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Abstract 

River Blindness (onchocerciasis) has been identified by the World Health Organization as 

potentially eliminable. Until recently, the African Programme for Onchocerciasis Control 

focused on annual distribution of ivermectin to reduce morbidity, but encouraged by success 

in some foci, it has embarked on eliminating the infection from the continent. To this end, 

increasing the treatment frequency to twice yearly (biannual) has been suggested. However, 

this may not be cost-effective everywhere in Africa, so it is necessary to assess under which 

epidemiological scenarios it would be advisable. The central aim of this thesis is to develop 

further an onchocerciasis transmission model (EpiOncho) to evaluate the impact and cost of 

biannual vs. annual ivermectin treatment in a range of scenarios typical of savannah 

onchocerciasis foci in Africa.  

The analyses and methods are divided into three main components. First, a mathematical 

model of the dynamics of onchocercal disease was developed and linked to infection output 

from EpiOncho. Results indicate that although long-term annual ivermectin treatment reduces 

dramatically onchocerciasis related disease burden, its overall impact on infection depends 

strongly on baseline levels of endemicity.  

Second, a study was conducted in Ghana to assess the economic cost of biannual relative to 

annual ivermectin distribution. Results indicate that the (per year) cost of biannual ivermectin 

treatment is approximately 60% higher than that of annual treatment (and not simply double, 

as assumed by others). 

Third, the health impact, programmatic cost, and projected duration of biannual vs. annual 

ivermectin treatment were evaluated. Findings indicate that although biannual treatment 

yields only small additional health benefits over those of annual treatment, its benefit is 

pronounced in the context of elimination goals, shortening timeframes to reach proposed 

operational thresholds for stopping treatment and potentially generating programmatic cost 

savings. Notwithstanding these conclusions, the feasibility of increasing from one to two 

treatments yearly will vary with the specific programmatic circumstances. 
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Glossary  

Annual biting rate: the average number of Simulium bites to which a person is exposed during a 

whole year. 

Annual transmission potential: the average number of infective larvae (L3) of Onchocerca volvulus 

potentially received during a whole year by a person exposed to the annual biting rate. 

Anti-macrofilarial action: a cumulative adverse effect on adult worm reproductive fitness / 

longevity (represented in the model as a per dose reduction in the per capita rate of microfilarial 

production by adult female worms). 

Community microfilarial load (CMFL): the geometric mean number of microfilariae per skin snip 

among adults aged 20 years and above. 

Cost-Effectiveness analysis: a form of economic analysis that compares the relative costs and 

outcomes (effects) of two or more courses of action. 

Density dependence: the dependence upon population density of the per capita rate at which a 

demographic or biological process occurs. 

Deterministic model: a model which describes what happens on average in a population and does not 

incorporate the effects of chance. 

Disability adjusted life years: a time-based measure of disease burden accounting for years of life 

lost due to premature mortality and healthy years of life lost due to disability. 

Doxycycline: a tetracycline antibiotic which targets the Wolbachia endosymbiotic bacteria of 

Onchocerca volvulus which are vital for development of incoming L3 larvae to adult stages, adult 

worm fertility, and parasite survival.  

Economic costs: also include, in addition to financial costs, estimates of the monetary value of goods 

or services for which no financial transaction has taken place.  

Embryostatic: the effect of a drug which impedes microfilarial production by adult female worms. 

Financial costs: are those where a monetary transaction has taken place for the purchase of a 

resource.  

Internal rate of return: the discount rate applied to the (monetary) benefits and costs of control 

programmes, that sets the net present value (NPV – the difference between the former and latter) to 

zero. If it is greater than the market interest rate (or the cost of borrowing money) the programme is 

considered to be an economically worthy investment. 

Ivermectin (Mectizan®): a macrocyclic lactone widely used in the field of veterinary medicine 

against a wide range of parasitic nematodes. The drug has been used extensively in onchocerciasis 

control strategies and has both microfilaricidal and embryostatic effects.  

Macrofilaricidal: the effect of a drug which increases adult worm mortality. 

http://en.wikipedia.org/wiki/Economic
http://en.wikipedia.org/wiki/Financial_analysis
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Microfilaricidal: the effect of a drug which increases microfilarial mortality. 

Microfilaridermia: presence of microfilaria in the skin 

Microsimulation: a type of simulation modelling that generates individual life histories (i.e. 

explicitly models each individual) 

Moxidectin: a drug under clinical assessment by a WHO-based project called MACROFIL, which 

has been established to develop a macrofilaricidal drug to treat onchocerciasis. 

Net present value (NPV): the difference between the discounted present value of the control 

programme benefits (such as the monetary benefit of preventing blindness cases) and the discounted 

present value of the control programme costs (such as the costs of treatment). 

