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Abstract A significant fraction of the energy released by magnetotail reconnection appears to go into
ion heating, but this heating is generally anisotropic. We examine ARTEMIS dual-spacecraft observations
of a long-duration magnetotail exhaust generated by antiparallel reconnection in conjunction with
particle-in-cell simulations, showing spatial variations in the anisotropy across the outflow far (> 100di)
downstream of the X line. A consistent pattern is found in both the spacecraft data and the simulations:
While the total temperature across the exhaust is rather constant, near the boundaries Ti,|| dominates. The
plasma is well above the firehose threshold within patchy spatial regions at |BX | ∈ [0.1, 0.5]B0, suggesting
that the drive for the instability is strong and the instability is too weak to relax the anisotropy. At the
midplane (|BX | ≲ 0.1B0), Ti,⟂ > Ti,|| and ions undergo Speiser-like motion despite the large distance from
the X line.

1. Introduction

Magnetic reconnection redistributes energy by releasing magnetic energy into particle energies—high
speed bulk flows, heating, and particle acceleration. With near-Earth in situ observations, we have access to
three main parameter regimes: the solar wind, magnetopause, and magnetotail. Ion heating, in terms of an
increase in temperature (obtained from the second velocity moments of the distribution function), has been
systematically studied in reconnection exhausts in the solar wind [Drake et al., 2009; Enžl et al., 2014] and at
the magnetopause [Phan et al., 2014], where the available magnetic energies per particle B2

in∕𝜇0nin = miV
2
A,in

are around 101 –102 eV and 102 –104 eV, respectively. Reconnection jets in the magnetotail, where miV
2
A,in is

higher (∼ 104 − 105 eV), the inflow plasma beta 𝛽in is very low, and the boundary conditions are typically
antiparallel and symmetric, offer another regime for investigation. Many of the earlier observations have been
recently summarized by, e.g., Paschmann et al. [2013] and Fuselier and Lewis [2011].

Ion heating could arise from the interpenetration of the two particle populations entering the exhaust from
either side of the current sheet [Cowley, 1982]. These counterstreaming beams have been observed at the
magnetopause [Gosling et al., 1990], in the magnetotail [Hoshino et al., 1998], solar wind [Gosling et al., 2005],
and magnetosheath [Phan et al., 2007]. The resulting temperature anisotropy varies across the exhaust, as
shown by the simulations of, e.g., Liu et al. [2012]. Previous observations [e.g., Hoshino et al., 1997; Gosling
et al., 2005; Phan et al., 2007; Wu et al., 2013; Phan et al., 2014] show that the plasma temperature parallel to
the magnetic field is generally larger than the perpendicular temperature. However, quantifying the spatial
variations in the turbulent exhaust using short duration single spacecraft observations is difficult.

A temperature anisotropy where T|| > T⟂ is important because it counteracts the magnetic tension force that
accelerates the jet, and it supports a long current sheet [e.g., Rich et al., 1972; Cowley, 1978; Le et al., 2014].
If the temperature anisotropy is large enough, namely, 𝛼=(𝛽||− 𝛽⟂)∕2> 1, the plasma will become firehose
unstable [e.g., Liu et al., 2012]. This leads us to ask the question whether the instability limits the anisotropy.
Temperature anisotropy also governs the structure of the exhaust boundary: Parametric studies and simula-
tions [e.g., Lyu and Kan, 1986; Liu et al., 2012] indicate that large T||∕T⟂ tends to suppress the formation of slow
shocks. Interestingly, simulations [Arzner and Scholer, 2001; Higashimori and Hoshino, 2012; Liu et al., 2012] do
not agree on whether or not the anisotropy decreases at large distances (≳100 di) from the X line.

