where we have carried out some standard exercises in residue calculus. On use of (7.12), the right-hand
side of (7.18) is

∮
|z−ih|=1

1

(z − ih)n

⎡
⎣a0 + ic +

∑
m�1

am(z − ih)m + ām

(z − ih)m
− i Im[z]

⎤
⎦ dz

=
{

2π i(a0 + ic)+ R2(1), n = 1,

2π ian−1 + R2(n), n � 2,
(7.21)

where we define

R2(n)≡
∮

|z−ih|=1

1

(z − ih)n
(−i Im[z]) dz =

⎧⎪⎨
⎪⎩

2πh, n = 1,

−iπ , n = 2,

0, n � 3.

(7.22)

Equation (7.18) therefore leads to the system of equations:

2π i(a0 + ic)+ R2(1)= +
∫ ∞

0
I(k, 1)[B̄1(−k)+ R̄1(−k)] dk,

2π ian−1 + R2(n)= +
∫ ∞

0
I(k, n)[B̄1(−k)+ R̄1(−k)] dk, n � 2.

(7.23)

Since ŵ(z) is only determined up to a real constant, we choose a0 = 0 then, because the right-hand side
of (7.23) is independent of c, the first equation in (7.23) determines c once the set {a1, a2, . . .} has been
found. From (7.23) with n �→ n + 1, the latter coefficients are solutions of the linear system

2π ian =
∫ ∞

0
I(k, n + 1)[B̄1(−k)+ R̄1(−k)] dk − R2(n + 1), n � 1. (7.24)

Hence, (7.24) is

an = 1

2π i

∫ ∞

0
I(k, n + 1)B̄1(−k) dk + 1

2π i

∫ ∞

0
I(k, n + 1)R̄1(−k) dk − R2(n + 1)

2π i
, (7.25)

for n � 1. On use of (7.14) and (7.15) this is equivalent to

an =
∑
m�1

am

{
(−1)mim+nJm+n−1

(m − 1)!n!

}
− 1

2

in+1Jn

n!
− R2(n + 1)

2π i
, n � 1, (7.26)

where

Jn ≡
∫ ∞

0
kn e−2kh dk = n!

(2h)n+1
(7.27)

with the latter equality following from a repeated integration by parts.
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Finally, the linear system to be solved for {an | n = 1, 2, . . .} is given explicitly by

an −
∑
m�1

am

{
im+n(−1)m(n + m − 1)!

n!(m − 1)!(2h)m+n

}
= − in+1

2(2h)n+1
− R2(n + 1)

2π i
, n � 1. (7.28)

This is easily solved.
With {an | n = 1, 2, . . .} and c determined from the solution of (7.28) and the first equation in (7.23)

then ŵ(z) on |z − ih| = 1 is now known so ρ22(k) can be found. The spectral function ρ11(k) follows
from (7.16).

7.3 Alternative solution via conformal mapping

The solution to this problem can also be obtained by completely different methods using a new calcu-
lus for ideal flows in multiply connected domains devised by the author (Crowdy, 2010). An implicit
parametric form of the solution W(ζ )≡ w(z) is given by

z = iA

[
ζ + √

ρ

ζ − √
ρ

]
, ρ = (h −

√
h2 − 1)2, A = 1 − ρ

2
√
ρ

,

W(ζ )= 2iA

[
K

(
ζ√
ρ

, ρ

)
+ K(ζ

√
ρ, ρ)− K(−1, ρ)− K(−ρ, ρ)

]
,

(7.29)

for ζ in the annulus ρ < |ζ |< 1. The special function K(ζ , ρ) is defined by

K(ζ , ρ)≡ ζP′(ζ , ρ)

P(ζ , ρ)
, P(ζ , ρ)≡ (1 − ζ )

∞∏
n=1

(1 − ρ2nζ )(1 − ρ2n/ζ ), (7.30)

where the prime notation denotes differentiation with respect to ζ . The function P(ζ , ρ) is essentially
the so-called Schottky–Klein prime function for the annulus ρ < |ζ |< 1. This alternative solution gives
a valuable check on the transform solution.

