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Abstract—Sleep spindles are the hallmark of N2 stage of
sleep. They are transient waveforms observed on sleep elec-
troencephalogram and their identification is required for sleep
staging. Due to the large number of sleep spindles appearing
on an overnight sleep EEG, automating the detection of sleep
spindles would be desirable, not only to save specialist time but
also for fully automated sleep staging systems. A simple algorithm
for automatic sleep spindle detection is presented in this paper
using only one channel of EEG input. This algorithm uses Teager
energy and spectral edge frequency to mark sleep spindles and
results in a sensitivity of 80% and specificity of about 98%. It
is also shown that more than 91% of spindles detected by the
algorithm were in N2 and N3 stages combined.

I. INTRODUCTION

Human sleep is a dynamic process divided in to two distinct

states that occur in alternate cycles: Nonrapid Eye Movement

(NREM) and Rapid Eye Movement (REM). NREM stage

is further divided into three stages, N1, N2 and N3 [1].

Sleep spindle is a micro-event of sleep electroencephalogram

(EEG) which is characteristic of NREM stages of sleep. It is

a transient waveform with waxing-waning morphology and

exhibits strong presence in stage 2 of NREM sleep (N2),

although it may be present in N3 stage with a lower frequency

of occurence. According to the American Academy of Sleep

Medicine, a sleep spindle is defined as “a train of distinct

waves with frequency 11-16 Hz (most commonly 12-14 Hz)

with a duration ≥ 0.5 seconds” [1]. An example of typical

sleep spindles in stage 2 of NREM sleep is shown in Fig. 1.

A typical night’s sleep EEG recording contains 200-1000

spindles [2]. They are used by sleep specialists as one of

the characteristic features when determining the appropriate

stage of sleep. They need to be identified in order to mark

the beginning and continuation of N2 phase of sleep. Scoring

sleep spindles, however, is a laborious task and prone to human

error. Indeed, a previous study has reported the inter-rater

variability in scoring them to be around 80% [3].

Although the use of spindles for sleep staging is frequent

and well established, its significance as a sleep event, oth-

erwise, is less commonly known and is an area of active

research. They are known to play a fundamental role in

memory consolidation during sleep [4], as well as being

related to the secretion of melatonin that helps in maintaining
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the body’s circadian rhythms [5]. They are also understood

to be sleep maintaining events having an active role in the

progression of sleep to slow wave stages (N3). And it has

also been suggested that they may be a relevant indicator for

early stage development of CNS [6].

There have been various attempts to detect the presence of

spindles in sleep EEG automatically as they are essential for

any sleep staging system and their detection can also aid in

research on their physiological role. Different research groups

have tackled the problem of spindle identification with varying

success. [7] and [8] used artificial neural networks and SVM

classifiers with multiple features to achieve accuracy of about

89% and 95% respectively for each classifier. [9] used match-

ing pursuit with multi-channel EEG and reported 81.6% sen-

sitivity. [10] used bandpass filtering with thresholding, relative

power and autoregressive modelling to achieve sensitivity and

specificity values of 70.2% and 98.6%. They also presented a

standard assessment method to report performance of spindle

detection (that will also be used in this paper). [11] used power

thresholding and Hilbert-Huang transform to detect spindles

in healthy children, using two EEG channels, and reported

sensitivitiy and specificity of 88.2% and 89.7% respectively.

[12] reported 96.2% sensitivity using maximum frequency in

spindle range, Teager energy and harmonic decomposition of

signals while [13] used amplitude-frequency normal modelling

and reported 78.5% and 75.1% sensitivity for children and

adult spindle detection respectively.

In this paper, a simple and low complexity method is

presented for the automatic detection of sleep spindles, using

only a single channel EEG data, that is suitable to be used

as part of a sleep staging system or a spindle detector on its

own. A brief overview of the methods and data used is given

in Section II along with the description of each step in the

spindle detection algorithm. The results are given in Section III

and further discussed in Section IV including a comparison of

results with other algorithms that have been tested on the same

database.

II. MATERIAL & METHODS

A. Database

Polysomnography data from the DREAMS Sleep Spindles

Database of University of MONS - TCTS Laboratory and

Universite Libre de Bruxelles - CHU de Charleroi Sleep

Laboratory [14] was used for testing the algorithm. The data

consists of 30-minute excerpts from six subjects (3 males

and 3 females, average age 45.7 years) with various sleep

pathologies. The excerpts have been marked visually by two



Time (second)

A
m

p
li

tu
d
e

(µ
V

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-60

-40

-20

0

20

40

60

80

Fig. 1: A typical sleep spindle (between dashed lines)

scorers for sleep spindles. Data was originally recorded using

two EOG, three EEG and one EMG channels. The sampling

frequency is 200 Hz and the annotated channel is CZ-A1

except for subjects 1 and 3, for whom the annotated channel

is C3-A1 and the sampling frequency 100 Hz and 50 Hz

respectively. All signals were first resampled to have a uniform

sampling frequency of 256 Hz using the MATLAB function

‘resample’. Of the entire 180 minutes of data available for

testing, an average of 56% was part of NREM2 stage sleep,

confirmed by the hypnogram provided with the data. No

attempt was made to exclude either noisy data segments, or

data from any other stages of sleep or wakefulness.

