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1Introduction

Preface

The classical view in systems neuroscience is that individual regions of the brain are 

specialised for the execution of specifi c tasks. This position is supported by a long 

history of lesion studies and more recently by a wealth of functional neuroimaging 

research, which has provided insights into how the anatomy of the brain relates to 

behaviour. However, in recent years this classical view has changed. Instead, new 

techniques have revealed intrinsic functional connectivity networks (ICNs) that 

refl ect underlying patterns of structural connectivity, now considered to be the 

fundamental neural architecture supporting cognition and behaviour (Adams, 1982, 

Smith et al. 2009b, Honey et al. 2009). The activity of these ICNs is dependent on 
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intrinsic fl uctuations in their activity and the behavioural context, which dynamically 

reconfi gure over time (Fox et al. 2005, Ances et al. 2009). Therefore, investigation of 

brain networks needs to consider not only the structural connections that constrain 

functional interactions, but also dynamic changes in functional interactions.

An ongoing challenge, therefore, is to defi ne a framework incorporating these neural 

dynamics that combines insights from structure, function and behaviour. Dynamical 

systems theory may provide a fl exible framework that combines all of these levels. 

Current theory proposes that healthy neural dynamics operate in a multistable regime 

that promotes fl exible information processing and behaviour (Kelso 2012, Tognoli 

and Kelso 2014, Shanahan 2012, 2010b, a, Friston 1997, Leech and Sharp 2014, Irner 

2007). Large-scale multistable dynamics are likely constrained by underlying structural 

connections between brain regions. (Honey et al. 2009, Deco, Jirsa, McIntosh, Sporns, 

and Kötter 2009, Deco, Jirsa, and McIntosh 2011, Deco et al. 2008, Cabral et al. 2011, 

Cabral et al. 2012). However, it is unclear how such multistable dynamics may relate 

to behaviour, or how they are constrained by network structure. Moreover, whilst such 

dynamical accounts place considerable importance on the structural connectivity of 

the brain, it is unclear how the multistable dynamics are altered when pathological 

processes result in structural disconnections. In this thesis, I explore such dynamical 

accounts of the brain using a range of neuroimaging and computational approaches, 

and examine the implications of this level of description in one example of structural 

disconnection, namely the consequences of traumatic brain injury.

Networks in the brain

Structural connectivity of the brain

At the microscopic scale, the brain is made up of billions of individual neurons, each with 

a complex collection of interconnections, the whole forming a network of formidable 

complexity. The connectivity of these neural networks underlies the emergence of 

dynamic and coherent physiological activity (Mesulam 1998).  Equally, changes to 
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structural connectivity in the brain have been shown to relate strongly to a range of 

different neurological disorders, such as schizophrenia (Van Den Heuvel, Thornton, 

and Vink 2007, van den Heuvel and Fornito 2014, van den Heuvel et al. 2010, van 

den Heuvel et al. 2013, Cocchi, Zalesky, and Fontenelle 2012, Fornito, Zalesky, et al. 

2012, Zalesky et al. 2012, Zalesky et al. 2011, Catani and Ffytche 2005) and traumatic 

brain injury (Sharp, Scott, and Leech 2014, Kinnunen et al. 2011, Bonnelle et al. 2012, 

Bonnelle et al. 2011, MacDonald et al. 2007).

The analysis of the ‘connectome’ in relation to behaviour emerges from the idea 

that behaviour is attributable not only to individual regions but also emerges from 

interactions between multiple regions, interactions that are necessarily constrained 

by the topological connectivity of the brain (Sporns 2011, Sporns, Tononi, and Kotter 

2005, Bullmore and Sporns 2009, Honey et al. 2009). One recent advance in magnetic 

resonance imaging (MRI) - Diffusion Tensor Imaging (DTI) - provides the opportunity 

to examine the macroscopic connectivity in the human brain in vivo by assessing the 

diffusion of water along white matter tracts [Figure 1.1]. There have been two main 

Figure 1.1 | Methods for estimating white matter structural connectivity using the 
Diffusion Tensor. A) Tract based spatial statistics, estimates white matter integrity at the 
centre of major white matter tracts, resulting in a ‘white matter’ skeleton of the brain. B) 
White matter tractography, attempts to ‘reconstruct’ white matter fi bres within the brain by 
estimating their trajectory through the brain.
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uses of DTI. The fi rst has been to examine measures of white matter integrity in cross-

section at each voxel within a representative white matter ‘skeleton’ applied to each 

subject (Smith et al. 2006) [Figure 1.1A]. A measure such as fractional anisotropy (FA) 

is considered to be good marker of structural integrity, where high FA is believed to 

indicate intact tissue structure, consistent with organized bundles of axons within the 

white matter, whereas low FA is suggestive of microstructural damage indicative of 

axonal injury (Rugg-Gunn et al. 2001, Arfanakis et al. 2002).  The alternative approach 

has been to use tractography for the estimation of the trajectory and strength of 

white matter fi ber pathways between predefi ned structural regions of interest [Figure 

1.1B]. This approach can be built up to provide a graph of connections between brain 

regions, that can be understood using graph theoretic measures (Rubinov and Sporns 

2010, Bassett and Bullmore 2006, Bullmore and Sporns 2009, Zalesky et al. 2012).

Graph theoretical approaches to measuring structural 

connectivity

According to graph theory, the strength of connectivity in the whole brain can be 

described by a graph composed of nodes (vertices) representing particular brain 

regions of interest  [Figure 1.2], linked by edges representing the physical connections 

between these regions. Measures of connectivity within the ‘graph’ of the brain can 

then be expressed formally, using a range of mathematical descriptions such as 

community structure, local node connectivity or interconnections between different 

regions (Rubinov and Sporns 2010, Sporns 2003, Sporns 2006, Sporns and Kotter 

2004) . 

One important property of structural networks in the healthy human brain is the idea 

of ‘small-worldness’ – a topology maximising clustering within groups of nodes, with 

sparse inter-connectivity between clusters. Small world architectures appear to be 

ubiquitous in a range of structural brain networks  (Sporns and Zwi 2004, Bassett and 

Bullmore 2006, Achard et al. 2006, Bassett et al. 2009, Humphries and Gurney 2008, 
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Figure 1.2 | Graph theoretical representations of structural brain networks. A Left) 
Structural connectivity of the brain can be represented as a graph, where the ‘nodes’ of the 
graph represent regions of the brain or functional ROIS. The weight of each ‘Edge’ can be 
estimated as the strength of empirical connectivity between a pair of nodes. A Right) an 
example network, of 7 nodes, represented as both a topological diagram, and a weighted 
graph. B) The degree of individual nodes within the network can be estimated by counting 
the number of connections made between it and each other node within the network. Node 
7 for example has a degree of 2 whereas node 1 has a degree of 3. C) Another commonly 
used graph metric is ‘Betweenness centrality’ defi ned as the proportion of shortest paths 
between all other nodes within the network which pass through an individual node. In the 
example here, node 7 has a low betweenness centrality (1/15), as only one of the shortest 
paths between all other nodes within the network pass through node 7. The addition of 
extra connections between node 7 and other nodes within the network would increase the 
centrality of this node.
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Sporns 2006, Watts and Strogatz 1998). Such a network confi guration is thought to 

be economical, minimising wiring costs whilst supporting the emergence of local 

interconnected hubs. Such network confi gurations should allow high dynamic fl exibility 

(Bullmore and Sporns 2009). In practice, this means that information may pass to any 

part of the network through a very small number of steps whilst still allowing complex 

functional interactions between diverse regions of the brain. Related to the existence 

of a small world architecture is the notion that the overall distribution of edge weights 

within the network has a heavy tail; that is, the network will contain a few densely 

distributed hub regions (Gong et al. 2009, Hagmann et al. 2008, van den Heuvel et al. 

2012, van den Heuvel and Sporns 2013, 2011). These densely interconnected regions 

form a ‘rich club’ (van den Heuvel and Sporns 2011). The aggregation of hubs into a 

rich club suggests that highly connected brain regions do not operate as individual 

entities, but instead act as strongly interlinked collectives. 

Intrinsic connectivity networks 

One of the fi rst approaches to examining functional activity in the brain was to 

correlate voxel-wise BOLD activity with a psychological regressor– identifying regions 

of the brain that were associated with the performance of a task. Whilst this has 

been a powerful framework for examining the activity of the brain, spontaneous 

fl uctuations in BOLD activity are visible even in the absence of task, and across a 

wide range of different brain states (Smith et al. 2009} [Figure 1.3]. Initially using 

seed-based approaches, where activity in a discrete region of the brain is correlated 

with activity in every other voxel of the brain (Fox et al. 2005), it has become clear 

that these spontaneous fl uctuations of activity are arranged in long range patterns of 

activity across the cortex. These are termed ICNs, and they can be readily resolved 

from resting state fMRI; that is, when data are acquired while the subjects are ‘at rest’ 

in the scanner, and are not exposed to any stimuli nor engaged in any explicit task. 

ICNs have proved to be highly conserved across subjects (Friston et al. 1993, Smith 

et al. 2009b, Fox and Raichle 2007, Fox et al. 2005, Raichle et al. 2001, Beckmann 
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et al. 2009, Beckmann et al. 2005). More recently, approaches such as independent 

component analysis (ICA) have revealed a range of relatively stable and robust ICNs 

evident in resting state data [Figure 1.4]. Functional networks often refl ect underlying 

structural connectivity (Honey et al. 2009, Hagmann et al. 2008, Smith et al. 2009a), 

and the exact nature and functional properties of the ICNs is directly related to the 

complexity of structural connectivity in the brain. In particular, that small world and 

strong rich club structural confi gurations, lead to highly diverse range of functional 

ICN confi gurations (Senden et al. 2014, Senden, Goebel, and Deco 2012). 

Measures of functional activity, such as pairwise correlation and ICA, assume, as a 

fi rst approximation, that relationships between nodes are consistent across space or 

time. However, unlike structural connectivity, which at least over a short timescale is 

static, functional connectivity patterns are diverse and reconfi gure dynamically over 

Figure 1.3 | Anti-correlated activity of task positive and default mode networks. A) 
Activation of task positive regions of the brain (RED) during blocks of the choice reaction 
time task (CRT). Task invoked activity is anticorrelated with activity within the default mode 
network (Blue), (n=20) B) activation time-courses extracted from a single subject from the 
precuneus (blue) and superior parietal lobe (orange), demonstrating clear anti-correlation 
between these two regions. Figure inspired by (Fox et al, 2005).
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time, even when subjects are ‘at rest’ (Chang and Glover 2010, Zalesky et al. 2014, 

Hutchison, Womelsdorf, Allen, et al. 2013, Hutchison, Womelsdorf, Gati, et al. 2013, 

Allen et al. 2014, Handwerker et al. 2012, Monti et al. 2014). This is because functional 

interactions are the result not only of the structural connectivity of the brain, but also the 

interactions between recent connectivity and local dynamics. They are also altered by 

the behavioural context (Smith et al. 2009a); for example, attention to external stimuli 

increases activity in fronto-parietal control networks (Corbetta and Shulman 2002, 

Vincent et al. 2008, Spreng and Grady 2010, Spreng et al. 2010, Fornito, Harrison, et 

al. 2012), whilst at the same time activity within the so-called default mode network, 

which is most active during internally directed cognition, decreases [Figure 1.3]. 

This anti-correlated activity has now been observed in a number of studies (Singh 

Figure 1.4 | Intrinsic functional connectivity networks (ICNS) in the brain. 

Shown here are 8 of the most common intrinsic connectivity networks of the brain, defi ned 
using independent component analysis of resting state fMRI (Smith et al, 2009) 
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and Fawcett 2008, Fox et al. 2005, Smith et al. 2009a, Raichle et al. 2001, Buckner, 

Andrews-Hanna, and Schacter 2008, Seeley et al. 2007) .

More broadly, activity within a wide range of partially overlapping functional ICNs 

have been associated with a range of different cognitive tasks (Smith et al. 2009a). 

Moreover, resting state functional connectivity is disrupted in a range of different 

neurological and psychiatric disorders, such as autism (Deco, Jirsa, McIntosh, Sporns, 

and Kotter 2009, Kennedy and Courchesne 2008, Ing et al. 2010, Edison et al. 2008), 

schizophrenia (Liang et al. 2006, Bluhm et al. 2007, Zhou, Liang, Jiang, et al. 2007, 

Zhou, Liang, Tian, et al. 2007, Whitfi eld-Gabrieli et al. 2009), Alzheimer’s disease 

(Greicius et al. 2009, Greicius et al. 2004, Sheline and Raichle 2013); and traumatic 

brain injury (TBI) (Sharp et al. 2011b, Sharp et al. 2010, Bonnelle et al. 2012, Bonnelle 

et al. 2011, Jilka et al. 2014, Ham et al. 2013). Therefore, demonstrating network 

disruption is a potential biomarker for a wide range of different brain disease states.
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Network dysfunction following Traumatic Brain 
Injury

Traumatic Brain Injury (TBI) which has a characteristic behavioural phenotype, causality 

of changes to both cognition and functional connectivity can be inferred by measuring 

structural disconnection of the brain as the result of the trauma, using advanced MRI 

approaches such as DTI. Nevertheless, patterns of functional network disruption may 

be complex and counterintuitive. Thus, for example, functional connectivity in the 

default mode network increases as a result of structural disconnection following TBI 

(Sharp et al. 2011a).

TBI is one of the leading causes of death and disability in the under 40s (Bruns and 

Hauser 2003), with a corresponding socio-economic burden. TBI is apparent from a 

clinically evident alteration in brain function, such as coma or post-traumatic amnesia, 

and from radiological evidence of brain pathology, such as the presence of a haematoma 

visible on X-ray, CT scan or MRI, which may result from either a penetrating or non-

penetrating injury (Menon et al. 2010). The generally accepted diagnostic criteria for 

the presence of TBI following trauma, even in the absence of a clear history of the 

incident, is typical changes on diagnostic images and/or characteristic neurological 

and neuropsychological signs  (Carroll et al. 2004). A commonly used objective scale 

for the classifi cation of the severity of TBI is the MAYO scale (Malec et al. 2007), which 

has three categories: (a) Moderate-Severe (defi nite brain injury); (b) Mild (probable 

brain injury), and (c) Symptomatic (possible brain injury) [Table 1.1].

Pathophysiology & Mechanisms

The pathological consequences of TBI is variable, and ranges from focal damage 

(contusion or frank haematoma) to widespread damage to the white matter, the latter 

is often not apparent on routine diagnostic imaging (Graham et al. 2000, Gentleman 

et al. 1995). The mechanisms of damage can be separated into two different phases: 
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primary (as a direct result of trauma) and secondary (long term reactive changes in the 

brain). Primary mechanisms of damage during TBI are typically caused by accelerative 

and compressive forces imparted to the brain through the skull, which even in a non-

penetrating injury causes the brain to impact the inside of the skull, resulting in a 

characteristic contra-coup injury remote from the site of impact. Contra-coup injuries 

are most commonly observed in orbitofrontal, anterior temporal and occipital regions 

[Figure 1.5].

Rotational forces may also result in considerable damage. The brainstem, together 

with the cerebellum, are tethered fi rmly, but the cerebral hemispheres may rotate 

as the head rocks back and forth after the impact. These rotational movements of 

the cerebral hemispheres result in shearing injuries to the white matter, particularly 

around the midline, causing diffuse injury within white matter pathways crossing the 

corpus callosum and in ascending and descending pathways to the brainstem. In 

Classification Criteria (one or more apply) 
Moderate – Severe 
(Definite TBI) 

1. Death 
2. LOC > 30 mins 
3. PTA > 24 hrs 
4. Worst GCS (0-24hrs post injury) < 13 
5. Radiological evidence of: 

a. Intracerebral hematoma 
b. Subdural hematoma 
c. Cerebral contusion 
d. Hemorrhagic contusion 
e. Penetration of the dura 
f. Subarachnoid hemorrhage 
g. Brain Stem damage 

Mild (Probable TBI) 1. LOC < 30 mins 
2. PTA < 24 hrs 
3. Skull fracture with intact dura 

Symptomatic (Possible 
TBI) 

1. Blurred vision 
2. Mental state changes 
3. Dazed 
4. Dizziness 
5. Focal neurological symptoms 
6. Headache 
7. Nausea 

Table 1.1 | Mayo Classifi cation of TBI. Post traumatic anterograde amnesia (PTA), Loss of 
Consciousness (LOC), Glasgow Coma Scale (GCS), Traumatic Brain Injury (TBI). Reproduced 
from (Malec et al. 2007).
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Figure 1.5 | Coup-Contracoup damage to the brain during blunt head trauma. A) 
Mechanism of damage during blunt head trauma to the frontal lobes, causing the brain to 
rock forwards and backwards inside the skull, leading to well defi ned patterns of damage 
(Image adapted from an image by P. J. Lynch, Yale - Creative Commons). A lesion overlay 
map for a group of 32 TBI patients (as presented in chapter 6) demonstrating a clear contra-
coup pattern of cortical damage.
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extreme cases there may be axonal shearing, evident on specifi c diagnostic MRI 

sequences that reveal microhaemorrhages as the result of microvascular disruption; 

a marker of the shearing forces to which the white matter tracts had been subjected 

[Figure 1.6]. Shearing forces to the corpus callosum are particularly pronounced when 

the rapid acceleration and deceleration imparted to the head cause the left and right 

hemispheres to move in opposite directions to one another  (Adams et al. 1989). 

Delayed secondary complications following TBI include ischaemia, brain swelling 

(oedema) increasing intracranial pressure (Sharp, Scott, and Leech 2014), infection 

(common after penetrating injuries), and delayed neurodegeneration. Recent work 

also suggests that chronic infl ammatory processes within the brain are pronounced 

even many years following the initial injury (Ramlackhansingh et al. 2011). Whether 

chronic infl ammation contributes to delayed neurodegeneration is uncertain, but it 

may be a contributory factor.
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Long-term cognitive consequences

The cognitive consequences of TBI are often long-term and disabling. Estimates of 

the prevalence of neuropsychiatric disorder and cognitive impairment suggest that 

~50% of TBI patients demonstrate clinically relevant psychiatric disorders, most 

commonly anxiety, depression and aggression, whilst ~70% of patients have some 

degree of cognitive impairment (Vaishnavi, Rao, and Fann 2009). Cognitive defi cits 

following TBI predominantly affect the domains of information processing speed, 

attention and executive function (Draper and Ponsford 2008, Levin 1995, Scheid et al. 

2006). Effi cient functioning of these cognitive domains is dependent on the coherent 

activity of widespread networks within the brain (Mesulam 1998), and are therefore 

vulnerable to structural network disconnections following TBI.

The defi cits in sustained attention, memory and information processing speed are 

apparent clinically as increased distractibility and poor concentration (Kinnunen et 

al. 2011, Ponsford and Kinsella 1992, Levin and Kraus 1994, Levin 1995, Scheid et 

al. 2006, Draper and Ponsford 2008). On measures of sustained attention using the 

Sustained Attention to Response Task (SART), which involves withholding a key press 

to an infrequent no-go target embedded within a sequence of numbers, TBI patients 

make a greater number of errors, indicating a defi cit in sustained attention (Dockree et 

al. 2004, Sharp et al. 2011a, Bonnelle et al. 2011, Bonnelle et al. 2012).  Additionally, 

patients have problems with the other aspects of attention,such as dividing attention 

across multiple different tasks at the same time (Niemann, Ruff, and Kramer 1996); for 

example, when performing the relatively simple tasks of random number generation 

and the SART concurrently, patients consistently perform worse than healthy controls 

and report signifi cantly increased mental effort (Azouvi et al. 2004, Jilka et al. 2014). 

This is more pronounced when the tasks requires controlled processing, with volitional 

allocation of resources, as opposed to when the tasks are carried out automatically 
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(Park, Moscovitch, and Robertson 1999, O’Keeffe F et al. 2007, Godefroy 2003).

Response speed is often thought to be an index of cognitive effi ciency, being 

dependent on rapid reorganisation of cognitive resources to perform the task 

currently at hand. It can be measured using the time to initiate a response following 

presentation of a simple visual cue: the Choice Reaction Time task (CRT) (Brefel-

Courbon et al. 2007). Reduced information processing speed is common following 

TBI (Mathias, Beall, and Bigler 2004, Mathias et al. 2004, Comerford et al. 2002), 

indicating reduced information processing effi ciency. Additionally, many patients 

experience a variable degree of post-traumatic amnesia (Sharp, Scott, and Leech 

2014). The memory impairments may be be short-lived, but in some patients they 

may extend for many years following the injury (Draper and Ponsford 2008, Mathias, 

Beall, and Bigler 2004).

Structural network dysfunction following TBI

The presence of contusions or haematomata is a poor indicator of prognosis following 

TBI, suggesting that cognitive change following TBI is less related to focal lesions. One 

possibility is that widespread damage to structural networks as the result of diffuse 

axonal injury is more important to understanding outcome. Assessing the extent of 

such network damage is an important clinical challenge, made diffi cult because diffuse 

damage to the microstructure of white matter is not apparent using conventional X-ray 

CT scanning or routine MRI sequences. The disruption of the microvasculature of the 

brain which leaves tell-tale small haemosiderin deposits termed ‘microbleeds’ (MBs), 

are visible using T2-weighted sequences, and these are associated with cognitive 

impairment (Scheid et al. 2003) [Figure 1.6]. However, it is clear that the presence of 

MB in the white matter offers only a ‘tip of the iceberg’ view of the microstructural 

damage to the white matter, with post-mortem studies indicating that diffuse post-

traumatic axonal injury (TAI) may be widespread even when there are only a few or no 
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MBs evident on imaging (Gentleman et al. 1995).

In contrast to more standard MR imaging approaches, DTI measures have demonstrated 

widespread white matter disruption irrespective of the presence or absence of MBs. 

TBI causes a characteristic pattern of white matter damage, predominately affecting 

long distance white matter interhemispheric connections (Kinnunen et al. 2011, 

Smits et al. 2011, Sharp and Ham 2011). Using both post-mortem and DTI measures 

in animal models of TBI indicate that specifi c diffusion measures of white matter 

damage, namely radial and axial diffusivity, can distinguish between microstructural 

changes such as axonal and myelin sheath abnormalities (Song et al. 2003, Song 

et al. 2002, Sun et al. 2012, Beaulieu 2002, Assaf and Pasternak 2008). Further, the 

radial and axial diffusivity measures continue to change over time following the injury 

(MacDonald et al. 2007, Sharp and Ham 2011). DTI measures have also been shown to 

predict cognitive impairment, such as reduced information processing speed, working 

memory, task switching and performance on motor response tasks  (Kinnunen et al. 

Figure 1.6 | White matter microbleeds following TBI. Histopathological sections of the 
brain following TBI, demonstrating widespread disruption of the vasculature within the 
white matter (Left Top, a corpus callosal section, Left Bottom, within the brainstem). These 
microbleeds are not visible on standard T1-weighted images, but appear as regions of signal 
dropout in susceptibility weighted T2* images (Right, T1 and T2* images from an exemplar 
patient with mild TBI). Histopathological images in Left panels © P. Agamanolis, Northeast 
Ohio Medical University, OH, USA

T1 T2*
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2011, Jilka et al. 2014, Bonnelle et al. 2012, Sharp and Ham 2011, Ham et al. 2013). 

In recent years, graph theoretical approaches have begun to be used to examine 

the effect of TBI on structural network dysfunction (Caeyenberghs et al. 2014). These 

approaches have demonstrated that although the structural networks in TBI patients 

retain broad similarities with undamaged networks, such as small world topology, 

there are longer average path lengths between nodes and hence decreased global 

effi ciency. This fi nding indicates a pathological topology that results in weaker 

integration of neural information, particularly across remote brain regions.

These recent studies have shown that DTI is a sensitive way of quantifying white 

matter abnormality following TBI, and how specifi c patterns of damage relate 

to cognitive decline (Kinnunen et al. 2011, Smits et al. 2011, Messe et al. 2011) . 

However, it is not clear how best to apply this technique to individual patients - 

either to diagnose the presence of axonal injury following a TBI, or predict likely long 

term functional ouctome. Machine learning is increasingly used to assist complex 

diagnostic decisions, by integrating multiple pieces of information in the diagnostic 

process. By this method, a ‘classifi er’ is trained on data that have been diagnostically 

labelled, and this is then applied to undiagnosed data. In this way, the generalisation 

of a classifi er to novel patient data can be assessed and an individual prediction 

made (Sajda 2006). Using structural network measurements (from DTI) combined 

with a machine classifi er is a potentially useful approach to provide individual, rather 

than group, diagnostic information, and so has the potential to bridge between basic 

research and clinical application.

Functional network dysfunction and its relationship to structural 

disconnection

Functional connectivity assessed with fMRI demonstrates signifi cant abnormalities 

following TBI, including a mixture of both hypo- and hyper-connectivity. For example, 
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DMN connectivity may be reduced acutely following injury (Hillary et al. 2011), but 

is increased in the chronic phase (Sharp et al. 2011a). Changes to network functional 

connectivity following TBI also include increased connectivity between the DMN and 

the left prefrontal cortex (LPFC) (Mayer et al. 2011), decreased connectivity between 

motor cortex and the striatum, and increased connectivity within fronto-parietal 

cognitive control networks (Shumskaya et al. 2012). The specifi c example of blast 

injury resulting in head trauma leads to reduced inter-hemispheric synchrony within 

the frontal lobes (Sponheim et al. 2011).

Interestingly, structural disconnection in the brain following TBI – in particular, 

between the right anterior insula and dorsal anterior cingulate cortex (often referred 

to as the salience network or SN), is closely linked to alterations in the DMN. In 

healthy control subjects, the DMN is strongly deactivated during sustained attention 

tasks, whilst the SN is active during sustained attention tasks such as the Stop Signal 

Task. During response inhibition, functional connectivity between nodes within the 

SN and the DMN transiently increases, demonstrating that the SN responds to salient 

external stimuli. These interactions break down in patients following TBI. In those 

who perform poorly on the SST, the DMN does not deactivate normally when SN 

activity increases (Bonnelle et al. 2012), with altered functional connectivity at the 

time of response inhibition (Jilka et al. 2014). The level of this dysfunction is directly 

predicted by reduced structural disconnection between the cortical components of 

the SN (Bonnelle et al. 2012, Jilka et al. 2014). These functional imaging measures 

also predict the rapidity and accuracy of task switching in response to a cue (Jilka 

et al. 2014). Taken together, these results are consistent with a model of cognitive 

control in which effi cient and rapid information fl ow between networks is important 

for effective cognitive function, and is dependent on the structural integrity of certain 

key white matter tracts
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An integrated approach: using dynamics to link 
between structure, function and behaviour

Although, links between structural disconnection, altered functional connectivity and 

behavioural impairment have been found in many studies, the relationships between 

the three domains are generally descriptive, and no satisfactory mechanisms which 

link across thes three interconneted levels of description have been proposed. The 

challenge is to understand how network dynamics, and in particular how spontaneous 

neural dynamics, expressed in terms of functional network activity constrained by 

complex structural connectivity, relates to behaviour (Sharp, Scott, and Leech 2014). 

One approach is to consider the brain as a complex dynamical system (Shanahan 

2012, Chialvo 2010, Beggs and Plenz 2003, Beggs 2008, Kitzbichler et al. 2009), 

supported by theoretical evidence provided by computational approaches to 

neuroscience. Computational models provide detailed descriptions of how local 

activity can interact with macroscopic patterns of structural connectivity to generate 

dynamic changes in activity within networks over time (Deco, Jirsa, McIntosh, Sporns, 

and Kotter 2009, Deco, Jirsa, and McIntosh 2011, Deco et al. 2008, Cabral et al. 2011, 

Cabral et al. 2012). These models have been increasingly used to try to understand 

intrinsic connectivity networks, and in particular the relationship between functional 

and structural connectivity in brain networks. Multiple studies have based models on 

the graph of structural connectivity, defi ned by tractography, to specify the strength 

and time delay of coupling between nodes that represent individual regions of the 

cortex or subcortical nuclei. Such models are able to reproduce patterns of functional 

connectivity with an impressive degree of accuracy, and have been used to examine 

the effect of delay, topology, noise and the emergence of slow temporal interactions 

as the result of coupling fast local neural dynamics (Honey et al. 2009, Deco, Jirsa, and 

McIntosh 2011, Deco et al. 2008, Deco, Jirsa, and McIntosh 2013, Cabral et al. 2011, 

Cabral et al. 2012, Deco et al. 2014, Deco et al. 2013, Deco, Senden, and Jirsa 2012). 

Increasingly, these computational approaches have been applied to neurological and 
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psychiatric disorders to model the effect of cortical disconnection on resting state 

functional activity (Cabral et al. 2013, Cabral et al. 2012).

