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ABSTRACT

We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast
solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and
residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and
equipartitioned (residual energy ∼0) have steep structure functions reminiscent of “turbulent” scalings usually
associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼ −1), and so
have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned
magnetic and velocity vectors, have wide “1/f ” ranges typical of fast solar wind. We conclude that the strength of
nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction
and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus
the onset scale for the turbulent cascade.
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1. INTRODUCTION

The solar wind is a continuous supersonic flow of plasma
emitted by the Sun. Observations made in situ by spacecraft
provide long, high-cadence time series that are well suited to
the study of magnetohydrodynamic (MHD) plasma turbulence
(Goldstein et al. 1995). MHD turbulence mediates the transfer of
energy at scales larger than the proton gyroscale in the “inertial
range” where the dissipation of fluid motions is negligible.
Turbulent fluctuations scatter energetic particles such as cosmic
rays and solar energetic particles (Bieber et al. 1996), and
they also provide energy to heat the solar wind. Given the
observational ubiquity of plasma turbulence throughout the
universe, results deduced from observations of the solar wind
are important in many areas of astrophysics.

The frequency-dependent Fourier spectrum of time-series ob-
servations of the solar wind magnetic field (B) can be directly
related to the wavenumber (k) spectrum by the Taylor hypoth-
esis. In the inertial range, the energy spectrum of magnetic
fluctuations typically scales as E(f ) ∝ f −5/3. At larger scales,
this spectrum is often observed to have a distinct low-frequency
range with E(f ) ∝ f −1 (Burlaga & Goldstein 1984; Matthaeus
& Goldstein 1986; Matthaeus et al. 2007; Smith et al. 1995).
Solar wind streams containing the most correlated magnetic-
field and velocity fluctuations (Belcher & Davis 1971), typically
found in corotating fast streams and fast polar wind, have the
widest 1/f ranges. Less correlated streams have a shorter or
no 1/f range (Goldstein et al. 1984; Matthaeus et al. 2007; Tu
et al. 1989, 1990). The spectral break between the 1/f range
and the inertial range is observed to move to lower frequencies
with increasing distance from the Sun (Bavassano et al. 1982;
Horbury et al. 1996; Roberts 2010), and the fluctuations within
the 1/f range reduce in amplitude with distance (R) from the Sun
∝R−3, which is consistent with the Wentzel–Kramers–Brillouin
(WKB) approximation (Roberts 1989; Roberts et al. 1990;
Jokipii et al. 1995; Horbury et al. 1996). These results support

the idea that the energy in the 1/f range is contained in linear
superpositions of coronal structures and Alfvénic fluctuations
of solar origin, which do not evolve significantly until they be-
come turbulent, acting as an energy reservoir for the turbulence
(Matthaeus & Goldstein 1986; Hollweg 1990).

However, recent studies have shown that the behavior of
fluctuations at large scales in the fast solar wind is more
complicated than is allowed for by the WKB model. When
fluctuations in the fast wind are less correlated, scaling of third-
order moments is observed to extend to very low frequencies
(Sorriso-Valvo et al. 2007; Marino et al. 2012), which may
be a sign of active turbulence. Scaling of the alignment angle
between B and velocity V fluctuations in the 1/f range of the
solar wind has also been observed (Podesta et al. 2009; Hnat
et al. 2011), which is suggestive of some evolution of the nature
of the fluctuations with scale. Wicks et al. (2013) showed that
the angle between oppositely propagating Elsasser fluctuations
increases with increasing frequency in the 1/f range, with the
fluctuations becoming anti-aligned. Furthermore, fluctuations
with perpendicular alignment showed steeper scaling than
aligned fluctuations, suggesting an active turbulent cascade for
the unaligned sub-population of fluctuations in the 1/f range.