8. Superhydrophobic bubble mattresses

An important problem, of topical interest to the microfluidics community, is the problem of slow vis-
cous longitudinal shear flow over a superhydrophobic ‘bubble mattress’ (Crowdy, 2011). In contrast to
the inviscid flow problem of Section 7, this problem involves a highly viscous fluid (or, zero Reynolds
number flow). We omit a full description of the physical problem and focus only on giving a mathemat-
ical statement of the governing BVP. Further details of the physical problem, and related literature, can
be found in Crowdy (2011).

In the absence of a pressure gradient, the axial velocity parallel to the grooves of the bubble mattress
is harmonic, i.e.

∇2w = 0 (8.1)

and so we introduce z = x + iy and the complex potential

h(z)= χ + iw. (8.2)
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Fig. 11. Longitudinal flow w(x, y), into the page and for x> 0, past a periodic array of semi-circular bubbles centred at 2nli, n ∈ Z.
The flow takes place in x> 0 but the problem can be extended to the whole channel region exterior to a circular inclusion.

The required velocity field is the imaginary part, the function χ is its harmonic conjugate. The flow
takes place in the region x> 0, −l< y< l and for |z|> 1 (outside the unit disc) with l> 1 (Fig. 11).
This domain represents a single period window of a periodic arrangement of bubbles. The boundary
conditions are that

χ =

⎧⎪⎨
⎪⎩

−c, y = −l, x> 0,

c, y = l, x> 0,

0, |z| = 1, x � 0

(8.3)

and
w = 0, x = 0, 1 � |y| � l. (8.4)

By the symmetry of the flow, we also deduce that

χ = 0, on y = 0. (8.5)

The complex potential h(z) can be taken to be single-valued in the flow region. This completes the
statement of the problem.

Let
h(z)= iz + iλ coth

[πz

2 l

]
+ H(z), (8.6)

where H(z) and the so-called slip length λ are to be determined. H(z) is taken to vanish as x → ∞ and
to be analytic in the flow domain. On y = 0 or z̄ = z, (8.5) implies

Re[h(z)] = 0 = Re[H(z)]. (8.7)

Hence,
H̄(z)= −H(z). (8.8)

From (8.4), on z̄ = −z we also have

H(z)− H(z)= H(z)− H̄(−z)= H(z)+ H(−z)= 0, (8.9)
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where we have used (8.8). Thus, H(z) is an odd function:

H(−z)= −H(z). (8.10)

This allows us to extend the region of analyticity of H(z) into the entire channel region outside the
unit disc. Henceforth, we seek the solution for H(z) in the full channel domain exterior to the circular
inclusion shown in Fig. 11. The boundary conditions can now be written as

χ =

⎧⎪⎨
⎪⎩

−c, y = −l (side 1),

c, y = l (side 3),

0, |z| = 1 (side 2),

(8.11)

where we have now numbered the sides 1–3.
Clearly, on side 2, we have

Re[h(z)] = 0, (8.12)

which implies, on substitution of (8.6), that on |z| = 1,

Re[H(z)] = r0(z)+ λr1(z), (8.13)

where

r0(z)≡ −Re[iz]||z|=1 = i

2

[
1

z
− z

]
,

r1(z)≡ −Re
[
i coth

[πz

2l

]]∣∣∣
|z|=1

= i

2

[
coth

( π
2lz

)
− coth

(πz

2l

)]
.

(8.14)

On side 1 where z̄ = z + 2li the boundary condition (8.11) implies

iz + iλ coth
[πz

2l

]
+ H(z)− i(z + 2li)− iλ coth

[
π(z + 2li)

2l

]
+ H̄(z + 2li)= −2c, (8.15)

which, by the periodicity of the coth function and use of (8.8), yields

H(z)− H(z + 2li)= −2(c + l). (8.16)

On side 3 where z̄ = z − 2li the boundary condition (8.11) implies

iz + iλ coth
[πz

2l

]
+ H(z)− i(z − 2li)− iλ coth

[
π(z − 2li)