In this thesis, I explore how neural dynamics provides a framework to potentially link 

across the three domains of strucutre, function and behaviour. In particular, metastable 

neural dynamics have considerable potential for providing both a conceptual and 

computational framework to mechanistically link structure to behaviour.  Metastability, 

which is here defi ned as the tendency of a dynamic system to move endogenously 

between transient attractor-like states, is an important property of such systems 

(Friston 1997, Tsuda 2001, Kelso 2012, Shanahan 2010b), and “reconciles the well-

known tendencies of specialized brain regions to express their autonomy (segregation) 

and the tendencies for those regions to work together in synergy (integration)” 

(Tognoli and Kelso 2014). Theoretical studies suggest that the neural dynamics of 

the healthy brain operate in a multistable regime, in which neural ensembles are 

able to coordinate rapidly, fl exibly engaging and disengaging without becoming 

locked in fi xed relations (Bressler and Kelso 2001, Kelso 2012, Tognoli and Kelso 

2014, Shanahan 2010b). Metastability, is very tightly linked with the concept of 

‘Multistability’. Where metastability descibes, the tendancy of an isolated complex 

system to engage over time in transient ‘ medium-high energy saddle states’ which 

restrict the thermodynamic tendancy for the system to reach the most stable low-

energy state within a fi nite energy landscape; Multistability, refers to a similar affi nity 

of a complex system to transit spontaneously between multiple saddle states, of 

differing energy levels within an indefi nate energy landscape. To avoid confusion and 

for precision of the measures defi ned later, I refer predominantly to ‘multi’ rather than 

‘meta’ stability for measures in this context.  According to one hypothesis, increased 

multistability in the brain allows more fl exible dynamic interactions between regions, 

whereas reductions in multistability may accompany persistent, more stable states 

(Shanahan 2010a). The level of multistability in a system also likely depends on the 

network topology. Equally, multistable functional dynamics have a strong intuitive link 



37

to cognitive processes such as fl exibility, exploration and integration of information, 

and is useful for explaining certain high-level cognitive skills. Such an approach would 

likely provide a strong theoretical framework for the development of clinically relivant 

biomarkers for cognitive dysfunction.
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Thesis overview

The core aims of this thesis are to use insights from dynamical systems theory to 

explore the effect of: a) cognitive state; and b) structural disconnection on complex 

measures of neural dynamics, such as multistability and synchrony. DAI following 

TBI was used to explore the relationship between acquired structural disconnection, 

multistable neural dynamics and behaviour. The thesis is devided into the following 

sections:

Methods for Structural and Functional Magnetic Resonance 

Imaging 

In chapter 2 I describe important general concepts in the use of MRI to study both the 

function and structure of the brain, in terms of their relevance of the results presented 

in subsequent chapters.

Individual Prediction of White Matter Injury and Cognitive 

Outcome following Traumatic Brain Injury

In chapter 3 I describe the use of a range of approaches to demonstrate that 

structural disconnection, measured using both standard diffusion techniques and 

graph theoretical approaches, differentiate TBI patients from healthy controls, 

whilst also providing a predictive framework for cognitive dysfunction following TBI. 

Thereby, I demonstrate the importance of structural disconnection when attempting 

to understand the behavioural consequences TBI.

A computational model of the neural dynamics in the resting 

brain

In chapter 4 I introduce and validate, using several different measures of resting state 

functional connectivity, a computational model based on the macroscopic white 
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matter structural connectivity of the brain, to explore how white matter structure 

relates to neural dynamics, including multistability, in the ‘resting’ brain.

The Control of Global Brain Dynamics: Opposing Actions 

of Fronto-Parietal Control and Default Mode Networks on 

Attention

In chapter 5 I expand the dynamical systems model demonstated in the previous 

chapter by using the computational models combined with empirical fMRI data to 

explore the relationship between brain network dynamics, including multistability 

and cognitive state. Specifi cally, I investigate how state dependent measures of 

global multistability may be tuned by the interaction of higher order cognitive control 

networks.

The Human Connectome Confers Cognitive Flexibility through 

Metastable Neural Dynamics

In chapter 6 I further explore the dynamical systems account described in the previous 

chapters to explore the extent to which changes to network structure, can bring about 

cognative dysfunction through alterations in multistability. Speciically, I combine the 

results from TBI patients presented in earlier chapters and relate multistability to 

altered cognitive function and structural connectivity following TBI, thus forming a 

framework by which measrues of functional dynamics, relate to both cognition and 

strucure.
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2
Methods for 

structural and 
functional Magnetic 
Resonance Imaging

Principles of Magnetic Resonance Imaging

MRI is an imaging technique that produces images of biological tissue by exploiting 

the properties of hydrogen protons abundant within biological tissue, when placed 

inside a strong magnetic fi eld. 

Magnetization

At rest, the rotation of hydrogen protons around their axis induces a small polar 

magnetic charge known as the magnetic moment. In biological tissues, the magnetic 

moment of each proton is not usually aligned along any particular axis and thus the 

‘net moment’ (represented in 3 dimensions in Figure 2.1A) is very small. When the 
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tissue is subject to a large magnetic fi eld, such as when the body is placed into the 

bore of the MRI machine (B0 Magnetic fi eld), the magnetic moments of each proton 

align along the axis of the magnetic fi eld, inducing a net magnetic polarity along the 

magnetic fi eld [Figure 2.1B]. Protons may align with the magnetic fi eld in a parallel 

(i.e. their magnetic moment follows the magnetic fi eld, a low energy state), or anti-

parallel (high energy state) to the magnetic fi eld. Protons tend to prefer low energy 

states, so the overall number of protons in the low energy state exceeds those in the 

high-energy state (the size of this difference scales with the magnet fi eld strength). 

The imbalance in the parallel and anti-parallel proton confi gurations induces a net 

magnetic fi eld along the axis of the magnetic fi eld, which is fundamental to generating 

an image. When held in a magnetic fi eld, the axis of rotation of individual hydrogen 

protons continues to oscillate slightly at a frequency (known as the Larmor Frequency) 

[Figure 2.2A], which is proportional to the strength of the magnetic fi eld. This is known 

as precession. Two key principles of magnetic resonance, ‘excitation’ and ‘relaxation’, 

exploits these properties of protons in order to construct images of the brain.
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Figure 2.1 | Magnetisation of Hydrogen ions in the presence of the B0 fi eld A) In the 
absence of a strong magnetic fi eld, the orientation of free hydrogen ions, is randomly 
distributed. B) The application of a strong magnetic fi eld (B0) such as in the MRI scanner 
causes hydrogen ions to align with the fi eld, providing a net vector of magnetisation along 
the axis of the applied magnetic fi eld. The net moment of the overall fi eld of protons is 
displayed in three dimensions in the top right.
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Excitation

When protons are bombarded with energy, their conformation within the magnetic 

fi eld changes, pushing their state away from the parallel ‘low-energy’ confi guration 

towards the anti-parallel ‘high-energy’ state. In MRI, energy is applied to protons 

using radio frequency energy (RF). If the frequency of this energy is equal to the 

Larmor frequency, the rotational pole of the proton is ‘fl ipped’ towards the high-

energy state, in a process known as ‘excitation’. With enough strength, RF energy is 

able to “excite” protons into a high-energy state such that the net magnetisation in a 

group of hydrogen protons fl ips 90O to the X-Y plane, perpendicular to the axis of the 

magnetic fi eld. [Figure 2.2B top]. A second phenomenon that occurs when a group 

of protons are ‘excited’ is that the angle of precession aligns, such that the protons 

begin to precess ‘in phase’ with one another [Figure 2.2B bottom]. 

Relaxation

Protons in a high-energy state are thermodynamically unstable. Immediately following 

Figure 2.2 | RF excitation and relaxation of free hydrogen ions. A) The magnetic moment 
of each hydrogen ion processes around the net magnetization vector of the B0 fi eld with a 
momentum known as the Larmor frequency (green). B) Application of radiofrequency energy, 
causes the magnetic moment to be ‘fl ipped’ by 90O The angle of procession also aligns, so 
each moment is ‘in phase’ C) In the fl ipped state, the magnetic moment is unstable, and 
rapidly begins to return to the resting state.

x y

z

x y

z

x y

z

RF RF

x

y

1
2

3

4

x

y

1
2

3

4

x

y

1
2

3

4

Excitation Relaxation

A B C



44

excitation, hydrogen protons will begin to return to their more stable low-energy 

states, releasing excess energy as RF energy in a process known as ‘relaxation’. It is 

this release of RF energy that is detected by the scanner, and from which an image 

can be generated. The release of RF energy by excited protons is the result of two 

independent processes: the gradual return of the magnetic phase vector to the z-axis 

(T1 Relaxation; Figure 2.2C top); and the gradual de-phasing of proton spins (T2 

relaxation; Figure 2.2C bottom). T1 and T2 relaxation are independent processes 

that take effect over different timescales, dependent on the magnetic fi eld strength. 

T1 relaxation is typically several seconds, whereas T2 relaxation is typically a few 

hundred miliseconds. Importantly, the rate of T1 and T2 relaxation is dependent on 

the local properties of protons within tissues, where protons are bound differently. 

Differences in the rate of T1 and T2 relaxation in different tissue classes gives rise to 

contrast within the image [Figure 2.3].

The MRI Scanner

Gradient Coils

If an RF pulse was applied to the brain within the MRI scanner without any additional 

techniques, then all protons within the brain would be equally excited and the signal 

received by the MRI scanner would be comprised of a mixture of relaxation from a 

range of different locations - essensially the entire brain. In order to reconstruct an 

image with fi ne spatial defi nition, the scanner uses a series of magnetic ‘tagging’ 

approaches in order to localise signal to a specifi c region of the scanner. This is 

typically done using a collection of magnetic coils called ‘gradient coils’ [Figure 2.4A]. 

Gradient coils induce additional magnetic fi elds inside the static B0 fi eld. During a 

typical acquisition protocol, these coils work together to generate the Slice, Phase 

and Frequency Gradients [Figure 2.4B]. 



45

Slice Gradient [Figure 2.4B Top]

 Images are usually acquired one slice at a time, and one line of voxels within that 

slice at a time. The Slice Gradient can be used to determine a plane (slice) through 

the brain from which a whole-brain image is to be constructed, by generating a small 

gradient in the magnetic fi eld along the Slice ‘encoding’ direction. The introduction 

of a small magnetic fi eld minutely alters the Larmor frequency of protons. Thus, when 

RF energy of a highly specifi c frequency is introduced into the tissue, only a small 

slice of the tissue is excited, and thus any RF signal detected will be from a known 

slice of the tissue. The width and location of this slice may be altered by changing the 

bandwidth and frequency of the excitation RF pulse

Phase Encoding Gradient [Figure 2.4 Middle]

Once a specifi c slice has been excited the slice gradient is switched off, and the 

phase and frequency gradients are used to ‘encode’ signal within individual regions 

or ‘voxels’ of the selected slice. The transient phase encoding gradient (which is 

at a 90O angle to the Slice and Frequency encoding gradients), introduces a small 

magnetic gradient across the excited slice of brain that once again briefl y modulates 
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Figure 2.3 | T1 and T2 relaxation rates for different tissue classes. T1 and T2 relaxation 
rates are dependent on the proton density of different tissue classes. T1 relaxation occurs 
very rapidly (1-6ms) and T2 relaxation is slower (100-500ms) Green – White matter, Blue – 
Grey matter, Red – CSF.
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the Larmor frequency of the slice excited protons. This effectively means that the 

phase synchronisation induced by the initial RF excitation is slightly modulated, and a 

gradient of net magnetic phase is induced along the phase encoding direction within 

the tissue. As RF energy is released from the slice, an individual ‘line’ within that slice 

can then be recognised by the phase of RF energy detected.

Frequency Encoding (Readout) Gradient [Figure 2.4 bottom]

Finally, the frequency-encoding gradient (which is at a 90O angle to the Phase and 

Slice encoding gradients) is switched on, which induces a magnetic fi eld along 

the frequency direction. Like the phase encoding step, this will change the Larmor 

frequency of hydrogen protons within the selected slice, such that there is now a 

gradient of frequencies along the Frequency encoding gradient. The frequency-

encoding gradient is often described as the ‘readout’ gradient, as it is during the 

frequency-encoding gradient that the signal is read by the RF Receive coils. Combined 

with slice selection and phase encoding gradients, the readout gradient allows 

Figure 2.4 |  Main imaging gradients of the MRI scanner Signal within specifi c regions of 
the brain can be identifi ed through the use of three separate ‘encoding gradients’ which 
are perpendicular each other. A) A schematic of the main magnetic fi eld (BO), with the 
Slice Selection  (Green), Phase Encoding (Red) and Frequency Encoding (Blue) gradients 
superimposed. B) A schematic representation of slice selection and RF encoding imposed by 
each gradient.
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Figure 2.5 | Pulse sequences for MR acquisition Schematic representations of key pulse 
sequences for MR acquisitions. A) Spin Echo sequence, where T2 relaxation is recovered 
by the application of a 180O RF pulse following the phase encoding step.  B) Gradient 
Echo sequence, recovery of the T2 echo can be achieved using a fast switching frequency 
encoding gradient, rather than an additional RF pulse, providing subtly different effects, such 
as retained sensitivity to T2* relaxation.
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localisation of RF along a specifi c line, as each voxel will return a slightly different 

frequency of RF energy.

Sequences.

In order to detect RF energy released from tissue during relaxation, receive coils, which 

are essentially tightly wound coils of wire, are used. As RF energy passes through the 

receive coils, electric current is induced within the coil. However, the magnetic fi eld 

within the scanner also induces an electric current within these coils unless they are 

perpendicular to the primary B0 Field. This has the effect that the signal received is 

dependent on the T2 relaxation time. T2 relaxation time is very fast compared to T1 

relaxation [Figure 2.3]. In practice, factors such as local inhomogeneity of the B0 fi eld 

caused by paramagnetic interactions within tissue causes T2 relaxation time to be 

considerably shorter still. These effects are known as T2* decay effects. Such rapid 

relaxation is a problem, as it only allows a very short time for switching gradients and 

acquisition of the signal. For this reason, complex ‘sequences’ of excitation have been 

developed in order to not only overcome this limitation by re-building the T2 echo, 

but also exploit the differences in T1 and T2 relaxation to provide different ‘contrasts’ 

that are useful for examining different types of tissue.

Spin Echo [Figure 2.5A]

Spin-echo imaging sequences allow the T2 signal to be rebuilt from the de-phased 

signal by the introduction of a 180O  ‘re-focusing’ pulse some time after the initial 90O 

fl ip pulse. Effectively, this second pulse ‘reverses’ the direction of the magnetisation 

vector fanning out in the X-Y plane to be reversed [Figure 2.2C], such that the T2 signal 

gradually builds back up, causing an ‘echo’ of the original T2 relaxation independent 

of T2* related effects. 

Gradient Echo [Figure 2.5B]

It is also possible to achieve the same echo effect using a rapid switching of the 
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gradient coils as opposed to an additional 180O RF Pulse. Unlike spin-echo sequences, 

because the rephrasing is achieved using switching magnetic fi elds, the resulting 

sequence retains strong T2* sensitivity. This can be considered advantageous, as T2* 

relaxation has some favourable properties, which are useful to study functional activity 

in the brain. Specifi cally, the localised anatomical effects that lead to T2* effects are 

particularly sensitive to the presence of oxygenated and deoxygenated Haemoglobin 

(see ‘Principles of Blood Oxygen Level Dependent (BOLD) fMRI’).

Echo Planar Imaging (EPI)

Traditional MRI imaging techniques are relatively slow to collect an entire image of 

the brain, as the image is collected one line at a time following each RF pulse. EPI 

sequences are faster as they collect multiple echoes from each RF pulse, by continuing 

to switch the readout gradient as in-gradient echo sequences. By using additional 

short ‘blips’ of the phase encoding gradient to ‘undo’ the phase encoding step, the 

readout line gradually changes for subsequent echoes following the RF pulse. EPI is 

sensitive to the T2* relaxation rate, but can be acquired at high speed (~3 Seconds) for 

the entire volume of the brain. Full brain ‘volumes’ can then be repeatedly acquired 

Figure 2.6 | TR and TE determine overall image contrast An overview of the relationship 
between repeat time (TR) and echo time (TE), and the relative contribution of T1 and T2 
relaxation with the image contrast. Diffusion Iighted Images (DWI) are usually T2 weighted, 
but with additional gradient requirements.
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to examine changes across time. This makes EPI sequences useful for acquiring data 

for applications that require rapid acquisition, such as during fMRI experiments, and 

that are sensitive to T2* relaxation as a proxy of blood fl ow. The trade-off of the faster 

time to collect a single image of the brain is that the spatial resolution of the image is 

considerably lower (typically 3x3x3 mm). EPI images are also more sensitive to artifacts 

and distortion. As a result, EPI images are often registered to higher resolution images 

during the analysis pipeline. 

Contrast [Figure 2.6]

As different tissues have different properties in terms of proton density and binding, 

alteration of different properties of the aquisition can be used to select an approprate 

“contrast” to view specifi c strucutres or biological properties of tissues. This can be 

useful to examine different pathologies, or different types of tissue such as grey or 

white matter. There are two key parameters of the acquisition protocol that are 

important in determining contrast. The fi rst is the Repetition time (TR), which is the 

length of time between repeats of the 90O excitation pulse. The second is Echo Time 

(TE), which describes the length of time between the 90O pulse and the acquisition of 

signal. In spin-echo sequences the 180O pulse is positioned at half of the TE, whereas 

in gradient echo imaging the reversed frequency-encoding gradient is half of the TE 

[Figure 2.5]. T1 and T2 relaxation times, as well as proton density, vary across tissues 

[Figure 2.3], therefore it is clear that by modulating the TE and TR different tissue 

contrasts can be achieved in the resulting image, as the readout will capture a different 

phase in the T1 and T2 relaxation curves. The echo-time and repetition-time may be 

much shorter than either T1 or T2 relaxation. Therefore, by changing the TE and the 

TR, signal (S) is captured with specifi c contrasts, which are dominated by either T1 or 
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T2 relaxation according to the following equations (Mori and Zhang 2006):

Where PD is the local proton density, T1 and T2 are the relaxation time constants 

for a particular tissue compartment, and b and D are the gradient strength and the 

coeffi cient of local diffusion of protons (mm2/s), respectively. 

T1-weighted images

If we keep the TE short, the contrast in the resulting image is largely unrelated to T2 

relaxation as there has not been enough time for it to occur. If the TR is also relatively 

short, then T1 relaxation has not completed by the start of the next RF ‘excitation’, 

and therefore the effective magnetisation vector for the next echo is smaller for some 

tissues than others. Therefore, the contrast in the image at the TE will be strongly 

affected by the T1 relaxation process. These images are known as T1-weighted 

images, usually used to construct structural images of the brain as they have good 

contrast between the grey matter, white matter and CSF compartments of the brain.

T2-weighted images

T2-weighted images are acquired when the TE and TR are relatively long. The long 

TR contributes very little to the image contrast, as T1 relaxation has largely completed 

by the start of the next RF pulse. However, there is some redundant signal in the 

T2 relaxation at a short echo time, meaning that contrast is largely affected by T2 

relaxation. T2 weighted images that are associated with a gradient echo sequence 

are further sensitive to T2* relaxation – this additional property is important in the 

acquisition of blood oxygen dependent (BOLD) imaging used in functional MRI (see 

‘Principles of Blood Oxygen Level Dependent (BOLD) fMRI’).

𝑆 𝑃𝐷 𝑒
𝑇𝑅
𝑇 𝑒

𝑇𝐸
𝑇

𝑆 𝑆 𝑒 𝑏𝐷

(Equation 2.1)
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Diffusion weighed images.

Diffusion weighted images (DWI) are sensitive to the diffusion of water along a specifi c 

vector in addition to standard T2 or T1 relaxation. Determining the diffusion coeffi cient 

along a particular vector within a voxel may be desirable, as it provides information 

about the microstructure of the brain. [Equation 2.1] demonstrates that the effect of 

diffusion on signal contrast increases exponentially, depending on the strength of the 

encoding gradients. For most applications, where the strength of the encoding 

gradient strengths are very small (b~0), the effect of diffusion on the signal is very 

small. Like T2-weighted images, DWI has a long TR and TE. However, unlike 

conventional T2-weighted sequences, DWI readout occurs following an additional 

pair of strong (b~1000) opposing magnetic readout gradients oriented around the 

desired diffusion vector, approximately 10-100ms apart [Figure 2.7]. The fi rst gradients 

have the effect of ‘phasing’ hydrogen protons within the tissue, such that there is an 

order in proton spin phases along the axis of the imposed magnetic gradient. The 

Figure 2.7 |  Pulse sequence for diffusion weighted imaging. An overview of the theory 
of diffusion weighted acquisitions. Following the usual gradient echo excitation package, 
an additional rapidly switching of a highly directional magnetic fi eld is used. The fi rst pulses 
‘encode’ slices as usual, however, the second pulse is designed to ‘undo’ this encoding. 
If water diffuses along the axis of the magnetic gradient, the decoding gradients fail to 
fully decode the selected slice and thus returned RF energy would be badly matched to 
expectations, leading to signal dropout in the image which relates to diffusion of water. 
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second ‘dephasing’ gradient is designed to ‘cancel’ the effect of the fi rst phasing 

gradient. If there is no diffusion of water along the axis of the gradient between the 

‘phasing’ and ‘dephasing’ fi elds [Figure 2.7 Top], rephasing will be complete, and no 

signal dropout occurs compared to standard diffusion-free T2 imaging. However, if a 

signifi cant amount of diffusion along the gradient occurs [Figure 2.7 bottom], the 

rephrasing gradient will incorrectly rephase protons, leading to signal dropout 

compared to a standard T2 image. This information can be used to reconstruct the 

assumed diffusion coeffi cient (ADC) along the gradient vector by comparing the 

diffusion weighted image (b~1000) with a standard T2-weighted image (b~0), by re-

arranging the [Equation 2.1]:

Multiple DWI collected using different gradient strengths and vectors may be used to 

infer the white matter structure of the brain (See ‘Diffusion Tensor Imaging’).

Functional MRI (fMRI)

 Principles of Blood Oxygen Level Dependent (BOLD) fMRI

Neural activity within a particular region of the brain requires additional energy above 

the baseline level, and so at the site of neural activity the metabolism of oxygen 

and glucose is increased in order to meet the increased energy demands. In order 

to meet the increased energy demand, there is an increase in cerebral blood fl ow. 

This increase in blood fl ow peaks at around 5s after the onset of a local net increase 
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(Equation 2.2)
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of neural activity, followed by a short ‘undershoot’ as blood fl ow returns to baseline 

~25s after a transient increase in activity [Figure 2.8]. This evoked signal is known as 

the canonical haemodynamic response function (HRF). The fl ow of blood in the brain 

is detected using T2* imaging, by exploiting the differing paramagnetic properties 

of oxygenated (HbO2) and deoxygenated-Haemoglobin (Hb). In areas of high-

energy demand, the proportion of HbO2 to Hb is relatively reduced due to increased 

metabolic demand. As HbO2 and Hb have differing magnetic effects, this change 

is detectable as a local inhomogeneity within the B0 magnetic fi eld (BOLD signal), 

decreasing the T2* relaxation time (see ‘Sequences, Contrast’ above). Compared to 

baseline, images under task conditions therefore allow the visualisation of areas of 

the brain that increase activity in response to a stimulus, task or response (Friston 

1997, Savoy 2001).

Analysis of fMRI data

Typically a functional imaging session consists of acquiring a high-resolution 

structural image (T1-weighted) and a number of functional images (T2*-weighted 

Figure 2.8 | Canonical HRF Response Following an neural event, the BOLD signal slowly 
builds over the course of ~ 5 seconds, as local blood fl ow increases due to increased local 
metabolic demand. BOLD signal then rapidly decreases over the course of the next ~20 
seconds.
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EPI acquisitions). In order to compare functional data across different subjects and 

functional imaging sessions, as well as correcting for motion and scanner related 

artefacts within the data. T1-weighted and EPI images from the scanner are initially 

subjected to a number of standard preprocessing steps, to minimise certain artefacts. 

Functional and structural data analysed within this thesis were preprocessed using 

tools within the FMRIB Software Library (FSL) (Smith et al. 2004, Woolrich et al. 2009) 

and Freesurfer (Dale 1999, Desikan et al. 2006, Fischl and Dale 2000, Fischl et al. 

2002, Fischl, Salat, et al. 2004, Fischl, Tootell, and Dale 1999, Fischl, van der Kouwe, 

Destrieux, Halgren, Ségonne, et al. 2004) (see individual results chapters for detailed 

methodology for individual studies).

Preprocessing

Brain extraction

Brain Extraction is used to remove non-brain issue from the structural image (T1) of 

the brain, which aids image co-registration (see ‘Registration’ below). Brain extraction 

is performed using the FSL Brain Extraction Tool (BET). This tool works by identifying 

the centre of the brain, and expanding a spherical surface out from this location in 

order to fi nd an optimal separation between neural tissue, skull and non-brain tissue. 

(Smith 2002)

Temporal fi ltering 

Alongside signal within the EPI sequence that is due to the T2* susceptibility induced 

by the BOLD response, other sources of noise are present in the data, which are 

attributable to additional factors (For example, minor instabilities in the scanning 

hardware due to heating of the gradient coils) These sources of noise likely induce 

a very slow ‘baseline drift’ in the data, signifi cantly slower than the BOLD signal, 

which acts over the course of around 5-20s (see ‘Principles of Blood Oxygen Level 

Dependent (BOLD) fMRI’). These small distortions in the data are corrected using a 
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high-pass fourier fi ltering approach, with a cut-off frequency in the order of 0.01-0.02 

Hz.  

Motion correction

In addition to correcting for baseline drifts in functional data, the movement of the 

subject within the bore of the scanner introduces distortion within the EPI image over 

time. Motion-correction approaches ensure that the anatomical location of individual 

regions of the brain is consistent across the duration of the scan, by registering each 

volume within a functional dataset to a common ‘example’ image. This is carried 

out by calculating the affi ne transform of each volume to the example. In addition 

to realighing each image, this transform can be used to calculate the motion of the 

brain within the scanner across the entire duration of the scan, which results in the 

generation of timecourses representing 6 parameters of movement along and about 

each axis in 3D. Although subjects with excessive motion within the bore of the scanner 

are eliminated for further analysis, and minor misalignments corrected, motion also 

induces additional unwanted signal into the data. This is because movement of the 

brain following the RF excitation pulse will lead to an incorrect assumption of the 

spin-history of localised regions of the brain during the readout, resulting in small but 

signifi cant levels of artefactual signal. Approaches for correcting such signals are a 

topic of on-going debate within the research community (Power et al. 2014, Power, 

Schlaggar, and Petersen 2015). In particular, the use of global signal regression to 

correct for motion-induced artefacts is contentious (Fox et al. 2009). A compromise 

is to use the General Linear model to regress a volterra expansion of the motion 

parameters (Friston 1997), alongside the mean signal within a non-cortical area such 

as the white matter (WM) or cerebrospinal-fl uid (CSF) that is distant the functional 

signal within gray matter. 

Spatial smoothing 

Further high-frequency spatial noise may be introduced into functional data as a 
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result of local fi eld inhomogeneity and radio frequency noise within the scanner. As 

the BOLD signal is coupled to the HRF, the spatial order of biologically plausible 

activity ought to smooth across several millimeters (typically covering several voxels 

at once). In order to improve the signal-to-noise ratio of EPI volumes, data are spatially 

convolved with a gaussian kernel with a full-width half maximum size of between 5-8 

mm (the approximate diameter of active clusters of voxels). 

Registration

In order to compare functional data across multiple subjects, or across a series of 

functional EPI ‘runs’, the images must be coregistered to a common image. This 

ensures that individual regions of the brain in each functional image ‘line up’ across 

the group. Typically the registration protocol is to: a) co-register the EPI data to the 

structural T1; and b) ‘normalise’ by further registering the T1 image to a common 

T1 atlas brain. A commonly used T1 atlas is the Montreal Neurological Institute 152 

(MNI-152), generated from 152 healthy control subjects (Grabner et al. 2006). Many 

different registration protocols exist, but three are in common use and are described 

below.

Linear Registration

Linear registration calculates a ‘rigid body’ transformation between two individual 

images. It achieves this by stochastically tuning a ‘transformation matrix’ that describes 

the scaling, translation, skew and rotation of the ‘movable image’ to a template. A 

cost function based on mutual information is used to tune the linear transformation 

matrix, by fi tting the transformed movable image to the reference image. Linear 

registration is often employed to co-register the structural T1 image to the EPI data. 

The poor spatial resolution of EPI and the additional distortion due to T2* effects is 

a challenge to registration techniques. However, the topologies of the EPI and T1 

images are similar, which enhances the success of EPI to T1 co-registration.
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Non-Linear Registration

The demands of registration between the T1 structural space of the brain and an 

arbitrary atlas template are signifi cantly greater than for the registration of EPI to a T1-

weighted image, as there is a signifi cant variability in brain shape, size and structure 

between individuals. In practice, linear registration provides a reasonable estimation 

of the registration between T1 and atlas space. However, individual differences can be 

better accounted for by further fi ne-tuning the registration between the T1-weighted 

image and atlas space by calculating local deformations in the transformed image 

compared to the atlas brain (Andersson, Jenkinson, and Smith 2007). The ‘warp fi eld’ 

is then tuned to further enhance the fi t between the transformed T1-weighted image 

and the atlas brain.