Two dimensionless parameters, the normalized residual en-
ergy (1) and the normalized cross helicity (2), together com-
pletely define the two-dimensional geometry of the fluctuations
in the plane formed by the two vectors (see, e.g., Equations (7)
and (8) and Figure 4 in Wicks et al. 2013):

σr = δv2 − δb2

δv2 + δb2 , (1)

σc = 2δv · δb

δv2 + δb2 , (2)

where the Alfvén-normalized magnetic-field fluctuation is δb =
δB/

√
μ0ρ (where ρ is the plasma density) and the velocity
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fluctuation is δv (see Equations (3) and (4) below). The nonlinear
terms in the MHD equations are dependent on the geometry of
the fluctuations in B and V relative to one another (Elsasser
1950; Dobrowolny et al. 1980; Podesta et al. 2009; Wicks et al.
2013), in particular, the relative amplitudes of the fluctuations
and the angle between them. Thus, the strength of the nonlinear
interaction may change across the phase space defined by σc

and σr . These two dimensionless parameters are correlated as
shown by Bavassano et al. (1998) and Bavassano & Bruno
(2006), who measured the joint distribution of σc and σr . Their
joint distributions were also shown to change slightly with scale
(Bavassano et al. 1998; Bavassano & Bruno 2006) and with
the distance from the Sun (D’Amicis et al. 2010), echoing the
theoretical expectation that nonlinear interaction changes the
correlations of B and V (Bavassano & Bruno 1992).

Here, we combine the approach of Bavassano et al. (1998),
Bavassano & Bruno (2006), and D’Amicis et al. (2010) with
that of Wicks et al. (2013) to investigate the effect of the
joint distribution of the local normalized cross helicity and
residual energy on the scaling of the structure functions of the
fluctuating fields. The aim of this study is to look for systematic
effects on the width of the 1/f range due to the correlation
properties of fluctuations within a single solar wind stream.
Using a single stream aids the analysis by fixing the external
variables that change between different streams: the travel time
from the Sun and the evolution of plasma parameters such as
plasma β and the Alfvén speed. This study thus differs from
previous studies in the solar wind (Burlaga & Goldstein 1984;
Goldstein et al. 1984; Roberts et al. 1987; Tu et al. 1989,
1990) that used the average correlation properties of many
streams.

2. DATA

We use three-second Wind spacecraft Magnetic Field Investi-
gation (MFI) and 3D Plasma Analyzer (3DP) observations of the
magnetic field B, proton density ρ, and velocity V taken from
a fast solar wind stream from 2008 January 14 04:40:00 to
January 21 03:20:00. The average solar wind conditions were
speed |V | = 660 km s−1, magnetic field |B| = 4.4 nT, proton
number density np = 2.4 cm−3, Alfvén speed VA = 62 km s−1,
and the ratio of thermal to magnetic pressure for protons
βp = 1.2. Three similar corotating, approximately seven-day-
long fast streams are observed from 2007 December to 2008
March with good data coverage (no individual data gaps longer
than 3 hr and a total data coverage of 90% or better). All three
give rise to results that are quantitatively similar to those shown
here.

Increments in Alfvén-normalized B and V are calculated as
a function of the time lag τ :

δb(t, τ ) = B(t) − B(t + τ )√
μ0ρ0(t, τ )

, (3)

δv(t, τ ) = V(t) − V(t + τ ). (4)

The local mean field B0(t, τ ) and the local mean proton density
ρ0(t, τ ) are calculated over the same time scales τ :

B0(t, τ ) = 1

τ

∫ t ′=t+τ

t ′=t

B(t ′)dt ′, (5)

ρ0(t, τ ) = 1

τ

∫ t ′=t+τ

t ′=t

ρ(t ′)dt ′. (6)

We use the component of the fluctuations perpendicular to the
local field in order to select the Alfvénic part of the fluctuations,
minimizing the effect of compressible and pseudo-Alfvénic
fluctuations on our results (Wicks et al. 2012):

δb⊥(t, τ ) = δb(t, τ ) · (1 − b̂0(t, τ )b̂0(t, τ )), (7)

