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Abstract
This thesis describes the trial design and analysis of the Low Carbon London (LCL) residential

dynamic Time-of-Use (dToU) trial. This trial investigated the potential for dToU tariffs to deliver
residential demand response to the Supplier, where it may contribute to system balancing through
Supply Following (SF) actions, and to the distribution network operator (DNO), where it may be
used for network Constraint Management (CM). 5,533 households from the London area partic-
ipated in the trial and their consumption was measured at 30 minute resolution. 1,119 of these
received the dToU tariff, which subjected them to CM and SF price events that were designed
according to the specific requirements of these respective use cases.

A novel, data driven, engagement ranking index was developed that allowed stratification of
subsequent results into sets of the most engaged consumers, who may be indicative of a future
populace that is more experienced/engaged in home energy management. Demand response (DR)
was calculated relative to baseline model that used the dToU group mean demand as an input, with
aggregate response levels calculated over a range of time, socio-economic and household occupancy
related variables.

Taking a network perspective, the reliability of CM event response was examined and two
simple linear models presented as candidate predictors of response level, which was found to be
consistent with an 8% reduction in demand. The network capacity contribution of residential DR
was theorised to consist of two components: “mean response” and “variance response”, and the
real impact of these was investigated using the LCL gathered data. Potential risks to the network
from low price induced demand spikes were explored empirically using the SF event data and the
times of highest risk were identified.

The extensive metadata set gathered from trial participants was processed into some 200 numer-
ical variables. A correlation analysis was performed which was visualised using weighted correlation
network graphs. A number of parameters were found to predict response level, but responsiveness
(the level of deliberate engagement) could only be reliably measured by engagement rank.
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Chapter 1

Introduction

1.1 Motivation
Government legislation responding to the risk from climate change, increasing volatility of interna-
tional energy markets and energy security, is expected to bring about a dramatic shift in the way
the United Kingdom (UK) supplies and consumes its energy. The Climate Change Act of 2008 [1]
enshrines in law the target of reducing carbon emissions to 20% of 1990 levels by 2050. Current
projections indicate that approximately 30% of Great Britain (GB) electricity demand will be met
by renewable generation by 2020 [2], ideally rising to 100% by 2050 [3]. These changes will bring
significant new costs under the existing operating paradigm.

On the supply side, in addition to the fixed costs of the new renewable plant and grid connec-
tions, the following system integration costs will be borne:

• Reduction in utilisation of infrastructure. Though renewable generators can displace energy
produced from conventional plant, their ability to replace capacity is limited because they
cannot be dispatched reliably. Estimates of the capacity value of wind under the current
operating paradigm are around 10% [4]. When combined with the inflexible output of nuclear
and Carbon Capture and Storage (CCS) equipped thermal plant, this will lead to increased
requirements on generation capacity margin and reduced utilisation of conventional plant.

• Reduced efficiency of system balancing. More operating reserve is required to manage the
risk of sudden changes in wind output [4]. This increased reserve and lack of flexibility may
also reduce the ability of the system to fully utilise renewable generation. Specifically, more
wind energy will be curtailed.

On the demand side, the greatest change will be the shift of heat and transport load onto the
electricity system. At the national level, full penetration of heat pumps and electric vehicles (EVs)
could result in a doubling of peak demand with a disproportionately smaller increase in energy
consumption of only 50% [5]. Most of the ensuing network reinforcement costs will fall on the
distribution network—up to £4 billion per year additional reinforcement costs by 2040, increasing
to £6 billion per year by 2050 [6].

The established solution for balancing is to ensure enough flexible generation capacity exists
to meet demand when renewables cannot generate, and provide the necessary reserve requirement
when they do. However, more cost effective balancing technologies exist. Alternatives such as
transmission interconnection, energy storage and demand response (DR) have together been shown
to result in savings of up to £15bn by 2040 [6].

This trial looks at the potential value of residential DR to the distribution network operator
(DNO), where it may be used for network Constraint Management (CM), displacing or deferring
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network reinforcement costs, and to the supplier, where Supply Following (SF) may contribute to
system balancing, reducing the need for conventional capacity margin. They are examined here in
unison so that the potential conflicts and synergies between the two may be better observed.

The use of residential DR for CM and SF will require a dynamically changing tariff, henceforth
referred to as a dynamic Time-of-Use (dToU) tariff. This is in contrast with time-of-use (ToU)
tariffs, which are designed to target the predictable high demand periods in the week but are
otherwise static, and critical peak pricing (CPP) tariffs, which are not static but used infrequently
and targeting only the highest demand periods of the year.

The UK government plans [7] for the roll-out of smart meters to be completed by 2020. As the
specifications of the smart meters [8] have been been designed with the express purpose of being
real-time-DR-ready, there exists an imminent opportunity, one which could see consumers making
very significant savings on their energy bills [6] while supporting a cost effective transition to a low
carbon future.

1.2 Scope
This thesis concerns the design and analysis of the Low Carbon London (LCL) residential trial,
which took place in the London area during 2013 and was part of the wider LCL programme
that ran from January 2011 to December 2014. It is a complete story in that it details first hand
experience of all aspects of the trial lifecycle. Work on this trial began in early 2011, with the
inception of the LCL programme, and continued through to the beginning of 2015, the official
closure of the programme—though the LCL dataset will continue to provide research material for
many years to come. The activities performed during this period include:

• Reviewing literature on related trials in order to identify knowledge gaps and learn from past
trial designs.

• Analysing preliminary data sets provided by programme partners, such as fault data and
annual consumption data, in order to inform the trial design and set expectations for trial
results.

• Designing the trial treatment groups and selecting target sample numbers in order to achieve
statistically robust results.

• Working with programme partners during the recruitment process in order to ensure the
experimental design targets were met.

• Designing the dToU tariff (the design of individual events and their placement in the overall
pricing schedule) to achieve the defined research objectives while managing the constraints
implied through conducting an experiment on real people and working with industry partners.

• Working with programme partners to ensure access to trial data in parsable formats. This
included understanding the data architectures and security standards used by programme
partners.

• Cleansing and validating the LCL trial data. Various checks were performed in order to check
the validity of the smart meter (SM) consumption data and associated metadata.

• Analysing the LCL data and presenting findings with programme partners and coauthoring
three programme learning reports.

Details of the above activities are described where they may contribute to the interpretation or
context of the research questions.

The priorities of the LCL programme meant that the research conducted during its course
tended towards a network perspective. However, as a real dToU tariff would likely be used to
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provide services to both supply side and network actors, the Constraint Management use case
cannot be considered independently of Supply Following use case. Hence, the analysis described
in this thesis addresses the following themes:

Consumer engagement: Various metrics of consumer engagement are examined:

• The shift in the volume of energy consumed at each price level is calculated relative to the
non-time-of-use (nonToU) group

• Change in consumers’ annual bills as a result of being on the dToU tariff is estimated

• A novel, data driven engagement ranking method is presented.

Response stratification: DR, relative to a linear regression model calculated baseline, is then
investigated using multiple stratifications of the response signal in addition to engagement rank
stratification:

• By season, month, day of week and time of day

• By socio-economic group

• By household occupancy level

Reliability and risk: Reliability of CM event DR and risk to the system from a network per-
spective.

• Predictability of CM event response level is analysed

• Network capacity contribution of residential price induced DR is calculated

• Risk to the network from low price signal induced demand spikes is determined

Metadata analysis: Correlation analysis of survey collected household metadata.

• Spearman’s rank correlation of 25 chosen root variables against a full set of 200 variables

• Abstraction of results into weighted correlation network graphs for interpretation

1.3 Structure and original contributions
This section describes chapter structure of this thesis. The research described in chapters 5–9 was
performed under the supervision of Dr Simon Tindemans. All other contributions are explicitly
stated in the below text where relevant.

Chapter 2: Primer on demand response. This chapter describes the general principles and
context of DR:

• The theory of social welfare maximisation; the high level motivation for implementing DR.

• The different methods that may be used to measure DR.

• Roles that DR may play within the electricity system.

• The benefits that DR may bring to each sector of the industry.

• System implementation approaches.

• System integration considerations.
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Chapter 3: Background. This chapter provides context for LCL dToU trial by reviewing
literature on the results of past trials:

• Global overview of the landscape of residential DR trials.

• Detailed review of six trials that were closely related to the UK context.

• Comparison of chosen, closely related trials, through use of normalised response and price
metrics.

• Review of ongoing trials and anticipated results.

• Gaps in the understanding of residential DR in the UK.

Chapter 4: Trial design. This chapter describes the design and implementation of the LCL
dToU trial:

• Trial design objectives are defined with respect to the gaps in current understanding that
were identified in the previous chapter.

• High level trial design. This was performed in consortium with the LCL trial partners
and, on the Imperial side, Dr Mark Bilton and Dr Richard Carmichael. As well as joint
contributions, my specific contribution was the calculation of the target group populations
necessary to achieve statistically robust results. These calculations also underpinned the
choice of the number of experimental groups.

• Trial recruitment. The strategy and design of the recruitment process were arrived at in
consortium with the other LCL trial partners. Specifically EDF Energy and UK Power
Networks. On the side of Imperial College, Dr Mark Bilton, Dr Richard Carmichael and
myself helped steer the process to achieve research objectives.

• The design of the dToU events is described including their placement in the overall dToU
pricing schedule.

• Information and communication technology (ICT) architecture: A description of the end to
end data collection process. All elements described as occurring at the Imperial end of this
chain were my own contribution.

Chapter 5: Analysis basis. This chapter describes the analysis basis that was used in the
analysis of subsequent chapters.

• Summary of amount and type of data collected from the LCL trial.

• Description of the data validation and cleansing process.

• Measurement of DR: A linear model for the prediction of baseline demand is developed and
presented.

• Baseline model design and validation: The rationale behind the model design and its valida-
tion are described.

Chapter 6: Consumer engagement. This chapter presents two simple aggregate measures of
trial engagement as well a novel method for ranking individual consumers’ engagement with the
dToU tariff.

• Measurement of consumption shift: The shift in proportions of energy consumed at each of
the tariff’s price levels is calculated by using the nonToU group as a reference point.

• Change in consumers’ bills: The distribution of change in consumers’ annual bills, as a result
of being on the dToU tariff, is estimated.
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• Engagement ranking index: A novel method for ranking dToU consumers according to their
engagement in the tariff is introduced. This model later serves as a means for stratifying the
measured DR signal according to household responsiveness.

Chapter 7: Response stratification. This chapter provides an overview of the primary results
of the LCL dToU trial. The DR signal, calculated as described in Section 5.4, is examined over a
number of different stratifications of the response signal.

• High level full trial results.

• CM event response: Exemplar CM event traces are examined and peak demand reductions
as a result of the high price signal are presented.

• SF event response: Exemplar SF event traces are examined and aggregate response was
examined over a range of signal stratifications. To a high level, these stratifications were
based on time segmentations, socioeconomic groupings and household occupancy levels.

• LCL in context: The results of LCL were compared with those of closely related trials through
use of normalised response and price metrics. This section builds on the trial comparison
work described in chapter 2.

Chapter 8: Reliability and risk. This chapter presents an analysis of the reliability of resi-
dential DR and describes the risk to the network from low price induced demand spikes that may
be introduced in the SF use case.

• Predicability of CM event response: The predictability of CM events is analysed and two
simple predictor models are presented.

• Network capacity contribution of residential DR: The contribution to network capacity of
residential DR is analysed and the effective contribution decomposed into two components
which we call “mean response” and “variance response”. Using LCL data, the real effect of
the newly defined network capacity contribution components is computed and it is show that
this contribution can outperform the mean response.

• Risk to the network from the SF use case: The risk to the network from low price induce
demand spikes is analysed empirically using trial data, and the times of highest network risk
identified.

Chapter 9: Metadata analysis. This chapter looks at the relationships between primary
demand related metrics (such as DR) and the large set of metadata collected through survey
responses from the LCL trial participants. I have been liaising with Dr Richard Carmichael for
this research and a joint paper is in preparation that combines my quantitative analysis with his
social science interpretation.

• Data sources: The data sources are described and the validation, cleansing and encoding
process is detailed.

• Analysis approach: The basic correlation approach is described followed by the introduc-
tion of weighted correlation network graphs as a means of visualising and clustering high
dimensional data sets.

• Results: Correlation and graph results are presented and discussed.

Chapter 10: Summary and conclusions. This chapter presents the overall conclusions of this
thesis. It begins with a summary of the findings of the work performed and ends with a discussion
on the avenues for future development.
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1.4 Publications
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Chapter 2

Primer on demand response

This chapter gives a brief introduction to the theory surrounding demand response (DR) and thus
provides context for the following chapters. It begins with an overview of methods of measurement,
then moves on to the roles DR can play within the electricity system, the resultant benefits to
the high level segments of the system, a summary of implementation approaches, and finishes by
touching on some of the key considerations associated with its system integration. The descriptions
aim to be general, but the UK system is used for illustration where specific details are required.

2.1 Motivation: social welfare maximisation
At the highest level, the motivation for the implementation of DR is rooted in the theory of social
welfare maximisation. In this section we show that the maximum social welfare is achieved when
the retail price equals the marginal cost of generating and delivering energy [9, 10].

Let us imagine that Fig. 2.1 represents the supply and demand curves for an arbitrary settlement
block (i.e. at a point in time).

Supply (S)Demand (D)

M
ar
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l p
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P+

Q1 Q2 Q3

P
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Quantity of energy

Figure 2.1: Illustration of the marginal price of supply and demand vs quantity of energy traded.

The marginal cost of generating each subsequent unit of energy is plotted against the total
amount generated and illustrated by line S. Likewise, the marginal value of each unit of energy—
assumed to be the amount a rational consumer is willing to pay—is plotted against the quantity
procured and illustrated by line D.

Let us say suppliers are constrained to only offer flat rate tariffs and the rate is chosen to
represent the average cost of procuring energy over a year (which would see them break even
operationally). At a particular point in time, the actual marginal cost of supply may be equal to,
greater than, or less than the flat tariff rate; illustrated by prices P , P+ and P− respectively.
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Taking the full system view, we may say the net social benefit is equal to the total value
the consumers take from the quantity of energy delivered, minus the total cost of procuring this
quantity. Therefore, graphically, the benefit to the consumer is equivalent to the area under line
D and the cost of production is equivalent to the area under line S, both bounded on the x-axis
between zero and the quantity produced.

It is assumed that a rational consumer will not purchase energy from a supplier when the price
of this energy is higher than the value she would gain from it. So, if the flat tariff rate were set
to price P+, the resulting quantity consumed would be Q1. In this case, the net social benefit is
represented by the area between lines S and D, bounded on the x-axes between 0 and Q1. We
shall call this area A1. Following a similar procedure for price P and P−, we can summarise the
cases as:

• The tariff is priced equal to the unit cost of energy delivery, price P . The net social benefit
is equivalent to area A1 + A2.

• The tariff is priced above the unit cost of energy delivery, price P+. The net social benefit is
equivalent to area A1.

• The tariff is priced below the unit cost of energy delivery, price P−. The net social benefit is
equivalent to area A1 + A2 − A3.

Therefore it is clear that the net social benefit is maximised when the tariff is priced equal to the
cost to the supplier of procuring the energy.

It is worth making a note here that, while the net social benefit is achieved when the tariff
price equals the cost of procuring energy, suppliers are not incentivised to deliver this without
competition. Suppliers will generally act in a way that maximises their net profit and, with
sufficient competition in the marketplace, it can be shown that such self-serving actions align to
maximise social benefit [10]. However, if the number of market players is too few, some of the
strategic players may be able to manipulate the market prices through their decisions. In such a
situation, social welfare may not be maximised by the market alone. Ensuring the existence of
sufficient competition and regulating where there is not is the role of the regulator—the Office of
Gas and Electricity Markets (Ofgem) in Great Britain (GB).

2.2 Measurement
The US Department of Energy provides a comprehensive definition [11] of DR:

“Changes in electric usage by demand-side resources from their normal consumption
patterns in response to changes in the price of electricity over time, or to incentive
payments designed to induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardized.”

Actual consumption is easy to define and measure, but the hypothetical normal consumption
pattern is more subjective. We shall call this, the counterfactual normal consumption pattern, the
baseline demand. If baseline demand is known, DR is calculated as the actual demand minus the
baseline demand. The task of measuring DR is therefore one of “baselining”. The remainder of
this section will give a brief overview of the main baselining approaches.

2.2.1 Baselining approaches
Much of the literature on demand baselining is related to industrial and commercial (I&C) load
and is based on the experiences of the US market where DR services have been operating at scale
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for over two decades [12]. Here, a recent interest in the creation of DR standards by both industry
and regulatory authorities resulted in a number of white papers [13, 14, 15] being produced to
inform the debate.

For this section, it is assumed that the load in question is interval-metered—that is, a recording
of the average consumption over a given time interval (typically hourly or half-hourly) is taken
for each subsequent time interval. Some of the main baselining approaches that use data of this
kind are detailed below. In their basic form, they are all simple to understand by the consumer—a
significant advantage in a commercial context. However, the delineation between the methods
given below is neither complete nor absolute; for real applications it is possible for combination
approaches to be used.

Previous days. This approach [15] calls on recently recorded no-event days; typically within 30
days of the event. When an event is called, the consumption data for a number of recent historical
days of the same type (e.g. business days) are selected. In the simplest case, these may then be
averaged to construct the baseline profile. A commonly used adaptation of this approach, known
as “high X of Y” [14], involves selecting the X days with the highest demand from the previous Y
no-event days of the same type as the event day. The consumption profiles of the X days are then
averaged to create the baseline.

Using previous days (i.e. recent history) increases the chances that the historical data contains
similar usage patterns to the event day, particularly where weather and seasonal influences are
concerned. As such methods typically use a small number of aggregated historical days to form
the baseline, they usually require some form of adjustment (see next section) to account for changes
in key external variables like temperature.

Day matching. In contrast to the previous days method, this method calls on a larger set of
historical days; potentially as much as year’s worth. Segments of the consumption profile on
the event day are used to find the closest matching no-event days in a defined set of historical
consumption data. A number of the closest matching day-profiles are then used to construct
the baseline profile via an aggregation approach (usually averaging). Variations on the matching
criteria may include the use of additional variables in the matching, for example, weather, day
type or abstractions of the consumption data such as average daily consumption values.

The use of a typically larger set of aggregated historical days means that some of the variability
caused by (approximately random) environmental variables is reduced. However, depending on
the details of this process, there still may be a need for further baseline adjustment.

Regression. The data from historical no-event days is used to train a linear model to predict the
baseline consumption on event days. Additional variables, for example weather or day type, may
be used to improve the accuracy of the prediction. The complexity in this approach is in choosing
the correct variables and avoiding overfitting—a situation in which, given enough variables and a
limited set of historical data for training, the model will tend towards predicting the training data
and not the counterfactual demand that is desired.

Load modelling. Also known as “engineering algorithms” [15], load modelling differs from the
previous methods, which might be described as data driven, in that the use of historical consump-
tion data is not absolutely necessary (though may be informative). Rather, an understanding of
the individual load’s dynamics are used to construct an additive bottom-up model. This has the
advantage that, should a large individual load be powered down, it would be reflected in the overall
baseline prediction. Such bottom-up modelling of loads is currently more suited to larger I&C sites
where the scale of the individual loads may justify the modelling investment.
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2.2.2 Related considerations
Baseline adjustments. Both previous days and day matching approaches allude to the need for
a baseline adjustment—a form of post-processing of the baseline. Such adjustments are necessary
to account for the effects of changing environmental variables or exceptional usage patterns [14].
An example might be the use of a regression model to correct for the temperature differences
between the previous days used for constructing the baseline and the day of the event.

Pooled vs unpooled. In certain situations it may be the case that not all the loads in a DR
programme are metered, but data from a meter that aggregates several sites, or that is represen-
tative of a group of sites, is available. When several loads share one meter, a baseline may be
created for that meter (using one of the above methods), and then an appropriate method applied
to apportion the calculated DR to each of the individual sites.

The use of a pooled approach for calculating DR is uncommon for I&C programmes as the ratio
of the cost of metering to the value of DR is small. Though historically this was a more common
situation in the residential sector, today, with smart meter (SM) rollouts being a common policy
of many developed nations, such situations are less frequently encountered.

Where individual site metering is available, calculating a baseline for each site—as opposed to
aggregating the sites then calculating a collective baseline—can allow for more fine grained analysis
of the DR resource.

2.3 Roles
This section provides a brief introduction to the key roles in which DR may function, with a focus
on a description of the service. It begins with a brief introduction to the high level theoretical
basis of maximising social welfare, then moves on to provide a discussion of the potential value of
DR from the perspective of the system segments.

2.3.1 Balancing services
In GB, the process by which the system operator (SO)1 compensates for mismatches between
the generation contracted by suppliers and the actual demand, or unforeseen outages of contracted
generators, is know as the Balancing Mechanism (BM) [16]. The approaches to dealing with system
imbalances are determined by the time period in which a response is necessary in order to maintain
system stability. This section begins at the shortest response timescale—frequency regulation—
then proceeds to a more general discussion of reserve capacity, finishing with a description of the
financial settlement process as relevant to the supplier.

Frequency response

Frequency response services are the responsibility of the SO and are necessary in order to maintain
the system frequency within the specified limits of 50 Hz±1%. There are two general categories
of frequency response service; dynamic and non-dynamic. Dynamic frequency response deals with
the normal second by second fluctuations in system frequency, typically delivered by generators
fitted with a governor that allows them to react automatically to frequency changes within these
short time scales. Conversely, non-dynamic frequency response is triggered at a defined frequency
deviation and tends to be called upon after an unforeseen system outage. This typically requires
a larger capacity response (MW range) to be delivered within a few seconds in order to save the
system from collapse.

1In GB the SO and transmission system operator (TSO) are the same entity; National Grid.
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DR is currently able to participate in frequency response within the UK. Participants are
required to be able to respond within 2 seconds with a minimum of 3 MW for a minimum duration
of 30 minutes. This service is normally called upon ten to thirty times per year [17]. However,
in future, it may be possible for home appliances to automatically deliver frequency response
services [18].

Reserve

A number of different reserve capacity service types are defined by National Grid [19] in the UK.
These are listed below with a brief description of their defining requirements:

• Frequency response by DR (repeat of previous section for completeness): able to respond
within 2 seconds with a minimum of 3 MW for a minimum duration of 30 minutes.

• Fast reserve: able to respond within 2 minutes with a minimum of 50 MW (ramp rate of
25 MW/minute) for a minimum duration of 15 minutes.

• Short Term Operating Reserve (STOR): able to respond within 240 minutes with a minimum
of 3 MW for a minimum duration of 2 hours.

• BM Startup: provides access to additional generation that would not otherwise have run.
Generators should be able to prepare for synchronisation (hot standby) within 89 minutes of
a call and maintain this state of readiness for an agreed period of time.

DR is currently used for balancing within the UK system, provided mainly by large energy
consumers (>25 MW), though smaller I&C loads may be aggregated into virtual units [20] in
order to reach the minimum capacity (3 MW) for entry into the programme.

Due to the short response times required, some reserve generators must be running partly loaded
so they can be ramped up at short notice upon demand. To reflect the cost to the generator of
running at part load, both generator and DR units that provide reserve are compensated both for
their availability and utilisation [17].

Using DR as reserve can be more competitive with respect to operating cost as it does not incur
a fuel cost to maintain readiness. In the long run, using more DR for reserve may also displace the
need to invest in the plant used to fulfil this role[6].

2.3.2 Supply following
We define supply following as the process by which retail prices are enabled to better reflect the
marginal cost of energy procurement and therefore allow more efficient matching of supply and
demand in a system with less flexible demand. The motivation for doing this is based on the
principle that maximum social welfare (Section 2.1) is achieved when the cost of procuring energy
equals the retail price offered by the supply companies.

If the supply and demand curves were invariant with time, a flat rate tariff could be set to
reflect the cost of procuring the energy and market optimality would be achieved. This is not
the case; for example, the value of lighting in winter is greater than in summer. Until recently,
the supply curve had been relatively stable; changes in generating capital occurred over long run
timescales and the cost of fuel could be locked in via specialised financial products (e.g. futures or
contracts for difference). Now however, with increasing penetrations of renewable generation, the
supply curve is becoming more variable due to the impossibility of scheduling the output of most
renewable sources, such as wind power in the United Kingdom (UK). This is leading to greater
mismatches between flat tariff rates and the cost of supply, and therefore reduced social welfare.

DR implemented via dynamic electricity pricing may be able to increase market efficiency by
increasing the exposure of consumers to the true cost of production. This may lead to increased
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consumption of low operating cost renewable energy when it is in high supply, or reduced con-
sumption of high marginal cost (and often inefficient) generation during peak load periods. By
increasing the saleability of variable output renewable energy, the value of such generating capital
would increase, potentially spurring further capital investment and reducing the need for govern-
ment subsidies. At the same time, the need for investment in backup generation would decrease
as increased prices during low renewable supply periods incentivises reduced consumption.

In the UK retail supply companies enter into contracted positions with generators in order to
meet the demand of their customers. In the longer term such transactions tend to be conducted
via bilateral forward contracts, while in the shorter term, via standardised, anonymised energy
exchanges. The markets are closed one hour before delivery and suppliers can no longer alter their
positions. Deviations from their contracted positions and actual demand turnout are dealt with
through the BM.

The costs to generators and suppliers of deviations from their respective contractual positions
are apportioned according to the Balancing and Settlement Code [21], administrated by Elexon.
The day is divided into 48 half-hour settlement blocks and the energy spot market closes one hour
before each settlement block is due for delivery. All contractual positions are then fixed in the
system. Imbalances between the contractual positions of the generators and suppliers, and the
actual demand turnout must then be bought from or sold to the SO at the system buy-price (SBP)
or system sell-price (SSP) respectively. Exposure to the BM prices is usually undesirable in that,
relative to buying and selling in the power markets, the SBP is usually higher and the SSP lower
than those which can be obtained in the marketplace.

If consumers were able to react to price signals at close to real time, supply companies may
also be able to use DR to reduce undesired exposure to the BM. However, this is likely to re-
quire automation and it is also unknown whether the consumers would find such price volatility
acceptable.

2.3.3 Constraint management
The power flow through network components must sometimes be constrained lest engineering limits
be exceeded. Most relevant to this work are thermal and voltage limits, though other limits exist
within real systems. Below follows a brief description of thermal and voltage constraints, and how
they apply to the network, ending in a discussion of the role DR can play in their mitigation.

Thermal constraints

As current flows through components within the network they are heated due to their natural
electrical resistances to this current. When materials are heated, their physical properties may
change. Effects may include thermal expansion, increase in electrical resistance or, ultimately, the
thermal breakdown of components.

Thermal expansion is a particular problem for overhead lines, where overheating may cause
them to sag dangerously low. Increase in resistance leads to increasing energy losses and can also
lead to the voltage dropping below statutory limits on long lines. The breakdown of components due
to excessive temperature is the main current limiting factor in transformer substations. Substation
capacity is expensive and therefore active cooling is often economically justifiable in order to
increase current limits.

Network components are given a “static rating” for the maximum current they can carry. As
cooling rates are strongly linked to ambient temperatures, current limit values are often defined for
both summer and winter. As this is usually based on worst case scenario operating conditions, for
most normal situations, it is an underestimate of the actual safe capacity limit. With more detailed
understanding of the thermodynamics of the component, combined with real time monitoring data,
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it is possible to safely extend the static rating to what is called a “dynamic rating” [22]. This
allows temporary overloading of components above their static rating, relying on thermal inertia
to provide some leeway before critical temperatures are reached. To this end, real time monitoring
of transformer health is now widespread in primary substations (33 kV to 11 kV in the UK), and
becoming increasingly more so at the secondary level (11 kV to 415 V in the UK).

Voltage constraints

Voltage limits are determined differently according network location. At the transmission level,
voltage limits are determined principally by system stability requirements. At the distribution
level the principal determinant is more often the quality of the consumer’s supply. In the UK, on
low voltage (LV) networks—the connection point of residential properties—the statutory quality
of supply guidelines [23] determine that voltage should be maintained within the limits of +10%
and -6% of the 230 V nominal.

Voltage profiles along lines will change according to power injection/consumption from gener-
ators and loads. For example, along a distribution feeder line servicing only loads, there will be
a gradually decreasing voltage profile, decreasing roughly proportional to the amount of load on
each line segment. The voltage on such a line would typically be kept within its statutory limits
by changing the tap positions of its parent transformer. This has the effect of raising or lowering
the whole line voltage profile by a constant amount. Historically voltage profiles have not been so
steep that both the transformer-end and the open-end cannot be kept simultaneously within limits
via this method.

As we are seeing an increase in distributed generation (DG) connection, such as domestic
solar panels, the profiles of the lines are therefore becoming more complex than the monotonically
decreasing profile of a load only line. Effectively the converse of loads, generators increase the
line voltage at point of connection. Indeed, if enough generation is connected to a line, as has
been observed to be the case where a large capacity of domestic photovoltaic (PV) generation is
installed on a single feeder, the voltage profile may be reversed, meaning that the automated tap
changes, which are historically programmed only to deal with decreasing voltage profiles, may soon
exacerbate voltage problems [24, 25].

The role of DR

DR and DG are currently used to alleviate constrained sections of network by temporarily reducing
the power flows through components that are close to being overloaded. Within the transmission
grid, the use of DR from large industrial consumers is standard practice though, through pro-
grammes such as Low Carbon London (LCL), it is now being investigated as a means of managing
distribution level network constraints. By contributing to the management of network constraints,
DR and DG usually also contribute towards security of supply.

2.3.4 Security of supply

Security of supply refers to the robustness of the network against unforeseen outages of network
components. Security is ensured in part through redundancy of network assets, and as such comes
at significant cost. To make best use of available resources, security of supply standards are set
according to the magnitude of the load served. The transmission grid is therefore subject to security
supply requirements which are universally more stringent than those of the distribution systems.

In the UK transmission grid, an “n-2” security standard is adhered to [26]. This means that
any two lines may be lost before the supply to any area is affected. Thus, the transmission grid
requires large capacity margins in order to be able to reroute the power flows which might result
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from up to two simultaneous major line or large generator faults. A correspondingly low average
utilisation factor of less than 50% [27] is therefore typical on the UK transmission system.

In the distribution system, when network group demand is greater than 1500 MW, security
of supply standards are in line with those of the transmission system security of supply require-
ments [28]. As group loading of network segments reduces (generally in line with reduction in
voltage levels), so do the security standards: Between 1 MW and 12 MW there is a statutory
requirement to reconnect load within 3 hours of a fault, reducing to within the best effort repair
time on sections of network serving group loads of less than 1 MW.

The guidance document [29] that accompanies Engineering Recommendation P2/6 [28] has
recently been amended [30] so as to recognise contributions from DR in delivering security of
supply.

2.4 Benefits by industrial sector

The previous section described some of the roles that DR may be able to fill within the system. This
section develops this by discussing the potential value to the high level segments of the electricity
system: generation, transmission and distribution. It is assumed that the benefit to the consumer
is manifest in reduced bills and therefore does not warrant further description.

2.4.1 Generation

Generation and transmission capacity are sized to be able to provide a reliable supply to the end
user. To a high level, reliability can be split into two interrelated elements; adequacy and security
of supply. Adequacy refers to the long run ability of generation to meet peak demand, which, in a
market context, involves ensuring a sufficient pipeline of capital investment. Security refers to the
ability of the system to withstand sudden unforeseen changes in supply, demand or transmission
(as described in Section 2.3.4), over the day or hour timescale, such as the loss of a large generating
unit. Security is the principal driver of generation margin; generating capacity in addition to the
expected maximum demand to be used as contingency in the case of a major disturbance in the
system.

Before the UK electricity market liberalisation in 1990, the late Central Electricity Generating
Board sized this margin so that loss of load would have a probability of occurring nine times in every
100 winters. This typically led to a generator margin of greater than 20%. New technology and
updated operating procedures have allowed this margin to be reduced. The measure of reliability
has now switched to loss of load expectation (LOLE) [31], a probabilistic estimate of risk, and the
target is now set to a maximum of 3 hours of LOLE per year. In the winter of 2013, the UK had
a generator margin of approximately 6% [32], which corresponded to a LOLE of approximately
1 hour per year (based on the reference scenario) [33]. Generator margin and the variability of the
load profile combine to give an average utilisation factor over all plant of less than 50% [34]. With
more low capacity credit wind generation being developed, this could reduce still further.

Use of DR to shift or curtail load on the occasions when a generator unexpectedly fails may
be more cost effective than building reserve generating capacity. While this is routinely practiced
with large industrial loads, the integration of many distributed smaller loads into a DR scheme
may prove more challenging - control mechanisms, commercial arrangements and risk profiles are
likely to be different from those of larger DR loads. Proving the reliability of distributed DR assets
and their respective control mechanisms will be the key issue.
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2.4.2 Transmission

According to the security of supply regulations [26] in GB, the transmission system is required to
be secure against a fault in:

5.1.1 a single transmission circuit, a reactive compensator or other reactive power
provider; or
5.1.2 the most onerous loss of power infeed

where transmission circuits are inclusive of double lines. This requires substantial excess capacity
to be built into the grid.

As an alternative to building excess transmission capacity, reserve generation and DR can also
be used to ensure security of supply. By locally offsetting demand, the power import required to
balance a constrained area can be reduced. A simplified illustration is given in Fig. 2.2. Here, pre-
fault, Area B imports all 11 GW of demand from Area A. With the loss of a double line (10 GW
of capacity), Area B is balanced by 10 GW of imported power plus 1 GW of either local reserve
generation or DR.

Area A Area B

1 GW reserve generator

1 GW DR

11 GW load

Fault

4 x 5 GW lines

11 GW generation

Figure 2.2: Simplified illustration of a double transmission line outage between two transmission areas.
Post fault, Area B demand cannot be met by imports alone, but reserve generation or DR may
be used for balancing.

DR currently makes a significant contribution to system balancing with approximately a third
of frequency response and Short Term Operating Reserve (STOR) being provided by the demand
side [35].

In response to concerns over the future availability of reserve capacity, efforts have been made to
allow more effective exploitation of DR provided system services. In 2014, National Grid launched
a tender for a new Demand Response Balancing Service [36]. This scheme is viewed by some as
a temporary measure until a new Capacity Mechanism, as part of the more general Electricity
Market Reform [37], reaches a state of functional maturity.

The Capacity Mechanism was envisaged to offer payments to both generators and DR providers
on a technology neutral basis, to be tendered via auction in the newly established Capacity Market.
The market held its first auction in December 2014 with 5% of the awarded units being won by
DR providers [38]. There is an ongoing (at time of writing) debate as to whether the Capacity
Market, in its current guise, is enabling fair competition for DR.

2.4.3 Distribution

Security of supply standards within the distribution network are tiered according to the number of
consumers served [28]. In general, this means that they are highest at high voltage (HV), reducing
through medium voltage (MV) and LV. For example, for group demands of over 1500 MW, the
security standards mirror the equivalent for the transmission system. At intermediate levels of
60–300 MW, a first circuit outage should result in an immediate reconnection of the full group
demand minus 20 MW, then the full group demand within the subsequent 3 hours. From 1–12 MW,
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reconnection of group demand minus 1 MW should be made within 3 hours. At the lowest level,
group demands of less than 1 MW should be reconnected within reasonable repair times.

For the highest group load network, DR may be used in an analogous way as in the transmission
example; by providing effective network capacity through reliably offsetting peak demand. At lower
voltages, where security of supply standards are less rigorous, benefit from DR may still be taken.
Here, involuntary disconnections due to faults or maintenance may be reduced in duration or
avoided, thus enhancing the performance metrics of the distribution network operator (DNO). As
well as providing a virtual network capacity contribution, use of DR may further improve the
security of supply by enabling the prioritisation of load curtailment.

HV LV
5 MW DR

55 MW load

Fault

T1 
50 MW

T2 
50 MW

Figure 2.3: Simplified illustration of transformer fault in a distribution network substation. The fault
reduces the substation capacity from 100 MW to 50 MW. To prevent overloading of T1 and
involuntary disconnection, 5 MW of DR is used to bring load down to the 50 MW safe limit.

Figure 2.3 depicts a distribution level DR scenario. The substation loses one of its two trans-
formers due to a fault. In a “business as usual” scenario this would result in all load on this
transformer being shed until the fault could be fixed or power flow rerouted. With DR or DG, the
transformer load may be balanced, avoiding involuntary disconnection and thus deferring invest-
ment in capacity upgrades.

DR can also be used to smooth the predictable daily peaks in consumption and thus effect
a more long term alteration in the demand profile. Smoothing peaks in the demand profile can
reduce resistive losses [39]. As losses are greatest at LV, typically 4% of the near 7% distribution
losses [40] occurring at this voltage, savings here would have the greatest impact.

With increased penetration of DG, supply balancing at the distribution level, enabled by DR,
may be beneficial. This would reduce use of system further up the network; sidestepping the use
of system costs and line losses associated with a longer supply chain, and may allow consumers
to pay close to wholesale prices for power generated locally. Such local level management of both
demand and supply would also help to mitigate voltage and thermal constraints, allowing greater
penetration of distributed renewable resources before network reinforcement is necessary.

2.5 Implementation approaches

DR can be implemented in a number of different ways. Programmes can be differentiated into
two major categories; incentive based and price based [41, 27]. The difference lies in the method
by which the signal to reduce demand is given. In the former, participation is negotiated, with
the signal and conditions for demand reduction all agreed upon in advance. In this way DR can
be considered to be dispatched deterministically. In the latter, though participation may still be
negotiable, the price is both the incentive and the signal.

The DR types outlined below are meant to serve as examples of the key differences that may
exist between tariffs, and not as an exhaustive list of available tariff designs. As such, variations
and combinations of the tariff structures outlined below are possible.
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2.5.1 Incentive based
Direct load control programmes allow the utility to directly shut down and switch on loads.
Domestic loads such as water heaters and air conditioning units, where lack of service will not be
immediately missed, are usually chosen. In the UK, a radio teleswitching service [42] is used to
implement a tariff known as “Economy 7”. The tariff involves two price bands with the option for
direct control over water and space heating.

Interruptible or curtailable load control programmes operate similar to direct load control,
with the difference that participating consumers are asked to reduce their loads to a predefined
level. Participants who do not respond can face penalties. Large consumers may have bilateral
contracts with the transmission or distribution network operator, though small and medium size
consumers are more often aggregated via a third party business—simplifying the communication
and management for the network operator.

Demand bidding programmes involve consumers submitting bids detailing how much load
they are willing to curtail at a given price. The utilities will then make up the capacity they need
from bids that are lower than the marginal price. Such programmes typically operate in the short
run at day or hour ahead intervals. They are seen as a low risk way for consumers to engage in
the energy markets.

Capacity markets involve consumers offering load curtailments in lieu of reserve generator
capacity. Capacity markets differ from demand bidding in that they operate over medium and long
run time scales. Closely related to capacity markets are emergency demand response programmes
that substitute for reserve plant when shortfalls arise. Emergency DR programmes operate in a
similar way to capacity markets but with more stringent dispatch conditions. Both programme
types usually involve contracts that lock the participants in for a given period of time—typically
years. The UK has recently introduced a Capacity Market that allows both demand and generation
to bid for the provision balancing services [37].

Ancillary service markets are similar to capacity markets with the difference that the focus
is on operating reserve services rather than energy balancing. Participants usually consist of large
and regular energy consumers, where the type of operating reserve they can supply is determined
by how quickly and for what duration they can respond.

2.5.2 Price based
Use of system charges. Although not usually considered as a DR implementation, they are
mentioned here as they fit the definition of being a financial incentive applied to the consumption
profile. Use of system charges are levied by both the transmission and distribution networks, and
usually apply only to wholesale consumers.

In GB, Transmission Network Use of System (TNUoS) costs are distributed between wholesale
consumers proportional to their respective consumption on the three highest half-hour settlement
periods of the winter (November to February), know as the “triads”. These days are chosen
retrospectively at the end of each year. As such, wholesale consumers often try to predict when
they will fall so that they may reduce their exposure to TNUoS by reducing their consumption on
these days. In this way, the triads incentivise a reduction in annual peak system demand.

In GB, each regional DNO may design its Distribution Use of System (DUoS) charges within
the parameters of the regulatory framework defined by Ofgem. A typical bill [43] may be broken
into a number of components of which two effectively incentivise a reduction in peak demand: a
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capacity charge, levied according to the maximum import capacity of the network connection; and
a time-of-use unit rate, set over a weekly schedule, with the highest rates covering the times of
peak network load.

Time-of-use (ToU) tariffs. These differ from the pre-existing static tariff in that they have
more than one price point for energy, determined by the time at which the energy is consumed.
These tariffs are static in that the schedule changes infrequently so that consumers know, from
days to months ahead of delivery, what their electricity prices will be. The prices are designed to
represent the average cost of generating and delivering electricity at those times of the day. As
such, the highest price points tend to be used around the predictable peak demands of each day.
UK examples of such tariffs include the allocation of distribution use-of-system charges to suppliers
and, for residential consumers, the Economy 7 tariff; a two tier tariff designed to shift load from
peak to off-peak times.

Dynamic Time-of-Use (dToU) tariffs. Differentiated from time-of-use (ToU) tariffs by price
change notifications that occur at a higher frequency (dynamically), typically one day ahead of
delivery, though notification periods can be as short as one hour ahead. Reducing the notification
period of price changes allows the tariff to better reflect the more rapid fluctuations in the price
of production and delivery of electricity. This additional flexibility comes at the cost of consumer
foresight, and therefore may hinder their ability to respond. Understanding the reliability and level
of the response to dynamic electricity pricing is still the subject of much work [44]. It is hoped
that technology innovation will make this trade-off less onerous.

Critical peak pricing (CPP) tariffs Similar to dynamic Time-of-Use (dToU) tariffs but with
more infrequent events and a much greater price differential between the default and high price
bands. The higher event prices are used to incentivise greater and more reliable reductions in
demand for provision of system critical services. Such tariffs have not yet been trialled in the UK,
though France, due to its heavy dependency on inflexible nuclear generation, has been utilising a
critical peak pricing (CPP) tariff known as “Tempo” since 1993.

2.6 System integration considerations

The previous sections have discussed the roles, sector benefits and implementation approaches of
DR. This chapter now concludes with some general considerations surrounding system integration.

2.6.1 Demand profile

While demand profiles do change gradually over the long term, in the short term the profile for
a given day in the year is quite consistent. In the UK minimum demand is observed on summer
nights and the highest peak of the year observed on a winter evening (as illustrated in Fig. 2.4).
Maximum demand of the year is almost three times greater than minimum demand. The greater
the peak to average ratio of demand, the lower the load factor of network and generation assets.
From a network perspective, the most economically efficient load profile is a flat one, though this
may not be the case for generation. Here marginal cost may vary with the supply of variable
renewable resources such as wind.
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Figure 2.4: System demand profiles for the UK [45].

2.6.2 Value of load

The concept of the value of loads on the electricity system has historical significance in the deter-
mination of the adequacy and reliability investment. In this context the objective of industry is to
match the marginal cost of preventing loss of supply to the marginal benefit for the customers of
avoiding that loss of supply [46]. It is implicit from this definition that some measure of the value
of load is required. Historically, in the case of reliability, this metric has been called the value of
lost load (VOLL); defined as the average cost incurred by all consumers as a result of unexpected
interruptions to their electricity supply.

As can be seen from Table 2.1, VOLL varies considerably between consumer types and with
duration of outage. From the perspective of DR, the most immediately striking observation is that
these values are several orders of magnitude greater than the cost2 of the energy supplied. Initial
inspection would therefore suggest that DR will not work because consumers place too high a value
on the availability of their supply. But VOLL does not always accurately represent the the cost of
customer interruptions.

Table 2.1: Value of lost load for different consumer classifications. Data reproduced from Kirschen et al,
2003 [47]. Values measured in £/kWh.

Duration Residential Commercial Industrial Large users Typical bus

1 min - 153.00 776.40 606.60 258.21
20 min 1.35 29.17 85.62 30.87 28.75
1 h 1.62 26.63 50.52 10.77 18.37
4 h 2.79 24.40 36.11 3.32 14.14
8 h 2.99 24.58 30.03 1.82 12.55
24 h 3.12 10.41 12.53 0.83 5.60

VOLL is an aggregated value of the cost of unexpected interruptions across all consumer types
and all their respective load types. Electricity consumption, however, has a different value for
different use types and, indeed, even the same use type may be ascribed a different value by a
different consumer. Furthermore, should notice of an interruption be provided, the consumer may
well be able to reduce or negate the cost of that interruption. Herein lies the opportunity for DR:
If the value of a demand reduction to the system is greater than the value to the consumer, there
exists the potential to construct a business case for said transaction.

2Retail price at time of writing was approximately 0.12 £/kWh.
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For example, a refrigerator pump may have its cooling cycle postponed without loss of service so
long as the interior temperature does not exceed a certain value [48]. This constitutes a potential
demand flexibility that may be exploited at little or no cost to the consumer. The addition of
technology to enable rapid, optimal rescheduling of loads could significantly enhance the availability
of low cost demand flexibility.

2.6.3 Elasticity

Price elasticity is defined as the amount by which a marginal change in price will elicit a change in
demand. In the long run an increase in average prices will stimulate a reduction in demand and/or
investment in efficiency measures to increase the unit value of consumption. However, in the short
run, most consumers only have the option to curtail or reschedule their demand in response to an
increase in price. If DR is to be delivered via price signals, some knowledge of the elasticity of
demand will be necessary for integration [49].

While many of the practical considerations for the implementation of DR will depend on under-
standing short run elasticity [50], long run elasticity will have a significant impact on the business
case for DR. For example, the greater the volatility of prices, and the greater the differential
between high and low prices, the stronger the business case for storage will be—the most direct
competitor to DR [51].

2.6.4 Intrinsic storage capacity

The flexibility of an electric load is dependent on the intrinsic storage capacity present in the
service it provides. The use of intrinsic storage capacity allows loads to be shifted in time without
the negative impact of a temporary service reduction being felt by the consumer. Storage can be
divided into two broad categories; service storage and energy storage; described below:

Service storage is when the output of the electric load has some intrinsic storage capacity. Take
the dishwasher as a simple example. Here, the duration that a wash may be deferred depends on
the amount of clean kitchen utensils available. Clean kitchen utensils are therefore the service that
is stored in this case.

Energy storage is when the energy to power the load is stored so that the load may provide its
service without the need to draw power from the network. Obviously any device with a battery
will fall into this category, though batteries are not the only form of energy storage. If the purpose
of the electric load is heating, energy may be stored thermally, for example in a hot water tank
or high heat capacity material. In the UK, electric storage heaters used in conjunction with the
Economy 7 tariff are common examples of this.

A key point to note is that, in all situations where energy is stored, charge-discharge cycle
efficiencies that are always less than unity3 and overall energy consumption is increased.

2.6.5 Load recovery

As explained in the previous section, for a load to be shifted forwards or backwards in time without
any reduction in the service that it provides, it must have some form of storage capacity. When
such a load is subject to a DR event it will maintain service levels without consuming network
power by consuming its stored energy or service outputs. In order to ensure sufficient storage
capacity to span a DR event, a load must recover the energy that it would have consumed during

3An implication of the second law of thermodynamics.
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the event at some other time [9]. This time can either be before or after the event. We call the
increase in demand surrounding a DR event load recovery.

Without proper control, load recovery effects might result in a spike in energy consumption
before and/or after a DR event. It is plausible that such consumption spikes may be comparable
in magnitude to the load peak that the DR event sought to mitigate. Care must therefore be taken
to ensure the dispatch of a DR event does not merely shift the peak demand issue to a different
point in time.