2l

]
+ H̄(z − 2li)= 2c, (8.17)

which, on letting z �→ z + 2li, produces the same result (8.16). Since we require H(z) to decay as
|z| → ∞ (8.16) implies that c = −l. With this choice, we conclude that

H(z)− H(z + 2li)= 0. (8.18)

H(z) is 2li-periodic.
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8.1 Transform representation

From the earlier general theory, we can write the following integral transform representation of H(z)
for z ∈ D:

H(z)= 1

2π

∫
L1

ρ11(k) eikz dk

− 1

2π i

[∫
L1

ρ22(k)

1 − e2π ik

1

zk+1
dk +

∫
L2

ρ22(k)
1

zk+1
dk +

∫
L3

ρ22(k) e2π ik

1 − e2π ik

1

zk+1
dk

]

+ 1

2π

∫
L2

ρ33(k) eikz dk, (8.19)

where L1 = [0, ∞) and L2 = [0, −∞) and {Lj | j = 1, 2, 3} are the fundamental contours for circular
edges. (Here we have elected to use the spectral rays for straight line edges used by Fokas & Kapaev
(2003) rather than the fundamental contour L for straight line edges, this choice is up to the user.) The
three spectral functions are defined to be

ρ11(k)=
∫ +∞−il

−∞−il
H(z) e−ikz dz, ρ22(k)= −

∮
|z|=1

H(z)zk dz (8.20)

and

ρ33(k)=
∫ −∞+il

∞+il
H(z) e−ikz dz. (8.21)

The remaining elements of the matrix of spectral functions are given by

ρ21(k)=
∫ +∞−il

−∞−il
H(z)zk dz, ρ23(k)=

∫ −∞+il

∞+il
H(z)zk dz (8.22)

and

ρ12(k)= ρ32(k)= −
∮

|z|=1
H(z) e−ikz dz, (8.23)

and ρ31(k)= ρ11(k) and ρ13(k)= ρ33(k). The global relations are then

ρ11(k)+ ρ12(k)+ ρ13(k)= 0, k ∈ R,

ρ31(k)+ ρ32(k)+ ρ33(k)= 0, k ∈ R,
(8.24)

which are equivalent, and

ρ21(k)+ ρ22(k)+ ρ23(k)= 0, k ∈ −N. (8.25)

We must analyse both global relations (8.24) and (8.25) in order to find the unknown boundary data.
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8.2 Analysis of global relations

The global relation (8.24) can be written as∫ ∞

−∞
H̃(x) e−ikx[e−kl − ekl] dx −

∮
|z|=1

e−ikzH(z) dz = 0, k ∈ R, (8.26)

where we have defined
H̃(x)≡ H(x − il) (8.27)

and we have made use of (8.18). The second global relation (8.25) is equivalent to∫ ∞

−∞
H̃(x)

[
1

(x − il)k
− 1

(x + il)k

]
dx −

∮
|z|=1

H(z)
dz

zk
= 0, k ∈ N. (8.28)

On |z| = 1, we write
H(z)= r0(z)+ λr1(z)+ iΨ2(z), (8.29)

where

Ψ2(z)=
∑
n�1

bn

[
z2n−1 + 1

z2n−1

]
, (8.30)

and where the real coefficients {bn ∈ R} are to be found. The ansatz (8.29) satisfies both (8.8) and (8.10).
Equation (8.26) can be written as

− 2 sinh(kl)H (k)= B(k)+ λL1(k)+ R1(k), (8.31)

where

H (k)≡
∫ ∞

−∞
H̃(x) e−ikx dx (8.32)

is recognized as the standard Fourier transform of H̃(x) and

B(k)≡
∮

|z|=1
iΨ2(z) e−ikz dz, (8.33)

with

R1(k)≡
∮

|z|=1
r0(z) e−ikz dz, L1(k)≡

∮
|z|=1

r1(z) e−ikz dz. (8.34)

It follows that

H (k)= −B(k)+ λL1(k)+ R1(k)

2 sinh(kl)
. (8.35)

From an inverse Fourier transform, we find

H̃(x)= − 1

2π

∫ ∞

−∞

[
B(k)+ λL1(k)+ R1(k)

2 sinh(kl)

]
eikx dk. (8.36)

It is clear that we must require
B(0)+ λL1(0)+ R1(0)= 0 (8.37)
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in order to remove the singularity at k = 0 of the integrand of (8.36). This gives a condition on λ
and B(k).

