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Abstract

Accurate inference on a scalar interest parameter in the presence of a nuisance
parameter may be obtained using an adjusted version of the signed root like-
lihood ratio statistic, in particular Barndorff-Nielsen’s R∗ statistic. The ad-
justment made by this statistic may be decomposed into a sum of two terms,
interpreted as correcting respectively for the possible effect of nuisance param-
eters and the deviation from standard normality of the signed root likelihood
ratio statistic itself. We show that the adjustment terms are determined to
second-order in the sample size by their means. Explicit expressions are ob-
tained for the leading terms in asymptotic expansions of these means. These
are easily calculated, allowing a simple way of quantifying and interpreting the
respective effects of the two adjustments, in particular of the effect of a high
dimensional nuisance parameter. Illustrations are given for a number of exam-
ples, which provide theoretical insight to the effect of nuisance parameters on
parametric inference. The analysis provides a decomposition of the mean of
the signed root statistic involving two terms: the first has the property of tak-
ing the same value whether there are no nuisance parameters or whether there
is an orthogonal nuisance parameter, while the second is zero when there are
no nuisance parameters. Similar decompositions are discussed for the Bartlett
correction factor of the likelihood ratio statistic, and for other asymptotically
standard normal pivots.
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1. Introduction

We are concerned with inference on a scalar interest parameter in the pres-
ence of a, possibly high dimensional, nuisance parameter, based on a data sample
of size n, and with identification of procedures which yield repeated sampling
accuracy. In this setting, inference accurate to third order, that is with re-
peated sampling error of order O(n−3/2), may be obtained using an adjusted
version of the signed root likelihood ratio statistic, in particular through use of
Barndorff-Nielsen’s R∗ statistic (Barndorff-Nielsen, 1986).

TheR∗ statistic is particularly useful in two contexts. In full, multi-parameter
exponential family models inference based on standard normal approximation
to the sampling distribution of the R∗ statistic approximates to third order the
optimal, conditional, but generally intractable, inference, which is based on con-
ditioning on the sufficient statistic for the nuisance parameter. In more general
models which admit an ancillary statistic, taken to mean an approximately dis-
tribution free statistic which together with the maximum likelihood estimator
constitutes a minimal sufficient statistic for the full parameter in the model, the
normal approximation approximates to the same third order an exact inference
based on conditioning on the ancillary statistic. A practical limitation of the use
of R∗ is in the requirement of explicit specification of the appropriate ancillary,
and the need to express the likelihood directly in terms of the maximum likeli-
hood estimator and the ancillary statistic. When calculation of the R∗ statistic
is tractable, inference with repeated sampling accuracy O(n−3/2) is obtained
through the normal approximation. This same level of repeated sampling accu-
racy may be obtained by parametric bootstrap procedures, in particular those
based on simulation estimation of the sampling distribution of the unadjusted
signed root statistic: see DiCiccio et al. (2001), Lee & Young (2005). Key
to this bootstrap approach is appropriate handling of the nuisance parameter:
third order repeated sampling accuracy is obtained by considering the sampling
distribution of the signed root statistic when the nuisance parameter is specified
as the constrained maximum likelihood value calculated from the observed data
sample.

Inference based on the R∗ statistic and the parametric bootstrap alternative
sketched above are analytically related. DiCiccio & Young (2008) observe that
in the problem of inference on a scalar component of the canonical parameter
in the multi-parameter exponential family context, inference based on normal
approximation to R∗ may be viewed as an analytic, saddlepoint approximation
to the bootstrap inference. In the same way, it is readily seen that in the ancil-
lary statistic context, inference based on R∗ may be regarded as a saddlepoint
approximation to a conditional bootstrap calculation, which simulates the dis-
tribution of the signed root statistic conditional on the observed value of the
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ancillary statistic, with the nuisance parameter fixed at its constrained maxi-
mum likelihood value. Simulation of this conditional bootstrap distribution will
be infeasible in many circumstances, though in certain cases, such as regression-
scale models, simple methods of conditional simulation, employing MCMC, are
possible: see Brazzale & Davison (2008). Alternatively, and more simply, the
conditional distribution may be replaced by simulation of the marginal distri-
bution of the signed root statistic. DiCiccio et al. (2015) demonstrate that the
marginal bootstrap distribution approximates the conditional bootstrap distri-
bution to second order, O(n−1), given the ancillary statistic.

The adjustment made by the R∗ statistic may be decomposed into a sum
of two terms, interpreted as correcting respectively for the possible effect of
nuisance parameters and an information adjustment, representing the deviation
from standard normality of the signed root likelihood ratio statistic itself. Pierce
& Peters (1992) proposed such a decomposition in the case where the interest
parameter is a component of the canonical parameter in a full exponential family
model. A generalization of the decomposition is detailed by Barndorff-Nielsen
& Cox (1994, Section 6.6.4). Starting from numerical investigations by Pierce
& Peters (1992), it has been noted that the information adjustment is typically
small when the adjusted information for the interest parameter, which we define
formally in Section 2, is large. By contrast, the nuisance parameter adjustment
can be appreciable when information on the nuisance parameter is small, as will
usually occur when its dimension is large. Crucially, however, the magnitude
of the nuisance parameter adjustment relative to the information adjustment
also depends on the structure of the statistical model in question, and a simple
methodology for measurement of nuisance parameter effects for a given model
is lacking.

In this paper we note that the adjustment terms are, from a repeated sam-
pling perspective, determined to second-order, O(n−1), in the sample size by
their means. The precise definitions of the adjustment terms themselves are
unimportant to our strategy for quantifying nuisance parameter effects, though
we note that, except for full exponential family and transformation models, they
must generally be approximated, leading to only second-order accuracy from
the resulting adjusted signed root statistic. Approximations to R∗ which yield
second-order accuracy include those described by DiCiccio & Martin (1993) and
Skovgaard (1996): for a summary see Severini (2000, Section 7.5).

We obtain explicit expressions for the leading terms in asymptotic expansions
of the repeated sampling means of the nuisance parameter and information ad-
justments. These involve calculation only of expectations of certain low-order
log-likelihood derivatives, and are therefore easily evaluated for quite general
models, even when the R∗ statistic itself is intractable. The adjustment terms
have variances of low order O(n−2) and the asymptotic means therefore allow a
simple, effective and general way of quantifying and interpreting the respective
effects of the two adjustments. Of particular methodological interest is analysis
of the effect of a high dimensional nuisance parameter on the inference based on
the R∗ statistic, and by extension its bootstrap alternative. Inference based on
the R∗ statistic, when tractable, represents a ‘gold standard’ in what is achiev-
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able in the inference problem and we have noted a close relationship between
inference based on the R∗ statistic and parametric bootstrap inference. It is rea-
sonable therefore to expect that the calculations are useful too in shedding light
on operation of the parametric bootstrap. The repeated sampling properties of
the bootstrap are, modulo Monte Carlo error introduced by the need in practice
to construct the bootstrap estimate of the sampling distribution of the signed
root statistic from a finite simulation, determined entirely by nuisance param-
eter effects, through substitution of unknown values by estimates. A central
recommendation of this paper is that valuable insights to operation of the para-
metric bootstrap may be obtained by identification of the explicit way in which
the means of the nuisance parameter and information adjustments depend on
the nuisance parameter. As we shall see in Section 4, in certain key problems
these quantities depend only on the dimension of the nuisance parameter, and
not on its actual value. In such cases we may reasonably expect good repeated
sampling accuracy from the bootstrap, as precise specification of the nuisance
parameter values in the calculation is unimportant. In other situations, we ob-
serve that the value of the nuisance parameter has a more substantial effect on
the adjustment means, in which case we may be alert to impaired accuracy from
the bootstrap and its analytic alternatives, especially with small sample sizes.