Methods to mitigate the load recovery effects that could emerge from the usage of DR in-
clude staggering event start and end times, direct load control with optimal scheduling [52] and
distributed market based mechanisms [53].

2.6.6 Diversity of demand

Over a defined time period (usually a year is chosen) and for a group of consumers, the diversity
factor is defined as the sum of the maximum demands of individual consumers, divided by the
maximum concurrent demand of the consumers [54]. Mathematically this can be written:

FD =
1

Dg

n∑
i=1

Di (2.1)

where Di is the maximum demand of individual household i and Dg is the coincident maximum
demand of the group. The inverse of this (1/FD) is known as the coincidence factor.

The action of demand diversity can be explained intuitively. Let us say that an individual
household has its own generator, such that it is self sufficient for its own power needs. It is clear
that in this case the generator must have a capacity equal to or greater than the maximum possible
demand of the household. Next, suppose that the generator is shared between several households.
Now it must be sized, not for the sum of the maximum possible demands of each household, but
for the maximum concurrent demand of the group of households.

Intuitively, the probability that all households will be consuming their maximum possible de-
mand at the same time becomes lower with increasing group size. Of course that probability exists,
so an acceptable value for the probability that the maximum demand will not exceed the generator
capacity is chosen. The choice of this value could be based on the consumers’ collective appetite
for risk, but in real systems, this decision is taken by the SO: the generating capacity is sized to at
least match the maximum possible after-diversity load on the system, plus some margin to account
for unforeseen plant outages.

For a given confidence level, the maximum possible load on the system can be calculated either
empirically from historical data [55], or analytically, via computer modelling [27]. In the UK it
has been shown that a group of 10,000 houses will exhibit a load coincidence factor of just 0.1 [27].
That is to say, the required generating capacity per household for this group is just one tenth
of the capacity which would be required if each household generated and consumed power in a
self-sufficient manner.

There is a risk that loads may be synchronised by DR events. If a load were to be shifted
to the extent that its inherent storage capacity were exhausted, it would need to consume power
immediately after the load shifting operation lest service quality be reduced. Such an event ap-
plied to a group of normally unsynchronised loads would effectively synchronise their post event
consumption as they would be linked by a common need to replenish their intrinsic storage. Usage
cycles may remain synchronised for some time after the event, potentially enhancing load recovery
effects.
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2.6.7 Persistence of response
Persistence of DR refers to the extent by which the magnitude of the response remains unchanged
over time. It may be divided into long run and short run effects.

Short run effects are based in the day-to-day running of the household and may occur over time
scales of days to months. For example, if a DR action is called upon for a day, it may be possible
for the consumer to shift a load to the day after or before the event. However, if the DR action is
called upon for several consecutive days, intrinsic storage capacity limits may be reached leading
to reduced service for the consumer. In turn, this may reduce the consumer’s appetite to respond
to the DR event the next day.

Long run effects typically occur over time scales of months and years and involve more lasting
changes to the ability of the consumer to respond. This could include reduced response as novelty
wears off, or increased response as learning and automation make for more effective load manage-
ment. Extending the short run example to the long run, if such events looked likely to be a lasting
feature of the electricity tariff, consumers might invest in automation equipment or storage devices
to enhance their ability to respond without loss of service.
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Chapter 3

Background

This chapter begins by introducing the context of the Low Carbon London (LCL) programme
within which the trial analysed in this thesis took place. An overview of the global landscape in
residential demand response (DR) is provided, moving on to a more focused review of trials that
are closely related to the UK context. Several upcoming trials of interest that were in progress at
time of writing are listed and briefly described. This is all brought together in a discussion of the
research opportunities that currently exist in the area of residential DR. The chapter concludes
with a summary of the knowledge gaps that exist in the field of residential DR in the UK, and
those that may be filled with this work.

3.1 Low Carbon London
In response to the challenges facing the UK electricity system, the UK electricity markets regulator,
the Office of Gas and Electricity Markets (Ofgem), created the Low Carbon Network Fund (LCNF)
with the objective of incentivising research and innovation within the distribution network sector.
The LCL programme was funded in 2010 under the LCNF tier 2 scheme by the amount of £21.7
million with an additional £6.6 million of funding contributed by programme partners [56]. It was
commissioned to demonstrate and gather performance data on a number of innovative ‘smart grid’
technologies, of which the residential dynamic Time-of-Use (dToU) pricing trial analysed in this
thesis was one [57, 58].

It was conducted by a partnership of industry stakeholders organisations and academia. Key
partners in the design and implementation of this trial included:

• UK Power Networks: The London distribution network operator (DNO) and the lead pro-
gramme partner.

• Imperial College London: Trial planning and data analysis.

• EDF Energy: Retail energy supplier.

• Siemens: Information and communication technology (ICT) framework.

• Logica (now CGI): Smart meter head-end.

3.2 Overview of global demand response trials
This section provides a review of related trials and a summary of the state of knowledge as ap-
plicable to residential dToU in the UK. High level results are summarised by meta analysis with
references to primary literature where greater detail is deemed useful.
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The LCL trial constitutes the UK’s first dToU pricing initiative and, as such, it was not possible
to find literature relating exactly to such schemes within the UK context. Nonetheless, literature
of closely related tariff types, time-of-use (ToU) and critical peak pricing (CPP), from countries
with comparable climates to the UK, are informative.

In order to gain an understanding of the general landscape of trials, the following meta-analysis
were used as a starting point, with specific trial reports referenced where greater detail was sought:

• The Department of Energy and Climate Change, UK (DECC) (2013) [44]: The most recent
and also the most relevant by virtue of it being commissioned specifically to inform the design
and implementation of future DR trials. Some 30 domestic DR trials were compared. All
trials considered were completed after the year 2000 and had a focus on measures to shift
(rather than to reduce) demand. Included trials were from North America, Australia, and
Europe.

• Faruqui and Palmer (2012) [59]: Focused on 9 of the “best designed”, most recent experiments
to identify the relationship between peak to off-peak price ratio and reduction in peak demand.
Included trials were from North America and Ireland.

• Ehrhardt-Martinez (2010) [60]: Examined 56 residential sector feedback studies to provide
insight into the factors that influence feedback-induced energy savings. Included trials were
from North America, Europe, Australia and Japan.

• Faruqui and Sergici (2010) [61]: Surveyed the, then, 15 most recent trials with dynamic
pricing of electricity. Included trials were all from North America.

Time-of-use tariffs: In general, the literature indicates that economic incentives are effective
in changing consumer behaviour, though results have been highly varied.

The effect on total energy consumption is typically small compared to the effect on peak demand.
The Energy Demand Research Project (EDRP) results show an approximate 4% reduction [44]
in weekday peak energy consumption for consumers with in-home display—though significance
was low due to the low number (170) of participants. In contrast, the Customer Lead Network
Revolution (CLNR) showed a reduction in peak consumption of 6% [62] from 600 households,
and the Ireland Electricity Smart Metering Trials (IESMT) a reduction of 7-12% [44] from 3,000
households. Interestingly, there appears not to be a strong relationship between the size of the
difference between peak and off-peak prices, and the size of the consumer response across studies.
Results from North American trials show similarly large variations in peak consumption reductions.

Table 3.1 shows the variation, in peak reductions across ToU trials covered by the DECC
literature review [44]. Also given, when available, are details of the price differentials used (relative
to the median price).

Dynamic Time-of-Use tariffs: There is little evidence relating to the efficacy of dToU pricing
in the UK context. Geographically closest to the UK, the EFFLOCOM trial in Norway1 found
larger peak reductions when the tariff depended on the spot price of power than when it did not,
though this was based on only 81 households.

Moving to the USA, in Illinois, the Energy-Smart Pricing Plan trial [63] tested a dToU tariff
in conjunction with automatic cycling of air conditioning load, which was found to result in a
peak demand reduction of 9.8%. Elasticity was also found to increase as price increased, and with
decreasing household income.

Pacific Northwest examined the use of DR in conjunction with distributed generation for con-
straint management [64]. Like the Illinois trial, they augmented price signals with home automation

1Project report no longer available online, but reviewed by DECC [44].
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Table 3.1: Summary of past ToU trials reviewed by DECC [44].

Index Trial Country N Min
price
ratio

Max
price
ratio

Min average
reduction in

peak demand
(%)

Max average
reduction in

peak demand
(%)

1 Ontario Smart Price Pilot
(2006-2007)

Canada 124 1.40 1.40 0.0 0.0

2 Idaho DSR trial (2005-2006) USA 85 1.84 1.84 0.0 0.0
3 Missouri CPP trial (2004-

2005)
USA 91 3.49 3.49 0.0 0.0

4 CL&P Pilot (2009) USA 188 2.08 4.08 2.0 3.0
5 PSE’s ToU trial (2001-2002) USA 300,000 - - 5.0 5.0
6 California State-wide Pric-

ing Pilot (2003-2004)
USA 226 2.00 2.00 1.0 6.0

7 myPower Trial (2006-2007) USA 379 1.87 1.87 3.0 6.0
8 Norway EFFLOCOM Trial

(2001-2004)
Norway 237 - - 10.0 10.0

9 Xcel Energy Trial USA 2,900 - - 5.2 10.6
10 PG&E’s Trial (2008-2010) USA 86,222 - - 11.0 11.0
11 Ireland Electricity Smart

Metering Behaviour Trials
(2009-2010)

Ireland 2,920 1.43 2.71 7.0 12.0

12 Energy Demand Research
Project Trials (2007-2010)

UK 1,546 1.65 1.65 - -

13 Northern Ireland Powershift
trial (2003-2004)

Northern
Ireland

100 2.67 2.67 - -

which was concluded to be “helpful” in increasing responsiveness. Both ToU and dToU tariffs were
tested. Price responses were observed to be stronger for the ToU tariff, though with only 112
households, evenly split between ToU, dToU and control groups, statistical significance was low.

Critical peak pricing tariffs: There is strong evidence that CPP tariffs have a greater impact
on peak reduction than ToU tariffs. A reduction in peak demand was achieved in all CPP trials
reviewed by DECC, with reduction ranges typically lying between 5% and 38%. Evidence on
the effect of peak to off-peak price differentials is mixed, though generally point towards larger
price differentials resulting in greater peak demand reductions. Notifications for such trials were
typically sent the day before, with peak periods spanning around 5 hours. For trials with longer
duration peak periods, a slight reduction in responsiveness was noted.

Perhaps the the most relevant to the UK is the use of the Tempo tariff, in France. Driven by
the high penetration of inflexible nuclear generators, Electricité de France (EDF), implemented the
tariff to allow smoothing of both the annual and daily electricity load curves [65]. The tariff includes
six rates for electricity with day ahead price notifications. The highest price band may only be
used on 22 days of the year, designed to reduce the system critical peaks. The tariff also includes
regular ToU load profile smoothing elements. Tempo has led to a reduction in consumption of
between 15% and 45% depending on price band and 90% of customers are reported to be satisfied
with the tariff.

Direct load control: A recent meta-analysis by VaasaETT [66] found that automation aug-
mented the response to price signals by over 100% in many cases. This chimes with the findings of
Faruqui and Palmer [59] which showed the significant impact of enabling technologies for enhancing
the peak reducing effect of residential consumers on ToU pricing tariffs. Such results allude to the
long run potential of DR, when market based pricing is augmented by home automation.
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Radio teleswitching of loads has been practiced within the UK since 1984 [42], allowing up to
200 MW of load reduction for use by the transmission network operator.

Information provision: Information provision was seen to be the most effective lever to enhance
the DR effect after direct load control and automation [44]. There are many vectors for such
information, typically by paper bills, but more recently via in-home displays (IHDs). In the
Ireland Electricity Smart Metering Trials (IESMT), a combination of ToU with bi-monthly bills, a
bespoke energy statement and an electricity monitor, were found to reduce peak demand by 11.3%.
This is in contrast to ToU tariffs without such additional stimuli, where the average was an 8.8%
peak reduction [67]. It is difficult to compare this figure with other key European ToU trials as
the communication method was never an isolated experimental variable. The EDRP trial, which
included two ToU trials, did not measure the effect of IHDs alone. North American trials have
found mixed results while trying to isolate the effect of IHDs, some even showed a slight negative
impact on peak reduction [44].

Household occupancy: Results are mixed for impact of household occupancy.. The EDRP
trial and selected North American trials found that smaller households were more responsive to
price changes than larger households. In the case of EDRP, consumption during the peak price
period was seen to increase by approximately 4% per additional household member. This increase
in peak consumption was slightly lessened to an approximate 3.5% when the additional household
members were under the age of 16. Though with only 170 households in this study, such findings
are not conclusive. In contrast, the IESMT found that households with children under the age of
15 were more responsive to their ToU tariff by 10.7% compared to 6.5%.

Low income consumers: Though there is little evidence from the UK, a meta study [68] looking
at five trials in the USA suggests that low income consumers will benefit from ToU pricing. Indeed,
because of flatter than average load profiles, they may benefit even without changing their usage
profile. Despite this, evidence from these trials also suggests that low income consumers may have
a lower than average response to ToU pricing. Three of the five trials investigated showed this.
Various reasons have been proposed [44], though evidence is thin: Lower overall electricity use may
mean there are fewer discretionary loads to manage, flatter initial loads may reduce scope for load
shifting, or other characteristics such as housing standard or appliance ownership may be at work.

Change in bills and consumer attitudes: In general attitudes towards variable pricing tariffs
were positive, with over 80% of trial participants responding positively2. However, this is likely
to be strongly related to the fact that nearly all trials were designed to be revenue neutral (the
bill for an unchanged average demand profile remains the same as on the incumbent tariff). In
this situation, people who respond appropriately to price signals, even minutely, are guaranteed to
make a net saving from their previous tariff. As a result, most consumers across such trials saved
money.

Electrification of heat and transport: Penetration levels for electric vehicles (EVs) and heat
pumps (HPs) within Europe are low and, as such, there is little evidence from trials for the flexibility
of these new loads with respect to DR. Early data from EV trials suggests that consumers may
be content to charge their vehicles overnight rather than at peak times. However, as numbers of
participants have been low, results lack quantitative robustness and therefore estimates of the DR

2Survey questions were not consistent across trials, though for this analysis, responses were interpreted as positive
if words to the effect that the consumer would willingly choose to remain on the tariff should the option be provided,
were used.
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flexibility of EVs are still largely qualitative. As heat pumps are effectively air conditioning units
in reverse, it may be possible to assume similar flexibility characteristics, though there are many
local variables which could affect this.

Persistence: As trials are by nature temporary, there is little evidence available on the long
run persistence of DR beyond two years (most trials tend to last for one year). Of the four US
trials examined by DECC with durations greater than a year, only one [69] showed lower peak
demand reductions in the second year relative to the first. Closer to the UK, the IESMT saw
peak reductions increase in the second half of the year relative to the first. With respect to UK
applicability, evidence for long run persistence is thin.

3.3 Focus on related trials
This section gives a more detailed description of five trials that were considered to be of particular
relevance to the context of UK residential dynamic electricity pricing. All trials took place in the
UK or Ireland and are presented in chronological order.

3.3.1 The Domestic Tariffs Experiment (1966–73)

Dynamic electricity pricing is not a new idea. The Domestic Tariffs Experiment (DTE) [70] ran
from 1966 to 1973 within Great Britain (GB) and was managed by the then extant Electricity
Council. The objective of the programme was to determine whether any of three experimental
domestic tariff structures might be more efficient (economically) than the pre-existing options.
Much like today, the main tariff options available then were the “block tariff”, where the unit cost
falls in blocks of increasing energy consumption; and a “restricted consumption tariff” with an
off-peak rate designed for use in conjunction with timed appliances such as water heaters—the
precursor to the existing Economy 7 tariff.

The experimental tariffs consisted of two that were time related, “Seasonal” and “Seasonal
Time-of-Day” (STD), and one that was demand related, “Load Rate” (LR). The Seasonal tariff
was priced at 1.5 times the standard rate during the months from December to February and
0.7 times standard for the rest of the year. Load Rate imposed a high rate on energy consumed
when demand was over a certain power limit, but was cheaper otherwise. It was priced at 0.6
times standard when demand was below this limit and 2–3 times standard when above. The
Seasonal Time-of-Day tariff was of the ToU type with structure summarised in Table 3.2. All
three experimental tariffs were designed so that a consumer with average demand profile would
have the same bill as on the standard flat rate tariff.

Table 3.2: The Domestic Tariffs Experiment’s Seasonal Time-of-Day tariff structure. Prices are in units of
the local standard rate tariff at the time. Data from [70].

Price band Times Price

Peak 08:00 to 13:00, Mon to Fri, Dec to Feb 3.016:30 to 19:30, Mon to Fri, Dec to Feb
Night 23:00 to 07:00 0.4

Off-peak All other times 0.8

As smart meters (SMs) were not yet available, magnetic tape demand recorders capable of
measuring consumption on a half-hourly basis were developed especially for the trial.

Trial recruitment was on an opt-in basis sourced from all GB. Based on the assumption that
any practical application of the tariff would only apply to larger consumers, only households

47



Chapter 3. Background

with an annual consumption of over 3,000 kWh were selected. Incentive payments were used to
encourage enrolment and overall attrition from the experimental groups was around 25%. After
the recruitment phase, the trial ran for five years from 1966–72.

Results were reported in the form of the averaged difference between tariff groups and the
control group over the five year trial period. It was observed that consumption increased in all
three tariff groups: Seasonal by 6.9%, STD by 1.7% and LR by 3.2%. This was partially achieved
by increasing consumption outside of the peak time: relative to the control group’s load factor
(peak to average power demand ratio) of 50%, Seasonal was 60%, STD was 57% and LR was 51%.

The STD tariff was the most effective at shifting consumption away from peak times with an
average reduction of 116 kWh (25%). However, the increase in consumption at other times of the
day was slight, at 1.4%, given the price at these times was only 20% less than the standard rate.
The Seasonal tariff reduced the fraction of overall consumption that fell within the winter months
by 2.1%. LR was the least effective at improving system load factor and there was little impact to
the average consumer load curves for this group.

Consumer attitudes to the tariffs were positive. Survey results found that consumers on all
tariffs thought them worth continuing. Appliance usage was not significantly affected with the
exception of the STD tariff. Here, a 38% increase in total installed storage heater capacity was
noted relative to the control group.

An approximate calculation of consumer surplus was made in order to determine whether such
tariffs might be of net benefit to the operation of the electricity system and therefore consumers.
It was assumed that the tariffs’ price rates were representative of the average marginal cost of
supply. With the additional assumption of a linear relationship between consumption and prices
(elasticity), the consumer surplus relative to the control group was calculated as:

∆Consumer surplus = 1
2

Price bands∑
(∆Price · ∆Consumption)

The consumer surplus was compared to the cost of implementing the new tariffs, which were
dominated by the cost of the specialised meters developed for the trial. A summary of the findings
is shown in Table 3.3.

Table 3.3: Results of the consumer surplus and implementation cost estimates performed by the Domestic
Tariffs Experiment [70].

(£p.a.) Seasonal STD LR

Gross consumer surplus 1.2 2.3 0.8
Cost of implemetation 2.0 4.0 1.6

Net benefit -0.8 -1.7 -0.8

The STD tariff was found to have the greatest gross benefit for the consumer and the LR tariff
the least. However, for all tariffs, the benefits were more than offset by the cost of implementation.
It was concluded that the benefits of ToU tariff structures might be realised in future should the
cost of metering fall sufficiently. The programme therefore recommended that the cost of metering
be continually monitored for such an eventuality.

Today, with the developments made in electronics and manufacturing, the cost of metering has
fallen to sufficiently low levels that time varying tariff structures are a feasible proposition for the
domestic consumer. Such meters have become known as “smart meters” (SMs).

3.3.2 The Energy Management Unit Project (1989–90)
The Energy Management Unit Project (EMUP) [71] ran from 1989 to 1990 within GB and was
managed by the then extant Electricity Association. The main objectives of the programme were to
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field test a multi-rate meter and associated IHD, and to quantify changes in consumption patterns
and attitudes as a result of the two tested experimental ToU tariffs.

Table 3.4: Structure of the two experimental ToU tariffs used in the Energy Management Unit Project.
Prices are in units of the standard rate tariff at the time (£0.0616/kWh). Data from [71].

Tariff A Tariff B

Price bands Nov to Feb Dec to Jan Mar to Oct Nov to Feb Mar to Oct

Weekdays
00:30 to 07:30 0.36 0.36 0.36 0.36 0.36
07:30 to 16:00 1.23 1.58 0.85 2.56 0.71
16:00 to 19:00 3.10 6.59 0.85 2.56 0.71
19:00 to 20:00 1.23 1.58 0.85 2.56 0.71
20:00 to 00.30 0.60 0.60 0.60 0.70 0.70

Weekends
00:30 to 07:30 0.36 0.36 0.36 0.36 0.36
07.30 to 00:30 0.60 0.60 0.60 0.70 0.70

The ToU tariffs were designed so that an average consumption profile would result in the same
bill on the experimental tariffs as on the standard flat tariff at the time. The structure of the two
ToU tariffs is summarised in Table 3.4.

503 households were recruited from five regional electricity companies (formerly area boards)
within GB and divided between the two experimental tariff groups. Consumption was recorded
at half-hourly intervals in 146 households that were fitted with specialised demand recorders. A
control group of 75 households was formed from existing load research projects.

Results were divided between customers who were previously on the standard (flat) tariff and
those who were on Economy 7. The ratio between these groups was approximately 9:2 meaning
that, for each ToU tariff, the sample numbers would have been approximately 205 and 45 from
standard and Economy 7 respectively.

For households selected from the standard tariff, tariff A saw peak demand on winter weekdays
between the times of 16:00–20:00 reduce from 0.95 kW to 0.80 kW relative to the control group.
However, the maximum demand of the day remained the same and was shifted forward in time
to the period of 20:00–21:30. Tariff B, on the other hand, was able to reduce the average peak
demand on winter weekdays over all hours from 0.95 kW to 0.80 kW. That the peak was not shifted
forward in time was perhaps because the high price period persisted from the hours 08:00–20:00
rather than the much shorter 16:00–20:00 high price period used in tariff A.

Control households on the Economy 7 tariff were characterised by much higher demand during
the night. The impact of tariff A on this demand curve was much the same as it was on the
standard tariff group in that the peak demand normally seen between 16:00–20:00 was shifted
forward to the period 20:00–21:30. In contrast, tariff B had additional impact on the amount of
energy normally consumed in the night, increasing the peak demand from approximately 3.2 to
4.2 kW.

In general, consumer attitudes towards the experimental tariffs were positive, with 77% saying
they would like to remain on the tariffs if available and 85% claiming that the tariffs were easy to
understand.

3.3.3 Northern Ireland Keypad Powershift (2003–04)

The Northern Ireland Keypad Powershift (NIKP) [72] ToU trial ran from October 2003 to Septem-
ber 2004 and was managed by Northern Ireland Electricity. The trial took place in Northern
Ireland and involved 200 households. 100 households were placed in a “Price Message Group” that
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received a ToU tariff, while the remaining 100 were used as a control and received the standard flat
rate tariff that was given to Keypad (prepayment meter) customers at that time. The structure of
the ToU tariff can be seen in Table 3.5.

Table 3.5: The ToU tariff structure used in the Northern Ireland Keypad Powershift (NIKP) trial. Prices
are in units of the standard tariff rate at the time (£0.1094/kWh). Data from [72].

Price band Times Price

Peak 16:00 to 19:00, Mon to Fri 1.60
Off-peak 00:00 to 08:00 0.60

Day All other times including weekend 0.90

Overall consumption in the ToU groups was found to be 2% greater than in the control group.
Significance of results were not reported, though with 100 households in each group, this value is
unlikely to be statistically significant. Peak consumption was reported to have reduced by 12%
relative to the control group, with increases in consumption during Day and Off-peak times of 2%
and 4% respectively.

Annual bills for the ToU group were found to be 5.5% less than those of the control group on
the standard flat tariff. However, if the control group bills were calculated using the ToU tariff,
the reduction would only have been 1.5%. This suggests that some of the savings may have been
passive.

3.3.4 The Energy Demand Research Project (2007–10)

The Energy Demand Research Project (EDRP) [73] ran from 2007 to 2010 within GB and was
managed by Ofgem on behalf of DECC. Though principally a demand side management (DSM)
programme with a directive to investigate the effect of information provision on long run con-
sumption, it also contained two load shifting trials implemented via ToU tariffs. Overall, the trial
involved some 60,000 households, 18,000 of which were fitted with SMs. The project was half
funded by government to the sum of £9.75m, with a matched contribution split between the four
participating energy suppliers: EDF Energy Customers Plc, E.ON UK Plc, Scottish Power Energy
Retail Ltd and SSE Energy Supply Ltd (EDF, E.ON, Scottish Power and SSE).

Energy reduction interventions took a number of approaches, chief of which was information
provision. “Real time displays”—which we henceforth call IHDs in line with the nomenclature of
this thesis—provided live data on household consumption, access to historical consumption data
including various aggregates thereof (e.g. consumption by time of day), as well as information on
the carbon emissions and cost as a result of consumption. SMs together with IHDs were found to
result in a 3% reduction in overall consumption. Of the information provided by the IHD, surveys
indicated that consumers may be more responsive to cost information than relating to units of
consumption or carbon emissions.

Energy efficiency advice was delivered via generic written letters or, more immediately, via
a website. A reduction in consumption of around 5% was seen in some of the trial groups, but
others showed no significant change. Persistence of consumption reduction was reported by EDF
where their particular combination of SM and energy efficiency advice measured a 2.3% reduction
in consumption in the first trial year and 4% in the second. No effect was measured for web based
feedback of historical, one day delayed consumption data, though survey results suggested that
this may have been more effective if real time data was provided.

Financial incentives were offered in the form of prizes if consumption was under a given target
value over a defined period. Results were mixed and concluded that no significant change was
measured.
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Two suppliers, EDF and SSE, used ToU tariffs in order to incentivise demand shifting from
peak times. In both trials, home automation was not included in the trial intervention and use of
such devices was assumed to be low. In addition, no data was gathered on the types of appliances
that were involved in the load shifting.

Table 3.6: EDF’s ToU tariff structure for EDRP. Prices are in units of Off-peak rate (0.0841 to 0.0903
GBP/kWh). Data from [73].

Price band Times Price

Night 23:00 to 06:00 0.56 to 0.65
Off-peak All other times 1.00

Peak 16:30 to 19:30 1.61 to 1.69

The EDF ToU trial ran from January 2009 to September 2010, within the area of London
and south-east England, using the tariff structure shown in Table 3.6. It included 170 households
(after exclusions) with the measurement of load shifting being determined by comparison to both
a “control group” of 135 households and a “wall panel” (IHD) only group of 141 households.
Participants were limited to those who were on an electricity only tariff but not the Economy 7
tariff3

A maximum of 4.4% reduction (at 90% confidence) in energy consumption, relative to the
control group, was observed during the tariff’s peak hours on weekdays relative to the wall panel
group. A greater response was observed at the weekend with 8% reduction (at 95% confidence) in
peak consumption relative to the wall panel group. It was reported that there was no significant
overall difference in consumption between the control and wall panel group at the 95% confidence
level.

Of the other variables measured, the most significant interaction with response was observed
to be that of the number of people aged 16–64 in the household. Here, for each additional person
aged 16–64 in the ToU and wall panel groups, the proportion of consumption in the peak period
was observed to increase by 4.3% and 4.8% for weekdays and weekends respectively.

Table 3.7: SSE’s ToU tariff structure for EDRP. Prices are in units of the Off-peak rate (ranging from
0.0841 to 0.0903 GBP/kWh from March to October and 10.87p/kWh to 11.46p/kWh from
November to February). Data from [73].

Price band Times Price from Mar to Oct Price from Nov to Feb

Night 00:30 to 07:30 0.50 to 0.60 0.50 to 0.60
Off-peak All other times 1.00 1.00

Peak 16:00 to 19:00 1.80 to 1.90 1.80 to 2.10

The SSE ToU trial ran from November 2008 to September 2010, with trial participants selected
from across GB, using the tariff structure described in Table 3.7. In contrast to the EDF trial,
the ToU group of 1,418 households was divided into 10 subgroups so as to create a two-factor
experiment with a complete factorial design [74, Chapter 14]—each subgroup had a different in-
tervention applied to it in addition to the main intervention of the ToU tariff. Change in demand
as a result of the ToU tariff was measured relative to households with SMs that were not on the
ToU tariff. This reference group totalled 1,936 households and was also divided into 10 subgroups,
each subgroup having a different intervention applied, but crucially not including the ToU tariff.
The 10 subgroups on the ToU tariff were paired with the non-ToU group with the same secondary
intervention. Comparisons were then made pairwise between ToU and non-ToU groups.

3Economy 7 is a simple ToU tariff with two rates and includes the facility for radio tele-switching of loads. See
Section 2.5 for more details on tariff types.
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Results showed that the percentage of consumption in the ToU tariff was reduced, but only by a
small amount: a 1.5% reduction on weekdays and a 2.6% reduction on weekend days. Interestingly
it was noted that this reduction was significantly larger when the comparison was made between
households without a “real time display” (IHD). It was suggested that this might be an interference
effect—too many changes for the consumer to assimilate at one time. Furthermore, though peak
consumption levels did vary with Mosaic [75] demographic group, no could be identified which
responded significantly better.

3.3.5 The Ireland Electricity Smart Metering Trials (2008–11)

The Ireland Electricity Smart Metering Trials (IESMT) [67] programme ran from 2008 to 2011
and was conducted by the Commission for Energy Regulation within the Republic of Ireland. The
broad objective of the programme was to establish the potential of SM technology when combined
with ToU tariffs and DSM stimuli. The trial included small and medium sized enterprise (SME)
and residential consumer types, though this summary focuses on residential only.

Table 3.8: Groups and ToU tariff structure for IESMT. Prices are in units of the standard rate tariff at
the time (e0.141/kWh). Data from [67].

Prices by tariff group

Price band A B C D W Control

Night (23:00 to 08:00) 0.85 0.78 0.71 0.64 0.71
Day (All other times) 0.99 0.96 0.92 0.89 0.99 1.00

Peak (17:00 to 19:00, Mon to Fri) 1.42 1.84 2.27 2.70 2.70
Weekend (All weekend) 0.71

N (households) 1,368 511 1,370 509 100 1,170

The duration of the programme was split into an initial period for benchmarking, where no
interventions were made and normal consumption data was collected, and the trial period, where
a number of different interventions were trialled. These included four ToU tariffs, labeled A–D,
of different structure and four different DSM stimuli. The DSM stimuli were: bi-monthly billing,
monthly billing, bi-monthly billing with an electronic energy monitor, and bi-monthly billing with a
demand reduction incentive. The energy monitor provided a view of current, historical and by-tariff-
band consumption. Demand reduction incentive targets were set to 10% less than the historical
(from the benchmark period) daily average consumption for that household. If a customer was
successful in reducing demand by this amount over an 8 month period, a e20 reward was given.

Each ToU tariff and DSM combination were combined so as to create 16 trial groups in a two-
factor experiment with complete factorial design [74, Chapter 14]. In addition, a weekend tariff
(labeled W) and a control group were also included. No interventions were applied to the control
group and they were allowed to remain on the tariffs they were on before trial enrolment. Table 3.8
summarises the tariff groups, tariff structures, and the number of household in each group (N). For
the ToU tariffs A–D, the number of households on each were split approximately equally between
the four different DSM intervention groups.

At the time of the trial, all households in Ireland were customers of Electricity Ireland. Re-
cruitment onto the trial was opt-in and demographic profiling was used to ensure the samples were
representative of Ireland as a whole. Only standard electricity tariff consumers were recruited as
those on the existing Night Saver tariff (similar to Economy 7 in the UK) had effectively already
experienced a form of ToU intervention. The sample numbers targeted were chosen so as to enable
a 2% change in overall consumption to be detectable between groups A and C at a 90% confidence
level. All households were given the same flat tariff during the benchmarking period.
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Table 3.9: Consumption change by IESMT trial group. Results are quoted at 90% confidence. Data
from [67].

Tariffs groups: All A B C D W

Overall consumption reduction (%) 2.5 2.7 3.4 1.9 2.4 3.7
Peak consumption reduction (%) 8.8 7.2 9.8 9.0 10.9 11.6

The analysis was conducted at group level, with average changes to the experimental groups’
consumption profiles being measured relative to the average consumption of the control group.
Two key metrics were considered: change in overall consumption and change in peak consumption.
The results for the experimental groups are summarised in Table 3.9. All results were reported to
at least 90% confidence level.

A 2.5% reduction in overall consumption and 8.8% reduction in peak consumption were mea-
sured when aggregating all ToU tariff groups. While it was possible to say that tariff B was
more effective than C, and that tariff A was the poorest performing of all at reducing peak, other
intra-tariff comparisons were not statistically significant.

The DSM intervention combining bi-monthly billing, a detailed energy statement and an elec-
tricity monitor were found to be the most effective at reducing overall consumption, resulting in
an average reduction of 3.2%. However, it was not possible to isolate the effect of the electricity
monitor as it was not trialled alone.

An attempt to measure the persistence of response was made by comparing consumption be-
tween the first and second halves of the trial year. While peak consumption reduction was found to
be consistently strong in all groups during the second half of the trial, overall consumption showed
mixed results. Arguably, this analysis approach is ineffective when used on one year of data as the
observed differences may conceivably be accounted for by weather effects alone.

There was some evidence of a relationship between the peak price and the level of peak reduction
observed for each tariff. As expected, increasing the peak rate enhanced the peak reduction. If
this trend is real, it would imply that electricity consumption at peak has weak but non-zero price
elasticity.

Some evidence of demand shifting was observed. As there was an overall reduction in consump-
tion as a result of the interventions, an approach whereby the percentage of total consumption
that fell in each half-hour block of the day was compared between the control and ToU groups. A
slight increase in the fraction of consumption that occurred after the peak period was observed in
the ToU group average between the times of 19:30 and 01:30.

Households on the ToU tariffs on average saved 2.5% on their bills as compared to the control
group. The amount saved and the associated reduction in consumption were observed to be
enhanced with the increasing wealth (UK Market Research Data was used for classifications) of
the participants. No significant difference was observed between vulnerable and non-vulnerable
customers.

Interestingly, the reduction in peak consumption was observed to increase for households with
children. This is in line with the EDRP trial (Section 3.3.4) findings that response reduced with
the number of 16–64 year olds living at the premises, but in conflict with the findings of the CLNR
trial (Section 3.3.6) where it was concluded that households with people younger than 5 or older
than 60 had reduced response at peak relative to those that did not.

3.3.6 The Customer Lead Network Revolution (2010–15)

The Customer Lead Network Revolution (CLNR) [76] programme ran from 2010 to 2015 and was
conducted by Northern Powergrid in the north of England, UK. Funded by the Ofgem’s LCNF,
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it sought to trial low carbon technologies including photovoltaics (PVs), HPs and EVs, as well
as monitoring demand levels for various consumer types—residential, SME and industrial and
commercial (I&C)—in order to assess the impact of a number of interventions. Included in these
interventions was the use of a ToU tariff in the residential sector.

The ToU tariff was conducted with a sample of some 600 households over the course of two
years, though data used in the analysis of the trial spanned October 2012 to September 2013. SMs
and IHDs were installed in all participating households. The tariff consisted of three price points
corresponding to the times of day they were in effect. These can be seen in Table 3.10.

Table 3.10: CLNR ToU tariff structure. Prices are in units of the British Gas standard rate tariff at the
time. Data from [76].

Price band Times Price

Day 07:00 to 16:00, Mon to Fri 0.96
Peak 16:00 to 20:00, Mon to Fri 1.99

Off-peak All other times including weekend 0.69

The effect of this tariff on demand was determined by comparison against the average demand of
a control group consisting of some 9,000 households [77] with SMs. To justify this direct comparison,
the control group was compared with the ToU group across a number metrics, including socio
economic group (provided by Mosaic, Experian), household occupancy and number of rooms. It
was determined that the groups were sufficiently representative of each other to be considered as
having been sampled from the same population.

On average it was found that the ToU tariff reduced peak demand, between the hours of 16:00
and 20:00, by 6.39% [62]. This reduction was accompanied by an increase in consumption during
the other times of the day, indicating that some demand shifting was occurring.

Consumers with higher income showed increased demand reduction. Furthermore, those with
greater income had more home appliances and commensurately greater overall consumption. This
supported the idea that response is linked to overall consumption. Higher income consumers were
also found to have been users of timers for appliances since before the start of the trial, suggest-
ing the alternate hypothesis that a greater socio-technical preparedness may also have played a
part in the greater response to the tariff. However, in general, Experian’s Mosaic socioeconomic
classifications were not found to be a good predictor of responsiveness to the tariff.

39% of those on the ToU tariff would have paid more if their consumption was billed at the
standard flat rate tariff provided by British Gas at the time, implying that nearly two thirds of
those on the trial made a saving.

Households including people younger than five and older than sixty were found to be correlated
with reduced response to the tariff, perhaps related to less flexible daily routines. From customer
survey responses, the household tasks of laundry and dishwashing were reported to be the easiest
to shift.

3.3.7 Comparison

Six key ToU trials were reviewed. These trials took place within the last 4 decades and were
situated within the UK, including Northern Ireland, and the Republic of Ireland. Ireland was
considered to be close to the UK in both culture and climate. A summary of the results from these
trials can be seen in Table 3.11.

In general, the results are in line with the peak reductions reported by DECC in Table 3.1.
Results and tariff designs varied considerably over the trials examined, with peak to standard
price ratios ranging from 1.42 to 6.59, and peak consumption reductions ranging from 6.4% to
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Table 3.11: Summary of ToU trial results from those considered closely related to the UK. For each trial,
the table gives the peak to standard price ratio, the reduction in peak consumption achieved
and the number of households in both the ToU and control groups (when available).

Index Trial Year Location Price ratio Reduction (%) N_tou N_control

1 DTE [70] 1973 GB 3.00 25.0 - -
2 EMUP [71] 1990 GB 6.59 16.0 250 75
3 NIKP [72] 2004 N. Ireland 1.60 12.0 100 100
4 EDRP EDF [73] 2010 GB 1.69 8.0 170 135
5 IESMT A [67] 2011 Ireland 1.42 7.2 1,368 1,170
6 IESMT B [67] 2011 Ireland 1.84 9.8 511 1,170
7 IESMT C [67] 2011 Ireland 2.27 9.0 1,370 1,170
8 IESMT D [67] 2011 Ireland 2.70 10.9 509 1,170
9 IESMT W [67] 2011 Ireland 2.70 11.6 100 1,170
10 CLNR [76] 2015 GB 1.99 6.4 600 9,000

25%. Significance of the reported values also varied considerably due to the number of households
in the respective ToU and control trial groups ranging from 75 to 9,000. It can be seen that
the more statistically significant trials tend to group together at more conservative price ratios of
1.5–2.7 and there is a lack of robust experimental evidence at higher peak to standard price ratios.
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Figure 3.1: Summary of ToU trial results related to the UK context. For each trial, the size of the point
is proportional to its weighting, which is a function of the sample numbers. Each trial marker
is referenced to the corresponding trial in Table 3.11 via its index number.

To gain a sense of the distribution of peak reductions relative to price ratios, they are plotted
together in Fig. 3.1. The number of households in each trial group were used to determine a
statistical weighting of each result. Assuming that each trial group had the same standard deviation
of demand—this number was not provided in most trial reports—the variance of the response
measurement, S2

R, can be shown (proof omitted) to be proportional to the below function of the
sample numbers:

S2
R ∝ 1

Ntou
+

1
Ncontrol

(3.1)

The data point weightings were set so as to be proportional to 1/S2
R, as is the standard in weighted

least-squares regression (WLS). These were depicted in the scatter plot via the size of each point’s
marker—larger markers having greater statistical weight. In the case of trial index 1, each group
was assumed to contain 50 households. This was considered a conservative estimate (below the
minimum reported group population of 75) and allowed the point to feature in the graphic with
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a small weighting. In addition, a best WLS regression model consisting of a constant and a
proportional parameter was fitted to the points to give a sense of whether a trend might exist.

Evidence for or against a relationship between price ratio and change in consumption was
weak. The WLS regression resulted in parameter p-values each greater than 0.10, a level normally
considered too weak for the model to be adopted. This highlights the need for more data to be
gathered on the elasticity of electricity demand to changes in price level. Future trials might also
target higher peak to standard price ratios where there is currently little experimental data.

3.4 Upcoming work of interest
The below lists related trials that were ongoing at time of writing and have not yet published
results.

EcoGrid EU (2011–15): This European Union (EU) funded project aims to demonstrate a
working prototype of a future smart grid concept where real-time energy markets allow the demand
side to react to changes in supply. The trial is taking place within the Danish island power system
of Bornholm, where wind generation accounts for more than 50% of the local capacity. Some 2,000
households, a significant proportion of the 28,000 on the island, will participate in flexible demand,
of which many will be fitted with home automation and ‘smart appliances’. Real time prices are
calculated by the island transmission system operator (TSO) at five minute intervals in order to
balance the system. [78, 79]

Smart Energy GB and UCL (2014–15): This research project, between Smart Energy GB
and the University College London (UCL) Energy Institute, is investigating the acceptability of
ToU tariffs to consumers. Two randomised control trials involving some 4,000 people have been
conducted to test how the design and marketing of tariffs impacts their acceptability. Results are
due to be presented in 2015. [80]

Project SoLa BRISTOL (2013–16): Also funded by the LCNF, this trial is being conducted
in the Bristol area by local DNO, Western Power Distribution. The project’s primary objective is
to enable high density PV generation to connect to the low voltage (LV) network more efficiently
through use of in-situ battery storage and variable tariffs. The trial aims to include thirty houses,
ten schools and an office. The variable rate tariff will encourage electricity use at times of high PV
generation and to use electricity stored by the battery when the network is heavily loaded. The
DNO will be able to control the times when the battery charges and discharges in order to assist
in network management. [81]

Vulnerable Customers and Energy Efficiency (2014–17): This LCNF funded project, run
by (DNO) UK Power Networks, focuses on “fuel poor” residential consumers and seeks to quantify
the benefits of ToU pricing, energy management devices and energy advice to both the network
and consumer. The trial will include some 550 households from within the London borough of
Tower Hamlets, which has a high percentage of fuel poor households, social housing and tower
blocks. [82]

3.5 Summary and conclusions
This chapter provided an general overview of global residential demand response (DR) trials then
focused on the details of six time-of-use (ToU) trials that were closely related to the United King-
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dom (UK) context. The below summarises the key areas where more knowledge was found to
be needed regarding the implementation of dynamic pricing in the UK. For each area, a brief
description of potential research options is given.

Knowledge gaps

Present gaps in the understanding of residential dynamic electricity pricing in the UK are:

• dynamic Time-of-Use (dToU) tariffs have not yet been trialled in the UK and evidence from
comparable countries (that may be extrapolated to the UK) is thin

• Data on the types of loads shifted is thin

• Evidence on the effect of household occupancy is mixed

• Evidence and reasons for differing responses from vulnerable or low-income consumers is thin

• Evidence on persistence of DR is thin

• Evidence on the effect of information provision and its vector were mixed

• Data on the response of consumers to different price levels is thin with little significant
experimental data beyond a peak to standard price ratio of 3

• Data on the effect and extent of the electrification of heat and transport is thin

• Models of DR for use by network planners and operators

Research options

The following paragraphs provides a brief descriptions of potential research options for improving
the understanding of each of the knowledge areas listed in the previous sections.

Dynamic Time-of-Use (dToU) trials. The complexity and subjectivity of residential demand
makes it unlikely that theory alone can inform on the effect of dToU signals. Understanding
this must include an experimental approach. Attention to statistically significant sample sizes,
appropriate social stratification and good experimental design will be crucial in ensuring the quality
of results. This has been the primary contribution of the Low Carbon London (LCL) residential
dToU trial.

Data on the types of loads shifted. The most direct approach would be to sub-meter ap-
pliances at high resolution within the household. This would give unambiguous confirmation of
the loads that were contributing to the measured response for a particular event. A less intrusive
alternative might be identification and disaggregation of load signatures [83] from the power mea-
surements of the primary meter, though this approach requires high resolution measurements and
more complex analysis techniques. However, both these approaches do not differentiate between
actions that are the result of deliberate engagement with the DR programme, and coincidence. To
gain more information here, surveys may be used to ascertain the appliances that the consumer
finds easiest and most difficult to respond with.

Data on the effect of household occupancy. Statistically significant data on the effect of
household occupancy can be obtained by ensuring the number of samples in future trials are such
that, after grouping by the number of occupants in each household, each group still contains a
significant number of households. The data necessary to determine the number of occupants in
each household will necessarily have to be gathered via a survey.
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Evidence and reasons for differing responses from vulnerable or low-income con-
sumers. More data on low-income and vulnerable consumers may be obtained by targeting
DR trial recruitment such that statistically significant numbers are selected from low income and
vulnerable consumer classes. This could be augmented by consumer surveys to obtain data on
the types of appliances that consumers are shifting. Data on the effects of household occupancy
should be obtained in a similar manner, by choosing trial areas and targeting recruitment until
statistically significant numbers of the chosen occupancy levels are obtained. This is now being
studied in a related Low Carbon Network Fund (LCNF) project, Vulnerable Customers and Energy
Efficiency, discussed in Section 3.4.

Evidence on persistence of DR. Data on the persistence of peak load reductions can only be
obtained from longer trials or commercial offerings. Increasing trial duration or designing trials
that may transition into commercially viable operations would provide valuable long term data.

Evidence on the effect of information provision and its vector. If the experiment is
designed to test information interventions, all other variables should be held constant to as greater
degree as reasonably possible. If the experiment is not designed to test such interventions, the
information provided to consumers, and the vector by which it is provided, should remain a constant
of the experiment.

Data on the response of consumers to different price levels. As can be see in Fig. 3.1,
trials that were considered closely related to the UK context have tended to be conservative in
their choice of peak to standard price ratio—there is currently little experimental response data
beyond a price ratio of 3. Future trials should therefore aim to obtain data beyond this point.

More data on the effect of price differentials may be obtained by designing experiments with
significant numbers of participants, using multiple tariff bands by using a sufficient range of price
ratios to make it possible to deduce trends (should they exist) from results. As there are many time
related variables which cannot be controlled in trials, ensuring the pricing schedule is designed to
minimise noise while appropriately spanning seasons will be important.

Data on the effect and extent of the electrification of heat and transport. Until pene-
tration levels for electric vehicles (EVs) increase, it will be difficult to obtain statistically significant
experimental results on their DR potential, or indeed the network issues they may pose, from in-
dividual trials. In order to make best use of the information available, current efforts are geared
towards increasing penetration levels and the international sharing of research data. Green eMo-
tion [84] is the largest such programme in Europe. Combining international data with local data
such as driver patterns and consumer preferences may be the best approach at this stage in EV
roll-out. In the UK, plans to test small fleets of instrumented EVs in order to obtain information
on driver patterns and charging preferences, as well as channeling investment into EV charging
infrastructure, are underway in major cities and, indeed, were part of the LCL programme [85].

Data on the effect of heat pumps on the network and their potential to engage in DR is in a
similar condition to that of EVs, though their situation is somewhat different. As heat pumps will
be replacing conventional heating systems with little to no difference in service dynamics (unlike
electric vehicles which have considerable reduced range and increased charging times relative the
the incumbent), usage patterns can be derived from existing data. Furthermore, as these systems
are effectively reversed air conditioning units, their aggregate load characteristics are relatively well
understood. As load cycles may look similar to that of cooling loads in the USA, it may even be
possible to infer their DR potential from existing data. Nevertheless, assumptions like this should
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not be made without experimental verification. It should be noted that the scale of such trials
should not need to be as large as those necessary to test consumer responsiveness to prices.
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Trial design

This chapter describes the experimental design of the Low Carbon London (LCL) dynamic Time-
of-Use (dToU) pricing trial that took place in London over the year of 2013. Informed by the
the review of literature described in Chapter 3, the objectives of the trial, experimental groupings,
recruitment procedures and design of the experimental dToU tariff are described.