The dynamics of interpenetrating ions vary depending on the exhaust geometry—opening angle, distance
to the X line, and to the reconnection front—as the curvature of the field line changes [e.g., Nakamura et al.,

RESEARCH LETTER
10.1002/2015GL065168

Key Points:
• Parallel temperature peaks at the

edges, perpendicular at the neutral
plane

• Firehose instability threshold is
greatly exceeded, indicating strong
driving

• Speiser-like motion persists far from
X line despite large fluctuations

Supporting Information:
• Supporting Information S1

Correspondence to:
H. Hietala,
h.hietala@imperial.ac.uk

Citation:
Hietala, H., J. F. Drake, T. D. Phan,
J. P. Eastwood, and J. P. McFadden
(2015), Ion temperature anisotropy
across a magnetotail reconnection
jet, Geophys. Res. Lett., 42,
doi:10.1002/2015GL065168.

Received 30 JUN 2015

Accepted 19 AUG 2015

Accepted article online 24 AUG 2015

©2015. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

HIETALA ET AL. ION ANISOTROPY IN RECONNECTION EXHAUST 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2015GL065168
http://dx.doi.org/10.1002/2015GL065168
http://creativecommons.org/licenses/by/3.0/


Geophysical Research Letters 10.1002/2015GL065168

Figure 1. Overview of observations from P2 unless noted. (a) Ion energy spectrogram (electrostatic analyzer and
solid state telescope), (b) ion density, (c) magnetic field magnitude (P1 in magenta) and (d) its GSM components,
(e) ion velocity components, and (f ) ion temperature. The orange dashed lines mark the different analysis intervals
(0–3) used for Figure 3. The dark blue dashed lines o(i–iv) mark the times when the distributions shown in Figure 4
were taken.

1998]. The particle motion is controlled by parameter 𝜅 =
√

Rmin∕rL,max = Ωci,N∕𝜔bi, where Rmin is the mini-
mum radius of field line curvature, rL,max the maximum Larmor radius of the particles, Ωci,N the gyrofrequency
in the field component normal to the current sheet, and 𝜔bi the ion bounce frequency across the current
sheet [e.g., Buechner and Zelenyi, 1989]. The motion is characterized as Speiser for small 𝜅, chaotic for 𝜅∼1,
and magnetized for 𝜅 >1. In the Speiser regime [Speiser, 1965] the motion is a combination of rapid bounc-
ing across the field reversal region and slow rotation around BN. Thus, if the field reversal region within the
(antiparallel) exhaust is thin, ions meander near it with a range of v⟂ values [Drake et al., 2009] and pre-
vious simulations show T⟂>T|| at the midplane [Nakamura et al., 1998; Lottermoser et al., 1998]. However,
this motion is reversible so that the ions revert back to a beam upon exiting this region [Drake et al., 2009].
Consequently, Speiser orbits preserve (some of) the temperature information of the inflowing populations,
and simulations by Higashimori and Hoshino [2015] suggest that this property leads to a clear 𝛽in depen-
dence in the excitation and damping of the exhaust fluctuations. 𝜅 increases with increasing distance to the
X line because Rmin increases as the exhaust widens. Meandering Speiser-like ion motion has recently been
observed within the ion diffusion region [Nagai et al., 2015], but how far downstream does this regime extend?

Here we present a detailed study of a long-duration, antiparallel, symmetric magnetotail reconnection
exhaust using the two ARTEMIS spacecraft [Angelopoulos, 2011] at 52 and 59 RE downtail (RE = 6371 km,
Earth’s radius). We compare the observations to the large scale particle-in-cell (PIC) simulation previously ana-
lyzed by Liu et al. [2012]. We address (i) the ion temperature increase for large VA,in and low𝛽in conditions, (ii) ion
temperature anisotropy—its spatial variations and firehose instability, and (iii) the underlying ion dynamics
and the extent of Speiser regime.