δv⊥(t, τ ) = δv(t, τ ) · (1 − b̂0(t, τ )b̂0(t, τ )), (8)

where b̂0 = B0/B0 and 1 is the unit matrix.5 We also calculate
Elsasser variables to give an estimate of the imbalance between
the outward (δz+) and inward (δz−) propagating fluctuations6:

δz±
⊥(t, τ ) = δv⊥(t, τ ) ± δb⊥(t, τ ). (9)

The perpendicular fluctuations are used to calculate scale-
dependent normalized cross helicity and residual energy:

σc(t, τ ) = 2δv⊥(t, τ ) · δb⊥(t, τ )

|δv⊥(t, τ )|2 + |δb⊥(t, τ )|2

= |δz+
⊥(t, τ )|2 − |δz−

⊥(t, τ )|2
|δz+

⊥(t, τ )|2 + |δz−
⊥(t, τ )|2 , (10)

σr (t, τ ) = |δv⊥(t, τ )|2 − |δb⊥(t, τ )|2
|δv⊥(t, τ )|2 + |δb⊥(t, τ )|2

= 2δz+
⊥(t, τ ) · δz−

⊥(t, τ )

|δz+
⊥(t, τ )|2 + |δz−

⊥(t, τ )|2 . (11)

Two hours from the seven-day-long fast stream that we used
are shown in Figure 1. The solar wind speed and density, shown
in the top panel, are approximately constant and typical for
a fast-wind interval at 1 AU. The magnetic field, shown in
the second panel, fluctuates with time. The cross helicity and
residual energy calculated over a range of scales τ are shown in
the bottom two panels. Typically, the cross helicity is positive
(red) and the residual energy is negative (blue). This implies
that the fluctuations tend to be correlated (magnetic and velocity
fluctuations are aligned) but have a somewhat larger magnetic-
field component than velocity component. The two quantities
are correlated, with the more positive cross helicity typically
coinciding with residual energy close to zero, and more negative
residual energy coinciding with cross helicity closer to zero
(which is geometrically inevitable, see below).

We measure the scale-dependent amplitude of the fluctuations
using second-order structure functions

S2(δb⊥, τ ) = 〈|δb⊥(t, τ )|2〉, (12)

and similarly for δv⊥ and δz±
⊥. The average is performed

over the entire length of the stream. The mean properties of
the fluctuations over the seven-day period are summarized in
Figure 2, which shows the structure functions versus frequency
f ≡ 1/τ in the top panel and the associated mean σc and σr in
the bottom panel.

The two vertical lines at low frequencies mark two important
scales. 1/TS is the frequency defined by the time the solar wind
takes to flow from the Sun to the spacecraft at 1 AU. 1/TA is the

5 Note, however, that the perpendicular Alfvénic fluctuations account for
around 90% of the energy in the turbulence, and using the full vector instead of
its perpendicular part does not qualitatively change the results.
6 There are no magnetic sector boundaries in the time series and so no
accounting for changing definitions of “inward” and “outward” is required.
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Figure 1. Time series at 3 s resolution from two hours of the seven-day-long fast stream used in this analysis. The top panel shows the solar wind speed and density. The
second panel shows the three components of the magnetic field vector. The bottom two panels show the normalized cross helicity and residual energy (Equations (10)
and (11)) computed at different time scales τ . The white areas correspond to times when a data gap is selected at t or t + τ in Equations (10) and (11). There are no
data gaps in the two hour window shown, but τ > 7.2 × 103 s will select a point t + τ outside of the data in the plot.

(A color version of this figure is available in the online journal.)
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Figure 2. Top panel: structure functions of the vector fields are shown plotted
against spacecraft frequency (f = 1/τ ). Bottom panel: normalized cross
helicity and residual energy (Equations (10) and (11)) averaged over the entire
duration of the fast stream. The arrows indicate the lags τ used in Figure 5, with
the middle arrow also indicating the scale used in Figure 3.