Boundary Based Approaches

In practice, both linear and non-linear approaches to registration yield fairly impressive 

co-registration results. Linear registration can be further improved by using a modifi ed 

‘boundary based’ cost function (BBR) to enhance model fi t. This approach utilises 

the signifi cant difference in the signal intensity (due to differences in the T1 and T2 

relaxation rate) between grey matter and white matter to optimise the cost function 

during registration (Greve and Fischl 2009). BBR uses a structural ‘segmentation’ of 

the structural T1-weighted image, which models the location of the white/grey matter 

boundary as a surface of polygons. Linear registration methods are used to align this 

surface with the EPI, and samples of difference between the intensity either side of this 

boundary are used to calculate the cost function for registration. Good registration 

is achieved when there is a large intensity difference of the correct sign between 

either side of the surface. There are several approaches to generating structural 

segmentations, such as Freesurfer (Dale 1999, Desikan et al. 2006, Fischl and Dale 

2000, Fischl et al. 2002, Fischl, Salat, et al. 2004, Fischl, Tootell, and Dale 1999, Fischl, 

van der Kouwe, Destrieux, Halgren, Segonne, et al. 2004) and FSL’s FAST (Zhang, 
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Brady, and Smith 2001). Segmentation can be further used to generate atlas-defi ned 

regions of interest (ROI), and it provides useful information about the structure of the 

cortex, such as its thickness, volume and surface area. 

Analysis using the General Linear Model (GLM)

In the GLM approach, the BOLD Signal (Y) within each individual voxel is assumed to 

be a linear combination of signals of interest (Xi), termed explanatory variables (EVs), 

and a noise variable (ε):

According to this equation, for each individual voxel of an EPI time-series image, we 

can use least-squares regression to determine a weight (βi) of each individual EV in Y. 

In the case of functional imaging data, explanatory variables may be the time-course 

of some psychological variable defi ned by the experimental design (e.g. a visual 

stimulus on screen), or some nuisance variable that is assumed to form a constituent 

part of , such as movement (Beckmann, Jenkinson, and Smith 2003, Friston 1997). 

Evaluated across the entirety of the brain, a statistical map for each EV is generated, 

using either parametric approaches or more fl exible but computationally intense non-

parametric approaches based on randomisation (Winkler et al. 2014, Nichols and 

Holmes 2002). This map can be examined in isolation, where the denominator is the 

remaining  term, or a contrast with another parameter estimate (COPE); for example, 

a task-dependent state EV with baseline state EV. This provides a t-score between 

the two behavioural states at each voxel, which can be interpreted as a ‘activation’ or 

‘deactivation’ for a specifi c region in the brain.

A mass univariate analysis such as this has a multiple comparison correction problem, 

as each of > 500,000 voxels are effectively independent t-tests. Using a conservative 

multiple-comparison approach such as Bonferonni at this level, would offer little 

𝑌 𝛽 𝑋 𝛽 𝑋 𝛽 𝑋 𝛽 𝜀



60

chance of observing any signal at a level of signifi cance. Therefore, alternative cluster-

based approaches for multiple comparison correction are used instead (Worsley et al. 

1992). These approaches make use of ‘random fi eld theory’ for inference, as the signal 

from an active brain region will spread over a number of neighbouring voxels. For any 

particular FWHM smoothing kernel it is possible to estimate the size of clusters which 

should survive ‘by chance’.  Clusters with a size above this threshold, which can be 

estimated using a standard distribution, can be considered to be signifi cantly active.

Data-driven functional connectivity analysis 

The need to defi ne psychological regressors a priori is a signifi cant limitation to 

examining neural activity over time, especially when considering resting state data 

acquired without an explicit experimental task. Furthermore, as discussed above, 

mass-univariate approaches have signifi cant inference problems in terms of multiple 

comparison correction. Independent component analysis is a data compression 

technique that has the power to overcome these limitations, by representing complex 

datasets such as 4D EPI data as a collection of independent spatial functional 

connectivity maps and associated time courses, which together retain a meaningful 

amount of the variance of the original dataset (Beckmann et al. 2009, Beckmann et 

al. 2005). Importantly, these spatial maps and timecourses can be estimated without 

prior knowledge of en experimental design or timecourse.

Principles of ICA for fMRI

In the ICA approach, the BOLD signal across the entire brain, rather than each 

individual voxel, is considered simultaneously.  Data from a 4D EPI acquisition is 

represented as a matrix (Y) of  voxels by time (t), which can be constructed by a linear 

mixture of a group of individual ‘source’ maps (S) represented as an matrix of m voxels 

by n estimated sources, mixed across time according to a t x n ‘mixing matrix’ (A) 

(McKeown, Jung, et al. 1998, McKeown, Makeig, et al. 1998, McKeown and Sejnowski 
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1998):

There are multiple approaches to the source estimation for ICA approaches. Most 

commonly, A and S are estimated simultaneously, such that S is a matrix optimised to 

contain statistically independent spatial maps of size m in each row, with an internally 

consistent temporal dynamic represented in each of the associated columns of the 

‘mixing’ matrix (A). This means that each map within S represents a collection of 

voxels, within which all voxels are temporally ‘related’ within the dataset, generating 

functional connectivity networks. The level of compression employed by the ICA 

algorithm can be determined by altering the number of columns in S during estimation. 

A common implementation of ICA for fMRI datasets used in this work is implemented 

as MELODIC in the FSL software library (Smith et al. 2004, Woolrich et al. 2009).

Diffusion Tensor Imaging (DTI)

Principles of the diffusion tensor

In Equation 2.2, the diffusion coeffi cient (ADC) along a specifi c ‘vector’ may be 

determined using T2-weighted images taken at a range of different diffusion 

coeffi cients or ‘weights’. In order to fully estimate diffusion would require the 

acquisition of images at many thousands of different gradient vectors, which would 

be impractical. Instead, a popular approach to estimation of voxel-wise diffusion is 

to  use a small selection of vectors about a sphere and fi t a ‘diffusion tensor’ to 

the resulting dataset (Basser, Mattiello, and LeBihan 1994). In the tensor model, 

diffusion along each of >6 (commonly ~64) ‘diffusion vectors’ is fi tted to an ellipsoid 

in three dimensions [Figure 2.9]. The properties of the fi tted 3D ellipsoid can be 

fully described by 6 parameters - the three dimensions of the ellipsoid (eigenvalues; 

v1, v2 & v3) and vectors representing the orientation of fi bres (eigenvectors; λ1, λ2 

& λ3). [Figure 2.10] demonstrates the fi eld of primary eigenvector and eigenvalues 

𝑌 𝐴𝑆
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across a region of the brain. In the CSF, eigenvalues are large, the result of isotropic 

diffusion caused by a lack of microstructure to constrain diffusion. Water movement in 

grey matter is constrained, but eigenvalues are relatively equal, suggesting that whilst 

water is constrained, there is no net direction of water diffusion within the voxels. In 

contrast, within white matter diffusion is constrained along the direction of tracts. The 

directionality of diffusion defi ned by the eigenvectors can be used to ‘reconstruct’ 

pathways of white matter fi bres within the brain, a technique known as tractography.

Eigenvalues and eigenvectors can also be used to generate metrics that describe the 

shape and amount of diffusion within an individual voxel. Fractional Anisotropy (FA) 

describes the overall constraint of water within a voxel (Basser et al. 2000, Basser and 

Pierpaoli 1998, 1996):

When FA is near to 0, then diffusion is isotropic. Values closer to 1 suggest that 

diffusion is highly constrained (anisotropic).

Mean Diffusivity (DM), describes the overall assumed diffusion coeffi cient within a 

voxel. When DM is low, there is very little movement of water within the voxel. High 

𝐹𝐴
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Figure 2.9 | Introduction to the diffusion tensor Diffusion of water in each voxel, is modelled 
using the diffusion weighted signal along each of the measured diffusion gradients, fi tted to 
an ellipsoid. The tensor ellipsoid can be described using 6 parameters, v1-3 which describe 
the mean signal in each direction, and  λ1-3 which describe the assumed angle of diffusion 
in each direction
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DM suggests high diffusivity of water.

Finally, it is common for diffusion in axial (DAX) and radial (DRAD) directions to be 

measured. DRAD is thought to be a quantity that represents the degree of restriction 

due to membranes and may be a marker of axonal demyelination (Song et al. 2003, 

Song et al. 2002). 

DTI data analysis 

 Pre-processing 

Pre-processing of raw EPI diffusion weighted data often follows similar protocols 

to that used for functional MRI (see ‘Analysis of fMRI data’ above). Initially, each 

volume of a DWI sequence is re-orientated and corrected for small spatial distortions 

introduced by eddy currents induced at high magnetic fi eld gradients (Mohammadi 

et al. 2012, Haselgrove and Moore 1996, Jezzard and Balaban 1995, Jezzard, Barnett, 

and Pierpaoli 1998), using an affi ne (linear, see above) registration to the associated 

b=0 image. To reduce the complexity of tensor calculation, the b0 image is also 

brain extracted (see ‘Brain Extraction’ above), reducing the tensor-fi eld calculation to 

a fi eld of view encompassing only neural tissue. Voxel-wise diffusion tensor fi tting is 

then performed, using a least-squares approach to the tensor model. For DTI data 

presented in this thesis, analysis was performed using FMRIB’s Diffusion Toolbox (FDT 

𝐷𝑀 𝜆 𝜆 𝜆

𝐷𝐴𝑋 𝜆

𝐷𝑅𝐴𝐷 𝜆 𝜆



64

White Matter

Grey Matter

CSF

Figure 2.10 | Voxelwise estimation of diffusion tensor Here, the diffusion tensor has been 
estimated and visualised at each voxel of a 25 year old healthy male. Within the white matter, 
diffusion is often highly structured and restricted along a specifi c vector. Within the grey 
matter compartment, water is still largely restricted, but along no specifi c vector. Within CSF, 
water is free to diffuse freely. 
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v2.0) (Behrens, Johansen-Berg, et al. 2003, Behrens, Woolrich, et al. 2003b).

Analysis

Voxel-Based approaches (TBSS).

A popular approach to examining the relationship between white matter structure 

revealed by DTI data is to treat the metrics of white matter structure in each voxel 

across a group of subjects as the response variable in a general linear model.  Similar 

to longitudinal analysis of fMRI data, the signal in each voxel across the group 

is considered as a linear combination of a range of explanatory variables and an 

additional noise factor (see ‘Analysis using the General Linear Model (GLM)’ above). 

Using such an approach allows the data-driven identifi cation of regions of white 

matter associated with specifi c EVs that correspond to categorical factors such as the 

precedence of pathology relative to a control group, or continuous variables such as 

age. However, in order for the analysis to be conducted across a group, images for 

individual subjects must be normalized against an atlas template (see ‘Registration’ 

above). For DTI data this becomes a signifi cant confound, as normal variation in tract 

structure and extent introduced by differences in volume and shape of the brain 

between subjects, introduces a ‘partial voluming’ effect to the data. Partial voluming 

is particularly pronounced when comparing brains with pathology, especially when 

atrophy is present. Tract-based spatial statistics (TBSS) is an approach to reducing the 

complexitiy of the white matter structure to smaller regions of the brain ‘tracts’, where 

the presence of white matter alone is consistent across groups (Smith et al. 2006), 

thereby reducing inter-subject variability. TBSS works by using non-linear registration 

(see ‘Registration’ above) of FA maps in a group of subjects to a common template 

(often MNI-152), creating a group mean FA map. The FA map is ‘thinned’ to create 

a skeleton-which represents the approximate centre of white matter tracts with the 

smallest inter-subject variability across the group. This reduces the effect of brain size 

and shape on the results of voxel-wise analysis of diffusion data.
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Tractography

White matter comprises the axonal projections of neurons that connect grey matter 

regions along with supporting cells. Tractography of DTI data assumes that neighbouring 

voxels form into contiguous ‘fi bres’ passing between voxels, which represent the 

connectivity structure of the white matter. Two main approaches to tractography 

are in common use. In deterministic tractograpy, ‘streamlines’ representing an 

individual putative tract are estimated using the properties of the diffusion ellipsoid. 

Most commonly starting at a seed voxel (which is either determined using a specifi c 

region of interest, or is placed at the grey-matter/white-matter boundary across the 

entire cortex), the path of this streamline is constructed step-by-step. Starting at the 

seed, the primary diffusion vector is followed for a pre-determined distance. The 

orientation for the next step in the tracking algorithm is then used to continue the 

streamline. This process is repeated until: the streamline converges with a pre-defi ned 

‘termination’ region; the length of the streamline is suffi ciently long; the curvature of 

the streamline exceeds a pre-set threshold; or the FA at an ensuing step is too low. 

This results in a map defi ning the probable connection between regions of interest. 

Deterministic approaches are limited, however, as they rely on the primary diffusion 

direction within each voxel - the appropriate direction of each step is far from being 

as certain as the tensor model may suggest. Indeed, in the case of some voxels 

there may be no predominant direction of diffusion. This is especially true in regions 

of low anisotropy that may occur in regions of the brain where fi bre bundles cross. 

Probabilistic approaches model the uncertainty of fi bre orientation direction at each 

voxel and represent each direction as a probability density function. In probabilistic 

tractography the vector of each step in the tracking algorithm is determined not by 

the principle eigenvector, but by this probability function (Behrens, Johansen-Berg, et 

al. 2003, Behrens, Woolrich, et al. 2003a), effectively meaning that where fi bres cross 

it is likely that the fi bre tracking algorithm will follow either of the appropriate fi bre 

directions. Consequently, the spatial extent of repeated estimations of streamlines 
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between specifi c voxels, compared to deterministic approaches have some degree 

of uncertainty. It is commonplace therefore for streamlines from individual voxels to 

be repeated multiple times, generating an overall probability distribution map for 

the spatial extent of the fi bre, which may then be thresholded and used as a ROI for 

further analysis. 
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3
Individual prediction of white 

matter injury and cognitive 
outcome following traumatic 

brain injury (TBI) 

Introduction

Traumatic brain injury (TBI) often results in traumatic axonal injury (TAI). This can be 

investigated using diffusion tensor imaging (DTI)(MacDonald, Dikranian, Bayly, et 

al. 2007). Previous studies show that DTI can provide important clinical information 

in TBI patients, which cannot be obtained using conventional imaging techniques 

(MacDonald, Dikranian, Bayly, et al. 2007, Sidaros et al. 2008, Kinnunen et al. 2011). 

However, the best way to use DTI diagnostically is uncertain. The challenge is 

threefold: (i) to identify the presence of TAI in an individual; (ii) to determine the 

clinical signifi cance of TAI; and (iii) to predict how it relates to specifi c behavioral 

problems and clinical outcome. These goals are challenging as TBI causes a complex 
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and variable pattern of white matter damage.

Tiny hemorrhages within the white matter (microbleeds) are a pathological marker of 

TAI and can be identifi ed using gradient echo and susceptibility weighted imaging 

(Scheid et al. 2006, Beauchamp et al. 2011, Chastain et al. 2009). However, these 

techniques do not provide a quantitative assessment of white matter integrity, and 

patients without microbleeds can still show evidence of TAI.(Kinnunen et al. 2011) 

In contrast, DTI provides quantitative information about white matter damage.

(Kinnunen et al. 2011, MacDonald, Dikranian, Bayly, et al. 2007, Sidaros et al. 2008) 

DTI measures the direction of water diffusion within white matter tracts and allows 

estimation of the structural integrity of the tract.(Beaulieu 2002, Basser and Pierpaoli 

1996) The measures are abnormal shortly after TBI, change dynamically as white 

matter recovers and may be used to predict clinical outcome.(Sidaros et al. 2008, 

MacDonald, Dikranian, Bayly, et al. 2007) Although damage to the white matter 

can be diffuse, the pattern is related to the specifi c cognitive defi cit. For example, 

DTI abnormality within the fornix is correlated with memory impairment, whereas 

abnormality within the cingulum bundle is associated with impairment of sustained 

attention.(Kinnunen et al. 2011, Bonnelle et al. 2011, Sharp et al. 2011)

Previously a type of DTI analysis, tract based spatial statistics (TBSS), to study TAI in 

groups of TBI patients (Kinnunen et al. 2011). This technique provides a sensitive way 

of investigating whether TAI is present across different white matter tracts, although 

it has not been clear how best to apply this technique to individual patients. Here 

we show how machine learning can be used alongside TBSS to provide diagnostic 

information about TAI in individual patients. Machine learning is increasingly used 

to assist complex diagnostic decisions, by integrating multiple pieces of information 

in the diagnostic process (Sajda 2006). A classifi er is trained on data that is already 

diagnostically labeled, before being applied to undiagnosed data. In this way, 

generalizability of a classifi er to novel patient data can be assessed and an individual 

prediction made. In this study, various types of pattern classifi er were trained using 
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DTI data from patients with microbleed evidence of TAI. Patients without microbleed 

evidence of TAI were then classifi ed. The clinical relevance of this ‘diagnosis’ was 

validated with reference to the patient’s neuropsychological profi le. I also show how 

multivariate techniques can be used to provide predictions of cognitive function in 

individuals. I went on to compare multivariate and comparable univariate approaches, 

to test whether the more complex machine learning approach provides additional 

benefi ts. The work provides a proof of principle that machine learning techniques can 

be used with DTI data to provide diagnostic information about clinically signifi cant 

TAI.
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Materials and Methods

Participants

Seventy TBI patients (51 males, mean age ± SD: 35.28 ± 11.5 years) were recruited 

in the post-acute/chronic phase > two months post-injury (mean 34.2 months). All 

subjects had attained at least a secondary school level of education. Exclusion criteria 

were as follows: a history of psychiatric or neurological illness prior to the head injury; 

a history of previous signifi cant TBI; pregnancy or breast feeding; current or previous 

drug or alcohol abuse; contraindication to MRI. Of these 70 TBI subjects, a road 

traffi c accident was responsible for TBI in 27 cases, assaults in 18 cases, trips falls 

or domestic accidents in 16 cases, sports related injuries in 4 cases, one case was 

the result of syncope, and in 4 cases the cause was uncertain. The severity of TBI 

was assessed using the Mayo Classifi cation System (Malec et al. 2007). Fifty-one 

patients were classifi ed as moderate-or-severe and 19 patients as mild. A group of 

25 healthy controls (12 males, 33.4 ± 10.2 years) were recruited alongside the clinical 

group. (For full demographics and clinical details of the patients, see [Appendix 

3.1]. A group of 25 healthy controls (12 males, 33.4 ± 10.2 years) were recruited 

alongside the clinical group. Patients were referred to their local TBI service because 

of persistent neurological problems. At the time of scanning, 13 of the 70 patients 

were prescribed potentially psychoactive medications  (e.g., anti-depressants, 

analgesics). All participants gave written informed consent with ethical approval from 

the Hammersmith, Queen Charlotte’s and Chelsea Research Ethics Committee.

Neuropsychological assessment

Sixty-fi ve of the patients (28 males, mean age  ± SD: 38.48 ± 12.1 years) completed a 

standardized neuropsychological test battery. Our analysis focused on three cognitive 

measures shown to be sensitive to impairments following TBI (Kinnunen et al. 2011): 

Associative memory (AM), using the immediate recall measure of the People Test 
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from the Doors and People Test(Baddeley, Emslie, and Nimmo-Smith 1994); Executive 

function (EF), using the Trail Making Test alternating switch-cost index(Reitan 1958) 

and Information processing speed (IPS), using  median reaction time for accurate 

responses on a visual choice reaction task.

Standard structural and diffusion tensor MRI analysis

Standard protocols were used for the acquisition of high resolution T1, gradient-

echo (T2*) and DTI. MRI Data was obtained in a Phillips Intera 3.0 Tesla MRI scanner, 

using an 8-array head coil, and sensitivity encoding (SENSE) with an under sampling 

factor of 2. For each participant, diffusion-weighted volumes with gradients applied 

in 16 non-collinear directions were collected in each of four DTI runs, resulting in a 

total of 64 directions. The following parameters were used: 73 contiguous slices, slice 

thickness=2mm, fi eld of view 224mm, matrix 128×128 (voxel size=1.75×1.75×2mm), 

b value=1000 and four images with no diffusion weighting (b=0s/mm2).  Additionally, 

each patient underwent standard high-resolution T1 and gradient-echo (T2*) imaging, 

which were examined by a neurologist to classify the presence of microbleeds in the 

patient group. 25 patients had white matter microbleeds (MB+ve group, 19 males, 

mean age ± SD: 37.36 ± 1.6 years). The remaining 45 patients had no microbleeds 

(MB-ve group, 32 males, mean age  ± SD: 34.1 ± 11.37 years). In the absence of 

pathological confi rmation of TAI, we reasoned that presence of microbleeds suggests 

a high-likelihood of underlying TAI. 

For analysis, diffusion weighted images were registered to the b = 0 image by affi ne 

transformations to minimize distortion due to motion and eddy currents and then 

brain-extracted using Brain Extraction Tool from the FMRIB Software Library image 

processing toolbox (Smith 2002, Smith et al. 2004, Woolrich et al. 2009). Fractional 

anisotropy, mode anisotropy and mean diffusivity maps were generated using 

the Diffusion Toolbox, as well as images for each of the eigenvalues (λ1, λ2 and 

λ3) representing the magnitude of diffusion in the three principal directions.(Ennis 
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and Kindlmann 2005, Behrens et al. 2003) Radial (DRAD) diffusivity images were then 

derived from the eigenvalues (DRAD=λ2+λ3/2). Further processing of these images 

was performed using the pre-processing stages of Tract-Based Spatial Statistics 

(Smith et al. 2006). First, FA images were created by fi tting a tensor model to the 

raw diffusion data using the FMRIB Diffusion Toolbox, and then brain-extracted 

using the FMRIB brain extraction tool (Smith 2002). All subjects’ FA data were then 

aligned into a common space using the FMRIB nonlinear registration tool, which uses 

a b-spline representation of the registration warp fi eld (Andersson, Jenkinson, and 

Smith 2007, Rueckert et al. 1999). Next, the mean FA image was created and thinned 

Figure 3.1 | Methods Overview. TBI patients underwent assessment using T2* (Gradient 
echo) imaging to determine the presence of microbleeds, a surrogate marker of traumatic 
axonal injury (TAI).  A) Microbleed positive patients (MB+ve) and age matched controls were 
used to train a support vector machine classifi er to detect the presence of TAI using diffusion 
tensor imaging (DTI) data. This classifi er was then applied to microbleed negative patients 
(MB-ve) to generate predictions of high and low likelihood of TAI. B) All TBI patients with 
complete neuropsychological assessments were used to train a support vector machine 
regression model to predict scores on indices of information processing speed, executive 
function and associative memory.
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to create a mean FA skeleton that represents the centers of all tracts common to the 

group. Each subject’s aligned FA data was then projected onto this skeleton and the 

resulting data fed into multivariate pattern analysis. FA describes the restriction of 

water movement within each voxel. Low FA and high DM and DRAD suggest greater 

freedom of water diffusivity, which is likely to be associated with greater white matter 

damage (Basser and Pierpaoli 1998, Rugg-Gunn et al. 2001). MO describes the 

geometric properties of anisotropy, for example the extent to which free movement 

of water is planar (negative values) or linear (positive values). This measure may be of 

interest particularly around crossing white matter fi bers (Ennis and Kindlmann 2005). 

Non-parametric permutation-based statistics were employed to explore differences 

in FA between patients and controls, using FMRIB’s randomize with 5,000 unique 

permutations (Smith 2002). Multiple comparison correction was performed using 

threshold-free cluster enhancement and thresholded at p<0.05 for presentation.

Multivariate analysis using Support Vector Machines (SVMs) 

[Figure 3.1]

Support vector machines (SVMs) applied to MRI data represent a supervised 

classifi cation technique that maps individual examples of a dataset to a specifi c point 

in n-dimensional space, where n is equal to the number of voxels within the MR 

image, and the absolute value within each voxel defi nes the position of the example 

along each dimension. Therefore, each training sample occupies a unique position 

within n-dimensional space (Cortes 1995). The SVM employs a maximum margin 

classifi cation algorithm designed to derive the optimal separation between two classes 

of data by identifi cation of the “hyper plane” which crosses n–dimensional space to 

separate the training dataset into two pre-defi ned labels, with error minimized to a 

pre-defi ned cost parameter (c). Each sample within the training dataset is refered to 

as a vector. The support vectors are defi ned as the samples that are critical to the 

positioning of the hyper plane inside n-dimensional feature space. Parameter values 

for SVMs in both the classifi cation and regression problems were computed using a 
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simple grid-search parameter selection technique, which tested all possible values of 

c to minimize error and provide the best prediction accuracy possible (Cortes 1995).

Support vector classifi cation

I used an SVM trained on voxelwise measures of structural integrity within the 

white matter skeletons of patients with microbleed evidence of TAI and a group 

of matched controls. Once trained, the classifi cation of unseen data, i.e. patients 

with no surrogate markers of DAI, can be estimated by projecting the new data into 

hyperspace. The classifi cation is then performed by relating the position of the new 

data to the DAIvsControl hyper plane. In this way we classifi ed microbleed negative 

TBI patients previously unseen by the classifi er into two groups; patients who had 

white matter more typical of TAI (defi ned in the MB+ve) and those that did not. 

[Figure 3.1A]. Support vector classifi cation was performed using the probabilistic 

formulation described by Platt implemented by the libSVM classifi cation library (Platt 

1999, Chang and Lin 2011).

Support vector regression

Support vector machines can also be used as a regression tool to estimate the value 

of specifi c continuous labels such as neuropsychological test scores (Vapnik 2000). I 

used this method to predict associative memory (AM), examined using the Immediate 

recall measure of the People Test from the Doors and People Test; executive 

function (EF), examined using the Trail Making Test alternating switch-cost index and 

information processing speed (RT), examined from the median reaction time to a 

simple computerized visual choice reaction task (Baddeley, Emslie, and Nimmo-Smith 

1994, Reitan 1958) Support vector regression as described by Vapnik was performed 

using libSVM classifi cation library (Vapnik 2000).
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Analysis of white matter integrity using regions of interest

I compared the multivariate classifi cation approaches with simpler univariate and 

multivariate approaches using a logistic regression model trained with either: a) global 

mean diffusion estimates, b) mean values from individual tracts, or c) a multivariate 

logistic regression model, where mean values for tracts were fi rst selected because 

they were shown to produce a statistically robust classifi cation using uniariate logistic 

regression of each tract individually [Figure 3.3]. I also used a univariate approach 

(linear regression) to assess whether individual white matter tracts could predict 

the three neuropsychological variables.  In all cases the procedure was identical to 

the multivariate case except with region of interest DTI measurement rather than 

voxelwise input.
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Discriminant weights of white matter tracts

The linear kernel used by the SVMs trained in this study allow direct extraction of the 

‘weight vector’, which has the same number of dimensions as the input feature vector 

(in this case, the number of voxels in the white matter skeleton) and can be thought 

of as a visual representation of the separating hyperplane. In terms of the present 

analysis, this describes the relative importance of each individual voxel in the white 

matter skeleton for prediction in each classifi cation problem. The weight vector was 

thresholded >30% of the maximum discrimination weight as has been described in 

previous studies in order to eliminate noise components within the weight vector 

and highlight the most discriminating regions of the white matter skeleton (Mourao-

Miranda et al. 2005, Ecker, Marquand, et al. 2010, Ecker, Rocha-Rego, et al. 2010). 

For analysis using TBSS skeletons, The weight vector was then subsampled using 

the JHU tractography atlas (Mori and van Zijl 2007). This allowed the contribution of 

specifi c white matter tracts to be calculated. 

Cross-validation and permutation testing

The performance of each classifi er was determined by using K-means cross validation. 

This method allows for robust cross validation by dividing samples into K sets and 

repeatedly generating classifi ers using K-1 sets, which are tested against the remaining 

sample of K. Prediction error of the model is obtained by combination of K estimates 

of prediction error, for our analysis, K was defi ned as the number of training samples 

in each individual classifi er in order to maximize cross-validation using the available 

training dataset (Efron 1993). Finally, each classifi er was permuted 500 times without 

replacement, each time randomly assigning group labels to each feature vector, the 

number of permuted classifi ers, which showed accuracy greater than the correct label 

assignment divided by 500 provided a probability value for the performance of each 

classifi er differing from chance (Good 2005).
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Results

Evidence of traumatic axonal injury in the patient group

Microbleeds are a marker of underlying TAI. Therefore, we expected the voxelwise 

analysis of FA in TBI patients to show evidence of abnormal DTI. Previous work has 

shown that FA is reduced in groups of patients with microbleeds (Kinnunen et al. 

2011) and, as expected, our TBI group showed widespread signifi cant reductions in 

FA across most of the white matter. In keeping with previous work, peaks of statistical 

difference between the groups were seen in the corticospinal tracts, forceps major, 

left Inferior fronto-occipital fasciculus, uncinate fasciculus, anterior thalamic radiation, 

and cingulum bundle [Appendix 3.3]. These results suggest that structural damage to 

white matter connections partially disconnects brain networks, in particular affecting 

long-range connections.

Training the classifi er to identify traumatic axonal injury (TAI)

Using the multivariate approach, high accuracy (>80%) was achieved for classifi ers 

trained on FA, MO, DM, and DRAD [Table 3.1A]. The most accurate classifi er (94%, 

p<0.002) used FA [Figure 3.2A]. The presence of focal contusions is potentially a 

confounding factor; however, similar performance was achieved when only MB+ve 

patients without cortical contusions were used [Appendix 3.2], suggesting cortical 

contusion was not a major determinant of prediction accuracy.