2. Data, Methods, and Overview

Figure 1 shows the overview of the spacecraft observations from 08:00 to 10:00 UT on 14 July 2011. Further
details of the data and instruments are given in the supporting information. P2 was located near midnight
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at [−52.6, 3.1, 1.8] RE , with P1 duskwards and tailward from it at [−59.0, 15.4,−3.1] RE . During the interval
under consideration, P1 and P2 moved ∼ 1 RE in the −YGSM direction while retaining their separation. At the
beginning of the event, the plasma sheet moved northwards so that P1 moved from the plasma sheet into the
southern lobe (BX < 0) and P2 from the northern lobe (BX > 0) into the plasma sheet at 08:27:30 UT (Figure 1c),
where it observed an earthward reconnection jet with an average speed of ∼700 km/s and maximum speed
exceeding 1500 km/s (Figure 1e).

We have divided the event into four analysis intervals: the first encounter with the boundary (interval 0,
08:00:00–08:16:00 UT); the exhaust boundary (interval , 08:16:00–08:27:30 UT); the first 15 min in the exhaust
proper while the density remained stable (interval 2, 08:27:30–08:42:30 UT); and the following observations
until the appearance of the large density peak and the increase of P1 magnetic field magnitude above 8 nT
(interval 3, 08:42:30–09:00:00 UT).

The lobe magnetic field strength was 8–10 nT. BZ in the exhaust (Figure 1d) was on average small but positive,
as appropriate for an earthward reconnection jet. BY seen by P2 in the lobe was very small, typically around
0.5 nT or less (∼0.05B0), suggesting that the guide field was small and reconnection involves essentially
antiparallel fields. The plasma densities (Figure 1b) varied slowly over time: in the exhaust (P2) the density was
typically 0.04–0.05 cm−3, with some intervals where it increased to 0.07 and 0.14 cm−3. In the lobe (P1 and P2)
the density was mostly low, ≲ 0.03 cm−3. In the main exhaust after 08:30 UT the ion temperature (Figure 1f )
was ∼4 keV, but near the exhaust edge the parallel temperature was as high as ∼15 keV and the total ion
temperature enhanced.

In the exhaust the ion inertial length di,exhaust = c∕𝜔pi was 0.16–0.18 RE (n = 0.04 − 0.05 cm−3). For temper-
atures of 4 keV and magnetic field values of 8, 5, and 2 nT, the ion gyroperiod f−1

ci was 8.2, 13, and 33 s, and
the Larmor radius rL was 0.18, 0.29, and 0.72 RE . To estimate the upstream Alfvén speed, we use B0 = 8 nT and
n0 = 0.02 cm−3, which is also consistent with a compression ratio of two typical for antiparallel symmetric
reconnection simulation [e.g., Liu et al., 2012], giving VA,in ∼1200 km/s. The upstream ion plasma beta was
≲ 0.05. Using two spacecraft timing and assuming planarity, no tilt, and purely northward motion we can
estimate the plasma sheet thickness to be ∼2 RE ∼10 di,exhaust.

We compare these observations with 2.5D PIC simulation results shown in Figure 2, obtained using the P3D
code [Zeiler et al., 2002]. The simulation run [Liu et al., 2012] had mi∕me = 25, c = 15 VA, 𝛽in = 0.2, Ti∕Te = 1,
100 particles per cell, box size 819.2di × 409.6 di , and an initial double Harris sheet configuration. At 350Ω−1

ci
into the run, we uniformly sample points along 100 vertical cuts within a 20 di wide strip across the exhaust
at ∼ 175 di (∼ 105 di,exhaust) away from the X line (white box in Figure 2). The exhaust width at this distance is
∼ 13 di,exhaust, similar to the ARTEMIS event.

3. Results

Figure 3 displays the out-of-the-plane magnetic field and ion temperature mapped against the reconnecting
field (a proxy for the distance to neutral plane), with spacecraft measurements on the left and simulation cuts
on the right. We have indicated the time evolution of the observations with different shading. The spacecraft
did not traverse the whole plasma sheet, and thus, we have no observations on the left hand side near BX∕B0 ∼
−1. For the simulated profiles we use Bx,up taken just upstream of the exhaust, which was 0.85 of the original
upstream B.