B. Methods

1) Teager Energy Operator: Teager energy operator (TEO)

is a non-linear operator that can estimate the energy of a signal

on-the-fly [15], [16]. It is particlarly useful in highlighting

the abrupt transitions in a signal while suppressing the soft

transitions. For a discrete-time signal, its Teager energy is

computed using the following equation [16]:

ψ[x(n)] = x2(n)− x(n+ 1)x(n− 1) (1)

Teager energy operator, ψ, when applied to polysomno-

graphic signals, appropriately filtered for sleep spindle de-

tection, demonstrates a rise in energy level when a spindle

appears. The sudden change in frequency and the waxing and

waning amplitude of sleep spindles is well tracked by the

Teager energy operator.

2) Spectral Edge Frequency - 50%: Spectral edge fre-

quency at 50% (SEF50) is the frequency below which half

of the signal power is present. This is equivalent to the

median frequency of the signal. It can be computed from the

magnitude of FFT coefficients (mag) using (2), where n is the

total number of FFT coefficients and x is the index to solve the

equation for. The required frequency is then the xth frequency

from the array of FFT frequency components. In this work,

SEF50 was analyzed in the 8-15 Hz frequency range since it

covers both alpha (8-13 Hz) and spindle frequency range. It

was found that spindle-like alpha rhythms have lower median

frequency in this range and therefore this feature was used to

reduce the number of false detections.

x∑

i=1

|mag|2 = 0.50×

n∑

i=1

|mag|2 (2a)

SEF50 = freq(x) (2b)

C. Spindle Detection Algorithm

A block diagram of the complete spindle detection algo-

rithm is shown in Fig. 2. EEG input signal is first filtered

using a first order high-pass filter with a cut-off frequency

of 0.16 Hz, followed by a second order low-pass filter with

50 Hz as the cut-off frequency at the preprocessing stage.

This bandlimited signal is used as input to the main spindle

detection algorithm. The input signal is then filtered with a

fourth order Butterworth band-pass filter with lower and upper

cutoff frequencies 11 Hz and 16 Hz respectively, which is the

spindle frequency range. This step gets rid of all the frequency

content that is not of interest for spindle detection. This filtered

signal is then segmented in to epochs of 0.25 seconds with

50% overlap between successive ones. Teager Energy of the

filtered signal is then determined in each epoch using (1). If

the Teager energy values of all samples within the epoch are

greater than a certain varying threshold, the epoch is marked

as a candidate spindle. Because of the overlapping epochs a

potential sleep spindle in one epoch may have started in the

previous epoch or carried over in to the next epoch. For this

reason, when an epoch is marked as a candidate spindle, the

epochs immediately preceeding and succeeding the current

epoch are also marked as part of the current spindle thus

creating a candidate spindle zone.

The threshold for an epoch to be marked as a valid candidate

spindle was determined by taking the mean value of the

Teager energy over 60 previous epochs. The threshold was

then established as 2.19 times this mean value i.e. all samples

in an epoch had to be greater than the running mean of last 60

epochs by a factor of 2.19 to be considered as a valid spindle.

The number of epochs and multiplication factor for threshold

were determined empirically. Establishing the threshold based

on the data itself obviates the need for any manual patient

specific adjustments.

At this stage, minimum and maximum spindle duration

constraints were also applied prior to spectral analysis. If the

duration of a candidate spindle was found to be greater than 3

seconds or less than 0.5 seconds, the candidate was discarded

and not subject to any further analysis.

The next stage in the algorithm is enabled only when a

candidate spindle is detected at first stage and obeys the

duration constraints. Frequency content of each epoch in the

preprocessed signal, corresponding to the epoch in candidate

spindle zone, is analysed using a 512-point Fast Fourier Trans-

form (FFT). Spectral edge frequency (SEF50) for each epoch

in the 8-15 Hz band is computed using (2) and its average

determined for all epochs in the candidate zone. If SEF50

was found less than a fixed threshold the candidate spindle
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Fig. 2: Block diagram of sleep spindle detection algorithm

was rejected otherwise the candidate spindle was deemed to

be a positive detection. This stage is highly specific and helps

in removing false spindles and alpha rhythms that may have

been erroneously detected at the first stage. The threshold for

spectral edge frequency (SEF50) was fixed at 10.7 Hz for all

test cases. This was determined experimentally by analysing

the frequency content of true spindles and false detections

from the first stage.