Our analysis provides a decomposition of the mean of the signed root statistic
involving two terms: the first has the property of taking the same value whether
there are no nuisance parameters or whether there is an orthogonal nuisance
parameter, while the second is zero when there are no nuisance parameters.
Similar decompositions are discussed for the Bartlett correction factor of the
likelihood ratio statistic, and for other asymptotically standard normal pivots,
in Sections 5 and 6 respectively.

2. The inferential problem

Suppose that Y = (Y1, . . . , Yn) is a continuous random vector and that
the distribution of Y depends on an unknown d-dimensional parameter θ =
(θ1, . . . , θd), partitioned as θ = (ψ, φ), where ψ = θ1 is a scalar interest pa-
rameter and φ is a nuisance parameter of dimension d − 1. Let L(θ) be the

log-likelihood function for θ based on Y and let θ̂ = (ψ̂, φ̂) be the global max-
imum likelihood estimator of θ. Further, let θ̃ = θ̃(ψ) = (ψ, φ̃) = {ψ, φ̃(ψ)} be
the constrained maximum likelihood estimator of θ for given ψ. Then the profile
log-likelihood function for ψ is M(ψ) = L{θ̃(ψ)} and the likelihood ratio statis-

tic for ψ is W (ψ) = 2{M(ψ̂)−M(ψ)}, where M(ψ̂) = L(θ̂), since θ̃(ψ̂) = θ̂. The

signed root likelihood ratio statistic is R(ψ) = sgn(ψ̂ − ψ){W (ψ)}1/2. Then,
for example, testing H0 : ψ = ψ0 against Ha : ψ > ψ0 or Ha : ψ < ψ0 can be
based on the test statistic R(ψ0). Asymptotically, as the sample size n increases,
the sampling distribution of R(ψ) tends to the standard normal distribution.
Specifically, R(ψ) is distributed as standard normal to first order, to error of
order O(n−1/2). By contrast, the R∗ statistic is distributed as standard normal
to error of order O(n−3/2).
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The R∗ statistic is defined by

R∗(ψ) = R(ψ) +R(ψ)−1 log(v(ψ)/R(ψ)), (1)

where v(ψ) is given (Barndorff-Nielsen, 1986) by

v(ψ) =

∣∣∣∣∣ L;θ̂(θ̂)− L;θ̂(θ̃)

Lφ;θ̂(θ̃)

∣∣∣∣∣ /{|jφφ(θ̃)|1/2|j(θ̂)|1/2}. (2)

Here, it is supposed that the log-likelihood function has been written as L(θ; θ̂, a),

with (θ̂, a) minimal sufficient and a ancillary, that is with a distribution which,
at least approximately, does not depend on θ. Further,

L;θ̂(θ) ≡ L;θ̂(θ; θ̂, a) =
∂

∂θ̂
L(θ; θ̂, a), Lφ;θ̂(θ) ≡ Lφ;θ̂(θ; θ̂, a) =

∂2

∂φ∂θ̂
L(θ; θ̂, a).

Also, j denotes the observed information matrix, j(θ) = (−Lrs(θ)), with Lrs(θ) =
∂2L(θ)/∂θr∂θs, and jφφ denotes its (φ, φ) component. The sampling distribu-
tion of R∗(ψ) is standard normal conditionally on a, and hence, as noted, un-
conditionally, to error of third order O(n−3/2). Note that in a full exponential

family model, θ̂ is already itself sufficient, and no ancillary statistic a is re-
quired. The expression for v(ψ) given by (2) therefore simplifies somewhat: see,
for example, Barndorff-Nielsen & Cox (1994, Example 6.19).

Barndorff-Nielsen & Cox (1994, Section 6.6.4), generalizing Pierce & Peters
(1992), introduce quantities NP(ψ) and INF(ψ), both of order Op(n

−1/2), such
that R∗(ψ) = R(ψ) + NP(ψ) + INF(ψ). Explicitly, we have

NP(ψ) = − 1

R(ψ)
logC(ψ),

where

C(ψ) =
{|jφφ(θ̂)||jφφ(θ̃)|}1/2

|Lφ;φ̂(θ̃)|
,

with Lφ;φ̂(θ) ≡ Lφ;φ̂(θ; θ̂, a) = ∂2L(θ; θ̂, a)/∂φ∂φ̂ and, as before, jφφ denoting

the (φ, φ) component of the observed information j. Also,

INF(ψ) =
1

R(ψ)
log{u(ψ)/R(ψ)},

where

u(ψ) = jp(ψ̂)−1/2 ∂

∂ψ̂
{M(ψ̂)−M(ψ)}.

Here jp is the profile observed information, jp(ψ) = −∂2M(ψ)/∂ψ2, and the

derivative with respect to ψ̂ is calculated with M(ψ̂) −M(ψ) considered as a

function of ψ, ψ̂, φ̃(ψ) and a.
Calculation of R∗(ψ) supposes explicit representation of the log-likelihood as

a function of (θ̂, a). Other formulations of the adjustment v(ψ), due to Fraser
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and co-workers, are possible. The tangent exponential model introduced by
Fraser (1990) avoids the need to specify the transformation Y → (θ̂, a), though
still requires awkward analytic calculation: a useful summary is given by Braz-
zale et al. (2007, Chapter 8). In general, however, it is necessary to approximate
to the quantity v(ψ). Replacing v(ψ) in the definition (1) of R∗(ψ) by an esti-
mate ṽ(ψ) typically yields an adjusted version of the signed root likelihood ratio
statistic distributed as standard normal only to error of second order, O(n−1).
A computationally attractive approximation based on orthogonal parameter-
isation (Cox & Reid, 1987) is described by DiCiccio & Martin (1993). The
approximation due to Skovgaard (1996) is theoretically attractive in that it also
provides large deviations protection.

To develop our analysis, some further notation is required. Let Lθ(θ) denote
the score function, the vector with components Lr(θ) = ∂L(θ)/∂θr, r = 1, . . . , d.
In the calculations that follow, arrays and summation are denoted by using the
standard conventions, for which the indices r, s, t, . . . are assumed to range over
1, . . . , d. Summation over the range is implied for any index appearing in an
expression both as a subscript and as a superscript. As above, differentiation
is indicated by subscripts. Then E{Lr(θ)} = 0; let λrs = E{Lrs(θ)}, λrst =
E{Lrst(θ)}, etc., and put lr = Lr(θ), lrs = Lrs(θ) − λrs, lrst = Lrst(θ) − λrst,
etc. The constants λrs, λrst, . . ., are assumed to be of order O(n). The vari-
ables lr, lrs, lrst, etc., each of which have expectation 0, are assumed to be
of order Op(n

1/2). The joint cumulants of lr, lrs, etc. are assumed to be of
order O(n). These assumptions will usually be satisfied in situations involv-
ing independent observations, or structured dependence, such as in time series
contexts. It is useful to extend the λ-notation: let λr,s = E(LrLs) = E(lrls),
λrs,t = E(LrsLt) = E(lrslt), etc. Bartlett identities involving the λ’s can be
derived by repeated differentiation of the identity

∫
exp{L(θ)}dy = 1; in partic-

ular,
λrs + λr,s = 0, λrst + λrs,t + λrt,s + λst,r + λr,s,t = 0.