4.1 Objectives

This trial was concerned with the implementation of a dToU tariff in order to inform its potential
future use for Constraint Management (CM) and Supply Following (SF). Through implementing
both use cases in the same tariff it was believed that the trial would be more realistic: In a smart
future, demand response (DR) is likely to be used to achieve multiple objectives and by multiple
actors. Simultaneous implementation would therefore better inform on potential conflicts and
synergies between the two chosen use cases.

The below lists the main trial design objectives including a brief description of how each was
met:

• Ensure statistically robust results: The experiment was designed to detect a minimum differ-
ence between the mean group demands of 5% to at least a 90% confidence level—the level
considered by convention to be borderline statistically significant [86, chapter 8].

• Demonstrate the use of the dToU tariff for constraint management: Events were designed to
achieve substantial demand reductions during the identified annual peak loading periods.

• Gather data on the distribution of the DR resource over time to inform SF: Events were
designed to cover a range of season and day types, and to span all times of day with different
start times.

• Gather data on the effect of event duration on response magnitude: Both high and low price
events were designed with varying durations and distributed in the schedule using a factorial
experimental design.

• Gather data on the effect of household occupancy on response magnitude: Overall experi-
mental group size was targeted so that it would be large enough to contain sufficient numbers
of households of different occupancy levels.

• Ensure the applicability of results to London: Acorn consumer classifications were used to
ensure trial groups were reasonably representative of London as a whole.
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• Gather information on the types of loads shifted: Surveys and interviews were used to obtain
extensive metadata on household and appliance composition, including consumer attitudes
to the dToU tariff.

• Gather data on the effect social classification on response magnitude: Acorn classifications
were used to stratify consumers during analysis.

• Gather data on the effect of the tariff on vulnerable and low-income consumers: Acorn
consumer classifications (a non-invasive measure) were used to guide sampling, and ensure
London representative numbers of each group type.

4.2 High level design

This section lists the key design decisions made in consortium with programme partners. A brief
rationale is given where appropriate.

4.2.1 Experimental groups

Households in the trial were split into two groups:

• Dynamic Time-of-Use (dToU): This group received the experimental dToU tariff.

• Non-time-of-use (nonToU): This group received a standard flat tariff, one of EDF Energy’s
existing commercial offerings.

4.2.2 Resource and technical design decisions

Availability of resources inevitably imposed some constraints on the trial design. In addition,
technical constraints were imposed by the capabilities of the systems available for use in the trial.
Key decisions relating to resource and technical constraints were:

• Up to 6000 smart meters available for the trial.

• 1 year trial duration, from the beginning to the end of 2013.

• Consumption measurement made to a resolution of 30 minutes: This was the highest mea-
surement resolution possible given the available information and communication technology
(ICT) and smart meter specifications [8]. Landis and Gyr E470 smart meters were installed
in all households recruited into the trial. A picture of this meter and associated in-home
display (IHD) can be seen in Fig. 4.1.

• 3 price bands—named “High”, “Default” and “Low”—to be used within the experimental
dToU tariff: The smart meters had 3 price registers, thus allowing a maximum of 3 price
bands.

• Notifications were made via the mobile network Short Message Service (SMS). The cost and
complexity required to develop other solutions, for example phone applications or a web
service, was considered uneconomical for the programme. Using SMS, it was possible to send
notification messages to customer’s mobile phones and to the smart meter in-home display,
as show in Fig. 4.1. An example message reads, “From 5am Thurs 21st to 5am Friday 22nd
your rate is LOW except HIGH 7am-10am”.
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Figure 4.1: Example picture of the Landis and Gyr E470 smart meter (left) and its associated in-home
display (centre) showing a rate change notification and indicating a low current load via the
green light. A mobile phone screenshot (right) shows an example of the SMS price change
messages.

4.2.3 Social and business design decisions

Social and business constraints also influenced design decisions. Social constraints arose from the
ethical obligations relating to intervening in people’s lives and collecting their personal data, and
business constraints from both the industrial partners’ business processes and the imperative not
to damage their respective businesses—trial participants were also the customers of the partnership
organisations. Particular care was taken to ensure that customer relationships were not damaged
by the trial and that any personal data was kept securely and in accordance with a data privacy
strategy approved by the Office of Gas and Electricity Markets (Ofgem). Key decisions in this
area were:

• Opt-in trial: Consumers had a choice in whether their personal details could be used in the
trial. This was true both for the treatment dToU group and the non-time-of-use (nonToU)
group.

• London area only: Recruitment was restricted to the London distribution network administra-
tion area (LPN) only. This was principally because the trial was designed to give information
about urban areas, and in particular the London area, but also because of the availability of
network data within this area.

• Up to 3 individual low or high price event days in a week: This was chosen in order to limit
inconvenience to customers as a result of being on the trial. We define an event day as any
day containing a price band other than the default price.

• Up to 1 low-high-low event per week, but this could extend to consecutive days: There was
some concern that consumers would be confused or irritated by an overly complex tariff
structure. This was considered to be the maximum acceptable complexity for the tariff. The
detail which could be communicated via SMS was also a key consideration in this decision.

• Notifications were made a minimum of 24 hours ahead of delivery: Though any consumer
notification period was technically feasible, to limit customer dissatisfaction and allow people
a reasonable time to react to price changes, it was decided that notifications would be sent
at 8:30am on the days preceding events.

• Revenue neutral price bands: The tariff was designed so as to result in no annual change in
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bill for Elexon1 Profile Class 1 consumers who did not react to the dToU tariff. This was in
accordance with the rules for trials as laid out by Ofgem.

Household metadata was collected from a number of additional sources. The first three of the
below items were used directly in the work of this thesis. These data sources were:

• Acorn [87] socioeconomic group types for each household.

• Appliance survey: Issued at the beginning of the trial, this survey collected data on the
numbers of appliances in the home as well as details relating to the characteristics of the
home and its occupants (e.g. number of rooms, occupants etc.).

• End of trial survey: Relating to the attitudes of consumers towards the tariff and engagement
with the tariff.

• Consumer interviews: To facilitate a longitudinal study of consumer attitudes [58].

4.3 Experimental units

There are two major sources of epistemic uncertainty in consumers’ response to the dToU tariff:
One stems from differences between average behaviour of households and the other from differ-
ences in the conditions surrounding each day. In addition to these, there is unavoidable aleatoric
uncertainty arising from the unpredictable nature of human behaviour.

We wish to gather data on residential DR that will help us form a view of the true variation in
response over households and over time. Depending on the analysis viewpoint, the experimental
unit—the thing that is being sampled—changes. If we wish to learn how response varies with time,
it is periods of time that are the experimental units, with response variations due to differences in
households considered a source of noise. If we wish to learn how response varies across households,
the opposite is true; variation in conditions over time are considered a source of noise. In both
these cases it is necessary to ensure the source of noise is truly noise in the statistical sense: it
should have a mean of zero. This is achieved by aiming for representative samples of both.

The basic experimental units of this trial were defined as:

• Households: The individual metered premises occupied by the people recruited into the LCL
trial.

• Trial days: The period of 24 hours beginning at 05:00 (clock time) during the trial year of
2013.

While the reasons behind the choice of households is self evident, the choice of trial day requires
some justification: The objective was to define a unit of time within which price events could exist
somewhat independently of each other. With sleep being the natural divider of human days, it was
desirable from an analysis perspective to define the start and end of a day according to the typical
sleep cycle. Perceptually, a day begins before people wake in the morning and ends after they go
to sleep at night. Assuming that the lowest point in demand in the night is when most people are
asleep, we may use the Profile Class 1 data to choose an appropriate start time for the trial day.
From this profile, shown in Fig. 4.8, it can be seen that the lowest demand in a 24 hour period
is between the hours of 3am and 5am, with demand increasing shortly after 5am, most likely as
people begin to wake. 5am was chosen as the beginning of a trial day.

1Elexon is responsible for administering the Balancing and Settlement Code within the Great Britain (GB)
electricity system.
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4.4 Household sampling
The salient details of the trial recruitment process are described below. For more detail an inter-
ested reader should view the companion report on consumer attitudes [58].

4.4.1 Recruitment process
Recruitment onto the trial was managed by EDF Energy, working closely with Imperial on points
concerning experimental design. The trial recruitment steps can be summarised as:

1. Primary recruitment into the LCL residential trial programme. Participants were recruited
on an opt-in basis from EDF Energy customers within the London Power Networks (LPN)
area. There was a need to ensure the demographic spread of individuals was similar to that of
London. As a non-intrusive measure, this was monitored using the Acorn consumer classifica-
tion groups described in Table 4.2. If a class of consumer was found to be underrepresented,
recruitment was intensified within this group until the correct ratio was achieved.

2. Install smart meters and IHDs in participant’s homes. At this point the technician would
explain the operation of the meter and IHD. For a variety of technical reasons it was not
possible to install smart meters into all the homes recruited. In this case, primary recruitment
was repeated until recruitment targets were met.

3. Secondary recruitment into the experimental groups. Participants were recruited, again on
an opt-in basis, into the dToU group from the set of existing primary programme participants.
Those not recruited into the dToU group formed the nonToU group.

London

EDF Energy customers

LCL
N_total = 5,536

N_nonTOU = 4,417

dTOU
N_dTOU =1,119 

Figure 4.2: Venn diagram illustrating sample selection including final recruited numbers.

Figure 4.2 illustrates the sampling population subsets. It should be noted that, because sec-
ondary recruitment was also opt-in, and taken from the group of households created by the primary
recruitment drive, it was assumed that self selection had created a natural difference between the
populations of the dToU and nonToU groups.

Partly to mitigate the issue of disparities between the groups, and to enhance the collection of
meta-data, customers were offered several incentives. These are discussed in detail in LCL report
on consumer attitudes [58]. The salient points are given below:

• A guarantee that they will be reimbursed at the end of trial if they are worse off on the dToU
tariff than they would have been on their previous tariff.

• £20 for returning the appliance survey.

• Assurances regarding how many hours would be charged at the high price band.

• £100 for signing up to the dToU tariff .

• Another £50 for staying on the dToU tariff until the end of trial.

• £20 for returning the consumer dToU tariff survey at the end of the trial.

• Entry into a prize draw after completion of the post trial survey.

65



Chapter 4. Trial design

4.4.2 Selection criteria
In order to be offered the dToU tariff, customers had to meet a number of conditions. Readers
interested in the motivation for these conditions should refer to the companion report on consumer
attitudes [58]. The conditions were:

• Be an existing LCL trial customer.

• Have had their smart meter (SM) installed more than 1 month before the trial start date.

• Have an IHD installed and working.

• Not be on the Economy 7 tariff.

• Not be on a Dual Fuel tariff. Approximately 5.4% of the EDF Energy customers within the
LPN area were dual fuel.

• Have the trail standard smart meter type: Landis and Gyr E470.

• Not have a prepayment meter: No smart meter with a pre-payment facility compatible with
existing infra-structure was available at the time of recruitment.

• Not have micro-generation. This is because, clearly, micro-generation affects net demand
profiles, but also micro-generation is known to affect energy use behaviour.

• Not have debt or any special conditions associated with their account.

• Have completed the meta-data survey.

• Not have plans to move home within the first 6 months of the trial.

4.4.3 Group populations
Statistically robust results were a trial design objective. Specifically, the target here was to be able
to detect a minimum difference between mean group demands of 5% to at least a 90% statistical
confidence level.

A significant part of the experimental design was to ensure that differences between averaged
grouped measurements would be detectable to within a reasonable level of statistical confidence.
Before the decision that the trial would be composed of two groups (dToU and nonToU), con-
sideration was given to experimental designs with multiple intervention groups. It was envisaged
that these intervention groups would be compared to a single control group. In this scenario, the
optimal number of samples to allocate to each experimental group can be calculated. Readers
interested in these equations can find them in Appendix A.1.

Using informed assumptions as to the dispersion of group demand and level of change that
might be observed (details in Appendix A.2), it was concluded that it would not be feasible to
achieve the desired measurement resolution and significance if the available samples (estimated to
be 6,000 households) were split between more than one treatment group. It was therefore decided
that there would be one treatment group and one control group (which later became the nonToU
group).

Given two trial groups, in order to maximise the statistical confidence of group comparisons,
the optimum population numbers for each of the groups would be an equal split of the total number
of experimental units (households) available. However, it was not possible to achieve this due to
the opt-in nature of recruitment. Guide targets for minimum group populations were set in order
to achieve the trial’s statistical objectives. Taking into consideration an estimated group attrition
rate of 20% and assuming equal group populations, it was calculated (details in Appendix A.2)
that 1,521 households should be recruited into each trial group in order for statistical robustness
objectives to be achieved. It was also recognised that population shortfall in one group may be
compensated for by increase in another group.
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Figure 4.3: Population of trial groups with time.

Figure 4.3 shows the group populations against time with final group numbers given in Table 4.1.
While the dToU group fell below the above mentioned guide population number, the statistical
objectives were still achieved due to the larger size of the nonToU group.

nonToU dToU Total

Beginning of trial 4,417 1,119 5,536
End of trial 4,073 1,043 5,116
Attrition rate 7.8% 6.8% 7.6%

Table 4.1: Trial group population numbers and attrition rates.

4.4.4 Group demographics
Recruitment took place within the LPN area. The approximate2 locations of the households in
the trial are show in Fig. 4.5. As a non-intrusive measure, Acorn group classifications were used to
monitor demographic spread. Figure 4.4 shows the breakdown by Acorn group name of the nonToU
and dToU groups as compared to EDF Energy customers within the LPN area. In general, both
trial groups were shown to be reasonably representative of EDF Energy customers in the London
area, who were in turn shown to be representative of London, though this data is proprietary and
cannot be published.

2Noise was added to the locations in order to protect the anonymity of the trial participants.
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Figure 4.4: Proportions of Acorn groups for the dToU group the nonToU group and EDF Energy customers
in the LPN area. See Table 4.2 for label definitions.

Label Acorn group Acorn category

A Wealthy executives Wealthy achievers
B Affluent greys Wealthy achievers
C Flourishing families Wealthy achievers
D Prosperous professionals Urban prosperity
E Educated urbanites Urban prosperity
F Aspiring singles Urban prosperity
G Starting out Comfortably off
H Secure families Comfortably off
I Settled suburbia Comfortably off
J Prudent pensioners Comfortably off
K Asian communities Moderate means
L Post industrial families Moderate means
M Blue collar roots Moderate means
N Struggling families Hard pressed
O Burdened singles Hard pressed
P High rise hardship Hard pressed
Q Inner city adversity Hard pressed

Table 4.2: Acorn group names and categories [87].
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Figure 4.5: Trial household sample locations overlaid on the borough boundary map of Greater London.
Map data from the Greater London Authority [88]. Ordnance Survey [89] coordinate system.

4.5 Parametrisation of demand response

This section describes the parameters through which a DR action in the dToU tariff can be quan-
titatively described. As the objective of the trial is to test consumer response to the tariff, we are
only concerned with those attributes of the tariff that are observable by the consumer.

The salient parameters are listed below. They are not considered to be exhaustive, indeed
many can be subdivided into finer details. Rather, they are those that are considered necessary to
inform the design of the tariff.

• Notice period given in advance of event: This may range from almost no notice, in the case
of fast reserve for an unpredicted plant failure, to months ahead, in the case of regular peak
shaving for predictable system load.

• Price at which electricity is sold at time of use: For this trial, three price bands were available,
referred to as the high, default, and low price bands.

• Duration for which a DR action is required: This could range from just a few seconds per
event, as in the case of frequency response by demand management (FCDM) [17], to hours,
as might be the case for use in peak shaving actions.

• Timing of events: Time of day, day of week and season of year were considered.

• Frequency of events: How often the events should occur within the schedule.

• Persistence of events: the number of consecutive days over which an event should occur. It
was a design decision to limit this to a maximum of 3 consecutive days.
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In this trial, price events were considered to be the application of the high or low price bands
instead of the default price. Designing events required picking appropriate DR parameter values
to achieve the objectives outlined in Section 4.1. Notice period was fixed at 24 hours in advance
of the event and the design constraint to have revenue neutral pricing meant that the levels of the
three price bands were dependent on the structure of the tariff. This left the duration, timing,
frequency, persistence and price as the parameters with which to design events.

4.6 Supply following events
One of the key drivers for the investigation of dynamic pricing for Supply Following (SF) is the
increased penetration of renewable generation. Within the context of the UK, renewable generation
is predominantly wind, and is likely to remain so for at least the next decade. Though market
price will depend on many factors, including generation outturn and demand at the time, as a
rough approximation, it is assumed that wind output will be a strong determinant. The basic
assumption was that higher supply will result in lower prices and vice versa. The design of supply
following events was therefore informed to some degree by data and literature on the variability in
wind power output.

4.6.1 Parameters
Prior work [90] shows that, seasonally, the proportion of annual wind power is biased towards the
winter months, and by time of day, towards the afternoon. In both these partitions, the difference
between highest and lowest output was less than 50%, which justifies obtaining data on all times
of day and seasons of year.

Figure 4.6: Wind output, and normalised against expanding maximum. The green line illustrates a con-
ceptual high-wind threshold.

To understand the durations of high-wind events, analysis of Elexon’s wind power output
data [91] was undertaken. Figure 4.6 shows historic wind output data (above) and normalised
against the expanding maximum (below) in order to account for capacity increases. The dashed
red line indicates a conceptual high-wind threshold (arbitrarily chosen). The duration of a high-
wind event is defined as the continuous time period over which the normalised output is above
a chosen high-wind threshold value. The distribution of high-wind durations was measured for a
range of threshold values, from 0.1 to 0.9 in increments of 0.1. The following observations were
made:

• The choice of threshold has little impact on the distribution of the durations of the events.
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• 70% of high-wind events are below 3 hours in duration.

• Durations of between 3 and 20 hours occupy the next 20% of cases.

From this it was decided that SF event durations of 3, 6 and 12 hours would be used for high
and low events, with a 24 hour duration event for low price alone—it was considered unreasonable
to impose a 24 hour high price on consumers. These numbers were chosen because they are factors
of 24 and thus cleanly subtend the day while also covering the majority of wind event durations.

4.6.2 Experimental design

It was identified in the previous section that SF events should collect data across a range of event
durations and times of the day. As it is not possible to test more than one event in a day, it is
implicit that inter-day effects are also present. A factorial experimental design [74] is used to allow
straightforward isolation of the effect of variables duration and time-of-day.

Factorial design theory

For illustration, let us assume the below first order (ignoring potential variable interactions), linear
(meaning variable effects are additive) response model:

yi,j,k,n = µ + Ai + Bj + Ck + ϵi,j,k,n (4.1)

where yi,j,k,n is an observation of the response, µ is the overall population mean response, Ai is
the effect of duration indexed by i, Bj is the effect of time-of-day indexed by j and Ck is the
inter-day effect indexed by k. ϵi,j,k,n is the noise term that measures the deviation of observation
yi,j,k,n from the true population mean response µi,j,k, where n is the observation count for the set
of conditions {i, j, k}.

While the indices of the variables duration and time-of-day are easily definable, it is difficult
to identify, yet alone quantify the variables that are changing in the inter-day case. Furthermore,
even if they could be quantified and measured, they would likely not be controllable and therefore
they would not be replicable—a necessity for experimental design.

Though inter-day variations are not random—we know there are underlying causes and struc-
tures in their effects—it is possible to approximate them as such so long as they are sampled
at random. This means we must select event days, our experimental units, randomly from the
trial year. The noise from this new random variable is assumed to be indistinguishable from the
existing random noise term, ϵi,j,k,n, and as such they are modelled as one. Therefore, so long as
we randomise the event days throughout the trial year, we may use the below, simplified response
model:

yi,j,n = µ + Ai + Bj + ϵi,j,n (4.2)
µi,j = µ + Ai + Bj (4.3)

where µi,j is the population mean response at level indices i, j,

a∑
i=1

Ai =
b∑

j=1
Bi = 0 (4.4)

µ =
1
ab

a∑
i=1

b∑
j=1

µi,j (4.5)

and a and b are the number of different levels of variables A and B respectively.
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This response model is used as the basis of a two-factor experimental design in order to reduce
the uncertainty in variable effect estimates. This is achieved by pairing each level of variable A

with each level of variable B in such a way that the effects of variable B sum to zero when averaging
over the levels of variable A. The effect of variable A may therefore be estimated without the need
to consider the influence of variable B, and vice versa.

B1 B2 · · · Bb

A1 µ1,1 µ1,2 · · · µ1,Ld

A2 µ2,1 µ2,2 · · · µ2,Ld

...
...

...
. . .

...
Aa µ1,b µ2,b · · · µa,b

Table 4.3: Theoretical two-factor treatment matrix.

This design is depicted in Table 4.3. Here, the mean response to a particular factor level index
i is given by:

µi =
1
b

b∑
j=1

µi,j = µ + Ai (4.6)

Using this design the analysis of the experiment is simplified and the confidence in estimates of
parameter effects are enhanced.

Implementation

For the above discussed two-factor design to be implemented, the time-of-day and duration vari-
ables must be defined independently of each other, however this is not straightforward. For example,
the period of the day during which an event is in effect is dependent on both its start time and
duration, so the start time of the event is not a perfect measure of time-of-day.

The design chosen involved arranging events of each duration so as to sequentially cover all
times of day. In this way a large proportion of the effects caused by time-of-day should cancel
when averaging response over all blocks of a particular duration. Likewise, when averaging over a
particular time-of-day, the effects of event duration should largely cancel.

Price band Duration (hours) Number of unique start times Repeats Total

High 3 8 3 24
Low 3 8 3 24
High 6 4 3 12
Low 6 4 3 12
High 12 3 3 9
Low 12 3 3 9
Low 24 1 3 3

Total 93

Table 4.4: List of SF event numbers by duration, price band.

The described experimental design approach was repeated for both high low price events. The
list of unique SF events created by this process is summarised in Table 4.4 and depicted in Fig. 4.9.
Each of the event types listed were repeated 3 times and all events were randomly distributed
throughout the days of the trial year.
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4.7 Constraint management events
The Constraint Management (CM) use case is focused on the mitigation of network constraints
at the distribution level. Network constraints are most likely to occur during the regular peak
demand periods. While the cause of constraints, even in a residential area, may be other than
residential load, for the purposes of designing this trial, the focus was on mitigating residential
load-dominated constraints.

4.7.1 Parameters
Peaks in residential load were used as a proxy for the likely timing and duration of constraints.
Elexon’s Profile Class 1 data was used to inform this. Figure 4.8 shows the Profile Class 1 data
for 2010, split by the Elexon defined seasons. High demand periods are identified as light red
shaded areas. These were the time periods during which it was considered feasible for a constraint
management event to occur. Peaks are labeled in the form “Px”, where x is a number. The
targeting of peaks was prioritised in order of the peak magnitudes with attention given to ensure
a mix of day types. This inevitably meant that they were clustered around the winter months.
Peaks {1, 3, 4, 6, 8, 9} were chosen for testing.
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Figure 4.7: Empirical cumulative distribution plot of fault durations for 4,233 recorded faults in the LPN
area from 2003 to 2011. Data courtesy of UK Power Networks.

To determine the persistence of network constraints, programme partner UK Power Networks
provided historic data on network faults. The durations of some 4,000 network faults (time of
reporting to resolution), are plotted in Fig. 4.7. It can be seen that, in the vast majority of cases,
fault durations greatly exceed the “3 event days per week” constraint of this trial. Nevertheless,
as a proof of principle, it was deemed useful to simulate the use of a dToU tariff for constraint
management. In a commercial offering, greater event persistence may be possible by interleaving
subgroups of consumers so as to provide DR on alternate days, or it may be that DR is only one
component to the resolution of a sustained outage. It was decided that events would be varied in
persistence, from one and up to the maximum of 3 consecutive days.

Due to the potentially high cost of failing to manage a network constraint, it is likely that a
future dToU tariff would be structured to incentivise the maximum possible DR during the critical
period. In this sense it is likely to follow the design logic of a critical peak pricing (CPP) tariff.
Within the trial’s design constraints, the maximum possible DR is likely to be achieved when a
high price period is enclosed on both sides by low price periods, so as to both disincentivise use
during the critical period as well as incentivise load shifting into the periods before and after. CM
events were structured accordingly.
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Figure 4.8: Elexon’s profile class 1 data, 2010 [92]. Light red shaded areas indicate the time spans over
which it was considered feasible for peaks, and therefore CM events, to occur. Labels of form
“Px” are assigned to the peaks for both weekdays (“wd”) and weekends (“we”).
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4.7.2 Experimental design
The division of experimental units (trial days) between the SF and CM events was driven by their
respective requirements. SF events were designed to gather information by sweeping across all
times of day at a variety of different durations. This placed a significantly greater demand on the
number of samples needed relative to the design of CM events. Here the use case was more tightly
defined—events should target the highest peaks in the year across a variety of day types (weekday
and weekend). After deduction of the of the event days required for SF, 26 event days remained
to test CM events.

Table 4.5 lists all CM events designed for the trial. Events are named according to “Px_yD”,
where x is the peak number as defined in Fig. 4.8 and y is its persistence—number of consecutive
days this event acted over. The ‘peak from’ and ‘peak to’ columns indicate when (measured in
wall clock time) the high price band is applied.

Event index Event name From To Consecutive

1 P9_2D Sat 19 Jan 17:30 Sat 19 Jan 23:00 ⌉
2 P9_2D Sun 20 Jan 17:30 Sun 20 Jan 23:00 ⌋
3 P3_1D Tue 29 Jan 07:30 Tue 29 Jan 10:00
4 P8_1D Sat 09 Feb 10:30 Sat 09 Feb 14:00
5 P4_2D Wed 20 Feb 17:30 Wed 20 Feb 23:00 ⌉
6 P4_2D Thu 21 Feb 17:30 Thu 21 Feb 23:00 ⌋
7 P9_2D Sat 16 Mar 17:30 Sat 16 Mar 23:00 ⌉
8 P9_2D Sun 17 Mar 17:30 Sun 17 Mar 23:00 ⌋
9 P3_1D Thu 21 Mar 07:30 Thu 21 Mar 10:00
10 P4_3D Wed 27 Mar 17:30 Wed 27 Mar 23:00 ⌉
11 P4_3D Thu 28 Mar 17:30 Thu 28 Mar 23:00 |
12 P4_3D Fri 29 Mar 17:30 Fri 29 Mar 23:00 ⌋
13 P1_1D Tue 23 Apr 17:30 Tue 23 Apr 23:00
14 P1_3D Wed 01 May 17:30 Wed 01 May 23:00 ⌉
15 P1_3D Thu 02 May 17:30 Thu 02 May 23:00 |
16 P1_3D Fri 03 May 17:30 Fri 03 May 23:00 ⌋
17 P6_1D Sun 13 Oct 17:30 Sun 13 Oct 23:00
18 P6_1D Sun 20 Oct 17:30 Sun 20 Oct 23:00
19 P1_2D Tue 26 Nov 17:30 Tue 26 Nov 23:00 ⌉
20 P1_2D Wed 27 Nov 17:30 Wed 27 Nov 23:00 ⌋
21 P9_1D Sun 15 Dec 17:30 Sun 15 Dec 23:00

Table 4.5: List of CM event days in indexed order of appearance in the trial. “Wall clock” time is used.

4.8 Overall pricing schedule
The SF events were randomly distributed throughout the year, with CM targeted on the remaining
viable event days (not breaching design rules listed in Section 4.2). Due to the nature of their use
case, they inevitably targeted the winter months, making this time of year significantly busier than
the summer months with regards to price events.

Figure 4.9 gives a graphical representation of the unique events in the trial. The first letter
of each event name refers to the type of event: “H” and “L” for high and low price SF events
respectively, and “P” the for peak targeting CM events that are named as described in Section 4.7.2.
SF events are named according to “Hx_y”, where x is the duration of the event in hours and y is
the the starting hour (in “wall clock” time).

The full pricing tariff schedule can be seen in Fig. 4.10. Care was taken to ensure that events
did not occur on the day of the change from Greenwich Mean Time (GMT) to British Summer
Time (BST) due to the complications this might present in analysis.
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Figure 4.9: Graphical representation of unique event types. ‘H’ and ‘L’ prefixes are used for SF events, ‘P’
for CM events. Hours of the day are arranged in the order in which they occur in the trial day.
Further details for the CM events (‘P’ prefix) can be found in Table 4.5.
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Figure 4.10: Event schedule in “wall clock” time.
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4.8.1 Price bands

As the first trial of its kind in the UK, there was some uncertainty as to the level of response,
if any, that dynamic pricing would have on consumption. It was therefore considered prudent to
set price bands so as to maximise the expected response, and therefore the chance of detecting a
change in consumption. Furthermore, as related trials of a static time-of-use (ToU) type have, for
a variety of reasons, tended towards more conservative price band ratios, it was of interest to enter
new territory with a greater price ratio. This also suited the CM use case, where network critical
constraint situations suggest closer analogy with CPP tariffs.

As consumer bills should be revenue neutral in the case that they did not respond to DR events,
the values of the high, low and default price bands were somewhat dependant on each other. The
calculations of the price bands was carried out by EDF Energy. The rates for the price bands were:

• High: 67.2 pence/kWh

• Default: 11.76 pence/kWh

• Low: 3.99 pence/kWh

The nonToU tariff group was charged at fixed standard rate of 14.228 pence/kWh.

4.9 ICT architecture
Responsibility for the design and operation of the trial’s information and communication technology
(ICT) architecture was distributed between the programme partners associated with this trial. To
a high level and in approximate order of information flow these roles are summarised below:

• EDF Energy were responsible for installing the SMs and administering the tariff pricing
schedule (sending prices to meters) once the trial was in operation. As the party in direct
contact with the consumer, they also managed the communication with customers, billing,
and administered the collection of the survey results that provided the majority of the meta-
data.

• Logica (now CGI) were responsible for the infrastructure to communicate with the smart
meters, known as the “smart meter head end”.

• Siemens were responsible for designing the Operational Data Store (ODS), a database for
the smart meter and network data collected from all trials within the LCL programme. This
task included the system integration aspects necessary to ensure the data was delivered to
the ODS.

• UK Power Networks, as the lead programme partner, were responsible for overall coordi-
nation. They were also the custodians of the data collected in the trial. This involved
hosting and administering the ODS database once it was operational and designing then ad-
ministering the Participant Management System (PMS) database, a database for household
metadata including survey results. As the distribution network operator (DNO) they were
also responsible for supplying network operational data for the ODS, though the network
data was mainly used in other LCL trials.

• Imperial College London were responsible for the experimental design of the trial and the
subsequent analysis of the data collected. This entailed providing a secure data link between
the ODS site and the Low Carbon London Learning Laboratory (hosted by Imperial) where
the data analysis was undertaken. Secure servers were used for analysis of data containing
personally identifiable details.
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4.9. ICT architecture

Figure 4.11 shows a high level diagram of the ICT architecture with arrows indicating infor-
mation flows. The supplier (EDF Energy) is able to send price signals via the CGI head end
(Logica) to the smart meter (SM) via the GSM network. The customer may then view the prices
for the upcoming 24 hours on the in-home display (IHD), which uses the Zigbee protocol for low
power wireless communication to communicate with the SM. In addition, the supplier can also
send details of the upcoming day’s schedule to customer’s mobile phones via SMS service.

Secure FTP
server

CGI head
end

Supplier

SM

GSM

Zigbee

SMS

ImperialConsumer

IHDIHD

GSM

PMS ODSPMS ODS

Figure 4.11: ICT architecture with arrows indicating information flows.

Consumption data is fed back from the SM to the head end where it is transmitted to a secure
file transfer protocol (FTP) server. This server then updates the ODS with the consumption
information. The supplier may also access the ODS consumption data in order to inform billing.

The PMS was updated as and when new information became available. This was usually when
transcribed survey results became available.

The ODS was composed of two parts. For the time-series consumption data, an OSIsoft PI
server [93] was used, while network operational data was stored in an associated Microsoft SQL
Server [94]. The PMS also used the Microsoft SQL Server platform. Both databases allowed read-
only Structured Query Language (SQL) queries to be executed from a securely linked server at the
Imperial College site.

At the Imperial end, ODS data was accessed via SQL scripts. As the desired data sets were
often large (some 2GB including consumption data), Python scripts were developed to manage data
extracts. These split large data extracts into batches allowing lengthy requests (sometimes up to
12 hours) to be monitored for progress as well as performing some basic validation tests to avoid
corruption. Data was parsed, using the Python language Pandas library, [95] into DataFrames,
python native data structures, then serialised to disk using the Python language Pickle protocol.
This offered fast access to an analysis ready format. In general, the PyData [96] ecosystem (of
which Pandas is a part) provided the mainstay of the analysis tools used for this thesis.
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Chapter 5

Analysis basis

This chapter describes the basis of analysis that is used throughout subsequent chapters. It begins
with a summary of all data collected for use in the analysis described in this thesis. Next, smart
meter (SM) data integrity is examined and discussed, followed a description of the data cleansing
process and the definition of the data set used in subsequent analysis. The final section concerns
the measurement of demand response (DR) and centres on the design and validation of the baseline
demand model.

5.1 Summary of data collected
At a high level, raw data sources can be summarised as:

• Consumption data: Measured at 30 minute resolution totalling over 168 million measure-
ments between 1,126 PI Server tags in the experimental dynamic Time-of-Use (dToU) group
and 4,486 tags in the the non-time-of-use (nonToU) group. Tags should ideally have a
one-to-one mapping with households, though exceptions exist. This is discussed further in
Section 5.3.1.

• Acorn consumer classification data [87] for all 5,567 households within the trial.

• Appliance survey: Issued at the beginning of the trial, this consisted of appliance ownership
numbers, energy relevant physical details of the premises (e.g. insulation) and basic details
of its occupants. 1,870 submissions were received from the nonToU group and 990 from the
dToU group.

• Post meter installation survey: Questions were compiled by EDF Energy and mainly con-
cerned customer satisfaction with the service provided by the supplier. It is listed here for
completeness, though results were not used in the analysis described in this thesis. 209
submissions were received from the nonToU group and 49 from the dToU group.

• Attitudes survey: Targeted at those on the dToU group, it was designed to assess attitudes
and behaviour change related to the tariff. Additional focus was given to the factors that
enabled and hindered responsiveness to the dToU tariff. 714 submissions were received in
total.

5.2 Smart meter data integrity
This section focuses on the significance of dropouts (missing values) in the SM data feed. The first
validation involved inspection of the SM load data. It was confirmed that the daily and seasonal
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load profiles were of the expected shapes (similar to those shown in Fig. 4.8) and with annual
consumption values within expected ranges (similar to those shown in Table A.1).

Figure 5.2 shows a heat map of the fraction of missing consumption data by measurement block
for 5,103 households during the trial year of 2013. Only households where the first and last records
spanned the trial year were included so that results were not skewed by people deliberately leaving
the trial. In general, no more than 3.4% of data was missing in any one 30 minute measurement
period, the mean missing data per period being 0.17%, with a standard deviation of 0.11%.

The missing data is characterised by apparently random moments high intensity dropouts (the
darkest dots) with an underlying low level of structure dropouts. The structured dropouts appear
to span days as they manifest as horizontal lightly shaded lines. Analysing causes is not in the
scope of this work.

Data dropouts did not raise concerns for analysis as, in general, they affected a small fraction
of the total households on the trial.
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Figure 5.1: Cumulative fraction of households with hours of missing data in the trial year of 2013.

The cumulative distribution of the total number of hours of missing data for each household
is shown in Fig. 5.1. As can be seen from the individual group traces, there was not a significant
difference between the groups with regards to missing data. Overall, the median missing data
period was 1 hour, though the distribution has a long tail, with small numbers of households
having large numbers of missing data hours. 80% of households had 5.5 hours or less of missing
data during the trial year.
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Figure 5.2: Heat map of the fraction of missing consumption data by measurement block for 5,103 house-
holds that completed the full trial year.
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5.3 Data cleansing
This section describes the means by which data was selected for analysis. As described in Sec-
tion 4.3, this trial effectively sampled data in two independent dimensions—households and time—
and the experimental unit being sampled depends on the context of the research question being
answered. Here, both dimensions are dealt with independently. Exclusions of corrupt or inaccurate
data are detailed and the resulting set of valid data defined for use in subsequent analysis.

5.3.1 Households
Not all households within the trial were suitable for analysis. Households were excluded from the
analysis set for the following reasons:

• Withdrawals: Householders who made a specific request to be withdrawn from the trial were
not included in the analysis set. 292 households were removed for this reason.

• NonToU households on a non-standard tariff: To provide a baseline for the dToU group,
nonToU group household had to be on a standard flat rate tariff. Some households were
later found to be on non-standard tariffs such as Economy 7. 135 households were removed
for this reason.

• Multiple meter feeds: Time-series consumption data was stored in an OSIsoft PI database.
Each series was identified by a PI tag. Ideally this means that there should be a one to one
mapping between tags and households, however there were exceptions. For example, if there
was a fault with the original meter a new tag was sometimes created for the replacement
meter. Duplicate tags were found for 44 households on the trial. Because of the ambiguity
surrounding relinking their data sets and the likely large hole in measurements as a result of
a meter change, it was decided better to remove them from the analysis set.

• Missing consumption data: In order to ensure analysis was not skewed by missing values,
households with more than 50 hours of missing consumption data over the trial year were
excluded. 650 households were removed for this reason.

• Miscellaneous: In addition to the main exclusion reasons listed above, some special cases
existed. For example, the removal of specific people who had inside knowledge of the trial
and households with generation capability (as this would offset demand). 36 households were
in this category.

It is worth noting that the exclusion numbers given above are not mutually exclusive—some
households may have been excluded for multiple reasons. This means the total of these numbers
does not equal the total number of households omitted from the analysis set. After exclusions, the
analysis set populations stood at:

• dToU: 988 households.

• nonToU: 3,768 households.

It was possible that the exclusions had skewed the relative representation of social demographics
between trial groups. A comparison of the Acorn group breakdown at recruitment, shown in
Fig. 4.4, and again after exclusions, shown in Fig. 5.3, found that no significant changes had
occurred.
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Figure 5.3: Proportions of Acorn groups for the dToU group the nonToU group and EDF Energy customers
in the London Power Networks (LPN) area for households that were not excluded from analysis.
See Table 4.2 for label definitions.

5.3.2 Time horizon
The measurement of DR requires a baseline—a reference from which to measure any changes. This
was the purpose of the nonToU group. A simple approach to constructing a baseline is to use the
average demand of the nonToU group directly. In this case, the DR signal would equal to the
difference between the average demand of the dToU and nonToU groups. Ideally there should be
no DR signal during the time prior to the trial as no price events occurred. In reality there will
noise in this signal, particularly so using the simple baseline described here. Nevertheless, the
relative noise level in the DR signal prior to the commencement of the trial may be used as an
indicator of the validity of the underlying data.

Both the mean demand difference and standard error (SE) on this value are calculated as
follows. First, mean demand at the settlement block at measurement index m is calculated as:

Am =
1

Nm

Nm∑
h

Am,h (5.1)

where Am,h is the actual demand (average power measured during the 30 minute settlement block)
of the dToU group for household h in measurement index m and Nm is the number of measure-
ments return from the households in measurement block m. Group demand difference Dm is then
calculated as:

Dm = Am − A′
m (5.2)

where prime (′) signifies the equivalent value for the nonToU group. By ignoring potential autocor-
relations between measurement indices, we may approximate the variance at measurement index
m as:

85



Chapter 5. Analysis basis

S2
m =

1
Nm

Nm∑
h

(Am,h − Am)2 (5.3)

and therefore calculate the SE of Dm at measurement index m as:

SDm
m =

√
S2

m + S′2
m (5.4)

where prime again signifies the equivalent value for the nonToU group.
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Figure 5.4: On the left axis, the difference between nonToU and dToU group mean demand with associated
SE (SE), and the right axis, the number (N) of data points available for each trial group, both
plotted against time for each 30 minute period recorded in the trial.

Figure 5.4 shows the difference (Dm) between the mean nonToU and dToU group demands
plotted against time for each 30 minute period recorded in the trial. The lighter grey shaded
area indicates Dm ± SDm

m , the extent of the SE of the DR signal. The red and blue lines indicate
the number of measurements take at each measurement index for the nonToU and dToU groups
respectively.

Large fluctuations are visible during the first six months of data and are consistent with statis-
tical noise from low sample numbers. This underlines the necessity to use large samples in trials.
By July 2012, the difference in average group demand had stabilised to a relatively constant and
significantly reduced range. This was considered to be representative of the natural difference in
average group demand. As such, data before the beginning of July 2012 was discarded from the
analysis data set.

Data from the two months after the trial year was also considered to be representative of the
natural difference in average group demand. The valid time span of time-series data was therefore
from the beginning of 2012-07-01 to the end of 2014-02-28.

As an aside, it is promising to note that DR events can be seen as spikes in Dm, both above
and below the normal range, within the trial year.
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5.4 Measurement of demand response
DR is defined as change in demand as a result of a price signal, relative to the hypothetical demand
that would have been observed had the price signal not been sent. We call this the baseline demand.

The aim was to create a bespoke baseline model for each household in the dToU group. At the
individual household level these results were noisy, which was to be expected as it is not possible
to predict an individual person’s behaviour with great accuracy. However, as the majority of the
subsequent analysis involved taking the mean of grouped measurements, much of this random noise
cancelled.

This approach had the benefit of allowing for intuitive error checking. By allowing DR to be
calculated as a time-series, in the same format as the actual demand measurements taken by the
smart meters, an appreciation of the accuracy of the model can be gained by looking at days
without price events, where one would expect DR to be close to zero.

This approach also made it possible to calculate DR metrics at the individual household level,
a crucial feature of the analysis because it allowed for linking between the power system and
social sides of the trial. The former being more concerned with grouped response metrics, the
latter, in part, looking in depth at the relationship between trial observations and the individual
consumers [58].

DR from a single household h at time index m was estimated as:

Rm,h = Am,h − Bm,h (5.5)

where Am,h is the actual demand and Bm,h is the baseline demand for household h at time index
m. Furthermore, mean DR at measurement index m is calculated as:

Rm =
1

NH

∑
h∈H

(Am,h − Bm,h) (5.6)

and mean DR for household h is calculated as:

Rh =
1

NM

∑
m∈M

(Am,h − Bm,h) (5.7)

where M and H are sets of measurement indexes and households respectively, and NM and NH
represent the cardinalities these sets.

5.4.1 Relationship between groups
It was expected that there might be some natural differences in group profiles owing to self selection
during trial recruitment. To examine this, average group profiles were compared in the absence
of price events. Figure 5.5 shows a comparison of the average load profiles for all consumption
data excluding event days, stratified by the Elexon defined seasons and day types. It can be seen
that, while the group profiles are similar, the dToU group tended to exhibit lower demand than
the nonToU group. Also, the difference in profile between groups appears not to be linear, in
that it was neither a constant difference nor a proportional difference. For example, the difference
between group demand is greater on winter Saturday evenings than on winter weekday evenings,
despite both days having similar magnitudes of demand.

It was concluded that a natural difference exists between group consumption profiles and there-
fore the nonToU group should not be used directly as the baseline for the dToU group. However,
as both the dToU and nonToU groups were subject to the same external variables, such as weather
and public holidays, the nonToU group presented a way in which to “black-box” many highly
complex external variables into one measured variable. The task of baselining therefore becomes
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Figure 5.5: Comparison of mean nonToU and dToU group load profiles for all recorded demand data except
event days.
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that of defining the relationship between the nonToU group and the dToU group. The remainder
of this section describes the approach for constructing a baseline demand model and justification
thereof.

5.4.2 Baseline demand model
The model designed to calculate the baseline demand for each household in the dToU group is
defined as:

Bm,h =
W∑

w=1
(αw,hdw + βw,hA′

mdw) + γhm (5.8)

where Bm,h is the baseline demand of household h at half-hour measurement index m and household
h; A′

m is the mean actual demand of the nonToU group at measurement index m; dw are binary
dummy variables, one for each hour w in the W (= 168) hours of the week; and the Greek letters
{α1,h, · · · , αW ,h}, {β1,h, · · · , βW ,h} and γh are parameters to be determined by the regression
solver. This model effectively relates each half-hour measurement index linearly to the nonToU
group mean demand, for each hour of the week, with an overall trend line.

The model was fitted using the Scikit-learn, Python [97] library, which implements a least-
squares algorithm. A baseline was calculated for each household in the dToU group.

This model was used as the basis for measuring DR in the subsequent chapters of this thesis.
As an initial visual validation, Fig. 5.6 shows the mean DR (actual mean minus baseline mean,
across households) as calculated by this model for the full trial year. Demand reductions and
increases can be seen to correspond to respective high and low prices shown in the tariff schedule
in Fig. 4.10.

5.4.3 Training data
In order to characterise the relationship between the typical consumption profiles of the nonToU
and dToU groups, consumption data where this relationship was unperturbed by DR events was
used.

Six months worth of viable data was collected before the trial commenced with a further two
months after the trial. This was supplemented with days from the trial year that did not contain
price events. It is possible that such days could have been influenced by price events on other days,
though to assume this would have left too little training data. Training data was therefore defined
as all data between July 2012 and February 2014 (inclusive) that did not contain a price event
within the trial day.

It was decided that nonToU group demand would be aggregated into a single number by taking
the mean across households for each time index. This aggregate value was viewed as a “black
box” variable that represented the average effect on demand of all external variables that were
experienced by all households in the Low Carbon London (LCL) trial. Which is to say, it was
believed that the average effects of global variables such as weather, special days (e.g. public
holidays) and large scale events, should be captured in this way.

The effect of missing values was considered. Due to the number of households in this group
being large (3,768) and the exclusion criteria ensuring that all households had a maximum of
100 half-hour measurement missing during the trial year, it was highly unlikely that a significant
number of households would be missing data concurrently. Indeed, that this was the case can be
seen in Fig. 5.4 from the traces of the number of consumption measurements in each group against
time. For the whole time period over which training and prediction took place, the number of
households from which the nonToU mean was calculated did not fall below 500, and for the most
part was over 900. The process of taking the mean effectively filled in the missing data.
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Figure 5.6: Heat map of the overall DR signal as calculated by the chosen baseline model, for the full trial
year. Demand reductions and increases can be seen to correspond to respective high and low
prices shown in the tariff schedule in Fig. 4.10.
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5.5 Model design and validation
This section provides a description of the design process that lead to the baseline model described in
Section 5.4.2. Model structure is discussed, followed by the cross-validation of three nested models.
Finally, the accuracy of the model in the context of predicting the baseline for an individual
household is examined, and an estimate individual and group baseline resolution provided.

5.5.1 Structure
To illustrate the high level relationship between nonToU and dToU demand, they are plotted
against each other in Fig. 5.7. It is immediately clear that the general trend is well described by
a linear model. This is confirmed by the linear and second order polynomial best fit lines being
superimposed over each other. Despite the high coefficient of determination (R2) value for the
linear model, it was believed worthwhile to attempt some improvement via a higher order model
based on other (temporal) aspects of the load as estimation of DR depended solely on the quality
of this model.
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Figure 5.7: Mean demand of nonToU vs dToU for each measurement block in the training data set with
linear and second order polynomial fit lines overlaid.