Operational Thresholds for Treatment Interruption followed by Surveillance (OTTIS): Based 

on experiences in foci in Mali and Senegal (Diawara et al. 2009; Tekle et al. 2012), cessation of 

onchocerciasis control in the OCP and ONCHOSIM projections, the African Programme for 

Onchocerciasis Control has set operational thresholds for treatment interruption followed by 

Surveillance (OTTIS). Namely, these are a microfilarial prevalence (by skin snipping) <5% in all 

surveyed villages and <1% in 90% of such villages, and <0.5 infective larvae per 1,000 flies (African 

Programme for Onchocerciasis Control, 2010). 

Rapid epidemiological mapping of ochocerciasis (REMO): a mapping technique utilising nodule 

palpation of a sample of adult males aged 20 and above to determine village level prevalence of 

onchocerciasis. 

Stochastic model: a model which incorporates the effects of chance (i.e. random process). 

Systematic non-complier: someone who is eligible for treatment but who never takes / receives it. 

Therapeutic coverage: proportion of the total population receiving ivermectin at each round. 

Transmission breakpoints: the threshold below which the parasite population is not able to maintain 

itself. 
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Acronyms and Abbreviations 

ABR: Annual biting rate 

APOC: The African Programme for Onchocerciasis Control 

ATP: Annual transmission potential 

CDD: Community drug distributor 

CDTI: Community directed treatment with ivermectin 

CMFL: Community microfilarial load  

DALYs: Disability adjusted life years 

ESRC: Economic and Social Research Council  

GABA: Gamma-aminobutyric acid 

GHC: Ghana cedi  

GHS: Ghana Health Service  

GluCls: Glutamate-gated-Cl-channels 

GNI: Gross national income  

IRR: Internal rate of return  

LDNTD: London Declaration on Neglected Tropical Diseases  

MDA: Mass drug administration 

MDP: Mectizan Donation Program 

Mf: Microfilariae  

mg: Milligram  

NBD: Negative binomial distribution 

NGO: Non-governmental organization  

NPV: Net present value  

NTD: Neglected tropical disease  

NTDP: Neglected Tropical Disease Programme 

OCP: Onchocerciasis Control Programme in West Africa 
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OEPA: Onchocerciasis Elimination Program for the Americas 

OTTIS: Operational thresholds for treatment interruption followed by surveillance 

PAHO: Pan American Health Organization  

REMO: Rapid epidemiological mapping of onchocerciasis 

RHS: Right hand side 

s.l.: Sensu lato 

s.str.: Sensu stricto 

SAEs: Severe adverse events 

WHO: World Health Organization 
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Chapter 1: General Introduction  

1.1. Introduction  

Human onchocerciasis is a neglected tropical disease (NTD) mainly affecting the eyes and 

the skin. It is caused by the parasitic filarial nematode Onchocerca volvulus and is 

transmitted by the bites of Simulium blackflies (Duke, 1990). Onchocerciasis is often referred 

to as River Blindness due to the high prevalence of eye disease in villages located along fast 

flowing rivers where the blackfly vectors breed. With at least 37 million people infected and 

a further 120 million at risk, it is the second largest cause of infectious blindness (Basáñez et 

al. 2006; World Health Organization, 1995). Onchocerciasis also causes disfiguring skin 

lesions and severe dermal itching that can drastically impair individuals’ quality of life, and 

lead to stigmatisation (Brieger et al. 1998a; Vlassoff et al. 2000). Of those at risk, 99% live in 

Africa; however, the disease is also endemic in six countries of Latin America in smaller 

circumscribed foci and in Yemen (Duke, 1990).  

During the last 30 years there has been a rapid and remarkable expansion of onchocerciasis 

control programmes worldwide (Etya'ale, 2001). These programmes have made a large 

impact on reducing onchocerciasis as a public health problem, initially using only large scale 

vector control (initiated in West Africa in 1975) and followed by the widespread annual 

distribution of ivermectin (mostly initiated in the early 1990’s). Recently, there has been a 

shift in onchocerciasis control policy in Africa, with the aim of programmes’ changing from 

morbidity control to elimination of infection (London Declaration on Neglected Tropical 

Diseases, 2013; World Bank, 2012). However, the feasibility of achieving this new goal with 

annual ivermectin distribution alone, and the cost-effectiveness of potential alternatives, such 

as increasing the frequency of ivermectin distribution to twice a year are unknown. 