(A color version of this figure is available in the online journal.)

frequency corresponding to the advection past the spacecraft of
the largest distance an Alfvén wave can have traveled in the time
the solar wind has propagated from the Sun to the spacecraft.
We estimate the latter by using average values of the solar wind
speed and the Alfvén speed during the seven-day-long stream
and assuming that the Alfvén speed changes with distance from
the Sun, R, as VA ∝ R−1/2 (see Wicks et al. 2013). This time
scale is a rough estimate of the upper limit on the time lag over
which Alfvénic fluctuations may have interacted, and so acts as
the approximate low-frequency limit below which turbulence
cannot develop.

The structure functions for the four vector fields are plotted
individually and conform to the expected behavior of structure
functions in highly Alfvénic fast solar wind. The structure-
function scaling exponents, α, are related to power spectral
indices, γ , via γ = α − 1 for 0 < α < −2, so −2/3
corresponds to the −5/3 “Kolmogorov” spectral slope. The
structure functions of the magnetic field and the outward
propagating Elsasser fluctuations (δz+) have extended flat ranges
at low frequencies; this is the “1/f ” spectral range. Over
the range of frequencies where the magnetic-field structure
functions are flat, the structure functions of the velocity and the
inward propagating Elsasser fluctuations (δz−) have a shallow
scaling. The boundary between the energy-containing scales in
the 1/f range and the turbulent inertial range is estimated as
the “knee” in the magnetic-field structure functions where the
scaling changes from flat to f −2/3. This frequency is indicated in
Figure 2 and later figures by the vertical line labeled 1/TO . We
will refer to this frequency as “the outer scale.” At this frequency,
all four of the structure functions steepen, those of the magnetic
field and both Elsasser variables to logarithmic slopes close to
−2/3, whereas the velocity structure function has a slope of
−1/2, corresponding to −5/3 and −3/2 spectra, respectively
(see, for example, Podesta et al. 2007; Roberts 2010).

The bottom panel in Figure 2 shows the mean cross helicity
〈σc〉 and residual energy 〈σr〉 calculated from the field incre-
ments (Equations (10) and (11)):

〈σc〉 =
〈

2δv⊥(t, τ ) · δb⊥(t, τ )

|δv⊥(t, τ )|2 + |δb⊥(t, τ )|2
〉
, (13)

〈σr〉 =
〈 |δv⊥(t, τ )|2 − |δb⊥(t, τ )|2
|δv⊥(t, τ )|2 + |δb⊥(t, τ )|2

〉
. (14)

The lowest range of frequencies measured here, 1/TS <
f < 1/TA, contains little variation in either 〈σc〉 or 〈σr〉.
At frequencies 1/TA < f < 1/TO , 〈σc〉 increases and 〈σr〉
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Figure 3. Joint probability distribution of σc and σr at time lag τ = 5535 s for
the entire seven day analysis interval.

(A color version of this figure is available in the online journal.)

decreases with increasing frequency. These trends stop at the
outer scale 1/TO and reverse at higher frequencies. For 〈σr〉 this
happens at f ∼ 1/TO , while for 〈σc〉 there is an initial plateau
before it starts decreasing at the highest frequencies. This
high-frequency decrease in 〈σc〉 is likely due to noise in the
3DP velocity observations (Gogoberidze et al. 2012; Podesta
et al. 2009; Chen et al. 2013; Wicks et al. 2013).

3. ANALYSIS

Having calculated the scale- and time-dependent σc and σr ,
we can construct a scale-dependent joint probability distribu-
tion. The joint distribution at one of the scales in the 1/f range
is shown in Figure 3. Values of σc and σr must lie within a circle
of radius 1, as follows from their definitions (Equations (10)
and (11)). The difference between fluctuations at the edge of
this circle and in the middle is the geometry of the vectors rel-
ative to one another. Fluctuations at the edge of the parameter
space are the most correlated. Indeed, at the edge of the circle,
σ 2

c + σ 2
r = 1, which implies

|δv⊥||δb⊥| = |δv⊥ · δb⊥|, (15)

|δz+
⊥||δz−

⊥| = |δz+
⊥ · δz−

⊥|, (16)

so the Elsasser, velocity, and magnetic-field fluctuations must
be perfectly aligned (co-linear) at the edge.