The linear model displayed in Fig. 5.7 explained overall group variance well (with an R2 value
of 0.9889), but it could not capture non-linear variation in the relationship such as differences
caused by day of week. To examine non-linear temporal structure, the residual of the linear model
shown in Fig. 5.7 were aggregated over different time periods and their averages were plotted.
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Figure 5.8: Mean residuals of the linear model shown in Fig. 5.7, aggregated by date.

Figure 5.8 shows the mean residuals aggregated by date (i.e. by individual days). This ag-
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gregation was necessary to filter out the shorter timescale fluctuation in residual that may have
prevent a trend at the longer timescales from being noticed. While fluctuation is observed, it does
not appear to be strongly related to the time of year. It was concluded that temporal features in
the residuals that correspond to the time of year would not be targeted for capture in the baseline
model structure.
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Figure 5.9: Mean residuals of linear model show in Fig. 5.7, aggregated by day of week and hour of day.

Figure 5.9 shows the mean residuals aggregated by hour-of-week. Some cyclic variation can be
seen. There is evidence of a relationship with time-of-day and perhaps also with day-of-week, at
least where the distinction between weekdays and weekend days are concerned. It was concluded
that it would be worthwhile conducting further investigation into whether day-of-week and time-
of-day structure in the model might significantly improve its performance.

A linear approximations of such cyclic variations can be made if there are enough of each kind
of measurement in the training data set. As the training data set contained 23,665 measurements
spanning 2012 to 2014, this was a viable option.
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Figure 5.10: Number of measurements in the training set at each hour of the week.

Figure 5.10 shows the number of measurements in the training set for each hour of the week
(assuming all data for the households was valid). The median number of measurements available
for training in each group was 138 and did not fall below 134. This is to say, the hour-of-week
time group contained measurements from at least 134 different weeks in the training index. These
numbers suggest that it should be possible to construct an independent linear model for each hour
of the week by introducing a commensurate number of binary dummy variables.

5.5.2 Validation

Multiple model constructions were attempted though this section only reports on the validation
of the set of nested models that lead to the chosen baseline model. The model may be considered
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valid if it can be shown the number of parameters it contains does not result in overfitting—the
situation whereby the model describes random error or noise instead of the underlying relationship.

In this section, the model is validated against the dToU group mean demand. Ultimately,
the objective is to have a baseline for each individual household, however, the below described
validation process was computationally intensive and it was believed that fitting a baseline to
each individual households would be unnecessarily time consuming. As the dToU mean demand
time-series should be representative of the features of the individual household, validating a mean
demand model against overfitting was considered to implicitly validate the equivalent per-household
model.

Three nested linear models were validated so that the effect of adding extra parameters may
be seen relative to the previous model. The first model (M1) was used as a reference point and
consisted of two parameters, a constant and proportional term (as used in Fig. 5.7). The second
model (M2) included 336 binary variables, so as to effectively create an independent M1 model for
each hour of the week. The third model (M3), added a load growth (or reduction) term to capture
the average change in consumption with time. M1, M2, and M3 are defined below as Eqs. (5.9)
to (5.11) respectively:

Bm = α + βA′
m (5.9)

Bm =
W∑

w=1
(αwdw + βwA′

mdw) (5.10)

Bm =
W∑

w=1
(αwdw + βwA′

mdw) + γm (5.11)

where Bm is the mean baseline demand of the dToU group at measurement index m; A′
m is

the mean actual demand of the nonToU group at measurement index m; dw are binary dummy
variables, one for each of the W (= 168) hours w in the week; and the Greek letters αw, βw and γ

are parameters to be determined by the regression solver.
The models were evaluated using a k-fold cross-validation procedure implemented by the Scikit-

learn library [97]. This non-parametric test involved “folding” the training index into k equal size
sets without sorting. Each fold was sequentially omitted from the training index and the model
was fitted using a least-squares algorithm.

This validation approach was considered particularly appropriate as it closely resembled the
intended usage of the baseline model—to backcast over event days. The training data set contained
579 unique days and so a choice of k = 500 folds meant that each fold was a little over a day in
duration. As the training index was maintained in chronological order and folds were sequential
along the index, this approach ensured that folds consisted of contiguous sets of measurements
that represented continuous, approximately day length periods. As price events typically occurred
in clusters of one to three consecutive event days, this validation approach was believed to closely
reflect the true performance of the models in question.

For each of these k iterations, the goodness of fit is measured by its R2 score, calculated using
only the omitted data (i.e. the test set), and recorded. Histograms of the resulting scores are
shown for each model in Fig. 5.11. The models can be seen to perform almost equally well, with
only small incremental improvements in the mean score. This may seem a small difference at first,
though it should be put into the context of the reduction in residuals as a consequence of the
additional model parameters. The sum of the squared residuals was reduced by 7.6% between M1
and M2, and by a further 5.1% between M2 and M3. Performing a Z-test using the parameters
displayed in the figure shows that these differences are significant to p-values of less than 1%
and 5% respectively.
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Figure 5.11: Histograms of k-fold (k = 500) cross-validated R2 scores for models M1, M2 and M3 with
mean and standard error (SE) given for each distribution.

Furthermore, the observation that the dispersion of the R2 distributions did not increase (SE
can be used as a proportional indicator for this) as more parameters were added was considered
additional evidence that overfitting had not occurred. If a model had fitted to noise features
rather than the true features of the demand profile, the k-folds cross-validation would have showed
increased dispersion due to the score of each fit becoming more dependent on chance.

The following conclusions were drawn: M2 offered a significant improvement on M1, and M3
a slight improvement on M2. Combined with the observation that the k-fold score dispersion did
not increase, this was considered strong evidence that overfitting had not occurred.

5.5.3 Per-household performance

The use of mean-demand time-series for model validation (described in the previous section) had
the effect of reducing the difference between the demand profiles and thus understating the benefit
of the hour-of-week and load growth parameters. This is due to eccentric individual household
consumption profiles averaged towards a central mean. This can be seen clearly in Fig. 5.12 where
individual household routines are visible yet highly eccentric relative to the overall group means.
Given this, M2 and M3 may be expected to perform better when used to calculate per-household
baselines.

Due to the high computational load of k-fold validation when calculating for 988 dToU group
baselines, a different approach to performance evaluation was taken. With concerns of overfitting
assuaged, model performance was gauged using the sum of the squared residuals (SSR) calculated
over the full training index.

Models M1, M2 and M3 were used to calculate per-household baselines and the SSR over all
households was calculated for each. As expected, M2 performed markedly better than when used
to calculate an average baseline, showing an 18.7% reduction in SSR relative to M1. The additional
parameter in M3 took the overall reduction to 20.0%.
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Figure 5.12: Demand traces for 10 randomly selected households in the dToU group shown against the
mean demand traces of the dToU and nonToU groups. Arbitrary days were selected during
the pre-trial year to avoid the interference of price events.

Model M3 was chosen (Section 5.4.2) for use as the baseline model for use in the calculation of
DR.

5.5.4 Accuracy of the baseline model

For each household, the mean residual over the training index was effectively zero (< 10−10 kW),
as expected. In addition, no clear structure could be found to indicate that further refinement
of the model might be possible. Figure 5.13 shows the baseline residuals over the whole training
index and, below, a zoomed segment of this period in order to demonstrate the lack of structure
at the day scale.
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Figure 5.13: Baseline model residuals for the whole training index and for a zoomed segment of this period.

Across households, the baseline model will vary in its ability to predict demand depending on
the routine of that household’s occupants. For example, if the occupants for a household are away,
the baseline model would over predict demand during this period.
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We make an empirical estimate of the cumulative distribution of baseline residuals for both
an individual household and for the group mean across all households. In both cases, residuals
are calculated by taking the difference between actual demand and baseline demand across all
measurement indices in the training set. This is analogous to calculating DR as described in
Eq. (5.5), though in this case, with no price interventions, we assume we are measuring noise. The
distribution of the residuals is assumed to be representative of the probability of observing an error
on the baseline demand calculation at a random measurement index.
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Figure 5.14: Histogram of residuals (upper) and their absolute empirical cumulative density functions
(ECDFs) for all dToU households in the training index and the group mean across the 988
households.

Figure 5.14 shows the empirical distribution of residuals (upper) and the empirical cumulative
distribution of the absolute residuals (lower), for both an individual households and for the group
mean across all households (calculated as Eq. (5.6)).

The distribution of the individual households is, as expected, much wider than that of the
group mean. The errors for the individual households have a mean close to zero (by design), but
their distribution is asymmetric. This is because actual consumption has a lower limit of zero (at
least in this trial as homes with generation were excluded), but individual measurement blocks
can display very high consumption. The distribution therefore has a long tail to the right and a
median less than zero.

The role of sample numbers in increasing result resolution can be seen in the difference between
the two ECDF lines. At the 90% confidence level, an individual household will have up to 0.456 kW
of error in the baseline calculation, while the aggregate group response has just 0.024 kW.

It should be noted that this analysis is based on the assumption of choosing a random household
and a random measurement block. In reality, it is unlikely that errors will be distributed so
randomly and therefore error values mentioned here should not be used as a measure of the accuracy
of the results reported herein. Rather, they are a measure of the overall accuracy of the baseline
model at predicting demand on no-event days. Error values, when used, are calculated in the
context the research questions being asked. Further discussion of errors is given in the results
chapter in Section 7.1.3.
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Chapter 6

Consumer engagement

This chapter presents high level results of the Low Carbon London (LCL) dynamic Time-of-Use
(dToU) tariff trial with a focus on indicators of consumer engagement. In the first section the effect
of the dToU tariff is examined from the perspective of the network operator or supplier, where
the basic objective is to reduce consumption during high price periods and increase consumption
during low price periods. The extent to which this objective is achieved is examined through
comparison of the proportions of energy consumed at each price level. In the next section, the
perspective shifts to the consumers, where the main motivation for switching to a dToU tariff is the
opportunity to make savings on their annual energy bills. Examination of the changes in annual
bills therefore provides a first indicator of the level of consumer engagement with the tariff. In the
third section this principle is developed into a per-household consumer engagement ranking index
through use of a data driven, non-parametric technique. This technique did not require the use
of the demand baseline described in Section 5.4 and is therefore not subject to any assumptions
regarding the baseline procedure. This engagement ranking index was used as the basis for the
per-household stratification of results in subsequent chapters.

6.1 Energy consumption shift
From the perspective of the distribution network operator (DNO) and retail energy supplier, the
function a dToU tariff is to incentivise a reduction in consumption during the high price periods
and an increase in consumption during the low price periods, relative to the normal consumption
levels that would be present at those times. In this context, the most basic indicator of consumer
engagement with the tariff would be the observation of a change in the proportion of energy
consumed at each price level. This section presents a simple approach, using the non-time-of-use
(nonToU) group as a reference point, to quantifying such a shift.

6.1.1 Method
For each group, the average energy consumed at each price level is calculated for each individual
household. To illustrate exactly how this was calculated, the equation for the mean demand at
high price is presented for household h in the dToU group:

Hh =
1

Nh

∑
m∈M

Am,h (6.1)

where Am,h is the actual measured demand of the dToU group at measurement index m and
household index h, M is the set of measurement indices in the trial year of 2013, and Nh is the
total number of non-null demand measurements for household h over the same time period.
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Equivalent mean demand values were calculated for each of the three price levels in each of the
dToU and nonToU groups. We name these variables as below:

dToU nonToU
High price Hh H ′

h

Default price Dh D′
h

Low price Lh L′
h

The above variables were then converted into normalised units of the nonToU group mean con-
sumption at each respective price level. These per-unit consumption levels were calculated as:

Ĥh =
Hh/Dh

a
(6.2)

L̂h =
Lh/Dh

b
(6.3)

Ĥ ′
h =

H ′
h/D′

h

a
(6.4)

L̂′
h =

L′
h/D′

h

b
(6.5)

where

a =
1

NH

∑
h∈H

(H ′
h/D′

h) (6.6)

b =
1

NH

∑
h∈H

(L′
h/D′

h) (6.7)

H is the set of household indices in the nonToU group and NH is the number of households this
set.

As the above variables have been normalised relative to the nonToU group, it is clear that Ĥ ′
h

and L̂′
h will have a mean of 1. If there was no shift in consumption in the dToU group, then Ĥh

and L̂h would also have a mean of 1. A reduction in high price consumption relative to the nonToU
group equivalent consumption fraction would be indicated by Ĥh having a mean of < 1. Likewise,
a relative increase in consumption at low price would be indicated by L̂h having a mean of > 1.

6.1.2 Results and evaluation
Figure 6.1 shows a scatter plot of the above defined per-unit consumption variables at both high
and low price for the households in the dToU (blue) and nonToU (red) groups. Here, the x-axis
represents per-unit consumption at low price, and the y-axis represents per-unit consumption at
high price. Surrounding the scatter chart are four histograms of the scatter points, pertaining to
each price and group combination respectively.

By design, the nonToU group points are centred at 1 on both axes. Relative to these, the dToU
group points can be seen to be drifting towards the lower right corner of the graph. The direction
of drift indicates both a reduction in the fraction of energy consumed during the high price periods,
and an increase in the fraction consumed during low price periods. The mean per-unit consumption
of the dToU group at low price has a 95% confidence range of 1.11–1.14, which implies an 11–14%
increase in consumption relative to the nonToU group over the whole trial year. For high price,
this range is 0.91–0.93, which implies a 7–9% reduction in consumption over all high price periods
in the trial year.

This analysis shows that the dToU tariff has likely had a significant impact on the average
fraction of annual energy consumed at each price level. However, this approach is less suitable for
quantifying the engagement of individual households.
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Figure 6.1: Ratios of high and low price consumption to default price for both dToU and nonToU groups,
normalised against the nonToU group.

6.1.3 Controlling for group population difference

Constraint Management (CM) events were designed to reduce peak consumption levels by targeting
the times of the day when peak demand is likely to occur with a high price signal. To incentivise
maximum load shifting, these high price periods are flanked on either side by low price periods for
the remainder of the trial day. As a consequence of this design, CM events are characterised by
greater durations of time at the low price level than at the high level. For a valid direct comparison
between dToU and nonToU groups, of the fractions of energy consumed at each price level, it is a
necessary assumption that these fractions are the same when both groups are on the same tariff—
which is to say, that both groups are samples from the same population. Due to the opt-in nature
trial group recruitment (describe in Section 4.4), this may not be a valid assumption.

In contrast, Supply Following (SF) events have close balance between the total number of
hours spent at the high and low price levels, as well as the times of the day over which they were
scheduled. Furthermore, all event days were randomly placed throughout the trial year. For each
price level, this balanced design combined with the randomisation of their placement means that
any natural difference (when both groups are hypothetically assumed to be on the same tariff)
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between normal group load profiles should average towards zero when integrating consumption
over a large number of events. Therefore, in order to minimise the introduction of systematic error
caused by population differences between trial group load profiles, only SF events were considered
in this analysis.

6.2 Change in consumers’ bills
From the perspective of the residential energy consumer, a substantial motivation for switching to
a dToU tariff is the opportunity to make savings on their annual energy bills. Examination of the
changes in annual bills can therefore provides a first indicator of the level of consumer engagement
with the tariff.

The actual annual bill for each household in the dToU group is calculated by integrating the
product of the time-series price and demand vectors over the trial year of 2013. The annual energy
bill for household h in the dToU group is therefore given by:

bh =
∑

m∈M
pmAm,h (6.8)

where Am,h is the actual measured energy consumption of the dToU group at time index m and
household index h, M is the set of time indices in the trial year of 2013, and pm is the tariff price
at time index m.

However, measuring a change in energy bill implies the need for a reference point that represents
what the bill would have been in the absence of the dToU tariff. The dToU tariff introduces two
kinds of change that impact the energy bill. The first is the difference in energy pricing that defines
the dToU tariff. The second is the change in consumption pattern that the new pricing structure
incentivises. In order to calculate a reference bill, a reference for both the price and consumption
time-series vectors are necessary. The reference price is taken as the standard flat rate tariff of
0.14228 £/kWh that was given to the nonToU group during the trial year. For the consumption
profile reference, we use the per-household baseline model that was introduced in Section 5.4.

As this model was designed to represent the hypothetical demand that each household would
have consumed had they not been subject to the dToU high or low price signal, it was considered
particularly appropriate as a demand reference point for this analysis. While this model cannot
predict the intrinsic variability of an individual household’s demand, on average, over a large
enough time horizon, it should provide a good approximation of the average consumption levels at
each price level.

The reference bill b′
h is therefore calculated as:

b′
h = 0.14288

∑
m∈M

Bm,h (6.9)

where Bm,h is the calculated baseline demand of the dToU group at time index m and household
index h (defined in Section 5.4). The percentage change in annual bill can now be expressed for
each household h in the dToU group as:

ch =

(
bh

b′
h

− 1
)

× 100 (6.10)

Figure 6.2 shows the change in annual electricity bill relative to what each household would
have paid on the standard flat rate tariff of 0.14228 £/kWh and with the hypothetical consumption
profile of that household on a standard flat rate tariff, as calculated by the baseline model. The
average change in annual bills amounted to -4.9%, with 85% of customers achieving lower bills on
the dToU tariff than on a hypothetical flat rate tariff.
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Figure 6.2: Empirical distribution of the change in annual bill for all households in the dToU group.

The dToU tariff had been calibrated previously such that it would be cost-neutral to an average
non-responsive consumer assuming Elexon’s Profile Class 1 [92] (this calculation was performed by
programme partner EDF Energy), so the overall decrease in bills should be consistent with response
to the dToU tariff. However, this comparison serves only as a group statistic. At the individual
level, some households may have inadvertently had consumption profiles that lead to lower bills
on the dToU tariff even without active engagement, or higher bills with active engagement.

It is worth noting that the above calculated decreases in annual bill were the result of a limited
number of targeted experiments. Commercial implementation of a dToU tariff would likely have
different prices and schedules, and may not be subject to the constraint of cost-neutrality for the
average consumer. They may therefore provide households with additional possibilities to lower
their bills.

6.3 Engagement ranking
This section presents a novel method of ranking individual households according to their engage-
ment with a dToU tariff signal. By designing this engagement rank index to be largely independent
of baseline demand, magnitude of demand and of regular daily patterns in demand, the statistical
error of selection bias that would be introduced if results were stratified by the same signal (de-
mand response (DR)), is avoided. In doing so it differs from direct DR metrics and thus provides
a rank index against which stratification of DR measurements may be justifiably performed.

6.3.1 Problem statement
The previous two sections introduced the metrics of consumption shift and change in annual bills
as a means of detecting the level of engagement with the dToU tariff. While these are useful
metrics for quantifying aggregate results, changes in bills for individual households are affected by
a number of noise sources, which also affects DR metrics.

To illustrate, Fig. 6.3 shows traces of the measured actual demand and calculated baseline
demand for an arbitrary individual household, against the mean of these taken over all households
in the dToU group. DR is calculated from actual and baseline measurements according to Eq. (5.5),
which implies that it is represented by the area between the red and the blue lines, positive if red
is higher than blue, negative if blue is higher than red. It can be seen that, even in the absence
of the high price signal (indicated by the red shaded area), fluctuation in the difference between
actual and baseline demand are visible, though to a much smaller degree in the group mean than
in the individual case. We consider such fluctuation to be the source of intrinsic noise in the DR
signal. This noise stems from the irregularity of human activities. Over many samples, this noise
will tend towards a mean of zero. When averaged over all households in dToU group, the level
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Figure 6.3: Traces of the measured actual demand and calculated baseline demand for an arbitrary in-
dividual household, shown against mean actual and baseline demand as calculated over all
households in the dToU group.

of noise is reduced proportionally to 1/
√

N , where N is the number of households in the group
(assuming independence between household deviations from regular patterns).

The implications of noise in the DR signal are that, for an individual household, it is impossible
to determine with certainty whether the measured response was the result of a deliberate choice by
the consumer, or the result of chance alone. For example, if the consumer was on holiday when a
high price signal was applied, a strong DR signal would be measured because the baseline demand
model, which predicts the average load profile of the household, would calculate a non-zero value,
while the actual measured demand would be at or close to zero. In addition, households differ in
their daily schedules. Accidental interactions between this schedule and the dToU price signal also
lead to bill changes and implied DR, even in the absence of engagement.

We wish to stratify response magnitudes according to how good households are at responding
to the price signal. Performing this stratification with the DR metric alone would mean that a
household which had a particularly high DR signal by chance alone would still be classified as a
good responder, even when the occupants of that household made no conscious effort to respond.
In this way, a selection bias towards households where occupants happened to be away during price
signals, would be introduced into the stratification of consumer engagement.

In the remainder of this section, we develop and validate an engagement rank index with the aim
of quantifying the responsiveness of individual households to dToU signals. As well as allowing the
stratification of results in subsequent chapters, the per-household engagement rank complemented
the more qualitative approach described in an associated LCL report [58].

6.3.2 Design of the engagement rank index

We aim to rank the participating households according to their engagement with the dToU trial.
As in the previous section, we assume that the this is related to the degree in which their annual
bills are modified by the price signal. To determine this ranking we compute, for each household,
the likelihood that the actual annual electricity bill came about by chance (the null hypothesis). If
a random response to prices provides a good match for the actual annual bill, it is unlikely that the
household has engaged with the trial. Whereas, a bill that is significantly lower signals a conscious
attempt to follow the price signal.

The likelihood of a chance realisation of the actual bill is estimated using a bootstrap approach.
The dToU price signal for 2013 was divided into the 365 trial days and shuffled randomly, and the
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Figure 6.4: Illustration histograms of the hypothetical bills resulting from randomised pricing schedules.
The likelihood that household A achieved its actual bill by chance alone is smaller than that
of household B.

resulting annual bill was computed for each household. In shuffling by trial day, it was ensured that
the price signal had the same salient features as the actual signal. This procedure was repeated
30,000 times to provide a large range of hypothetical annual bills. These annual bills collectively
represent the hypothetical situation where the customer is unaware of the (random) price signal.

Each household’s actual 2013 bill was then compared to the simulated distribution of outcomes
and the corresponding percentile was determined. If the percentile is very low (e.g. < 1%), it is
highly unlikely that the bill came about by chance, and conversely, if the percentile is moderate
(e.g. ≈ 30%) the household is likely not to have acted on price signals. This process is illustrated
in Fig. 6.4. The upper panel shows the process for a responsive household, where the distribu-
tion of hypothetical annual bills for random price signals clearly deviates from the realised value.
Conversely, the lower panel is generated for a household that is thought not to have responded
significantly to the dToU signal, because the random hypothetical bill distribution adequately ex-
plains the realised bill. The computed percentiles were used to establish a responsiveness ranking
across all households in the dToU group.

Even with 30,000 bootstrap iterations, 117 households outperformed all generated hypothetical
bills, indicating a very significant response. In total there were 193 households with tied percentiles.
A larger number of bootstrap iterations could in principle be used to increase the resolution and
thus differentiate between tied households, but small differences in ranking are unlikely to be
relevant considering the unavoidable sources of noise affecting the results (sample selection, limited
number of events). When ranking, tied percentiles were assigned the same rank ordinal where that
ordinal was equal to the average of their positions in the ascending order of the values. In the next
chapter, engagement ranking is used to classify households into four groups according to their level
of responsiveness, a measure which is not sensitive to small changes in ranking that may arise from
the tied values.

6.3.3 Validation

Figure 6.5 demonstrates the relation between engagement rank and the observed DR. DR was
calculated according to Eq. (5.7), where the set of time indices H over which it was measured were
the sets of time indices during which each respective price level (high, default and low) applied.
The panels depict the time-averaged response to high (left), default (centre) and low (right) price
signals respectively, and each dot represents a single household with its engagement rank index on
a range of 1 to 988 shown on the x-axis.

As expected, highly engaged households (low rank index) tend to decrease their consumption
in response to high price signals and increase their consumption in response to low price signals,
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Figure 6.5: Household performance rank against measured DR, by price band.

and the magnitude of the response generally decreases with increasing rank index. Note that the
trend is more pronounced with respect to high price signals than to low price signals, which may be
explained by the higher price differential used to incentivise demand reduction. Also, as expected,
the observed deviation at default price periods is very low and unrelated to the ranking. These
general trends are quantified using Spearman-rank correlations between the engagement rank and
the DR metrics in Table 6.1.

High price Default price Low price

Responsiveness 0.78 0.18 -0.43

Table 6.1: Correlation between household’s responsiveness rankings and their year-round averaged DR,
computed using Spearman’s rank test.

In Fig. 6.5, we have included bars that represent the average responses of the households in
each quartile. The first bar reflects the behaviour of the households with the highest engagement,
the second bar of the households with slightly lower engagement, etc. It may be expected that
as people become more familiar with the DR concept, and particularly with the proliferation of
DR automation, future households will become more responsive to dToU signals. In this line of
reasoning the behaviour of the first quartile(s) may be considered indicative of the potential for
DR.

There is an apparent antagonistic response to high price signals for the worst-responding quar-
tile of households. This results from using the same data set both for determination of the ranking
attribute and computation of the resulting response. Inevitably, some of the incidental noise will
be picked up by the ranking algorithm, i.e. an accidental good response cannot reliably be distin-
guished from a conscious response, and an accidental bad response cannot be distinguished from
antagonistic behaviour. Nevertheless its effect is much smaller than the observed sympathetic DR
and it may be considered an upper bound for the error on the estimated DR for the 25% best
responders.

6.3.4 Relationship to DR and annual consumption

Figure 6.5 also illustrates an interesting feature of the engagement ranking method: the highest
ranked households are not necessarily the ones with the highest absolute change in demand in
response to price signals. This is because the method does not quantify directly the magnitude
of the absolute (kW) response to price signals, but its consistency and the degree to which it can
be ascribed to chance. This means households with limited means of DR may still rank highly if
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fluctuations in the consumption are clearly linked to the dToU signal.
Figure 6.7 provides an alternative visualisation of relationship between DR and engagement

rank with the addition of a third variable; annual consumption. Low price DR is depicted on
the x-axis, with high price DR on the y-axis. Engagement rank is indicated by the colour of
each data point; darkest blue for the most engaged ranging to lightest red for the least engaged.
Annual consumption is depicted by the relative size of the data points; larger for greater annual
consumption.

In the upper chart, showing nearly all households in the dToU group, a clear correlation can be
seen between higher engagement and the magnitude of DR, for both high and low price. Likewise,
there is an apparent correlation between annual consumption and DR, though this trend is weaker
than that of engagement rank.

An interface between good and bad responders appears to exist close to 0 kW DR on both axes.
Zooming into this interface, shown in the lower chart, it can be seen that higher annual consumption
households that achieve moderate DR magnitudes are more often ranked as having low engagement
(greater rank index ordinal) than households with an equivalent response magnitude but lower
annual consumption. This observation is consistent with the intrinsic noise in the DR signal being
greater for households with higher annual consumption.

6.3.5 Overall performance of engaged households
To gain a sense of the power of the engagement ranking index, Fig. 6.6 shows the mean DR
values for the full trial year, separated into responses to high and low price points. The darkest
bars represent the average response of the full dToU group, while the lighter bars represent the
mean observed DR for the subpopulations of the 75%, 50% and 25% most engaged households,
respectively.

0.15 0.10 0.05 0.00 0.05 0.10

DR (kW/household)

High price Low price

Figure 6.6: Mean DR by price level calculated over all events in the trial year. Bars, from lighter to darker
shading, represent the average for subgroups of the most engaged 25%, 50%, 75% and 100%
of responders.

The most engaged households (lightest shade) produced an average response that is much
larger than all households combined (darkest shade). Averaged across all trials and households,
high price signals resulted in an average decrease in demand of 0.04 kW/household relative to the
default price signal, and the low price signal resulted in an increase of 0.03 kW/household. The
most responsive 25% of households outperformed these values by a factor of three, with a decrease
of 0.11 kW/household and an increase of 0.08 kW/household, respectively.

Finally, and in order to illustrate the filtering ability of the engagement rank index, we compare
the average DR signal for the whole dToU group against the average signal for the 25% most
engaged households (247 households). Figure 6.8 shows this plotted as two adjacent heat-maps,
the left showing the average DR signal for the full dToU group and the right, the signal for the
most engaged quarter of this group. At this point it may be useful to contrast this figure against
the price schedule given in Fig. 4.10, or Fig. 7.2, which is the same as this figure, except the left
panel has been replaced with a price heat-map for comparison.

Looking at Fig. 6.8, it is clear that in restricting the analysis from the full dToU group to
the most engaged quarter of households, the signal to noise ratio has been significantly enhanced.
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Figure 6.7: Two scatter plots of the high and low price DR for all households in the dToU group. Annual
consumption during 2013 is indicated by the size of each point and engagement rank indicated
by colour. The lower scatter plot provides a zoom in on the centre region of the upper scatter
plot.
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Figure 6.8: Heat-map image plots of the DR signal for the full trial year, (left) averaged over the whole
dToU group and (right) averaged over the most engaged 25% of that group.
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High and low price DR events are now clearly defined against the background of the default price.
While, in this thesis, we use the ranking index as an analytical tool, it may also have commercial
application as a means of targeting rewards for participating in DR schemes, or to select households
that would be well suited for particular tariff types.

6.4 Summary and conclusions
This chapter presented three approaches to measuring the level of engagement of residential con-
sumers with a dynamic Time-of-Use (dToU) tariff. The first two were aggregate measures and
examined engagement from prospectives of the energy supplier or network operator, and the resi-
dential consumer respectively. The third method provided a means to quantify the level of engage-
ment of the individual household. This was developed into an engagement ranking index, which
may be used for the stratification of the demand response (DR) response signal.

Consumption shift. From the perspective of the distribution network operator (DNO) and
retail energy supplier, the function of a dToU tariff is to incentivise a reduction in consumption
during the high price periods and an increase in consumption during the low price periods, relative
to the normal consumption levels that would be present at those times. In this context, the
most basic indicator of consumer engagement with the tariff would be the observation of a change
in the proportion of energy consumed at each price level in the dToU group. To this end, a
simple approach was developed that used the non-time-of-use (nonToU) group consumption as a
reference point from which to measure change in consumption at the high and low price levels.
Natural differences between average group load profile were accounted for by focusing only on
Supply Following (SF) events. These events had the desirable features of being approximately
uniformly distributed across high and low prices, and the times of day in which they took place;
then were also randomly distributed throughout the days of the trial. These features mean that
natural differences between group load profiles should average towards zero over increasing time
scales. Overall it was found that the dToU group had reduced average consumption during high
price periods by 7–9%, and increased average consumption during low price periods by 11–14%
(95% confidence ranges).

Change in annual bills. From the perspective of the residential energy consumer, the main
motivation for switching to a dToU tariff is the opportunity to make savings on their annual energy
bills. Examination of the changes in annual bills can therefore provides a first indicator of the level
of consumer engagement with the tariff. Over the trial year of 2013, we calculated that 85% of
households on the dToU tariff received lower annual bills than they would have had on the standard
flat tariff of the nonToU group, with the mean reduction in bill being 4.9%. Although the overall
decrease in annual bills is a first indicator of overall engagement, it does not necessarily extend to
individual households. For example, consumers that are often away during the evening are likely
to have missed the Constraint Management (CM)-type evening peak trials, resulting in a lower
average bills without deliberate engagement with the tariff.

Engagement rank index. To classify the engagement of individual households with the trials
a measure of responsiveness to dToU signals was developed. It determines the likelihood that the
realised annual bill came about by chance, if the household had paid no attention to the dToU
signal. If this likelihood is very low, it is assumed that the household has actively responded to the
signal, whereas a high likelihood is consistent with a lack of engagement. The likelihood measures
were used to rank all households according to their perceived responsiveness to dToU signals.
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As expected, highly engaged households (low rank index) tend to decrease their consumption
in response to high price signals and increase their consumption in response to low price signals,
and the magnitude of the response generally decreases with increasing rank index. An important
characteristic of the responsiveness ranking is that it does not strictly select for those households
with the largest absolute DR, which tend to be the largest consumers of electricity. By measuring
the statistical properties of a household’s energy consumption the method also identifies consumers
that deliver small but consistent DR contributions.

Averaged across all trials and households, the high price signal resulted in a decrease in demand
of 0.04 kW/household relative to the default price signal, and the low price signal resulted in an
increase of 0.03 kW/household. The most responsive 25% of households outperformed these values
by a factor of three, with a decrease of 0.11 kW/household and an increase of 0.08 kW/household,
respectively.

The responsiveness ranking also plays a key role in the extrapolation of results in subsequent
chapters where highly ranked households are assumed to be indicative of future, “business as usual”
consumers who are increasingly responsive to dToU signals, either manually or mediated by home
automation devices and services. As well as use as an analytical tool, the engagement ranking
index may also have operational application as a means of targeting rewards for participating in
DR schemes, or to select households that would be well suited for particular tariff types.
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Chapter 7

Response stratification

This chapter presents the overall demand response (DR) results of the Low Carbon London (LCL)
trial as well as various stratifications of them. It beings with a brief primer on the interpretation
of the results presented within, with the remainder laid out in four main sections. The first two
sections focus on the analysis of Constraint Management (CM) and Supply Following (SF) event
types respectively. Both begin with the presentation of overall response levels and graphs showing
demand traces on chosen event days, followed by analysis of the specific features and objectives of
each event type. In the case of CM events, the ability to reduce peak demand was the focus, while
for SF events it was the ability to respond across different time stratifications. The third section
examines the the effect of two high level social variables; socio-economic group and household
occupancy level. In the final section, the results are compared against those of the closely related
trials discussed in Chapter 3.

7.1 Interpretation of results

Demand changes in response to a dynamic Time-of-Use (dToU) signal can be measured and re-
ported using absolute or relative measures. For the purpose of this chapter, DR is measured in
terms of absolute deviations in power consumption (kW/household). This approach directly quan-
tifies the effect of DR on the network and is therefore well-suited to the SF use case, where both
distribution network operators (DNOs) and suppliers are concerned with the absolute volumes of
power transported and consumed. It is also a natural candidate for CM applications, where the
DNO must meet or exceed a certain load reduction. When metrics other than kW/household are
used to represent DR, it is highlighted in the relevant section.

7.1.1 After diversity demand

Diversified demand values, calculated using Eq. (2.1), may be used to place DR into the context
of its relative impact on load profiles. For the non-time-of-use (nonToU) group, the maximum
diversified peak demands during 2013 were 0.99 kW/household in winter and 0.69 kW/household
in summer. In this context, DR level of 0.05 kW would be equivalent to a 5% demand reduction
in winter or a 7% demand reduction in summer.

Further discussion of the effect of diversity in the context of the LCL residential dToU trial can
be found in LCL report “Quantifying Demand Diversity of Households” [98].
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7.1.2 Engagement stratification
As explained in Chapter 6, each household participating in the trial was assigned a ranking ac-
cording to its apparent engagement with the dToU price signal. Where possible throughout this
chapter, results are presented by four stratifications of engagement rank:

• average across all households

• average across the 75% most engaged only

• average across the 50% most engaged only

• average across the 25% most engaged only

These stratifications are depicted by progressively lighter shading in both bar charts and demand
profile traces.

The results for more engaged subpopulations could be interpreted as indicative of the DR
potential in future scenarios where dToU signals are increasingly familiar to users and appliance
automation is able to take advantage of dynamic tariffs.

When the number of households in a particular analysis is insufficient to make statistically valid
statements regarding the behaviour of its subpopulations, only the population mean response is
shown. In such cases, error bars representing the standard error (SE) of the mean are also included.

7.1.3 Significance
The analysis of DR data is generally concerned with detecting significant changes in behaviour in
response to dToU signals, and furthermore significant changes in the response between household
categories. The term significance is used here in the statistical sense, which implies that the
observed difference is unlikely to have come about by chance. This likelihood is quantified using a
confidence level, where a common 90% confidence level implies that the likelihood of observing a
reported value by chance is 10% or less.

The per-household DR calculation introduced in the Chapter 5 also forms the basis for quantifi-
cation of confidence in the results. Any quantity that is to be analysed, say the average response to
all dToU events in the winter months, is computed independently for each household. This results
in a set of values Rh representing all households (h = 1, 2, . . .). This set forms a distribution with
a mean R and a standard deviation σR. For a large number of households, the Central Limit
Theorem implies that the observed mean R is a normally distributed random variable centred on
the true mean with a standard deviation of σR/

√
N , where N is the number of households involved

in the calculation. The quantity σx/
√

N is known as the standard error (SE) of the mean and
its magnitude is shown explicitly for all results in Section 7.5, where as a results of stratifying by
across households, sample numbers are relatively limited.

Using the mean and standard error, the ubiquitous Z-test can be employed to determine the
confidence in the results. For example, a response to a dToU signal is deemed significant at a
90% confidence level if it differs from zero by at least 1.65 SE units. When statements regarding
significance are made, this thesis adopts a 90% confidence level unless otherwise stated.

A slightly more elaborate approach is needed to determine the significance of a difference
between two measured quantities, such as the responses of household categories a and b. Let
the households in category a have a mean response Ra with an associated SE ea, and those in
category b a mean response Rb with a SE eb. When considering whether there is a significant
difference between x̄a and x̄b, this is equivalent to asking whether the difference δa−b = Ra − Rb

deviates significantly from zero. Assuming independence of the results between the categories, the
SE associated with the random variable δa−b is ea−b =

√
e2

a + e2
b . In this frame of reference, the

Z-test can again be used to determine the level of confidence in the results.
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Note that comparisons between household categories require larger samples than those between
a single category and a fixed reference value. This is because both the observed value and the
reference value are subject to noise, reducing the significance of results for any given sample
size. In the example above, assuming identical SEs for the populations a and b would result in
ea−b = 1.41ea = 1.41eb. Therefore, the values Ra and Rb would need to be separated by at least
2.3 × ea to be considered significantly different at a confidence level of 90%.

7.2 High level results
This section presents high level results that pertain to all events in the trial year. The mean DR
values for the trial, separated into responses to high and low price points, can be seen in Fig. 7.1.
Bars, from lighter to darker shading, represent the average for subgroups of the most engaged 25%,
50%, 75% and 100% of responders. The most engaged households (lightest shade) produced an
average response that is approximately three times larger than all households combined (darkest
shade). However, as will be seen in the remainder of this chapter, DR signal vary considerably
depending on situation, and so these full year aggregate results should not be used as the expected
response level for an individual event, but to serve as a reference point against which other results
may be compared.
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DR (kW/household)
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Figure 7.1: Mean DR by price level calculated over all events in the trial year. Bars, from lighter to darker
shading, represent the average for subgroups of the most engaged 25%, 50%, 75% and 100%
of responders.

7.2.1 Trial year overview
Figure 7.2 provides a visual illustration of the response to dToU price signal for the most engaged
25% of households over the full trial year. The left panel shows the electricity price signal by day
(rows) and hour of day (columns) and the right panel displays the observed DR with identical
axes. The colour scale is clipped to an upper and lower bound of ±0.25 kW/household to ensure
visibility of low-amplitude events, but some events far exceeded these visual bounds.

The minimum and maximum measured DR values over the year were -0.32 kW/household and
0.49 kW/household for high and low price events respectively, though this is quoted for a single time
index averaged over 247 households, so intrinsic variability in response signal will be significant. A
comparison between both panels shows that the high prices correspond well with the blue demand
reduction periods, and the low prices with the red demand increase periods.

As expected, it is apparent from Fig. 7.2 that the largest responses occur during the hours
when people are generally awake, approximately between seven in the morning and midnight.
Furthermore, from a seasonal perspective it appears that DR is lower during the summer months,
likely because people are out more or have less loads to shift. Furthermore, the responses at the
beginning of the year, during winter, appear to be of greater magnitude than those in the following
winter. This is most likely related to the cold spell in the early months of 2013, but we cannot
exclude the possibility that this is related to the novelty value of the tariff wearing off.
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Figure 7.2: Heat map of (left) price and (right) DR signal for the full trial year of 2013. DR is calculated
for the most engaged 25% of households only.
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7.3 Constraint Management events
The Constraint Management events are tailored to the management of constrained distribution
networks, by incentivising households to reduce their electricity consumption at peak times. This
is achieved using a high electricity price during peak hours, coupled with a low price in the sur-
rounding hours, thus enhancing both reduction and shifting of load.
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Figure 7.3: Mean change in consumption in response to CM events. Bars, from lighter to darker shad-
ing, represent the average for subgroups of the most engaged 25%, 50%, 75% and 100% of
responders.

Figure 7.3 shows the observed deviations in demand averaged over all CM event hours. Re-
call that CM events are inherently imbalanced between low and high price durations in order to
achieve the highest possible demand reduction. The mean reduction during peak hours amounted
to 50 W/household, which tripled to 150 W/household for the 25% best responders. From a net-
work perspective, both values indicate the potential for significant impact on load profiles when
considered against the measured after diversity peak demand of 1 kW/household.

Any incentivised load increase in the adjacent low price periods was spread over a larger
number of hours, resulting in an average increase in consumption over all time indices of only
20 W/household.

7.3.1 Reductions in peak and mean demand
CM events were analysed individually to quantify their success in reducing the peak load of par-
ticipating households. Figure 7.4 shows the mean load reduction across all high price time indices.
The full group means, indicated by the darkest red bars, have a mean over all events of 50 W
per household, while the most engaged 25% of the group, indicated by the lightest bars, regu-
larly exceed 100 W/household reductions. No significant trends are visible with respect to event
persistence (number of consecutive days) for either the peak or mean demand reduction graphs.
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Figure 7.4: Mean change in demand over the high price period of the CM events. Bars, from lighter to
darker shading, represent the average for subgroups of the most engaged 25%, 50%, 75% and
100% of responders. Details of the individual events are given in Table 4.5 and Fig. 4.9.

7.3.2 Highlighted Constraint Management events
This section illustrates the observed response to CM events by analysing load profiles for three
events that took place respectively on a weekday morning, a weekend afternoon and a weekday
evening.

Morning, weekday

Figure 7.5 shows a CM event that took place on a weekday morning between 7am and 10am. The
black line depicts the actual power consumption and the inferred increase or decrease in power
consumption relative to the computed baseline is shown in red and blue respectively. The semi-
transparent curve plotted alongside shows the result of the same analysis applied to the 25% most
engaged households.

A clear reduction in demand during peak hours can be seen, accompanied by subsequent increase
in the period spanning approximately five hours after the event. In this case there is no anticipatory
demand increase before the high-price event, probably because the event took place early in the
morning.

Although the observed behaviour is consistent with load shifting, it is not possible without
detailed per-household analysis to distinguish shifting of loads from independent load reduction
during the high price period and load increase during the low price period. For the subpopulation
of the 25% best responders both the demand reduction and the subsequent demand increase are
seen to be significantly enhanced.
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Figure 7.5: CM event P3_1D_1. The lighter shaded Increase, Reduction and Actual indicate the response
from the most engaged 25% of households.

Afternoon, weekend

Figure 7.6 shows a weekend afternoon event. Demand decrease during the high price period is
again accompanied by demand increase during the surrounding low price periods. This time, with
people having been awake for several hours before the high price period, load increase is visible
both before and after the event.
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Figure 7.6: CM event P8_1D_0. The lighter shaded Increase, Reduction and Actual indicate the response
from the most engaged 25% of households.

Evening, weekday

The evening peak event spanning 2 trial days, shown in Fig. 7.7, demonstrates the ability to reduce
peak loads on consecutive days. On both event days significant load shifting into the period before
the high price event is visible. As was the case for the morning event in Fig. 7.5, the asymmetric
nature of the observed shift in load is probably the result of people being asleep after 11pm,
reducing the ability to modify demand after the high price period.
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Figure 7.7: CM event P1_2D_0. The lighter shaded Increase, Reduction and Actual indicate the response
from the most engaged 25% of households.

7.4 Supply Following events

While CM events were aimed at the specific use case of peak load reduction, the SF events are
designed to provide a more general insight into consumer response to pricing signals, with supply
demand balancing as a representative use case. The SF trials make use of a single high or low
price signal that is maintained for durations in the range 3–24 hours.
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Figure 7.8: Mean DR over all SF events. Bars, from lighter to darker shading, represent the average for
subgroups of the most engaged 25%, 50%, 75% and 100% of responders.

Figure 7.8 shows the average change in demand for all SF events except the 24 hour low price
event (L24_05). This event was excluded to ensure an equal number of low and high price hours
were aggregated, therefore enabling a fair comparison of the mean response magnitudes.

The response to low price signals of 40 W/household (increase) was slightly larger in magnitude
than the response to high price signals of 30 W/household (decrease). As was the case for CM
events, the mean change in demand of the 25% best responding households is approximately three
times larger.

The greater magnitude of response from low price events is perhaps surprising considering
the asymmetry in the price incentives: consumption during high price periods was penalised by
£0.55/kWh relative to the default price, while shifting consumption to a low price periods was
rewarded (compared to default price) by only £0.08/kWh. This fits with the narrative that con-
sumers respond to the concept of a high and low pricing period, rather than the numerical value
of the price itself.

7.4.1 High price events

Figures 7.9 to 7.11 depict the observed load profiles and inferred changes in demand level for three
high price events, with a duration of 3, 6 and 12 hours, respectively. A reduction in demand is
visible in all cases.

The early morning event shown in Fig. 7.10, with high price beginning at 5am and ending at
11am, shows response increasing as people awoke. As with the CM events, the best responding

118



7.4. Supply Following events

25% of households shows a much more pronounced demand reduction in all cases; typically three
times greater in magnitude than the full group mean.

Curiously, although there is a significant reduction in demand during the high price periods,
there does not appear to be a corresponding increase in demand in the surrounding default price
periods. This is qualitatively different from the CM events where signs of load shifting were visible.
This may be the result of the difference in the structure of CM events for which the high price
period was flanked by low price periods.

7.4.2 Low price events
Figures 7.12 to 7.14 depict the observed load profiles and inferred changes in demand level for three
low price events with a duration of 3, 6 and 24 hours respectively. All events show appreciable
levels of increased demand, especially at those times where the demand was already anticipated to
be high.

As expected the performance of the 25% highest ranked households outstrips the performance
of the general population in all three examples. In fact, in Fig. 7.13 the inferred increase in demand
is so high that the resulting morning demand peak for this subpopulation would exceed the evening
peak as a result of the low price signal. This is an important finding for a future in which households
are set to become increasingly responsive to dynamic pricing signals. A signal meant to stimulate
demand at a system level (supply following) may thus trigger unexpected local network constraints.
This highlights the need for an integrated approach to generation and distribution system operation
and planning.
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Figure 7.9: SF event: H3_17_0. The lighter shaded Increase, Reduction and Actual indicate the response
from the most engaged 25% of households.
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Figure 7.10: SF event: H6_05_0. The lighter shaded Increase, Reduction and Actual indicate the response
from the most engaged 25% of households.
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Figure 7.11: SF event: H12_11_0. The lighter shaded Increase, Reduction and Actual indicate the re-
sponse from the most engaged 25% of households.
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Figure 7.12: SF event: L3_17_2. The lighter shaded Increase, Reduction and Actual indicate the response
from the most engaged 25% of households.
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Figure 7.13: SF event: L6_05_0. The lighter shaded Increase, Reduction and Actual indicate the response
from the most engaged 25% of households.
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Figure 7.14: SF event: L24_05_0. The lighter shaded Increase, Reduction and Actual indicate the re-
sponse from the most engaged 25% of households.
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7.4.3 Temporal determinants of response magnitude
The results in Figs. 7.9 to 7.14 suggest that consumer responsiveness to dToU pricing is highly
dependent on the timing and duration of the event in question. In this section the observed
changes in demand are analysed as a function of event duration and their timing by season, month,
day-of-week and hour-of-day.