Figure 2a shows that the out-of-the-plane magnetic field is well organized to positive and negative near the
X line (≲ 80 di) but becomes turbulent farther downstream. Considering the observed BY profile (Figure 3a)
and the simulated one (Figure 3b), we see that these characteristic positive-negative Hall field signatures [e.g.,
Mandt et al., 1994; Eastwood et al., 2010] are present only at the very edges of the exhaust, (note BY ∼ +4 nT ∼
0.5B0 at 08:06 UT, Figure 1d), while the midexhaust had a rather uniform distribution of BY fluctuations across
it. The negative BY at Bx ∼0.6Bx,up (Figure 3b) corresponds to a transient local structure in the simulation. Based
on the absence of the characteristic Hall field within midexhaust and the similarity with the simulation results
of Figure 3b and of Higashimori and Hoshino [2012], we conclude that the spacecraft was far downstream of
the X line, probably > 100 di .

The shape of the observed temperature profiles is in good agreement with the simulations (Figures 3c–3h).
At the edge of the exhaust, T|| increases sharply. It then decreases, going down to about a third of its peak
value at the neutral plane. T⟂ also increases at the edge of the exhaust, although this occurs more sharply in
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Figure 2. Temperature anisotropy in the 2.5D particle-in-cell simulation. (a) Out-of-the-plane magnetic field, (b and c)
ion parallel and perpendicular temperatures, and (d) the ion anisotropy 𝛼i = (𝛽i,|| − 𝛽i,⟂)∕2. The firehose condition 𝛼i = 1
is indicated with a white contour in Figure 2d. The cyan arrows in Figure 2b illustrate the two inflowing populations.
The white rectangle shows the region where the vertical cuts shown in Figure 3 were made. The cyan squares in
Figure 2c indicate where the distributions shown in Figure 4 were taken.

the observations than in the simulation. It continues to increase toward the center of the exhaust, surpassing

T|| at the neutral plane. The total ion temperature shows the same sharp increase at the edge of the jet, while

at the exhaust center it has a rather flat profile.

The observed average ion temperatures in the midexhaust (|BX |< 0.6B0, intervals 2 and 3) were ⟨Ti,||⟩=
(0.24±0.07)mpV2

A,in, ⟨Ti,⟂⟩ = (0.20±0.05)mpV2
A,in and ⟨Ti,tot⟩ = (0.21±0.05)mpV2

A,in. Performing similar calcu-

lations using the simulation data, we find (0.23±0.06)mpV2
A,in, (0.13±0.02)mpV2

A,in and (0.17±0.01)mpV2
A,in,

respectively.

The observed ⟨Ti,||⟩ and ⟨Ti,⟂⟩ are within one standard deviation from each other; it is thus advisable not to

compare the ratio of the means but to study the anisotropy itself. Part of the scatter in the observations is due

to the slowly changing inflow conditions (increasing B and n variations): the lighter colored points observed

later in time have on average lower temperatures. The rest of the variability is most likely due to spatial struc-

tures similar to those in the simulation (Figure 2) convecting past the spacecraft. This variability would be

difficult to quantify using solar wind or magnetopause exhausts because they are generally crossed only once.
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Figure 3. Profiles of observed and simulated quantities as functions of estimated distance to the neutral plane. (a and b)
Out-of-the-plane magnetic field, (c and d) ion parallel and (e and f) perpendicular temperatures, (g and h) the total ion
temperature, and (i and j) ion temperature anisotropy 𝛼i = (𝛽i,|| − 𝛽i,⟂)∕2. The blue dashed line in Figures 3i and 3j
indicates the firehose instability threshold 𝛼i = 1 (assuming cold/isotropic electrons). The magenta dashed lines in
Figures 3g and 3h indicate the mean total ion temperature within |BX | < 0.6B0.
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Let us briefly consider the observed partition of energy in the exhaust. The fraction of the inflowing Poynting
flux turned into ion enthalpy flux can be calculated with [Phan et al., 2014]