Differentiation of the definition λrs =
∫
Lrs(θ) exp{L(θ)}dy yields λrs/t = λrst+

λrs,t, where λrs/t = ∂λrs/∂θ
t. Further, let (λrs) be the d × d matrix inverse

of (λrs), and let η = −1/λ11, τ rs = ηλ1rλ1s, and νrs = λrs + τ rs. Thus, λrs,
τ rs, and νrs are of order O(n−1), while η, which is what we have termed the
adjusted information for ψ, is of order O(n).

DiCiccio & Stern (1994a) showed that R(ψ) = η1/2{R1 +R2 +Op(n
−3/2)},

where R1 = −λ1rlr and

R2 = λ1rλstlrslt + 1
2λ

1rτstlrslt − 1
2λ

1rλsuνtvλrstlulv − 1
6λ

1rτsuτ tvλrstlulv.

Note that R1 is of order Op(n
−1/2) and R2 is of order Op(n

−1). Since E(R1) = 0,
it follows that

E{R(ψ)} = η1/2{λ1rλstλrs,t+ 1
2λ

1rτstλrs,t+
1
2λ

1rλstλrst+
1
3λ

1rτstλrst}+O(n−1).
(3)
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3. Expectations of adjustments

Detailed analysis given in the Appendix shows that we may approximate
E{INF(ψ)} to O(n−1) by

gINF(θ) = η1/2λ1rτst( 1
2λrs,t + 1

6λrst),

and E{NP(ψ)} to the same order by

gNP(θ) = −η1/2λ1rνst(λrs,t + 1
2λrst).

These expansions permit a full statistical interpretation of the adjustment
terms NP(ψ) and INF(ψ), which we do through a series of remarks.
Remark 1. We begin by examining E{R(ψ)} when there are no nuisance pa-
rameters. If nuisance parameters are absent, then λ11 = (λ11)−1, η = −λ11,
τ11 = (−λ11)−1, and ν11 = 0, and it follows that

E{R(ψ)} = (−λ11)−3/2( 1
2λ11,1 + 1

6λ111) +O(n−1).

Remark 2. The quantities gINF(θ) and gNP(θ) are related to asymptotic quan-
tities detailed by Efron (1987) in description of the ‘bias corrected accelerated’,
BCa, method of construction of bootstrap confidence intervals, which is anal-
ysed in detail by DiCiccio & Efron (1996). Specifically, we have gINF(θ) = a0
and gNP(θ) = z0 − a0, where a0 = a0(θ) and z0 = z0(θ) are respectively ac-
celeration and bias-correction quantities. The quantity a0 satisfies (DiCiccio &
Efron, 1996)

a0 = −1

6
{skew(U) + skew(T )}+O(n−1),

where U = (ψ̂ − ψ)/σ, with σ2 the variance of ψ̂, given by σ2 ≡ σ2(θ) =

λ1,1 +O(n−2), and T = (ψ̂ − ψ)/σ̂, with σ̂2 = σ2(θ̂). Further, z0 is interpreted
by

Φ(z0) = Pr(ψ̂ ≤ ψ) +O(n−1),

where Φ is the standard normal distribution function.
DiCiccio & Efron (1996) note that the quantities a0 and z0 are invariant

under reparameterisations of the model. Therefore, in using the asymptotic
adjustment expectations gINF(θ) and gNP(θ) to interpret nuisance parameter
effects on the inference on ψ, there is no restriction in assuming that the model
under analysis is parameterised so that the interest parameter ψ and the nui-
sance parameter φ are orthogonal (Cox & Reid, 1987). Therefore, now suppose
there is a vector nuisance parameter φ present, but assume that the interest
parameter ψ and the nuisance parameter φ are orthogonal; then λ11 = (λ11)−1,
η = −λ11, λ1a = 0 (a = 2, . . . , d), τ rs = 0 except when r = s = 1, in which case
τ11 = (−λ11)−1, and

E{INF(ψ)} = −(−λ11)−3/2( 1
2λ11,1 + 1

6λ111) +O(n−1).
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Therefore, following Remark 1, to error of order O(n−1), E{INF(ψ)} is seen to
correspond to a mean adjustment for the signed root statistic R(ψ) in the prob-
lem where the orthogonal nuisance parameter φ is known. Since the standard
normal approximation to the distribution of R(ψ) is typically rather accurate
in scalar parameter cases without nuisance parameters, the mean adjustment
should be quantitatively small quite generally, so we can anticipate that INF(ψ)
is typically small.
Remark 3. For general parameterisations, we have ν11 = νa1 = ν1b = 0 for
a, b = 2, . . . , d, and thus,

E{NP(ψ)} = −η1/2λ1rνab(λra,b + 1
2λrab) +O(n−1)

= η1/2λ1rνab( 1
2λrab − λra/b) +O(n−1),

where λra/b = ∂λra/∂θ
b and λra/b = λra,b + λrab.

Under orthogonality, νab = λab for a, b = 2, . . . , d, and the condition λ1a = 0
for a = 2, . . . , d implies that λ1a/b = 0 for b = 2, . . . , d, so that the identity
λ1a/b = λ1a,b + λ1ab yields λ1a,b = −λ1ab for a, b = 2, . . . , d. Hence, nuisance
parameter effects may be quantified from the expression

E{NP(ψ)} = − 1
2 (−λ11)−1/2λabλab1 +O(n−1).

Note that this gives β1 = η1/2E{NP(ψ)}+O(n−1/2) = − 1
2λ

abλab1 +O(n−1/2).
Since the expansion for E{NP(ψ)} involves a multiple sum over the nuisance
parameters, we see that NP(ψ) can be anticipated to be large when the number
of nuisance parameters is large.
Remark 4. Some further insight into NP(ψ) in the orthogonal case can be
gleaned by noting that

∂ log det[−Lab{θ̃(ψ)}]
∂ψ

= Lab(θ)Lab1(θ) +Op(n
−1/2) = λabλab1 +Op(n

−1/2),

which further relates E{NP(ψ)} to the specific adjustment function of Cox &
Reid (1987). Thus, in this orthogonal case, if log det{−Lab(θ)} does not change
rapidly with ψ, such as when L(θ) = g(ψ)+h(φ), in which case det{−Lab(θ)} is
constant with respect to ψ, then λabλab1 is small in magnitude, and hence, we
would expect NP(ψ) to be small in magnitude; see also the discussion in Cox &
Reid (1987).
Remark 5. There is one further interpretation of NP(ψ) that is worth noting.