Identifying diagnostically important white matter damage.

I next calculated the contribution of distinct white matter tracts to each multivariate 

classifi cation. Measures of FA and MO were generally lower in patients than controls, 

whereas DM and DRAD were higher in patients [Figure 3.2B]. Our results suggest that 

the pattern of changes accompanying white matter injury after TBI is complex. For 

example, an increase in DM and DRAD within parts of the cingulum and some thalamic 
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Figure 3.2 | Detecting the presence of traumatic axonal injury (TAI) using support 
vector machines. Classifi ers were trained to identify patients with clear indication of TAI 
(MB+ve) from controls using four different diffusion metrics; fractional anisotropy (FA), mode 
anisotropy (MO), mean diffusivity (DM) and radial diffusivity (DRAD). A) The best diagnostic 
performance, (92% sensitivity, 96% specifi city) was achieved using classifi ers trained with 
DRAD (Blue=Controls, Red=Patients). B) Normalized contribution of specifi c white matter 
tracts to the classifi cation. Hotter colors  (closer to 1) demonstrate tracts where higher 
diffusion measures predict controls; Cooler colors (closer to -1) demonstrate tracts where 
higher diffusion measures predict patients. Left (L) and right (R).

 FA  MO  DM   D RAD 

Thalamus   Anterior Cingulate R
 Anterior Thalamic radiation L
 Anterior Thalamic radiation R
 Cingulum cingulate gyrus L
 Cingulum cingulate gyrus R

 Cingulum hippocampus L
 Cingulum hippocampus R

 Corpus Callosum (body)
 Corpus Callosum (genu)

 Corpus Callosum (splenium)
 Corticospinal tract L
 Corticospinal tract R

 Forceps major
 Forceps minor

 Thalamus   Inferior Frontal Gyrus R
 Inferior fronto-occipital fasciculus L
 Inferior fronto-occipital fasciculus R

 Inferior longitudinal fasciculus L
 Inferior longitudinal fasciculus R

 Thalamus   Superior Frontal Gyrus L
Thalamus   Superior Frontal Gyrus R

 Superior longitudinal fasciculus L
 Superior longitudinal fasciculus R

 Superior longitudinal fasciculus temporal part L
 Superior longitudinal fasciculus temporal part R

Thalamus   Superior parietal L
Thalamus   Superior parietal R

 Thalamus   Superior temporal L
Thalamus   Superior temporal R

 Uncinate fasciculus L
 Uncinate fasciculus R

Thalamus   Anterior Cingulate L

Thalamus   Inferior Frontal Gyrus L

A) B) 

-1 -0.5 0 0.5 1 
Prediction Control Patient 

1.0

w

-1.0

N=50 Performance  Sensitivity Specificity P 

A) SVM – Support 

Vector Machine 

FA 94.0% 92.3% 95.8% <0.002 

MO 82.0% 80.7% 83.3% <0.002 

DM 84.0% 79.3% 90.5% <0.002 

DRAD 82.0% 78.6% 86.4% <0.002 

B) LR – Multivariate 

Logistic Regression 

FA 86.0% 84.0% 88.0% <0.002 

MO 66.0% 60.0% 76.0% <0.002 

DM 68.0% 68.0% 64.0% <0.002 

DRAD 66.0% 64.0% 68.0% <0.002 

Table 3.1 | Detecting the presence of traumatic axonal injury (TAI) following traumatic 
brain injury.  Classifi ers were trained to separate MB+ve Patients and age matched controls 
using measures of fractional anisotropy (FA), mode anisotropy (MO), mean diffusivity (DM) and 
radial diffusivity (DRAD). Signifi cance of classifi ers is determined by permutation testing (See 
supplementary methods). SVM – Support Vector Machine trained on full voxelwise measures 
of diffusion. LR –Multivariate logistic regression trained using recursive feature selection of  
mean diffusion within white matter ROIS (See materials and methods)



81

Figure 3.3 | The relationship between the probability of traumatic axonal injury in 
the microbleed negative group and cognitive function. Correlation plots showing the 
probability of being classifi ed as having a high likelihood of TAI in the MB-ve group, based 
on classifi ers trained with measures of Radial Diffusivity (DRAD), and indices of A) executive 
function measured by the trailmaking B-A Switch cost index, B) Information processing 
speed, measured by reaction time on the Choice Reaction Time task and reaction time and 
C) associative memory, measured by immediate recall error of the People and Doors Task.
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FA 46.2% 53.8% 

MO 61.5% 38.5% 

DM 69.2% 30.8% 

DRAD 65.4% 34.6% 

Table 3.2 | Classifi cation of traumatic axonal injury (TAI) in microbleed negative (MB-ve) 
patients. Classifi ers trained on MB+ve patients were applied to the MB-ve contusion free 
patients. The output of this classifi er separates the MB-ve group into two groups of likely 
or unlikely TAI.  Fractional anisotropy (FA), mode anisotropy (MO), mean diffusivity (DM) and 
radial diffusivity (DRAD)
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projections were particularly important in distinguishing between patients and 

controls. Multivariate approaches integrate this complexity into a single diagnostic 

decision.

Identifying likely traumatic axonal injury (TAI) in a group 

of patients without evidence of white matter injury on 

conventional imaging

Classifi ers trained on data from the MB+ve patients were applied to microbleed 

negative patients (MB-ve). This group presents a diagnostic challenge, as they have 

no clear evidence of TAI on conventional imaging, yet frequently have persistent 

neurological complaints. Classifi ers identifi ed between 46.2-65.4 % of patients as 

having likely TAI [Table 3.2], with similar results demonstrated when classifi ers trained 

on contusion free MB+ve patients were used [Appendix 3.3]. 

To investigate the clinical signifi cance of these classifi cations, we tested how 

classifi cation of MB-ve patients related to cognitive function [Figure 3.3]. For DRAD 

classifi ers, the trail-making switch cost (a measure of executive function - EF) was 

positively correlated with the likelihood of TAI (r=0.377, p<0.05). Using FA, DM and 

DRAD classifi ers, a greater likelihood of TAI was positively correlated with median 

choice reaction time (a measure of information processing speed – IPS), (r=0.352, 

0.372 and 0.415 respectively. p<0.05). Performance on the Doors and People test, a 

measure of associative memory (AM) was not signifi cantly correlated with prediction 

confi dence for any of the classifi ers [Appendix 3.4]. However, post-hoc correlations, 

suggest that whist measures of AM, are indepdendent of both EF, and IPS (r=0.01 ns 

and r=0.15 ns, respectively), measures of IPS and EF, are strongly correlated (r=0.65, 

p<0.001), suggesting that a common psychological mechanism between IPS and EF 

(see discussion).

Comparing voxel-wise classifi cation with univariate and other 
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multivariate approaches 

To compare the voxel-wise multivariate approach to simpler multivariate and univariate 

approaches we trained logistic regression classifi ers to distinguish between MB+ve 

patients and controls. A single mean value for each diffusion metric was calculated 

from the white matter skeleton, providing an average of white matter integrity in each 

patient  [Figure 3.4A]. With this approach the most accurate classifi er used global 

mean MO (68% p<0.01); DM and DRAD performed at a rate of 66% (p<0.01) and 64% 

(p<0.05) respectively. Classifi ers trained on global mean FA performed at a rate of 60%, 

and were close to signifi cant according to permutation testing (p=0.051). Classifi ers 

Figure 3.4 | Detecting the presence of traumatic axonal injury (TAI) using logistic 
regression.  Classifi ers were trained to identify patients with clear indication of TAI (MB+ve) 
from controls using mean fractional anisotropy (FA), mode anisotropy (MO), mean diffusivity 
(DM) and radial diffusivity (DRAD) within a range of ROIs selected using the JHU tractography 
atlas, as well as using mean values from the whole skeleton. Hotter colors demonstrate higher 
accuracy, cooler colors demonstrate performance closer to chance. Bold outlines p<0.01, 
Dashed outlines p<0.05 bonferroni corrected.
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trained on certain specifi c tracts performed better e.g. (86% p<0.01) using mean FA 

within the body of the corpus callosum [Figure 3.4B]. However, univariate classifi cation 

accuracy was generally low (mean performance 59.90%) and this technique involves 

the assessment of multiple tracts separately. In addition, a multivariate logistic 

regression approach was used that included those regions that performed well at 

univariate classifi cation. The logistic regression classifi ers performed between 8-16% 

worse than the equivalent support vector machine classifi ers [Table 3.1B].

Predicting cognitive function following traumatic brain injury

To test whether multivariate analysis of DTI data could directly predict cognitive 

function in individual patients [Table 3.3], we trained four different support vector 

Test n=35 
Diffusion 

Estimate 
r p 

IPS - Median CRT 

Response time  

FA 0.395* <0.05 

MO 0.346* <0.05 

DMEAN 0.515** <0.01 

DRAD 0.530** <0.01 

EF - Trail making B  

FA 0.374* <0.05 

MO 0.417* <0.05 

DMEAN 0.560*** <0.001 

DRAD 0.627*** <0.001 

Table 3.3 | Predicting cognitive function following traumatic brain injury using support 
vector regression. Support vector regression was used to predict information processing 
speed (IPS), executive function (EF) and associative memory (AM). Fractional anisotropy (FA), 
mode anisotropy (MO), mean diffusivity (DM) and radial diffusivity (DRAD) in 35 patients without 
cortical contusions. (Pearson’s product-moment correlation coeffi cient  (1-tailed), *p<0.05 
3SF, ** p<0.01 3SF,  ** p<0.001 3SF), results < 0.01 pass Bonferroni correction for multiple 
comparisions.
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machines for regression using FA, MO, DM and DRAD to predict neuropsychological 

test scores. In addition, we repeated the analysis on a subgroup of 35 patients free of 

focal contusion (25 males, mean age  ± SD: 34.1 ± 10.65 years). Correlation coeffi cients 

were calculated between the actual neuropsychological test scores and the value 

predicted by SVM using a leave-one-out approach. This allowed us to assess whether 

our models generalized to the prediction of performance in new patients.

Executive function (EF)

White matter structure could be used to signifi cantly predict individual patients’ 

executive function. [Table 3.3]. The relationship between actual and predicted score 

was strongest for DRAD (r=0.627 p<0.01, bonferroni corrected.) [Figure 3.5A], but was 

present for all four measures. Important contributions to the prediction were assessed 

using the SVM weight vector, were made by white matter structure within the corpus 

callosum; cingulum bundle; the left corticospinal tract; right superior longitudinal 

Figure 3.5 |  Predicting cognitive function using support vector regression. 

Support vector regression machines were trained to predict reaction time (IPS), executive 
function (EF) and associative memory (AM). Signifi cant positive correlations between the true 
neuropsychological index value, and the predicted value found SVM regression of IPS and EF 
for all diffusion metrics. The best levels of prediction for RT (A) and EF (B) were detected using 
estimates of DRAD. C) The contribution of specifi c white matter tracts to the classifi er prediction. 
Hotter colors demonstrate greater relative importance of DRAD measures in specifi c tracts 
when predicting neuropsychological outcome. Left (L) and right (R). Correlations signifcant  
p<0.01 (Bonferroni corrected)
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fasciculus; right inferior-fronto-occipital fasciculus and right lateralized thalamic 

projections to the inferior frontal gyrus [Figure 3.5C, 1st Column]. Qualitatively similar 

results were obtained when only patients without cortical contusions were included, 

demonstrating that prediction of executive function based only on white matter 

structure, is robust to the presence of cortical contusions [Appendix 3.5]. 

For EF, the multivariate approach outperformed univariate linear regression models 

when tested in the contusion free TBI patients. The best accuracy (bonforoni corrected) 

using mean global diffusion metrics was achieved using mean MO (r=0.53, p<0.01 

) [Figure 3.6A, Left]. Using individual tracts the best performance used mean DM 

within the left cinglulum bundle (r=0.57, p<0.01, correcting for multiple comparisons)

[Figure 3.6A, Right]. Good performance was also observed in the body of the corpus 

callosum (r=0.54, p<0.01) and the left anterior thalamic radiation (r=0.57, p<0.01).

Information processing speed

Similarly we found that measures of white matter structure could be used to predict 

individual patients’ information processing speed using the multivariate approach 

[Table 3.3] (bonferroni corrected) The relationship was strongest for DRAD (r=0.530, 

p<0.01) but was present for all measures. Particularly important contributions to the 

predictions were made by white matter within the cingulum bundle; corticospinal 

tracts; the corpus callosum; the left inferior fronto-occipital fasciculus and the right 

superior-longitudinal fasciculi [Figure 3.5C 2nd Column]. When all patients were 

included in the analysis, including those with cortical contusions, the correlation 

remained signifi cant between predicted and actual values based on FA and DRAD 

[Appendix 3.5]. 

In contrast to our other analyses, the univariate approach to predicting information 

processing performed similarly to the multivariate one. The best accuracy using mean 

global diffusion metrics was for MO (r=0.55, p<0.01) [Figure 3.6A, Left]. Analysis using 
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Figure 3.6 | Predicting cognitive function using linear regression. 

Linear models were fi t to A) Information processing speed and B) executive function and mean 
fractional anisotropy (FA), mode anisotropy (MO), mean diffusivity (DM) and radial diffusivity 
(DRAD) within a range of ROIs selected using the JHU tractography atlas, as well as the means 
from the skeleton (left of fi gure). Pearson’s product-moment correlation coeffi cient  (1-tailed), 
bold outlines p<0.01, dashed outlines p<0.05 bonferroni corrected.
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smaller ROIs defi ned by individual JHU tracts was also performed [Figure 3.6A, Right]. 

The best performing predictive model used values for mean DM within the Left and 

Right portion of the cingulum bundle (r=0.57, 0.53 p<0.01), respectively.

Associative memory (AM)

Both multivariate and univariate linear regression models failed to accurately predict 

associative memory performance as measured by immediate recall on the people 

task using any of the estimates of white matter integrity.
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Discussion

Traumatic brain injury (TBI) often results in signifi cant and persistent cognitive 

impairment (Whitnall et al. 2006, Scheid et al. 2006). The pathophysiological basis for 

this is often uncertain. Focal injuries are usually easily identifi ed using conventional CT 

and MR imaging. However, these injuries often do not well explain clinical outcome 

(Bigler 2001, Levine et al. 2005, Niogi, Mukherjee, Ghajar, Johnson, Kolster, Lee, et 

al. 2008, Lee et al. 2008). In contrast, traumatic axonal injury (TAI) appears to be a key 

determinant of clinical outcome, which can be missed by conventional imaging (Adams 

1982, Medana and Esiri 2003). Animal studies show that TAI can be widespread even 

when conventional MRI appears normal (MacDonald, Dikranian, Bayly, et al. 2007, 

MacDonald, Dikranian, Song, et al. 2007, Li et al. 2011). Here, we demonstrate how 

machine learning can be used to augment diagnosis of TAI in individual patients. First, 

we show how a support vector machine classifi er can be trained to identify complex 

patterns of white matter damage produced by TBI in a group with evidence of TAI 

from conventional MRI imaging. Secondly, I show how this trained classifi er can be 

used to identify patients with a high likelihood of TAI in a group without evidence of 

TAI from conventional imaging. Finally, we demonstrate that support vector machines 

can be used to predict cognitive impairment in individual patients, based only on the 

pattern of white matter damage.

Currently the most widely used approach to diagnosing TAI is to identify the presence of 

microbleeds on gradient echo or susceptibility weighted magnetic resonance imaging 

(Scheid et al. 2006). In areas where TAI has produced petechial microhaemorrhage, 

this technique is highly sensitive. However, TAI is not necessarily accompanied by 

petechial hemorrhage, and identifying microbleeds does not provide a quantitative 

assessment of damage. DTI gives important additional diagnostic information, by 

providing a quantitative measure of white matter structural integrity that is sensitive 



90

to non-hemorrhagic TAI (MacDonald, Dikranian, Bayly, et al. 2007).

Much previous work has investigated white matter abnormalities in pre-specifi ed 

regions of interest (Kraus et al. 2007, Niogi, Mukherjee, Ghajar, Johnson, Kolster, Sarkar, 

et al. 2008, Niogi, Mukherjee, Ghajar, Johnson, Kolster, Lee, et al. 2008, Kennedy et 

al. 2009). This approach is sensitive at detecting abnormalities within the regions 

assessed, but is limited to small regions of the total white matter and it is unclear 

a priori which regions should be assessede.g. (Niogi, Mukherjee, Ghajar, Johnson, 

Kolster, Sarkar, et al. 2008). An alternative is to adopt a ‘whole brain’ approach, where 

all voxels within white matter tracts are simultaneously assessed. Most studies of this 

type employ univariate statistics (i.e. each point in an image is analyzed separately) 

and report the results from groups of subjects (Kinnunen et al. 2011). When the goal 

is diagnostic, this univariate approach fails to integrate information from different 

spatial locations to detect complex discriminating patterns of white-matter damage 

in the individual. The machine learning approach we report provides a sensitive way 

of incorporating information from all major white matter tracts into a single diagnostic 

decision and can be used to predict the likelihood of TAI in individual patients.

I go on to demonstrate using multivariate techniques that the pattern of white matter 

damage in an individual can be used to make predictions about executive function and 

information processing abilities after TBI in individual patients. Relationships between 

DTI and both information processing speed and executive function were strongest 

when based on measures of radial diffusivity, which is thought to be a surrogate 

marker for axonal demyelination (Klawiter et al. 2011, Song et al. 2003, Song et al. 

2002). Given that conduction speed is proportional to the degree of myelination, this 

relationship between DRAD and information processing speed may refl ect changes in 

myelination associated with TAI (Waxman 1980). One limitation of these predicitons 

is that measures of Information processing speed and executive function measured 

by performance on the choice reaction time task and trail making test are strongly 

correlated, this suggests that there may well be a common psychological mechanism 
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underpinning performance of each of these tests, limiting the value of their prediction 

in isoation. One approach which is beyond the scope of the current work to adress this 

problem, would be to embrace the multivariate nature of neuopsychlogical batteries 

and rather than focus on the results of a few isolated tests (albeit, tests that are 

consistently used within the TBI literature (Kinnunen 2011)), focus on composite and 

orthogonal measures of psychological ‘factors’ which could be exposed in these rich 

datasets using approaches such as principal component analysis or multidimensional 

scaling. 

The voxel-wise multivariate approach outperformed both univariate and mulitvariate 

methods based on DTI measures averaged across regions of interest. Superior 

prediction of executive function performance was also achieved using the voxel-based 

approach. In contrast, the univariate and multivariate approaches were equivalently 

successful in predicting information processing speed, even when the average mean 

diffusivity from the whole white matter skeleton was used. This might be because 

information processing speed after TBI refl ects functional integration across large 

numbers of white matter tract, and this global feature is adequately captured by an 

average measure of white matter damage across the whole brain. At the other extreme, 

certain cognitive functions appear to depend on the integrity of a small number of 

tracts. Previously work has shown a clear relationship between integrity of the fornix 

and associative memory function after TBI (Kinnunen et al. 2011). Interestingly, the 

multivariate model was unable to predict associative memory function, perhaps 

because the contribution of the very small but critical white matter tracts is small using 

this approach. The failure of the univariate approach in predicting associative memory 

may be because a fornix region of interest was not used. The relationship between 

fornix integrity and memory function previously observed (Kinnunen et al. 2011) was 

present in a healthy control group, as well as the TBI patients. Although we don’t 

address the issue here, it is likely that our multivariate techniques could be applied 

to the prediction of cognitive performance in the healthy population, and future work 
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should investigate this.

There are however several potential limitations to our approach. Firstly, the registration 

of individual images into standard space must be accurate or partial volume effects 

can lead to highly abnormal DTI metrics. The pre-processing that we employ (TBSS) 

was developed specifi cally to minimize the impact of these problems in disease states 

(Smith et al. 2006).The white matter is ‘skeletonized’ and only the central points of tracts 

studied, greatly reducing the risk of partial volume effects. The accuracy of registration 

was carefully checked in all cases; therefore this is unlikely to a major cause of error in 

our analyses. Secondly, It is important to note that a small proportion of the patient 

population described by this study, were taking potentially psychoactive drugs at the 

time of scanning for a variety of reasons (e.g., chronic pain). This is commonly found 

following TBI, so the patients were a representative population. However, these drugs 

may affect the neuropsychological measures such as reaction time and so could be 

contributing noise unconnected to the DTI measurements, which if anything would 

make classifi cation harder. Finally, there is a strong correlation between the different 

DTI measures, particularly MO and FA. Therefore, the high classifi cation performance 

may refl ect underlying variance shared across the different diffusion measures. In 

addition, DTI changes are dynamic after TBI and so our results are likely to be specifi c 

to the chronic phase (>2 months) post injury. Further work is required to apply the 

machine learning approach we employ to the acute and sub-acute period after injury. 

Finally, our analysis is cross-sectional, and therefore does not directly support the use 

of DTI to predict clinical outcome over time. Longitudinal prediction is an important 

clinical application and previous univariate work with groups of patients demonstrates 

that DTI provides additional information about outcome e.g. (Sidaros et al. 2008). 

Machine-learning approaches are likely to be a more sensitive way of improving 

the predictive value of DTI, particularly when making individual predictions. Future 

work with larger patient groups could incorporate this type of technique, and should 

explicitly model a large number of clinical variables that are known to be important 
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in explaining outcome, such as acute imaging changes, clinical measures of injury 

severity and measures of gray matter atrophy. 

In conclusion, we provide evidence that using DTI with machine learning approaches 

has the potential to augment diagnosis of traumatic axonal injury in individual patients 

following TBI, and we demonstrate relationships between white matter damage and 

predictions about individual patients’ cognitive impairment.  
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4
A computational 

model of the 
neural dynamics in 

the resting brain 

Introduction

A key goal for cognitive neuroscience is to explain the relationship between structural 

connectivity and the dynamical functional activity (FC) of the brain. Functional activity is 

organised into intrinsic connectivity networks, which overlie regions of strong structural 

connectivity (Honey et al. 2009, Honey, Thivierge, and Sporns 2010, Hagmann et al. 

2008, Sporns 2013, van den Heuvel and Sporns 2013). Advances in modern MRI have 

made the possibility of generating large-scale connectivity datasets possible. The 

ensemble of structural or functional brain connections can be described as a complex 

network, the “connectome” (Cammoun et al. 2011, Cocchi, Zalesky, and Fontenelle 

2012, Fornito et al. 2012, Sporns 2013, 2011, Sporns, Tononi, and Kotter 2005, van 
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den Heuvel and Sporns 2011).

However, whilst structural connectivity is somewhat predictive of FC, strong correlations 

between regions that have no direct anatomical connectivity – often with path-length 

distances of 3 or greater can show strong functional connectivity (Honey et al. 2009, 

Honey, Thivierge, and Sporns 2010). It is also clear that whilst structural connectivity is 

static over short time scales (i.e., the duration of an FMRI scan), functional connectivity 

even at rest changes dynamically (in the order of seconds to minutes) (Hutchison, 

Womelsdorf, Allen, et al. 2013, Hutchison, Womelsdorf, Gati, et al. 2013, Allen et al. 

2014, Handwerker et al. 2012, Zalesky et al. 2014, Smith et al. 2012) [Figure 4.1]. The 

emergence of such dynamic activity from a static network is an example of ‘functional 

multiplicity’ where a single network interacts in a dynamic regime that produces a 

wide variety of different functional interactions – moreover, measures of structural 

connectivity relate better to FC when FC is averaged across a large timescale or fi ltered 

to a relatively low frequency (Honey et al. 2009, Honey, Thivierge, and Sporns 2010). 

In light of these observations, it is clear that understanding the organisation of resting 

state networks, depends not only on accurately measuring structural connectivity of 

the brain, but also on the time-evolving interactions between individual regions of 

the brain – the dynamics which enable more complex states to emerge over short 

Figure 4.1 | Functional Connectivity Evolves dynamically over time. Functional connectivity 
of a single healthy control subject, calculated over a 20s sliding time window (Top).  Compared 
to both static measures of Functional connectivity evaluated over the entire time-course 
(MeanFC), and static measures of structural connectivity (SC), dynamic measures of functional 
connectivity vary dramatically over time.
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timescales. (Deco, Jirsa, and McIntosh 2011, Deco and Corbetta 2011, Deco et al. 

2009). Thus the development of theoretical models which relate local cortical dynamics 

with underlying structure are of fundamental importance in studying the relationship 

between macroscopic functional connectivity, structure and behaviour.

The development of macroscopic computational models provides an ideal framework 

for examining the dynamic features of the brain that enable complex functional 

interactions to emerge from the structural connectome [Figure 4.2]. Simulated time-

courses from such models can be compared to those of empirical functional data by 

passing the model output through a haemodynamic model (Friston et al. 2000), or 

quantitatively analysed using tools from dynamical systems theory (Shanahan 2010b, 

a, Chialvo 2010, Chialvo 2004). Such models are designed to explore the dynamics 

over and above structure that occur in the brain (Cabral, Hughes, et al. 2011, Cabral, 

Kringelbach, and Deco 2014, Deco and Corbetta 2011, Deco, Jirsa, and McIntosh 

Figure 4.2 | Computational approaches to examining macroscopic neural dynamics. To 
examine the importance of local dynamics on shaping macroscopic measures of functional 
connectivity through structure of the brain, Strucutral connectivity (derived from DWI or tracer 
studies, Left) are projected into a computational model, which defi nes how long distance 
structural connections interact with local activity in each individual region to produce neural 
activity (Centre). These simulated dynamics are often compared to empirical fMRI by passing 
simulated time-courses though a haemodynamic model and calculating measures of functional 
connectivity which can then be directly compared with similar empirical datasets (Right).
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2011, Messe et al. 2014). Such models exist at a range of different levels of spatial 

and temporal complexity: e.g. modelling connectivity between groups of specifi c 

neuronal subtypes (Deco et al. 2014, Deco and Corbetta 2011), using models of 

individual neurons or else mean fi eld approximations of pools of large numbers of 

neurons, incorporating neuromodulators such as NMDA, AMPA and GABA (Deco et 

al. 2014, Deco et al. 2008), as well as exploring a range of different model parameters 

such as intrinsic noise, and conduction delays. A key observation that cuts across all 

of these models at all levels of description is that  these models are validated by the 

overlap with resting state activity in a regime balanced between highly ordered and 

highly disordered activity (Alexander 2005). 

Recent work has explored measures of the dynamics of computational models. One 

approach has focused particularly on two measures of dynamical fl exibility: synchrony 

and Multistability (Wildie and Shanahan 2012, Shanahan 2010b, a, Tognoli and Kelso 

2014, Kelso 2012, Bressler and Kelso 2001). Multistability in neural activity is not a new 

concept (Friston 1997) and refers to the evolution of spontaneous dynamics within 

the brain where the functional state of the system can endogenously move between 

transient ‘attractor-like’ states in order to reconcile “the well-known tendencies of 

specialized brain regions to express their autonomy (segregation) and the tendencies 

for those regions to work together as a synergy (integration)”. As such, the level of 

Multistability in the system may be important for effi cient integration in the brain 

(Tognoli and Kelso 2014, Shanahan 2010a). Computational modelling has suggested 

that Multistability is a property of the neural dynamics of the brain at rest (Deco et 

al. 2009, Cabral, Hugues, et al. 2011). Theoretical accounts suggest that increased 

Multistability in the brain allows more fl exible dynamic interactions between regions, 

whereas reductions in Multistability may accompany more persistent and stable states 

(Shanahan 2010a).

A computational model that provides the appropriate level of abstraction to examine 

Multistability within complex systems is the Kuramoto Model of coupled phase 
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oscillators (Kuramoto 1984). Within this system each node represents an oscillator 

with a single intrinsic operating frequency [Figure 4.3]. The dynamics of the overall 

system of oscillators is then defi ned by the weak delayed coupling enforced between 

pairs of oscillators within the system, providing two free parameters in the model – the 

strength of connections between nodes and the scale of interaction delay between 

regions, potentially providing a broad range of different dynamical repertoires to 

emerge. Dynamic stability of the whole Kuramoto system or a subset of the nodes 

can then be examined using a well-defi ned order parameter (Shanahan 2010b). The 

Kuramoto order parameter represents both the overall phase of a group of oscillators, 

and moreover how ‘phase locked’ they at any point in time.  The variability (standard 

deviation) of this measure of phase locking over time has been proposed as a 

description of how Multistable the system is. The mean (across time) of this phase 

locking is a measure of how synchronous the system is. If the system visits a wide 

range of different sub-states over time, Multistability will be high, and associated 

with a modest level of synchrony. Both highly disordered and stable states would be 

associated with lower Multistability and low or high synchrony respectively (Wildie 

and Shanahan 2012, Shanahan 2010b). 

The Kuramoto model has recently been used to examine the relationship between 

structural connectivity and resting state dynamics in the framework of the brain, 

coupling within the model was defi ned using the strength of connectivity between 

66 brain regions defi ned by DSI tractography (Hagmann et al. 2008). The size of the 

delay interactions (representing neural transmission delay), was then defi ned using 

the length of tracts between each region. In this model, Multistable dynamics were 

associated with the emergence of functional connectivity patterns evocative of the 

resting state (Cabral, Hugues, et al. 2011). One potential limiation of using a fast 

model of neural dynamics such as the Kuramoto model for comparisons between 

macroscopic measures of functional connectivity measured in the brain using 

techniques such as functional MRI, is that the kuramoto model operates at a timescale 
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signifi cantly smaller than that of the empirical measures. 