 

1.2. Life Cycle and Epidemiology  

Onchocerca volvulus developmental cycle (Figure 1.1) comprises long-lived adult worms 

(macrofilariae) living in subcutaneous nodules which have an average female reproductive 
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life span of approximately ten years; the embryonic skin-dwelling microfilariae (Mf), with a 

mean life expectancy of 12-24 months); larvae which develop (L1 to L3) within the fly in 

approximately one week and attain infectivity to humans (these stages do not reproduce or 

multiply within the vector) and immature stages (L4 and juvenile adults) that reach sexual 

maturity in the human host and start producing detectable Mf after approximately two years 

(Basáñez & Boussinesq, 1999; Duke, 1991; Duke, 1993; Plaisier et al. 1991). Humans are the 

definitive host for the parasite and there is no animal reservoir (Bradley et al. 2005). Many 

stages of O. volvulus life cycle (both within the vector and human hosts) are influenced by 

density-dependent processes (i.e. are regulated by the density of the parasite population) 

(Basáñez et al. 2002; Basáñez et al. 1995; Basáñez & Ricardez-Esquinca, 2001; Basáñez et 

al. 1996).  

The epidemiological patterns of onchocerciasis, and in particular the prevalence of ocular 

disease, vary considerably between geographical zones (Duke et al. 1966). For instance, 

while onchocercal associated blindness can be found at a very high prevalence (over 10%) in 

hyperendemic communities in the savannah regions, generally less blindness is found in 

forest foci with a similar intensity of infection (Cheke & Garms, 2013; Dadzie et al. 1989; 

Prost, 1980a). It has been hypothesized that this difference is due to the existence of various 

O. volvulus strains of different pathogenicity. Support for this hypothesis has been provided 

by DNA-based identification, which has confirmed an association between savannah and 

forest parasite types with severe and mild ocular onchocerciasis respectively (Zimmerman et 

al. 1992). More recently, a higher concentration of the endosymbiotic Wolbachia bacteria in 

O. volvulus (which have been proposed to be a contributory factor to inflammatory disease 

(Brattig, 2004; Saint Andre et al. 2002)) has been reported in the savannah than in forest 

parasites (Higazi et al. 2005). Though generally forest regions do not have a high prevalence 

of blindness, onchocercal associated skin disease is still an important public health problem 

in these regions (Remme, 2004a; World Health Organization, 1995). 
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Figure 1.1. The Life Cycle of Onchocerca volvulus. The adult worms live in nodules under the skin. 

Reproducing adult females shed between 500 to 1500 microfilariae (Mf) per day, (Schulz-Key, 1990), 

which migrate to the skin and eyes where they cause the pathology related to the disease. Blackflies 

serve as the vector of the parasite and ingest Mf from the skin when they bite an infectious person. 

The Mf can then mature into L3 larvae in approximately a week (extrinsic incubation period) and 

become infectious to humans. Then, when the fly bites a human the larvae will enter the human host 

and develop into adulthood. When the adults (male and female macrofilariae) mate they will 

produce more Mf completing the transmission cycle (Bradley et al. 2005). Figure adapted from CDC 

(http://www.cdc.gov/parasites/onchocerciasis/biology.html). 

 

 

In addition, age-specific patterns of O. volvulus infection show strong variation according to 

location, and host sex (Filipe et al. 2005). Several possible explanations have been suggested 

including; age- and sex-specific exposure to vectors, endocrine factors, and parasite-induced 

immunosuppression (Duerr et al. 2003; Filipe et al. 2005). These patterns have implications 

for our understanding of O. volvulus population biology and the design of control strategies. 

A summary of the definitions of endemicity are shown in Table 1.1. 

 

http://www.cdc.gov/parasites/onchocerciasis/biology.html
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Table 1.1. Endemicity categories as defined by microfilarial prevalence.  

Endemicity Microfilarial prevalence  

Hypoendemic Under 35% 

Mesoendemic 35% to 60% 

Hyperendemic Over 60% 

Highly hyperendemic Over 80% 

Table adapted from (Prost et al. 1979). 

 

 

1.2.1. Vectors 

Onchocerciasis is transmitted by blackflies (genus Simulium) which breed in swift running 

water, such as streams and rivers as their eggs require well oxygenated water to mature to 

larval and pupal stages (Crosskey, 1990). Female blackflies require a blood meal to produce 

eggs, and it is during this meal that they may transmit or receive the onchocercal infection 

(the male flies never suck blood) (Crosskey, 1990). The flies only bite during the day 

(Bradley et al. 2005). 