DiCiccio & Stern (1994a) showed that the difference between ψ̄ and ψ̂ is

ψ̄−ψ̂ = −λ11β1+Op(n
−3/2) = η−1β1+Op(n

−3/2) = η−1/2E{NP (ψ)}+Op(n−3/2),

and hence, this difference, when in expressed in terms of standard deviations of
ψ̂, is

ψ̄ − ψ̂
η−1/2

= E{NP (ψ)}+Op(n
−1).
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Remark 6. Note that the quantities gNP(θ) and gINF(θ) are both of order
O(n−1/2). As we shall illustrate, calculation of the individual values provides
important statistical insight. We propose further that a simple measure of the
relative influence within the assumed model of the nuisance parameter on infer-
ence on the interest parameter ψ, independent of the sample size n, might be
obtained by considering their ratio gNP(θ)/gINF(θ).
Remark 7. In general, the quantities gNP(θ) and gINF(θ) depend on the un-
known parameter θ. In practice, following the bootstrap principle, they may
be estimated by gNP(θ̃) and gINF(θ̃) respectively. An adjusted version of the
signed root statistic R(ψ), easily calculated in practice, once gNP(θ) and gINF(θ)
have been calculated, is given by Ra(ψ) = R(ψ) + gNP(θ̃) + gINF(θ̃). Since
gNP(θ̃) − gNP(θ) = Op(n

−1), we have that Ra(ψ) = R∗(ψ) + Op(n
−1), and

therefore that Ra(ψ) has the standard normal distribution to error of order

O(n−1). DiCiccio & Efron (1996) previously remarked that R(ψ) + z0(θ̂) is
standard normal to error of order O(n−1), but did not investigate practical use
of this statistic for inference: an alternative is the statistic Ra(ψ) = R(ψ)+z0(θ̃).
Although no claim of desirable large deviation properties of the kind enjoyed
by the method of Skovgaard (1986) can be made for this statistic, empirical
evidence, not reported here, suggests that it nevertheless yields highly accurate
inference in many settings.
Remark 8. Note that the asymptotic regime adopted here is one in which the
dimensionality d − 1 of the nuisance parameter φ remains fixed as the sam-
ple size n increases. However, we propose that examination of the quantities
gNP(θ) and gINF(θ) and their ratio is a useful device to quantify the effect of
an increasing dimension of nuisance parameter on the inference, as we shall il-
lustrate in the next Section. For stratified models, such as those in Examples
2, 4, 5 and 6 below, Sartori (2003) noted that, when both the sample size n
within each stratum and the number of nuisance parameters q tend to infinity,
NP (ψ) = Op(qm

−1/2), while INF (ψ) = Op(m
−1/2), where m = nq is the to-

tal sample size, irrespective of the nature of the sequence {q, n}. Hence, the
ratio NP (ψ)/INF (ψ) = Op(q) in such an asymptotic regime, consistent with
calculations given in Examples 2, 4, 5 and 6 below. Relative to the inference
adjustment, the nuisance parameter adjustment increases at a rate proportional
to the dimension of the nuisance parameter.

4. Examples

We consider here a number of theoretical and numerical examples.
Example 1. Normal linear regression. Let Y1, . . . , Yn denote independent

random variables of the form Yi = xTi β + σεi, where x1, . . . , xn are known
covariate vectors of length q, σ is an unknown scalar interest parameter and β
is an unknown nuisance parameter vector of length q, so that θ = (σ, β). The
εi are assumed to be independent standard normal random variables.

In this case, n1/2gINF(θ) = 21/2/3 and n1/2gNP(θ) = q/21/2. Note that these
quantities do not depend on the parameter value θ, while η = 2n/σ2. Nuisance
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parameter effects are determined, to second order, only by the dimensionality of
the nuisance parameter β, not its value. This observation in turn would suggest
that inference based on the bootstrap distribution of R(σ) should be highly
accurate. In fact, R(σ) is a simple function of σ̂2/σ2, which has a distribution
free of θ: (n−q)σ̂2/σ2 is distributed as chi-squared on n−q degrees of freedom.
A bootstrap calculation will, modulo simulation variability, reproduce the exact
sampling distribution of R(σ).

Example 2. Neyman-Scott model. Let Yij , for i = 1, . . . , n and j = 1, . . . , q
be independent Gaussian random variables, with Yij being distributed asN(µj , σ

2).
The interest parameter is σ, with nuisance parameter (µ1, . . . , µq), so that
θ = (σ, µ1, . . . , µq).

Now we calculate n1/2gINF(θ) = 1/{1.5(2q)1/2}, with n1/2gNP(θ) = (q/2)1/2,
so that gNP(θ)/gINF(θ) =1·5q. Again, these quantities do not depend on the
value of θ, only the dimension q of the nuisance parameter. The adjusted in-
formation is given by η = 2nq/σ2. As in Example 1, the signed root statistic
R(σ) has a distribution free of the parameter value: it is a function of the piv-
otal quantity σ̂2/σ2, and its exact sampling distribution can be constructed by
bootstrapping.

A related problem concerns a generalisation of the Behrens-Fisher problem,
in which we observe Yij , for i = 1, . . . , n and j = 1, . . . , q to be independent
Gaussian random variables, with Yij being distributed as N(µ, σ2

j ). The interest

parameter is the common mean µ, with (σ2
1 , . . . , σ

2
q ) as nuisance. In this case, we

see that E{INF(ψ)} and E{NP(ψ)} are both O(n−1), not O(n−1/2). Nuisance
parameter effects are quantitatively slight though, by contrast with what is
noted above, in this case the signed root statistic R(µ) is not exactly pivotal,
and the bootstrap inference is not exact. Limited numerical results given by
Young (2009) for the case q = 2 would indicate, however, that the bootstrap
inference is highly accurate even for small sample size n.

Example 3. Exponential regression. Suppose Y1, . . . , Yn are independent
exponential random variables, with means depending on given covariate values.
We suppose for simplicity the case of two covariates, though our conclusions
extend immediately to the case with a general number of covariates. So, we
suppose Yi is exponentially distributed with mean φ1 exp(−ψzi − φ2wi), with∑
zi =

∑
wi = 0, and ψ the interest parameter. Routine calculations show that

gINF(θ) and gNP(θ), though complicated functions of the covariate values, are
again free of the parameter θ = (ψ, φ1, φ2). Further, the signed root statistic
R(ψ) is again easily seen to be exactly pivotal, and bootstrap inference is once
more exact.

In the simple case of a single covariate, with E(Yi) = φ exp(−ψzi), with∑
zi = 0, we have

E{NP(ψ)} = 0 +O(n−1), E{INF(ψ)} = −(
∑

z2i )−3/2( 1
6

∑
z3i ) +O(n−1) :

the nuisance parameter adjustment has expectation of smaller order of magni-
tude than that of the information adjustment.

10



We consider now from a numerical perspective three examples with many
nuisance parameters previously discussed by Sartori et al. (1999). In each,
we provide illustration of dependence of the measure gNP(θ)/gINF(θ) on the
dimensionality of the nuisance parameter.