⟨
𝛾

𝛾 − 1
ΔTi∕mpV2

A,in

⟩
∼
⟨5

2
Ti∕mpV2

A,in

⟩
, (1)

assuming 𝛾 = 5∕3 and cold inflow. For the event considered here the ion enthalpy flux was thus (54 ± 13)%.
The average jet speed in the same region was (0.57 ± 0.17)VA,in. The average fraction of the kinetic energy(⟨

1
2

V2
X∕V2

A,in

⟩)
was (18 ± 10)% of the available magnetic energy, clearly smaller than the ion enthalpy (ratio

of 1 to 3).

Figures 3i and 3j show the behavior of the 𝛼i =(𝛽||i − 𝛽⟂i)∕2 parameter quantifying the ion temperature
anisotropy. We see that the observed and simulated profiles match remarkably well. Outside of the exhaust
plasma is rather isotropic (𝛼i ∼ 0). Moving into the exhaust, 𝛼i becomes positive as Ti,|| dominates. The
firehose stability condition is given by 𝛼tot > 1. We have not included the electrons as their contribution to
𝛼tot would be small: the observed electrons were colder than the ions (by a factor of 4) and quite isotropic
(𝛼e ∈ [−0.2, 0.5]), and the simulated electrons were also more isotropic than the ions (not shown). Clearly,
around |BX | ∈ [0.1, 0.5]B0, the jet is at times unstable. From Figure 2d we also see that the firehose unstable
areas are nonspace filling which explains why there is a large spread of 𝛼i values from ≪ 1 to ≫ 1 in Figure 3j.

The very center of the current sheet (|BX | ≲ 0.1B0) is dominated by negative 𝛼i values, as T⟂ > T|| both in the
simulation and in the observations. This points to Speiser-like ion motion and suggests that the observed
field reversal region within the exhaust was thin (𝜅 < 1). The spatial thickness of this negative 𝛼i layer in the
simulation is ∼ 1di (Figure 2d).

The temperature profiles can be understood in terms of the ion dynamics, shown in Figure 4. The observed
ESA full mode distributions (o) were taken during intervals of steady B direction, as confirmed by higher than
spin resolution measurements. From the edge of the exhaust to intermediate distances (o(i)), we see in the V-B
plane two counterstreaming beams that have a common E×B drift (in the spacecraft frame) and field-aligned
drifts that are in opposite directions. Distribution o(i) was taken below the midplane (BX ∼−3 nT), so the
incoming beam moving parallel to B is colder, and the beam moving away from the neutral plane antiparallel
to B is hotter. Close to the neutral plane (o(ii), BX ∼ 0.1B0), the two beams are indistinguishable, forming a
distribution that is firehose unstable with 𝛼i ∼ 4.

The third distribution (two different cuts o(iii) and o(vi)) was taken from the neutral plane (BX ∼ 0.01B0), where
we expect Speiser-like motion of rapid bouncing in the direction normal to the plasma sheet combined with
slow rotation around BN. In the V-B plane (o(iii), red) we see ions moving up and down the magnetic field
with a range of velocities perpendicular to it: The ions with smaller v⟂ have recently entered the exhaust.
Those with large v⟂ (extending above the instrument energy range) probably originate closer to the X line
and are hotter so that the gap between the upwards and downwards moving particles is no longer distinct. In
the plane perpendicular to B (o(iv), blue) we see the crescent/horseshoe shape characteristic to Speiser-like
motion [e.g., Nakamura et al., 1998; Lottermoser et al., 1998]: the ions come into the field reversal region with a
velocity oriented along the magnetic field outside of it (blue dashed line; see discussion below), rotate slowly
around BN (∼ BZ ) for about half a circle, and escape when their velocity is again aligned with the field outside.