Many blackfly (Diptera: Simuliidae) species are capable of transmitting onchocerciasis; 

however, species differ in their intrinsic ability to transmit the infection and their degree of 

anthropophagy (their propensity to feed on humans), and this contributes to the diverse 

transmission patterns across different endemic areas. In Africa, members of the 

Simulium damnosum sensu lato (s.l.) species complex (which includes approximately 60 

cytoforms), and Simulium neavei are important vectors (Crosskey, 1990; Crosskey & 

Howard, 2004; Leake, 1993). It has been estimated that members of the S. damnosum 

complex are responsible for over 90% of onchocerciasis cases worldwide and more than 95% 

of cases in Africa (Crosskey, 1990). In Latin America, S. ochraceum s.l., S. exiguum s.l., S. 

metallicum s.l., and S. guianense s.l. are the main vectors (Basáñez et al. 2006). Certain 

species of blackflies, particularly in Latin America, have a cibarial armature (a chitinous 

tooth like projection) which damage Mf as they are ingested. This has important implications 

for the density-dependent processes operating within these vectors (Basáñez & Ricardez-

Esquinca, 2001). 
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1.3. Disease 

Onchocerciasis is the second largest cause of infectious blindness and was thought to be 

responsible for at least 270,000 cases of blindness with another 500,000 people suffering 

from severe visual impairment (Basáñez et al. 2006; World Health Organization, 1995). 

Recently these estimates have been revised upwards to 340,000 cases of blindness and 

645,000 people suffering from severe visual impairment (Coffeng et al. 2010). 

1.3.1. Pathology 

Most of the Mf do not reach a blackfly vector and instead die in the human body, provoking 

an inflammatory reaction due to the host’s immune system reacting around dead or moribund 

Mf. Blindness is caused by a progressive accumulation of this process when Mf invade the 

eye tissues, which leads to irreversible ocular lesions (via a progression through punctuate 

keratitis; sclerosing keratitis; corneal opacities, optic nerve atrophy), resulting first in visual 

impairment and eventually total blindness (Remme et al. 2006). Blindness incidence has been 

shown to be associated with past Mf load, supporting the progressive worsening of 

onchocerciasis associated blindness with parasite exposure (Little et al. 2004a). A novel 

hypothesis has proposed that in addition to the Mf antigens, the pro-inflammatory responses 

are also triggered by the endosymbiotic Wolbachia bacteria (released by dying Mf) (Brattig, 

2004; Saint Andre et al. 2002).  

Onchocerciasis also causes troublesome itching and (disfiguring) skin changes, including 

early-stage reactive lesions, and late-stage depigmentation (leopard skin), and atrophy 

(Murdoch et al. 1993). Most patients (even those with a high skin Mf load) present with 

subclinical or intermittent dermatitis (Pearlman et al. 1999). Like the visual pathology, the 

inflammation appears to be largely induced by the endosymbiotic Wolbachia bacteria 

(Brattig, 2004). Patients can develop more severe or hyperreactive skin lesions due to 

repeated cycles of inflammation, eosinophil and macrophage infiltration and destruction of 

Mf (Ali et al. 2003). The varied immune responses to the parasite and subsequent clinical 

presentation may be influenced by host genetic factors (Meyer et al. 1994).  

 

It should also be noted that Mf can invade many tissues / organs and that onchocerciasis can 

also be a systemic disease that is associated with musculoskeletal pain and reduced body 
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mass index (Bradley et al. 2005). Involvement of heavy Mf infection is also suspected in the 

onset of epilepsy (Boussinesq et al. 2002; Pion et al. 2009) and a hyposexual dwarfism 

syndrome (Nakalanga syndrome) (Kipp et al. 1996; Newell et al. 1997). In addition 

individuals suffering from onchocercal related vision loss and sighted individuals with high 

microfilaridermia have a notable additional risk of mortality (Kirkwood et al. 1983; Little et 

al. 2004b; Pion et al. 2002; Walker et al. 2012). 

 

1.4. Socioeconomic Consequences  

In addition to causing disease and excess mortality, onchocerciasis also causes tremendous 

social and economic damage. Though the public health importance of onchocercal associated 

blindness has long been recognized, only in 1995 did research demonstrate the importance of 

onchocercal associated skin disease (Remme et al. 2006; World Health Organization, 1995). 

The troublesome itching caused by the skin disease makes working, studying, and interacting 

socially difficult (Brieger et al. 1998a; Murdoch et al. 2002; Vlassoff et al. 2000). In 

addition, the disease also reduces marriage prospects, affects self-esteem, decreases 

concentration and leads to a loss of earnings in infected individuals as a result of both 

decreased productivity and increased spending on additional health costs (Amazigo, 1994; 

Kim et al. 1997). For example a study by Kim et al. (1997) found that workers with 

onchocercal associated skin disease lost an average of 1.9 days of work per month.  