Example 4. Inverse Gaussian model. Let Yij , for i = 1, . . . , n and j =
1, . . . , q be independent, inverse Gaussian random variables, with Yij having
probability density

f(y;ψ, φj) = {ψ/(2π)}1/2y−3/2 exp{− 1
2 (ψy−1 + φjy) + (ψφj)

1/2}, y > 0,

where ψ > 0 and φj > 0, so that θ = (ψ, φ1, . . . , φq) and the overall sample size
is m = nq.

Simple algebraic manipulations show that, independently of the parameter
value θ, n1/2gINF(θ) = −1/{1.5(2q)1/2}, and n1/2gNP(θ) = −(q/2)1/2, so that
gNP(θ)/gINF(θ) =1.5q in this model. We note that in this model the adjusted
information for ψ is given by η = nq/(2ψ2).

Example 5. Multi-sample exponential model. Let Yij , for i = 1, . . . , n and
j = 1, . . . , q be independent, exponential random variables, with Yij having
mean 1/φj . The parameter of interest is

ψ = q−1

q∑
j=1

exp(−φjt0),

where t0 > 0 is a fixed constant and θ = (ψ, φ), with the nuisance parameter
φ = (φ2, . . . , φq). As noted by Sartori et al. (1999), qψ may be interpreted as
the expected number of items failing by t0 in a parallel system with failures
rates φ1, . . . , φq.

The interest parameter ψ is therefore a nonlinear function of the canon-
ical parameter in a full exponential family model. Again, construction of the
information and nuisance parameter adjustments INF(ψ) and NP(ψ) is straight-
forward, though the constrained maximum likelihood estimator θ̃ must be cal-
culated numerically.

By contrast with previous examples, in this model the ratio gNP(θ)/gINF(θ)
depends on the value of the parameter θ. Values illustrating the effect of increas-
ing nuisance parameter dimension are given in Table 1 for two cases. In both
t0=0.5: case (a) considers φi = 1, i = 1, . . . , q, so that ψ =0.6065; case (b) fixes
ψ =0.0333 for each dimension of nuisance parameter, sets exp(−φqt0) = qψ/2
and fixes φ1 = . . . = φq−1, the common value being determined by the specified
ψ. Acute dependence of the ratio on the actual parameter values, rather than
just the nuisance parameter dimension as in previous examples, is apparent.

Example 6. Curved exponential family model. Our final example concerns
a model for which calculation of R∗(ψ) is intractable: the sample space deriva-
tives, derivatives of the log-likelihood with respect to the maximum likelihood
estimator, required by the construction (2) of R∗(ψ), must be approximated.
By contrast, the calculations required to evaluate gINF(θ) and gNP(θ) are no
more complex than in the other examples.
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Table 1: Dependence of ratio gNP(θ)/gINF(θ) on q, multi-sample exponential model. Case (a)
has φi = 1, i = 1, . . . , q, case (b) has φ1 = . . . = φq−1, with exp(−φqt0) = qψ/2.

q 2 5 10 20 50

(a) 2.25 9.00 20.25 42.75 110.25
(b) -2.10 -5.50 -8.56 -15.76 -130.29

Table 2: Dependence of ratio gNP(θ)/gINF(θ) on q, multi-sample curved exponential family
model. Case (a) has ψ = 1, µi = i, i = 1, . . . , q, case (b) has ψ = 1, µi = 1, i = 1, . . . , q.

q 1 2 5 10 20 50

(a) 1.11 2.45 6.77 14.17 29.09 74.01
(b) 1.11 2.21 5.53 11.05 22.11 55.26

Let Yij , for i = 1, . . . , n and j = 1, . . . , q be independent normal random

variables with means µj > 0 and variances ψµ
1/2
j . This model constitutes a

curved exponential family. The parameter of interest is ψ, with µ1, . . . , µq as
nuisance parameters, θ = (ψ, µ1, . . . , µq).

Again, the ratio gNP(θ)/gINF(θ) depends on the value of the parameter θ.
Illustrative values are given in Table 2, for two cases: case (a) has ψ = 1, µi =
i, i = 1, . . . , q, while case (b) has ψ = 1, µi = 1, i = 1, . . . , q.

5. Decomposition of the Bartlett correction factor

Recall that the sum of gINF(θ) and gNP(θ) is, to O(n−1), equal to

E{−R(ψ)} = −η1/2(λ1rλstλrs,t + 1
2λ

1rτstλrs,t + 1
2λ

1rλstλrst + 1
3λ

1rτstλrst)

= −η1/2λ1rλst(λrs,t + 1
2λrst)− η

1/2λ1rτst( 1
2λrs,t + 1

3λrst).

To decide how we might choose gINF(θ) and gNP(θ) in a decomposition of
this sum, consider imposing two conditions: first, gINF(θ) must take the same
value whether we have no nuisance parameters or we have orthogonal nui-
sance parameters; and second, gNP(θ) must be 0 when we have no nuisance
parameters. These conditions suggest that τ rs and νrs play a key role. Note
that τ11 = (−λ11)−1 when there are no nuisance parameters, while for or-
thogonal nuisance parameters τ rs = 0 except when r = s = 1, in which case
τ11 = (−λ11)−1. Thus, τ rs is the same in the orthogonal nuisance parameter
case as it is when nuisance parameters are absent. On the other hand, since
νrs = 0 whenever either or both of r and s are 1, we have that ν11 = 0 when
there are no nuisance parameters. It is readily seen that the decomposition of
the sum into gINF(θ) and gNP(θ) according to the two conditions can be achieved
if we substitute λst = νst − τst in the sum and then take gINF(θ) to consist of
those terms involving τst and take gNP(θ) to consist of those terms involving
νst. We demonstrate here that the same reasoning may be applied to obtain a
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decomposition of the Bartlett correction factor for the likelihood ratio statistic
W (ψ).

Lawley (1956) showed (see also DiCiccio & Stern, 1994a) that the expecta-
tion of W (ψ) is E{W (ψ)} = 1 + b(θ) +O(n−3/2), where

b(θ) = (λrsλtu − νrsνtu)( 1
4λrstu − λrst/u + λrt/su)

− (λrsλtuλvw − νrsνtuνvw)( 1
4λrstλuvw − λrstλuv/w + λrs/tλuv/w)

− (λruλswλtv − νruνswνtv)( 1
6λrstλuvw − λrstλuv/w + λrs/tλuv/w).

We now decompose b(θ) into the sum b(θ) = bINF(θ)+bNP(θ), where bINF(θ)
is the same whether we have no nuisance parameters or whether we have or-
thogonal nuisance parameters, and bNP(θ) is 0 when there are no nuisance pa-
rameters. We make the substitution λrs = νrs − τ rs in b(θ): bINF(θ) consists
of those terms involving the τ rs but not the νrs; bNP(θ) consists of those terms
that involve the νrs in any way.

Succinct expressions for bINF(θ) and bNP(θ) derived this way are

bINF(θ) = τ rsτ tu( 1
4λrstu − λrst/u + λrt/su)

+ τ rsτ tuτvw( 1
4λrstλuvw − λrstλuv/w + λrs/tλuv/w)

+ τ ruτswτ tv( 1
6λrstλuvw − λrstλuv/w + λrs/tλuv/w),

and

bNP(θ) = (λrsλtu − τ rsτ tu − νrsνtu)( 1
4λrstu − λrst/u + λrt/su)

− (λrsλtuλvw + τ rsτ tuτvw − νrsνtuνvw)( 1
4λrstλuvw − λrstλuv/w + λrs/tλuv/w)

− (λruλswλtv + τ ruτswτ tv − νruνswνtv)( 1
6λrstλuvw − λrstλuv/w + λrs/tλuv/w).