In this chapter, I introduce the Kuramoto model in detail and show how it can be 

used for exploring brain dynamics based on the structural connectivity of the brain 

(Hagmann et al. 2008). I will present a number of simulations where the model is 

‘tuned’ by evaluating the dynamical regimes under which this model best simulates 

Figure 4.3 | Simulating neural activity and 
Multistable dynamics using the Kuramoto 
oscillator model. A) The Kuramoto oscillator 
model is built of a community of phase 
oscillators (nodes). The activity (or phase) of 
each oscillator over time is affected by the 
phase of each other oscillator in the model 
according to the weights by which they are 
interconnected <C>. In the connections 
between oscillators may be delayed in time 
according to a matrix of lengths <L>, which 
allow the model to include realistic conduction 
delays. <C> and <L> are provided as priors to 
the model and in terms of the brain represent 
estimates of white matter connectivity 
between nodes, and their lengths respectively. 
B) Measurements of ‘phase locking’ between 
nodes within the model can be measured 
using the order parameter of the simulated 
phase histories. The angle of this parameter 
(Φ) defi nes the overall phase vector of the 
community measured whilst the magnitude 
(R), describes the overall level of phase locking 
or synchrony, displayed by the community 
over time.

Connectivity Matrix C Delay Matrix L

2(t)

1(t) 3(t)

C1,3

C3,1

C2,3

C3,2

C1,2

C2,1

3

1

2

1

0
R 

Time

A

B



101

empirical resting-state cortical dynamics along two parameter dimensions (the 

coupling strength and delay of connections). This results in a validated model that is 

subsequently used in the following two chapters to explore dynamics and how they 

relate to some aspects of cognition and brain injury.
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Methods

The Kuramoto oscillator model

Empirical Structural Connectivity

The computational simulation is based on connectivity matrices describing the 

strength <C> and length <D> of white matter connections between 66 cortical regions 

defi ned using tractography of diffusion spectrum imaging. These matrices, initially 

described by Hagmann and colleagues (Hagmann et al. 2008), have subsequently 

been used in Kuramoto simulations to demonstrate emergent properties of structural 

connectivity (Cabral, Hugues, et al. 2011). See (Hagmann et al. 2008) for a more 

detailed description of the methodology used to defi ne these structural connectivity 

matrices.

Simulation of network activity [Figure 4.3A]

The activity of each of the 66 brain regions (which we defi ne here as nodes) is 

represented in our model as the phase of a single phase oscillator over time 

(Breakspear, Heitmann, and Daffertshofer 2010, Acebrón et al. 2005, Cumin and 

Unsworth 2007, Shanahan 2010b, Cabral, Hugues, et al. 2011, Kuramoto 1984). Each 

node is connected to all other nodes within the system according to the empirical 

connectivity (see above). Phase at each node over time , is described by the dynamical 

Kuramoto oscillator equation (Kuramoto 1984, Acebrón et al. 2005):

The natural frequency (w) defi nes the phase change of an un-coupled node per time-

step. The connectivity matrix <C> is determined by the empirical strength of white 

matter connections. The distance matrix <D>, determined by the empirical length of 
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connections between regions, imposes time delays on phase interactions between 

nodes. This is analogous to simulation of a delay caused by neural conduction between 

regions of the brain. In addition to the constraints imposed by the connectivity 

matrix, an additional time-dependent constraint between nodes may be imposed by 

modulation of the activity matrix <A>(t). Finally, two scaling factors were defi ned: k, 

scaling the connectivity and  τ , scaling the delay matrices respectively. The behavior 

of the Kuramoto model with respect to global Multistability and synchrony as these 

two parameters are altered has been explored previously (Cabral, Hugues, et al. 2011, 

Shanahan 2010b). Using a grid-search approach, we set the values of these parameters 

Figure 4.4 | Computational models converge on measures of Multistability and synchrony 
over short timescales. To estimate the length of simulation required in order to obtain a 
consistent measure of network dynamics, we iteratively increased the length and number of 
arbitrary runs of the computational model. The effect of overall length of neural dynamics 
simulated, and the number of repeated measurements with randomised starting parameters, 
is shown for global Multistability (Left) and global synchrony (Right).
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within the model so as to maximize both global synchrony and Multistability, where 

<A>(t)  is a unit matrix (i.e., a matrix with all elements equal to one). Recent work 

(e.g., (Cabral, Hugues, et al. 2011, Haimovici 2013)) suggests that biologically-realistic 

functional connectivity patterns emerge from dynamical computational simulations 

when they maximize equivalent measures as Multistability.

Measures of global and local network dynamics [Figure 4.3B]

To quantify measures of network dynamics within the computational model, we 

evaluated the phase history of the computational model either across all oscillators, 

or for pre-specifi ed clusters of oscillators defi ned to belong to different intrinsic 

connectivity networks, using the order parameters R(t) and Φ(t), jointly defi ned by:

Where N is the total number of oscillators within the whole brain or a specifi c cluster. 

The level of synchrony between simulated timeseries from different oscillators 

is described by R(t), in terms of how coherently phase changes over time (Cabral, 

Hugues, et al. 2011, Shanahan 2010b). During fully synchronous behavior, R(t) = 1 

and 0 where phase across all phase timeseries is fully asynchronous. The global phase 

of the entire population of phase timeseries is described by Φ(t). I measure global 

dynamics in terms of mean global synchrony across the entire simulated timeseries 

(R), and global Multistability as the variance σR of global network synchrony across the 

same period (Cabral, Hugues, et al. 2011, Shanahan 2010b).

Two options are available to ensure robust estimation of the synchrony and 

Multistability measures. The fi rst, which we applied during model validation, is to 

simulate suffi ciently long time-courses. The convergence of global synchrony and 

global Multistability as a function of time taken into account is visualised in [Figure 

4.4A]. The second option, which we applied during the lesion study, is to simulate 

substantially shorter time-courses but average over a set of simulations with different 
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initial conditions. The convergence of global synchrony and global Multistability as 

a function of the number of runs with different initial conditions taken into account is 

visualised in [Figure 4.4B].

Empirical validation methods [Figure 4.5]

In order to evaluate the model and tune it into an optimal dynamical regime to 

predict empirical resting-state dynamics, we evaluated the dynamics and functional 

connectivity of the model across a wide range of different coupling and delay scaling 

parameters (see above). The range of parameter values studied was guided by 

previous fi ndings of Cabral et al. (2011), with values of mean delay (τ) located in the 

physiologically realistic range (1 ms < τ  < 15 ms at a resolution of 1 ms), and for 0.5 

< k < 25 at a resolution of 0.5 – altogether 800 parameter space values. In addition, 

Figure 4.5 | Overview of experimental design. Here, a Kuramoto model, is built using prior 
information derived from white matter tractography. A).  I consider two methodologies for 
comparing the dynamics of this model with empricial neuroimaging data. B) Using pairwise 
measures of functional connectivity, correlated with similar empirical measurements; and C) 
using spatial ICA to estimate networks of intrinsic connectivity (ICNs) in the simulated data, 
and compare to empirically derived functional connectivity networks.

Ѳ2(t)

Ѳ1(t) Ѳ3(t)

C1,3

C3,1

C2,3

C3,2

C1,2

C2,1

Connectivity Matrix �C� Delay Matrix �L�

66 

66 

66 

66 

Computational 
Modelling

ICA

Pairwise

Correlation

Empirical
FC Matrix

Simulated
FC Matrix

66 

66 

66 

66 

Empirical 
ICNs

Simulated
ICNs

A

Validation using
Functional Connectivity

B
Validation using
ICA derived ICNs

C

Correlation Correlation

FC Parameter 
space fit

RSN Parameter 
space fit

k 

τ 

k 

τ 



106

the natural frequency of each node within the model was constrained to within the 

gamma range. In setting these parameters, we are implicitly selecting a timescale for 

the computational model within the sub second timescale. Effectively, defi ning the 

units of the D matrix though τ defi nes the defi nition of time within the model. When 

comparing the model to empirical data, this is accounted for by either application of 

an appropriate fi lter (such as the canonical haemodynamic model), or an apropriate 

downsampling regime (as is used here). This allows us to explore using the model, the 

effect of key and biologically meaningful characteristics, such the scale of neal delays 

at the level and timescale of neural circuits, whist allowing empirical evaluation of the 

model using an empirical dataset with an appropriate spatial scale.

 To preserve control over the behaviour of the model, we used the same initial conditions 

for each point when exploring the parameter space. For each position in parameter 

space, the simulation was run for 660 “seconds”. To eliminate dependence of results 

on initial transient periods, we discarded the initial 60 “seconds” of the model output. 

Post-processing of phases, such as fi ltering or use of the Balloon-Windkessel model 

was avoided to prevent alteration of the results by such steps. It has been shown that 

the predictive power of a number of models, including the Kuramoto model, is largely 

insensitive to the presence of the hemodynamic model (Messe et al. 2014). Rather, 

we evaluated the model output without any additional fi ltering, but still capturing 

dynamic interactions between nodes.

Validation using functional connectivity (FC)

The fi rst model validation method compared time-averaged pair-wise FC within 

the model to empirical FC data from fMRI. Model FC was evaluated using pair-wise 

correlation (Pearson’s rho) between node time-courses, leading to a 66x66 region 

correlation matrix for the model. I compared the upper triangular of this simulated 

correlation matrix with pre-published empirical measures of functional connectivity 

(also measured using pairwise correlation) measured in the same fi ve subjects as the 
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structural connectivity data (Honey, Thivierge, and Sporns 2010).

Validation using intrinsic connectivity networks 

The correlation of individual nodes within the brain likely changes dynamically over 

time (Hutchison, Womelsdorf, Allen, et al. 2013, Allen et al. 2014, Handwerker et al. 

2012, Zalesky et al. 2014, Smith et al. 2012).  Methods such as independent component 

analysis can be used to better characterise patterns of functional connectivity over 

time, allowing for regions to be involved in multiple networks. Therefore, we also 

explored a second approach to model validation using an ICA based approach. Briefl y, 

Figure 4.6 | an evaluation of the dynamical properties of the Kuramoto model across the 
parameter space of connectivity strength (K) and mean conduction delay (τ).  Top) Global 
Synchrony and Multistability. Bottom) exemplar time-courses of the magnitude of the order 
parameter (Synchrony) for three runs of the model in a high (red), low (blue), medium (green) 
synchronous regime.
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we estimated how intrinsic connectivity networks defi ned previously, see (Smith et al. 

2009b), overlapped with the 66 cortical ROIs of our model. Modelled timecourses were 

then extracted in the 66 ROIs, and an ICA performed, resulting in 10 components. For 

a subset of  models from the parameter space, the ICA algorithm failed to converge, 

either because there was no consistent correlation structure within the dataset over 

time, or because all regions of the model were fully correlated. Thus, we limited the 

ICN validation method to parameter space coordinates where dynamics exhibited 

suffi cient variability for the MELODIC algorithm to converge (global Multistability of 

0.05 or above). To reduce computational complexity, we temporally down-sampled 

time-courses to 0.2-second resolution, resulting in a collection of spatial ICN maps for 

the model to compare against the empirical data using Pearson’s correlation. Since 

the order of components extracted by MELODIC varies, we determined maximal 

correspondence between empirical and model components by calculating the pair-

wise correlation between them and reordering the resulting correlation matrix so as 

to maximize entries along the diagonal, and defi ned a cost function of the mean 

diagonal correlation coeffi cient. To limit dependence of results on the number of 

components taken into account, we produced two versions of the cost functions, 

Figure 4.7 | Empirical functional connectivity is best predicted by the model in a region 
of the model at the start of the phase transition between highly ordered dynamics 
and disorder. A) Correlation coeffi cient between measures of pairwise simulated functional 
connectivity and empirical functional connectivity from fMRI. B) Mean correlation of simulated 
ICNs with ICNs derived from empirical fMRI.  n=10 components (Left), n=5 components 
(Right)
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including either the best-matching 3 or 5 components between the modelled and 

empirical data. 

Figure 4.8 | Empirical and Simulated ICNS. Example components from one run of the 
computational model in comparison with their empirical counterparts. Components are 
reconstructed into MNI-152 space, and smoothed with a FWHM Gaussian kernel of 5mm for 
display.
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Results

Dynamical properties of the Kuramoto model.

I started by building simulations exploring a two-dimensional parameter space by 

altering the two key free parameters of the model: the mean velocity (τ) of the delay 

between nodes, and the overall strength of connectivity (K). For each position within 

the <k,τ>  plane, we calculated global measures of both synchrony and Multistability 

using the order parameter described above [Figure 4.6]. Consistent with previous 

work using this approach (Cabral, Hughes, et al. 2011), we demonstrated that for 

small coupling strengths the resulting dynamics show low values of synchrony, and 

that this low synchrony persists over time: i.e. have low Multistability [Figure 4.6, Blue]. 

As K increases, the model passes into a region of instability indicative of a ‘phase 

transition’ during which time  the model exhibits Multistable dynamics [Figure 4.6, 

Green]. As K increases further, there is a region of stable highly synchronous dynamics 

[Figure 4.6, Red], with lower Multistability. Increasing the length of delays has expands 

the range of values for K that lead to this zone of instability. Theoretical accounts of 

networks of Kuramoto oscillators (Cabral, Hugues, et al. 2011, Acebrón et al. 2005) 

support the observation of a ‘phase transition’ in the activity of the Kuramoto model 

with intermediate values connectivity and velocity constants. In network models with 

an order of magnitude more oscillating nodes, the connectivity constant exhibits a 

‘critical value’, here overlain by the zone of instability, for which the network jumps 

between incoherent chaotic behaviour, and synchrony. Explorations of smaller scale 

models demonstrate a more constrained set of dynamical behaviours, with a smooth 

transition between order and chaos characterised by the zone of instability (Cabral, 

Hughes, et al. 2011).

Multistable dynamics predicts functional connectivity

In order to explore the dynamical properties of the model which best replicate 
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empirical patterns of resting state activity in the brain, we compared the model 

output with measures of functional connectivity estimated by: a) pairwise correlation 

coeffi cients; and, b) networks of regions defi ned by independent component analysis 

[Figure 4.7]. The correlation between empirical and modelled measures of pairwise 

functional connectivity (see materials and methods) demonstrated that the fi t of 

functional connectivity from simulated with empirical connectivity is maximised in 

the region of instability, where Multistable dynamics are greatest [Figure 4.7A].  If 

functional connectivity is assessed using independent component analysis [Figure 

4.8B], the correlation of the top 10 and top 5 components detected in the model with 

a set of canonical resting state networks (Smith et al. 2009a), provide complimentary 

evidence that the Multistable dynamics constrained by the structural connectivity 

of the brain, are important for the emergence of healthy resting state functional 

connectivity [Figure 4.8].
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Discussion

A range of different studies have demonstrated that the large-scale functional 

connectivity of the brain is predicted by the underlying structural connectivity (Honey 

et al. 2009). However, structural connectivity only partially explains the functional 

connectivity of the brain. Firstly, strong correlations exist between regions that have 

no direct anatomical connectivity, (Honey et al. 2009, Honey, Thivierge, and Sporns 

2010); also, whilst structural connectivity is relatively static, functional interactions 

measured using fMRI change dynamically with cognitive context (Smith et al. 2009a), 

and dynamically over short timescales (Hutchison, Womelsdorf, Allen, et al. 2013, 

Hutchison, Womelsdorf, Gati, et al. 2013, Allen et al. 2014, Handwerker et al. 2012, 

Zalesky et al. 2014, Smith et al. 2012). This suggests that not only is the structure of 

the brain important in shaping functional connectivity, but the dynamic relationship 

between individual regions of the brain - or ‘nodes’ - shapes how functional interactions 

occur over time. Therefore, understanding the principles underlying spontaneous 

functional activity in the brain requires an understanding of these dynamics.

In this chapter, we fi rst described an abstract computational model – the Kuramoto 

model of coupled phase oscillators (Cabral, Hughes, et al. 2011, Acebrón et al. 2005, 

Breakspear, Heitmann, and Daffertshofer 2010, Kuramoto 1984). I defi ned a model 

of 66 phase oscillators modeling activity across the cortex at a macroscopic scale, 

connected using empirical connectivity defi ned using diffusion tractography, with 

realistic conduction delays based on the distance between individual regions of the 

brain (Hagmann et al. 2008). The dynamics of this type of simulation is dependent 

mainly on two key parameters: the connection strength and delay (Acebrón et al. 2005). 

Through numerical exploration of the parameter space of the model, we demonstrate 

that the coupling strength of the underlying connectivity matrix, shifts the model 

from a chaotic regime characterised by asynchronous behaviour, through a ‘zone 

of stability’, exhibiting strong Multistable behaviours, before moving into a highly 

synchronous regime. As has been previously reported in explorations of this model 
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(Cabral, Hughes, et al. 2011), this shift in the dynamics of the model is reminiscent of 

a second order phase transition within the model dynamics. In many computational 

models, the point of this phase transition is known as the ‘critical’ point, balanced 

between ordered and chaotic dynamics.  

Whilst the demonstration that the model is capable of producing a diverse range of 

dynamical states, an important question is to understand which of these dynamical 

regimes interacts with the underlying structural connectivity to produce activity 

reminiscent of empirical resting state activity. Interestingly, the region of the model 

that produces best fi t to measures of empirical functional connectivity is the ‘zone 

of instability’ that is associated with this ‘critical’ phase transition. This is consistent 

with previous work, such as the study of Cabral et al. (2011), who have explored the 

connectivity of the default-mode network within their model in a seed-based manner.  

Our exploration using ICA, extends this work, demonstrating that many higher-order 

resting state networks emerge within this Multistable regime, rather than just the 

default mode network. The idea that the critical mode of a computational model best 

represents empirical connectivity, is also suggested by (Haimovici et al. 2013). They 

showed with a computational model of brain dynamics that the patterns most strongly 

resembling empirical resting state networks appear when the system is in a critical 

state: a dynamical regime situated between order and disorder, which exhibits both 

correlations between activity of distant areas and high levels of  variability suffi cient 

communication to occur over distance (Beggs 2008). Interestingly, the network-like 

patterns of connectivity were lost for sub- or super-critical dynamics, indicating that 

criticality might be an important property of healthy brain dynamics. These results align 

with the present fi ndings, in that our chosen working points exhibit high synchrony 

and Multistability within the critical transition space, as well as correlation patterns 

resembling empirical ICNs. 

Both validation methods provided similar results, identifying similar regions of the 

parameter space where the simulated data match with empirical data. The functional 
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connectivity method is simpler to use; however, the advantage of the ICA method 

is that it is multivariate and extracts the main components of co-activation from the 

simulated data while correcting for other non-neural sources of noise. It also allows a 

ROI to be involved in different resting state networks, possibly refl ecting some non-

stationary network dynamics. This might be the reason why the ICA validation method 

identifi es a narrower portion of parameter space as exhibiting highest correlations 

with empirical data. 

One potential limitation of the validation framework presented here, is that the 

timescale over which each source of information is signifi cantly different - i.e. 

the computational model produces fast timescale interactions (in the range of 

miliseconds) between regions of the model, where the temporal order of the fMRI 

data it is compared with is in the multi-second range. This is handled in this case by 

downsampling the modeled dynamics to the slow (0.2 Hz) range of the fMRI data 

before calculaing functional connecivity or perfoming an ICA. An alternative approach 

would be to use faster neuroimaging approaches such as EEG or MEG to evaluate 

empirical functional connecvitiy. However, such approaches have an implicit trade off 

between temporal resolution and spatial signal localisation which make evaluation of 

spatial patterns of coordinated activity at the macroscopic scale diffi cult. On the other 

hand, Empirical evidence for dynamic activity in the brain aligned with ‘criticality’ has 

been demonstrated in a range of different organisms and scales (Beggs and Plenz 

2003, Beggs and Plenz 2004, Kitzbichler et al. 2009, Chialvo 2010, Shanahan 2012, 

Haimovici 2013), the kinds of multistable activity that we demontrate here in the region 

of the paramter space that best fi ts the empirical data, is compatable with criticality. 

Theoretical accounts of criticality and experimental results for neural systems suggest 

that critical dynamics maximizes information transmission and processing power of 

networks.  Whilst current theory proposes that healthy neural dynamics operate in 

a Multistable regime that promotes fl exible information processing and behaviour 

(Shanahan 2010a, Friston 1997, Tognoli and Kelso 2014, Kelso 2012, Bressler and 



115

Kelso 2001). Given that such a perspective would explicitly predict a broad-band 

scale invariance (for which there is some precident in the neuroimaging literature 

at the macroscopic scale (Kitzbichler et al. 2009), we may expect that high speed 

dynamics at the macroscopic scale as generated by the kuramoto model, should show 

self similar behaviour to the slow neuronal dynamics described in the fMRI data. An 

extention of the current work which would be broadly confi rmatory of this hypothesis 

could be to evaluate similar measures of macroscopic functional connectivity and 

evaluate against the parameter space of the model using alternative neuroimaging 

approaches such as MEG or EEG, which have a considerably faster temporal resolution 

compared to fMRI, albeit at the cost of spatial precision.

Whilst, the computational model described here relates resting-state functional activity 

to the structural connectivity of the brain and shows how this is maximized during 

Multistable and critical dynamical regimes, the brain is not always at rest, and is often 

focused on a specifi c task. Whilst the resting brain may have Multistable properties, it is 

unclear how such dynamic measures of neural activity change or is tuned by cognitive 

state or how such dynamics relate to behaviour. Equally, in the previous chapter, we 

demonstrated that structural disconnection predicts signifi cant behavioural defi cits 

following TBI. Traumatic brain injury (TBI) results in damage to structural connectivity 

producing cognitive impairments, including slowed information processing speed and 

reduced cognitive fl exibility, that may be a result of disrupted Multistable dynamics. 

Here, we suggest that structure and local dynamics – specifi cally in a Multistable 

regime, interact to produce dynamic resting state functional connectivity. Therefore,  

in the following chapters we expand on these fi ndings in two ways using a combination 

of computational modelling alongside empirical functional imaging data to:

• Demonstrate how activity in functional networks constrains Multistable 
dynamics dependent on cognitive context. 

• Explore how the structure of the brain relates to behaviour through 
Multistable dynamics. 
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5
The control of global brain 

dynamics: opposing actions of 

fronto-parietal control and default 

mode networks on attention.

Introduction 

Understanding how cognition emerges from neural activity requires a description 

of the dynamic interactions between brain regions. Intrinsic functional connectivity 

networks (ICNs) refl ecting underlying patterns of structural connectivity have 

previously been described (Smith et al. 2009, Honey et al. 2009). However, network 

activity is dependent on behavioral context, dynamically reconfi guring over time (Fox 

et al. 2005). Therefore, the investigation of brain networks needs to consider not only 

the structural connections that constrain functional interactions, but also dynamic 

changes in functional interactions.

One approach is to consider the brain as a complex dynamical system (Shanahan 
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2012, Chialvo 2010, Beggs and Plenz 2003, Beggs 2008, Kitzbichler et al. 2009). 

Multistability, which we here defi ne as the tendency to move endogenously between 

transient attractor-like states, is an important property of such systems (Friston 1997, 

Tsuda 2001, Kelso 2012, Shanahan 2010b). According to one hypothesis, increased 

Multistability in the brain allows more fl exible dynamic interactions between regions, 

whereas reductions in Multistability may accompany persistent, more stable states 

(Shanahan 2010a).  

The relationship between brain network Multistability and cognition is unclear. 

High Multistability may facilitate transitions between a large repertoire of network 

confi gurations, allowing an exploratory cognitive state and the effi cient response 

to changing external events (Fritz et al. 2010, Deco, Rolls, and Romo 2009, Irner 

2007). In contrast, once a specifi c behavior is needed, for example in response to 

a perceived threat, networks supporting a focused response should be stable over 

time, corresponding to a reduction in the Multistability of the system. This paper 

explores the idea that changes in whole-brain Multistability go hand-in-hand with 

shifts between unfocused, exploratory or ‘resting’ states and focused attentionally 

demanding states.

These broadly opposed cognitive states (exploratory vs. focused) are associated with 

functional differences in well-established ICNs. Activity in fronto-parietal control (FPCN) 

and dorsal attention networks (DAN) is high when attention is directed externally 

(Corbetta and Shulman 2002, Vincent et al. 2008, Spreng et al. 2010, Fornito et al. 

2012), associated with reduction in activity within the default mode network (DMN) 

(Singh and Fawcett 2008). These networks show anti-correlated activity over time, 

which may be important for effi cient cognitive function (Irner 2007, Kelly et al. 2008, 

Deco, Jirsa, and McIntosh 2011, Shanahan 2012).

I investigated the relationship between brain activity and global dynamics (particularly 

a measure of the variability in the spatial deviation over time that we use as a proxy 
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for Multistability) in two behavioral states: 1) an attentionally demanding task (the 

choice reaction time task (CRT)) and 2) an unconstrained ‘resting’ state. [Figure 5.1] 

presents a high-level schematic of our approach, in which computational simulations 

complement empirical neuroimaging data. I fi rst recorded functional MRI data 

during both performance of the CRT and with the subject at ‘rest’ [Figure 5.1A]. I 

then simulated the neural dynamics arising in these distinct cognitive states using a 

computational model of brain function consisting of a network of Kuramoto oscillators 

(Kuramoto 1984), constrained by the white-matter connectivity of the brain [Figure 

5.2A]. Previous work has demonstrated that patterns of fMRI activity measured within 

the DMN can be simulated by similar computational models (Cabral et al. 2011).

I tested the hypothesis that the CRT would be associated with decreased Multistability, 

whereas the unconstrained rest state would be associated with the reverse pattern. 

As expected, we found this change both in the simulated data and empirical data 

(using proxy measures for network dynamics), providing converging empirical and 

theoretical evidence for global changes in network dynamics relevant to cognitive 

control.
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Materials and Methods

Empirical functional data

Subjects

Sixteen subjects (eight females, mean age: 28 years) had functional MRI whilst 

performing: 1) a continuous version of the choice reaction time (CRT); and 2) a ‘rest’ 

scan where there was no explicit task. In addition, 24 separate neurologically healthy 

subjects (eight male; mean age, 35.0 years) took part in a further fMRI study where 

the CRT was interleaved with rest in a ‘blocked’ design. Data from this second study 

was used to functionally localize regions more active during the CRT or during rest. All 

participants gave written consent, were checked for contraindications to MRI scanning 

and had no history of signifi cant neurological or psychiatric illness. The Hammersmith, 

Queen Charlotte’s and Chelsea research ethics committee awarded ethical approval 

for the study.

Image Acquisition protocols

Functional MRI Data was acquired using a Phillips Intera 3.0 Tesla MRI scanner 

using standard protocols. Earplugs and padded headphones were used to protect 

participants’ hearing during the scanning procedure. Standard T1 weighted structural 

images were also acquired for co-registration and segmentation of functional data.

Stimulus design

During the CRT task an initial fi xation cross was presented for 350 ms. The fi xation cross 

was followed by a left or right response cue arrow to which subjects were instructed to 

respond as quickly and as accurately as possible with a button press with the right or 

left index fi nger. Each trial was presented for 1000ms, with an inter-stimulus interval of 

1000ms during which the fi xation-cross was displayed on screen. Trials were repeated 
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Figure 5.1 | Overview of experimental design. A) fMRI was used to estimate global 
measures of network dynamics during task or rest. Example time courses are extracted from 
the right precentral gyrus (blue) and the left precuneus (green) B) I used a computational 
model to simulate neural dynamics using dynamical systems framework constrained by 
structural connectivity. C) I used analysis of the spatial deviation of empirical fMRI data, and 
the phase output of the computational model to compare the global dynamics of empirical 
data, and dynamics of a computational model constrained by structural connectivity and 
activation of specifi c regions of the brain. The example demonstrates spatial deviation over 
time of empirical data during the choice reaction time task.
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continuously for the duration of the functional acquisition. There was no rest period, 

jitter in ITI or other baseline task during the continuous run. As such, dynamics during 

this task were not due to alternating between rest and task or different task demands. 

During the 5 minute resting state run, participants were asked to lie still in the scanner 

with their eyes closed, and were not asked to perform any task in particular. 

Analysis of functional imaging data [Figure 5.1A]

Preprocessing of functional data involved realignment of EPI images to remove the 

coarse effects of motion between scans using FMRIB’s Motion correction tool MCFLIRT 

(Smith et al. 2004, Jenkinson et al. 2002). T1 images for each subject were segmented 

into 66 regions homologous with those characterized in the Hagmann human cortical 

connectivity datasets using the Desikan-Kilaney Freesurfer atlas (Hagmann et al. 2008, 

Dale 1999, Desikan et al. 2006), [Appendix 5.1]. The segmented T1 images were 

registered to the motion corrected data using boundary-based registration (Greve and 

Fischl 2009).  Mean BOLD timeseries for each cortical region were extracted for both 

the continuous CRT and resting state scans. I band-pass fi ltered the data between (0.01 

and 0.15) and then regressed out six direction motion parameter model estimated 

by MCFLIRT (Smith et al. 2004, Jenkinson et al. 2002), and timeseries sampled from 

regions of white-matter and cerebrospinal fl uid in order to reduce physiological and 

movement confounds.