On a community level, the disease can also hinder economic growth, as when the onchocercal 

associated blindness prevalence reaches high levels, too few able-bodied individuals are left 

to work (Amazigo et al. 2006). Food shortages and economic collapse can force residents to 

abandon fertile land and move to highlands and forested areas where there is poor soil, water 

shortages and overcrowding (Amazigo et al. 2006). In West Africa the disease led to people 

abandoning more than 25 million hectares of arable land (Levine, 2007). Consequently the 

disease is considered to directly retard development and aggravate poverty (Levine, 2007). 
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1.5. Onchocerciasis Control  

In the past vector control was the only feasible intervention for onchocerciasis because until 

the end of the 1980’s, the only available drugs (suramin, diethylcarbamazine), were too toxic 

for large-scale use. Weekly applications of larvicidal insecticides in the breeding sites 

effectively stopped local vector breeding and in some cases led to local elimination of the 

vectors; however, the programmes could not prevent reinvasion of infective vectors from 

other areas (Remme et al. 2006).  

Because blackflies migrate across international borders, it was decided that vector control 

should be carried out in the form of a large-scale regional programme in the West African 

savannah (Remme et al. 2006). This led to the creation of the Onchocerciasis Control 

Programme in West Africa (OCP), in 1974.  

1.5.1. The Onchocerciasis Control Programme in West Africa (OCP) 

The OCP was launched in 1974, with the goal of eliminating River Blindness as a disease of 

public health importance (Richards et al. 2001). The OCP originally covered seven countries, 

namely, Benin, Burkina Faso, Côte d’Ivoire, Ghana, Mali, Niger and Togo (Richards et al. 

2001). However, by 1986 the OCP had expanded its operations to include four more 

countries: Guinea, Guinea Bissau, Senegal and Sierra Leone (this is known as the western 

extension of the OCP) (Richards et al. 2001). When the programme ended in 2002, it covered 

11 countries (Figure 1.2), an area of 1,300,000 km
2
 and an estimated population of over 78 

million (Boatin, 2008; Richards et al. 2001).  
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Figure 1.2. A map of Africa, showing the areas covered by the African Programme for 

Onchocerciasis Control (APOC;    ) and the Onchocerciasis Control Programme (OCP;    ).                     

Figure taken from (Boatin, 2008). 

 

From 1974 to 1988 the OCP relied on a strategy of weekly aerial larviciding of blackfly 

breeding sites (supplemented when feasible with ground larviciding) (Richards et al. 2001). 

The OCP initially used temephos, an affordable and efficient organophosphorous insecticide 

which had little impact on non-target organisms (Richards et al. 2001). Subsequently the 

OCP used a rotation of seven larvicides to reduce the emergence of insecticide resistance 

(Richards et al. 2001). Due to the long life expectancy (ten years) of the adult worm, to 

achieve total interruption of parasite transmission the operations were anticipated to run 
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approximately 20 years (Davies et al. 1978; Plaisier et al. 1991). However, although this 

strategy reduced transmission and infection (Hougard et al. 2001), other than preventing an 

infection from getting worse, it had no direct benefit for already diseased individuals and was 

not considered feasible or cost-effective elsewhere in Africa (Diawara et al. 2009).  

In 1987 ivermectin was registered for human use against onchocerciasis (having been 

developed, as with most anthelmintics, for veterinary infections), and due to the suitability of 

this drug for mass treatment (excluding children under 5 years, pregnant women and those 

breastfeeding a child under one week old), large scale chemotherapeutic control programmes 

became feasible (Richards et al. 2001). The mathematical models used at the time projected 

that ivermectin distribution in combination with the on-going vector control would shorten 

the duration of required larviciding (Plaisier et al. 1997). Large scale mass drug 

administration (MDA) of ivermectin began in the OCP regions in 1989, initially administered 

by mobile teams, and became an important component of the control strategy, both as a 

complement to larviciding and in some of the western extension regions, as a sole 

intervention (Boatin, 2008).  

Benefits and achievements: 

The OCP is considered a tremendously successful programme (with the exception of Sierra 

Leone, where operations were interrupted by a decade long civil war) (Boatin & Richards, 

2006). The following are considered some of the key benefits (Remme et al. 2006; Richards 

et al. 2001): 

 Over 40 million people in the participating countries are now considered free from 

infection and eye lesions. 

 Approximately 600,000 cases of blindness have been prevented.  

In addition, the OCP had a dramatic socioeconomic impact; 25 million hectares of land were 

freed from onchocerciasis and were made available for resettlement and agriculture, leading 

to an estimated US$3.7 billion in increased labour and agricultural productivity in the 

participating countries (Richards et al. 2001). 

Many of the former OCP countries now have integrated onchocerciasis control into their own 

national health systems.  