If there are no nuisance parameters or there are orthogonal nuisance param-
eters, then

bINF(θ) = (λ11)−2( 1
4λ1111 − λ111/1 + λ11/11)

− (λ11)−3( 1
4λ111λ111 − λ111λ11/1 + λ11/1λ11/1)

− (λ11)−3( 1
6λ111λ111 − λ111λ11/1 + λ11/1λ11/1).

Note that if there are no nuisance parameters, ν11 = 0 and τ11 = −λ11,
so that bNP(θ) is identically zero. It is useful to evaluate bNP(θ) in the case of
orthogonal nuisance parameters to show better the effect of nuisance parameters.
Now, by making the substitution λrs = νrs − τ rs, we have

bNP(θ) = {(νrs − τ rs)(νtu − τ tu)− τ rsτ tu − νrsνtu}( 1
4λrstu − λrst/u + λrt/su)

− {(νrs − τ rs)(νtu − τ tu)(νvw − τvw) + τ rsτ tuτvw − νrsνtuνvw}
× ( 1

4λrstλuvw − λrstλuv/w + λrs/tλuv/w)

− {(νru − τ ru)(νsw − τsw)(νtv − τ tv) + τ ruτswτ tv − νruνswνtv}
× ( 1

6λrstλuvw − λrstλuv/w + λrs/tλuv/w)
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= −(τ rsνtu + νrsτ tu)( 1
4λrstu − λrst/u + λrt/su)

− (τ rsτ tuνvw + τ rsνtuτvw + νrsτ tuτvw − τ rsνtuνvw − νrsτ tuνvw − νrsνtuτvw)

× ( 1
4λrstλuvw − λrstλuv/w + λrs/tλuv/w)

− (τ ruτswνtv + τ ruνswτ tv + νruτswτ tv − τ ruνswνtv − νruτswνtv − νruνswτ tv)
× ( 1

6λrstλuvw − λrstλuv/w + λrs/tλuv/w).

We consider each of the terms in bNP(θ) separately under orthogonality:

− (τ rsνtu + νrsτ tu)( 1
4λrstu − λrst/u + λrt/su)

= (λ11)−1λab( 1
2λ11ab − λ1ab/1 − λ11a/b);

− (τ rsτ tuνvw + τ rsνtuτvw + νrsτ tuτvw − τ rsνtuνvw − νrsτ tuνvw − νrsνtuτvw)

× ( 1
4λrstλuvw − λrstλuv/w + λrs/tλuv/w)

= −(λ11)−2λab( 1
2λ111λ1ab + 1

4λ11aλ11b − λ1abλ11/1 + λ11/1λab/1)

− (λ11)−1λabλcd( 1
2λ11aλbcd + 1

4λ1abλ1cd − λ11aλbc/d − λ1abλ1c/d + λ11/aλbc/d);

− (τ ruτswνtv + τ ruνswτ tv + νruτswτ tv − τ ruνswνtv − νruτswνtv − νruνswτ tv)
× ( 1

6λrstλuvw − λrstλuv/w + λrs/tλuv/w)

= −(λ11)−2λab( 1
2λ11aλ11b − λ11aλ11/b − λ11aλ1b/1)

− (λ11)−1λabλcd( 1
2λ1acλ1bd − λ1acλbd/1).

The resulting formula for bNP(θ) in the presence of orthogonal nuisance
parameters is

bNP(θ) = (λ11)−1λab( 1
2λ11ab − λ1ab/1 − λ11a/b)

− (λ11)−2λab(λ111λ1ab + 3
4λ11aλ11b

− λ11aλ11/b − λ11aλ1b/1 − λ1abλ11/1 + λ11/1λab/1)

− (λ11)−1λabλcd( 1
2λ11aλbcd + 1

4λ1abλ1cd + 1
2λ1acλ1bd

− λ11aλbc/d − λ1abλ1c/d − λ1acλbd/1 + λ11/aλbc/d.

Just as for gNP(θ) in the case of orthogonal nuisance parameters, we see that
bNP(θ) involves multiple sums over the indices for the nuisance parameters, so
bNP(θ) can be expected to be large when the number of nuisance parameters is
large.

An interesting feature emerges from comparing the formulas for gNP(θ) and
bNP(θ) in the orthogonal nuisance parameter case. While the expression for
gNP(θ) involves a double sum over the indices for the nuisance parameters, the
expression for bNP(θ) involves both double and quadruple sums. Consequently,
we might reasonably expect the ratio bNP(θ)/bINF(θ) to grow more rapidly with
the number of nuisance parameters than does the ratio gNP(θ)/gINF(θ). This
phenomenon is apparent in Example 1, for which gNP(θ)/gINF(θ) = 3q/2. It

14



turns out that bINF(θ) = n−1 1
3 and bNP(θ) = n−1(q2 + q), so bNP(θ)/bINF(θ) =

3(q2 + q). In this example, the ratio bNP(θ)/bINF(θ) grows quadratically with
the number of nuisance parameters, while the ratio gNP(θ)/gINF(θ) only grows
linearly.

6. Decompositions for other pivots

So far, our focus has been on inference based on an adjusted version of the
signed root likelihood ratio statistic; however, other pivots that are asymptot-
ically standard normal also find widespread use, notably the Wald-type pivots
based on the difference ψ̂ − ψ and the score-type pivots based on the deriva-
tive M1(ψ) = dM(ψ)/dψ = L1{θ̃(ψ)}. DiCiccio et al. (2015) provide analysis
of circumstances where inference, such as p−values, obtained by bootstrapping
various first-order asymptotically equivalent pivots will agree to higher-order
with that obtained from the signed root statistic. It is of interest to assess the
impact that nuisance parameters have on higher-order adjustments obtained by
Cornish-Fisher transformation to these other pivots. We examine the structure
of these adjustments in terms of the quantities gINF(θ) and gNP(θ), to allow
explicit comparisons with inference based on R(ψ).

Let T (ψ) denote an asymptotically standard normal pivot, and let its cu-
mulants be denoted by κ1, κ2, etc. Typically, the mean κ1 and skewness κ3 are
of order O(n−1/2), while the variance κ2 = 1 +O(n−1); the fourth and higher-
order cumulants are of order O(n−1) or smaller. Central to higher-order infer-
ence based on T (ψ) is the Cornish-Fisher transformation T − 1

6κ3T
2−κ1 + 1

6κ3,
which has the standard normal distribution to error of order O(n−1). The
Cornish-Fisher transformation of R(ψ) agrees with the R∗(ψ) statistic to error
of order O(n−1). The adjustment terms 1

6κ3 and −κ1 + 1
6κ3 that appear in

the Cornish-Fisher transformation depend on θ, so they would need to be es-
timated to achieve higher-order inference in practice. An interpretation of the
adjustment made by the Cornish-Fisher transformation is that whether or not
a mean adjustment suffices to make the desired correction hinges on the order
of κ3. This is an important factor differentiating the signed root statistic from
other asymptotically standard normal pivots.