Analyses were either calculated on all regions simultaneously (global) or within 

specifi c predefi ned intrinsic connectivity networks (local). The ICNs were estimated 

by projecting the resting-state independent components corresponding to putative 

brain networks (rather than non-neural noise) from (Smith et al. 2009) onto the 66 

regions of interest. A region was classifi ed as part of a specifi c ICN if the mean value 

from the ICA within was z>1.64 (nominal p>0.05). The ICNs were labeled (following 

(Smith et al. 2009)): primary and secondary visual, dorsal attention, default mode, 
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motor, auditory, salience and right and left lateralized fronto-parietal networks.

Given the relatively few timepoints in the fMRI timeseries, analysis methods within the 

phase space are signifi cantly limited by implicit edge effects of both the required 

fi ltering regime, and transformation fo the analytical signal, such as wavelet coherence, 

or hilbert transofmration of the data (Kitzbichler et al. 2009, Chang and Glover 2010. 

Note in future chapters, fMRI is collected for a signifi cantly longer period of time, 

making such approaches more appropriate) signifi cantly reducing the power of any 

statistical observations within the data presented. Therefore, instead of attempting to 

calculate equivalent measures of multistaibility to the computational model within 

phase space, we defi ne a compromise measure of spatial deviation, which captures 

the extent to which regions of the brain are coherent across space (i.e. across the 

entire brain, or within a cluster of regions, we then track how this measure of spatial 

activity deviates across time, resulting in a measure which captures similar properties 

to the computational multistability measure. Our proxy measure of Multistability, is 

defi ned as the variability in spatial deviation of the signal globally or locally (within a 

network) over time according to the following equation: 

Where V is the spatial deviation of a group of N regions at each timepoint (either 

of all 66 for global measures or a specifi c subset for local coherence within an ICN),  

is the signal for an individual region of the brain (see above) and  is the mean of all 

considered timecourses. I defi ne our proxy measure of Multistability as the standard 

deviation of V across time and our proxy measure of synchrony as the reciprocal of 

mean spatial variance across time,  
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Functional localizer

Given the absence of a baseline condition for the continuous functional CRT and rest 

datasets described above, we were not able to use these to demonstrate the neural 

systems activated in the different states. Therefore a blocked design MRI dataset 

interleaving CRT and rest was used in order to functionally localize the networks 

within the brain that are activated during CRT > rest, and rest > CRT. This data and 

analysis of the CRT data was the same as the healthy control CRT dataset described 

in (Bonnelle et al. 2011). 

Computational Modeling [Figure 5.1B]

Simulation of cognitive states

Neural dynamics were modeled computationally, using the Kuramoto oscillator 

model described in Chapter 4.  Structural connectivity used as a prior within the 

computational model was estimated using Diffusion Spectrum Imaging (Hagmann 

2009) [Figure 5.2]. To simulate activation of a particular network of brain regions 

implicated in a particular cognitive state (for example the DAN/FPCN), the efferent 

connection strengths from the networks nodes to other nodes was increased (although 

qualitatively similar results were achieved when bilateral – afferent and efferent – 

connections were modulated), see [Appendix 5.1] This simple manipulation was 

suffi cient to change the global dynamics and produce qualitatively similar changes to 

those observed with the empirical timeseries. 

In the simple Kuramoto oscillator model (presented in detail in chapter 4), simulating 

different cognitive states involves modulating the effective connectivity between 

oscillators. If a given brain region is more active, this is assumed to result in increased 

infl uence over connected regions. In the model this is determined by the activity 

matrix, The simulations presented here run for 4000 time steps. During the fi rst 2000 

time steps, A(t) is a unit matrix [Figure 5.1B, OFF]. During the fi nal 2000 time steps, 
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we simulated activation of specifi c cognitive networks (e.g., the DMN) by selecting 

nodes of the specifi c network (e.g., PCC, IPL) and increasing by a range of factors 

between 1.1 and 3  one of the two connecting edges, so as to increase the ‘outgoing’ 

connectivity of these regions, according to the undirected connectivity matrix  [Figure 

5.1B, ON]. In order to allow for starting effects and extraneous effects of sudden 

manipulation of the model, we discarded the fi rst 1000 time steps of each phase of 

the simulation. Pilot simulations indicated that similar results were found for a range 

of modulation values. By including the OFF, baseline state, we can investigate the 

effect of different states on synchrony and Multistability (i.e., does simulated activation 

increase or decrease these measures). Here we consider simulated activity within the 

fronto-parietal control network (FPCN/DAN) by modulating nodes representing the 

Figure 5.2 | Structural Overview of the computational model. (A) Graphical Overview of the 
66 region structural connectivity matrices used in the Kuramoto oscillator system. Thickness 
of connecting vertices represents the strength of connections according to the Connectivity 
matrix (B). Hotter colors represent longer connections, according to the distance matrix (C). 
Regions are sorted according to regions in (Table 1). Nodes comprising the fronto-parietal 
control network and dorsal attention network (FPCN/DAN) are highlighted in purple. Nodes 
comprising the default mode network (DMN) are highlighted in green.
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bilateral inferior frontal gyrus, superior frontal gyrus and superior parietal lobules 

[Figure 5.2A Purple]; and the Default mode network (DMN) by modulating nodes 

representing bilateral inferior parietal, anterior and posterior cingulate [Figure 5.2A, 

Green]. 

The fi rst 20 time-steps of both the ON and OFF periods were discarded to allow 

for evolution of stable network dynamics. Measurements of network synchrony 

and Multistability (see below) were calculated for both the ON and OFF periods to 

determine the change from baseline. Measures of Multistability and synchrony in the 

computational simulations are described in chapter 4.

Figure 5.3 | Standard fMRI analysis of CRT task. Regions of the brain active during the 
choice reaction time task using standardized fMRI subtraction analysis. CRT>Rest (orange-
red) Rest>CRT (blue). (1) Superior parietal lobule. (2) inferior frontal gyrus – pars opercularis. 
(3) posterior portion of the superior frontal gyrus. (4) anterior and (5) posterior cingulate 
gyrus. Cluster corrected p<0.01, z=2.3, n=26.
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Results

The choice reaction time task activates the fronto-parietal 

control network and deactivates the default mode network

Consistent with the existing literature (Sharp et al. 2011, Bonnelle et al. 2011), 

performance of the CRT during fMRI was associated with signifi cant activation in 

visual, somatosensory and motor regions of the brain, as well as bilateral parts of 

the fronto-parietal control network (FPCN/DAN) and the dorsal attention network 

(DAN) [Figure 5.3, Purple]. This comprised activation in: (1) bilateral superior parietal 

lobule; (2) the frontal operculum and pars opercularis; and (3) the posterior superior 

frontal gyrus. As expected, parts of the DMN were deactivated relative to rest during 

performance of the CRT. These included: (4) the anterior and (5) posterior portion of 

the cingulate gyrus. 

Global and local dynamics of empirical data in different 

cognitive states

In order to assess the global dynamics of the brain during the CRT task and rest, 

we collected fMRI during continuous performance of the CRT task and a separate 

rest fMRI run. I sampled BOLD timeseries from 66 different regions of the brain, and 

assessed the Multistability and synchrony across all regions of the brain or within sub-

sets of regions that form intrinsic connectivity networks (See Materials and Methods). 

[Figure 5.4] shows the group results of global and within network variability across 

time for both CRT and REST. [Figure 5.5] illustrates the difference between CRT and 

rest on global and local dynamics in a single subject, with noticeably greater variability 

in the measure of synchrony over time. Across all the subjects, performance of the 

CRT was associated with a mean reduction in global Multistability, compared to rest 
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Figure 5.4 | Dynamic activity of the brain during rest and sustainted attention. Measures 
of variability in coherence over time (top) and mean coherence (bottom) between CRT (in 
green) and rest (in blue), for continuous BOLD fMRI data. Single asterisks show differences 
that are statistically signifi cant at p<0.05 (2-tailed T-Test), double asterisk is signifi cant at 
p<0.01; n=16. Error bars ± 1 SEM.
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Figure 5.5 | Figure 5.5 Results from a single illustrative subject. The global (i.e., all 66 
regions) and local (i.e., specifi c ICNs) timeseries of synchrony during the CRT (on the left) or 
at rest (on the right) Greater variability in synchrony (i.e. our defi nition of Multistability) can 
be seen at rest.
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(t15=-3.18 P<0.01) and an increase in global synchrony (t15=3.02 P<0.01).

To explore dynamics within ICNs, we also performed a task x ICN repeated measures 

ANOVA for Multistability and synchrony using networks defi ned by independent 

component analysis [Figure 5.5]. For Multistability, there was a signifi cant main effect of 

task (F1,15=17.65, p<0.01), ICN (F2,30=21.16, p<0.001) and an interaction between task 

and ICN (F2,27=20.327, p<0.001). For synchrony, there was a signifi cant main effect of 

task (F1,15=17.43, p<0.01), ICN (F3,49=26.2, p<0.001) and an interaction between task 

and ICN (F3,39=26.94, p<0.001). Post hoc t-tests demonstrated signifi cant decreases 

in Multistability within specifi c ICNs, corresponding to primary visual (t15=-5.22, 

p<0.001), secondary visual (t15=-5.87, p<0.001) and motor areas of the brain (t15=-

4.09, p<0.001), the Dorsal Attention (t15=-2.98, p<0.01), Default mode (t15=-3.08, 

p<0.001), Salience (t15=-2.19, p<0.05), and Right Fronto-parietal control networks 

(t15=-2.73, p<0.05). 

In the previous analysis the 66 regional timeseries were not variance normalized prior 
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to calculating Multistability and synchrony. However, qualitatively similar (although 

weaker) results were found with variance normalization: Multistability was signifi cantly 

reduced during CRT compared to rest both globally (t15=2.23, p<0.05) and within 

the motor network (t15=4.99, p<0.001). Global synchrony was signifi cantly increased 

during CRT compared to rest (t15=3.02, p<0.01), as was local synchrony within the 

Dorsal Attention (t15=3.22, p<0.01), Default mode (t15=-2.75, p<0.05), Salience 

(t15=2.51, p<0.05), and Right Fronto-parietal control networks (t15=2.51, p<0.05).

Performance on the CRT task was highly consistent across subjects, as expected 

based on previous fi ndings in neurologically healthy participants (Sharp et al. 2011, 

Bonnelle et al. 2011). Mean accuracy on the task was very high 97.7±0.02% and mean 

reaction time was fast and consistent across subjects 0.45±0.061s. Given this lack 

of variability, we did not expect reliable relationships between individual variability 

and measures of Multistability. However, there was a negative correlation between 

Multistability during CRT in the DMN and the standard deviation of the reaction time 

(r16=-0.57 p<0.05), but this does not survive Bonferroni correction.

There was no difference in head movement between the two conditions (mean relative 

motion per TR was 0.076mm at rest and 0.075mm during the CRT task (t15=0.18, ns). 

Therefore, the differences in Multistability and synchrony are highly unlikely to be due 

to artifacts resulting from head motion between the two conditions. 

Computational modelling of cognitive network activation

To complement the empirical analysis, the dynamical systems model allowed us to 

simulate the effects of increased activity in the FPCN/DAN and the DMN on global 

Multistability and synchrony. The model involved 66 Kuramoto oscillators (one 

corresponding to each segmented brain region) coupled together according to a 

human white-matter tractography atlas [Figures 5.1 and 5.2]. Either the baseline 

state or FPCN/DAN or DMN active states were simulated and measures of dynamics 
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Figure 5.6 | Simulated neural dynamics during activation of the DMN and FPCN. Global 
and local measures of Multistability (top) and synchrony (bottom) from the simulations of 
FPCN/DAN (associated with the CRT task – in green) or DMN (associated with the rest state, 
in blue). Results are averaged across 15 different simulations. (A) Local measures of network 
dynamics within ICNs during simulation of FPCN/DAN or DMN activation with a scaling factor 
of 2. (B) Global changes in dynamics for a range of different scaling factors. Error bars ± 1 
SEM.

0.5

0.65

0.75

0.85

0.9

0.95

1

0.55

Visual 
(1o)

Dorsal 
Attention

Default 
Mode

Motor Auditory Salience
Fronto - Parietal

LeftRightGLOBAL Visual
 (2o)

Sy
nc

hr
o
ny

0.6

0.7

0.8

0

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.04

0.02

0.06

Visual 
(1o)

Dorsal 
Attention

Default 
Mode

Motor Auditory Salience
Fronto - Parietal

LeftRightGLOBAL Visual
 (2o)

M
et
as
ta
b
ili
ty

DMN
FPCN

1.1 1.5 3.02.52.0

GLOBAL (Scaling Factor)

1.1 2.01.5 3.02.5

GLOBAL

GLOBAL (Scaling Factor)

A B



132

calculated. 

Dynamics were explored globally and locally within clusters of nodes of the model, 

defi ned by in the same way as the empirical data. I then ran a task x cluster repeated 

measures ANOVA for Multistability and synchrony [Figure 5.6A], mirroring the empirical 

data. For Multistability, there was a signifi cant main effect of task (F1,15=2022, p<0.001), 

ICN (F2,16=20476, p<0.001) and an interaction between task and ICN (F2,27=1946.38, 

p<0.001). For synchrony, there was a signifi cant main effect of task (F1,15=7288.45, 

p<0.001), ICN (F2,22=47446.51, p<0.001) and an interaction between task and ICN 

(F2,26=3864.95, p<0.001).

Post hoc t-tests demonstrated that global Multistability was signifi cantly reduced during 

CRT compared to rest (t15=-46.16, p<0.001). Signifi cant decreases in Multistability 

were also seen in clusters of oscillators corresponding to primary visual (t15=-45.82, 

p<0.001), Default Mode (t15=-26.39, p<0.001), Salience (t15=-32.14, p<0.001), Motor 

(t15=-92.84, p<0.001), Auditory (t15=-67.75, p<0.001) and Left (t15=-46.16, p<0.001) 

and Right (t15=-37.39, p<0.001) Fronto-Parietal Networks. In contrast, Multistability 

increased within clusters of oscillators representing secondary visual areas of the brain 

(t15=89.70, p<0.001), although this result had a very small magnitude compared to 

the other clusters of oscillators.

A signifi cant increase in global network synchrony occurred during simulated 

activation of the FPCN/DAN, compared to similar activation of the DMN (t15=-82.37 

P<0.001,). This was associated with decreases in synchrony within the Default Mode 

(t15=-69.25, p<0.001), Salience (t15=-47.91, p<0.001), Motor (t15=-69.25, p<0.001), 

Auditory (t15=-101.05, p<0.001) and Left (t15=-82.37, p<0.001) and Right (t15=-87.03, 

p<0.001) Fronto-Parietal Networks. In contrast, synchrony decreased with task within 

clusters of oscillators representing the Dorsal Attention Network (t15=4.74, p<0.001), 

and Primary (t15=34.86, p<0.001) and Secondary (t15=391.88, p<0.001) Visual areas 

of the brain; although, the magnitude of the effects for all three of these clusters was 
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very small compared to the other ICNs. 

Figure 5.7 | Connectivity of the DMN and FPCN. Overview of connectivity of the 
connectivity strength (top) and length (bottom) of edges projecting from nodes modulated 
during simulated activation of either the DMN (Blue) or the FPCN (Red)
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The reported effects were found by doubling the coupling of oscillators involved in 

the DMN or the FPCN/DAN.  The effects are consistent using a range of different 

factors to modulate the couplings between regions. Factors of 1.1, 1.5, 2.5 and 3 

demonstrated similar changes in network synchrony and Multistability (although they 

differed in the magnitude of their effects) [Figure 5.6B]. 

To better understand why there are differential effects of the DMN or FPCN/DAN 

on dynamics in the computational model, we studied how the graphs changed. 

Modulating the FPCN/DAN altered the connectivity of 160 edges of the network 

(mean connection strength 0.007±0.017, mean distance 77.49±41.51mm). Whereas, 

modulating nodes representing the DMN altered connectivity along 118 edges of the 

network (mean connection strength 0.016±0.032, mean distance 56.37±33.79mm). 

The distributions in both strengths and lengths of connections between the FPCN/

DAN and the DMN were signifi cantly different (Kolmogorov-Smirnov test: strengths 

p<0.005 and lengths p<0.001) [Figure 5.7].
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Discussion

Here we use computational modeling and human neuroimaging to show how 

measures of whole brain dynamics vary depending on the behavioral state and how 

this may be a consequence of the effective network organization of the brain. As 

expected, when subjects performed an attentionally demanding task that requires 

an external focus of attention, activity in the fronto-parietal control network (FPCN/

DAN) increased and activity in the default mode network (DMN) decreased (Sharp 

et al. 2011, Fox et al. 2009, Spreng et al. 2010). These relative changes in network 

activity were accompanied by a global increase in spatial deviation over time and a 

reduction in the variance of spatial deviation over time (our proxy empirical measures 

of synchrony and Multistability). The same pattern of results was also found across the 

majority of specifi c ICNs, suggesting that the effect is global. These fi ndings support 

the proposal that more stable neural dynamics emerges during periods of consistent 

and focused behavior.  Our computational simulation results show the same qualitative 

pattern as the empirical results, providing a possible mechanistic explanation of how 

this global change in brain activity might be controlled. The simulations suggest that 

increasing activity in the FPCN/DAN produced a reduction of global Multistability and 

increased synchrony. In contrast, increased activity in the DMN produced increased 

Multistability and reduced synchrony. Across most ICNs, there was the same pattern of 

local decreases in Multistability and increased synchrony with the CRT task, mirroring 

the empirical results (although there was a small subset of ICNs with the opposite 

pattern, albeit with a very small effect size compared to the other ICNs). 

Our converging computational and empirical work suggests that global neural 

dynamics are ‘tuned’ by varying levels of activity within the FPCN and DMN, which 

have the effect of shifting the system into a more or less Multistable state. This is 

consistent with theoretical and experimental work suggesting the brain exists in a 

critical state: at a ‘tipping point’ between order and disorder. The scaling parameters 

used in the simulations were chosen to simultaneously maximize both Multistability 
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and synchrony, features that would be consistent with a critical system (Beggs and 

Plenz 2003, Kitzbichler et al. 2009, Chialvo 2010, Shanahan 2012, Haimovici 2013). 

Critical systems balance the competing demands of information propagation around 

a system with the need to maintain stable functional long and short scale connections 

(Beggs 2008, Beggs and Plenz 2003). Therefore ‘tuning’ of criticality within the brain 

by selective activation of functional networks may increase or decrease the information 

capacity of the system depending on behavioural context. For example, at rest with 

activated DMN, the information capacity of the system is maximised at the expense of 

network stability, whilst during active attentional states, FPCN/DAN activation results 

in increased stability of the network, but reduced information capacity. 

The DMN is typically more active during stimulus independent thought, and when 

maintaining a broad, attentional state (Buckner, Andrews-Hanna, and Schacter 

2008, Zhang and Raichle 2010, Sharp et al. 2011, Bonnelle et al. 2011). Common to 

these types of behavior is the lack of behavioral focus, which could be thought of as 

‘releasing’ neural activity, thereby allowing it to take on multiple different network 

confi gurations over time. This variability in network confi guration would result in 

relatively low synchrony and increased Multistability when measured across the 

whole brain. In contrast, to effi ciently perform a task like the CRT, a consistent neural 

confi guration of visual, motor and prefrontal cortical activity needs to be maintained 

over time. This would allow an individual to maintain their attention on the task, and 

prevent behavioral interference from internal thoughts or competing sensory stimuli 

that are irrelevant to task performance. This consistent network activity would result 

in relatively high synchrony and low Multistability. This mapping between cognitive 

processes and whole-brain dynamics is in marked contrast to many theories of 

cognition that propose a discrete coupling between a region or network of brain 

regions and a specifi c cognitive ability. 

The work here suggests the FPCN/DAN can infl uence sustained attention through 

stabilization (reduced Multistability and increased synchrony) of the temporal 
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dynamics of the whole system. Similarly, the simulation of DMN activation provides a 

possible mechanistic explanation of the functional role of the DMN, in ‘permitting’ the 

system to move into a more unconstrained state. In this state the brain shows higher 

Multistability and lower synchrony, exhibiting more labile dynamics, spontaneously 

passing between different states that would facilitate both mind-wandering and 

maintaining a broad attentional cognitive state. 

One of the most striking fi ndings from the computational work is that differential 

effects on global Multistability and synchrony can emerge from the same type of 

connection strength increase in the two networks. As the underlying connections 

and initial strengths in the model are based on white matter tract structure, this 

provides evidence that the network connections are ‘hard-wired’ to produce these 

different actions on network dynamics. This shows how fl exible changes in large-

scale network dynamics could be produced by increased effective connectivity in 

two opposing networks, in the absence of any long-distance inhibitory network 

connections. Therefore, the model provides a putative mechanistic explanation of 

how network topology (i.e. a functional constraint imposed by structural connectivity) 

relates to functional global dynamics. Although the simulated DMN and the simulated 

FPCN/DAN conditions both involved modulating the connectivity from equal 

numbers of nodes (three bilateral pairs of cortical regions), the distributions of the 

affected connections are different. Specifi cally, the connections from the DMN are 

predominantly strong, short-range connections, whereas the FPCN/DAN [Figure 5.7] 

are more, longer and weaker connections. These results suggest that increasing long-

range, weaker connections may enhance the overall stability of the network, whereas 

increasing the effect of shorter, stronger connections has a much smaller effect and 

may reduce network stability. Future computational and empirical work is needed to 

explore precisely how these graph-theoretic measures can explain the contrasting 

effects of different networks on global brain dynamics. 

There are a number of limitations to the work. The computational model we have 
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used is obviously a simplifi cation of real brain function. For example, the simulation 

is built on a relatively (compared to the brain) low-dimensional connectivity matrix of 

66 regions. The constraints inherent in streamline tractography using diffusion MR 

mean that the matrix is not directed, but instead all connections are bidirectional. 

In addition, long distance connections in the connectivity matrix (for example 

inter-hemispheric pathways) may be diffi cult to resolve accurately as uncertainty in 

streamline location introduced by factors such as crossing fi bers, increases with the 

length of the streamline (Jones 2010a, b). At the level of individual nodes, we also 

assume all nodes to be equivalent, and differences in known cyto-architecture are not 

modeled. These limitations mean that precise, quantitative comparisons between the 

simulations and the brain were not expected. Equally these limitations may reduce 

the power of graph-theoretical interpretation the modeling results (see above). 

Diffi culties with the measurement of BOLD fMRI signal such as partial volume effects, 

regional differences in vascular reactivity or susceptibility artifacts also make precise 

quantitative comparisons challenging. The effects of these limitations are likely to be 

most pronounced on dynamics within small clusters of regions, where inaccuracies 

with empirical measurement of tracts and BOLD signal will have a larger effect. 

However, despite these limitations, the simulation provides important insights into 

the relationship between the structure of the brain, patterns of functional activity and 

cognition. It is striking that qualitatively similar relationships between network activity 

and global brain dynamics can be observed, even though the model contains no 

constraints about the functional roles of the regions involved (e.g., the model does 

not ‘know’ that DMN regions are more active at rest). The work demonstrates how 

such a simple model can, at least at the level of global network dynamics, replicate 

the broad task-evoked changes in BOLD seen with fMRI, even though the model is 

based on nothing more than the network topology (i.e. the structural connections 

within the brain). 

Taken together the work shows how changes in the balance of activity between 
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key brain networks could shift attentional state between an unfocused/exploratory 

mode characterised by high Multistability, and a focused/constrained mode with 

low Multistability. I propose that the balance of activity between the FPCN and the 

DMN acts to ‘tune’ global brain Multistability, which infl uences how consistent brain 

network activity is over time. 
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6
The human connectome confers 

cognitive fl exibility through 

Multistable neural dynamics

Introduction

To understand the brain in health and disease requires an account of how neural 

ensembles act in concert to generate behaviour (Deco et al. 2008, Chialvo 2010, 

Uhlhaas and Singer 2006, Tognoli and Kelso 2014). One approach is to consider the 

brain as a complex system (Chialvo 2010, Friston 1997). In this framework, current 

theory suggests an essential property of neural activity is Multistability, a dynamical 

regime in which neural ensembles are able to coordinate rapidly, fl exibly engaging 

and disengaging without becoming locked into fi xed interactions (Tognoli and Kelso 

2014, Friston 1997, Shanahan 2010b). Moreover, Multistability is thought to confer 

optimal information processing capabilities, fl exible behaviour and memory (Irner 
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2007, Deco, Jirsa, McIntosh, Sporns, and Kotter 2009, Shanahan 2010b)

Theoretical studies demonstrate that the emergence of multistable dynamics 

is contingent on the coupling between modules of a dynamical system (Friston 

1997, Shanahan 2010b, Cabral, Hughes, et al. 2011, Strogatz 2001). In particular, 

Multistability emerges when coupling has “small-world” topology with short average 

path lengths and high clustering (Watts and Strogatz 1998, Wildie and Shanahan 2012, 

Bassett and Bullmore 2006) of computational-units. Recently, networks of anatomical 

connections have been incorporated within computational simulations of large-scale 

neural dynamics, suggesting multistable dynamics provide a link between structural 

and functional connectivity (Deco, Jirsa, McIntosh, Sporns, and Kotter 2009, Cabral, 

Hughes, et al. 2011, Honey et al. 2009, Hellyer et al. 2014).

The disruption of neural dynamics is thought to be important in brain disorders (Uhlhaas 

and Singer 2006), likely caused by abnormal structural connectivity (Boly et al. 2009, 

Sharp, Scott, and Leech 2014, Friston 2002, Cabral et al. 2012). Traumatic brain injury 

(TBI) – a leading cause of disability in young adults – frequently results in diffuse axonal 

injury (DAI), which disrupts long-distance white matter tracts connecting brain regions 

(Kinnunen et al. 2011, Johnson et al. 2013). Damage to these connections alters the 

spatiotemporal properties of functional brain networks (Bonnelle et al. 2012, Sharp 

et al. 2011), resulting in long-term cognitive problems, including impairments in 

cognitive (Hellyer et al., 2013) fl exibility, memory and information processing speed 

(Kinnunen et al. 2011, Bonnelle et al. 2011, Jilka et al. 2014). Cognitive infl exibility 

after TBI may be observed as poor performance on tests of task switching (Kinnunen 

et al. 2011, Hellyer et al. 2013, Jilka et al. 2014, Caeyenberghs, Leemans, Heitger, 

et al. 2012). Extreme infl exibility may appear as perseveration, the repetition of a 

particular response, such as a phrase or gesture, despite the cessation of a stimulus. 

Therefore, TBI provides an ideal paradigm to examine how altered dynamics relate to 
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structural connectivity and behavior.

Here, using empirical and computational approaches, we investigate how Multistability 

arises from the structural connectome and relates to behaviour [Figure 6.1]. I test 

whether: (i) structural disconnection following TBI (measured using diffusion tensor 

imaging) is associated with reduced Multistability (measured using resting-state 

fMRI); (ii) Multistability is associated with behavioral measures of cognitive fl exibility, 

memory and information processing. Furthermore, we use computational simulations 

to investigate the consequences of structural disconnection on large-scale neural 

dynamics, to demonstrate how disconnection following TBI results in altered 

Multistability.
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Materials and Methods

Participants

63 traumatic brain injury (TBI) patients (mean age  ± SD: 37.4±12.37 years) and 26 

healthy control subjects (mean age  ± SD: 35.96±17.61 years) were scanned using 

standard functional and structural imaging protocols (see below). All participants 

gave written consent, were checked for contraindications to MRI scanning and had no 

history of signifi cant neurological or psychiatric illness prior to TBI. The Hammersmith, 

Queen Charlotte’s and Chelsea research ethics committee awarded ethical approval 

for the study.

Image acquisition 

Standard protocols were used to acquire functional, structural and diffusion tensor 

MRI data using a Phillips Intera 3.0 Tesla MRI scanner, using an 8-array head coil, and 

sensitivity encoding (SENSE) with an under sampling factor of 2. For each participant, 

diffusion-weighted volumes with gradients applied in 64 non-collinear directions 

were collected. The following parameters were used: 73 contiguous slices, slice 

thickness=2mm, fi eld of view 224mm, matrix 128×128 (voxel size=1.75×1.75×2mm), 

b value=1000 and four images with no diffusion weighting (b=0s/mm2).  Earplugs 

and padded headphones were used to protect participants’ hearing during the 

scanning procedure. I additionally, we collected a standard high-resolution T1 image 

for segmentation and image co-registration. Resting state Functional MRI images 

were obtained using a T2*-weighted gradient-echo echoplanar imaging sequence 

with whole-brain coverage (repetition time/echo time, 2,000/30 ms; 31 ascending 

slices with thickness 3.25 mm, gap 0.75 mm, voxel size 2.5×2.5×5mm, fl ip angle 90°, 

fi eld of view 280×220×123 mm, matrix 112×87). Quadratic shim gradients were used 

to correct for magnetic fi eld inhomogeneities within the brain. 
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Neuropsychological assessment

A subset of patients (62, mean age  ± SD: 37.53±12.45 years) performed a paper 

and pencil, neuropsychological test battery and 49 performed a computer-based 

choice reaction time task. Our analysis focused on three cognitive measures shown 

previously to be sensitive to impairments following TBI: Associative memory (AM), 

using the immediate recall and retention measure of the People Test from the Doors 

and People Test; and Executive function (EF), using the Trail Making Test alternating 

switch-cost index. Of this subset of patients, 49 also completed the Choice Reaction 

Time task that assesses speed of processing.