Now (8.28) implies that, for k ∈ N,∮
|z|=1

iΨ2(z)

zk
dz =

∫ ∞

−∞
H̃(x)

[
1

(x − il)k
− 1

(x + il)k

]
dx − λL2(k)− R2(k), (8.38)

where

R2(k)≡
∮

|z|=1

r0(z)

zk
dz, L2(k)≡

∮
|z|=1

r1(z)

zk
dz. (8.39)

But it is easy to show, on use of (8.30), that for k = 2n,∮
|z|=1

iΨ2(z)

zk
dz = −2πbn. (8.40)

Hence, (8.38), with k = 2n for n � 1, implies

bn = − 1

2π

∫ ∞

−∞
H̃(x)

[
1

(x − il)2n
− 1

(x + il)2n

]
dx + λL2(2n)

2π
+ R2(2n)

2π
. (8.41)

On substitution of (8.36), we find

bn =
∫ ∞

−∞
I(k, n)

[
B(k)+ λL1(k)+ R1(k)

2 sinh(kl)

]
dk + λL2(2n)

2π
+ R2(2n)

2π
, (8.42)

where

I(k, n)≡ 1

4π2

∫ ∞

−∞
eikx

[
1

(x − il)2n
− 1

(x + il)2n

]
dx. (8.43)

An exercise in residue calculus reveals that for n � 1

I(k, n)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i e−kl(ik)2n−1

2π(2n − 1)!
, k � 0,

i ekl(ik)2n−1

2π(2n − 1)!
, k < 0.

(8.44)

On substitution of (8.44) into (8.42), and after a change of integration variable so that all integrals are
over the positive real k-axis, (8.42) becomes

bn = i

2π

∫ ∞

0

e−kl(ik)2n−1

(2n − 1)!

[
B(k)+ B(−k)

2 sinh(kl)

]
dk

+ λ

[
i

2π

∫ ∞

0

e−kl(ik)2n−1

(2n − 1)!

[
L1(k)+ L1(−k)

2 sinh(kl)

]
dk + L2(2n)

2π

]

+ i

2π

∫ ∞

0

e−kl(ik)2n−1

(2n − 1)!

[
R1(k)+ R1(−k)

2 sinh(kl)

]
dk + R2(2n)

2π
, n � 1. (8.45)
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But

B(k)=
∮

|z|=1
e−ikziΨ2(z) dz =

∮
|z|=1

i e−ikz
∑
m�1

bm

[
z2m−1 + 1

z2m−1

]
dz

= −2π
∑
m�1

bm(ik)2m−2

(2m − 2)!
, (8.46)

so that

B(k)+ B(−k)= −4π
∑
m�1

bm(ik)2m−2

(2m − 2)!
. (8.47)

The resulting system of equations is

bn =
∑
m�1

Anmbm + λLn + Rn, (8.48)

where

Anm = −i
∫ ∞

0

e−kl

sinh(kl)

(ik)2(m+n)−3

(2m − 2)!(2n − 1)!
dk,

Ln = i

4π

∫ ∞

0

e−kl(ik)2n−1(L1(k)+ L1(−k))

(2n − 1)! sinh(kl)
dk + L2(2n)

2π
,

Rn = i

4π

∫ ∞

0

e−kl(ik)2n−1(R1(k)+ R1(−k))

(2n − 1)! sinh(kl)
dk + R2(2n)

2π
.

(8.49)

This linear system (8.48), together with (8.37), must be solved for {bn | n � 1} and the slip length λ. This
is straightforward, and the matrix Anm is found to have a condition number close to unity.

Once the coefficients {bn | n � 1} and the slip length λ are known, then H(z) on |z| = 1 is known
and ρ22(k) can be readily computed from (8.29) and (8.30). The other required spectral functions follow
from (8.26).