Close to the center of the circle, however, σ 2
c + σ 2

r � 1, and
hence

|δv2
⊥ − δb2

⊥| − 2|δv⊥ · δb⊥| � |δv2
⊥ + δb2

⊥|, (17)

|δz+2
⊥ − δz−2

⊥ | − 2|δz+
⊥ · δz−

⊥| � |δz+2
⊥ + δz−2

⊥ |, (18)

which can only be achieved when there are angles close to 90◦
between the vectors in each Equations (17) and (18) and the
amplitudes of these vectors are approximately equal.

Thus, by examining different regions of the (σc, σr ) space,
we separate the two different types of correlations: in magnitude
(equipartition) and direction (alignment).

The probability distribution is strongly peaked along the edge
of this parameter space, where σc > 0 and σr < 0. This agrees
well with the distributions found in other fast-wind intervals
with different spacecraft by previous studies (Bavassano et al.
1998; Bavassano & Bruno 2006; D’Amicis et al. 2010). Here,
we extend the analysis to include a broader range of scales
and to study the structure functions in different regions of this
parameter space. Initially, we concentrate on three regions of the
(σc, σr ) space that have qualitatively distinct physical properties;
these are shown as Regions 1, 2, and 3 in Figure 3 and their
properties are summarized in Table 1.

Region 1 is in the center of the parameter space, where
|σc| < 2/15 and |σr | < 2/15. When σc � 1 and σr � 1,
fluctuations can be described as balanced (δz+

⊥ ∼ δz−
⊥) and

Alfvénically equipartitioned (δb⊥ ∼ δv⊥) and as a result are
unaligned, with the cosine of the angle between δv⊥ and δb⊥
| cos(θ )| < 2/15 and the cosine of the angle between δz+

⊥ and
δz−

⊥ | cos(φ)| < 2/15.
Region 2 contains fluctuations with σc > 14/15 and |σr | <

1/15, which is consistent with very pure outward propagating
Elsasser fluctuations. These are therefore imbalanced (δz+

⊥ 
δz−

⊥), but equipartitioned and aligned.
Region 3 has |σc| < 1/15 and σr < −14/15, which means

that the fluctuations therein are magnetically dominated and,
therefore, are balanced and have anti-aligned Elsasser fields.

These values are chosen so that the probability of fluctuations
being observed does not change systematically across each box
but that there are enough (>30) observations in the box at each
scale τ to calculate accurate structure-function averages. The
regions must also be symmetrical about whichever variable is
close to zero in order to make fluctuations balanced (Region 3),
equipartitioned (Region 2), or balanced and equipartitioned
(Region 1) on average.

We now calculate the structure functions only, using those
fluctuations that have σc and σr corresponding to one of these
three regions. These are scale-dependent structure functions
conditioned on the local correlation properties of the fluctua-
tions. Thus, these conditioned structure functions do not neces-
sarily come from continuous sections of the time series, but are
aggregated from separate times across the whole time series. To
do this, we assume that the time series of fluctuations are sta-
tionary so that fluctuations that are not locally neighboring may
still be statistically comparable. This is a reasonable assump-
tion to make for this particular seven day interval because the
data show little systematic variation in magnetic-field strength
or proton density. There is a trend of decreasing solar wind
speed with time during the interval, however, the instantaneous
speed |V | remains within one Alfvén speed of the average solar
wind speed 〈|V |〉 (i.e., |V | is always found within the range
〈|V |〉 ± VA) over the entire interval. Thus, the Alfvén Mach
number, Reynolds number, and other related quantities do not
change significantly over the interval.