Analysis of functional imaging data [Figure 6.1A]

Pre-processing of functional data was performed according to standard analysis 

approaches: briefl y, this included realignment of EPI images to remove the coarse 

effects of motion between scans using FMRIB’s Motion correction tool MCFLIRT 

(Smith et al. 2004). T1 images for each subject were segmented into 164 cortical 

and subcortical regions using the Destreux Freesurfer atlas (Fischl et al. 2004). The 

segmented T1 images were registered to the motion corrected data using boundary-

based registration (Greve and Fischl 2009).  Subsequently, mean BOLD time series 

for each cortical region were extracted for the resting state scans. I band-pass 

fi ltered the data between 0.01 and 0.2 Hz to remove sources of non-neural noise 

and focus on slow modulations in BOLD, that have previously been associated with 

intrinsic connectivity networks (Niazy et al. 2011). To correct for additional effect of 

scanner and motion and physiological artefact we next regressed out from each time 

course for each of the 164 regions of interest, the six motion parameter time courses 

estimated by MCFLIRT (Smith et al. 2004) as well as time series sampled from regions 

of white-matter and cerebrospinal fl uid. (I note that additional motion correction 

was also performed across participants in higher-level analyses comparing dynamic 
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measurements between groups, see below). 

To facilitate comparison between the computational model and empirical data, we 

performed Hilbert transforms on each of the 164 region-of-interests’ time series from 

the empirical data, resulting in 164 phase time series. Measures of network dynamics 

were either calculated on all regions simultaneously (global) or within specifi c 

predefi ned intrinsic connectivity networks (local) (see Measures of global and local 

network dynamics, below). 

In order to provide a set of canonical intrinsic connectivity networks, both to 

assess network dynamics and to optimize the computational model, we performed 

independent component analysis on the 164 region timeseries datasets in a group of 

10 independent healthy control subjects using FSL MELODIC (Beckmann et al. 2005). 

For network-level analyses, clusters were generated from resulting spatial maps in 

164 region space, where a region was included in each of 15 independent clusters, 

if z>2.3.

Analysis of structural connectivity data

Estimation of healthy structural connectivity network [Figure 6.2A]

The mean location and probability of structural connections was estimated in a group 

of 10 independent healthy control subjects [Figure 6.2A].  Structural T1 images were 

segmented into white matter and the same 164 cortical and subcortical grey matter 

regions as used to sample the FMRI data, using Freesurfer (Greve & Fischl, 2009) 

and the Destreux Freesurfer atlas (Fischl et al. 2004) This produced a mask for each 

region in each participant’s T1 native space. Diffusion imaging data was reconstructed 

using the FSL diffusion toolkit using standard protocols (Behrens, Johansen-Berg, et 

al. 2003). I further modelled the probability distribution of fi bre direction within each 

voxel in order to account for crossing fi bres (Behrens, Woolrich, et al. 2003). Non-

linear registration was used to calculate a warp-fi eld between conformed Freesurfer 
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space and the DTI b0 image, using the FSL non-linear Image registration tool 

(Andersson, Jenkinson, and Smith 2007). The warp-fi eld was then applied to masks 

for white matter and each of the 164 cortical and subcortical grey matter regions 

using nearest-neighbour interpolation. Individual grey matter masks were dilated by 

a single voxel and multiplied by the white matter mask, in order to generate regions 

of interest (ROIs) to be used as seeds and targets for tractography at the boundary 

between white and grey matter surfaces (Gong et al. 2009). 

Probabilistic tractography, using 5000 random streamline samples per voxel was 

used to estimate the connectivity matrix <C> between each of the 164 other regions 

alongside a spatial distribution of connective fi bres between each region. The 

probability of connections between two regions Ci,j  was defi ned as the proportion 

of all fi bres sent from region i which successfully reached region j. As probabilistic 

tractography cannot determine directionality of connections between cortical regions 

and the size of seed and target ROIs may differ for each connection, we defi ne Ci,j as the 

mean of the forward and reverse connections between regions, i.e. C(i,j) = 1/2(C(ij)+C(ji)). 

To minimise the number of false positive connections, a thresholding approach was 

used to generate a binary matrix which by only retaining connections which had 

a consistent probability across all subjects from the tractography group (Gong et 

al. 2009). The relationship between the number of streamlines and the underlying 

information propagating properties of the tracts is unclear and this is likely to be a 

particular problem for long-distance connections (Gigandet et al. 2008, Jones 2010a, 

b). For this reason, we binarized our reference connectivity dataset. The length matrix 

(i.e., the length of tracts between pairs of regions) was estimated using the Euclidean 

distance between the centres of gravity of each individual ROI in standard MNI152 

space. Euclidean distance is inexact, since tracts are not likely to follow the shortest 

distance between regions, but it is a good fi rst approximation of the distances and 

has been used extensively in a range of similar computational modelling approaches 

(Deco, Jirsa, McIntosh, Sporns, and Kotter 2009, Cabral, Hughes, et al. 2011, Deco 
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et al. 2008)

Estimation of individual structural connectivity [Figure 6.2B]

Global and focal reductions of Fractional Anisotropy (FA) in TBI patients have 

been shown to bias tractography estimation in TBI patients (Squarcina et al. 2012) 

potentially resulting in spurious differences such as potentially false increases in 

structural connections following injury.  Therefore we did not perform tractography 

on patients and controls. Instead, we use an unbiased approach as follows: fi rst of all 
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Figure 6.2 | Estimation of structural disconnection in TBI patients vs controls. A, To 
defi ne a standardised connectivity matrix to perform computational simulation, probabilistic 
tractography was performed in 10 independent age matched healthy control subjects, 
resulting in a binary connectivity graph and spatial estimates of probable tract location for 
each connected edge (see materials and methods). B, Measures of tract integrity (FA) were 
estimated in each of the 63 Patients and 26 healthy controls by generating a ‘skeleton’ for 
each subject using the pre-processing steps of TBSS. C, For each edge of the reference 
connectivity matrix, each subject’s FA skeleton was projected though the spatial mask for 
each edge, resulting in a 164 region ‘white matter integrity’ matrix for each subject. C, For 
each subject, the reference binary connectivity map was weighted according to relative 
reduction in tract integrity in each individual subject (see materials and methods), resulting 
in a individual weighted connectivity matrix for each of the 63 TBI patients and 26 Healthy 
controls.
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we used Tract-Based Spatial Statistics (Smith et al., 2006) for each patient and control, 

resulting in an a skeletonised FA map for each subject. In order to demonstrate that 

there were signifi cant reductions in FA in patients compared to controls, we fi tted a 

general linear model using FSL Randomise (Nichols and Holmes 2002, Winkler et al. 

2014). 

In order to estimate integrity for individual tracts for each patient and control, FA values 

for all voxels lying within each tract region of interest (as defi ned using tractography 

on independent controls, see the previous section) were averaged together. This 

resulted in a ‘tract integrity’ FA matrix for each patient and control [Figure 6.2C]. 

Subsequently, we calculated the standard deviation and mean of the mean FA of 

each tract from the independent group of healthy controls (who had been used to 

defi ne the tractography). Then, for each patient and control, we subtracted the mean 

and divided by standard deviation, resulting in a scaled structural connectivity value 

for each tract in the matrix. To simulate damage to the connectivity matrix <C>, if 

any edge from the scaled FA matrix for an individual fell below a certain threshold it 

was ‘lesioned’. Rather than removing the tract (which is overly destructive given the 

nature of the traumatic axonal injury where the tract remains but is damaged) we 

instead reduce connectivity by a fi xed amount [Figure 6.2C].  Results reported are for 

a reduction of 50%, but the results are robust to a range of different damage values. 

Graph theoretic metrics for structural connectivity

In order to assess how connectivity relates to change in complex dynamics, we 

assessed broad metrics of large scale connectivity using measures from graph theory 

assessed using the Brain Connectivity Toolbox (Rubinov and Sporns 2010):



151

Degree (D). 

The degree of each node within a weighted graph is defi ned as the sum of all directly 

connected edges to the node within the network. The mean Degree defi nes how 

strongly interconnected all nodes within the network are (Freeman 1987).

Characteristic path length (L). 

characteristic path length, defi nes the common length of paths (V(C)) between each 

pair of nodesinnodes in a binary network <C>, weighted by the inverse of the weight 

of connectivity matrix (D) i.e. higher weight connections are interpreted as a shorter 

connection length. The mean of all path lengths forms the characteristic path length 

Clustering coeffi cient (K). 

The weighted clustering coeffi cient of a node (Ki) is the average connection intensity 

of all “triangles” i.e. all neighbours (ei) of a specifi c node which are also directly 

connect to each other as pairs (ki) around a specifi c node. The average across each 

node (Ki) is used as a measure of network clustering (Watts and Strogatz 1998).

Small-Worldness (σ)

Small-world networks have low characteristic path length and high clustering 

coeffi cient. An often-applied metric of ‘small-worldness’ - small world index (σ - SWI) 
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(Sporns 2006; Humphries 2008). Small worldness compares the path length (L) and 

clustering coeffi cient (K) to an equivalent measures of a suitable Erdös-Rényi random 

network (Humpries 2008) (ḱ and Ĺ  repectively). If σ > 1, a network is considered small-

world.  

Computational simulation of neural dynamics [Figure 6.1B]

The activity of each of the 164 brain regions (which we defi ne here as a node) is 

represented in our model as the phase of a single-phase oscillator over time. Phase 

at each node over time, is described by the Kuramoto equation presented in chapter 

4 (Kuramoto 1984, Acebrón et al. 2005). For the work presented in this chapter, we 

fi x the natural frequency to match known oscillations within the gamma frequency (w 

= 60Hz). The connectivity matrix <C> is a binary connectivity matrix determined by 

the empirical strength of white matter connections or lesioned using individual tract 

integrity data (see above). The distance matrix <D>, determined by the empirical 

length of connections between regions, imposes time delay on phase interactions 

between nodes. This is analogous to the simulation of a delay caused by neural 

conduction between regions of the brain. I introduce two control parameters to the 

coupling and delay of the network; the global coupling parameter (k), and mean 

global velocity <v> such that <C> = k<C> and <D>=<D>/v. The behavior of the 

Kuramoto model with respect to global Multistability and synchrony, by modulation 

of these parameters, has been explored previously (Cabral, Hughes, et al. 2011, 

Shanahan 2010b). The presence of multiple local maxima of both Multistability and 

synchrony within the <k,v> plane makes it hard to maximise though a simple gradient-

decent optimisation approach. Therefore, we randomly selected 6000 pairs of model 

parameters within the <k,v> plane and tested the model for each repeat. I then used 

nearest neighbor interpolation to create the parameter space presented in [Figure 

6.6]. 
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Validation of computational simulation

To validate the computational model against empirical functional connectivity of 

the BOLD signal we followed the approach to simulating BOLD activity previously 

demonstrated in the literature (e.g.,(Cabral, Hughes, et al. 2011)), using the sine of 

the high-frequency activity of the Kuramoto Model as the neural input to the Balloon-

Windkessel Haemodynamic model (Friston et al. 2000), low-pass fi ltered the resulting 

time courses at <0.25 Hz, and downsampled to 2 seconds.  Unlike previous approaches 

that have assumed that the resultant spatio-temporal organisation of correlations 

within empirical BOLD time courses are univariate, we used an ICA approach to 

compare empirical BOLD activity with the output of our computational models. 

First, empirical BOLD time-courses were decomposed into 15 spatially independent-

components using FMRIB Melodic (Smith et al. 2004, Beckmann et al. 2005). These 

components were then compared to the simulated BOLD components for each point 

in the parameter search (see above). Similarly, simulated BOLD time courses from the 

computational models were decomposed into 15 spatially independent time-courses. 

Spatial components from the empirical and modelled ICAs were then ‘matched’ 

using spatial correlation of their maps.  Since the order of components extracted by 

MELODIC varies, we determined maximal correspondence between empirical and 

model components by calculating the pair-wise spatial correlation between functional 

connectivity maps for all pairs of components and reordering the resulting correlation 

matrix so as to maximize entries along the diagonal. An evaluation function was 

defi ned as the mean correlation between the empirical spatial maps and the modeled 

spatial maps for the top n (here n=5) matched components in the computational 

model compared to the empirical data, providing an objective measure by which 

the fi t of individual regions of the global parameter space to empirical data may be 

compared against one another [Figure 6.6]. I present the results for ICA using 15 

components in both empirical and modelled data, and n = 5; however, varying each 

of these parameters produces qualitatively similar results.
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Measures of global and local network dynamics [Figure 6.1C]

To evaluate measures of network dynamics for both the empirical data and the 

computational model, we evaluated the phase history of the time courses for the 

10 intrinsic connectivity networks (ICNs). The ICNs were estimated using MELODIC 

applied to the 164 region time courses extracted from an independent group of 

control subjects, as described earlier. For the purpose of estimating synchrony and 

Multistability within an ICN, a region was classifi ed as part of an ICN if the value from 

the independent component was z > 1.64 (nominal p > 0.05).

Dynamics of phase timecourses for both the computational model and empirical fMRI 

data were evaluated, using the order parameters desribed in Chapter 4.
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Figure 6.3 | Structural brain damage following traumatic brain injury. A) Widespread white 
matter disruption following traumatic brain injury measured by TBSS of Fractional anisotropy 
(FA). Contrasts between traumatic brain injury < healthy control subjects (Red-Yellow). 
Contrasts overlaid on a standard Montréal Neurological Institute 152 T1 1 mm brain and the 
mean fractional anisotropy skeleton (in green). Results are thresholded at P ≤ 0.05, corrected 
for multiple comparisons using Threshold Free Cluster Enhancement (TFCE) (Smith et al., 
2006). B) Lesion probability maps of cortical contusions across 63 TBI patients. Estimated by a 
neuroradiologist on the T1 structural images. The colour bar indicates the number of patients 
who had lesions at each site, overlaid on a standard Montréal Neurological Institute 152 T1 
2 mm brain.
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Results

Widespread disruption to the structural connectome after 

traumatic brain injury

To demonstrate that white matter connectivity is disrupted following TBI in the group 

of patients studied, we performed a standard tract-based spatial statistics (TBSS) 

analysis of 63 TBI patients and 26 aged-matched controls in order to compare integrity 

of major white matter tracts, measured by Fractional Anisotropy (FA). As both age and 

total grey matter volume likely infl uence white matter integrity, age and total grey 

matter volume were used as covariates of no interest. In the between-group contrast 

of Patients < Controls, there was widespread reduction in FA across the entire of the 

white matter skeleton [Figure 6.3A]. FA disruption was particularly pronounced in long-

range inter-hemispheric fi bres of the corpus callosum (where damage was widespread, 

but most extensive in the body and genu), and interhemispheric association fi bres of 

the superior longitudinal fasiculus. Reduced FA was also pronounced within projection 

fi bres of the corticospinal tract, and the anterior and posterior limbs of the internal 

capsule. Additionally, a strong reduction of FA was observed within the fornix and 

corona radiata. This distribution of widespread changes to white matter integrity is 

typical of injury following TBI and is consistent with our previous TBSS based fi ndings 

(Kinnunen et al. 2011).

To explore how network level measures of structural connectivity are changed following 

TBI, we tested for associations between large-scale structural connectivity measures 

(from Graph Theory) in TBI patients and aged-matched controls. To defi ne structural 

connectivity in TBI patients and age-matched controls, we started by defi ning the 

probable location of each of the connecting white matter fi bres in an independent 

group of 10 age-matched healthy control subjects. This resulted in a binary reference 

connectivity matrix. I then projected thresholded versions of these maps for each 

edge in the reference connectivity matrix through the TBSS skeleton of the patient 
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and control group to generate a 164 region tract integrity matrix for each patient and 

control. The tract integrity matrix was then used to ‘damage’ the reference matrix 

leading to a single weighted connectivity matrix for each subject, we then calculated 

various graph theoretic measures in all subjects. There was a signifi cant reduction (in 

patients compared to controls) in small-worldness measured by small world index in 

(t87=-3.70, p<0.01), clustering coeffi cient (t87=-2.84, p<0.01) and mean degree (t87=-

3.42, p<0.001). In addition, patients had a signifi cantly higher characteristic path 

length compared to healthy controls (t87=2.84, p<0.01).

Multistability of large-scale neural dynamics is reduced 

following traumatic brain injury 

I assessed the Multistability of large-scale neural dynamics following traumatic brain 

injury (TBI), measured using resting-state fMRI data in both patients and controls 
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Figure 6.4 | Empirical Multistability at rest is signifi cantly reduced in Patients compared 
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[Figure 6.1A]. I sampled the fMRI blood-oxygen-level dependent (BOLD) timecourses 

from 164 cortical and subcortical anatomical regions. Within each subject, the 

BOLD timecourses were band-passed to 0.01-0.2Hz and the Hilbert transform used 

to identify the phase of the signal. I then calculated Multistability across all phase 

timecourses (i.e. global Multistability). In addition to the global measures, we explored 

Multistability within intrinsic connectivity networks, by restricting analysis to subsets 

of nodes belonging to intrinsic connectivity networks defi ned by an Independent 

component analysis (ICA) of functional time-courses extracted from an independent 

group of healthy control subjects. Next we fi tted the general linear model to measures 

of global and network level dynamics with age and total grey matter volume and 

average framewise displacement estimated from the fMRI data as covariates of no 

interest. 

Global Multistability was signifi cantly reduced in TBI patients compared to controls 

(t84=-2.63, p<0.05 1-tailed), [Figure 6.4]. Patients also showed lower Multistability 

in the salience network (t84 = -3.68 p<0.001), a left fronto-parietal network (t84 

= -2.41, p<0.02) and dorsal attention network (t84 = -2.27, p<0.05); these survive 

multiple comparison correction by FDR (q<0.1). A potential confound for measuring 

widespread neural dynamics in the TBI patient population is the presence of cortical 

contusions. Thirty-two patients in the TBI group were found to have focal gray matter 

lesions, suggestive of cortical contusions, on T1-weighted structural imaging. It is 

possible that these lesions affected the BOLD time courses extracted and the resulting 

Multistability calculations. I therefore repeated the calculation of global Multistability 

after removing brain regions whose anatomical segmentation overlapped with focal 

lesions in any patients [Figure 6.3B] (i.e., time courses from affected regions were not 

analysed in any patients or controls). Changes to global Multistability in TBI patients 

compared to controls following this adjustment were similar to the full brain analysis 

(t84=-2.63 p<0.01).
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Multistability after traumatic brain injury predicts cognitive 

performance

To investigate whether measures of global Multistability relate to the cognitive 

impairments seen in the TBI population, we regressed measures of Multistability against 

measures of cognitive fl exibility, associative memory, and information processing 

speed, including age and mean absolute movement during the fMRI run as covariates 

of no interest [Figure 6.5]. Cognitive fl exibility was measured using the Trail Making 

Test switch cost index (SCI), a measure of task-switching, previously demonstrated 

to be impaired following TBI (Jilka et al. 2014). Associative memory was assessed 

using the immediate recall and retention measures of the People and Doors Test (see 

Materials and Methods). Information processing speed was assessed in 49 of the 62 

patients with neuropsychological assessments using the Choice Reaction Task, median 

reaction time. In patients, there was a signifi cant negative relationship between global 

Multistability and SCI (t58=-2.21, p<0.05, [Figure 6.5, Top]) and median reaction time 

(t44=-3.46, p<0.01, [Figure 6.5, Middle]). Global Multistability was positively related to 

immediate recall, i.e. improved performance (t58=2.49, p<0.05, [Figure 6.5, Bottom]), 

and retention (t58=2.780, p<0.01, [Figure 6.5 , Bottom]). These results were from a 

multiple regression model containing age, motion and total grey matter volume as 

covariates of no interest. The reported results survive multiple comparison correction 

FDR, q<0.1

A computational simulation of large-scale neural dynamics 

resembles empirically-defi ned intrinsic connectivity networks 

In order to build a computational model to explore how multistable neural dynamics 

responds to structural disconnection (e.g. TBI), we started by defi ning a large-scale 

computational model of the healthy brain at rest, based on the structural connectivity 

between 164 regions of the brain defi ned using white matter tractography, which we 
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validated using resting-state functional connectivity. 

The model we used was the Kuramoto model, a coupled oscillator system (Acebrón 

et al. 2005) shown to be able to simulate large-scale neural dynamics related to 

underlying structural connectivity (Cabral, Hughes, et al. 2011, Hellyer et al. 2014, 

Shanahan 2010b, Messe, Benali, and Marrelec 2014). I defi ned our 164-region 

model such that each node corresponds to activity at one of the 164 anatomical 

regions used in the empirical analysis. Coupling between nodes was defi ned by the 

structure of the white matter connectivity of the brain. Previous work has explored 

the dynamics of the Kuramoto model in relation to the strength and structure of 

coupling between nodes (Cabral, Hughes, et al. 2011, Cabral et al. 2012, Shanahan 

2010b, Wildie and Shanahan 2012). This work suggests that the model behaviour is 

highly sensitive to two constants, the global coupling parameter (K) and mean global 

velocity , which is determined by a distance matrix . In order to understand the effects 

of these constants on our 164 node model, we performed a parameter space search 

using 6000 randomly generated pairs of parameters , within the plane  and . In the 

parameter search, we used the binary reference connectivity matrix defi ned from a 

group of independent healthy controls. The behaviour of Multistability as well as 

global synchrony of the system as a function of K are shown in [Figure 6.6].  I observed 

that for increasing values of K, the system tends towards maximum global synchrony, 

after passing through an intermediate phase where Multistability is maximal. To reduce 

the complexity of further computations, we selected a point in the  dimension based 

on plausible physiology, such that =11ms-1, following (Cabral, Hughes, et al. 2011) .

For the model output for each  pair, we used independent component analysis (ICA) 

to decompose the 164 node timecourses into a set of independent clusters of nodes. 

This set of clusters was then correlated with a set of resting-state networks derived 

from the empirical BOLD fMRI resting state data in the same 10 independent healthy 

control subjects used in the tractography step (see materials and methods). I found 

that the correlation between the simulated and empirically defi ned clusters was 
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maximal near the point of maximal Multistability [Figure 6.6].  

Empirically-defi ned large-scale structural disconnection leads 

to reduced Multistability in a simulation of large-scale neural 

dynamics

To examine the effect of large-scale structural disconnection following TBI on simulated 

neural dynamics, we used individualised structural connectivity matrices in patients 

and controls (see Materials and Methods, [Figure 6.2C]) to defi ne coupling within the 

Kuramoto model [Figure 6.1B]. Global Multistability was calculated for simulations 

of the model executed separately for each subject’s connectivity matrix. Runs were 

repeated for a range of values of the coupling constant, K [Figure 6.7, Left]. The region 

of maximum Multistability in healthy controls was identifi ed within the parameter 

search (K=3.5, see above). In this region, global Multistability was signifi cantly reduced 

in patients compared to controls (t84=-4.90, p<0.0001) [Figure 6.7, Right]. To further 

explore the effect of structural disconnection on simulated dynamics, we applied 

the same analysis to compute Multistability within subsets of regions involved in 

canonical ICNs. Simulations using structural connectivity from individual TBI patients 
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had signifi cantly lower Multistability within the dorsal attention network (t84=4.15, 

p<0.001), a right fronto-parietal network (t84=-1.99, p<0.05), default mode network 

(t84=-3.75, p<0.001), salience network (t84=-3.62, p<0.001), primary auditory (t84=-

4.06, p<0.001) and low-level visual networks (t84=-2.45, p<0.02). Simulated results 

are obtained from multiple regression using age and total grey matter volume as 

covariates of no interest and are corrected for multiple comparisons; FDR, q<0.1

To evaluate the extent to which global Multistability in the simulation is determined 

by changes to large-scale structural connectivity, we used linear regression with graph 

theoretical measures and subject group as a covariate, to reveal associations between 

empirically derived graph theoretical metrics and simulated Multistability. Small 

world index (t84=5.62, p<0.001), clustering coeffi cient (t84=7.75, p<0.001) and mean 

degree (t84=7.77, p<0.001), were signifi cant positive predictors of simulated global 

Multistability. An increase in characteristic path length is associated with reduced 

Multistability (t84=-4.162, p<0.001).
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Discussion

I considered two interrelated questions that are fundamental to understanding the 

brain: how does high-level behaviour arise from the structural connectivity of the brain; 

and how does disruption of network structure alter behaviour? Multistability has been 

suggested as a fundamental property for understanding complex neural dynamics, 

and serves as an important conceptual bridge between brain structure and behaviour 

(Tognoli and Kelso 2014). Here, we used traumatic brain injury (TBI) as a model 

with which to interrogate the relationship between multistable dynamics, structural 

connectivity and behaviour. I found that following TBI, Multistability measured using 

fMRI is reduced compared to age-matched healthy control subjects. Furthermore, the 

level of Multistability relates to behavioral impairment on a range of cognitive tasks. 

Importantly, using a combined empirical and computational modelling approach, we 

demonstrate that the reduction in Multistability following TBI is associated with the 

disruptive effects of disconnection of structural network topology, providing a clear 

demonstration of how emergent multistable dynamics relate to behaviour through 

structural connectivity.

Diffuse axonal injury (DAI) is a common pathology documented in all severities of TBI 

(Adams et al. 1989), thought to account for much of the morbidity and mortality after 

injury (Adams et al. 1989, Geddes et al. 1997). DAI preferentially damages the long-

distance white matter tracts that connect brain regions, and produces a reduction 

in small-world topology (Caeyenberghs et al. 2014, Caeyenberghs, Leemans, 

Leunissen, et al. 2012, Caeyenberghs, Leemans, De Decker, et al. 2012, Pandit et al. 

2013). I demonstrate a signifi cant reduction in the ‘small-worldness’ of the structural 

connectivity in TBI patients compared to controls, alongside a reduction in Multistability. 

Previously, the relationship between network topology and Multistability has been 

shown in computational simulations (Shanahan 2010a, Wildie and Shanahan 2012). 

Our computational fi ndings, backed up by empirical observation provide further 

support for a relationship between small-world topology and multistable dynamics in 
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the brain. This structure-function link is intuitive, given that small-worldness facilitates 

both segregation (nodes of the brain showing a modular architecture) and integration 

(short path lengths between nodes) (Bassett and Bullmore 2006, Watts and Strogatz 

1998). 

Our modelling results provide support for the empirical fi ndings by demonstrating 

that alterations in structural topology consistent with disconnection caused by 

TBI effect reduced levels of simulated Multistability. This provides a mechanistic 

link between reduction in small-worldness and neural dynamics. The results of the 

simulations are consistent with other computational models based on abstract 

network architectures (Shanahan 2010a, Friston 1997) as well as those defi ned by 

anatomical connectivity (Cabral, Hugues, et al. 2011, Deco, Jirsa, McIntosh, Sporns, 

and Kötter 2009). This previous work has shown how network topology is fundamental 

to emerging Multistability, and has implicated sparseness (Friston 1997) and small-

worldness (Wildie and Shanahan 2012, Shanahan 2010a, Cabral, Hugues, et al. 2011, 

Cabral et al. 2012, Messe, Benali, and Marrelec 2014). More recently, neural dynamics 

consistent with Multistability have been shown to emerge when the network structure 

has a “rich-club” organization (Senden et al. 2014). Future work could explore in 

more detail whether other graph theory properties better explain the alterations in 

Multistability that we observed, leading to a more refi ned explanation of how complex 

neural dynamics emerge from the network topology of the brain. 

Our empirical results are based on functional imaging acquired during rest. The 

resting state, with the absence of any explicit behavioural requirements, is one where 

Multistability is likely to be best suited to effi cient cognitive fl exibility, e.g. to retain 

information and fl exibly react to the environment. Rest, which must be distinguished 

from low arousal states such as sleep or sedation, can be thought of as a “jack-of-

all-trades” state in which the brain is in a broad exploratory regime. The dynamical 

regime of the resting state may constitute an upper limit for fl exibility of the neural 

dynamics of the brain. I have previously shown, with both empirical and computational 
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approaches, that Multistability at rest is higher than during a focused cognitive task 

(Hellyer et al. 2014). During a task, high Multistability is less desirable, since a specifi c 

confi guration of brain systems is recruited (e.g., in coordinating specifi c visual and 

motor systems to perform a visually cued motor task). However, the dynamical regime 

during this task will still refl ect the level of Multistability at rest, both in terms of how 

the system can transition from rest to a task state effi ciently and reliably. With low 

Multistability at rest (e.g following TBI), the system is likely to take longer to and be 

less reliable at transitioning between cognitive states, and show a reduced repertoire 

of brain confi gurations required to effectively facilitate sustained task performance.  