Duration of events

Figure 7.15 shows the breakdown of DR by event duration. Mean demand reduction in response
to a high price signal is approximately constant at a full group mean of 30 W/household for all
households, increasing to approximately 80 W/household for the best responders.

For low price signals a trend is visible in that shorter duration events result in greater average
demand increases. At 12 and 24 hour durations, response level is around 30 W/household, increas-
ing to to 50 W/household for 3 hour duration events. This suggests that consumers have a limited
ability to make opportunistic use of energy (power × time). In other words, there may be a limit
to the value gained from the additional use of appliances (e.g. washing machine, dishwasher, etc.).

For the most engaged 25% of households, and for both high and low price signals, response
levels are again seen to be approximately 3 times that of the full group mean.
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Figure 7.15: Effect of event duration on DR. N is the number of events over which the mean was taken.
Bars, from lighter to darker shading, represent the average for subgroups of the most engaged
25%, 50%, 75% and 100% of responders.

Season and months

Figure 7.16 shows mean DR by the Elexon defined seasons and Fig. 7.17 provides a breakdown
by month. As expected, the ability to reduce demand is highest in the colder and darker winter
months, decreasing dramatically during the high summer and early autumn months. However, the
ability to increase demand in response to a low price signal is impacted to a lesser extent.

As high price DR constitutes a reduction in demand, ability to respond is limited by the level of
discretionary demand available for reduction. Low price response, being an increase, is not limited
in this way. This may explain why the low price response is limited by seasonality to a lesser extent
than high price response.

Day of week

Figure 7.18 shows the DR breakdown by days of the week. No clear trend can be seen, except
perhaps for a slightly enhanced response to low price signals on Fridays and Sundays.
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Figure 7.16: Mean DR by Elexon seasons. Bars, from lighter to darker shading, represent the average for
subgroups of the most engaged 25%, 50%, 75% and 100% of responders.
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Figure 7.17: Mean DR by month. Bars, from lighter to darker shading, represent the average for subgroups
of the most engaged 25%, 50%, 75% and 100% of responders.

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

DR (kW/household)

Mon

Tue

Wed

Thu

Fri

Sat

Sun

High price Low price

Figure 7.18: Mean DR by day of week. Bars, from lighter to darker shading, represent the average for
subgroups of the most engaged 25%, 50%, 75% and 100% of responders.
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Time of day

Figure 7.19 shows a breakdown of DR by time-of-day. This is further refined in Fig. 7.20, which
adds a subdivision by Elexon seasons. The gaps in the graph indicate an absence of events for those
particular season/hour combinations. Note that even when relevant events are available, numbers of
events are generally low, leading to increased statistical noise in the reported figures. Nevertheless,
the results clearly demonstrate that price-driven changes in demand are most abundant during the
waking hours of the day and in the winter season.
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Figure 7.19: Full year mean DR by hour of day. Bars, from lighter to darker shading, represent the average
for subgroups of the most engaged 25%, 50%, 75% and 100% of responders.

Crucially, the availability of the DR resource is most prevalent during those times when it is most
likely to be needed for constraint management: during the winter high demand periods. As can
be seen in Fig. 7.20, in winter the 50% best responding households can achieve demand reductions
of 100 W/household during the periods of the morning and evening peaks. A potential concern
for DNOs is the limited ability to reduce residential power consumption during high summer
afternoons. With the increased dependence on air conditioning in office buildings in particular,
high summer conditions are joining the winter peaks in defining binding network constraints.

From a supply following perspective, the potential to increase or decrease power consumption
during the nighttime hours looks limited, particularly during the summer. This is likely due to
the inconvenience of manually controlling appliances at this time. This may change with increased
penetration of home automation technology.
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Figure 7.20: Seasonal mean DR by hour of day. Bars, from lighter to darker shading, represent the average
for subgroups of the most engaged 25%, 50%, 75% and 100% of responders.
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7.5 Social stratification of response
The previous sections have mainly been concerned with the time dependancy of DR. This section
presents a complementary analysis that considers the properties of the receiver instead of the
signal. High level social indicators are used to quantify and understand the observed measures of
DR. Acorn group and household occupancy are first examined separately and then combined in
an aggregated format using the three aggregate Acorn group classes and three occupancy classes
that were defined for use in LCL.

In the case of SF events, all events except the 24 hour low price events (L24_05) were included
in the analysis. This ensured that an equal number of low and high price hours, that were taken
from the same hours of the day, were examined. This allowed a direct comparison of the high and
low price response magnitudes. For CM events, this was not possible due to the asymmetric nature
of the event design; low price hours greatly outnumbered high price event hours.

7.5.1 Acorn group
Figure 7.21 and Fig. 7.22 show a breakdown of DR by Acorn group for SF and CM events respec-
tively. While certain groups performed better than others on average, these differences are hardly
statistically significant and there is only a minima correlation with the albeit loose Acorn trend
of decreasing wealth from A to Q. It should be noted that results from groups with low sample
numbers may not be representative of their populations, as indicated by the error bars.
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Figure 7.21: Mean DR by Acorn group. SF events only. N is the number of households in each group, and
the SE of the mean is indicated by black bars.

126



7.5. Social stratification of response

0.15 0.10 0.05 0.00 0.05 0.10

DR (kW/household)

A, N=33

B, N=4

C, N=26

D, N=62

E, N=308

F, N=142

G, N=36

H, N=72

I, N=8

J, N=25

K, N=19

L, N=66

M, N=13

N, N=22

O, N=17

P, N=20

Q, N=105

High price Low price

Figure 7.22: Mean DR by Acorn group. CM events only. N is the number of households in each group,
and the SE of the mean is indicated by black bars.

7.5.2 Household occupancy
Figure 7.23 and Fig. 7.24 show a breakdown of DR by number of household occupants for SF and
CM events respectively. The results show a qualitative difference in the response to high and low
price events.

For the high price signal and for both CM and SF event types, the response clearly increases
in magnitude with occupancy counts up to three. Results for higher occupancy counts are insuffi-
ciently precise to extrapolate this trend beyond three occupants. The demand increase resulting
from low price events appears to show a similar trend, but less pronounced and with less significance
(see the error bars).
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Figure 7.23: Mean DR by number of household occupants. SF events only. N is the number of households
in each group and includes only those for which survey data was available. The SE of the
mean is indicated by black bars.
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Figure 7.24: Mean DR by number of household occupants. CM events only. N is the number of households
in each group and includes only those for which survey data was available. The SE of the
mean is indicated by black bars.

7.5.3 LCL Acorn and occupancy classifications
LCL specific classifications were created from the Acorn group and occupancy variables by aggre-
gating each into three discrete groups. These classifications were created in order to standardise
analysis between LCL programme partners and across output reports. The LCL Acorn classes are:

• Affluent: Acorn groups {A, B, C, D, E}.

• Comfortable: Acorn groups {F, G, H, I, J}.

• Adversity: Acorn groups {K, L, M, N, O, P, Q}.

And the orthogonal occupancy classes are:

• 1 person.

• 2 people.

• 3 or more people (3+).

Demand response

A breakdown of DR by the above LCL Acorn and occupancy classes are presented for SF events
in Fig. 7.25 and for CM events in Fig. 7.26.

Both figures clearly demonstrate a trend of increasing response with occupancy level at high
price, though this trend is less pronounced for the Adversity class. The same trend is visible for
the low price signal applied to SF events, though only for the Affluent and Comfortable Acorn
classes. No clear trend is visible for the low price signal applied to CM events, for either Acorn
group or occupancy level. Large (3+) Affluent households clearly outperform all other groups with
respect to high price signal response, with a demand reduction 110 W/household for CM events
at an occupancy level of 3+. The load profiles presented in the next section in Fig. 7.27 suggest
that the greater observed response signal may be related to greater overall consumption levels.
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Figure 7.25: Mean DR by LCL Acorn and occupancy class. SF events only. N is the number of households
in each group, and the SE of the mean is indicated by black bars.
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Figure 7.26: Mean DR by LCL Acorn and occupancy class. CM events only. N is the number of households
in each group, and the SE of the mean is indicated by black bars.
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Load profiles

To provide context for the social breakdowns of DR, average day profiles of the nonToU group
are shown in Fig. 7.27 for the LCL Acorn and occupancy classes. It can be seen that there
is a significant difference in load profiles between social groups and occupancies, with wealthier
households showing increased consumption levels and more pronounced load peaks.

This underlines the value of smart meter data for increasing visibility of demand profiles for
individual households. This data can be used to enable more accurate load forecasting for system
balancing, load growth analysis for network planning, improved network visibility for operation,
and to target tariff and energy saving initiatives more effectively.
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Figure 7.27: Average daily profiles of nonToU group, plotted for the LCL Acorn and occupancy classes.

131



Chapter 7. Response stratification

7.6 Low Carbon London in context
Six key time-of-use (ToU) trials were reviewed in Section 3.3.7. These trials took place within the
last 4 decades and were situated within the United Kingdom (UK) and the Republic of Ireland.
These results are reproduced here, in Table 7.1 and Fig. 7.28 with the addition of the result of the
LCL trial.

Table 7.1: Update of Table 3.11 in Section 3.3.7: Summary of ToU trial results from those considered
closely related to the UK. For each trial, the table gives the peak to standard price ratio, the
reduction in peak consumption achieved and the number of households in both the treatment
and control groups (when available).

Index Trial Year Location Price ratio Reduction (%) N_tou N_control

1 DTE [70] 1973 GB 3.00 25.0 - -
2 EMUP [71] 1990 GB 6.59 16.0 250 75
3 NIKP [72] 2004 N. Ireland 1.60 12.0 100 100
4 EDRP EDF [73] 2010 GB 1.69 8.0 170 135
5 IESMT A [67] 2011 Ireland 1.42 7.2 1,368 1,170
6 IESMT B [67] 2011 Ireland 1.84 9.8 511 1,170
7 IESMT C [67] 2011 Ireland 2.27 9.0 1,370 1,170
8 IESMT D [67] 2011 Ireland 2.70 10.9 509 1,170
9 IESMT W [67] 2011 Ireland 2.70 11.6 100 1,170
10 CLNR [76] 2015 GB 1.99 6.4 600 9,000
11 LCL CM 2013 GB 4.72 8.0 988 3,768
12 LCL SF 2013 GB 4.72 7.9 988 3,768

Values for the LCL trial were calculated for both CM and SF events separately by averaging
the DR over all time indices at high price and then dividing this by the average of baseline demand
over all time indices at high price so that the percentage reduction in demand equals:

R% = 100
(a

b
− 1

)
(7.1)

where

a =
1

Na

∑
m∈M

∑
h∈H

(
Am,h − Bm,h

)
(7.2)

b =
1

Nb

∑
m∈M

∑
h∈H

Bm,h (7.3)

Am,h and Bm,h are the actual and baseline demand at measurement index m and household h, M
is the set of all high price time indices for the respective event type, H is the set of all households
in the dToU group, and Na and Nb are the counts of non-null values in a and b respectively.

Figure 7.28 is a reproduction of Fig. 3.1. The x-axis represents the ratio of the peak to standard
price (at the time of the trial) and the y-axis the reported relative reduction in demand. The LCL
result for CM events has been added and is indicated by the red circle.

The number of households in each trial group was used to determine a statistical weighting
of each result. Assuming that each trial group had the same standard deviation of demand—this
number was not provided in most trial reports—and that the control group was proper, the variance
of the response measurement, S2

R, can be shown (proof omitted) to be proportional to the below
function of the sample numbers:

S2
R ∝ 1

Ntou
+

1
Ncontrol

The data point weightings were set so as to be proportional to 1/S2
R, as is the standard in weighted

least-squares regression (WLS). These were depicted in the scatter plot via the size of each point’s
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Figure 7.28: Update of Fig. 3.1 in Section 3.3.7: Summary of ToU trial results from those considered
closely related to the UK in context with the LCL equivalent result. For each trial, the size
of the point is proportional to its weighting, which is a function of the sample numbers. Each
trial marker is referenced to the corresponding trial in Table 7.1 via its index number.

marker—larger markers having greater statistical weight. In the case of trial index 1, each group
was assumed to contain 50 households. This was considered a conservative estimate (below the
minimum reported group population of 75 for the other trials) and allowed the point to feature
in the graphic with a small weighting. In addition, a best WLS regression model consisting of a
constant and a proportional parameter was fitted to the points to give a sense of whether a trend
might exist.

It can be seen that related trials clustered between peak-to-standard price ratios of 1.4–2.7. In
this context the LCL trial has entered new territory by using the much higher price ratio of 4.7.
This, combined with the statistically robust sample numbers used in the trial, has allowed the LCL
result to have significant impact on the interpretation of the data points.

In Fig. 7.28, the pre-LCL linear model is indicated by the solid blue line and the with-LCL linear
model by the solid red line. It can be seen that the addition of the LCL data point has changed
the trend from one that suggests peak reduction might be proportional to peak-to-standard price
ratio, to one that suggests a constant relative reduction in peak consumption in response to a high
price signal. For illustration, a constant reduction model has been added to the graph, indicated
by the dashed red line, where the red shaded area indicates the 95% confidence interval on the
model mean (calculated by WLS regression). The implications of this model are that a constant
reduction in demand of 6.8–10.2% might be expected from future ToU or dToU trials at a 95%
confidence level. It should be noted that sampling error would have to be added to this in order
to calculate a prediction interval.

7.6.1 Evaluation

This cursory comparison with related ToU trials does not control for price event structure such as
time-of-day or duration. It should also be remembered that the comparison trials used ToU tariffs
while LCL used a dToU tariff where peak price periods could occur at any time of day and over
different durations.

The analysis conducted in this section places LCL into context against previous UK related trial
results and informs us that we should not necessarily expect an increase in the peak to standard
price ratio to result in enhanced peak price consumption reductions.

This section concludes that the current UK related ToU and dToU evidence is not yet sufficient
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to state the extent to which peak reduction levels are affected by price levels. This is compounded
by mixed messages in the existing literature: A recent paper by Faruqui [59] concluded that
consumers are responsive to price and that increasing the peak to off-peak price ratio resulted in
enhanced peak reductions, but the trend was not linear. Conversely, the recent the Department of
Energy and Climate Change, UK (DECC) literature review of residential DR [44, Annex A; figures
4 and 5] formed the view that there is not a strong relationship between peak to off-peak price
ratios and peak demand reduction. However, it is worth noting that most of the trials cited in
these studies were from North America and therefore the same conclusions may not be applicable
in the UK context.

7.7 Summary and conclusions
This chapter provides an overview of the primary results of the Low Carbon London (LCL) dynamic
Time-of-Use (dToU) trial. The demand response (DR) signal, calculated as described in Section 5.4,
is examined over a number of different stratifications of the response signal.

Constraint Management events. The Constraint Management (CM) events consisted of high
price periods that targeted peak hours, flanked by extended low price periods. As such, they are
intrinsically asymmetric with short high price periods surrounded by long low price periods. This is
reflected in the observed response numbers, with an average demand reduction of 50 W/household
and demand increase of 20 W/household. As expected, the 25% most engaged households de-
livered a larger response with an average reduction of 150 W/household and average increase of
55 W/household. This illustrates the potential of DR to reduce peaks and enhance utilisation of
network assets.

The reduction in load during high price periods was always accompanied by an increase in
load during the adjacent low price periods. Extended events that targeted peaks on up to three
consecutive days were trialled and no significant difference in measured response was observed
between days.

The decrease of demand during peak hours and increase during low priced hours is consistent
with load shifting. However, such a signature response was not present in the high-price-only
Supply Following (SF) events in which the peak was flanked by mid-price periods. This suggests
that the apparent load shifting may be caused by opportunistic usage of the lower price electricity.
Further investigation is required to identify the reason for this difference.

Supply Following events. SF events targeted high and low price events were used to establish
the potential for consumers to respond to dToU signals at different times of the day and throughout
the year.

Overall, households responded to high price signals with decreases in consumption levels that
were much larger during the colder and darker winter months than in the peak of summer. A similar
pattern is observed when the measured responses were analysed by the hour of the day. The demand
reduction potential reached its maximum magnitude around the morning and evening peaks (on
weekdays). The most engaged quarter of households achieved a mean demand reduction over
150 W/household during these periods, compared to 50 W/household for the average household.
The strong correlation between demand reduction potential and absolute demand levels is a positive
finding for the CM use case, as the reduction potential during peak demand periods will be higher
than suggested by average response numbers.

Households responded to low price signals by increasing their demand levels. This increase was
seen to be fairly constant during the waking hours of the day, at a level of 50 W/household across
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all households and exceeding 150 W/household for the most engaged households. During the night
time even the best responders did not achieve an increase of 50 W/household. However, the ability
of households to increase power consumption was only very slightly affected by the time of year.
During the summer months in particular this led to an asymmetric response to high and low price
signals.

These figures suggest an ability of households to assist in supply demand balancing, but this
potential is currently limited to waking hours and is significantly larger during winter months. The
proliferation of “smart appliances” that can autonomously respond to price signals may provide a
more consistent response as human intervention will no longer be needed to activate it.

The dual objectives of Constraint Management and Supply Following may lead to conflicts. For
example, an abundance of available wind power or the availability of large amounts of inflexible
nuclear plant during low load conditions may result in very low electricity prices. From the system
perspective it would be beneficial to use dToU pricing to incentivise customers to increase their
consumption levels. However, doing so might cause unanticipated stress on the distribution net-
work. Evidence of such situations was seen during the trials: the 25% most engaged households
occasionally responded so strongly to low price signals that a new after diversity demand peak was
created. On the other hand it is also possible that the two objectives align leading to synergies
between system and network management. This is a common situation when high load conditions
coincide with high marginal costs of supply (e.g. during the winter peak).

Socio-economic factors in DR. The responses of the targeted SF trials were analysed against
two principal parameters that are known to be strong indicators of energy consumption: household
occupancy (1, 2, 3+) and a socio-economic classifier based on the Acorn system. The three socio-
economic groups—Affluent, Comfortable and Adversity—can be interpreted as a rough indicator
of wealth.

Perhaps surprisingly, the socio-economic class did not have a significant effect on the observed
DR for these single events, although results on CM events suggest that households in the Affluent
class may respond more strongly to signals that specifically target peak hours. The measured
response does depend strongly on occupancy levels, with larger households providing responses of
larger magnitude.

Low Carbon London in context. An attempt was made to compare LCL trial results with
past time-of-use (ToU) trials that are closely comparable to the United Kingdom (UK) context.
Results were compared on two axes; peak price to standard price ratio, and relative reduction in
peak price consumption. While the related trials had price ratios in the range 1.4–2.7, LCL had
a price ratio of 4.7. This departure from the previous trial cluster, combined with statistically
robust sample numbers, meant that the LCL trial contributed significantly to the interpretation
of the overall landscape of trial results plotted on these axes. Before LCL the trend might have
suggested the possibility of increased response with increased price ratio, however, the addition
of the LCL data point makes a relative response look like a better model. A constant response
model was fitted to the data points while taking into account the statistical weight of each trail.
Using this model, it was estimated that the population peak demand reduction lay in the range
6.8–10.2% at a 95% confidence level.

Though the data was not sufficient to make a conclusive statement regarding the relationship
between response level and price ratio, this analysis did place LCL into context against previous
UK related trial results and informs us that we should not necessarily expect an increase in the
peak price ratio to result in enhanced peak price consumption reductions. More data is required
in order to investigate this further.
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Chapter 8

Reliability and risk

This chapter builds on the findings of Chapter 7 and proceeds to investigate in detail how the
implementation of dynamic Time-of-Use (dToU) tariffs may impact network reliability. Two main
questions are addressed: first, the extent to which the distribution network operator (DNO) can
count on dToU tariffs to reliably alleviate network constraints; second, how the use of dToU tar-
iffs by suppliers may cause demand to violate network constraints. First, the predictability of
Constraint Management (CM) events is examined and two simple response predictor models are
proposed. This is followed by an analysis of the network capacity contribution of residential de-
mand response (DR). The first part of this introduces the theory, where it is shown that capacity
contribution consists of two components; mean and variance response. This more generally appli-
cable theory is then applied in the specific context of CM events, where its application is shown to
be significant under certain conditions. Second, the potential risk to the network from low price
event induced demand spikes are empirically examined through use of the dToU trial data set,
leading to the times of high network risk being identified.

8.1 Predictability of constraint management event response
The first question that is addressed is how a DNO can use dToU tariffs to alleviate network
constraints. This analysis makes use of the CM trials, which specifically targeted load peaks. This
section is concerned with quantifying the magnitude and variability of the observed DR for these
events. It begins with the introduction of the baseline model that is used to calculate the mean
DR values. The distribution of the CM events throughout the year is discussed, and correlations
with baseline demand and weather variables examined. A simple model for CM event response
magnitude is proposed. Confidence intervals for both this model, and for the response of the dToU
group to a future event, are calculated.

8.1.1 The per-household baseline demand model

DR, in the context of this trial, is a reduction in demand relative to what would have been
consumed without the price intervention, where price interventions are considered to be deviations
from the default price. Quantification of DR thus requires the establishment of a hypothetical
baseline demand of the dToU group in the absence of the price event. A linear model was used
to establish a baseline demand profile for each household in the dToU group. While the details of
its implementation are more thoroughly described in Section 5.4, the salient points are described
below.

A key feature of this model is that it relates a household’s baseline power consumption to the
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mean power consumption of the non-time-of-use (nonToU) group. This approach guarantees that
the model captures events that could cause an overall bias such as bank holidays, extreme weather
and sports events because they are expected to affect the dToU and nonToU groups equally. The
predictor variables include the mean demand of the nonToU group and binary variables to allow
for some time dependent structure. The baseline demand is calculated as:

Bm,h =
W∑

w=1
(αw,hdw + βw,hA′

mdw) + γhm (8.1)

where Bm,h is the baseline demand of household h at half-hour measurement index m and household
h; A′

m is the mean actual demand of the nonToU group at measurement index m; dw are binary
dummy variables, one for each hour w in the W (= 168) hours of the week; and the Greek letters
{α1,h, · · · , αW ,h}, {β1,h, · · · , βW ,h} and γh are parameters to be determined by the regression
solver. This model effectively relates each half-hour measurement index linearly to the nonToU
group mean demand, for each hour of the week, with an overall trend line.

This model was used to calculate a baseline mean demand for each household in the dToU
group. Demand response was calculated as:

Rh,m = Ah,m − Bh,m (8.2)

where Rh,m is the inferred DR for household h at measurement ; Ah,m and Bh,m being the actual
measured demand and the calculated baseline of household h respectively. Note that the baseline
model outlined above describes the average expected consumption of a household on a given day
and hour. In contrast to baseline models that are used for DR contracts [14], it does not attempt to
predict random fluctuation in the household’s power consumption, including the occasional absence
of the inhabitants. As a result, the DR estimates have an intrinsic variability related to the natural
variability (diversity) of demand. It can be argued that this approach is most applicable to the
constraint management context where a DNO must take a decision on the basis of a load forecast.
The baseline model may be considered an approximation of an optimal day-ahead load forecast.

8.1.2 High price demand response by CM event
This section quantifies the observed DR during the high price period of each event. The duration
of the high periods, and therefore the number of half-hour measurements taken, depends on the
peak that was targeted (defined by time-of-day and day-of-week). For example, in the case of
weekday evening peaks, this was 6 hours, from 17:00 to 23:00. Some CM events targeted peaks
on consecutive days, and the results for each day are treated as independent observations. We
aggregate the measurements into single value measure of DR for each CM event day: mean power
reduction over the high price period, calculated as:

Rh =
1

NM

∑
m∈M

Rh,m (8.3)

where Rh is the mean response at high price of household h on a given CM event day, M is the set
of measurement indices for the high price period that the event day, and NM is the total number
of non-null measurements in response matrix Rm,h (as defined in Eq. (8.2)) for household h over
time indices M. For each of the 21 event days we obtain one mean DR observation, Rh, from each
household in the dToU group.

It is reasonable to assume significant independence and absence of bias of the errors in the
inferred DR values for each household, Rh. Random fluctuations in the nonToU response that
affect all baselines are assumed to be small, because of the large number of households in the
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Figure 8.1: Mean high price CM event response against time in the trial year. Error bars indicate the
standard error (SE) of the mean measurement. Baseline demand is calculated as the mean
demand of each trial day.

nonToU group. As the per-event DR measurements are themselves the mean of the DR estimates
from all households in the dToU group, the central limit theorem applies and the SE of the mean
is used to estimate the measurement error. The results of this process and the times of the CM
events are plotted in Fig. 8.1 and the numerical values are given in Table 8.1.

Table 8.1: CM events and mean DR and SE on the mean for the high price period of each CM event day.
“Wall clock” time is used.

Event
index

Event
name

From To Duration
(hours)

DR mean
(W)

DR standard
error (W)

1 P9_2D 19/01/13 17:30 19/01/13 23:00 6 60 14
2 P9_2D 20/01/13 17:30 20/01/13 23:00 6 69 13
3 P3_1D 29/01/13 07:30 29/01/13 10:00 3 52 8
4 P8_1D 09/02/13 10:30 09/02/13 14:00 4 37 13
5 P4_2D 20/02/13 17:30 20/02/13 23:00 6 62 11
6 P4_2D 21/02/13 17:30 21/02/13 23:00 6 55 12
7 P9_2D 16/03/13 17:30 16/03/13 23:00 6 47 11
8 P9_2D 17/03/13 17:30 17/03/13 23:00 6 53 11
9 P3_1D 21/03/13 07:30 21/03/13 10:00 3 44 10
10 P4_3D 27/03/13 17:30 27/03/13 23:00 6 53 13
11 P4_3D 28/03/13 17:30 28/03/13 23:00 6 63 12
12 P4_3D 29/03/13 17:30 29/03/13 23:00 6 69 13
13 P1_1D 23/04/13 17:30 23/04/13 23:00 6 36 6
14 P1_3D 01/05/13 17:30 01/05/13 23:00 6 48 6
15 P1_3D 02/05/13 17:30 02/05/13 23:00 6 35 7
16 P1_3D 03/05/13 17:30 03/05/13 23:00 6 29 7
17 P6_1D 13/10/13 17:30 13/10/13 23:00 6 46 9
18 P6_1D 20/10/13 17:30 20/10/13 23:00 6 43 9
19 P1_2D 26/11/13 17:30 26/11/13 23:00 6 47 9
20 P1_2D 27/11/13 17:30 27/11/13 23:00 6 47 8
21 P9_1D 15/12/13 17:30 15/12/13 23:00 6 36 9

It can be seen in Fig. 8.1 that the CM event DR reduces towards the summer months. As
residential demand during summer is significantly less than during winter, this suggests that either
weather or the baseline demand may be influencing factors on response magnitude. Furthermore,
one may expect dToU DR to change over time as people gain experience with the programme,
resulting in either decreasing (novelty wearing off) or increasing trends. To investigate these
relations further, we examine the DR correlation with the baseline demand level, three readily
available macroscopic weather measurements (temperature, wind speed and solar elevation angle)
and the numerical event index. In the case of solar elevation, 0◦ is considered to be the when the
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sun is at the horizon, and 90◦ when the sun is directly overhead.
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Figure 8.2: Best fit trend lines for CM event DR during the high price period. Trends are examined for
potential predictor variables: baseline demand, mean temperature, solar elevation angle, wind
speed and chronological event index. Indicated p-values are for the gradient parameters only.
Those lower than 0.01 are highlighted as being potentially significant. Temperature and wind
data from [99], solar data from [100].

The top row of Fig. 8.2 shows the five listed variables plotted against the demand reductions
of the CM events. As measurement errors were estimated independently, weighted least square
regression was used to select the best-fit line through the data. The sample weights were set to
1/ϵ2

i , the best linear unbiased estimator, where ϵi is the SE of measurement i. The remaining
rows show dependencies between pairs of possible explanatory variables; the lines were fitted using
ordinary (unweighted) least squares. The p-value for the gradient parameter is shown above each
plot. This indicates the computed probability of the null hypothesis that the non-zero value of the
fitted parameter was observed as a result of random noise.

8.1.3 A response model for CM events

We proceeded to identify models for the observed responses to CM events. We considered the class
of all linear models with a single explanatory variable, either with or without intercept (a constant
term). The weighted least squares method was used to fit the linear models to the data using
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specified SEs for the individual observations. Fitting was performed using a custom made software
based on the standard weighted least-squares regression (WLS) fitting algorithm [74]. Suitability
of the resulting models was evaluated according to the following criteria:

• Goodness of fit: preference was given to models that provided a good fit to the data. This
was evaluated using the fraction of sum-of-squares of DR values that was explained by the
model. This is similar to the coefficient of determination (R2), though it does not discard
the constant (mean response) contribution of the model.

• Significance of included terms: p-values were computed for the significance of each of the
parameters, quantifying the probability that a non-zero value was obtained by chance. The
p-values thus indicate whether the model provides a significantly better fit with the related
term than without it. P-values of 0.01 or lower for all parameters, including the constant
offset, were required to be classified as a significant model, in order to avoid overfitting.

• Compatibility of residuals with input errors: the SE estimates for the individual events pro-
vide an independent estimate of the quality of fit that is obtained. For each linear model,
standardised residuals were computed. For an accurate model, these residuals should be
compatible with a standard normal distribution with mean 0 and variance 1.

We emphasise that this procedure identifies empirical models that provide a sufficient descrip-
tion of the features present in the data. Although they might suggest an underlying mechanism
for DR, these models are not postulated with reference to the causes of DR. The true population
models are almost certainly more complex than the models identified in this manner, but the num-
ber of CM events and the accuracy of the associated measurements limits the ability to identify
more complex dependencies.

Two simple models were selected according to the criteria described above:

Rdemand
CM = 0.080 × [baseline demand] + [random variation] (8.4)

and

Rtemp
CM = 59.3 − 1.53 × [temperature in ◦C] + [random variation] (8.5)

The demand model, Eq. (8.4), can be interpreted as an ability to reduce demand by approxi-
mately 8% with respect to the baseline. This simple model accounts for 97.8% of the sum-of-square
DR values, the parameter has a p-value of 5 × 10−16. The normality of the residuals is tested using
the “normtest” function in the Python language SciPy library [101]. This test checks if skew and
kurtosis of the residuals sample differ significantly from those of a normal distribution using a
method proposed by D’Agostino and Pearson [102]. The p-value of this test was 0.83, indicating
a high probability that the residuals were normal.

The alternative temperature-based model, Eq. (8.5), suggests an ability to reduce demand that
decreases with temperature. This model accounts for 98.0% of the sum-of-square DR values, the
maximum p-value of its parameters is 0.001, and the normality test for the standardised residuals
results in a p-value of 0.60 [101].

Clearly, both models are consistent with the data. Furthermore, the ability to use either baseline
demand or temperature as a dependent variable is rooted in the correlation of baseline load and
temperature (see Fig. 8.2). We note that the use of other single predictors resulted in less accurate
models, but this does not imply that these factors do not affect DR. The negative correlation
between DR and the event index in Fig. 8.2 suggests a reduction in responsiveness over time, but
the evidence from the trial is not sufficient to disentangle this from other temporal effects, such as
the dominant temperature changes.
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Figure 8.3: Observed DR for CM events (black dots; SEs indicated), alongside fitted empirical models.
Demand-proportional (top) and temperature-linear (bottom) models are shown. Dark green
bands indicate 95% mean prediction bands (range of models); light green bands indicate 95%
single prediction intervals.

Figure 8.3 shows the measured DR values plotted against the baseline demand (top) and average
outside temperature during the high-price period (bottom). Standard errors are indicated using
vertical lines. The dark blue bands indicate 95% mean prediction intervals for the simple DR
models, Eq. (8.4) and Eq. (8.5), derived from confidence intervals on their parameters. These
reflect the range of likely models given the observed data. For the demand-based model, Eq. (8.4),
(top), the 95% confidence interval corresponds to a load reduction of 7.3%–8.7% of baseline demand.

A question of considerable importance is how this model may be used to predict the magnitude
of responses for future events. Note that at this stage we restrict ourselves to predicting future
events of the same dToU population, i.e. a hypothetical continuation of the Low Carbon London
(LCL) trial. There are two distinct sources of uncertainty associated with future observations. The
first contribution is the model uncertainty, represented by the darker blue shaded areas (model
mean) in Fig. 8.3. In addition, there is a second contribution related to the households’ realised
performance compared to their respective baselines (analogous to a measurement error). The two
contributions are independent and both are assumed to be normally distributed. The total variance
is therefore equal to the sum of variances associated with each contribution:

σprediction =
√

σ2
model + σ2

sampling (8.6)

For each of the linear DR models, a model of the same type was fitted to the measured SEs,
resulting in linear noise models σdemand

sampling(demand) and σtemp
sampling(temp). The noise is assumed to

be normally distributed according to the fitted standard deviation and 95% confidence intervals
for single event predictions were computed by combining both sources of variance. The resulting
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intervals are indicated by the lighter shaded areas (single prediction interval) in Fig. 8.3. In the
case of the proportional demand model, the prediction interval includes load reductions of 4.7–
11.2%. The temperature-linear model results in fluctuations of similar magnitude, but with less
compact expressions.

8.2 Contribution to network capacity
The analysis up to this point (Section 8.1 and previously in Chapter 7) has considered the DR
observed within the LCL trials and determined what information can be extracted regarding the
behaviour of the households in the dToU group. In this section an attempt is made to extrapolate
these findings to future constraint management scenarios, where the DNO arranges for a high-price
signal to be broadcast in order to alleviate network constraints.

In this section, the probabilistic contribution of residential DR to network capacity is defined,
and its value is estimated from the dToU trial data. The computed contributions are compared
with the naive estimate of the mean DR. For this analysis we shall assume that the measured
consumption levels of the dToU group are representative of those of the population as a whole, and
that a sample of N households is a selected randomly from the dToU population. Computations
will be performed on a per-event basis.

The selection of N random households from the dToU population is appropriate to illustrate
the overall range of responses that may be encountered. Conceptually, this reflects a situation
where the households are unknown. However, in a situation where dToU signals are regularly used
for DNO constraint management, the DNO will be in a position to learn about the response of
households connected to specific substations or feeders. This knowledge should then be used to
constructed site-specific response profiles, which reduce the magnitude of uncertainty for future
events.

8.2.1 Definition of capacity contribution
In probabilistic terms, the required network capacity C may be defined as the capacity that is
needed in order to satisfy the expected maximum demand plus a safety margin to cover random
load fluctuations with a stated level of confidence (i.e. after-diversity maximum demand). The
capacity contribution R of DR is then defined as the change in required network capacity that
results from the use of the dToU signal:

R = C − CCM (8.7)

where CCM is the required physical network capacity when the dToU signal is used. It is defined
such that the probability of reaching the capacity constraint is kept constant with respect to the
reference scenario without DR. The value of CCM is thus implicitly defined by the probability
equality:

P (DCM ≥ CCM ) = P (D ≥ C) (8.8)

Here D is the total demand in the absence of a price event; DCM is the total demand if there is a
CM event.

For the purpose of this analysis, the total demand D is considered to be the sum of N randomly
selected households. When N is sufficiently large, the central limit theorem applies, which allows
us to describe the total (or mean) demand distribution of a group of households with the mean
and standard deviation of the raw demand measurements. The dToU signal may affect both these
distribution parameters. We have already seen, in Section 8.1, that the mean demand is typically
reduced by 7% to 9% as a result of a CM event. In a plot of the probability density function (PDF)
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of total demand, the curve is shifted to the left by this amount. We will see that, in general, the
CM event also reduces the variance, so that a narrower, more concentrated distribution will result.
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Figure 8.4: Illustrative probability density curves for demand during a CM event and, the counterfactual,
what it would have been had there been no event.

These changes are illustrated in Fig. 8.4 (left), where Rµ indicates the difference in mean as a
result of the CM event. For ease of annotating the graphic, let us imagine the normal capacity limit
is enforced to a probability of 0.9. The network capacity contribution is therefore the difference
between the cumulative density functions (CDFs) when both are equal to 0.9. This is illustrated
in Fig. 8.4 (right), where R indicates the total network capacity contribution of the CM event. We
may think of the capacity contribution (R) of DR as comprising two components: mean shift in
demand, which we shall call the mean response Rµ, and change in the confidence interval on this
mean which we shall call the variance response Rσ:

R = Rµ + Rσ (8.9)

The variance response (Rσ = R − Rµ) is a result of a decreased dispersion of the group demand
relative to the counterfactual no-event situation. This manifests as a steeper CDF curve, as
illustrated in Fig. 8.4 (right). Conversely, if the CM event had the opposite effect, increasing the
variance of the demand distribution, then the variance response would detract from the capacity
contribution of DR.

The mean response (Rµ) is, in the context of this discussion, considered to be a fixed quantity.
However, the variance response will be enhanced under the following conditions:

• If the number of households in the CM event is fewer: Because uncertainty in the magnitude of
the group demand is proportional to 1/

√
N , a reduction in uncertainty (decrease in variance)

will have a proportionally greater effect at lower N . As N increases, the total capacity
contribution (R) tends towards the mean response (Rµ).

• If the certainty that the capacity limit will not be breached is made more stringent: It can
be seen in Fig. 8.4 (right) that the greater the certainty (cumulative probability) that the
group demand will not exceed a certain limit, the greater the difference in demand between
the no-event and CM event CDF curves.

8.2.2 A group baseline standard-deviation model
The analysis approach outlined in the previous section requires the mean and standard deviation
of demand for the dToU group, both during the CM event, and for the hypothetical situation in
which the CM event did not occur. A per-household baseline demand model was introduced in
Section 8.1.1, and the mean of the household baselines establishes a baseline model for the mean.
We now introduce a second baseline model to predict the standard deviation of the dToU group
demand during the CM event.
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The dToU and nonToU groups are drawn from similar but not identical populations. Therefore
a basic linear model is proposed to predict the standard deviation of the dToU group Sm in terms
of the nonToU group’s mean demand A

′
m and the group’s standard deviation S′

m of demand:

Sm = αA
′
m + βS′

m + γ (8.10)

Here m is the index of the 30-minute measurement block; Greek letters α, β and γ are unknown
parameters that were determined by the linear regression solver. The model was fitted on all
available data for the dToU and nonToU groups for July-December 2012 and the non-event days
of 2013. Cross validation showed the model to have a coefficient of determination (R2) of 0.94.

8.2.3 Effect on demand mean and standard deviation
Using the two baseline models, one for the dToU group demand mean and the other for its standard
deviation, we may observe the effect of the CM event high price on these statistics. The difference
between the actual and baseline is calculated for both the demand mean and standard deviation,
for each CM event. The reduction in each is depicted in the bar chart in Fig. 8.5.
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Figure 8.5: Reduction in demand mean and standard deviation as a result of the CM event.

While the reductions in the mean demand (which we call DR) have been discussed in detail, this
figure shows that the CM events also have an impact on the standard deviation of demand. In all
cases the CM event resulted in a reduced standard deviation of the households’ consumption levels.
From a network capacity perspective this results in a greater certainty regarding the prediction of
future aggregate demand, which may be converted into an effective network capacity contribution
using the approach explained in Section 8.2.1.

8.2.4 Mean capacity contribution by number of households
Using the analysis approach described in Section 8.2.1, we calculate the effective network capacity
contribution per household, plotted against the number of households in the group. This is repeated
for each CM event and shown in Fig. 8.6. Note that these results represent the ensemble of
all possible selections of N households (with duplicates) from the group of dToU observations.
Analysis for specific customer groups (e.g. those on a particular substation) should be performed
using location-specific probability distributions.

On the left of the graph, where the number of households equals 50, the network capacity
contribution per household, depicted by the blue lines, substantially exceeds the mean contribution,
at between 70 W and 130 W relative to a mean contribution of between 30 W and 70 W. Due to the
rapid decline in capacity contribution with group size, a logarithmic scale is used for the number
of households in order to increase clarity. For a group size of 1,000 households, the capacity
contribution is approaching the mean response contribution—the difference between the actual
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Figure 8.6: Illustrative probability density curves for demand during a CM event and, the counterfactual,
what it would have been had there been no event.

and baseline mean demand, depicted in red in the figure. When the group size reaches 10,000
households, little difference can be seen between the total network capacity contribution and the
mean response.

8.2.5 Provisioning factor by desired network capacity contribution
By dividing the total mean response of N households by the total network capacity provided by
N households, we create a ratio, which we call provisioning factor. This may be thought of as
an indicator of the fractional change in the group size necessary to deliver a particular network
capacity, as a result of the incorporation of variance response into our DR model. Figure 8.7 shows
the provisioning factor plotted against the desired total network capacity for each of the CM events
in the trial.
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Figure 8.7: Provisioning factor plotted against the desired total network capacity (aggregate mean re-
sponse) for each of the CM event in the trial.

This figure shows that the reduction in the necessary group size when variance response is
considered can be significant when small network capacity contributions are required. For example,
if a network capacity contribution of 50 kW was desired, the group size necessary to deliver this may
be as much as 25% smaller than that which would be required if only mean response was considered.
These savings are quickly lost as the desired capacity contribution is increased. Much past 1 MW,
and the mean response alone is almost sufficient to describe the network capacity contribution per
household. To place these numbers in perspective, a capacity contribution of 50 kW corresponds to
the mean CM contribution of approximately 1,000 households, but the variance response reduces
the number of required households to approximately 800—equivalent to two or more distribution
substations. A response on the order of 1 MW may be delivered by the customers connected to a
primary substation (approximately 10,000-25,000 in domestic areas).
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8.3. The risk of low price signals to network operations

For smaller contributions there is considerable variation in the provisioning factors between
each CM event, without a pronounced pattern. Data from a future large-scale rollout of dToU
tariffs may be used to try to identify explanatory variables for these differences. Nevertheless, the
LCL trial observations give confidence in the sign of the deviation: variance reduction results in a
contribution that consistently outperforms the mean (provisioning factor less than one).

The maximum relative magnitude of the variance response is only about 25% for a DR event that
involves 50 kW of capacity (aggregate mean response), dropping off to 10% for a 1 MW capacity.
This may be compared to the uncertainty in response due to inter-event variation (discussed in
Section 8.1). For the demand-proportional model, the prediction interval at 95% confidence was
shown to be between a 4.7% and 11.2% demand reduction. Given an expectation value of 8.0%,
the model prediction could vary more than 40% in either direction. We may therefore conclude
that inter-event variation is by far the biggest contributor to uncertainty in residential DR and, in
most cases, variance response may be ignored without material consequence.

8.3 The risk of low price signals to network operations
Up to this point, this chapter has been concerned with analysing the potential of dToU signals
that aim to strategically alleviate network constraints on behalf of the DNO. This section regards
the alternative and arguably more likely case where prices are set by the suppliers in accordance
with day-ahead or real-time market conditions. For example, an excess of available wind energy
may result in low prices being broadcast to consumers in order to incentivise demand shifting and
so avoid wind curtailment. However, such an intervention may boost demand far above previously
anticipated levels and thus pose a risk to network operations.

This section aims to quantify the extent to which demand may be boosted by low prices, using
data from the LCL Supply Following dToU trials. The Supply Following (SF) events in this trial
were designed to sweep through all times of day with a variety of durations of both high and
low price events so as to create a general overview of people’s willingness to trade flexibility for
savings on their energy bill. These events were randomly distributed throughout the year in a
randomised-block design. More salient details are given in Chapter 4.

The network capacity required to supply a collection of residential loads is determined by the
largest credible peak in the aggregate load (after-diversity maximum demand). For this reason,
the remainder of this section will focus on the analysis of peak load levels, comparing observed
peak loads with predicted daily peak loads according to the baseline model. It is tempting to
consider only annual load peaks (i.e. ‘winter peak’ scenarios), but this would ignore operational
decisions that cause temporary capacity constraints. For example, maintenance work may be
scheduled during summer months when the expected peak load levels are lower, or network flows
may be rerouted after faults. We therefore consider the occasions when the peak load exceeds its
normal daily level as situations that are potentially relevant to the DNO, because they may affect
operational decisions.

8.3.1 Day peak compared to event peak
For each SF low price event in the trial, the settlement block with the highest mean consumption
was identified (within the low price interval). This block was designated the “event peak”, and the
corresponding consumption level was recorded. 95% confidence intervals were constructed using
the SEs estimated using the individual household measurements for each event peak.

For each event peak, the corresponding baseline demand peak of that day was determined
by averaging the baseline demand over all households for each 30-minute settlement block and
selecting the maximum value. This was designated the “day peak”. The 95% confidence intervals
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were constructed using the value of baseline standard deviation model (introduced in Section 8.2.2)
at the time of the day peak.
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Figure 8.8: Day peak (blue) and event peak (green) demand with respective 95% confidence intervals
(N = 988).

Figure 8.8 shows the values of the event peak and day peak demand for each low price event
in the trial. Events are sorted in order of the magnitude of the day peak. While many of the low
price events do not cause demand to exceed the expected peak of the day, it can be seen that a
little more than half of the events observed lie close to or exceed the expected day peak.

The distribution of peak breaches shows no obvious sign of depending on the expected peak
demand of the day. As the expected peak demand is highly dependent on season of year and
day-of-week, this suggests that peak increases may be possible during all season and day types an
interpretation which is investigated further in the next section.
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Figure 8.9: Event peak to day peak ratio with 95% confidence intervals (N = 988).

To more clearly observe the potential impact of low prices on daily peak loads, we plot the
ratio of event peak to day peak consumption, shown sorted by this ratio in Fig. 8.9. Due to the
uncertainty in the distribution of the ratios (normality cannot be assumed here), 95% confidence
intervals were constructed numerically. For each low price event this was computed as follows: The
demand of the day and event peaks were modelled as normally distributed random variables with
parameters of the mean and SE of their respective household demand measurements. The ratio of
these random variables was sampled 106 times and the interval that contained 95% of the sorted
values, centred about their mean, was used as the confidence interval.

Ten events (shown in red) resulted in peak load levels that significantly exceeded the baseline
peak, and twelve further events (yellow) are not incompatible with an increase in peak load at the
95% confidence level. Furthermore, the measured peak load during the red events exceeded the
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baseline load by 10% on average. This suggests that the broadcast of low price signals may cause
significant increases in peak load, in the order of 10% above the baseline peak level.

8.3.2 Relationship of peak increases with time of day
The lack of correlation between peak increases and the magnitude of the expected day peak (shown
in Fig. 8.8 and discussed in the previous section) indicates that peak-increasing events may occur
across all seasons, and possibly days of the week. Here, the relationship with type of day (weekday,
weekend) and time-of-day is investigated.

We compute the demand to day peak ratio for each actual demand measurement during the
low price events. This provides a clearer and more complete overview than the analysis in Fig. 8.9,
which only selected the peak level. This approach uses the demand measurements taken during
the low price events to form a visual map of the ratio of low price demand to the expected peak
demand during the respective day.
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Figure 8.10: Map of the event-peak to day-peak ratio in chronological order, plotted against hour-of-day.
Grey backgrounds indicate events that took place during the weekend.

Figure 8.10 shows the image created by the above process. The low price event days are listed
along the x-axis in chronological order. For each demand measurement in each low price event, the
ratio to day-peak demand is plotted at the corresponding time-of-day on the y-axis. The colour of
the measurement point is used to indicate its value. Weekend events are indicated by grey shaded
background. Because trial days begin and end at 5am, some events straddled two days. As such,
the 48 low price SF events appear across 58 discrete days.