We have also examined all the observed reduced mode distributions that fulfill the condition |BX |< 0.1B0

and 𝛼i <0: there are 49 such distributions for 08:16–09:00 UT and 94 for 09:00–09:30 UT. More than thirty
show Speiser-like features similar to o(iii) and o(iv).

The observed ion behavior is reproduced by the simulation: Considering the vx-vz plane and proceeding from
the exhaust edge to the midplane, we see the two counterstreaming beams (s(i)) that merge into a firehose
unstable distribution (s(ii), 𝛼i ∼ 1.4). The midplane distribution s(iii) can be compared with o(iii) by rotating it
by 90∘, and it shows the same Speiser-like bouncing. Note, however, that in the simulation 𝛽in was larger than
in the observations, so the inflowing beam in s(i) is wider and the gap at low energies in s(iii) is not as clear.

The simulation reveals how the orientation of the Speiser horseshoe on the plane perpendicular to B
(the vx-vy plane) depends on the magnetic field direction just outside the reversal region, i.e., mainly on BX

and BY . For each simulated distribution s(iv–vi) we have calculated this B direction and drawn it on the cut
(blue dashed lines). Close to the X line horseshoe’s orientation is determined by the standard Hall field (s(vi))
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Figure 4. Observed (o) and simulated (s) distribution functions at different magnetic latitudes (i–iii) and in the midplane at different distances downstream
of the X line (iv–vi). Panels o(i–iii) show cuts in the V-B plane (the horizontal axis is parallel to local B, and the perpendicular axis contains the bulk velocity).
Panel o(iv) shows a cut in the plane perpendicular to the magnetic field of the same distribution as o(iii). High values near the origin due to residual background
counts are covered with gray ⊗ symbols. The black arrows note the VX,GSM direction and the main features are sketched with black dashed curves. Panels s(i–iii)
show simulated distributions in the vx-vz plane. The thick white dashed line gives the local magnetic field orientation and the main features are highlighted with
white dashed outlines. Panels s(iv–vi) show distributions in the vx-vy plane. The main cartoon (top right) depicts the ion dynamics in the reconnection plane in
the jet frame. Ions (magenta) stream in along the magnetic field (black) from both sides, and undergo Speiser-like motion (rapid bouncing plus slow rotation
around BN) in the field reversal region before escaping and streaming outwards. The dashed lines indicate field lines and trajectories below the neutral plane.
The four insets accompanying the distributions o(iv) and s(iv–vi) illustrate how magnetic fluctuations affect the Speiser-like motion by moving the tip of the
field line loop in and out of the reconnection plane. The thick blue dashed line depicts the orientation of the tip determined by B just outside the neutral plane.
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[Nakamura et al., 1998; Drake et al., 2009]. Further downstream, the orientation of the tip of field line loop
varies, as illustrated by the small cartoons, due to the large (∼ 0.5B0) BY fluctuations (Figures 2a and 3a and 3b)
and so does the orientation of the crescent/horseshoe (s(iv–v)). The orientation of the observed horseshoe
distribution (o(iv)) indicates that the tip was twisted in +YGSM ∼ +M direction, which is consistent with the
magnetic field measurements taken before the distribution ([−0.1, 0.5–1.0, 3] nT) showing positive BY below
the neutral plane that is much larger than BX . The inferred field direction is sketched on o(iv).

4. Discussion and Conclusions

We have investigated the ion temperature anisotropy across a jet arising from reconnection of antiparallel
magnetic fields in the midmagnetotail, far from the X line. Our results of high Ti,|| near the edges of the exhaust
are in agreement with Hoshino et al. [1997], who plotted Ttotal,||∕Ttotal,⟂ against BX for one year of Geotail’s
observations of hot and fast plasma flows. However, this approach using many events did not normalize the
individual measurements to the lobe B0 and VA,in.