I found reduction in Multistability related to cognitive impairments on three tasks 

assessed: cognitive fl exibility, speed of information processing and associative 

memory. The switch cost index of the Trail Making Test, which involves rapidly and 

accurately switching between competing task demands, assesses cognitive fl exibility 

and intuitively maps onto reduced Multistability (which refl ects reduced dynamical 

fl exibility). This relationship offers a potential mechanism for perseverance following 

TBI: structural damage to white matter tracts, limits the Multistability of the brain which, 

in turn, limits cognitive fl exibility. However, the relationship between Multistability and 

behaviour was not specifi c to cognitive fl exibility, but was also present for the other 

two measures tested. Notably, all three tasks involve the integration of information 

across large-scale brain networks sustained over an extended period of time (e.g., 

memory (Spreng et al. 2010), CRT (Bonnelle et al. 2011) and cognitive fl exibility 

(Jilka et al. 2014, Sharp et al. 2010, Erika-Florence, Leech, and Hampshire 2014)). 

All of these tasks, therefore, require coordinated communication between sensory, 

motor and cognitive control brain regions, and so altered global Multistability might 

plausibly be expected to affect them all. However, there may be different ways that 

Multistability can break down, evident as altered dynamics within specifi c brain 

networks, resulting in different profi les of impairments. I found some evidence for this 

in the different patterns of individual network Multistability and how they relate to 
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neuropsychological score; for example, changes in associative memory were related 

to Multistability within the DMN. Future work, with a larger group of patients and 

imaging with higher temporal resolution would enable a better characterization of 

both across-subject variance in network Multistability and the patterns of behavioural 

impairment. Ultimately, information about altered neural dynamics could provide a 

sensitive biomarker to stratify patients and therefore be used to design targeted, 

individualized treatments, which may involve electrical stimulation, pharmacological 

intervention or neurofeedback (Sharp, Scott, and Leech 2014).

There are a number of limitations to the work. The constraints inherent in tractography 

using diffusion MR mean that the structural connectivity matrices and graphs 

generated were undirected, in so much as feed-forward and feed-back connectivity 

of individual regions had a uniform effect on node-node functional interaction, which 

is unlikely to be the case in vivo. In addition, long distance connections, for example 

inter-hemispheric pathways, may be diffi cult to resolve accurately since uncertainty 

in streamline location increases with the length of the tract (Jones 2010a, b). The 

computational model we have used is obviously a dramatic simplifi cation of brain 

function. For example, the simulation is built on a relatively (compared to the brain) 

low-dimensional connectivity matrix comprised of 164 regions. However, despite 

these limitations, the simulation provides important insights into the relationship 

between brain structure and function and is consistent with the empirical fi ndings. 

Such models, at least at the level of global network dynamics, replicate the broad 

changes in BOLD seen with fMRI, even though the model is based on nothing 

more than the network topology (Cabral et al. 2012, Cabral, Hugues, et al. 2011, 

Deco, Jirsa, McIntosh, Sporns, and Kotter 2009, Deco et al. 2008, Messe, Benali, 

and Marrelec 2014), with no modelling of the functional specialisation of individual 

nodes (i.e., all nodes are functionally equivalent). These limitations mean that precise, 

quantitative comparisons between the simulations and the brain were not expected. 

Diffi culties with the measurement of BOLD fMRI signal, such as partial volume effects, 
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regional differences in vascular reactivity or susceptibility artefacts would also make 

quantitative comparisons challenging. 

In summary, we found that large-scale structural disconnection in the brain is associated 

with reduced Multistability, linked to impaired cognitive fl exibility and other behavioural 

impairments. The link between damage to the structural connectivity following TBI 

and reduced Multistability (demonstrated both in empirical and simulated data) 

provides evidence that Multistability is contingent on the integrity of the underlying 

structural network topology. This suggests a mechanistic link between structure, 

neural dynamics and behaviour. The results indicate a compelling link between brain 

structure and function, and suggest the framework of multistable dynamics offers an 

account for understanding the brain in health and disease.  



“Rabbit’s clever,” said Pooh thoughtfully.
”Yes,” said Piglet, “Rabbit’s clever.”

”And he has Brain.”
”Yes,” said Piglet, “Rabbit has Brain.”

There was a long silence.
”I suppose,” said Pooh, “that that’s why he never 

understands anything.” 

 -- A.A. Milne, 
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7
Summary and 

concluding 
remarks

The research in this thesis investigated how normal cognitive functioning in the 

human brain depends on underlying white matter structure. By examining this 

network structure in the normal brain, and its disruption after TBI, I explored complex 

measures of neural activity, such as Multistability, emerging out of white matter 

structural connectivity in the brain, and their modulation by cognition and pathology. 

The key aims of the thesis were to explore:

• the effect of structural disconnection on cognitive function;

• the modulation of complex neural dynamics by cognitive state;

• how structural connectivity of the brain confers cognitive fl exibility 
through multistable dynamics;

• how damage to connections feeds through into altered dynamics, and 
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how this may relate to cognitive state.

In Chapter 3 I demonstrated that white matter structural connectivity, as defi ned 

by diffusion tensor imaging, is an important diagnostic marker and predictor of 

prognosis following TBI. Machine learning approaches applied to DTI data were 

used to diagnose white matter damage and to predict neuropsychological outcome 

in individual patients. Pattern classifi ers were used to predict the presence of white 

matter damage in 25 patients following TBI, each with evidence of microbleeds 

indicating TAI, compared to neurologically healthy age-matched controls. These 

classifi ers were then applied to 35 additional patients with no conventional imaging 

evidence (the presence of microbleeds) of TAI. Finally, regression analyses were 

used to predict indices of neuropsychological outcome for information processing 

speed (IPS), executive function (EF) and associative memory in a group of 70 patients 

forming a heterogeneous group in terms of the severity of the initial trauma and the 

abnormalities evident on diagnostic imaging. The classifi ers discriminated between 

patients with microbleeds and age-matched controls with a high-degree of accuracy, 

and outperformed other methods. When the trained classifi ers were applied to patients 

without microbleeds, patients with probable axonal injury showed evidence of greater 

cognitive impairment in information processing speed and executive function. The 

classifi ers were also able to predict the extent of impairments in information processing 

speed and executive function.  Therefore, this work provided proof-of-principle 

evidence that multivariate techniques can be used with DTI to provide diagnostic 

information about clinically signifi cant TAI. This work extends previous group-wise 

demonstrations of white matter damage measured using DTI (Sharp et al. 2014), and 

provides a new approach to detrmining white matter damage in individual patients. 

Importantly, it was demonstrated that white matter damage (structural disconnection) 

is associated with poor cognitive outcome in the domains of information processing 

and cognitive fl exibility. Understanding how disconnection following TBI interacted 

with functional activity within the brain to affect such cognitive change was the main 
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focus of the following chapters. To determine this involved developing simulations 

of neural dynamics, to relate brain structure with brain function and so explore the 

effects of post-traumatic white matter damage.

In Chapter 4, I introduced a computational model of the brain, based on a network 

of coupled Kuramoto oscillators was simulated. This simulation modelled the 

communication between pairs of individual brain regions, using the strength of the 

known structural connectivity of the brain estimated from published data on diffusion 

spectrum imaging (DSI). Each of the connections was subject to a time delay, based on 

the traversal distance of the white matter tractography. These models have previously 

been used to model whole brain functional connectivity (Cabral et al. 2011 , Cabral et al. 

2012). Importantly, by tuning key parameters of the model, the dynamics were shown 

to take on a range of different properties, from fully synchronous to chaotic dynamics. 

Tuning these parameters provided the opportunity to observe a second order phase 

transition within the dynamics of the model, such that the neural dynamics are poised 

simultaneously between order and chaos. In such a position, the model exhibits high 

Multistability. Within this region of multistable activity, the functional interactions 

imposed on neural dynamics by structural connectivity produced connectivity 

strongly resembling empirical resting state connectivity. This work demonstrated that 

simple simulations can capture important aspects of both dynamics and empirical 

functional connectivity, forming the starting point for exploring simulated cognitive 

and pathological states.

In chapter 5, the computational framework demonstrated in the previous chapter was 

used to examine complex dynamical activity within the brain, and how this may relate 

to cognitive state. The relationships between brain network activity, Multistability 

and cognitive state in humans, were investigated, testing the hypothesis that global 

Multistability is ‘tuned’ by network interactions. Two conditions were studied: 1) an 

attentionally demanding choice reaction time task (CRT); and 2) an unconstrained 

‘rest’ state. Functional MRI demonstrated that increased synchrony and decreased 
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Multistability were associated with increased activity within the Fronto-Parietal Control/

Dorsal Attention Network (FPCN/DAN) activity and decreased DMN activity during 

the CRT compared to ‘rest’. Activation of the FPCN/DAN increased global synchrony 

and decreases Multistability. DMN activation had the opposite effects. These results 

suggest that the balance of activity in the FPCN/DAN and DMN might control global 

Multistability, providing a mechanistic explanation of how attentional state is shifted 

between an unfocused/exploratory mode characterized by high Multistability, and a 

focused/constrained mode with low Multistability. This provided a novel insight into 

how cognitive fl exibility may emerge from the structural connections of the brain 

through multistable dynamics.

In chapter 6, these different strands of research were drawn together, by relating 

structural damage, neural dynamics and cognition to explore how cognitive fl exibility 

is shaped by the underlying human connectome. Complementary empirical and 

computational approaches investigated how Multistability is affected by structural 

disconnection following TBI, and how this may affect cognitive impairment. There 

was reduced Multistability in large-scale neural dynamics following TBI, as assessed 

with resting-state fMRI. This reduction in Multistability was associated with damage 

to the connectome, evident from the DTI data. Furthermore, decreased Multistability 

was associated with reduced cognitive fl exibility and information processing speed. 

The computational simulation demonstrated how behaviourally relevant changes 

in neural dynamics result from structural disconnection. The fi ndings indicate that 

multistable dynamics are important for normal brain function and are contingent on 

the structure of the human connectome. Understanding this relationship will prove 

useful in understanding how the pathology of TBI leads to behavioural and cognitive 

impairment

In chapters 4 through 6, I briefl y discuss how the results presented relate to a growing 

literature that attempts to descibe the brain as a ‘critical’ system. It is important to note 

several diffi cuties with this approach to exploring neural dynamics. Whilst evidence 
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for critical dynamics in the brain is ever expanding (Beggs and Plenz 2003, Beggs and 

Plenz 2004, Kitzbichler et al. 2009, Chialvo 2010, Haimovici 2013), and undoubtedly, 

provides a rich framework that provides a range of theoretical advatages to a neural 

system (Shew 2012) which are compatable with the brain as a multistable system 

(Shanahan 2010a, Friston 1997, Tognoli and Kelso 2014, Kelso 2012, Bressler and 

Kelso 2001),  it is important to note that multi-stable activity may occur in the absence 

of a ‘critical’ regime. For example, properties such as scale invariance characteristic of 

the critical regime, are not necessary or indeed suffi cient for metastable activity. Thus 

the interpretation that multistable operations are an underpinning mechanism which 

relates criticality to behaviour, should be taken with some degree of caution. Indeed 

whilst criticality may provide an interesting theoretical framework which describes 

some aspects of the organisation of neural dynamics (particually in the resting state), 

understanding how critical dynamics relates to not only to the structure of the brain 

but also behaviour is important indeed our recent work (Fagerholm 2015), in tandem 

with the work presented in this thesis, provides evidence across multiple different 

spatial and tempioral scales, that focussed attention is able to modulate signatures 

of criticality and multi-stability driving the brain into a ‘subcritical’ state, dependant 

on cognitive state, this suggests the possibiity that the behaving brain is not ‘critical’ 

at all. Future work, synthesising these observations in a range of behavioural states 

is needed to draw this exciting fi eld of research away from the epiphenominal 

observation of self-organised critical activity in the resting brain to understanding 

how, if and why organisation of the brain as a critical system is useful to behavioural 

activity in the brain.
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Future Directions

There are two broad areas to explore in research arising from the work presented 

in the thesis. One is to develop the computational approaches to provide more 

comprehensive descriptions of the brain. The Kuramoto simulations are only one way of 

exploring the interaction between brain regions. In the present model, all connections 

are essentially excitatory, whereas in reality the function of individual connections are 

also defi ned by many receptor types present at the synapse (Palomero-Gallagher 

et al. 2009). The important neuromodulatory effects of dopamine, serotonin, etc. 

were not modeled. Equally, whilst the Kuramoto model that was employed operated 

only at one fast timescale, constrained by the range of natural frequencies selected 

for each node, the effects demonstrated by the network simulations need to be 

developed refl ect multiple different timescales present in empirical data acquired 

with different techniques; for example, fast gamma-band measured with EEG and the 

slow components of the fMRI BOLD signal. Therefore, future work should examine 

dynamics revealed by simulations applied to a range of empirical neuroimaging data 

at a range of spatial and temporal scales, using models capable of simulating a wider 

range of neural and cognitive data. They may incorporate a variety of biological 

constraints, including both region-specifi c neural organization, such as the presence or 

absence of cortical columns, the distribution of particular neurotransmitter pathways, 

and local receptor densities (Amunts et al. 2000, Palomero-Gallagher et al. 2009). 

The other broad area for future research is to explore how computational models could 

help in clinical applications, to assess the distribution and severity of pathology and 

how this may impact on rehabilitation. It is increasingly recognised that neuroscientists, 

neurologists and psychiatrists need to not only acquire more empirical data about 

neurological and psychiatric disorders, but also to integrate this data into detailed 

computational theories that can inform treatment (Stephan and Mathys 2014, 

Montague et al. 2011). In this context, the work presented in this thesis offered an 

example of applying computational simulations to capture the interactions between 
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pathology, neural patterns and dynamics following TBI and their impact on behaviour. 

More sophisticated mechanistic explanations linking structure, neural dynamics and 

impaired cognition will be important in delivering: (1) detailed predictions about 

the clinical consequences of TBI and other brain disorders; (2) providing practical 

biomarkers for patient stratifi cation in treatment trials; (3) and developing novel 

hypotheses about novel behavioural, pharmacological and electrophysiological 

interventions (Sharp, Scott, and Leech 2014). As an example, validated computational 

simulations will provide a method for effi ciently exploring and testing many different 

possible intervention strategies (Stephan and Mathys 2014) in order to select the 

most effective treatment. This may extend to determining the optimal treatment 

for individual patients; for example, transcranial direct current stimulation has the 

potential for improving rehabilitation, but understanding the frequency and the site 

of its application to achieve the best result presents a major challenge. This may 

prove impossible to determine by classic trial methodology, leading to rejection 

of a potentially useful intervention, but are questions that may be answerable by 

computational simulations based on observational studies on brain structure and 

function. 



 “Any man who reads too much and uses his own brain 
too little falls into lazy habits of thinking.”

-- Albert Einstein
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Appendicies
Appendix 3.1 |  Demographics and clinical data of traumatic brain injury patients. 1 Severity 
classifi cation based on Malec et al., 2007. J Neurotrauma. Moderate-Severe (Mod/Sev), Mild 
(Probable). Not Know (NK). Road Traffi c Accident (RTA), Glasgow Coma Scale (GCS), Post-
traumatic amnesia (PTA), days (d), hours (h), mintues (m). Structural fi ndings on MR imaging: 
contusions/gliotic change (Cont), temporo-parietal (TP), frontal (F), occipital (O), fronto-
parietal (FP), superfi cial siderosis (SS), right (R), left (L), bilateral (B), microbleed on gradient 
echo imaging (MB). Medications highlighted in Italics are potentially psychoactive.

A
ge

 

Se
x 

Se
ve

ri
ty

1  

Cause Lowest  
GCS PTA 

Medication  
at time of 
scanning 

Structural MRI Findings 

Brief Remarks 

C
on

t 

M
B

 

18 M Mod/
Sev 

Fall NK 7 d Carbamazepine 
Lorazepam 

B F Cont Y Y 
 

24 F Mod/
Sev 

Uncert
ain 

NK NK  R FT and O Cont Y Y 

31 M Mod/
Sev 

RTA 14 8 h Theophyline 
Seretide 

L F, P and T Cont Y Y 

34 M Mod/
Sev 

Assault 14 > 6 w  L FT Cont and SS Y Y 

34 M Mod/
Sev 

Fall 4 52 d  B FT Cont Y Y 

36 M Mod/
Sev 

Fall NK 8 h Keppra 
Phenytoin 

B FT Cont Y Y 

44 F Mod/
Sev 

RTA 5 6 w  CC Cont Y Y 

46 M Mod/
Sev 

NK 3 >24h 
h 

 FT Cont and SS Y Y 

48 F Mod/
Sev 

Fall 9 > 2 w Thiamine 
Vitamin B 
Salbutamol 

inhaler 
Steroid inhaler 
Amitriptyline 

Triptan 

R F Cont and SS. Y Y 

52 F Mod/
Sev 

Fall NK 36 h Methotrexate 
Thyroxine 
Etanercept 
injections 

B F Cont and SS Y Y 

54 M Mod/
Sev 

RTA 3 < 24 
h 

Salbutamol 
inhaler 

R T Cont Y Y 

20 M Mod/
Sev 

RTA NK 2-3 w Gabapentin, 
Amitriptyline, 
Omeprazole,  
Etoricoxib 

  Y 

22 M Mod/
Sev 

Sports 
Injury 

NK 30 m    Y 

23 M Mod/
Sev 

Assault 14 4-5 h    Y 

23 M Mod/
Sev 

RTA 6 1 m Codeine 
Zopiclone 

Omeprazole, 

  Y 

34 M Mod/
Sev 

RTA NK 10 - 
11 d 

 DAI  Y 
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35 F Mod/
Sev 

RTA NK > 2 w    Y 

35 F Mod/
Sev 

RTA 6 1 m  SS  Y 

36 M Mod/
Sev 

RTA 6 1 m    Y 

40 M Mod/
Sev 

NK 4 3 m  R T, O, L F and TP 
gliotic changes 

 Y 

42 M Mod/
Sev 

Fall 9 > 24 
h 

 SS  Y 

43 M Mod/
Sev 

RTA NK NK Tramadol 
Nortriptyline 

Fluoxetine 
Simvastatin 

DAI  Y 

48 M Mod/
Sev 

Assault NK 1 m    Y 

53 M Mod/
Sev 

Fall 3 NK BP Medication SS  Y 

59 M Mod/
Sev 

RTA NK < 12 
h 

Atorvastatin 
Lamotrigine 

  Y 

17 M Mod/
Sev 

Fall 6 3 w Salbutamol 
inhaler 

R FT Cont. SS Y  

19 M Mod/
Sev 

Assault NK NK Citalopram 
Simvastatin 

B F Cont Y  

21 M Mod/
Sev 

Assault 15 12 
e]d 

 B F Cont, SS Y  

23 M Mod/
Sev 

Assault NK 2 d  B F Cont Y  

24 M Mod/
Sev 

Assault NK  Tramadol B F Cont, R T Cont Y  

25 M Mod/
Sev 

Syncop
e 

15 30 m  B F Cont Y  

26 F Mod/
Sev 

RTA 14 6 h  R F Cont Y  

28 M Mod/
Sev 

RTA NK 48 h  L F and B T Cont Y  

29 M Mod/
Sev 

RTA 3 6 w  B F Cont Y  

30 M Mod/
Sev 

RTA 15  Omeprazole 
Citalopram 
Sildenafil 

B F Cont Y  

32 M Mod/
Sev 

Assault NK < 24 
h 

 B F Cont and R T 
Cont 

Y  

33 M Mod/
Sev 

Assault NK 12 h Ciprofloxacin L T and R F Cont Y  

33 F Mod/
Sev 

RTA 15 < 5 
min 

Thyroxine 
Balsalazide 

R T Cont Y  

33 M Mod/
Sev 

Assault 14 < 12 
h 

 L FT Cont Y  

35 M Mod/
Sev 

NK NK 3-4 w Glargine 
Humalog 

B F Cont Y  

37 F Mod/
Sev 

RTA NK > 2 w   Y  

44 M Mod/
Sev 

Assault NK 4 d  B F and L T Cont Y  

48 M Mod/
Sev 

Assault NK >1 d  B FT Cont Y  
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48 M Mod/
Sev 

RTA 4 6 w Ramipril 
Amlodipine 

R FT Cont and SS Y  

60 F Mod/
Sev 

RTA NK 11 w   Y  

16 M Mod/
Sev 

Fall 15 NK     

20 M Mod/
Sev 

Sports 
Injury 

15 72 h Tramadol 
Diclofenac 

   

21 F Mod/
Sev 

RTA 15 8 h Tramadol SS   
 
 

21 M Mod/
Sev 

Sports 
Injury 

NK 30-60 
m 

    

22 M Mod/
Sev 

Assault 15 3-4 d Salbutamol 
Pentesa 

   

24 M Mod/
Sev 

Assault 13 NK     

28 F Mild Fall NK      
28 M Mod/

Sev 
Assault 4 NK  SS   

28 M Mod/
Sev 

RTA NK > 72 
h 

    

31 F Mod/
Sev 

Fall NK NK  SS   

33 M Mod/
Sev 

RTA NK 90 m     

35 F Mod/
Sev 

RTA 12 8 - 10 
w 

Cocodamol    

35 F Mod/
Sev 

RTA NK < 24 
h 

Thyroxine    

35 F  Fall 15      

38 M Mod/
Sev 

Assault NK 2 h     

38 M Mod/
Sev 

RTA NK NK     

44 M Mod/
Sev 

Assault 8 1 m     

45 F Mod/
Sev 

RTA NK < 5 m     

46 F Mild Accide
nt 

15  Paracetamol    

46 M Mod/
Sev 

RTA 15 < 1 h     

46 M Mod/
Sev 

Assault NK NK  SS   

49 M Mod/
Sev 

Fall NK 48 h Amlodipine 
Simvastatin 

   

50 M Mod/
Sev 

Fall 15      

53 F Mild Sports 
injury 

15      

59 M Mod/
Sev 

Accide
nt 

NK 2-3 m Mometasone 
Simvastatin 
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Appendix 3.2 |  Detecting the presence of TAI following traumatic brain injury.  Classifi ers 
were trained to separate contusion free MB+ve Patients and age matched controls using 
measures of Fractional anisotropy (FA), mode anisotropy (MO), mean diffusivity (DM) and 
radial diffusivity (DRAD). 14 contusion free MB+ve Patients (12 males, mean age  ± SD: 
36.6 ± 11.9 years) and 14 age-matched controls. Signifi cance of classifi ers is determined by 
permutation testing.

 

N=28 
Performance  Sensitivity Specificity P 

FA 89.9% 86.7% 92.3% <0.002 

MO 85.7% 85.7% 85.7% <0.002 

DM 78.1% 75.0% 83.3% <0.002 

DRAD 82.1% 76.5% 90.9% <0.002 

Appendix 3.3 |  Classifi cation of TAI in MB-ve TBI patients. Classifi ers trained to separate 
contusion free MB+ve TBI patients from age-matched controls were applied to contusion free 
MB-ve patients. The output of this classifi er separates the MB-ve group into two groups of 
likely or unlikely TAI.  Fractional anisotropy (FA), mode anisotropy (MO), mean diffusivity (DM) 
and radial diffusivity (DRAD)

 N=26 Likely TAI 
Unlikely 

TAI 
Unsure 

FA 38.4% 61.5% 0% 

MO 57.7% 38.5% 3.8% 

DM 65.4% 33.6% 0% 

DRAD 53.8% 42.2% 3.8% 
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Appendix 3.4 |  Correlation of TAI patient probability with neuropsychological outcome. 
The probability of being a patient with TAI is assessed in contusion free MB-ve patients 
using classifi ers trained to separate A) MB+ve patients B) contusion free MB+ve patients from 
age matched controls using four different diffusion metrics; fractional anisotropy (FA), mode 
anisotropy (MO), mean diffusivity (DM) and radial diffusivity (DRAD). (Pearson’s product-
moment correlation coeffi cient  (1-tailed), ** p<0.01 * p<0.05 3SF)

A) 

N=26 FA MO DM DRAD 

IPS r 

 p 

.352* 

0.05 

0. 231 

0.145 

.372* 

0.04 

.415* 

0.024 

EF 0.04 

0.429 

0.267 

0.109 

.352* 

0.06 

.377* 

0.038 

AM 0.212 

0.166 

0.188 

0.195 

-0.029 

0.447 

-0.051 

0.409 

 

B) 

N=26 FA MO DM DRAD 

IPS r 

 p 

.391* 

0.032 

0.25 

0.125 

.468* 

0.012 

.492** 

0.009 

EF 0.066 

0.383 

0.264 

0.111 

.407* 

0.027 

.464* 

0.013 

AM 0.163 

0.228 

0.144 

0.256 

-0.022 

0.46 

-0.084 

0.351 
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Test n=65 
Diffusion 

Estimate 
r p 

IPS - Median CRT 

Response time  

FA 0.391** <0.001 

MO 0.457** <0.001 

DMEAN 0.530* <0.01 

DRAD 0. 528** <0.001 

EF - Trail making B  

FA 0.407* <0.01 

MO 0.538** <0.001 

DMEAN 0.447** <0.001 

DRAD 0.478** <0.001 

Appendix 3.5 |  Predicting cognitive function following traumatic brain injury using support 
vector regression. Support vector regression was used to predict information processing 
speed (IPS), executive function (EF) and associative memory (AM). Fractional anisotropy (FA), 
mode anisotropy (MO), mean diffusivity (DM) and radial diffusivity (DRAD) (Pearson’s product-
moment correlation coeffi cient  (1-tailed), * p<0.01 3SF,  ** p<0.001 3SF)
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Appendix 5.1 |  List of network nodes and corresponding Talairach centroids for each region. 
Nodes comprising the FPCN/DAN are highlighted in purple. Nodes comprising DMN are 
highlighted in green. * Talairach Coordinates [x, y, z].

Label 
Brain region 

Centroid* 
Right Left Left Right 

1 66 Enthorinal Cortex [-24.00, -9.00, -24.33] [26.00, -7.00, -26.50] 
2 65 Parahippocampal gyrus. [-24.33, -32.50, -11.00] [27.33, -30.50, -12.33] 
3 64 Temporal Pole [-31.25, 10.75, -30.50] [32.67, 14.33, -29.67] 
4 63 Frontal Pole [-10.00, 62.50, -6.00] [9.00, 63.00, -8.00] 
5 62 Fusiform Gyrus [-35.32, -45.50, -13.18] [36.00, -45.82, -13.55] 
6 61 Transverse temporal cortex [-43.25, -22.25, 10.25] [43.67, -20.33, 9.67] 
7 60 Lateral occipital cortex [-27.09, -88.14, 4.09] [29.53, -87.42, 5.16] 
8 59 Superior parietal cortex [-22.59, -59.00, 45.41] [24.85, -58.37, 46.04] 
9 58 Inferior temporal cortex [-49.65, -33.59, -17.59] [50.53, -28.79, -18.74] 

10 57 Inferior parietal cortex [-36.72, -65.68, 29.56] [43.93, -60.43, 29.07] 
11 56 Supramarginal Gyrus [-50.42, -36.53, 31.68] [51.88, -31.00, 31.44] 
12 55 Bank of the superior temporal sulcus [-51.00, -44.40, 6.80] [50.71, -38.43, 5.14] 
13 54 Middle temporal cortex [-50.47, -30.32, -5.79] [56.65, -23.90, -10.60] 
14 53 Superior temporal cortex [-52.83, -15.62, -1.17] [53.32, -11.18, -2.79] 
15 52 Postcentral Gyrus [-40.93, -22.73, 44.83] [43.87, -20.39, 43.03] 
16 51 Precentral Gyrus [-38.00, -9.14, 41.19] [38.67, -7.97, 41.22] 
17 50 Caudal middle frontal cortex [-34.38, 14.23, 40.69] [35.31, 13.15, 41.92] 
18 49 Pars opercularis [-44.36, 15.91, 14.00] [45.60, 16.10, 13.70] 
19 48 Pars triangularis [-42.57, 32.43, 2.86] [44.50, 31.88, 4.00] 
20 47 Rostral middle frontal gyrus [-34.05, 40.42, 16.95] [33.77, 42.50, 15.77] 
21 46 Pars orbitalis [-40.33, 43.67, -8.67] [39.83, 44.17, -8.50] 
22 45 Lateral orbitofrontal gyrus [-22.50, 33.70, -10.80] [22.37, 32.26, -13.00] 
23 44 Caudal anterior cingulate cortex [-7.25, 17.50, 29.50] [6.50, 21.25, 27.50] 
24 43 Rostral anterior cingulate cortex [-6.75, 37.50, 2.00] [7.75, 35.75, 3.00] 
25 42 Superior frontal gyrus [-13.26, 28.88, 37.76] [13.78, 30.02, 38.41] 
26 41 Medial orbitofrontal gyrus [-7.58, 37.50, -13.33] [7.25, 38.25, -12.50] 
27 40 Lingual Gyrus [-14.44, -65.56, 0.06] [16.00, -65.47, -0.24] 
28 39 Pericalcarine Cortex [-11.11, -78.89, 10.56] [13.90, -77.50, 10.10] 
29 38 Cuneus [-7.13, -80.38, 22.50] [10.40, -78.80, 22.10] 
30 37 Paracentral lobule [-8.36, -28.36, 54.64] [10.50, -26.83, 53.50] 
31 36 Isthmus of the cingulate cortex [-8.63, -44.63, 23.00] [11.00, -43.75, 22.50] 
32 35 Precuneus [-10.22, -52.48, 37.65] [13.39, -56.04, 36.30] 
33 34 Posterior Cingulate cortex [-6.71, -16.29, 36.71] [8.71, -14.57, 36.57] 