It is immediately evident that most of the peak increases occurred during weekday evenings or
weekends. An exception to this trend was the event at index number 26, on 12 July 2013, where
the demand on a Friday afternoon exceeded the anticipated daily peak. This event, which may
be caused by summer holidays, suggests that care must be taken to anticipate peak load increases
even on weekday afternoons. Interestingly, weekday morning events were not observed to pose
significant risk of peak increase. As was suggested in the previous section, there does not appear
to be a seasonal trend. The low price events were spread, approximately evenly, throughout the
year, and yet the same general pattern can be seen in all weekday and weekend events, respectively.
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These findings should be viewed in the context of the trial. A number of factors have the
potential to greatly change consumer’s response to low price signals. Changes to the value of the
low price signal, or to influencing factors such as the default or high price, may increase or decrease
motivation to respond. Furthermore, increased penetration of home automation technology may
enable households to respond at times that they currently find inconvenient, such as while they
are out of the home or while they are sleeping.

8.4 Summary and conclusions
This chapter has considered the effects of dynamic time of use tariffs on network constraint man-
agement. A statistical analysis of the trial data was performed in order to quantify opportunities
and risks from a distribution network operator (DNO) perspective.

Predictability of Constraint Management events. First, the performance of the dynamic
Time-of-Use (dToU) trial group over the Constraint Management (CM) trials was analysed with
the aim to identify predictive models for the tariff-induced load reduction. Two linear models were
identified that match the observed demand response (DR) values: a demand-proportional model
and a model where the DR depends linearly on temperature. The simplest model identifies the
magnitude of DR as 8.0% of the baseline demand during the peak period (95% confidence range:
7.3%-8.7%). In addition to this descriptive model, a predictive model was derived suggesting
that future constraint management events for the same trial population would result in a demand
reduction between 4.7% and 11.2% of baseline demand (95% confidence).

It should be noted that the two derived models are heuristic models that relate the observed
DR to the most descriptive observables. These do not necessarily imply a causal relation, and
relevant factors may be omitted if they are not strictly necessary to explain the data with the
observed accuracy. Data from future trials and commercial rollout of dynamic time of use tariffs
will provide opportunities to refine these models.

Network capacity contribution. The next step in the analysis was the extrapolation beyond
the trial setup, considering an arbitrary number of households of unknown composition. This
reflects the situation where the DNO arranges for high-price signals to be broadcast to a set
of households in order to alleviate network constraints. To quantify the extent to which DR can
alleviate network constraints, the capacity contribution of DR was defined as the change in required
network capacity that results from the use of the dToU signal. Here the required capacity is defined
in probabilistic terms as the capacity that is needed in order to satisfy the expected maximum
demand plus a safety margin to cover random load fluctuations to within a stated prediction
interval (i.e. after-diversity maximum demand).

It was shown that the capacity contribution of DR can be decomposed into two components:
mean response and variance response. The variance response results from changes in the variance
of consumption levels between households. In the case of the constraint management events, the
high-price signal was always found to reduce the variance of household consumption levels, even
more than suggested by the mean load reduction. This is consistent with trial participants opting
to switch off or postpone the use of discretionary large loads, thus reducing the propensity of large
load peaks. The variance response thus has the effect of boosting the capacity contribution of DR,
as a lower capacity margin is required to anticipate peak load fluctuations.

Capacity contribution of Constraint Management events. To get an impression of the
impact that the variance reduction effect has on the capacity contribution, its value was computed
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across a range of aggregation levels. Furthermore, the consumption distribution of the dToU trial
group for each of the events was used as a set of hypothetical collective responses from which
the households were sampled, effectively providing a sensitivity regarding response variability. In
all cases, the variance contribution boosted the capacity contribution, but by an amount that
decreases with the aggregation level. A boost of 25% compared to the mean response was observed
at a mean DR capacity contribution of 50 kW, decreasing to 10% at 1 MW and 5% at 10 MW. These
are significant figures, but they are outweighed by the observed variability in the mean response
itself, with fluctuations of 40% or more around the expected value. Therefore, in most cases, the
additional contribution of variance response may be ignored without material consequence.

Risk to the network from low price induced demand spikes. Finally, the focus shifted to
potential conflicts between the DNO’s local network management aims and the supplier’s incentive
to respond to wholesale electricity markets. At times of abundant wind power availability, the
suppliers may broadcast low prices to consumers in order to incentivise demand shifting. However,
the resulting additional demand may boost local demand far above previously anticipated levels
and thus interfere with network operations.

The extent to which demand may be boosted by low prices was analysed using data from
the Low Carbon London (LCL) Supply Following dToU trials. It was confirmed that there is
a considerable risk of increasing the load on distribution networks, with 22 out of 48 low price
events achieving maximum loads that are consistent with or higher than the daily peak load, and
10 of those showing load levels that are significantly higher than the baseline (95% confidence).
The enhanced load peaks all occurred on weekday evenings and weekend afternoons, but their
occurrence does not appear to depend on the magnitude of the expected peak demand of the day.
We note that these findings must be taken in the context of the trial: changes to the price signals
may increase or reduce motivation to respond, while increased penetration of home automation
may make it easier for consumer to respond at hitherto inconvenient times (e.g. sleeping or working
hours).
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Chapter 9

Metadata analysis

As part of the Low Carbon London (LCL) residential dynamic Time-of-Use (dToU) tariff trial,
substantial metadata was collected on participating households. This chapter presents a correlation
analysis of these metadata variables. Spearman’s rank correlation coefficient was use to analyse
the relationships between some 200 variables. The significant correlation coefficients were then
used to construct weighted correlation network graphs in order to display and further analyse the
relationships. The chapter begins with a description of the data that was analysed, moving on to
the details of the analysis approach and a results section where the findings are discussed.

9.1 Data

This section describes the data set to be analysed, including the data cleansing and encoding that
was performed in order to create the array of numerical variables necessary for input into the
correlation analysis.

9.1.1 Sources

Data sources are divided into two high level categories; primary and metadata. Primary variables
are all those that were calculated using smart meter (SM) consumption data and include demand
response (DR), consumption and consumer engagement variables—the analysis of which has been
described in previous chapters. All other variables are considered metadata in that they give
context to the primary variables that are the focus of this investigation.

Raw metadata was gathered from the below sources:

• CACI’s Acorn consumer classification data [87]: This consisted of a socioeconomic classifica-
tion for each household in the trial. Acorn Group consisted of 17 classes, {A, · · · , Q}, which
roughly correspond with decreasing household wealth.

• Appliance survey: Before the commencement of the LCL dToU trial, an appliance ownership
survey was sent to every household. Survey questions focused on the physical properties of
the accommodation and the electric appliances contained within. 1,870 submissions were
received from the non-time-of-use (nonToU) group and 990 from the dToU group.

• Attitudes survey: After the completion of the trial, a survey that focused on consumer’s
attitudes to the dToU tariff was sent to each household in the dToU group. 714 submissions
were received in total.
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9.1.2 Cleansing and encoding

Administering and collating survey response data was performed by LCL programme partner EDF
Energy. High level details of the process are recounted here in order to provide context.

Trial participants had the option to respond to surveys either by returning hand written re-
sponse forms or using an online web form. In the case of the hand written forms, these were
transcribed into a database by hand.

Survey results were made available from the LCL Operational Data Store (ODS) (see Section 4.9
for more details) in raw (as transcribed) string format. Results were stored in one table with a
column for each question and a row for each response, keyed to respective participants via a unique
and anonymous code.

During data checking it was noted that multiple responses existed for 15 trial participants.
This may be due to some responders replying in both paper and online format, or transcription
error. The actual cause was unknown but the low number of such cases meant that it was not
a major concern for the quality of the overall dataset. So as not to unnecessarily discard data,
duplicate survey responses were combined so that, for questions where only one response existed,
that response was taken, and for questions where multiple responses existed, the first response was
arbitrarily taken.

Our household would prefer to remain on a tariff like Economy Alert if possible.
(Please select one of the following)

• Strongly agree
• Agree
• Neither agree nor disagree
• Disagree
• Strongly disagree

Figure 9.1: Example of a question from the End of Trial survey. “Economy Alert” was the name given to
the dToU tariff.

While primary data was already in numerical form, metadata had to first be encoded into a
numerical format. Survey answers were encoded into three different numerical types:

• Nominal: Used to convert categorical fields and true/false statements into binary form; 1 if
the item was present or true, 0 if not. For example, 1 if the household was in the dToU group
and 0 if not.

• Ordinal: Used where there were multiple responses and it was possible to place these re-
sponses into a qualitative rank order, but not quantitatively state the extent to which one
response was greater or less than another. For example, the degree to which a responder
agrees with a given statement in the survey. An example of such a question is shown in
Fig. 9.1.

• Interval scale: Used where there were multiple responses and the responses were quantifiable
in such a way that the relative differences between one response and another were definable.
For example, the number of people in a household.

Not all survey responses had a direct one-to-one mapping with the resulting encoded variables.
Some responses were combined when it was believed that too fine detail would result in the variables
being under populated with responses. For example, the details of the ages and genders of the
household occupants were dealt with on a person by person basis in the survey, but were encoded
as the total number of occupants within a chosen age range in one variable, and the total number
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of occupants of a given gender in another. There were many different ways variables could be
combined in such a manner; our choices were based on intuition and preliminary data analysis.
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Figure 9.2: Depiction of the sparsity of the design matrix. Variable index corresponds to those listed in
Appendix B.1.

Some 200 encoded variables were created by this process. The analysis ready variables were
represented by a floating point array, the design matrix, in the shape 2, 560 × 200. Here, columns
were used to represent each variable and each row represented a household in the trial. A full list
of the 200 variables, including number of responses for each, is given in Appendix B.1. That the
number of rows was significantly less than the total 4,756 households chosen for analysis was due
to some households not responding to the surveys. A sense of the sparsity of the design matrix is
given by Fig. 9.2. The array was stored using the Python language NumPy [103] float64 data type.
This allowed missing values to be encoded as NaNs (not a number) for efficient computational
analysis.

9.2 Analysis

9.2.1 Correlation calculation

Correlation coefficients can be calculated in a number of different ways. Two of the most common
methods are “Pearson’s product moment” and “Spearman’s rank”. The principal difference is that
the former is a measure of the linear dependence between two variables and the latter a measure
of a more general monotonic relationship.

Pearson’s correlation coefficient is defined as:

ρX,Y =
Cov(X, Y )

σXσY
(9.1)
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where X and Y are the variables, Cov is the covariance function and σX and σY represent the
standard deviation of each variable. Spearman’s rank correlation coefficient is calculated in the
same way as Pearson’s with the addition that both variables are converted to rank indices before
computing Pearson’s correlation coefficient.

The ordinals used in Spearman’s method begin at 1 with an increment of one for each subsequent
ordinal. Equal values within variables are assigned the same rank ordinal where that ordinal is
equal to the average of their positions in the ascending order of the values. For example, [1, 2, 2, 3]
becomes [1, 2.5, 2.5, 4] when converted this way.

The objective of this metadata analysis was to discover any relationships that might exist
between pairs of variables. With linear relationships being considered a subset of the more general
set of monotonic relationships, Spearman’s rank correlation coefficient was the more appropriate
in this respect. In addition, as some variables were encoded as ordinals—hence would effectively
be equal to Spearman’s method even if processed using Pearson’s method—and others as interval
scales, use of Spearman’s rank correlation method ensured a consistent treatment across all variable
types.

9.2.2 Variable groups

In order to aid the analysis of the results involving hundreds of variables, some high level vari-
able groups were defined. Each group had a single common theme and one group was assigned
to each variable. Grouping was performed manually with judgement used in both selecting the
group themes and assigning variables to groups. Table 9.1 lists the defined variable groups. A
comprehensive list of all variables, including their assigned groups, can be found in Appendix B.1.

These variable groups were particularly useful for filtering results and in visually representing
the variable relationships in the weighted correlation network graphs described later.

9.2.3 Root variables

A number of variables were chosen against which all other variables would be correlation tested.
These variables, so called because they formed the root nodes in the later described correlation
network analysis, are listed in Table 9.2. The choice of root variables mainly focussed on DR and
various stratifications thereof, with engagement rank and annual consumption included as they
were shown to be strong determinant DR in chapters Chapter 6 and Chapter 8 respectively. The
binary variable Is_dToU was included in order to test whether there were any significant differences
between the dToU and nonToU groups. In total, 25 root variables were chosen from the full set of
200 variables listed in Appendix B.1.

The motivation for choosing a small set of root variables, as opposed to performing the cor-
relation analysis on all variables, was related to the statistical significance of results. As will be
explained in Section 9.2.4, the stringency of the p-value threshold for significance is dependant on
the total number of correlation tests performed. This is because each test increases the probability
that a false positive may be returned (known as type I error). As such, it is desirable to limit
the number of tests to those that are of interest lest the p-value threshold become so stringent
that genuine correlations are rejected as insignificant (known as type II error). While there are
workarounds for analysis where large numbers of tests are performed [104], the tradeoff between
simplicity of design and the value of learning that may result from a more complex approach were
considered unjustified for this analysis.
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Table 9.1: List and description of the high level metadata variable groups. The full list of 200 variables is
given in Appendix B.1.

Group Description

Accommodation Physical parameters of the accommodation
Appliances Numbers of appliances in the premises
Behaviour_change Behaviour that has changed as a result of the dToU tariff
Behaviour_inflexible Behaviour that was not changeable despite the tariff
Behaviour_normal Behaviour before the trial
Behaviour_timer_use Use of timers to enable load shifting
People Ages, genders and numbers of people living in the accommodation
Primary Variables that were derived from the SM consumption data
Report_high Self reported ability to shift load away from high price periods, for appliances and times
Report_low Self reported ability to shift load into low price periods, for appliances and times
Response_helper Behavioural and appliance aspects that helped in responding to the tariff
Response_limiter Behavioural and appliance aspects that hindered in responding to the tariff
Trial_impressions Attitudes and sentiments towards being on the dToU tariff

Table 9.2: List of root variables against which all other variables were tested. This is a subset of the 200
variables listed in Appendix B.1.

Index Group Alias Description

1 Accommodation Acorn_group CACI socioeconomic classification
100 Primary All_default_price DR signal at default price
101 Primary All_high_price DR signal at high price
102 Primary All_high_price_relative DR/baseline signal at high price
103 Primary All_low_price DR signal at low price
104 Primary All_low_price_relative DR/baseline at low price
105 Primary CM_high_price DR signal at high price for CM events
106 Primary Consumption_annual Total annual consumption
107 Primary DR_training_index DR signal calculated over the baseline model training

index
108 Primary Engagement_rank Non-parametric consumer engagement rank (lower is

better)
109 Primary Is_dToU Binary 1 if in dToU group, 0 if in nonToU group
110 Primary SF_high_price DR signal at high price for SF events
111 Primary SF_high_wd DR signal at high price for SF weekday events
112 Primary SF_high_wd_00_07 DR signal at high price for SF weekdays events between

00h and 07h
113 Primary SF_high_wd_07_10 DR signal at high price for SF weekdays events between

07h and 10h
114 Primary SF_high_wd_10_17 DR signal at high price for SF weekdays events between

10h and 17h
115 Primary SF_high_wd_18_21 DR signal at high price for SF weekdays events between

18h and 21h
116 Primary SF_high_we DR signal at high price for SF weekend events
117 Primary SF_low_price DR signal at low price for SF events
118 Primary SF_low_wd DR signal at low price for SF weekday events
119 Primary SF_low_wd_00_07 DR signal at low price for SF weekdays events between

00h and 07h
120 Primary SF_low_wd_07_10 DR signal at low price for SF weekdays events between

07h and 10h
121 Primary SF_low_wd_10_17 DR signal at low price for SF weekdays events between

10h and 17h
122 Primary SF_low_wd_18_21 DR signal at low price for SF weekdays events between

18h and 21h
123 Primary SF_low_we DR signal at low price for SF weekend events
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9.2.4 Threshold p-value
The significance of correlation results was determined by calculating their associated p-values, a
form of null-hypothesis test. This section describes the approach taken to determining threshold
p-value (the value below which results were considered significant), the Fisher transformation
method used to calculate each p-value, and a validation of this method against an alternative
non-parametric method using a bootstrap approach.

The significance of the calculated sample correlation coefficients r were measured by their
respective p-values p. P-values are an estimate of the probability of measuring a value of r under
the assumption of a null hypothesis; that the true population correlation coefficient, ρ, equals zero.
An observed value of r was considered significant if p ≤ α, where α is a chosen threshold value.

For this analysis, α is chosen so that the probability of a single false positive result is less than
0.05, a value which is customary in statistical inference [74]. The Bonferroni inequality [104] is
used to determine the threshold p-value.

For a single test, α indicates the threshold probability of receiving a false positive, so (1 − α) is
the probability of not receiving a false positive. With 200 variables in total and 25 of these chosen
for full analysis against all the others, 200 × 25 correlation tests were conducted. α can therefore
be found by solving:

(1 − α)200×25 ≤ 1 − 0.05

Using the approximation that log(1 − x) ≈ x when x is small,

α ≈ 0.05
200 × 25

= 10−5 (9.2)

Correlation coefficients were considered to be equally significant if their p-values were less than
10−5. Correlation coefficients with p-values above the threshold were disregarded as insignificant.
The next sections discuss how the p-values were calculated.

9.2.5 Calculating the p-value
Two approaches were looked at for the calculation of correlation coefficient p-values; the Fisher
transformation and bootstrapping. Of these, the Fisher transformation was chosen. This section
first introduces the Fisher transformation, followed by a justification of its use through comparison
with the alternative bootstrap method.

Fisher transformation

The “Fisher transformation” can be used to calculate the p-value of a sample correlation coefficient
r. The method is a standard approach and it is used in major commercial statistics packages such
as SAS [105].

The Fisher transformation transforms the measured sample correlation coefficient r into Zr, an
approximately normally distributed variable with expectation value E(Zr) and variance V (Zr), as
defined below:

Zr = tanh−1(r) =
1
2

log
(

1 + r

1 − r

)
(9.3)

E(Zr) = ζ +
ρ

2(N − 1)
(9.4)

V (Zr) =
1

N − 3
(9.5)

where

ζ = tanh−1(ρ) (9.6)
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ρ is the population correlation coefficient and N indicates the number of samples that r was
calculated with. From Zr, a standard Z-test may be used to determine the p-value of r, which is
the probability of the null hypothesis H0; that the true population correlation coefficient ρ equals
zero and therefore the calculated sample correlation coefficient r is the result of chance alone.

As can be seen from the above equations, if ρ0 = 0 then E(Z0) = 0. The two tailed p-value, p, is
then given by the fractional area in the tails of the normal distribution function N , parameterised
with mean equal to 0 and variance equal to V (Zr), such that:

p = 1 −
∫ Zr

−Zr

N (Z) dZ (9.7)

Comparison with bootstrap

The use of the Fisher transformation in conjunction with a Z-test requires the assumption that the
random error is from a bivariate normal distribution. As a sense check on the appropriateness of the
Fisher transformation method, a selection of calculated p-values were compared to an alternative
approach known as bootstrapping. Bootstrapping is a non-parametric method and therefore make
weaker assumptions regarding the distribution of errors. Major discrepancies between p-values
calculated by the two different approaches would indicate that one of the methods is a poor
approximation of the true significance of results. Conversely, if the two approaches produced
similar results, it may be reasonable to assume they are both equally good methods for calculating
significance.

For any two given measurement vectors of length N , calculating the p-value of their correlation
coefficient r using the bootstrap method involved the following steps:

1. N pairs of measurements were randomly picked, with replacement, from the measurement
vectors

2. The correlation coefficient of the resulting vectors is calculated

3. Steps 1 and 2 are repeated 20,000 times so as to build a set of hypothetical correlation
coefficients

4. The actual correlation coefficient of the measurement vectors is calculated

5. The percentile of the actual correlation coefficient within the sorted array of hypothetical
correlation coefficients is calculated

6. This value is doubled so as to provide an estimate of the two tailed p-value

Using the above described process, the Fisher transform calculated p-values were compared to
bootstrap calculated p-values for a number of different variable combinations. For this illustration,
Acorn group was chosen as it is one of the few variables that had a value for every household in the
trial. This was tested agains all 200 variables in the data set, thus ensuring a representative range
of sample numbers and variable types. A full list of variables with associated sample numbers can
be found in Appendix B.1.

Figure 9.3 shows the results of this process. It can be seen that both the Fisher transformation
and bootstrap methods span a similarly wide range of p-values, as would be expected given the
200 different variables tested.

Though the histogram of the differences between the p-values shows that this difference is gen-
erally small—for 90% of the 200 variables tested, the difference between the correlation coefficient
p-values was less than 0.007—it is still large in relation to the chosen value of α(= 10−5). This is
due to limits in the resolution of the bootstrap method, which depends on the number of samples,
their distribution and the number of bootstrap iterations performed. Nevertheless, the similarity
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Figure 9.3: Comparison of calculated p-value histograms using the both the Fisher transformation and
bootstrap methods.

of the bootstrap method output suggests that the Fisher transformation is an appropriate method
for determining the p-value of the correlation coefficients.

Being a purely analytical method, the Fisher transformation is only limited by the accuracy of
its founding assumption that the sample vectors follow a bivariate normal distribution. A further
advantage of the Fisher transformation over the bootstrap is that, with it being one calculation,
it is computationally cheap to perform, while the bootstrap approach requires tens of thousands
of repeated calculations for each returned p-value. The Fisher transformation was chosen and all
p-values henceforth reported were calculated using this method.

9.2.6 Weighted correlation network analysis

Weighted correlation networks can be applied to most high dimensional data sets and are often
used in biology for the analysis of gene expression data [106]. Such networks allow relationships
between large numbers of variables to be easily visualised in the form of a graph, and provide
a platform for analysis techniques, such as clustering and data reduction, that are based within
graph theory.

For this analysis, we used the calculated pairwise correlation coefficients to construct a weighted
network in order to visualise the relationships between variables in graph form. Network graphs
were constructed so that each node represented a variable and connecting edges between these
nodes represented the correlation between the two variables. Edges were not directed and were
weighted according to the magnitude of their corresponding Spearman’s rank correlation coefficient,
normalised so that maximum edge weight in the resulting graph was 1 for the maximum correlation
coefficient and 0.1 for the minimum correlation coefficient—for visualisation purposes that will
become apparent later in this section, it was necessary to ensure a minimum level of edge weighting.
Edges were only added when the associated correlation coefficient p-values were below the threshold
level of 10−5. Nodes with no edges (with no significant correlations) were removed from the graph.
Self looping edges (self correlations; one by definition) were also removed.

A number of graphs were created from individual subsets of the root variables, shown in Ta-
ble 9.2, in order to investigate different relationships. For each root variable, correlations were
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calculated for all other variables in the data set, listed in Appendix B.1. As already described,
only variables that had significant correlations with other variables were included in the resulting
graphs.

Graph were displayed using the FruchtermanReingold force directed placement algorithm [107]
as implemented by the NetworkX [108] Python language library. The FruchtermanReingold place-
ment algorithm takes its inspiration from physical systems, modelling edges as springs and nodes as
metal spheres with equal electrical charge so that edges attract according to Hook’s law and nodes
repel according to the Coulomb force law in two dimensional space. The algorithm is initialised by
placing the graph nodes randomly within the graph area, then iteratively updating their positions
according to the forces acting upon them. Making a departure from the physical analogy, instead
of setting acceleration proportional to the net force on each node, it is the velocity which is instead
set. This ensures that, instead of the dynamic equilibria that might be reached in the physical
world, the node positions converge towards a static equilibria. The algorithm takes a parameter, k,
which moderates both the attractive and repulsive forces in such a way that it defines the optimal
distance between nodes.

In this analysis, the value of parameter k was determined manually for each graph through
experimentation in order to achieve an aesthetically pleasing layout. For all graphs, 10,000 updates
of the FruchtermanReingold node layout algorithm were performed in order to calculate final node
positions; a number that was more than enough to ensure the observed clustering structures were
broadly replicable over multiple runs.

For graphical representation, edge weights (which indicate strength of correlation) were depicted
by line thickness and variable groups were depicted via the shape and colour of the nodes. Nodes
were also labeled by variable index number, according to the table given in Appendix B.1, so that
the individual variables are identifiable if required.

The relative positions of the nodes joined by edges can then be used to infer the relative strength
of the relationships between them; nodes that are closer have a stronger relationship than nodes
that are further away. When interpreting the graphs it should be remembered that the attractive
(and repulsive) forces acting on nodes are additive, so it is possible for multiple weak relationships
pulling in the same direction to have the same effect as a single strong relationship.

9.3 Results
This section presents the results of the correlation analysis and subsequent weighted correlation
network analysis. Correlation results were calculated for each of the root variables, listed in
Table 9.2, against all other variables, listed in Appendix B.1. As the results of the correlation
analysis consisted of large volumes of tabled data, they will not be reproduced in this section
save for the single example, Table 9.3 that lists significant correlations with Acorn group. This
illustrates the nature of the raw results; for reference, a full set of correlation results are provided
in Appendix B.2.

Results presented in this section are sectioned according to the root variables under investiga-
tion. Weighted correlation network graph figures presented in this section were built according to
the method described in Section 9.2.6, and readers should refer here for the details of its imple-
mentation and interpretation.

9.3.1 Experimental group
Other than a low correlation with Acorn group of -0.09, there were no significant correlations with
the binary variable Is_dToU. The weak, negative correlation with socio-economic group suggest
that there may be a slight skew towards more wealthy households in the dToU group.
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Table 9.3: Example results table for root variable “Acorn_group” group (where lower is wealthier) showing
all significant correlations. Significance was defined as being when the Spearman correlation
coefficient, r, has a two tailed p-value, p, of less than 10−5. N indicates the number of sample
pairs used to calculate r.

Index Group Alias N r p

29 Appliances N_dishwashers 2,425 -0.27 3.48E-43
24 Appliances Lighting_N_halogen 2,425 -0.24 8.96E-34
69 Behaviour_normal Work_from_home 2,333 -0.23 1.77E-30
19 Accommodation N_rooms 2,396 -0.22 9.06E-28
41 Appliances N_printers 2,425 -0.20 2.63E-23
18 Accommodation N_bedrooms 2,395 -0.17 1.43E-17
106 Primary Consumption_annual 2,560 -0.17 1.26E-18
11 Accommodation Heating_interface_set_times 2,256 -0.17 1.55E-15
38 Appliances N_ovens_electric 2,425 -0.16 3.20E-16
42 Appliances N_routers 2,425 -0.16 1.99E-15
27 Appliances Lighting_N_traditional 2,425 -0.16 4.85E-15
36 Appliances N_laptop_PCs 2,425 -0.13 4.38E-11
40 Appliances N_portable_electric_heaters 2,425 -0.12 6.35E-10
28 Appliances N_desktop_PCs 2,425 -0.12 2.86E-09
25 Appliances Lighting_N_LED 2,425 -0.12 1.05E-08
71 Behaviour_normal Feeling_about_lifestyle_and_environment 2,388 -0.11 3.69E-08
5 Accommodation Has_gas_heating 2,402 -0.10 1.04E-06
15 Accommodation Is_house 2,349 -0.10 1.60E-06
109 Primary Is_dToU 2,560 -0.09 9.52E-06
14 Accommodation Is_flat 2,349 0.10 1.60E-06
9 Accommodation Has_wall_insulation 1,555 0.13 1.48E-07
2 Accommodation Has_double_glazing 2,253 0.16 9.81E-14
105 Primary CM_high_price 887 0.16 1.92E-06
132 Report_high Lighting 610 0.18 6.38E-06
148 Report_low Kettle 568 0.20 2.16E-06

The overall lack of any other correlations with Is_dToU indicates that both groups contain sim-
ilar mixes of households with respect to the variables analysed; this provides a post-hoc validation
of the objectives of the trial recruitment process (Section 4.4).

9.3.2 Annual consumption

We continue with annual consumption as it is a well understood variable [109, 110] and therefore
corroboration of expectations here may serve as a form of validation of the analysis method.

The annual consumption variable can be seen visually represented by an orange hexagon (index
94) in Fig. 9.4. Also, grey circles, grey squares and brown circles represent the accommodation,
appliance and people related variables respectively.

As expected, the strongest correlations with annual consumption were with variables represent-
ing the numbers of appliances, the physical characteristics of the accommodation (number of rooms
etc.) and the numbers of people in the household. In addition to these these variables groups, the
annual consumption was seen to be correlated with “Trial impressions” and one “Behaviour nor-
mal” variable, represented by the yellow and green circles respectively. At index number 72, the
green circle represents the behaviour of working from home, so it is unsurprising that this has a
positive correlation with annual consumption. The yellow circle at index number 189 represents
the amount of money that people feel they would need to save in order for being on a dToU like
tariff to be worthwhile. For this too, it is unsurprising that people with larger annual electricity
bills wish for greater savings.
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Figure 9.4: Weighted correlation network graph where DR representing nodes are measured in units of
absolute DR (kW).

9.3.3 Engagement rank

Engagement rank, first introduced in Chapter 6, is pictured as the light blue hexagon in Fig. 9.4,
correlated most strongly with the average high and low price DR metrics (red and dark blue), as
expected.

The next strongest correlations were self reporting of response to price signals, indicated by the
red and blue circles for high and low price respectively. These variables indicate the self reported
use of appliances for shifting and recognition of specific times that were good for shifting. At high
price, for example, these variables included behaviours such as being able to respond easily using
various appliances; electric oven, electric shower, ironing and washing machine. The corresponding
indices, 115, 116, 118, and 125, can be seen close to the engagement rank node. A similar pattern
is observed for low price self reported response behaviour.

Response limiters (indicated by orange downwards facing triangles in the graph) of tariff com-
plexity, not knowing when price changes were, and savings being too small featured strongly in
association with low trial engagement. Variables indicating fixed appliance usage routines, includ-
ing one specifically for inflexible usage of the washing machine, also correlated here.

The engagement rank was calculated using a data driven algorithm (Section 6.3) and was
designed to detect the extent to which a response was a result of the deliberate choices of the
consumer. Another way to measure deliberate choices is through survey responses to behavioural
questions. Therefore, that the survey responses pertaining to behaviour are amongst the strongest
correlations with the engagement ranking metric, is a positive validation of its functionality and a
validation of the value of self-report methods too.

These findings allude to the possibility of conscious behaviour change as people become more
experienced at responding to dToU like tariffs. This in turn suggests that the response level from
the more engaged household in this trial may be representative of a larger fraction of the population
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in a future where the populace has gained more experience at responding to such tariffs.

9.3.4 Acorn group

Acorn group was encoded according to the alphabetical ordinals of their group labels so that group
{A, · · · , Q} became {1, · · · , 17}, where lower numbers loosly correspond to increasing household
wealth. The Acorn variable is depicted in Figs. 9.4 and 9.6 as a green hexagon.

Correlations with Acorn group were nearly all appliance ownership or accommodation related,
and the number of appliances owned and rooms in the accommodation correlated positively with
increasing wealth. The only significant Primary DR metric was that of Constraint Management
(CM), where high price response correlated negatively with increasing wealth. As expected, this
suggests that lower income are more price sensitive.

It was interesting to note that the number of halogen light bulbs and working from home both
correlated with increasing wealth, while energy efficiency measures, such as double glazing and
wall insulation, had a negative correlation with increasing wealth.

9.3.5 High price demand response

High price absolute DR is represented by the red hexagon in Fig. 9.4, and also in Fig. 9.5, where
the two DR root variables (high and low price DR) are isolated for clarity. Absolute high price DR
is calculated over all events in the trial year as defined in Eq. (5.7). It should be noted that, as high
price events incentivise a reduction in demand, a negative correlations correspond to increasing
response magnitude.

The closest relationships were found to exist with accommodation parameters and appliance
number variables (excluding other high price DR metrics). The strongest of these correlations
were variables 16 and 17, indicate the number of bedrooms and total number of rooms respectively,
and 27 and 45 indicate the number of dishwashers and tumble driers respectively. Three variables
relating to the numbers of people were also present, the strongest correlating of these being index
87; the total number of people in the household.

It is concievable that the above mentioned variables are all effectively proxies for overall con-
sumption level and that this is the underlying driver of high price DR magnitude. This hypothesis
is investigated later.

Self reported appliance responsiveness showed strong correlations with the ability to shift the
use of tumble driers, dishwashers, ironing and the use of the washing machine, here listed in order
of strength of relationship. Reported flexibility in when consumers could respond was also seen
to be important. In order of strength, these were; weekday afternoons, weekday mornings and
Saturdays.

Of the response helper variables, only the use of substitute fuel correlated with high price DR,
but this correlated strongly. The substitute fuel was assumed to be gas as the use of smoke emitting
fuels has been banned in London [111]. This alludes to synergies between the use of gas for heating
and cooking, and reducing stress on the electricity system.

Like low price DR response (discussed next), forgetting price changes was seen to be a response
limiter. However, unlike low price DR, this was found to be the only significant response limiter.

9.3.6 Low price demand response

Low price absolute DR is represented by the blue hexagon in Fig. 9.4, and also in Fig. 9.5, where
the two DR root variables (high and low price DR) are isolated for clarity. Absolute low price DR
is calculated over all events in the trial year as defined in Eq. (5.7). It should be noted that, as
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Figure 9.5: Weighted correlation network graph with root nodes representing absolute DR (kW) only. Only
variables correlated with high and low price DR are shown.

low price events incentivise an increase in demand, a positive correlations correspond to increasing
response magnitude.

In contrast to high price response, there were no appliance ownership correlations and almost
no significant accommodation factors; only the number of rooms in the accommodation were
significant. This suggests that many households can respond to low price signals if they are
motivated.

Low price DR is strongly correlated with self reported response variables for both the low and
high price events. This is in contrast to the high price DR variable that only correlates with self
reported response at high price. This suggests the hypothesis that good responders to low price
signals may be a subset of good responders to high price signals.

Indeed, the correlation coefficient magnitudes for the high price self reported responses were
generally greater than for low, at around 0.3 and 0.2 respectively. However, this may be a reflection
of a higher price ratio, relative to the default price (Section 4.8.1), at high price than at low price.

The response limiter shared by both high and low price DR was index 159; the variable indi-
cating the extent to which people agreed that forgetting price changes hindered their ability to
respond. Low price DR also correlated with four additional response limiters that were not shared
with high price DR: index 157 and 158 pertained to the specific users of appliances being fixed (e.g.
only some people in the household could/would use the appliance) and to fixed appliances usage
routines, while 160 and 164 were related to the difficulty of increasing electricity consumption and
the savings from doing so being too small. This tallies with the trial impression variable at index
193, that users may consider it worthwhile to sign up to a future dToU tariff if the price events
(low price in this case) were longer and simpler.

A correlation with trial impression variable 182, indicating the extent to which participants
talked about the tariff, was also present for low price DR but not for high.

9.3.7 Relative demand response

Chapter 8 offered two simple models for CM event response level. One of these, Eq. (8.4), was a
one parameter linear model using the baseline demand variable as an input. The implication of this
model is that DR magnitude is proportional to the magnitude of the baseline demand at the time
of the event. In the same vein, in Section 9.3.5, it was noted that high price DR correlated strongly
with variables relating to appliance ownership and the physical parameters of the accommodation,
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Figure 9.6: Weighted correlation network graph where DR representing nodes are measured in units of DR
relative to their annual consumption (kW/kWh).

and that these parameters may be a proxy for overall consumption levels. To test this hypothesis,
DR is transformed so as to be measured as ratio with respect to annual consumption.

Relative DR for household h is calculated as:

Rrel,h =
1

N1 · ah

∑
m∈M1

Rm,h (9.8)

where the annual baseline consumption ah for household h is calculated as

ah =
∑

m∈M2013

Bm,h (9.9)

Rm,h and Bm,h are the DR and baseline demand variables respectively, calculated for household h at
measurement index m, as defined in Eq. (5.5) and Eq. (5.8). M1 is the set of measurement indices
that defined the desired time stratification, and N1 is the cardinality of that set. For example, for
the average relative response at high price over all events, this was the set of measurement indices
during which the high price signal was in effect. M2013 is the set of measurement indices in the
trial year of 2013.

Figure 9.6 shows weighted correlation network graph with the same root variables as Fig. 9.4,
but with the two representing high and low price DR (still represented by the red and blue hexagons
respectively) transformed into annual-consumption relative units.

The most immediate striking observation is that the graph is now clearly divided into two
almost unrelated clusters; one surrounding the DR, and engagement rank variables, and the other,
looser cluster surrounding the annual consumption and Acorn group variables. That the link
between the accommodation and appliance variables and high price DR that existed in Fig. 9.4
has dropped away supports the view that accommodation and appliance variables are proxies for
annual consumption. This suggests that there is little in the way of objective/external data that
can predict annual-consumption relative responsiveness levels.
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Figure 9.7: Weighted correlation network graph with root nodes representing relative DR (kW/kWh) only.

The only remaining link between the two clusters is a relatively weak correlation between num-
ber of rooms in the accommodation, variable 17, and engagement rank. The sign of this correlation
suggest that more engaged consumers tended to have more rooms in their accommodation.

9.3.8 Event type

Stratification of DR by Constraint Management (CM) and Supply Following (SF) event types were
examined using the absolute measure of DR (measured in kW). Figure 9.8 shows the weighted
correlation network graph for root nodes of CM high price response and both low and high price
response for Supply Following (SF) events.
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(CM) and Supply Following (SF) DR (kW) high price CM and SF events, and low price in SF
events only.

High price CM event response correlates more strongly with the accommodation and appliance
ownership variable groups (grey circles and squares) than high price SF event response. These
additional variables represent computer equipment, 39 and 40, the numbers of traditional and
halogen bulbs, 25 and 22, and electric ovens, 36. The signs of the correlation and the variables
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(high price DR is a reduction in demand and therefore negative) indicates that increases in their
numbers corresponds with an increase in CM response magnitude. This makes sense in the context
of discretionary loads being switched off during a high price event. For example, households with
lower efficiency lighting and electric ovens have more demand to reduce.

High price SF response correlates more strongly with self reported responsiveness variables (red
and blue circles) than CM type events. This may indicate a greater conscious effort to respond. It
may also be due to perceptions: With many more SF event days than CM, it may be that, when
estimating self response level, survey responders considered the SF element of the trial to be the
most significant element in their own response and therefore answered with respect to this.

Low price SF response showed similar trends as low price DR over all event types.

9.3.9 Time

Stratifications of DR by a selection of times-of-day and days-of-week were investigated. Average
DR was calculated according to Eq. (5.7) where the sets of measurement indices (M) were limited
to SF event type at the defined times and days. The following time-of-day stratifications were
tested for high and low prices:

• Night: 00:00 to 07:00

• Morning: 07:00 to 10:00

• Afternoon: 10:00 to 17:00

• Evening: 18:00 to 21:00

These were represented for high price in variables 100–103 and for low price in variables 107–110.
Time stratifications were only calculated for weekdays. Stratifications of average DR over all times
of day were made for for weekdays; variables 99 and 106; and weekend days; variables 104 and 111.

In general there were fewer correlations with time stratified DR variables than with the over-
all DR variables. This is probably due to statistical noise introduced by averaging over fewer
events. It was therefore difficult to determine whether differences in correlations between the time
stratifications were the result of statistical noise or a significant feature of the stratification itself.

There were almost no significant correlations outside the primary variable group for both high
and low price DR at night. The only exception to this was washing machine use (variable 125)
for low price events. The number of correlations increased in the morning period with 6 and 8
non-primary correlations for high and low price events respectively. The afternoon period showed
the most correlations for both high and low price events, with counts of 15 and 19 respectively.
Correlation numbers then reduced again in the evening, with a count of 6 for both low and high
price events.

The types of correlations observed generally followed the same trends already noted in Sec-
tion 9.3.5 and Section 9.3.6: High price DR tended to correlate with the physical variables of
accommodation and appliance ownership, while low price DR correlated with the self reported
response variables for both low and high price. A full list of significant correlations can be found
Appendix B.1.

There were no major differences in the relationship trends between weekday and weekend DR
at both low and high price. Though it is worth noting that the self reported response variables for
the period in question (weekdays or weekends) were always significantly correlated for that period.
This may be taken as validation of the self-report survey method for assessing engagement.
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9.4 Summary and conclusions
This chapter presented a correlation analysis of the metadata variables collected in the Low Carbon
London (LCL) residential dynamic Time-of-Use (dToU) trial. Spearman’s rank correlation coef-
ficient was used to analyse the relationships between metadata and primary variables that were
derived from the smart meter (SM) collected consumption data, such as demand response (DR).
Some 200 variables were analysed in total. Statistically significant correlations were also used to
produce weighted correlation network graphs in order to display and further analyse the relation-
ships. Only correlation coefficients with a p-value of less than 10−5 were considered significant.
Key findings were:

Annual consumption. Annual consumption was seen to correlate strongly with variables repre-
senting physical parameters of the accommodation and appliance ownership. In addition, working
from home was found to increase annual consumption.

Engagement rank. Engagement rank was seen to correlate strongly with both high and low
price DR metrics and the self reported responsiveness data that was collected via survey. This cor-
relation alludes to the possibility of increasing consumer responsiveness through behaviour change
and also acts as a validation of the power of the data driven engagement ranking technique intro-
duced in Chapter 6.

Acorn group. Acorn group correlated strongly with physical accommodation and appliance
ownership related variables. Furthermore, increasing wealth was seen to correspond to increased
numbers of halogen light bulbs and decreased uptake of energy efficiency measures such as wall in-
sulation. Correlations with DR related variables were weak, with only one correlating significantly;
Constraint Management (CM) event response at high price.

Absolute high price DR. High price DR correlated strongest with physical accommodation
or appliance ownership related variables. It was suggested that these may be a proxy for the
overall consumption level, and that this is the underlying driver of high price DR magnitude.
Strong correlations were seen between the absolute DR variable and self reported responsiveness
with appliances; tumble drier, dishwasher, ironing and washing machine use, in order of decreasing
strength of relationship. The use of a substitute fuel (assumed to be gas as smoke emitting fuels are
banned in London) also correlated strongly with enhanced DR. This alludes to synergies between
the use of gas for heating and cooking, and the electricity system.

Absolute low price DR. Most striking for low price DR was that, in contrast to high price
DR, there were no appliance ownership and almost no physical accommodation related variable
correlations. Only the number of rooms in the accommodation was significant, but the relation-
ship here was weak. Instead, strong correlations were found for variables relating to self reported
responsiveness. Interestingly, while both were strong, correlation with high price responsiveness
variables were even stronger than for low price responsiveness. This suggests the hypothesis that
good low price responders may be a subgroup of good high price responders—a point that war-
rants further investigation. Response limiters also correlated with reduced DR, with sentiments
of inflexible appliance use cycles and savings being too small both correlating with reduced DR
levels.

Consumption relative DR. Consumption relative DR variables were created to test the premise
that DR response levels were strongly dependent on normal consumption levels. In making the
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switch from high price DR measured absolutely (kW), to an annual-consumption relative metric,
all appliance and physical accommodation variable correlations were seen to drop away. This is
evidence that DR is strongly related to normal consumption levels and that there may be little
in the way of objective/external data that can predict annual-consumption relative responsiveness
levels.

DR by event type. Average DR variables for both CM and Supply Following (SF) event types
were created to examine differences between the drivers for good response in each type. It was
observed that high price CM response correlated much more with physical accommodation and
appliance variables than SF event response.

Time stratifications. Stratifications of DR over both times-of-day and weekend/weekday yielded
no new findings.
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Summary and conclusions

This section presents an overall summary of the work described in this thesis. To provide context,
it begins with a summary of the Low Carbon London (LCL) dynamic Time-of-Use (dToU) trial
design and analysis basis, after which key findings form each of the results chapters are presented.
The chapter ends with suggestions for the further development of this work.

10.1 Trial design and analysis basis
Two trial groups were formed, one to receive the experimental dToU tariff, the other to act as a
reference point for consumption on a standard flat-rate tariff, which we call the non-time-of-use
(nonToU) group. Households were recruited onto the trial by programme partner EDF Energy
from their existing customer base in the London area. For all households, smart meters (SMs)
were installed and consumption was measured at 30 minute intervals. 5,533 households opted into
the trial and, of these, 1,119 opted into the experimental dToU tariff group. Throughout the
recruitment process, Acorn socioeconomic groups [87] were used to guide recruitment and ensure
that both trial groups had socioeconomic class ratios similar to that of London. After trial attrition,
data cleansing and validation, consumption data sets for the trial year of 2013 were available from
988 households in the dToU group and 3,768 households in the nonToU group.

The dToU tariff utilised three price bands at 3.99, 11.76 and 67.2 pence per kWh, which are
referred to as the low, default and high price. The tariff was designed to examine the potential of
dToU tariffs to deliver residential demand response (DR) to the Supplier, where it may contribute to
system balancing through Supply Following (SF) actions, and to the distribution network operator
(DNO), where it may be used for network Constraint Management (CM). The dToU tariff was
hence designed with two high level classes of event:

• CM events were designed to reduce demand at the typical peak load times of the day. Elexon’s
load Profile Class 1 archetype was used to identify the times of peak load occurrence during
the year. As such, CM events typically covered late autumn, winter and early spring sea-
sons, and occurred during weekday mornings and evenings, Sunday afternoons and Saturday
evenings. In order to stimulate the maximum possible demand reduction, the peak reducing
high price signal was flanked on both sides by low price periods for the remainder of the
respective trial day. CM events were scheduled to cover one, two and three consecutive days.
13 CM events were scheduled during the trial, which, when disaggregating consecutive event
days, covered 21 separate event days.

• SF events were designed to inform the potential use of dToU for supply balancing and, as
such, were designed to provide data on the availability of DR at different times of day, seasons
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of year, and for a range of durations. Event durations of 3, 6, 12 and 24 hours were used
for both high and low prices, uniformly subtending the day via staggered start times. Each
unique event, defined by price, start-time and duration, was repeated 3 times during the trial
year. Events were placed throughout the year in a randomised-block design such that noise
from time-of-day would approximately cancel upon analysis.

Demand response, measured in kW, was defined as the change in demand induced by either a
high or low price signal, relative to a counterfactual baseline demand—that which would have been
consumed in the absence of the price signal. A linear regression model was used to compute per-
household baseline demand. Dummy variables were included to modulate for temporal factors, one
binary variable for each hour of the week and an index variable to account for gradual load growth.
By coupling the baseline to the mean consumption level of the nonToU group, it correctly accounts
for non-standard days (e.g. bank holidays) and special events. While each baseline demand model
reflects only the average behaviour of that household, random deviations from the model will tend
to cancel in aggregate operations (e.g. the mean demand of a group of households). This approach
therefore coupled the benefits of a mean response model with the ability to arbitrarily stratify
household groupings.

10.2 Consumer engagement
Chapter 6 presented three approaches to measuring the level of engagement of residential con-
sumers with a dToU tariff. The first two were aggregate measures and examined engagement from
prospectives of the energy supplier or network operator, and the residential consumer respectively.
The third method provided a means to quantify the level of engagement of the individual household.
This was developed into an engagement ranking index, which may be used for the stratification of
the DR response signal.

Consumption shift. From the perspective of the DNO and retail energy supplier, the function
of a dToU tariff is to incentivise a reduction in consumption during the high price periods and an
increase in consumption during the low price periods, relative to the normal consumption levels that
would be present at those times. In this context, the most basic indicator of consumer engagement
with the tariff would be the observation of a change in the proportion of energy consumed at each
price level in the dToU group. To this end, a simple approach was developed that used the nonToU
group consumption as a reference point from which to measure change in consumption at the high
and low price levels. Natural differences between average group load profile were accounted for
by focusing only on SF events. These events had the desirable features of being approximately
uniformly distributed across high and low prices, and the times of day in which they took place;
then were also randomly distributed throughout the days of the trial. These features mean that
natural differences between group load profiles should average towards zero over increasing time
scales. Overall it was found that the dToU group had reduced average consumption during high
price periods by 7–9%, and increased average consumption during low price periods by 11–14%
(95% confidence ranges).