27 

 

1.5.2. The African Programme for Onchocerciasis Control (APOC) 

The African Programme for Onchocerciasis control (APOC) was launched in 1995 and 

targeted the 19 onchocerciasis endemic countries in Africa that were not covered by the OCP 

(though three of them, Kenya, Rwanda, and Mozambique, were found not to be endemic), 

protecting an at risk population of 120 million (Basáñez et al. 2006; Remme, 1995). The goal 

of APOC was to eliminate onchocerciasis as a disease of public health and socio-economic 

importance in the non-OCP countries. The strategy to achieve this goal was by establishing 

effective and sustainable, annual mass ivermectin treatment to all those aged 5 years and 

older (excluding pregnant women and those breastfeeding a child under one week old) 

(Basáñez et al. 2006). The programme, initially conceived to end in 2007 (Richards et al. 

2001), and subsequently in 2015 (World Health Organization, 2010), has recently been 

extended until 2025 with the new goal and commitment for the elimination of onchocerciasis 

(World Bank, 2012). 

Unlike the OCP, which was a vertical programme and had limited local participation, the 

APOC has been integrated within the national health systems of the participating countries 

(Tsalikis, 1993).  

Ivermectin is provided through a community directed treatment strategy, which is thought to 

empower the local populations, as they are making the key decisions. It is believed that 

community directed treatment with ivermectin (CDTI) strengthens the health systems of the 

participating countries (ensuring high coverage) and it is being used as a platform for 

integrating other community-based interventions (Basáñez et al. 2006; Richards et al. 2001).  

The APOC also utilizes a rapid field assessment process known as REMO (Rapid 

Epidemiological Mapping of Onchocerciasis) to define the high-risk areas (Ngoumou et al. 

1994).  

Benefits and achievements: 

The APOC is also deemed to be a successful programme and the following are considered 

some of its key benefits and achievements to date (World Health Organization, no date; 

Basáñez et al. 2006; Richards et al. 2001) 

 Approximately one million disability adjusted life years (DALYs) per year are saved.  
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 Other health interventions are co-implemented with CDTI (such as the distribution of 

bednets). 

 The prevalence of troublesome itching related to onchocerciasis was reduced by 68% 

between 1995 and 2008 (8.9 million cases prevented). 

 Prevents over 40,000 blindness cases every year. 

 An estimated 7.5 million years of productive labour will have been added.  

1.5.3. The Onchocerciasis Elimination Program for the Americas (OEPA) 

Although onchocerciasis is most prevalent in Africa, it also occurs in 13 discrete foci across 

six countries of the Americas: Brazil, Colombia, Ecuador, Guatemala, Mexico and Venezuela 

(Sauerbrey, 2008). However, in many areas the annual transmission potentials (ATPs) are 

considerably lower than those observed in Africa (though this observation does not apply to 

all areas – see Basáñez et al. (2002)). It has been proposed that these lower ATP values are 

due to lower vector competence and vectorial capacity of the simuliid species prevailing in 

some foci (Basáñez et al. 2009).  

Establishment of new foci via human migration does not occur often and the New World 

vectors do not fly large distances (Basáñez et al. 2000). Therefore, the foci are stable and are 

susceptible to a focused control programme (perhaps with the exception of the Amazonian 

focus straddling Venezuela and Brazil, where transmission patterns are complex, and 

afflicted populations are small and isolated in a remote yet vast region) (Grillet et al. 2008). 

In the remaining foci, it is anticipated that if the programmes are maintained in these targeted 

and relatively circumscribed areas for 10–15 years, the adult parasite population will not be 

able to replenish itself and will become locally eliminated. The mass ivermectin treatment 

programmes could then be halted without fear of recrudescence. 

Noting this opportunity, in 1991 the directing council of the Pan American Health 

Organization (PAHO) made a resolution to eliminate onchocerciasis as a public health 

problem in the Americas by 2007 (Sauerbrey, 2008). This led to the creation of the 

Onchocerciasis Elimination Program for the Americas (OEPA) in 1992 (Sauerbrey, 2008). 

The elimination strategy is based on the biannual (twice a year) distribution of ivermectin, to 

all endemic communities (covering at least 85% of the eligible population). A biannual 
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distribution strategy was used because several studies have indicated that, by decreasing the 

interval between ivermectin treatments, it is possible to keep Mf levels low enough to 

suppress parasite transmission (particularly in those areas where local vectors possess cibarial 

armatures – see section 1.2.1)) (Cupp et al. 1986; Cupp et al. 1989; Cupp et al. 1992). 

Benefits and Achievements:  

As of 2013, a total of 11 of the 13 endemic foci in the Americas have interrupted 

transmission and there has been no incident blindness cases associated with onchocerciasis 

reported (Centers for Disease Control and Prevention, 2013). Furthermore, in July 

2013, Colombia publicly announced it had become the first country in the Americas to 

become verified as having eliminated River Blindness (Carter Center, 2013). 