We report κ1 and κ3 for some common choices of T (ψ). For T (ψ) = R(ψ),
we have seen that κ1 = −gINF(θ)− gNP(θ) +O(n−1); in this case, κ3 = O(n−1).
Consequently, higher-order inference based on R(ψ) requires estimation of κ1
only, and estimation of κ3 is not necessary.

To report κ1 and κ3 for other pivots T (ψ), it is convenient to introduce one
further asymptotic quantity in addition to gINF(θ) and gNP(θ). This quantity
is d ≡ d(θ) = −η1/2 1

6λ
1rτstλrst, which arises quite naturally from the profile

log-likelihood function. It turns out that the third derivative of the profile log-
likelihood function evaluated at ψ̂ is M3(ψ̂) = η3/26d+Op(n

1/2). The quantity
d is also related to Efron’s (1987) asymptotic adjustments a0 and cq, which were
discussed by DiCiccio & Efron (1996): d = 2a0 + cq. Furthermore, in terms of

gINF(θ), gNP(θ), and d, the mean of ψ̂ is E(ψ̂) = ψ − (2gINF(θ) + gNP(θ) −
d)η−1/2 +O(n−3/2).
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A key property of the quantity d is that it is the same whether there are
no nuisance parameters or there are orthogonal nuisance parameters. In both
cases, the formula for d becomes d = −(−λ11)−3/2 1

6λ111. Thus, d is similar to
gINF(θ): we would not expect d to grow with the number of nuisance parameters.
The quantity d does differ from gINF(θ) and gNP(θ) in one important respect:
while gINF(θ) and gNP(θ) are invariant under reparameterizations θ = (ψ, φ)→
{g(ψ), h(ψ, φ)}, where φ = (θ2, . . . , θd) contains the nuisance parameters and
g(ψ) is a monotonically increasing function, d does not enjoy the property of
invariance.

We next consider the Wald statistic with observed information, T (ψ) =

(ψ̂ − ψ)/(−L̂11)1/2, and the Wald statistic with expected information, T (ψ) =

(ψ̂ − ψ)/(−λ̂11)1/2 = (ψ̂ − ψ)η̂1/2. The distributions of these pivots are the
same to error of order O(n−1). For both Wald statistics, κ1 = −{gINF(θ) +
gNP(θ)+d}+O(n−1) and κ3 = −6d+O(n−1). Consequently, the Wald statistics
are similar to the signed root of the likelihood ratio statistic in that nuisance
parameters affect the higher-order adjustment terms through gNP(θ), which is
involved in κ1.

Finally, we consider the score statistic with observed information, T (ψ) =
M1(ψ)(−L̂11)1/2, and the score statistic with expected information, T (ψ) =

M1(ψ)(−λ̂11)1/2 = M1(ψ)η̂−1/2. Just as for the Wald statistics discussed
above, the distributions of these pivots agree to error of order O(n−1); for
these score statistics, κ1 = −{gINF(θ) + gNP(θ) − 2d} + O(n−1) and κ3 =
12d + O(n−1). Again, nuisance parameters influence the higher-order adjust-
ment terms through gNP(θ), which is a component of κ1.

An important property of the profile log-likelihood function M(ψ) is that
the expectation of the profile score is E{M1(ψ)} = −η1/2gNP(θ) + O(n−1).
Thus, E{M1(ψ)} is of order O(1); the expectation of the profile score does even
vanish asymptotically. Adjusted profile likelihood is discussed in the Appendix.
Most of the adjustment functions B(ψ) that have been proposed to construct
an adjusted profile log-likelihood M̄(ψ) = M(ψ) +B(ψ) have the property that
E{B1(ψ)} = η1/2gNP(θ) + O(n−1), so the expectation of the adjusted profile
score is E{M1(ψ)} = O(n−1), which does vanish asymptotically.

For T (ψ) = R̄(ψ) = sgn(ψ̄ − ψ)[2{M̄(ψ̄) − M̄(ψ)}]1/2, as detailed in the
Appendix, we have κ1 = −gINF(θ) +O(n−1) and κ3 = O(n−1). Thus, at order
O(n−1/2), the difference between the distribution of R̄(ψ) and the standard
normal distribution depends on gINF(θ), a term which is the same whether there
are no nuisance parameters present or there are orthogonal nuisance parameters.
Consequently, we expect the difference between the distribution of R̄(ψ) and the
standard normal distribution not to grow inordinately as the number of nuisance
parameters increase.

Similar comments apply to Wald statistics and score statistics based on
the adjusted profile log-likelihood function. For example, for T (ψ) = (ψ̄ −
ψ){−M̄11(ψ̄)}1/2, we have κ1 = −{gINF(θ) + d} + O(n−1) and κ3 = −6d +
O(n−1), while for T (ψ) = M1(ψ̄){−M̄11(ψ̄)}−1/2, we have κ1 = −{gINF(θ) −
2d}+O(n−1) and κ3 = 12d+O(n−1).

16



Implementation of higher-order inference to error of order O(n−1) requires
that we estimate the adjustment terms 1

6κ3 and −κ1 + 1
6κ3; we might, for ex-

ample, use plug-in estimates or derive estimates from a simulation procedure
such as the parametric bootstrap. If these adjustment terms change rapidly
with the value of the parameter θ, then there is greater scope for error in the
estimation process than if possible if the adjustment terms are stable across θ
values. This observation points to the use of asymptotically standard normal
pivots T (ψ) that are derived from the adjusted profile log-likelihood function,
since the adjustment terms for such pivots depend only on gINF(θ) and d. If the
adjustment terms are small in magnitude, then they are unlikely to vary unduly
with θ, and the adjustments can be estimated more reliably. Situations can
arise, as is the case in the normal regression example, that the quantity gNP(θ)
is large yet it remains constant with respect to θ. In these circumstances, the
need to use the adjusted profile log-likelihood is not so pressing; indeed, for
the normal regression model, the parametric bootstrap affords exact inferences,
except for simulation error. Since such situations are not commonplace, there is
strong motivation for using generally procedures that ensure the magnitudes of
the adjustment terms are controlled. However, it could be useful to develop con-
ditions that easily identify models, such as the normal linear regression model,
for which the adjustment terms, especially gNP(θ), are constant or nearly so,
since, in such models, the benefit of using adjusted profile likelihood for accu-
rate inference is not so pronounced and procedures based on the regular profile
likelihood are likely to suffice.

7. Discussion

Accurate inference on a scalar interest parameter ψ in the presence of a nui-
sance parameter may be obtained using the signed root likelihood ratio statistic
R(ψ). A computationally intensive, but analytically simple, approach bases
the inference on a bootstrap estimate of the sampling distribution of R(ψ),
constructed by fixing the nuisance parameter at its observed constrained max-
imum likelihood value. Alternatively, inference can be based on a standard
normal approximation to the sampling distribution of an analytically adjusted
version of R(ψ). For this latter approach, the gold standard is represented by
Barndorff-Nielsen’s R∗ statistic. The adjustment made by this statistic may be
decomposed into a sum of two terms. These adjustments INF(ψ) and NP(ψ)
are determined to second order, Op(n

−1), by their expectations.
We have provided an explicit evaluation of these expectations, allowing new

theoretical interpretation of the relative importance of the two adjustments and
to the intrinsic difficulty of the inference problem within any specified model.