Change in annual bills. From the perspective of the residential energy consumer, the main
motivation for switching to a dToU tariff is the opportunity to make savings on their annual energy
bills. Examination of the changes in annual bills can therefore provided a first indicator of the
level of consumer engagement with the tariff. Over the trial year of 2013, it was calculated that
85% of households on the dToU tariff received lower annual bills than they would have had on the
standard flat tariff of the nonToU group, with the mean reduction in bill being 4.9%.
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Engagement rank index. To classify the engagement of individual households with the trials
a measure of responsiveness to dToU signals was developed to determine the likelihood that the
realised annual bill came about by chance; i.e. that the household had paid no attention to the
dToU signal. If this likelihood is very low, it is assumed that the household has actively responded
to the signal, whereas a high likelihood is consistent with a lack of engagement. The likelihood
measures were used to rank all households according to their perceived responsiveness to dToU
signals.

As expected, highly engaged households (low rank index) tend to decrease their consumption
in response to high price signals and increase their consumption in response to low price signals,
and the magnitude of the response generally decreases with increasing rank index. An important
characteristic of the responsiveness ranking is that it does not strictly select for those households
with the largest absolute DR, which tend to be the largest consumers of electricity. By measuring
the statistical properties of a household’s energy consumption the method also identifies consumers
that deliver small but consistent DR contributions.

Averaged across all trials and households, the high price signal resulted in a decrease in demand
of 0.04 kW/household relative to the default price signal, and the low price signal resulted in an
increase of 0.03 kW/household. The most responsive 25% of households outperformed these values
by a factor of three, with a decrease of 0.11 kW/household and an increase of 0.08 kW/household,
respectively.

The responsiveness ranking also played a key role in the extrapolation of results in subsequent
chapters, where it was proposed that highly ranked households may be indicative of future, “busi-
ness as usual” consumers who are increasingly responsive to dToU signals, either manually or
mediated by home automation devices and services. As well as use as an analytical tool, the en-
gagement ranking index may also have operational application as a means of targeting rewards for
participating in DR schemes, or to select households that would be well suited for particular tariff
types.

10.3 Response stratification

Chapter 7 provided an overview of the primary results of the LCL dToU trial. The DR signal,
calculated as described in Section 5.4, was examined over a number of different stratifications of
the response signal.

Constraint Management events. The CM events were intrinsically asymmetric with short
high price periods surrounded by long low price periods. This was reflected in the observed re-
sponse numbers, with an average demand reduction of 50 W/household and demand increase of
20 W/household. As expected, the 25% most engaged households delivered a larger response with
an average reduction of 150 W/household and average increase of 55 W/household. This illustrates
the potential of DR to reduce peaks and enhance utilisation of network assets.

The reduction in load during high price periods was always accompanied by an increase in
load during the adjacent low price periods. Extended events that targeted peaks on up to three
consecutive days were trialled and no significant difference in measured response was observed
between days.

The decrease of demand during peak hours and increase during low priced hours is consistent
with load shifting. However, such a signature response was not present in the high price only SF
events in which the peak was flanked by default price periods. This suggests that the apparent load
shifting may be caused by opportunistic usage of the lower price electricity. Further investigation
is required to identify the reason for this difference.
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Supply Following events. SF events were used to establish the potential for consumers to
respond to dToU signals at different times of the day and throughout the year. Overall, households
responded to high price signals with decreases in consumption levels that were much larger during
the colder and darker winter months than in the peak of summer. A similar pattern is observed
when the measured responses were analysed by the hour of the day. The demand reduction potential
reached its maximum magnitude around the morning and evening peaks (on weekdays). The most
engaged quarter of households achieved a mean demand reduction over 150 W/household during
these periods, compared to 50 W/household for the average household. The strong correlation
between demand reduction potential and absolute demand levels is a positive finding for the CM
use case, as the reduction potential during peak demand periods will be higher than suggested by
average response numbers.

Households responded to low price signals by increasing their demand levels. This increase was
seen to be fairly constant during the waking hours of the day, at a level of 50 W/household across
all households and exceeding 150 W/household for the most engaged households. During the night
time even the best responders did not achieve an increase of 50 W/household. However, the ability
of households to increase power consumption was only very slightly affected by the time of year.
During the summer months in particular this led to an asymmetric response to high and low price
signals.

These figures suggest an ability of households to assist in supply demand balancing, but this
potential is currently limited to waking hours and is significantly larger during winter months. The
proliferation of “smart appliances” that can autonomously respond to price signals may provide a
more consistent response as human intervention will no longer be needed to activate it.

The dual objectives of Constraint Management and Supply Following may lead to conflicts. For
example, an abundance of available wind power or the availability of large amounts of inflexible
nuclear plant during low load conditions may result in very low electricity prices. From the system
perspective it would be beneficial to use dToU pricing to incentivise customers to increase their
consumption levels. However, doing so might cause unanticipated stress on the distribution net-
work. Evidence of such situations was seen during the trials: the 25% most engaged households
occasionally responded so strongly to low price signals that a new after diversity demand peak
was created (for their subpopulation only). On the other hand it is also possible that the two
objectives align leading to synergies between system and network management. This is a common
situation when high load conditions coincide with high marginal costs of supply (e.g. during the
winter peak).

Socio-economic factors in DR. The responses of the targeted SF trials were analysed against
two principal parameters that are known to be strong indicators of energy consumption: household
occupancy (1, 2, 3+) and a socio-economic classifier based on the Acorn system. The three socio-
economic groups—Affluent, Comfortable and Adversity—can be interpreted as a rough indicator
of wealth.

Perhaps surprisingly, the socio-economic class did not have a significant effect on the observed
DR for these single events, although results on CM events suggest that households in the Affluent
class may respond more strongly to signals that specifically target peak hours. The measured
response does depend strongly on occupancy levels, with larger households providing responses of
larger magnitude.

Low Carbon London in context. An attempt was made to compare LCL trial results with
past time-of-use (ToU) trials that are comparable. Results were compared on two axes; peak
price to standard price ratio, and relative reduction in peak price consumption. While the related
trials had price ratios in the range 1.4–2.7, LCL had a price ratio of 4.7. This departure from
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the previous trial cluster, combined with statistically robust sample numbers, meant that the LCL
trial contributed significantly to the interpretation of the overall landscape of trial results plotted
on these axes. Before LCL the trend might have suggested the possibility of increased response
with increased price ratio, however, the addition of the LCL data point makes a relative response
look like a better model. A constant response model was fitted to the data points while taking into
account the statistical weight of each trail. Using this model, it was estimated that the population
peak demand reduction lay in the range 6.8–10.2% at a 95% confidence level.

Though the data was not sufficient to make a conclusive statement regarding the relationship
between response level and price ratio, this analysis did place LCL into context against previous
United Kingdom (UK) related trial results and informs us that we should not necessarily expect
an increase in the peak price ratio to result in enhanced peak price consumption reductions. More
data is required in order to investigate this further.

10.4 Reliability and risk
Chapter 8 considered the effects of dynamic time of use tariffs on network constraint management.
A statistical analysis of the trial data was performed in order to quantify opportunities and risks
from a DNO perspective.

Predictability of Constraint Management events. The performance of the dToU trial group
over the CM trials was analysed with the aim to identify predictive models for the tariff-induced
load reduction. Two linear models were identified that match the observed DR values: a demand-
proportional model and a model where the DR depends linearly on temperature. The simplest
model identifies the magnitude of DR as 8.0% of the baseline demand during the peak period
(95% confidence range: 7.3%-8.7%). In addition to this descriptive model, a predictive model was
derived suggesting that future constraint management events for the same trial population would
result in a demand reduction between 4.7% and 11.2% of baseline demand (95% confidence).

It should be noted that the two derived models are heuristic models that relate the observed
DR to the most descriptive observables. These do not necessarily imply a causal relation, and
relevant factors may be omitted if they are not strictly necessary to explain the data with the
observed accuracy. Data from future trials and commercial rollout of dynamic time of use tariffs
will provide opportunities to refine these models.

Network capacity contribution. The next step in the analysis was the extrapolation beyond
the trial setup, considering an arbitrary number of households of unknown composition. This
reflects the situation where the DNO arranges for high-price signals to be broadcast to a set
of households in order to alleviate network constraints. To quantify the extent to which DR can
alleviate network constraints, the capacity contribution of DR was defined as the change in required
network capacity that results from the use of the dToU signal. Here the required capacity is defined
in probabilistic terms as the capacity that is needed in order to satisfy the expected maximum
demand plus a safety margin to cover random load fluctuations to within a stated prediction
interval (i.e. after-diversity maximum demand).

It was shown that the capacity contribution of DR can be decomposed into two components:
mean response and variance response. The variance response results from changes in the variance
of consumption levels between households. In the case of the constraint management events, the
high-price signal was always found to reduce the variance of household consumption levels, even
more than suggested by the mean load reduction. This is consistent with trial participants opting
to switch off or postpone the use of discretionary large loads, thus reducing the propensity of large
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load peaks. The variance response thus has the effect of boosting the capacity contribution of DR,
as a lower capacity margin is required to anticipate peak load fluctuations.

Capacity contribution of Constraint Management events. To get an impression of the
impact that the variance reduction effect has on the capacity contribution, its value was computed
across a range of aggregation levels. Furthermore, the consumption distribution of the dToU trial
group for each of the events was used as a set of hypothetical collective responses from which
the households were sampled, effectively providing a sensitivity regarding response variability. In
all cases, the variance contribution boosted the capacity contribution, but by an amount that
decreases with the aggregation level. A boost of 25% compared to the mean response was observed
at a mean DR capacity contribution of 50 kW, decreasing to 10% at 1 MW and 5% at 10 MW. These
are significant figures, but they are outweighed by the observed variability in the mean response
itself, with fluctuations of 40% or more around the expected value. Therefore, in most cases, the
additional contribution of variance response may be ignored without material consequence.

Risk to the network from low price induced demand spikes. Finally, the focus shifted to
potential conflicts between the DNO’s local network management aims and the supplier’s incentive
to respond to wholesale electricity markets. At times of abundant wind power availability, the
suppliers may broadcast low prices to consumers in order to incentivise demand shifting. However,
the resulting additional demand may boost local demand far above previously anticipated levels
and thus interfere with network operations.

The extent to which demand may be boosted by low prices was analysed using data from the
LCL Supply Following dToU trials. It was confirmed that there is a considerable risk of increasing
the load on distribution networks, with 22 out of 48 low price events achieving maximum loads that
are consistent with or higher than the daily peak load, and 10 of those showing load levels that are
significantly higher than the baseline (95% confidence). The enhanced load peaks all occurred on
weekday evenings and weekend afternoons, but their occurrence does not appear to depend on the
magnitude of the expected peak demand of the day. We note that these findings must be taken in
the context of the trial: changes to the price signals may increase or reduce motivation to respond,
while increased penetration of home automation may make it easier for consumer to respond at
hitherto inconvenient times (e.g. sleeping or working hours).

10.5 Metadata analysis
This chapter presented a correlation analysis of the metadata variables collected in the LCL resi-
dential dToU trial. Spearman’s rank correlation coefficient was used to analyse the relationships
between metadata and primary variables that were derived from the SM collected consumption
data, such as DR. Some 200 variables were analysed in total. Statistically significant correlations
were also used to produce weighted correlation network graphs in order to display and further anal-
yse the relationships. Only correlation coefficients with a p-value of less than 10−5 were considered
significant. Key findings were:

Annual consumption. Annual consumption was seen to correlate strongly with variables repre-
senting physical parameters of the accommodation and appliance ownership. In addition, working
from home was found to increase annual consumption.

Engagement rank. Engagement rank was seen to correlate strongly with both high and low
price DR metrics and the self reported responsiveness data that was collected via survey. This cor-
relation alludes to the possibility of increasing consumer responsiveness through behaviour change
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and also acts as a validation of the power of the data driven engagement ranking technique intro-
duced in Chapter 6.

Acorn group. Acorn group correlated strongly with physical accommodation and appliance
ownership related variables. Furthermore, increasing wealth was seen to correspond to increased
numbers of halogen light bulbs and decreased uptake of energy efficiency measures such as wall in-
sulation. Correlations with DR related variables were weak, with only one correlating significantly;
CM event response at high price, which was larger for wealthier households.

Absolute high price DR. High price DR correlated strongest with physical accommodation
or appliance ownership related variables. It was suggested that these may be a proxy for the
overall consumption level, and that this is the underlying driver of high price DR magnitude.
Strong correlations were seen between the absolute DR variable and self reported responsiveness
with appliances; tumble drier, dishwasher, ironing and washing machine use, in order of decreasing
strength of relationship. The use of a substitute fuel (assumed to be gas as smoke emitting fuels are
banned in London) also correlated strongly with enhanced DR. This alludes to synergies between
the use of gas for heating and cooking, and the electricity system.

Absolute low price DR. Most striking for low price DR was that, in contrast to high price
DR, there were no appliance ownership and almost no physical accommodation related variable
correlations. Only the number of rooms in the accommodation was significant, but the relation-
ship here was weak. Instead, strong correlations were found for variables relating to self reported
responsiveness. Interestingly, while both were strong, correlation with high price responsiveness
variables were even stronger than for low price responsiveness. This suggests the hypothesis that
good low price responders may be a subgroup of good high price responders—a point that war-
rants further investigation. Response limiters also correlated with reduced DR, with sentiments of
inflexible appliance use cycles and potential savings being too small both correlating with reduced
DR levels.

Consumption relative DR. Consumption relative DR variables were created to test the premise
that DR response levels were strongly dependent on normal consumption levels. In making the
switch from high price DR measured absolutely (kW), to an annual-consumption relative metric,
all appliance and physical accommodation variable correlations were seen to drop away. This is
evidence that DR is strongly related to normal consumption levels and that there may be little
in the way of objective/external data that can predict annual-consumption relative responsiveness
levels.

DR by event type. Average DR variables for both CM and SF event types were created to
examine differences between the drivers for good response in each type. It was observed that high
price CM response correlated much more with physical accommodation and appliance variables
than SF event response.

Time stratifications. Stratifications of DR over both times-of-day and weekend/weekday yielded
no new findings.

10.6 Future work
The trial data and result of the analysis presented in this report provide a solid basis for future
research and development regarding the role of dToU-mediated DR in network operation and
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planning. This report has focused on the magnitude, predictability, risk to the network, and
determinants of dToU mediated residential DR. Potential extensions of these themes are listed
below:

Do dToU tariffs inspire an overall reduction in energy consumption? From the perspec-
tive of energy conservation, one of the more frequently asked question of dToU tariffs is whether
they will inspire consumers to an overall reduction in energy consumption. This may be answered
by designing future dToU tariff trials with either sufficient benchmarking periods before the appli-
cation of experimental tariffs, and/or by ensuring that control groups are sampled from the same
populations (i.e. avoid a secondary round of of recruitment from the control group to create the
treatment group) so that direct comparison is valid.

Is there evidence of learning/novelty effects with regards to response persistence?
This question effectively asks whether the magnitude of the DR signal increases (learning effect)
or decreases (novelty effect) over the duration of the trial year. With only one year of data and
many external variables that affect response level, disambiguating a change in response magnitude
from confounding variables is an obstacle to answering this research question. Future trials may
overcome this by running trials for increased durations, ideally covering a minimum of two years.

Are good low price responders a subset of good high price responders? In Chapter 9
it was observed that the low price DR signal correlated with the self reported responsiveness vari-
ables, to both low and high price signals, in roughly even numbers. In contrast, the high price
DR signal correlated strongly with high price responsiveness variables, but only weakly with low
price responsiveness variables. This observation suggests the hypothesis that good responders to
low price signals are a subset of good responders to high price signals. This may be tested by con-
structing two new engagement ranking indices (according to the method described in Section 6.3),
one trained on engagement with the low price signal only, index A, and the other trained on the
high price signal only, index B. Using these, the mean ranks of a given fraction of the best respond-
ing households in index A, may be compared to the mean rank of these same households in index
B, and vice versa. If the mean rank of the best responding fraction of households in index A have a
significantly lower mean rank in index B, but this same fraction of the best responding households
of index B does not have a significantly lower mean rank in index A, then we may conclude that
good low price responders (index A) are a subset of good high price responders (index B).

Is load shifting really occurring? For CM events, as reported in Chapter 7, decrease of
demand during peak hours and increase during low priced hours is consistent with load shifting.
However, such a signature response was not present in the high price only SF events in which
the peak was flanked by default price periods. This suggests that the apparent load shifting may
be caused by opportunistic usage of the lower price electricity. This question is therefore one
of disambiguating the motivations and/or appliances used to respond to price signals. Further
understanding may be possible via a deeper analysis of the LCL survey responses, with a focus
on those that were designed to determine if consumers found using specific appliances to respond
easy or difficult. Alternatively, a more direct approach for use in a future trial might be the use of
appliance sub-metering, or high resolution metering combined with load-disaggregation algorithms.

Increased diversity of price level and notification lead times. The Supply Following
trials have established that dToU signals can be used to increase or decrease average household
demand by varying amounts depending on the timing and duration of the price signal. Future
experiments could refine the results by introducing more price points to determine price elasticity
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in a more granular fashion than is possible with ‘high’ and ‘low’ tariffs used here. If the technical
and regulatory setup permits, shorter lead times than the current day-ahead signal may also be
investigated, which would permit more accurate matching of demand with forecast renewable
generation patterns.

Commercially realistic dToU tariff trials. The value of DR to both the supplier and the
DNO is largely determined by the predictability of response to price signals. The development
of better response predictors is, to a large extent, driven by the availability of historic response
data (with which new models may be trained), hence the value of a given dToU tariff offering
is strongly dependent on the volume of data available on its real application. This feature of
dToU tariffs may create a standoff between suppliers as they may fear that the first to offer a
dToU tariff would have to accept a loss until sufficient data was collected. In contrast, subsequent
dToU tariff offerings may be able to free-ride from the learning of the loss making first. This
standoff may be broken if a sufficiently large publicly available data set were available, and indeed,
if the commercial viability of residential DR had been demonstrated. LCL has made a start
here, providing the first publicly available dToU data set for the UK, but more is needed. The
LCL dToU tariff was developed primarily to collect data for research, without consideration of
commercial viability. Future residential DR trials should therefore focus on dToU tariffs that are
more realistic representations of potential future “business as usual” offerings.

Incorporating DR response models into existing power system models. Development
of DR predictor models and their integration into existing generator dispatch and network models
may help to determine both the value of DR and the situations for which it is most useful. Potential
risks to the system may be explored with the same approach.

Bottom-up load modelling of future consumers. By definition the LCL dToU trial has
measured the response of today’s households outfitted with current appliances. Because network
planning procedures and security standards have long-term implications they should anticipate the
response of future households. In this report a start was made by identifying the contribution of
the most responsive households, but this should be complemented by a bottom-up approach to
modelling the flexibility of future consumers and responsive appliances.
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Appendix A

Experimental group populations

A.1 Targeting the correct number of experimental units
This section is intended to, first, describe how the target number of experimental units were chosen,
and second, serve as a guide to future trial planners. Suppose that the total number of experimental
units in the trial is given by:

N = nc + Tnt (A.1)

where nc is the number of experimental units in the control group, nt is the number of experimental
units per treatment group and T is the number of treatment groups. Where a treatment represents
any controlled difference between the groups for which the implications should be quantified.

Two approaches for determining the correct number for each of the groups are considered:

1. Assuming a fixed number of experimental units, their optimal allocation is considered.

2. Given a minimum resolution and confidence, minimum numbers of experimental units are
considered.

For the purposes of this analysis, let treatment group t have a population mean of µt and the
control group one of µc. We will be comparing sample mean x̄t, from treatment group t, to sample
mean x̄c from the control group. It is assumed that the variance of the control group is the same as
the variance of the treatment group. This may not be the case, but without additional information,
this is a good starting assumption. The variance of the difference between the means is therefore
given by:

σ2
x̄t−x̄c

=
σ2

nc
+

σ2

nt
(A.2)

where σ2 is the population variance of both the control group and the treatment group, and nc

and nt are the numbers of experimental units assigned to the control group and to each of the
treatment groups respectively.

A.1.1 Allocating a fixed number of experimental units
Given a fixed number of experimental units, their optimum allocation is determined. The following
assumptions are made:

1. We have a resource of N experimental units and want to distribute them to achieve the
minimum standard error (SE) for comparisons between means of samples from a control
group and any one of T treatment groups.

2. The treatment groups will be compared to the control group only.
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Appendix A. Experimental group populations

3. Due to symmetry, each treatment group will consist of the same number of experimental
units.

The optimal allocation of experimental units occurs when the variance of the difference (Eq. (A.2))
is minimised. Substituting for nc from Eq. (A.1) into Eq. (A.2), the minimisation becomes:

min
[
σ2

x̄t−x̄c
=

σ2

N − Tnt
+

σ2

nt

]
(A.3)

which will be at a minimum when:

dN(nt)

dnt
=

Tσ2

(N − Tnt)
2 − σ2

n2
t

= 0 (A.4)

There are two solutions to the above, but only one is physically relevant:

nt =


N

(
T −

√
T

)
T (T − 1)

, if T > 1

N

2
, if T = 1

(A.5)

and therefore

nc =


N −

N
(

T −
√

T
)

(T − 1)
, if T > 1

N

2
, if T = 1

(A.6)

For example, if there were 5,000 experimental units and three treatment groups, the optimal
assignment of experimental units would be 1,830 for the control group and 1,056 for each of the
three treatment groups.

A.1.2 Targeting numbers to achieve a minimum resolution and confi-
dence

Given a minimum resolution and confidence, minimum numbers of experimental units are consid-
ered. The following assumptions are made:

1. We would like to minimise N while ensuring that, for all T comparisons between a treat-
ment group and the control group means, a difference of Eµc can be observed to at least a
confidence of C, where C and E are numbers between 0 and 1.

2. The treatment groups will be compared to the control group only.

3. Due to symmetry, each treatment group will consist of the same number of experimental
units.

The approach taken is effectively that of the Z-test1 where the free variable is the total number
of samples, N . Using this definition, the Z value of the difference is:

Z =
Eµc

σx̄i−x̄c

(A.7)

where the variance of the difference between the treatment group mean and control group mean
is given by Eq. (A.2). The value of Z is determined as for the Z-test, where is a function of C;

1For a quick description of the test, see http://en.wikipedia.org/wiki/Z-test
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A.2. Low Carbon London target population estimates

the fractional probability in either 1-tail or 2-tails of the gaussian distribution. A discussion when
each should be used can be found in most statistical textbooks [74] and will not be given here.

Starting from Eq. (A.1), the minimisation to be performed is:

min [N = nc + Tnt] (A.8)

Substituting Eqs. (A.2) and (A.7) into Eq. (A.8) allows us to eliminate the variables σx̄i−x̄c

and nt so that we are left with:

min

[
N =

nc

(
E2µc

2nc − σ2Z2 + Tσ2Z2)
E2µc

2nc − σ2Z2

]
(A.9)

Which will be at a minimum when:
dN(nc)

dnc
= 0 (A.10)

This has two solutions, but only one is physically relevant. Taking this solution for nc, and with
a little algebra, the following can be found:

nc =

(
σZ

µcE

)2
·
(

1 +
√

T
)

(A.11)

nt =

(
σZ

µcE

)2
·

(
1 +

√
T

)
√

T
(A.12)

N =

(
σZ

µcE

)2
·
(

1 +
√

T
)2

(A.13)

It is worth noting that the control to treatment group ratio is only a function of T :
nc

nt
=

√
T (A.14)

For example, with 3 treatment groups, a standard deviation to mean ratio of 0.75, a change of
5% (E = 0.05) to be measured at 95% confidence, and taking the 1-tail definition of Z, one would
require 1,663 experimental units in the control group and 960 experimental units in each of the
three treatment groups, giving a total of 4,544 experimental units. In contrast, a total of 6,451
would be required if the 2-tails definition of Z were used.

A.2 Low Carbon London target population estimates
This section the process used to estimate the number of samples (households) required in each
experimental group, and by extension, the number of treatment groups to include in the trial. The
number of samples required for statistical robustness is dependent on the number of treatment
groups and the choice of confidence and resolution. Here, resolution is defined as the difference
between the two group means which is desired to be measurable. It is important to note that
the values of confidence and resolution are tradable, which is to say, increasing one will will have
a detrimental effect on the other. The trade-off relationship between the two is dependant on
a number of other parameters; the respective sample means, their standard deviations and the
number of samples in each group.

As the most common analysis to be conducted on such panel data is the comparison of two group
means, the confidence and resolution were defined according to the Z-test, a standard statistical
test used to determine whether two means can be said to be from different populations.

A.2.1 Parameters
The key parameters in the choice of group populations were:
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Target confidence: The choice of a satisfactory level of confidence is subjective, though by
convention, for social science experiments (this trial may be considered one), levels of 90% or 95%
are typically chosen. 95% confidence was aimed for. We use the 2-tailed definition of confidence
in this section.

Target resolution: The expected change was informed by the literature on past trials as de-
scribed in Chapter 3. Table 3.1 shows that the peak reduction reported from past trials ranged
from 0% to 12%. As this trial is most similar in terms of its objectives, cultural background and
climate situation to that of the Ireland Electricity Smart Metering Trials (IESMT), designing to
trial to measure at least a 5% difference (between group means) was considered reasonable.

Estimated mean and standard deviation: In order to obtain estimates of the likely means
and standard deviations of our sample group parameters, programme partner EDF Energy provided
10,000 randomly selected estimated annual consumption (EAC) figures from its customers within
the London area. It was assumed that the variance of this data could be taken as a proxy for the
variance of other group metrics. Statistics from this data set are given in Table A.1.

Data set Mean (kWh) St. Dev. (kWh)

Dual fuel (2010) 3,327 2,280
Dual fuel (2011) 3,271 2,270
Electricity only (2010) 4,116 3,160
Electricity only (2011) 4,162 3,220

Table A.1: Statistics for EAC data from the London area. 10,000 households in each data set. Data
courtesy of EDF Energy

Attrition rate: Attrition rate is the fraction of the original group population that are estimated
to leave the trial before completion. Sample numbers must be made sufficiently higher than
the statistically defined target in order to account for attrition losses. EDF Energy provided a
conservative estimate of attrition of 20%.

Total target sample numbers, accounting for attrition, are calculated as:

Ntarget =
Nstat
1 − a

(A.15)

where a is the attrition rate and Nstat is the number of samples necessary for statistically valid
results, given by Eqs. (A.11) to (A.13) for respective groups.

A.2.2 Group target populations
Informed by the results of previous trials and the EAC data, the following assumptions were made:

• Up to 6000 households available for the trial.

• An attrition rate of no more than 20%.

• The trial would be designed, as far as possible, to detect 5% difference between group means.

• The mean-to-standard-deviation ratio for consumption should be similar to the same ratio
for peak demand.

• Mean consumption was expected to be approximately 4,000 kWh per year.

• Standard deviation of consumption was expected to be approximately 3,000 kWh.
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With two trial groups, the optimal group populations occur when there is an equal split of
the available households between both groups. Using Eq. (A.13), it can be shown that, given the
maximum of 6,000 samples thought to be available to the trial, and with an attrition rate of 20%,
such a split would allow the measurement of a 3.5% difference between group means at the 90%
confidence level.

However, it was expected that an even split between the control and experimental groups
might not be possible owing to the opt-in nature of the trial. An additional calculation was made
to determine the minimum number of samples required in each group in order to be able to measure
a 5% group difference at 90% confidence. It was found (working omitted) that, in order to meet this
criteria, 1,217 samples were required in each group after attrition. Including attrition, minimum
group recruitment targets were set to 1,521 for each group.
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Appendix B

Metadata analysis

This appendix holds data tables in association with the work described in Chapter 9.

B.1 Metadata variables
This section provides a list of the metadata variables used in the correlation analysis of Chapter 9.
The Index column in Table B.1 corresponds to the numbered items in the weighted correlation
network graphs presented in Chapter 9. Variables were first grouped according to their high level
categories, then given an alias that briefly describes what they represent. The number of responses
from the dToU and nonToU groups are given in the N_dToU and N_nonToU columns respectively.

Table B.1: List of metadata variables tested in Chapter 9.

Index Group Alias N_dToU N_nonToU
1 Accommodation ACORN_group 887 1673
2 Accommodation Has_double_glazing 784 1469
3 Accommodation Has_electric_heating 828 1574
4 Accommodation Has_floor_insulation 509 861
5 Accommodation Has_gas_heating 828 1574
6 Accommodation Has_hot_water_tank 658 1200
7 Accommodation Has_immersion_heater 832 1576
8 Accommodation Has_loft_insulation 706 1317
9 Accommodation Has_wall_insulation 563 992
10 Accommodation Heating_interface_manual 767 1489
11 Accommodation Heating_interface_set_times 767 1489
12 Accommodation Heating_interface_thermostatic_controller 767 1489
13 Accommodation Heating_interface_thermostatic_valves 767 1489
14 Accommodation Is_flat 814 1535
15 Accommodation Is_house 814 1535
16 Accommodation N_bedrooms 832 1563
17 Accommodation N_rooms 832 1564
18 Accommodation SM_in_Hallway 825 1557
19 Accommodation SM_in_Kitchen 825 1557
20 Accommodation SM_in_Living_Room 825 1557
21 Appliances Lighting_N_LED 837 1588
22 Appliances Lighting_N_fluorescent 837 1588
23 Appliances Lighting_N_halogen 837 1588
24 Appliances Lighting_N_low_energy 837 1588
25 Appliances Lighting_N_traditional 837 1588
26 Appliances N_desktop_PCs 837 1588
27 Appliances N_dishwashers 837 1588
28 Appliances N_freezers 837 1588

Continued on next page

195



Appendix B. Metadata analysis

Continued from previous page
Index Group Alias N_dToU N_nonToU
29 Appliances N_fridge_freezers 837 1588
30 Appliances N_fridges 837 1588
31 Appliances N_game_consoles 837 1588
32 Appliances N_hobs_electric 837 1588
33 Appliances N_hobs_gas 837 1588
34 Appliances N_laptop_PCs 837 1588
35 Appliances N_microwaves 837 1588
36 Appliances N_ovens_electric 837 1588
37 Appliances N_over_sink_water_heaters 837 1588
38 Appliances N_portable_electric_heaters 837 1588
39 Appliances N_printers 837 1588
40 Appliances N_routers 837 1588
41 Appliances N_set_top_boxes 837 1588
42 Appliances N_showers_electric 837 1588
43 Appliances N_standby_savers 837 1588
44 Appliances N_televisions 837 1588
45 Appliances N_tumble_driers 837 1588
46 Appliances N_video_players 837 1588
47 Appliances N_washer_driers 837 1588
48 Appliances N_washing_machines 837 1588
49 Behaviour_change Cycle_of_appliance 600 0
50 Behaviour_change Leaving_home 600 0
51 Behaviour_change Lighting_reduction 628 0
52 Behaviour_change Substitute_cooking 606 0
53 Behaviour_change Substitute_fuel 589 0
54 Behaviour_change Users_of_appliances 601 0
55 Behaviour_change Working_hours 585 0
56 Behaviour_inflexible Dishwasher 301 0
57 Behaviour_inflexible Electric_heater 214 0
58 Behaviour_inflexible Electric_hob 221 0
59 Behaviour_inflexible Electric_oven 441 0
60 Behaviour_inflexible Electric_shower 228 0
61 Behaviour_inflexible Immersion_heater 204 0
62 Behaviour_inflexible Ironing 630 0
63 Behaviour_inflexible Kettle 637 0
64 Behaviour_inflexible Lighting 660 0
65 Behaviour_inflexible Tumble_drier 270 0
66 Behaviour_inflexible Washing_machine 611 0
67 Behaviour_normal Work_from_home 814 1519
68 Behaviour_normal Concerned_about_climate_change 799 1461
69 Behaviour_normal Feeling_about_lifestyle_and_environment 830 1558
70 Behaviour_normal Interest_in_micro_generation 686 1238
71 Behaviour_normal Interest_in_renewable_electricity 708 1242
72 Behaviour_normal Reads_paper 822 1530
73 Behaviour_timer_use Dishwasher 90 0
74 Behaviour_timer_use Electric_heating 51 0
75 Behaviour_timer_use Immersion_heater 66 0
76 Behaviour_timer_use Tumble_drier 52 0
77 Behaviour_timer_use Washer_drier 43 0
78 Behaviour_timer_use Washing_machine 161 0
79 People Age_N_0_to_11 887 1673
80 People Age_N_12_to_17 887 1673
81 People Age_N_18_to_34 887 1673
82 People Age_N_35_to_54 887 1673
83 People Age_N_55_to_74 887 1673
84 People Age_N_75_or_older 887 1673
85 People Gender_N_females 887 1673
86 People Gender_N_males 887 1673

Continued on next page
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Continued from previous page
Index Group Alias N_dToU N_nonToU
87 People N_of 797 1468
88 Primary All_default_price 887 0
89 Primary All_high_price 887 0
90 Primary All_high_price_relative 887 0
91 Primary All_low_price 887 0
92 Primary All_low_price_relative 887 0
93 Primary CM_high_price 887 0
94 Primary Consumption_annual 887 1673
95 Primary DR_training_index 887 0
96 Primary Engagement_rank 887 0
97 Primary Is_dToU 887 1673
98 Primary SF_high_price 887 0
99 Primary SF_high_wd 887 0
100 Primary SF_high_wd_00_07 887 0
101 Primary SF_high_wd_07_10 887 0
102 Primary SF_high_wd_10_17 887 0
103 Primary SF_high_wd_18_21 887 0
104 Primary SF_high_we 887 0
105 Primary SF_low_price 887 0
106 Primary SF_low_wd 887 0
107 Primary SF_low_wd_00_07 887 0
108 Primary SF_low_wd_07_10 887 0
109 Primary SF_low_wd_10_17 887 0
110 Primary SF_low_wd_18_21 887 0
111 Primary SF_low_we 887 0
112 Report_high Dishwasher 283 0
113 Report_high Electric_heater 199 0
114 Report_high Electric_hob 200 0
115 Report_high Electric_oven 426 0
116 Report_high Electric_shower 209 0
117 Report_high Immersion_heater 179 0
118 Report_high Ironing 588 0
119 Report_high Kettle 601 0
120 Report_high Lighting 610 0
121 Report_high Night 565 0
122 Report_high Saturdays 600 0
123 Report_high Sundays 582 0
124 Report_high Tumble_drier 256 0
125 Report_high Washing_machine 597 0
126 Report_high Weekday_afternoons 583 0
127 Report_high Weekday_evenings 575 0
128 Report_high Weekday_mornings 579 0
129 Report_low Dishwasher 275 0
130 Report_low Electric_heater 186 0
131 Report_low Electric_hob 188 0
132 Report_low Electric_oven 409 0
133 Report_low Electric_shower 191 0
134 Report_low Immersion_heater 161 0
135 Report_low Ironing 558 0
136 Report_low Kettle 568 0
137 Report_low Lighting 573 0
138 Report_low Night 544 0
139 Report_low Saturdays 576 0
140 Report_low Sundays 564 0
141 Report_low Tumble_drier 247 0
142 Report_low Washing_machine 567 0
143 Report_low Weekday_afternoons 557 0
144 Report_low Weekday_evenings 558 0

Continued on next page
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Continued from previous page
Index Group Alias N_dToU N_nonToU
145 Report_low Weekday_mornings 558 0
146 Response_helper Calendar_or_notepad 578 0
147 Response_helper Coordinating_with_household_members 523 0
148 Response_helper Flexible_working_hours 485 0
149 Response_helper In_home_display 634 0
150 Response_helper Phone_messages 557 0
151 Response_helper Working_from_home 496 0
152 Response_limiter Being_at_home 623 0
153 Response_limiter Children_routine 447 0
154 Response_limiter Comfort_and_convenience 606 0
155 Response_limiter Complexity 613 0
156 Response_limiter Complicated_changes 619 0
157 Response_limiter Fixed_appliance_use_routine 608 0
158 Response_limiter Fixed_appliance_users 604 0
159 Response_limiter Forget_price_changes 621 0
160 Response_limiter Increasing_elec_usage 608 0
161 Response_limiter Inflexible_working 549 0
162 Response_limiter Knowing_when_rates_change 625 0
163 Response_limiter Notice_too_short 618 0
164 Response_limiter Savings_too_small 616 0
165 Trial_impressions Too_much_hassle 633 0
166 Trial_impressions Convenience_trumps_saving 634 0
167 Trial_impressions Curious_of_others_performance 639 0
168 Trial_impressions Curious_to_talk_to_others 622 0
169 Trial_impressions Effort_was_sustainable 629 0
170 Trial_impressions Enjoyable 626 0
171 Trial_impressions Feedback_letter_clear 634 0
172 Trial_impressions Feedback_letter_useful 631 0
173 Trial_impressions Frustrating_lack_of_effort_from_some 591 0
174 Trial_impressions Frustrating_not_knowing_reason 629 0
175 Trial_impressions Frustrating_when_cannot_respond 632 0
176 Trial_impressions Guarantee_meant_less_effort 627 0
177 Trial_impressions High_easy 639 0
178 Trial_impressions In_home_display_clear 635 0
179 Trial_impressions In_home_display_useful 627 0
180 Trial_impressions Low_easy 636 0
181 Trial_impressions More_in_control_of_bill 633 0
182 Trial_impressions Often_talked_about_it 614 0
183 Trial_impressions Reduced_consumption 606 0
184 Trial_impressions Reduced_our_comfort 628 0
185 Trial_impressions Reduced_our_consumption 627 0
186 Trial_impressions Renewable_link_behaviour_change 603 0
187 Trial_impressions Savings_estimate 458 0
188 Trial_impressions Savings_to_be_worthwhile_percent 309 0
189 Trial_impressions Savings_to_be_worthwhile_pounds 345 0
190 Trial_impressions Should_be_offered_to_everyone_if_efficient 640 0
191 Trial_impressions Should_be_offered_to_everyone_if_fairer 635 0
192 Trial_impressions Signup_Guarantee_needed 635 0
193 Trial_impressions Signup_If_longer_simpler_events 616 0
194 Trial_impressions Signup_If_more_predictable 609 0
195 Trial_impressions Signup_If_no_evening_peak_changes 601 0
196 Trial_impressions Signup_If_only_weekdays 600 0
197 Trial_impressions Signup_If_renewable_link 604 0
198 Trial_impressions Tarif_Signup_If_only_weekends 601 0
199 Trial_impressions Too_complex 640 0
200 Trial_impressions Want_to_stay_on 632 0
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B.2 Correlation results tables

This section provides the tables of significant correlations for each of the root variables listed in
Table 9.2 against all other variables listed in Table B.1. Significance was defined as having a p-value
less than 10−5.

Table B.2: Table of significant correlations against root variable ACORN_group.

Index Group Alias N r p

136 Report_low Kettle 568 0.2 2.2e-06
120 Report_high Lighting 610 0.18 6.4e-06
93 Primary CM_high_price 887 0.16 1.9e-06
2 Accommodation Has_double_glazing 2,253 0.16 9.8e-14
9 Accommodation Has_wall_insulation 1,555 0.13 1.5e-07
14 Accommodation Is_flat 2,349 0.099 1.6e-06
97 Primary Is_dToU 2,560 -0.087 9.5e-06
15 Accommodation Is_house 2,349 -0.099 1.6e-06
5 Accommodation Has_gas_heating 2,402 -0.099 1e-06
68 Behaviour_normal Feeling_about_lifestyle_and_environment 2,388 -0.11 3.7e-08
23 Appliances Lighting_N_LED 2,425 -0.12 1e-08
26 Appliances N_desktop_PCs 2,425 -0.12 2.9e-09
38 Appliances N_portable_electric_heaters 2,425 -0.12 6.3e-10
34 Appliances N_laptop_PCs 2,425 -0.13 4.4e-11
25 Appliances Lighting_N_traditional 2,425 -0.16 4.9e-15
40 Appliances N_routers 2,425 -0.16 2e-15
36 Appliances N_ovens_electric 2,425 -0.16 3.2e-16
11 Accommodation Heating_interface_set_times 2,256 -0.17 1.6e-15
94 Primary Consumption_annual 2,560 -0.17 1.3e-18
16 Accommodation N_bedrooms 2,395 -0.17 1.4e-17
39 Appliances N_printers 2,425 -0.2 2.6e-23
17 Accommodation N_rooms 2,396 -0.22 9.1e-28
72 Behaviour_normal Work_from_home 2,333 -0.23 1.8e-30
22 Appliances Lighting_N_halogen 2,425 -0.24 9e-34
27 Appliances N_dishwashers 2,425 -0.27 3.5e-43

Table B.3: Table of significant correlations against root variable All_default_price.

Index Group Alias N r p

88 Primary All_default_price 887 1 0
89 Primary All_high_price 887 0.49 2.3e-56
98 Primary SF_high_price 887 0.48 2e-54
99 Primary SF_high_wd 887 0.48 1.6e-53
90 Primary All_high_price_relative 887 0.46 4.9e-50
102 Primary SF_high_wd_10_17 887 0.4 2.8e-36
93 Primary CM_high_price 887 0.37 8.4e-31
103 Primary SF_high_wd_18_21 887 0.32 2.2e-23
100 Primary SF_high_wd_00_07 887 0.32 3.4e-23
101 Primary SF_high_wd_07_10 887 0.31 5.9e-22
104 Primary SF_high_we 887 0.27 7.5e-17
91 Primary All_low_price 887 0.26 3.4e-15
92 Primary All_low_price_relative 887 0.24 7.5e-13
96 Primary Engagement_rank 887 0.18 2.8e-08
107 Primary SF_low_wd_00_07 887 0.16 1.1e-06
106 Primary SF_low_wd 887 0.15 7.9e-06
95 Primary DR_training_index 887 -0.15 5.4e-06
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Table B.4: Table of significant correlations against root variable All_high_price.

Index Group Alias N r p

89 Primary All_high_price 887 1 0
90 Primary All_high_price_relative 887 0.91 0
98 Primary SF_high_price 887 0.89 0
99 Primary SF_high_wd 887 0.87 0
93 Primary CM_high_price 887 0.84 1.3e-288
96 Primary Engagement_rank 887 0.77 9.8e-206
102 Primary SF_high_wd_10_17 887 0.75 4.6e-180
103 Primary SF_high_wd_18_21 887 0.66 6.6e-124
101 Primary SF_high_wd_07_10 887 0.52 2.3e-66
104 Primary SF_high_we 887 0.51 5.4e-63
88 Primary All_default_price 887 0.49 2.3e-56
100 Primary SF_high_wd_00_07 887 0.4 1.2e-35
14 Accommodation Is_flat 814 0.23 5.6e-11
159 Response_limiter Forget_price_changes 621 0.22 2.8e-08
82 People Age_N_35_to_54 887 -0.15 5.4e-06
85 People Gender_N_females 887 -0.15 4.4e-06
42 Appliances N_showers_electric 837 -0.16 6.4e-06
22 Appliances Lighting_N_halogen 837 -0.16 4e-06
44 Appliances N_televisions 837 -0.16 2.7e-06
40 Appliances N_routers 837 -0.16 2.6e-06
92 Primary All_low_price_relative 887 -0.17 6e-07
91 Primary All_low_price 887 -0.17 5.6e-07
110 Primary SF_low_wd_18_21 887 -0.18 1.2e-07
36 Appliances N_ovens_electric 837 -0.18 2.1e-07
26 Appliances N_desktop_PCs 837 -0.18 2e-07
118 Report_high Ironing 588 -0.19 4.7e-06
39 Appliances N_printers 837 -0.19 3.9e-08
128 Report_high Weekday_mornings 579 -0.19 4.8e-06
25 Appliances Lighting_N_traditional 837 -0.19 3e-08
87 People N_of 797 -0.2 2.5e-08
53 Behaviour_change Substitute_fuel 589 -0.2 5e-07
94 Primary Consumption_annual 887 -0.21 1.8e-10
27 Appliances N_dishwashers 837 -0.22 2e-10
15 Accommodation Is_house 814 -0.23 5.6e-11
126 Report_high Weekday_afternoons 583 -0.23 1.2e-08
111 Primary SF_low_we 887 -0.24 7.9e-13
108 Primary SF_low_wd_07_10 887 -0.25 5e-14
45 Appliances N_tumble_driers 837 -0.25 2.4e-13
112 Report_high Dishwasher 283 -0.26 9.1e-06
16 Accommodation N_bedrooms 832 -0.28 6.6e-17
106 Primary SF_low_wd 887 -0.29 2.1e-18
17 Accommodation N_rooms 832 -0.29 2.6e-18
105 Primary SF_low_price 887 -0.3 5.2e-20
109 Primary SF_low_wd_10_17 887 -0.32 1.3e-23
124 Report_high Tumble_drier 256 -0.38 1.9e-10
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B.2. Correlation results tables

Table B.5: Table of significant correlations against root variable All_high_price_relative.

Index Group Alias N r p

90 Primary All_high_price_relative 887 1 0
89 Primary All_high_price 887 0.91 0
96 Primary Engagement_rank 887 0.83 1.6e-279
98 Primary SF_high_price 887 0.81 2.1e-240
99 Primary SF_high_wd 887 0.79 9.6e-227
93 Primary CM_high_price 887 0.79 1.4e-222
102 Primary SF_high_wd_10_17 887 0.66 2.2e-121
103 Primary SF_high_wd_18_21 887 0.61 4e-97
88 Primary All_default_price 887 0.46 4.9e-50
101 Primary SF_high_wd_07_10 887 0.45 7.4e-47
104 Primary SF_high_we 887 0.45 1.9e-46
100 Primary SF_high_wd_00_07 887 0.37 1.1e-31
159 Response_limiter Forget_price_changes 621 0.25 4.8e-10
193 Trial_impressions Signup_If_longer_simpler_events 616 0.2 4.2e-07
176 Trial_impressions Guarantee_meant_less_effort 627 0.2 6e-07
162 Response_limiter Knowing_when_rates_change 625 0.19 1.7e-06
155 Response_limiter Complexity 613 0.19 2.3e-06
91 Primary All_low_price 887 -0.16 1.4e-06
127 Report_high Weekday_evenings 575 -0.18 9.1e-06
110 Primary SF_low_wd_18_21 887 -0.19 2.1e-08
145 Report_low Weekday_mornings 558 -0.19 4.2e-06
146 Response_helper Calendar_or_notepad 578 -0.2 1.6e-06
92 Primary All_low_price_relative 887 -0.2 2.1e-09
123 Report_high Sundays 582 -0.2 8.8e-07
140 Report_low Sundays 564 -0.2 1.3e-06
143 Report_low Weekday_afternoons 557 -0.2 1.5e-06
128 Report_high Weekday_mornings 579 -0.2 7.4e-07
139 Report_low Saturdays 576 -0.2 7.4e-07
122 Report_high Saturdays 600 -0.21 1.2e-07
53 Behaviour_change Substitute_fuel 589 -0.22 9.4e-08
144 Report_low Weekday_evenings 558 -0.22 8.4e-08
108 Primary SF_low_wd_07_10 887 -0.24 9e-13
111 Primary SF_low_we 887 -0.25 7.3e-14
125 Report_high Washing_machine 597 -0.25 8.3e-10
118 Report_high Ironing 588 -0.25 1.1e-09
106 Primary SF_low_wd 887 -0.26 1.4e-15
115 Report_high Electric_oven 426 -0.26 3.4e-08
126 Report_high Weekday_afternoons 583 -0.27 3e-11
105 Primary SF_low_price 887 -0.28 1.7e-17
109 Primary SF_low_wd_10_17 887 -0.31 6.2e-21
112 Report_high Dishwasher 283 -0.32 2.9e-08
124 Report_high Tumble_drier 256 -0.42 1.8e-12
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Table B.6: Table of significant correlations against root variable All_low_price.