We compare the structure functions from the three separate
regions in Figure 3 by plotting the sum of S2(δv⊥) and S2(δb⊥)
against the frequency in Figure 4. We can see that the balanced,
equipartitioned, and unaligned fluctuations taken from Region 1
scale steeply from close to the large-scale limit of the turbulence
at f ∼ 1/TA down to the instrument noise floor at small
scales (shown by the dashed green line; see Podesta et al.
2009; Gogoberidze et al. 2012; Wicks et al. 2013). The scaling
of these fluctuations is close to f −2/3 and therefore suggests
active nonlinear interaction. There is no discernible “spectral
break” at the “outer scale” 1/TO . The structure functions of the
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Table 1
Properties of the Three Regions Used in Figures 3 and 4

Region σc σr Description

1 |σc| < 2/15 |σr | < 2/15 Balanced (δz+
⊥ ∼ δz−

⊥) and equipartitioned (δv⊥ ∼ δb⊥) with unaligned vectors (cos(φ) − cos(θ ) � 1).
2 σc > 14/15 |σr | < 1/15 Strongly δz+

⊥ dominated, equipartitioned and highly aligned (cos(θ ) ∼ 1).
3 |σc| < 1/15 σr < −14/15 Strongly δb⊥ dominated, balanced and highly anti-aligned (cos(φ) ∼ −1).

Notes. The angles between vectors are defined as cos(φ) = δz+
⊥ · δz−

⊥/|δz+
⊥||δz−

⊥| and cos(θ ) = δv⊥ · δb⊥/|δv⊥||δb⊥|.
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(A color version of this figure is available in the online journal.)

fluctuations from Regions 2 and 3 have flatter scaling in the
low-frequency regime and then steepen at higher frequencies.
Region 3 (magnetically dominated fluctuations) shows the
same steep scaling as Region 1, albeit starting at a much
higher frequency, comparable to the outer scale 1/TO originally
estimated from the full data set. Region 2 (imbalanced Elsasser
fluctuations) never reaches a scaling as steep as f −2/3 (a −5/3
spectrum) and appears, in the inertial range, to have scaling
that is somewhat shallower even than f −1/2 (a −3/2 spectrum),
although this may be affected by instrument noise (Gogoberidze
et al. 2012; Podesta et al. 2009; Wicks et al. 2013).

Having ascertained that the scaling of the conditional struc-
ture functions is distinct in three distinct regions of the (σc,
σr ) space, even within the single fast stream that these data
originated from, we can go farther with our analysis. We now
construct structure functions conditioned on each individual pair
of values σc and σr represented by the pixels in Figure 3. The
pixels are arranged in a square 30 × 30 grid across the space
|σc| < 1, |σr | < 1. We remove the pixels that have fewer than
30 observations at each scale to filter out the least well deter-
mined structure functions. The average total fluctuation ampli-
tude S2(δv⊥, τ ) + S2(δb⊥, τ ) in each pixel is plotted and the
exponent of the summed structure functions corresponding to
each pixel is measured by fitting a straight line to the amplitudes
of five neighboring scales on a log–log scale.

The top row of panels in Figure 5 shows the joint probability
distribution of σc and σr , the middle row shows the sum of the
velocity and magnetic-field structure functions at each scale,

giving an estimate of the total energy in the fluid motion, and
the bottom row shows the structure-function exponent. These are
each measured at three different scales covering three decades
in frequency. These scales are τ = 58,029 s ∼ TA, with the
exponent measured in the range 5 × 10−6 < f < 5 × 10−5 Hz
(left column); the middle of the 1/f range at τ = 5535 s, with
the exponent measured in the range 5×10−5 < f < 5×10−4 Hz
(middle column); and the top of the inertial range at τ = 528 s,
with the exponent measured in the range 5 × 10−4 < f <
5 × 10−3 Hz (right column). These scales are indicated by the
arrows in Figures 2 and 4.