Figures 3i and 3j show that the firehose limit is greatly exceeded in parts of the jets. This somewhat surpris-
ing finding could indicate that the driving of the instability is much stronger (faster) than the growth of the
instability [Matteini et al., 2006; Kunz et al., 2014]. A possible explanation is that the unstable parameter region
(two counterstreaming beams) is continuously refilled as plasma enters into the exhaust along the exhaust
boundaries (blue arrows in Figure 2b). The growth rate of firehose is around 10 ion gyroperiods, which at
BX ∼2 nT ∼ 0.25B0 is ∼ 300 s. It only takes about ∼50 s for an incoming ion at 0.1VA,in ∼120 km/s to cross the
estimated distance of 1 RE from the exhaust boundary to the neutral plane. In ∼ 300 s the plasma in the jet
with a speed ∼700 km/s also moves ∼30 RE ∼200di,exhaust downstream. The situation is probably different
in near tail, where the exhaust is wider and magnetic field is stronger; recently, Wu et al. [2013] reported more
isotropic plasma in bursty bulk flows observed at X >−14 RE than at X < −14 RE .

Speiser-like, meandering ion motion at the neutral plane of the reconnection exhaust has been reported in
many hybrid [e.g., Nakamura et al., 1998; Lottermoser et al., 1998; Arzner and Scholer, 2001; Higashimori and
Hoshino, 2012] and PIC [e.g., Drake et al., 2009; Zenitani et al., 2013] simulations and within the ion diffusion
region [Nagai et al., 2015] and in a plasmoid event in the magnetotail [Hoshino et al., 1998]. Higashimori and
Hoshino [2012] found the Speiser-like motion to be limited to within 70di from the X line, while Lottermoser
et al. [1998]; Arzner and Scholer [2001] found it to persist up to ∼ 200di where the current sheet disrupted. In
the simulation presented here the Speiser regime extends at least 220di downstream of the X line (𝜅<1). This
corresponds to the region where Ti,⟂ is large at the midplane. Our observations agree with this simulation and
indicate that such motion persists at large distances (> 100di) from the X line in the midmagnetotail.

Comparing the temperature increase observed in this magnetotail jet to magnetopause and solar wind recon-
nection jets, we find that the value 0.21 ± 0.05 (in terms of the fraction of energy released) is larger than the
average of ∼ 0.13 reported in these other regions [Phan et al., 2014; Drake et al., 2009]. However, it is unclear
whether this discrepancy is significant considering the uncertainty in the determination of the density (and
thus the Alfvén speed) in the inflow (lobe) region in our event and the variability from event to event in the
solar wind and magnetopause statistical studies. A similar statistical study in the magnetotail is needed. We
also find that the observed temperatures in our event are higher than in the simulation, especially in the per-
pendicular direction. On the one hand, the simulation is 2.5D and mi∕me = 25, and the inflow 𝛽in = 0.2
compared to the observed 𝛽in ≲ 0.05. On the other hand, the exact lobe plasma conditions are challenging
to measure. Finally, we note that although we have used a constant normalization to a fixed value of VA,in in
this study, from Figure 1 we can also see that the ion temperature variations over time show anticorrelation
(correlation) with the density (jet speed). This supports the general conclusion that heating is controlled by
the inflow region Alfvén speed.

In summary, we find good agreement between the ARTEMIS observations and the PIC simulation of ion heat-
ing in antiparallel, symmetric reconnection, far away (> 100di) from the X line. In quantitative terms, the mean
total ion temperatures were similar: (0.21± 0.05)mpV2

A,in for the observations and (0.17± 0.01)mpV2
A,in for the

simulation. Ti,|| dominates near the exhaust boundary, and the distributions show a slow, cold beam and a hot,
fast beam. The firehose condition is often greatly exceeded within patchy spatial regions at |BX | ∈ [0.1, 0.5]B0,
indicating that the driving caused by the reconnection geometry is stronger than the instability. Ti,⟂ domi-
nates at the neutral plane (BX ≲ 0.1B0). This corresponds to ions performing Speiser-like meandering motion,
despite being in the turbulent exhaust far away from the X line.
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