Index Group Alias N r p

91 Primary All_low_price 887 1 0
92 Primary All_low_price_relative 887 0.95 0
105 Primary SF_low_price 887 0.81 2.1e-241
106 Primary SF_low_wd 887 0.8 1.6e-233
109 Primary SF_low_wd_10_17 887 0.71 4e-152
108 Primary SF_low_wd_07_10 887 0.57 3.7e-84
110 Primary SF_low_wd_18_21 887 0.56 2.2e-80
107 Primary SF_low_wd_00_07 887 0.42 6.9e-40
111 Primary SF_low_we 887 0.4 2e-35
124 Report_high Tumble_drier 256 0.38 1.8e-10
125 Report_high Washing_machine 597 0.31 1.1e-14
141 Report_low Tumble_drier 247 0.3 9.1e-07
112 Report_high Dishwasher 283 0.3 2.1e-07
126 Report_high Weekday_afternoons 583 0.26 7.3e-11
88 Primary All_default_price 887 0.26 3.4e-15
118 Report_high Ironing 588 0.24 6.1e-09
128 Report_high Weekday_mornings 579 0.23 1.1e-08
122 Report_high Saturdays 600 0.23 9.1e-09
123 Report_high Sundays 582 0.22 7.6e-08
143 Report_low Weekday_afternoons 557 0.21 2.9e-07
182 Trial_impressions Often_talked_about_it 614 0.21 1.3e-07
142 Report_low Washing_machine 567 0.2 1.1e-06
144 Report_low Weekday_evenings 558 0.2 2e-06
139 Report_low Saturdays 576 0.19 2.5e-06
140 Report_low Sundays 564 0.19 5.3e-06
94 Primary Consumption_annual 887 0.15 3.8e-06
90 Primary All_high_price_relative 887 -0.16 1.4e-06
103 Primary SF_high_wd_18_21 887 -0.16 9.2e-07
89 Primary All_high_price 887 -0.17 5.6e-07
157 Response_limiter Fixed_appliance_use_routine 608 -0.18 9.9e-06
158 Response_limiter Fixed_appliance_users 604 -0.18 8.8e-06
193 Trial_impressions Signup_If_longer_simpler_events 616 -0.19 3.2e-06
99 Primary SF_high_wd 887 -0.19 1.7e-08
164 Response_limiter Savings_too_small 616 -0.19 1.9e-06
102 Primary SF_high_wd_10_17 887 -0.19 8.2e-09
101 Primary SF_high_wd_07_10 887 -0.2 6.9e-10
98 Primary SF_high_price 887 -0.22 7.5e-11
160 Response_limiter Increaseing_elec_usage 608 -0.22 5.3e-08
159 Response_limiter Forget_price_changes 621 -0.22 1.7e-08
104 Primary SF_high_we 887 -0.26 8e-16
96 Primary Engagement_rank 887 -0.45 1.3e-46
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B.2. Correlation results tables

Table B.7: Table of significant correlations against root variable All_low_price_relative.

Index Group Alias N r p

92 Primary All_low_price_relative 887 1 0
91 Primary All_low_price 887 0.95 0
105 Primary SF_low_price 887 0.79 2.5e-225
106 Primary SF_low_wd 887 0.78 1.5e-216
109 Primary SF_low_wd_10_17 887 0.7 1.4e-143
110 Primary SF_low_wd_18_21 887 0.57 4e-83
108 Primary SF_low_wd_07_10 887 0.57 1e-81
124 Report_high Tumble_drier 256 0.43 4e-13
107 Primary SF_low_wd_00_07 887 0.41 6.3e-39
111 Primary SF_low_we 887 0.41 1.4e-37
125 Report_high Washing_machine 597 0.36 1.2e-19
112 Report_high Dishwasher 283 0.34 2e-09
141 Report_low Tumble_drier 247 0.33 6.7e-08
126 Report_high Weekday_afternoons 583 0.3 9.1e-14
118 Report_high Ironing 588 0.28 6.2e-12
122 Report_high Saturdays 600 0.26 1.1e-10
128 Report_high Weekday_mornings 579 0.25 5.9e-10
123 Report_high Sundays 582 0.25 1.1e-09
143 Report_low Weekday_afternoons 557 0.24 1e-08
88 Primary All_default_price 887 0.24 7.5e-13
139 Report_low Saturdays 576 0.23 2.2e-08
144 Report_low Weekday_evenings 558 0.22 7.5e-08
142 Report_low Washing_machine 567 0.22 6e-08
140 Report_low Sundays 564 0.22 8.6e-08
115 Report_high Electric_oven 426 0.22 3.9e-06
180 Trial_impressions Low_easy 636 0.2 2.9e-07
149 Response_helper In_home_display 634 0.18 2.8e-06
182 Trial_impressions Often_talked_about_it 614 0.18 8.7e-06
103 Primary SF_high_wd_18_21 887 -0.15 3.6e-06
89 Primary All_high_price 887 -0.17 6e-07
199 Trial_impressions Too_complex 640 -0.18 5.7e-06
101 Primary SF_high_wd_07_10 887 -0.18 4.8e-08
102 Primary SF_high_wd_10_17 887 -0.18 3.3e-08
99 Primary SF_high_wd 887 -0.18 3.1e-08
164 Response_limiter Savings_too_small 616 -0.19 2.7e-06
156 Response_limiter Complicated_changes 619 -0.19 1.7e-06
155 Response_limiter Complexity 613 -0.2 8.3e-07
158 Response_limiter Fixed_appliance_users 604 -0.2 9.5e-07
90 Primary All_high_price_relative 887 -0.2 2.1e-09
193 Trial_impressions Signup_If_longer_simpler_events 616 -0.2 3.7e-07
165 Trial_impressions Too_much_hassle 633 -0.21 1.4e-07
157 Response_limiter Fixed_appliance_use_routine 608 -0.21 2.4e-07
98 Primary SF_high_price 887 -0.21 3e-10
104 Primary SF_high_we 887 -0.24 4.2e-13
160 Response_limiter Increaseing_elec_usage 608 -0.24 7.8e-10
159 Response_limiter Forget_price_changes 621 -0.26 8e-11
96 Primary Engagement_rank 887 -0.49 1.7e-57
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Table B.8: Table of significant correlations against root variable CM_high_price.

Index Group Alias N r p

93 Primary CM_high_price 887 1 0
89 Primary All_high_price 887 0.84 1.3e-288
90 Primary All_high_price_relative 887 0.79 1.4e-222
96 Primary Engagement_rank 887 0.65 5e-119
99 Primary SF_high_wd 887 0.56 9.1e-80
98 Primary SF_high_price 887 0.56 1.3e-77
102 Primary SF_high_wd_10_17 887 0.48 4.5e-54
103 Primary SF_high_wd_18_21 887 0.46 7.2e-49
88 Primary All_default_price 887 0.37 8.4e-31
101 Primary SF_high_wd_07_10 887 0.33 6.2e-24
104 Primary SF_high_we 887 0.31 9.3e-22
100 Primary SF_high_wd_00_07 887 0.25 8.5e-14
159 Response_limiter Forget_price_changes 621 0.19 1.3e-06
14 Accommodation Is_flat 814 0.18 2.4e-07
1 Accommodation ACORN_group 887 0.16 1.9e-06
36 Appliances N_ovens_electric 837 -0.16 3.4e-06
94 Primary Consumption_annual 887 -0.16 1.6e-06
22 Appliances Lighting_N_halogen 837 -0.16 2.7e-06
26 Appliances N_desktop_PCs 837 -0.16 1.8e-06
82 People Age_N_35_to_54 887 -0.17 6.2e-07
40 Appliances N_routers 837 -0.17 7.8e-07
25 Appliances Lighting_N_traditional 837 -0.18 2.1e-07
15 Accommodation Is_house 814 -0.18 2.4e-07
111 Primary SF_low_we 887 -0.19 2.4e-08
45 Appliances N_tumble_driers 837 -0.19 1.4e-08
39 Appliances N_printers 837 -0.2 6.1e-09
16 Accommodation N_bedrooms 832 -0.22 2.2e-10
53 Behaviour_change Substitute_fuel 589 -0.22 7.5e-08
108 Primary SF_low_wd_07_10 887 -0.22 1.3e-11
27 Appliances N_dishwashers 837 -0.24 9.9e-13
106 Primary SF_low_wd 887 -0.25 7.8e-14
17 Accommodation N_rooms 832 -0.25 1.6e-13
105 Primary SF_low_price 887 -0.25 1.6e-14
109 Primary SF_low_wd_10_17 887 -0.3 7.8e-21
124 Report_high Tumble_drier 256 -0.32 1.2e-07
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B.2. Correlation results tables

Table B.9: Table of significant correlations against root variable Consumption_annual.

Index Group Alias N r p

94 Primary Consumption_annual 2,560 1 0
87 People N_of 2,265 0.56 2.9e-203
16 Accommodation N_bedrooms 2,395 0.46 4.3e-133
17 Accommodation N_rooms 2,396 0.44 3.3e-118
27 Appliances N_dishwashers 2,425 0.4 7.4e-99
189 Trial_impressions Savings_to_be_worthwhile_pounds 345 0.4 2.7e-15
39 Appliances N_printers 2,425 0.38 4.7e-87
40 Appliances N_routers 2,425 0.36 7.9e-79
44 Appliances N_televisions 2,425 0.36 3.1e-78
86 People Gender_N_males 2,560 0.36 1.4e-80
26 Appliances N_desktop_PCs 2,425 0.36 2.9e-75
45 Appliances N_tumble_driers 2,425 0.36 8.3e-75
34 Appliances N_laptop_PCs 2,425 0.34 1.3e-67
85 People Gender_N_females 2,560 0.33 4.6e-67
31 Appliances N_game_consoles 2,425 0.33 2.4e-63
15 Accommodation Is_house 2,349 0.31 6.1e-55
22 Appliances Lighting_N_halogen 2,425 0.29 6.8e-49
46 Appliances N_video_players 2,425 0.27 2.4e-42
41 Appliances N_set_top_boxes 2,425 0.27 3e-42
81 People Age_N_18_to_34 2,560 0.25 1.3e-38
36 Appliances N_ovens_electric 2,425 0.24 5.3e-34
72 Behaviour_normal Work_from_home 2,333 0.24 3.8e-32
153 Response_limiter Childen_routine 447 0.23 7.9e-07
28 Appliances N_freezers 2,425 0.23 4.5e-30
82 People Age_N_35_to_54 2,560 0.23 5.2e-31
80 People Age_N_12_to_17 2,560 0.22 1.3e-30
25 Appliances Lighting_N_traditional 2,425 0.22 4.1e-28
79 People Age_N_0_to_11 2,560 0.19 2e-21
35 Appliances N_microwaves 2,425 0.17 2e-16
106 Primary SF_low_wd 887 0.16 7.6e-07
105 Primary SF_low_price 887 0.16 1.3e-06
8 Accommodation Has_loft_insulation 2,023 0.16 1e-12
91 Primary All_low_price 887 0.15 3.8e-06
4 Accommodation Has_floor_insulation 1,370 0.13 1.4e-06
11 Accommodation Heating_interface_set_times 2,256 0.13 6.4e-10
42 Appliances N_showers_electric 2,425 0.13 2.9e-10
38 Appliances N_portable_electric_heaters 2,425 0.13 3e-10
48 Appliances N_washing_machines 2,425 0.13 3e-10
6 Accommodation Has_hot_water_tank 1,858 0.12 3.4e-07
23 Appliances Lighting_N_LED 2,425 0.11 1.7e-08
83 People Age_N_55_to_74 2,560 0.1 1.1e-07
29 Appliances N_fridge_freezers 2,425 0.1 2.5e-07
30 Appliances N_fridges 2,425 0.092 5.2e-06
10 Accommodation Heating_interface_manual 2,256 -0.097 4e-06
93 Primary CM_high_price 887 -0.16 1.6e-06
103 Primary SF_high_wd_18_21 887 -0.17 6.1e-07
1 Accommodation ACORN_group 2,560 -0.17 1.3e-18
99 Primary SF_high_wd 887 -0.2 1.3e-09
89 Primary All_high_price 887 -0.21 1.8e-10
98 Primary SF_high_price 887 -0.22 7e-11
102 Primary SF_high_wd_10_17 887 -0.22 1.9e-11
104 Primary SF_high_we 887 -0.22 1.4e-11
101 Primary SF_high_wd_07_10 887 -0.25 2.6e-14
14 Accommodation Is_flat 2,349 -0.31 6.1e-55
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Table B.10: Table of significant correlations against root variable DR_training_index.

Index Group Alias N r p

95 Primary DR_training_index 887 1 0
88 Primary All_default_price 887 -0.15 5.4e-06
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B.2. Correlation results tables

Table B.11: Table of significant correlations against root variable Engagement_rank.

Index Group Alias N r p

90 Primary All_high_price_relative 887 0.83 1.6e-279
89 Primary All_high_price 887 0.77 9.8e-206
98 Primary SF_high_price 887 0.72 3.4e-159
99 Primary SF_high_wd 887 0.7 5.6e-147
93 Primary CM_high_price 887 0.65 5e-119
102 Primary SF_high_wd_10_17 887 0.6 3.9e-96
103 Primary SF_high_wd_18_21 887 0.54 3.3e-71
104 Primary SF_high_we 887 0.43 3.4e-42
101 Primary SF_high_wd_07_10 887 0.41 3.7e-39
159 Response_limiter Forget_price_changes 621 0.31 4.3e-15
100 Primary SF_high_wd_00_07 887 0.3 7.3e-20
155 Response_limiter Complexity 613 0.25 6.3e-10
162 Response_limiter Knowing_when_rates_change 625 0.23 4.4e-09
193 Trial_impressions Signup_If_longer_simpler_events 616 0.21 1.1e-07
160 Response_limiter Increaseing_elec_usage 608 0.21 2.1e-07
164 Response_limiter Savings_too_small 616 0.21 2.3e-07
176 Trial_impressions Guarantee_meant_less_effort 627 0.2 2.8e-07
165 Trial_impressions Too_much_hassle 633 0.2 3.9e-07
156 Response_limiter Complicated_changes 619 0.19 1.1e-06
157 Response_limiter Fixed_appliance_use_routine 608 0.19 2.8e-06
66 Behaviour_inflexible Washing_machine 611 0.19 3.3e-06
88 Primary All_default_price 887 0.18 2.8e-08
173 Trial_impressions Frustrating_lack_of_effort_from_some 591 0.18 8.2e-06
166 Trial_impressions Convenience_trumps_saving 634 0.18 4e-06
158 Response_limiter Fixed_appliance_users 604 0.18 6.9e-06
199 Trial_impressions Too_complex 640 0.18 5.5e-06
17 Accommodation N_rooms 832 -0.17 1.6e-06
182 Trial_impressions Often_talked_about_it 614 -0.18 6.8e-06
135 Report_low Ironing 558 -0.19 8.6e-06
121 Report_high Night 565 -0.19 5.7e-06
179 Trial_impressions In_home_display_useful 627 -0.22 4.4e-08
142 Report_low Washing_machine 567 -0.22 1.4e-07
146 Response_helper Calendar_or_notepad 578 -0.22 7.6e-08
180 Trial_impressions Low_easy 636 -0.23 7.7e-09
127 Report_high Weekday_evenings 575 -0.24 9.7e-09
149 Response_helper In_home_display 634 -0.24 1.3e-09
53 Behaviour_change Substitute_fuel 589 -0.25 7.5e-10
107 Primary SF_low_wd_00_07 887 -0.25 1.4e-14
145 Report_low Weekday_mornings 558 -0.28 9.8e-12
128 Report_high Weekday_mornings 579 -0.29 8.5e-13
140 Report_low Sundays 564 -0.3 4.4e-13
123 Report_high Sundays 582 -0.3 1.8e-13
115 Report_high Electric_oven 426 -0.3 1.7e-10
139 Report_low Saturdays 576 -0.31 3.6e-14
118 Report_high Ironing 588 -0.31 4.9e-15
144 Report_low Weekday_evenings 558 -0.32 1.2e-14
116 Report_high Electric_shower 209 -0.32 2.4e-06
122 Report_high Saturdays 600 -0.32 4.6e-16
141 Report_low Tumble_drier 247 -0.32 1.6e-07
143 Report_low Weekday_afternoons 557 -0.33 7.3e-16
113 Report_high Electric_heater 199 -0.34 7.3e-07
125 Report_high Washing_machine 597 -0.36 5.5e-20

Continued on next page
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Continued from previous page

Index Group Alias N r p

111 Primary SF_low_we 887 -0.36 2.8e-29
110 Primary SF_low_wd_18_21 887 -0.37 2.9e-30
126 Report_high Weekday_afternoons 583 -0.37 1.3e-20
112 Report_high Dishwasher 283 -0.4 2.2e-12
108 Primary SF_low_wd_07_10 887 -0.4 3.7e-36
91 Primary All_low_price 887 -0.45 1.3e-46
124 Report_high Tumble_drier 256 -0.48 3.9e-17
92 Primary All_low_price_relative 887 -0.49 1.7e-57
109 Primary SF_low_wd_10_17 887 -0.5 1.6e-60
106 Primary SF_low_wd 887 -0.51 2.1e-62
105 Primary SF_low_price 887 -0.53 4.8e-68

Table B.12: Table of significant correlations against root variable Is_dToU.

Index Group Alias N r p

97 Primary Is_dToU 2,560 1 0
1 Accommodation ACORN_group 2,560 -0.087 9.5e-06
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B.2. Correlation results tables

Table B.13: Table of significant correlations against root variable SF_high_price.

Index Group Alias N r p

98 Primary SF_high_price 887 1 0
99 Primary SF_high_wd 887 0.96 0
89 Primary All_high_price 887 0.89 0
102 Primary SF_high_wd_10_17 887 0.83 1.2e-268
90 Primary All_high_price_relative 887 0.81 2.1e-240
103 Primary SF_high_wd_18_21 887 0.72 8.7e-161
96 Primary Engagement_rank 887 0.72 3.4e-159
101 Primary SF_high_wd_07_10 887 0.6 6e-96
104 Primary SF_high_we 887 0.58 8.7e-88
93 Primary CM_high_price 887 0.56 1.3e-77
88 Primary All_default_price 887 0.48 2e-54
100 Primary SF_high_wd_00_07 887 0.47 7.4e-51
14 Accommodation Is_flat 814 0.21 5.9e-10
159 Response_limiter Forget_price_changes 621 0.19 2.9e-06
27 Appliances N_dishwashers 837 -0.16 4.4e-06
26 Appliances N_desktop_PCs 837 -0.16 3.7e-06
42 Appliances N_showers_electric 837 -0.16 3.4e-06
110 Primary SF_low_wd_18_21 887 -0.19 1.1e-08
87 People N_of 797 -0.2 1.6e-08
144 Report_low Weekday_evenings 558 -0.2 1.7e-06
145 Report_low Weekday_mornings 558 -0.2 1.2e-06
125 Report_high Washing_machine 597 -0.2 4.4e-07
128 Report_high Weekday_mornings 579 -0.21 5e-07
92 Primary All_low_price_relative 887 -0.21 3e-10
118 Report_high Ironing 588 -0.21 2.9e-07
15 Accommodation Is_house 814 -0.21 5.9e-10
91 Primary All_low_price 887 -0.22 7.5e-11
94 Primary Consumption_annual 887 -0.22 7e-11
143 Report_low Weekday_afternoons 557 -0.22 1.7e-07
108 Primary SF_low_wd_07_10 887 -0.23 9.4e-12
45 Appliances N_tumble_driers 837 -0.23 1.3e-11
126 Report_high Weekday_afternoons 583 -0.25 9.2e-10
111 Primary SF_low_we 887 -0.25 1.9e-14
17 Accommodation N_rooms 832 -0.26 3.5e-14
16 Accommodation N_bedrooms 832 -0.27 4e-15
112 Report_high Dishwasher 283 -0.27 3.4e-06
106 Primary SF_low_wd 887 -0.28 4.4e-17
105 Primary SF_low_price 887 -0.3 1.3e-19
109 Primary SF_low_wd_10_17 887 -0.3 3.4e-20
124 Report_high Tumble_drier 256 -0.33 3.1e-08
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Table B.14: Table of significant correlations against root variable SF_high_wd.

Index Group Alias N r p

99 Primary SF_high_wd 887 1 0
98 Primary SF_high_price 887 0.96 0
89 Primary All_high_price 887 0.87 0
102 Primary SF_high_wd_10_17 887 0.8 5e-230
90 Primary All_high_price_relative 887 0.79 9.6e-227
103 Primary SF_high_wd_18_21 887 0.73 3.2e-167
96 Primary Engagement_rank 887 0.7 5.6e-147
93 Primary CM_high_price 887 0.56 9.1e-80
101 Primary SF_high_wd_07_10 887 0.54 2.8e-73
88 Primary All_default_price 887 0.48 1.6e-53
100 Primary SF_high_wd_00_07 887 0.44 2.1e-44
104 Primary SF_high_we 887 0.4 8.5e-37
14 Accommodation Is_flat 814 0.21 7.4e-10
27 Appliances N_dishwashers 837 -0.17 1.3e-06
26 Appliances N_desktop_PCs 837 -0.17 1e-06
125 Report_high Washing_machine 597 -0.18 8.2e-06
118 Report_high Ironing 588 -0.18 9.2e-06
92 Primary All_low_price_relative 887 -0.18 3.1e-08
91 Primary All_low_price 887 -0.19 1.7e-08
87 People N_of 797 -0.19 8.6e-08
128 Report_high Weekday_mornings 579 -0.19 3.9e-06
145 Report_low Weekday_mornings 558 -0.19 5.1e-06
110 Primary SF_low_wd_18_21 887 -0.19 7.4e-09
94 Primary Consumption_annual 887 -0.2 1.3e-09
143 Report_low Weekday_afternoons 557 -0.21 9.7e-07
108 Primary SF_low_wd_07_10 887 -0.21 1.6e-10
15 Accommodation Is_house 814 -0.21 7.4e-10
45 Appliances N_tumble_driers 837 -0.22 5.4e-11
126 Report_high Weekday_afternoons 583 -0.23 1.8e-08
111 Primary SF_low_we 887 -0.24 1.4e-13
17 Accommodation N_rooms 832 -0.25 3.8e-13
16 Accommodation N_bedrooms 832 -0.26 3.1e-14
112 Report_high Dishwasher 283 -0.26 8.9e-06
106 Primary SF_low_wd 887 -0.26 7.8e-16
105 Primary SF_low_price 887 -0.28 4.1e-18
109 Primary SF_low_wd_10_17 887 -0.29 8.8e-19
124 Report_high Tumble_drier 256 -0.31 4.3e-07

Table B.15: Table of significant correlations against root variable SF_high_wd_00_07.

Index Group Alias N r p

100 Primary SF_high_wd_00_07 887 1 0
98 Primary SF_high_price 887 0.47 7.4e-51
99 Primary SF_high_wd 887 0.44 2.1e-44
89 Primary All_high_price 887 0.4 1.2e-35
90 Primary All_high_price_relative 887 0.37 1.1e-31
104 Primary SF_high_we 887 0.35 1e-26
88 Primary All_default_price 887 0.32 3.4e-23
101 Primary SF_high_wd_07_10 887 0.3 4.9e-20
102 Primary SF_high_wd_10_17 887 0.3 6.3e-20
96 Primary Engagement_rank 887 0.3 7.3e-20
103 Primary SF_high_wd_18_21 887 0.26 4.5e-15
93 Primary CM_high_price 887 0.25 8.5e-14
111 Primary SF_low_we 887 -0.15 9.1e-06
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B.2. Correlation results tables

Table B.16: Table of significant correlations against root variable SF_high_wd_07_10.

Index Group Alias N r p

101 Primary SF_high_wd_07_10 887 1 0
98 Primary SF_high_price 887 0.6 6e-96
99 Primary SF_high_wd 887 0.54 2.8e-73
89 Primary All_high_price 887 0.52 2.3e-66
104 Primary SF_high_we 887 0.52 1.6e-65
102 Primary SF_high_wd_10_17 887 0.47 6.4e-53
90 Primary All_high_price_relative 887 0.45 7.4e-47
96 Primary Engagement_rank 887 0.41 3.7e-39
103 Primary SF_high_wd_18_21 887 0.33 4.6e-25
93 Primary CM_high_price 887 0.33 6.2e-24
88 Primary All_default_price 887 0.31 5.9e-22
100 Primary SF_high_wd_00_07 887 0.3 4.9e-20
27 Appliances N_dishwashers 837 -0.16 5.4e-06
45 Appliances N_tumble_driers 837 -0.16 4.9e-06
92 Primary All_low_price_relative 887 -0.18 4.8e-08
182 Trial_impressions Often_talked_about_it 614 -0.19 3.2e-06
108 Primary SF_low_wd_07_10 887 -0.19 1e-08
111 Primary SF_low_we 887 -0.2 2.7e-09
87 People N_of 797 -0.2 6.5e-09
109 Primary SF_low_wd_10_17 887 -0.2 8.2e-10
91 Primary All_low_price 887 -0.2 6.9e-10
106 Primary SF_low_wd 887 -0.2 6.4e-10
16 Accommodation N_bedrooms 832 -0.21 1.2e-09
17 Accommodation N_rooms 832 -0.22 7.2e-11
105 Primary SF_low_price 887 -0.23 9.8e-12
94 Primary Consumption_annual 887 -0.25 2.6e-14
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Table B.17: Table of significant correlations against root variable SF_high_wd_10_17.

Index Group Alias N r p

102 Primary SF_high_wd_10_17 887 1 0
98 Primary SF_high_price 887 0.83 1.2e-268
99 Primary SF_high_wd 887 0.8 5e-230
89 Primary All_high_price 887 0.75 4.6e-180
90 Primary All_high_price_relative 887 0.66 2.2e-121
96 Primary Engagement_rank 887 0.6 3.9e-96
104 Primary SF_high_we 887 0.49 9.7e-58
93 Primary CM_high_price 887 0.48 4.5e-54
101 Primary SF_high_wd_07_10 887 0.47 6.4e-53
103 Primary SF_high_wd_18_21 887 0.45 1.4e-47
88 Primary All_default_price 887 0.4 2.8e-36
100 Primary SF_high_wd_00_07 887 0.3 6.3e-20
14 Accommodation Is_flat 814 0.18 1.3e-07
27 Appliances N_dishwashers 837 -0.16 2.5e-06
110 Primary SF_low_wd_18_21 887 -0.17 5.8e-07
6 Accommodation Has_hot_water_tank 658 -0.17 8.8e-06
36 Appliances N_ovens_electric 837 -0.17 4.6e-07
15 Accommodation Is_house 814 -0.18 1.3e-07
92 Primary All_low_price_relative 887 -0.18 3.3e-08
144 Report_low Weekday_evenings 558 -0.19 7.9e-06
91 Primary All_low_price 887 -0.19 8.2e-09
128 Report_high Weekday_mornings 579 -0.2 1.8e-06
108 Primary SF_low_wd_07_10 887 -0.2 3.3e-09
147 Response_helper Coordinating_with_household_members 523 -0.21 1.8e-06
87 People N_of 797 -0.21 3.4e-09
111 Primary SF_low_we 887 -0.22 2.4e-11
94 Primary Consumption_annual 887 -0.22 1.9e-11
145 Report_low Weekday_mornings 558 -0.22 7.1e-08
17 Accommodation N_rooms 832 -0.23 2.5e-11
16 Accommodation N_bedrooms 832 -0.23 1.7e-11
143 Report_low Weekday_afternoons 557 -0.24 4.9e-09
106 Primary SF_low_wd 887 -0.25 3.8e-14
126 Report_high Weekday_afternoons 583 -0.25 5.8e-10
109 Primary SF_low_wd_10_17 887 -0.25 1.3e-14
105 Primary SF_low_price 887 -0.26 1.5e-15
45 Appliances N_tumble_driers 837 -0.29 1.6e-17
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B.2. Correlation results tables

Table B.18: Table of significant correlations against root variable SF_high_wd_18_21.

Index Group Alias N r p

103 Primary SF_high_wd_18_21 887 1 0
99 Primary SF_high_wd 887 0.73 3.2e-167
98 Primary SF_high_price 887 0.72 8.7e-161
89 Primary All_high_price 887 0.66 6.6e-124
90 Primary All_high_price_relative 887 0.61 4e-97
96 Primary Engagement_rank 887 0.54 3.3e-71
93 Primary CM_high_price 887 0.46 7.2e-49
102 Primary SF_high_wd_10_17 887 0.45 1.4e-47
104 Primary SF_high_we 887 0.37 8.1e-31
101 Primary SF_high_wd_07_10 887 0.33 4.6e-25
88 Primary All_default_price 887 0.32 2.2e-23
100 Primary SF_high_wd_00_07 887 0.26 4.5e-15
14 Accommodation Is_flat 814 0.18 4.3e-07
92 Primary All_low_price_relative 887 -0.15 3.6e-06
110 Primary SF_low_wd_18_21 887 -0.16 1.8e-06
22 Appliances Lighting_N_halogen 837 -0.16 1.9e-06
91 Primary All_low_price 887 -0.16 9.2e-07
94 Primary Consumption_annual 887 -0.17 6.1e-07
15 Accommodation Is_house 814 -0.18 4.3e-07
108 Primary SF_low_wd_07_10 887 -0.2 3.6e-09
16 Accommodation N_bedrooms 832 -0.2 7e-09
17 Accommodation N_rooms 832 -0.2 2.3e-09
109 Primary SF_low_wd_10_17 887 -0.22 6.8e-11
111 Primary SF_low_we 887 -0.22 3.9e-11
106 Primary SF_low_wd 887 -0.23 5.6e-12
105 Primary SF_low_price 887 -0.24 1e-13
112 Report_high Dishwasher 283 -0.27 3.7e-06
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Table B.19: Table of significant correlations against root variable SF_high_we.

Index Group Alias N r p

104 Primary SF_high_we 887 1 0
98 Primary SF_high_price 887 0.58 8.7e-88
101 Primary SF_high_wd_07_10 887 0.52 1.6e-65
89 Primary All_high_price 887 0.51 5.4e-63
102 Primary SF_high_wd_10_17 887 0.49 9.7e-58
90 Primary All_high_price_relative 887 0.45 1.9e-46
96 Primary Engagement_rank 887 0.43 3.4e-42
99 Primary SF_high_wd 887 0.4 8.5e-37
103 Primary SF_high_wd_18_21 887 0.37 8.1e-31
100 Primary SF_high_wd_00_07 887 0.35 1e-26
93 Primary CM_high_price 887 0.31 9.3e-22
88 Primary All_default_price 887 0.27 7.5e-17
87 People N_of 797 -0.16 3.6e-06
111 Primary SF_low_we 887 -0.18 1.3e-07
182 Trial_impressions Often_talked_about_it 614 -0.18 5.9e-06
108 Primary SF_low_wd_07_10 887 -0.18 4.4e-08
123 Report_high Sundays 582 -0.18 7.3e-06
122 Report_high Saturdays 600 -0.18 4.9e-06
16 Accommodation N_bedrooms 832 -0.19 3.7e-08
128 Report_high Weekday_mornings 579 -0.19 3.8e-06
139 Report_low Saturdays 576 -0.2 1.5e-06
17 Accommodation N_rooms 832 -0.2 7e-09
125 Report_high Washing_machine 597 -0.2 7.4e-07
45 Appliances N_tumble_driers 837 -0.21 1.2e-09
140 Report_low Sundays 564 -0.21 3.3e-07
118 Report_high Ironing 588 -0.22 6.4e-08
94 Primary Consumption_annual 887 -0.22 1.4e-11
126 Report_high Weekday_afternoons 583 -0.22 4.1e-08
92 Primary All_low_price_relative 887 -0.24 4.2e-13
106 Primary SF_low_wd 887 -0.24 1.1e-13
109 Primary SF_low_wd_10_17 887 -0.25 3.5e-14
105 Primary SF_low_price 887 -0.26 7.8e-15
91 Primary All_low_price 887 -0.26 8e-16
124 Report_high Tumble_drier 256 -0.28 5.8e-06
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B.2. Correlation results tables

Table B.20: Table of significant correlations against root variable SF_low_price.

Index Group Alias N r p

105 Primary SF_low_price 887 1 0
106 Primary SF_low_wd 887 0.97 0
109 Primary SF_low_wd_10_17 887 0.84 1.1e-292
91 Primary All_low_price 887 0.81 2.1e-241
92 Primary All_low_price_relative 887 0.79 2.5e-225
110 Primary SF_low_wd_18_21 887 0.7 2.3e-148
108 Primary SF_low_wd_07_10 887 0.66 9e-121
111 Primary SF_low_we 887 0.52 1.9e-65
107 Primary SF_low_wd_00_07 887 0.44 1.7e-44
124 Report_high Tumble_drier 256 0.37 6.4e-10
141 Report_low Tumble_drier 247 0.32 2.6e-07
112 Report_high Dishwasher 283 0.32 3.9e-08
126 Report_high Weekday_afternoons 583 0.27 1.7e-11
125 Report_high Washing_machine 597 0.26 4.4e-11
122 Report_high Saturdays 600 0.26 4.4e-11
143 Report_low Weekday_afternoons 557 0.26 3.4e-10
182 Trial_impressions Often_talked_about_it 614 0.24 1e-09
128 Report_high Weekday_mornings 579 0.24 3.5e-09
139 Report_low Saturdays 576 0.24 7.2e-09
123 Report_high Sundays 582 0.24 7.1e-09
145 Report_low Weekday_mornings 558 0.23 3.4e-08
140 Report_low Sundays 564 0.23 4.9e-08
144 Report_low Weekday_evenings 558 0.22 2.1e-07
142 Report_low Washing_machine 567 0.2 1.6e-06
118 Report_high Ironing 588 0.2 1.7e-06
17 Accommodation N_rooms 832 0.17 3.8e-07
27 Appliances N_dishwashers 837 0.17 3.9e-07
94 Primary Consumption_annual 887 0.16 1.3e-06
16 Accommodation N_bedrooms 832 0.16 4.2e-06
160 Response_limiter Increaseing_elec_usage 608 -0.19 2.1e-06
164 Response_limiter Savings_too_small 616 -0.2 9.8e-07
155 Response_limiter Complexity 613 -0.2 1e-06
165 Trial_impressions Too_much_hassle 633 -0.2 2.1e-07
101 Primary SF_high_wd_07_10 887 -0.23 9.8e-12
159 Response_limiter Forget_price_changes 621 -0.23 7.1e-09
103 Primary SF_high_wd_18_21 887 -0.24 1e-13
93 Primary CM_high_price 887 -0.25 1.6e-14
104 Primary SF_high_we 887 -0.26 7.8e-15
102 Primary SF_high_wd_10_17 887 -0.26 1.5e-15
90 Primary All_high_price_relative 887 -0.28 1.7e-17
99 Primary SF_high_wd 887 -0.28 4.1e-18
98 Primary SF_high_price 887 -0.3 1.3e-19
89 Primary All_high_price 887 -0.3 5.2e-20
96 Primary Engagement_rank 887 -0.53 4.8e-68
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Table B.21: Table of significant correlations against root variable SF_low_wd.

Index Group Alias N r p

106 Primary SF_low_wd 887 1 0
105 Primary SF_low_price 887 0.97 0
109 Primary SF_low_wd_10_17 887 0.82 3e-256
91 Primary All_low_price 887 0.8 1.6e-233
92 Primary All_low_price_relative 887 0.78 1.5e-216
110 Primary SF_low_wd_18_21 887 0.68 8.5e-133
108 Primary SF_low_wd_07_10 887 0.66 8.6e-124
107 Primary SF_low_wd_00_07 887 0.46 4e-49
124 Report_high Tumble_drier 256 0.37 6.9e-10
111 Primary SF_low_we 887 0.35 5.8e-28
141 Report_low Tumble_drier 247 0.3 1.8e-06
112 Report_high Dishwasher 283 0.29 6.1e-07
126 Report_high Weekday_afternoons 583 0.26 1.4e-10
125 Report_high Washing_machine 597 0.24 1.1e-09
143 Report_low Weekday_afternoons 557 0.23 1.9e-08
182 Trial_impressions Often_talked_about_it 614 0.23 3.7e-09
128 Report_high Weekday_mornings 579 0.23 1.9e-08
122 Report_high Saturdays 600 0.23 1.8e-08
145 Report_low Weekday_mornings 558 0.21 3.7e-07
123 Report_high Sundays 582 0.21 4.1e-07
139 Report_low Saturdays 576 0.2 7.6e-07
140 Report_low Sundays 564 0.2 2.6e-06
144 Report_low Weekday_evenings 558 0.19 3.4e-06
118 Report_high Ironing 588 0.18 8.3e-06
27 Appliances N_dishwashers 837 0.18 3e-07
94 Primary Consumption_annual 887 0.16 7.6e-07
17 Accommodation N_rooms 832 0.16 2.9e-06
88 Primary All_default_price 887 0.15 7.9e-06
165 Trial_impressions Too_much_hassle 633 -0.18 8.6e-06
155 Response_limiter Complexity 613 -0.18 7.2e-06
164 Response_limiter Savings_too_small 616 -0.19 2.4e-06
101 Primary SF_high_wd_07_10 887 -0.2 6.4e-10
159 Response_limiter Forget_price_changes 621 -0.21 1.3e-07
103 Primary SF_high_wd_18_21 887 -0.23 5.6e-12
104 Primary SF_high_we 887 -0.24 1.1e-13
93 Primary CM_high_price 887 -0.25 7.8e-14
102 Primary SF_high_wd_10_17 887 -0.25 3.8e-14
90 Primary All_high_price_relative 887 -0.26 1.4e-15
99 Primary SF_high_wd 887 -0.26 7.8e-16
98 Primary SF_high_price 887 -0.28 4.4e-17
89 Primary All_high_price 887 -0.29 2.1e-18
96 Primary Engagement_rank 887 -0.51 2.1e-62
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B.2. Correlation results tables

Table B.22: Table of significant correlations against root variable SF_low_wd_00_07.

Index Group Alias N r p

107 Primary SF_low_wd_00_07 887 1 0
106 Primary SF_low_wd 887 0.46 4e-49
105 Primary SF_low_price 887 0.44 1.7e-44
91 Primary All_low_price 887 0.42 6.9e-40
92 Primary All_low_price_relative 887 0.41 6.3e-39
110 Primary SF_low_wd_18_21 887 0.28 4.7e-17
108 Primary SF_low_wd_07_10 887 0.27 1.6e-16
109 Primary SF_low_wd_10_17 887 0.25 6.9e-14
125 Report_high Washing_machine 597 0.19 4.4e-06
88 Primary All_default_price 887 0.16 1.1e-06
111 Primary SF_low_we 887 0.16 2.6e-06
96 Primary Engagement_rank 887 -0.25 1.4e-14

Table B.23: Table of significant correlations against root variable SF_low_wd_07_10.

Index Group Alias N r p

108 Primary SF_low_wd_07_10 887 1 0
106 Primary SF_low_wd 887 0.66 8.6e-124
105 Primary SF_low_price 887 0.66 9e-121
91 Primary All_low_price 887 0.57 3.7e-84
92 Primary All_low_price_relative 887 0.57 1e-81
109 Primary SF_low_wd_10_17 887 0.53 8.9e-70
110 Primary SF_low_wd_18_21 887 0.35 2.7e-27
112 Report_high Dishwasher 283 0.32 3.8e-08
124 Report_high Tumble_drier 256 0.31 3e-07
111 Primary SF_low_we 887 0.3 2.8e-20
107 Primary SF_low_wd_00_07 887 0.27 1.6e-16
125 Report_high Washing_machine 597 0.24 1.4e-09
126 Report_high Weekday_afternoons 583 0.18 7.5e-06
17 Accommodation N_rooms 832 0.18 9e-08
16 Accommodation N_bedrooms 832 0.18 1.2e-07
27 Appliances N_dishwashers 837 0.15 8.6e-06
104 Primary SF_high_we 887 -0.18 4.4e-08
101 Primary SF_high_wd_07_10 887 -0.19 1e-08
103 Primary SF_high_wd_18_21 887 -0.2 3.6e-09
102 Primary SF_high_wd_10_17 887 -0.2 3.3e-09
99 Primary SF_high_wd 887 -0.21 1.6e-10
93 Primary CM_high_price 887 -0.22 1.3e-11
98 Primary SF_high_price 887 -0.23 9.4e-12
159 Response_limiter Forget_price_changes 621 -0.23 9.3e-09
90 Primary All_high_price_relative 887 -0.24 9e-13
89 Primary All_high_price 887 -0.25 5e-14
96 Primary Engagement_rank 887 -0.4 3.7e-36
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Table B.24: Table of significant correlations against root variable SF_low_wd_10_17.

Index Group Alias N r p

109 Primary SF_low_wd_10_17 887 1 0
105 Primary SF_low_price 887 0.84 1.1e-292
106 Primary SF_low_wd 887 0.82 3e-256
91 Primary All_low_price 887 0.71 4e-152
92 Primary All_low_price_relative 887 0.7 1.4e-143
108 Primary SF_low_wd_07_10 887 0.53 8.9e-70
111 Primary SF_low_we 887 0.45 2.6e-47
110 Primary SF_low_wd_18_21 887 0.43 2.1e-43
124 Report_high Tumble_drier 256 0.34 1.8e-08
112 Report_high Dishwasher 283 0.28 1.7e-06
125 Report_high Washing_machine 597 0.26 1.3e-10
122 Report_high Saturdays 600 0.26 1.6e-10
107 Primary SF_low_wd_00_07 887 0.25 6.9e-14
126 Report_high Weekday_afternoons 583 0.24 2.7e-09
123 Report_high Sundays 582 0.23 1.9e-08
128 Report_high Weekday_mornings 579 0.22 4e-08
143 Report_low Weekday_afternoons 557 0.22 7.9e-08
182 Trial_impressions Often_talked_about_it 614 0.22 4e-08
139 Report_low Saturdays 576 0.21 4.7e-07
118 Report_high Ironing 588 0.21 4.2e-07
140 Report_low Sundays 564 0.19 4.4e-06
145 Report_low Weekday_mornings 558 0.19 5.2e-06
149 Response_helper In_home_display 634 0.18 2.6e-06
27 Appliances N_dishwashers 837 0.16 4.5e-06
17 Accommodation N_rooms 832 0.16 5.2e-06
165 Trial_impressions Too_much_hassle 633 -0.19 7.9e-07
155 Response_limiter Complexity 613 -0.2 5.2e-07
101 Primary SF_high_wd_07_10 887 -0.2 8.2e-10
103 Primary SF_high_wd_18_21 887 -0.22 6.8e-11
159 Response_limiter Forget_price_changes 621 -0.22 3.5e-08
104 Primary SF_high_we 887 -0.25 3.5e-14
102 Primary SF_high_wd_10_17 887 -0.25 1.3e-14
99 Primary SF_high_wd 887 -0.29 8.8e-19
98 Primary SF_high_price 887 -0.3 3.4e-20
93 Primary CM_high_price 887 -0.3 7.8e-21
90 Primary All_high_price_relative 887 -0.31 6.2e-21
89 Primary All_high_price 887 -0.32 1.3e-23
96 Primary Engagement_rank 887 -0.5 1.6e-60
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B.2. Correlation results tables

Table B.25: Table of significant correlations against root variable SF_low_wd_18_21.

Index Group Alias N r p

110 Primary SF_low_wd_18_21 887 1 0
105 Primary SF_low_price 887 0.7 2.3e-148
106 Primary SF_low_wd 887 0.68 8.5e-133
92 Primary All_low_price_relative 887 0.57 4e-83
91 Primary All_low_price 887 0.56 2.2e-80
109 Primary SF_low_wd_10_17 887 0.43 2.1e-43
111 Primary SF_low_we 887 0.43 3.6e-42
108 Primary SF_low_wd_07_10 887 0.35 2.7e-27
107 Primary SF_low_wd_00_07 887 0.28 4.7e-17
126 Report_high Weekday_afternoons 583 0.22 8.7e-08
143 Report_low Weekday_afternoons 557 0.21 3.5e-07
128 Report_high Weekday_mornings 579 0.19 2.6e-06
144 Report_low Weekday_evenings 558 0.19 4.3e-06
125 Report_high Washing_machine 597 0.18 9e-06
103 Primary SF_high_wd_18_21 887 -0.16 1.8e-06
102 Primary SF_high_wd_10_17 887 -0.17 5.8e-07
89 Primary All_high_price 887 -0.18 1.2e-07
90 Primary All_high_price_relative 887 -0.19 2.1e-08
98 Primary SF_high_price 887 -0.19 1.1e-08
99 Primary SF_high_wd 887 -0.19 7.4e-09
159 Response_limiter Forget_price_changes 621 -0.2 5.9e-07
96 Primary Engagement_rank 887 -0.37 2.9e-30

219



Appendix B. Metadata analysis

Table B.26: Table of significant correlations against root variable SF_low_we.

Index Group Alias N r p

111 Primary SF_low_we 887 1 0
105 Primary SF_low_price 887 0.52 1.9e-65
109 Primary SF_low_wd_10_17 887 0.45 2.6e-47
110 Primary SF_low_wd_18_21 887 0.43 3.6e-42
92 Primary All_low_price_relative 887 0.41 1.4e-37
91 Primary All_low_price 887 0.4 2e-35
106 Primary SF_low_wd 887 0.35 5.8e-28
108 Primary SF_low_wd_07_10 887 0.3 2.8e-20
122 Report_high Saturdays 600 0.27 1.6e-11
112 Report_high Dishwasher 283 0.26 6.5e-06
139 Report_low Saturdays 576 0.24 3.6e-09
142 Report_low Washing_machine 567 0.23 3.6e-08
123 Report_high Sundays 582 0.23 2.9e-08
140 Report_low Sundays 564 0.22 7e-08
146 Response_helper Calendar_or_notepad 578 0.22 1e-07
143 Report_low Weekday_afternoons 557 0.21 3.1e-07
125 Report_high Washing_machine 597 0.21 1.4e-07
144 Report_low Weekday_evenings 558 0.21 4.2e-07
128 Report_high Weekday_mornings 579 0.21 4.9e-07
126 Report_high Weekday_afternoons 583 0.2 9.6e-07
180 Trial_impressions Low_easy 636 0.2 3.6e-07
145 Report_low Weekday_mornings 558 0.19 6e-06
182 Trial_impressions Often_talked_about_it 614 0.18 6.5e-06
107 Primary SF_low_wd_00_07 887 0.16 2.6e-06
100 Primary SF_high_wd_00_07 887 -0.15 9.1e-06
104 Primary SF_high_we 887 -0.18 1.3e-07
93 Primary CM_high_price 887 -0.19 2.4e-08
101 Primary SF_high_wd_07_10 887 -0.2 2.7e-09
155 Response_limiter Complexity 613 -0.2 5.6e-07
159 Response_limiter Forget_price_changes 621 -0.21 2.3e-07
166 Trial_impressions Convenience_trumps_saving 634 -0.21 7.9e-08
165 Trial_impressions Too_much_hassle 633 -0.22 3.1e-08
160 Response_limiter Increaseing_elec_usage 608 -0.22 4.8e-08
103 Primary SF_high_wd_18_21 887 -0.22 3.9e-11
102 Primary SF_high_wd_10_17 887 -0.22 2.4e-11
89 Primary All_high_price 887 -0.24 7.9e-13
99 Primary SF_high_wd 887 -0.24 1.4e-13
90 Primary All_high_price_relative 887 -0.25 7.3e-14
98 Primary SF_high_price 887 -0.25 1.9e-14
96 Primary Engagement_rank 887 -0.36 2.8e-29
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