Moving from left to right along the top row of Figure 5, we
see how the joint probability distribution of σc and σr changes
through the 1/f range. The probability is always higher in
the bottom right corner (imbalanced fluctuations with some
excess of magnetic energy), as was seen in Figure 3, but
the peak becomes more pronounced as the scale τ becomes
smaller. The middle row of panels shows the corresponding
fluctuation amplitudes. At the largest scale (left panel), the
energy is predominantly in σc > 0 outward propagating Elsasser
fluctuations, but this maximum is larger than the minimum
by less than an order of magnitude. In the inertial range
(right panel), the energy has been concentrated into a narrow
band along the bottom right edge of the parameter space
(σc > 0, σr < 0), which now has approximately two orders
of magnitude more power, on average, than fluctuations found
closer to the center of the circle.

The third row of panels shows the structure-function scaling
exponent. At the largest scales (left panel), the exponent is close
to 0 everywhere. In the middle panel, which represents most of
the 1/f range, the bottom edge of the (σc, σr ) space has a flat
exponent but large areas of the space closer to the middle have
instances with steeper scalings in the range −0.4 < α < −0.8,
which is characteristic of active nonlinear interactions. The
flattest values occur in the range (−1 < σc < −0.5,−0.75 <
σr < −0.25), corresponding to anti-aligned δv⊥ and δb⊥
as well as anti-aligned Elsasser fluctuations with a dominant
δb⊥ component. At the lowest inertial range frequencies (right
panel), the exponent has steepened to α < −0.4 almost
everywhere, although the gradients at the edge of the (σc, σr )
space typically remain flatter than those closer to the center.

Figures 4 and 5 show that the local correlation properties of
velocity and magnetic-field fluctuations in the solar wind have a
strong effect on the scale at which the onset of turbulence occurs.
Those fluctuations with the widest 1/f range are dominated
by magnetic fluctuations (σr ≈ −1) or outward Elsasser
fluctuations (σc ≈ 1) or a mixture of both. Magnetic-field
fluctuations without an associated velocity fluctuation are likely
to be force-free structures (where j × B = 0), and so a stable
solution to the MHD equations. Unidirectional Alfvén-wave
packets are also a stable solution to the MHD equations (Elsasser
solutions). Thus, these two regions of the joint probability
distribution of σc and σr , or regions dominated by a mixture
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Figure 5. Evolution of different properties of structure functions from the Alfvén interaction time TA, through the 1/f range, and into the inertial range plotted in
the (σc, σr ) plane. The top row shows the joint probability distribution of σc and σr . The second row shows the total amplitude in fluctuations, S2(δv⊥) + S2(δb⊥).
The third row shows the scaling exponent of the structure functions, S2 ∝ f α , measured over five consecutive points centered on the scale τ of each panel. The three
columns correspond to the three time scales indicated by the arrows in Figures 2 and 4. The middle column is for the same τ as Figure 3.

(A color version of this figure is available in the online journal.)

of the two, most likely to be found at the bottom right edge
of the distribution, may be more stable to nonlinear interaction
than other regions of the distribution.

4. CONCLUSIONS

This analysis has shown that low-frequency fluctuations in
the solar wind can be meaningfully organized according to
the values of their normalized cross helicity σc and residual
energy σr (Bavassano et al. 1998; Bavassano & Bruno 2006;
D’Amicis et al. 2010). Most fluctuations cluster near the edge
of the circle σ 2

c + σ 2
r = 1, with σc > 0 and σr < 0. This means

that they are a mixture of imbalanced fluctuations dominated
by the outward propagating Elsasser field and magnetically
dominated structures. These two types of fluctuations, in their
purest form, are also exact nonlinear solutions of the MHD
equations (Elsasser and force-free solutions, respectively) and
so it stands to reason that they would be the most resilient ones
to survive nonlinear interactions leading to a turbulent cascade
(see, e.g., Roberts et al. 1991). Indeed, we find that the width of
the “non-turbulent” 1/f range is largest for these fluctuations.
In contrast, the subdominant fluctuations with small σc and
σr (Elsasser and Alfvénically balanced ones) exhibit a robust

Kolmogorov-like scaling starting deep inside what is normally
viewed as the 1/f range and showing no spectral break at the
usual value of the “outer scale” (set by the imbalanced and
magnetically dominated fluctuations).