The output from each stage of the algorithm is shown in

Fig. 3 where the Teager energy block identifies four candidate

spindles. One of them is a false detection which is subse-

quently rejected by analysing the frequency of the candidate

spindles.

III. RESULTS

The spindle detection algorithm proposed in this paper was

tested on 30-minute EEG excerpt from six subjects. The union

of spindles scored visually by two scorers was taken as the

reference to compare the results against. An automatically

detected spindle is marked as True Positive (TP) if it overlaps

at least partially with the reference spindle at that time. If no

point of the detected spindle overlaps with the reference, it is

considered as a false detection and marked as False Positive

(FP), while the number of spindles that went undetected by

the algorithm were classified as False Negatives (FN). The

number of True Negatives (TN) was approximated using the

method proposed in [10] with the following equation:

TN =
Total record duration

Avg. detected spindle duration
− TP − FP − FN

(3)

The average duration of the detected spindles was computed

separately for each subject to determine the True Negatives.

The performance of this algorithm was characterized by

finding the Sensitivity and Specificity using (4) and (5) for

each subject individually as well as for all of them combined.

The results are shown in Table I with the total number of

spindles for each subject and the fraction of those correctly

identified by the algorithm.

Sensitivity =
TP

TP + FN
(4)
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Fig. 3: (a) EEG input with three spindles marked between vertical
lines; (b) 11-16 Hz filtering output; (c) TEO output; (d) candidate
spindles; (e) SEF50 for each epoch in the candidate spindle zone;
(f) correctly detected spindles

Specificity =
TN

TN + FP
(5)

IV. DISCUSSION

The algorithm was tested on sleep data excerpts that in-

cluded all sleep stages to reflect real world conditions. Of the



TABLE I: Spindle detection algorithm performance

Subject Total Spindles True Pos. Sens. (%) Spec. (%)

1 134 111 82.8 96.7
2 77 58 75.3 98.3
3 44 39 88.6 97.7
4 63 38 60.3 97.8
5 103 87 84.5 97.1
6 117 99 84.6 98.1

All 538 432 80.3 97.6

538 visually scored sleep spindles, the algorithm successfully

detected 432 spindles yielding a sensitivity of 80.3% within

± 3.36% for a 95% confidence interval. The rejection of most

of the background EEG as true negatives also leads to a high

specificity of almost 98%.

The results in Table I show that the algorithm performance

is similar for all test cases except for a lower sensitivity in the

case of subject 4. Further analysis shows that this subject has a

high Wake stage content (30%) in the recording. Additionally,

almost half of the spindles visually scored in this record were

found to be part of the Wake stage when compared against the

hypnogram provided with the database. The algorithm falsely

detected only 14 of the 31 spindles in Wake stage while the

other 24 true positive detections were part of NREM stages.

With the Wake stage removed from analysis, sensitivity for

subject 4 goes up to 75%.

The spindles detected were further analyzed to determine

the corresponding sleep stage. Table II shows the total number

of sleep spindles detected by the algorithm for each subject

and the number of detections in each sleep stage (classified

according to AASM [1] rules). It can be seen that most of

the sleep spindles detected were from N2 stage (about 69%)

and more than 91% of spindles detected were from stages N2

and N3 combined. These are also the two stages where sleep

spindles are most often observed. We believe that together with

using the metrics proposed in [10] it is important to report the

fraction of spindles detected in each stage of sleep as well to

evaluate the performance of any spindle detection algorithm.

TABLE II: Sleep Spindles (SS) detected in each sleep stage

Sub SStot SSW SSN1 SSN2 SSN3 SSR

1 190 10 3 135 42 0
2 101 0 0 77 24 0
3 91 5 8 75 3 0
4 104 32 8 54 10 0
5 164 4 0 110 50 0
6 146 0 0 97 49 0

Total 796 51 19 548 178 0

Comparison of results against [10] and [13] (evaluated

using the same dataset) shows superior sensitivity and similar

specificty values. These are shown in Table III.

V. CONCLUSION

Identification of sleep spindles is an integral part of sleep

staging. Automatic detection of sleep spindles is desirable

to aid development of automatic sleep staging systems and

TABLE III: Comparison of this work with other algorithms

Method Sens. (%) Spec. (%)

[10] 70.2 98.6
[13] 75.1 96.7

This work 80.3 97.6

reduce the manual workload of sleep technicians. In this paper

a simple automatic sleep spindle detection algorithm is pre-

sented that makes use of the Teager energy operator to isolate

candidate spindle zones on sleep EEG followed by spectral

edge frequency in 8-15 Hz band to confirm their presence.

The algorithm uses a normalized threshold and, therefore,

requires no patient-specific adjustments. It demonstrates good

performance with sensitivity and specificity values of 80% and

97.6% respectively.
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