8.3 Comparison with full numerical solution

For convenience, we introduce the parameter

a = 1

l
, (8.50)

which, for l> 1, lies in the interval 0< a< 1. A graph of λ/(2a) as computed from the transform
method just described is shown in Fig. 12. Superposed on this figure, as crosses, are some data points
as computed by a numerical method of Teo & Khoo (2010). The agreement is excellent, and provides
verification of the transform analysis.
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Fig. 12. Graph of λ/(2a) against a as computed by the transform method (solid lines) and as given by the approximate formula
λapprox. The crosses show the numerical data computed by Teo & Khoo (2010). The dashed line shows the dilute limit found by
Crowdy (2011).

Some interesting observations arise from this calculation. The dashed line in Fig. 12 is a graph of
an approximation to the slip length λ given by the simple formula

λapprox = πa

(2 − π2a2/6)
. (8.51)

As a → 0, (8.51) gives

λapprox ≈ πa

2
, (8.52)

which is consistent with the result of Crowdy (2011) (for protrusion angle θ = π/2 in the notation of
that paper) who studied the dilute limit of this problem (i.e. the limit l → ∞ or a → 0). This dilute
limit is shown as the dotted line in Fig. 12. Formula (8.51) can therefore be viewed as an (approximate)
extension of the result of Crowdy (2011) to the non-dilute case (a not necessarily small).

The approximate result (8.51), which appears to be very effective, was produced from the following
considerations. On inspection of the numerical results it appears to be reasonable, over a large range of
l, to set B(0) to zero in (8.37) and approximate it as

λL1(0)≈ −R1(0)= π , (8.53)

which gives

λapprox = π

L1(0)
(8.54)

and where a residue calculation produces the explicit result

L1(0)= i

2

∮
|z|=1

[
coth

( π
2lz

)
− coth

(πz

2l

)]
dz = l

[
2 − 1

6

(π
l

)2
]

. (8.55)
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Fig. 13. Other common circular domain geometries to which the new transform scheme applies.

Figure 12 clearly shows that divergence between the numerically computed λ and λapprox is only signifi-
cant as a → 1 and, for a ≈ 0.9, it remains a reasonable approximation only slightly underestimating the
actual value. Equation (8.51) is therefore a simple and accurate approximation to the longitudinal slip
length provided the bubbles are not too close together. Ng & Wang (2011) proposed their own analytical
approximation formula for λ in the form of a polynomial fitted to match their numerical data computed
using a triangulated-grid finite element solver:

λNg+Wang = −0.40 + 8.93a − 46.74a2 + 134.28a3 − 173.88a4 + 86.56a5; (8.56)

this is Ng & Wang (2011, Equation (6)) divided by a to match the present scalings. On evaluation, it
is found that (8.56) gives numerical results that are very close to those given by (8.51) over the range
a ∈ [0, 0.85].

9. Discussion

A new transform method for multiply connected circular domains, including those with boundaries
that are a mixture of circular arcs and straight lines, has been presented. We have given two concrete
applications of the method to problems in fluid mechanics. The method is very general and applies to
a broad class of BVPs for Laplace’s equation in multiply connected domains. Figure 13 shows some
other common geometries, often arising in applications, where the method also applies.

For clarity of exposition, we have restricted here to cases in which each of the M boundary com-
ponents is either a full circle, or straight line through the point at infinity, but it should be clear how to
adapt the approach to cases in which the jth connected boundary component, say, is subdivided into nj

circular arc and/or straight line segments. How to do this with N-sided, simply connected polycircular
arc domains was explained in Crowdy (2015).

We have also focussed on presenting the method for BVPs in which each disconnected boundary
component features a boundary condition of a single type (e.g. Dirichlet, Neumann or Robin). However,
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it should be clear that the method also applies when mixed boundary conditions are applied on the same
boundary component. Our methods open up a rich array of possibilities for the constructive solution of
mixed BVPs for Laplace’s equation in multiply connected domains of circular type.

Several approximation theory questions arise in the matter of implementing the transform approach,
including how best to represent the unknown data on a circular arc boundary and then solve for it
using the global relations. This important matter, and other numerical strategies, are currently under
investigation.
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