In particular, quantifying the dependence of the expectations on the nuisance
parameter provides insight to circumstances where the bootstrap and analytic
approaches might be expected to perform well in terms of accuracy, even in
high dimensional problems and with small sample sizes. We have demonstrated
that within a particular model, the importance of the nuisance parameter ad-
justment may depend not only on the structure of the model, as expressed by
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the nuisance parameter dimension, but the parameter values themselves. In
key problems, dependence lies only on the parameter dimension. Calculation of
the approximations gINF(θ) and gNP(θ) of E{INF(ψ)} and E{NP(ψ)} involves
only evaluation of expectations of low order log-likelihood derivatives, and has
been demonstrated to give useful theoretical insight to the degree of the ad-
justment to the signed root statistic R(ψ) given by the statistic R∗(ψ) for any
specified inference problem, and therefore to the likely value in use of R∗(ψ) or
bootstrapping as a means of improving accuracy.

We note that empirical estimation of the means, through the bootstrap prin-
ciple of estimation of the nuisance parameter, furnishes a simple procedure for
adjustment of the signed root likelihood ratio statistic. A thorough analysis
of this empirical adjustment method for the purposes of inference with higher-
order accuracy, as well as a comparison of such an empirical adjustment method
with alternative approximations, is beyond the scope of this paper.

Appendix

Adjusted profile likelihood

There have been many suggestions to replace the usual profile likelihood
function M(ψ) by an adjusted version M̄(ψ) = M(ψ) + B(ψ), where B(ψ)
is an adjustment function whose derivatives with respect to ψ are of order
Op(1). The likelihood ratio statistic based on the adjusted profile likelihood is
W̄ (ψ) = 2{M̄(ψ̄)− M̄(ψ)}, where ψ̄ is the point at which M̄(ψ) is maximized.
The signed root of the likelihood ratio statistic based on the adjusted profile
likelihood is R̄(ψ) = sgn(ψ̄ − ψ){W̄ (ψ)}1/2.

Following our previous notation, we write B1(ψ) = ∂B(ψ)/∂ψ, B11(ψ) =
∂2B(ψ)/∂ψ2, etc. Let β1 = E{B1(ψ)}, β11 = E(B11), etc.; these quantities are
assumed to be of order O(1). Further, let b1 = B1(ψ)− β1, b11 = B11(ψ)− β11,
etc., with these quantities assumed to be of order Op(n

−1/2). Assume also that
the joint cumulants of nb1, nb11, lr, lrs, etc. are of order O(n).

In many instances, the adjustment function B(ψ) has been proposed to
take into account the effect of nuisance parameters for inference about ψ; see,
notably, Cox & Reid (1987), Barndorff-Nielsen (1983), Skovgaard (1996), Sev-
erini (1998), DiCiccio & Martin (1993), Barndorff-Nielsen & Chamberlin (1994).
These adjustment functions have the effect of reducing the expectation of the
profile score from order O(1) to order O(n−1). Specifically, these functions
have β1 = ρ + O(n−1), where ρ = −ηλ1rνst( 1

2λrst + λrs,t). Since, in general,
E{M1(ψ)} = −ρ+O(n−1), it follows that E{M̄1(ψ)} = O(n−1): see McCullagh
& Tibshirani (1990), DiCiccio et al. (1996).

For a general adjustment function B(ψ), DiCiccio & Stern (1994b) showed
that R̄(ψ) = η1/2{R̄1 + R̄2 + Op(n

−3/2)}, where R̄1 = R1 = −λ1rlr and R̄2 =
R2 − λ11β1; in particular, R̄(ψ) = R(ψ) + η−1/2β1 + Op(n

−1). Below, we use
this result with a particular adjustment function to obtain a representation
of the nuisance parameter adjustment NP(ψ), from which E{NP(ψ)} is then
determined to O(n−1). Combined with (3), this enables calculation to O(n−1)
of E{INF(ψ)}.
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Expectations of Adjustments

We have,

E{NP(ψ)}+ E{INF(ψ)} = −E{R(ψ)}+O(n−1)

= −η1/2{λ1rλstλrs,t + 1
2λ

1rτstλrs,t + 1
2λ

1rλstλrst + 1
3λ

1rτstλrst}+O(n−1). (4)

It is easily seen that NP(ψ) and INF(ψ) are of the form NP(ψ) = E{NP(ψ)}+
Op(n

−1) and INF(ψ) = E{INF(ψ)} + Op(n
−1). Here we develop explicit ap-

proximations for E{NP(ψ)} and E{INF(ψ)}.
The quantity NP(ψ) is related to the modified profile likelihood of Barndorff-

Nielsen (1983), an adjusted profile likelihood which reduces the bias of the profile
score. Following Sartori et al. (1999) and Pierce & Bellio (2006), we have that,
up to an additive constant, the log modified profile likelihood is

LMP (ψ) = −R(ψ)NP(ψ)− {R(ψ)}2/2

= −R(ψ)NP(ψ)−M(ψ̂) +M(ψ)

= −1

2
{R(ψ) + NP(ψ)}2 +Op(n

−1).

The modified profile likelihood therefore corresponds to an adjustment function
of the form B(ψ) = −R(ψ)NP(ψ). Further, the signed square root of the
modified profile likelihood ratio statistic is equivalent, to Op(n

−1), to R(ψ) +
NP(ψ), as noted by Sartori et al. (1999). The general result of DiCiccio & Stern
(1994b) then gives NP(ψ) = η−1/2β1 +Op(n

−1).

Observing that R(ψ) = (ψ̂ − ψ)η̂1/2 + Op(n
−1/2) and NP(ψ) = NP(ψ̂) +

Op(n
−1), we have

LMP (ψ) = −R(ψ)NP(ψ)−M(ψ̂) +M(ψ)

= (ψ − ψ̂)η̂1/2NP(ψ̂)−M(ψ̂) +M(ψ) +Op(n
−1),

and differentiation with respect to ψ yields

LMP
1 (ψ) = η̂1/2NP(ψ̂)+M1(ψ)+Op(n

−1/2) = η1/2NP(ψ)+M1(ψ)+Op(n
−1/2).

Since (see, for example, DiCiccio et al., 1996) E{LMP
1 (ψ)} = O(n−1) and

E{M1(ψ)} = −ρ+O(n−1/2), it follows that

E{NP(ψ)} = η−1/2ρ+O(n−1) = −η1/2λ1rνst(λrs,t + 1
2λrst) +O(n−1),

so that β1 = η1/2E{NP(ψ)}+O(n−1/2) = −ηλ1rνst(λrs,t + 1
2λrst) +O(n−1/2).

It follows from (4) that

E{INF(ψ)} = η1/2λ1rτst( 1
2λrs,t + 1

6λrst) +O(n−1).

We observe also that this analysis confirms E{NP(ψ)} = η−1/2β1 + O(n−1) =
NP(ψ) +Op(n

−1), as noted earlier.
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