Observations showing the scale-dependent alignment of
velocity and magnetic-field fluctuations at low frequencies
(Podesta et al. 2009; Hnat et al. 2011) and Elsasser fluctua-
tions (Wicks et al. 2013) can be understood in the context of
these results. Unaligned fluctuations of both types (found away
from the edge of the circular σc and σr space) are removed by se-
lective nonlinear interaction, which preserves the more aligned
ones (closer to the edge). Note, however, that this behavior is
not an automatic consequence of the fact that nonlinear interac-
tions are stronger for the balanced, unaligned, Alfvénic fluctu-
ations: there is no separate conservation law for these, so they
are not obliged to cascade into similarly balanced, unaligned,
Alfvénic fluctuations at smaller scales. It is thus quite interesting
that when selected by conditioning on the values of σc and σr ,
they give rise to what appears to be quite a robust Kolmogorov
scaling. A complete theory of MHD turbulence should strive to
explain this behavior (which might provide a valuable hint).

Since cross helicity is typically correlated with solar wind
speed, source region, and distance from the Sun, our results
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are consistent with previous observations showing that slower,
less correlated streams have smaller 1/f ranges and faster,
more correlated streams have larger 1/f ranges (Tu et al.
1989, 1990). As the solar wind travels further out into the
heliosphere, the cross helicity decreases and so does the 1/f
range (Bavassano et al. 1982; Roberts 2010; Tu et al. 1990),
again agreeing qualitatively with the conclusions presented
here that less correlated fluctuations have narrower 1/f ranges.
Further work is required to prove the universality of our results
and to investigate the effect of source region and radial evolution
on the joint probability distributions of σc and σr . Numerical
simulations of MHD turbulence could also be used to investigate
the link between the geometry of the fluctuations as defined by
σc and σr and the strength of the turbulent nonlinear interaction.

An improvement to the method used here would be to include
non-Gaussian particle distribution effects, such as the pressure
anisotropy and beam drift speed, in the Alfvén normalization
for the magnetic field (Chen et al. 2013). Using this improved
normalization for the analysis presented here decreases the
average σr . However, the quantitative and qualitative results
showing the existence of wide 1/f ranges at the edge of the
joint probability distribution of σc and σr , but not near the center,
remain true.

This research was supported by the NASA Postdoctoral
Program at the Goddard Space Flight Center (R.T.W.);
STFC (A.M., T.S.H.); NASA contracts NNN06AA01C and
NAS5-02099 (C.H.K.C.); and the Leverhulme Trust Network
for Magnetized Plasma Turbulence. Wind data were obtained
from the SPDF Web site http://spdf.gsfc.nasa.gov.
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Online-only material: color figure

Due to an error at the publisher, the color bars in Figure 5 were displayed incorrectly. The correct version of Figure 5 is
shown here.

IOP Publishing sincerely regrets this error.

Figure 5. Evolution of different properties of structure functions from the Alfvén interaction time TA, through the 1/f range, and into the inertial range plotted in
the (σ c, σ r) plane. The top row shows the joint probability distribution of σ c and σ r . The second row shows the total amplitude in fluctuations, S2(δv⊥) + S2(δb⊥).
The third row shows the scaling exponent of the structure functions, S2 ∝ f α , measured over five consecutive points centered on the scale τ of each panel. The three
columns correspond to the three timescales indicated by the arrows in Figures 2 and 4. The middle column is for the same τ as Figure 3.

(A color version of this figure is available in the online journal.)

1

http://dx.doi.org/10.1088/0004-637X/782/2/118
http://dx.doi.org/10.1088/0004-637X/778/2/177
mailto:robert.t.wicks@nasa.gov

	1. INTRODUCTION
	2. DATA
	3. ANALYSIS
	4. CONCLUSIONS
	REFERENCES
	ERRATUM