 

1.6. Ivermectin (Mectizan®) 

In 1982 researchers at Merck & Co discovered that a new antiparasitic agent that was used to 

treat gastrointestinal worms in veterinary medicine, was also effective against O. volvulus 

(Aziz et al. 1982). Clinical trials in Africa sponsored by Merck & Co and the WHO 

demonstrated that annual ivermectin treatment was safe (permitting MDA), prevented ocular 

and dermal morbidity, and significantly reduced transmission (Remme, 2004b). In 1987, 

Merck & Co took the unprecedented decision to donate ivermectin for as long as needed to 

eliminate onchocerciasis as a public health problem (Basáñez et al. 2006). The standard dose 

of ivermectin is 150-200 µg per kilogram of body weight (Gardon et al. 2002). 

Ivermectin is a potent microfilaricide causing over a 90% reduction in skin Mf load within a 

few days, and a maximum reduction of 98-99% approximately two months after treatment 

(Basáñez et al. 2008). This delay in maximum effect can be explained by observations that 

ivermectin causes Mf to migrate from the sub-epidermal layer into deeper dermis layers, 

where they are killed by the hosts immune system (Knab et al. 1997; Wildenburg et al. 

1994). A meta-analysis and mathematical modelling study performed by Basáñez et al. 

(2008) indicates that the placebo-corrected microfilaricidal efficacy of ivermectin is between 

92–99%. 

http://www.cartercenter.org/news/pr/colombia_072913.html
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Ivermectin also has an embryostatic effect on adult female worms, temporally blocking the 

release of Mf (Alley et al. 1994; Plaisier et al. 1995). The estimated efficacy of this 

embryostatic effect is approximately 70%, with the maximum reduction reached one to two 

months after treatment (Basáñez et al. 2008). However, recuperation of adult worm fertility 

occurs slowly from three to four months after treatment onwards (Basáñez et al. 2008; Duke 

et al. 1991a). 

When given in a single dose, ivermectin has shown no evidence of a macrofilaricidal effect 

(killing of adult worms) (Albiez et al. 1988; Schulz-Key et al. 1985). However, when 

administered at high frequencies (such as monthly intervals) ivermectin has a small (but 

statistically significant) macrofilaricidal effect (Duke et al. 1990). It has also been reported 

that when administered for prolonged periods (over many years) ivermectin may have an 

cumulative adverse effect on adult worm reproductive fitness / longevity (i.e. an anti-

macrofilarial action, not necessarily killing the worms but reducing their reproductive fitness 

/ lifespan), perhaps inducing changes in intranodular sex ratios and decreasing insemination 

rates (Chavasse et al. 1993; Cupp et al. 2004; Cupp et al. 2011; Duke, 2005; Duke et al. 

1991b; Plaisier et al. 1995; Tekle et al. 2012; Whitworth et al. 1996a). However, there is 

considerable uncertainty regarding the magnitude of this potential anti-macrofilarial action. 

The modelling analysis by Plaisier et al. (1995), suggested that annual ivermectin reduces 

adult worm fertility irreversibly by 30-35% with each treatment round i.e. ivermectin has a 

large cumulative impact on adult worms microfilarial production. However, the modelling 

analysis by Bottomley et al. (2008), did not find evidence for a strong cumulative effect on 

microfilarial production. Furthermore, a recent epidemiological evaluation in Cameroon by 

Pion et al. (2013) does not support the operation of a strong cumulative effect of repeated 

ivermectin treatments on the microfilarial productivity of female worms.  

1.6.1. Mode of action 

Ivermectin was originally believed to act primarily by opening gamma-aminobutyric acid 

(GABA) gated channels in invertebrate neurons / muscle cells, leading to hyperpolarisation 

of the cells and to an inhibitory paralysis (Campbell, 1985; Dourmishev et al. 2005). Though, 

later evidence indicates that the drug’s primary effect is on glutamate-gated Cl-channels 

(GluCls), a previously unrecognised class of ligand-gated channels (Cully et al. 1994). 
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However, very little is known about how ivermectin inhibits reproduction in O. volvulus and 

whether this effect is mediated by opening of GABA-gated and GluCls channels or due to the 

drug being highly lipophilic (Prichard, 2007). It has been proposed that ivermectin’s 

microfilaricidal effect is due to opening of a GluCl channel that is expressed in the secretory 

pore cells, leading to the suppression of the ability of the Mf to secrete proteins that enable 

evasion of the host immune system (based on work on Brugia malayi) (Moreno et al. 2010). 

1.6.2. Adverse reactions and severe adverse effects 

A standard dose of ivermectin treatment in humans is generally well tolerated. This is in 

marked contrast with the two previously available drugs for the treatment of onchocerciasis, 

diethylcarbamazine and suramin, which were frequently associated with severe side effects 

(Taylor et al. 1989). Chijioke and Okonkwo, (1989) found that 97% of the reported adverse 

events associated with ivermectin were mild and did not stop the patient from attending work. 

Common side effects include oedema, headache and a worsening of rash (Chijioke and 

Okonkwo, 1989). The incidence of adverse effects has been found to be directly related to 

skin microfilarial load and was highest in the foci with the highest endemicity levels (De Sole 

et al. 1989). 

In addition, several cases of severe adverse events (SAEs) such as encephalitis, neurologic 

disorders, coma and death post-ivermectin treatment have been reported in some patients 

infected with heavy burdens of Loa loa (Boussinesq et al. 2003; Boussinesq et al. 1998), 

another filarial nematode prevalent in forested areas of central Africa. Currently it is 

recommended that in areas where the L.loa microfilarial prevalence is above a threshold of 

20% there is an unacceptable risk of SAEs and ivermectin is not distributed (Boussinesq et al. 

2001).  

1.6.3 Sub-optimal responses to ivermectin treatment  

In Ghana, studies have reported sub-optimal responses to ivermectin treatment, where 

individual hosts were found to harbour a higher than expected Mf load after several rounds of 

ivermectin treatment (in comparison with other individuals treated the same number of times 

who were deemed to be good responders) (Awadzi et al. 2004a; Awadzi et al. 2004b). These 

studies by Awadzi and colleagues controlled for a number of factors including age, weight, 
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general health and the timing / number of treatments but were conducted on a relatively small 

number of individuals in a clinical setting. 

Subsequently, Osei-Atweneboana et al. (2007) conducted a more extensive epidemiological 

study, covering a number of regions in Ghana, and taking samples at various time points 

(before and after treatment). The results indicate that the observed higher levels of skin Mf, 

were not due to the loss of ivermectin’s microfilaricidal efficacy, but more likely due to the 

adult female worms resuming reproductive activity earlier than expected in individuals 

responding well to treatment. Further investigation of these areas has revealed that there were 

very few young worms in the poor responding communities, indicating that the results were 

not due to reinfection (Osei-Atweneboana et al. 2011). This suggests that the adult worms 

could be becoming resistant to the embryostatic effect of ivermectin.  

This reduction in ivermectin’s effectiveness could be happening in other areas of West 

Africa, but there is a lack of data from other countries in the region (Osei-Atweneboana et al. 

2007). There have also been reports of sub-optimal responses to ivermectin in Sudan 

although reduced immune responsiveness in some of the cases has been suggested as a 

possible explanation (Ali et al. 2002). 

 

1.7. Alternative Drugs 

1.7.1. Anti-Wolbachia therapies 

A recent approach for treating onchocerciasis targets the Wolbachia endosymbionts of          

O. volvulus, which are vital for development of incoming L3 larvae to adult stages, adult 

worm fertility, and parasite survival. Wolbachia are maternally inherited alpha proteobacteria 

and have been found in numerous arthropod species and filarial nematodes (including 

O. volvulus and Wuchereria bancrofti). Wolbachia bacteria have been shown to be 

susceptible to tetracycline and rifampicin antibiotics (Fenollar et al. 2003). Thus far human 

trials have focused on the use of doxycycline and have found that a 6-week course results in 

the long-term depletion of Wolbachia, leading to long-lasting inhibition of embryogenesis 

and sustained reductions in Mf (Hoerauf et al. 2001; Hoerauf et al. 2003; Hoerauf et al. 
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2008). Doxycycline also retards the development of O. volvulus larvae (L1-L3) as Mf 

depleted of Wolbachia develop poorly (Wanji et al. 2009). 

An important advantage of anti-Wolbachia therapies is that they can be given safely to people 

co-infected with L. loa, as this parasite does not have the bacteria and is therefore unaffected 

by this treatment (Wanji et al. 2009). Doxycycline cannot be given to pregnant women (or 

those who are breastfeeding) and children under 9 years of age (Wanji et al. 2009). 

A trial by Wanji et al. (2009) indicates that a distribution strategy that uses community health 

implementers and directly observed treatment can be a successful way of distributing 

doxycycline with high compliance. This suggests that administration of doxycycline could be 

a successful strategy in several situations, such as the control of onchocerciasis in areas of co-

endemicity with loiasis, areas where ivermectin resistance may be suspected / sub-optimal 

responses have been reported, and to mop-up activities in areas close to elimination (Taylor 

et al. 2009). However, given the prolonged duration of treatment (daily for 6 weeks), this is 

reliant on coverage and compliance staying at high levels and a shorter treatment course may 

be required before this strategy is adopted by control programmes at a large scale. 

1.7.2. Moxidectin 

Moxidectin is a macrocyclic lactone and a highly efficacious microfilaricide (Cotreau et al. 

2003). Like ivermectin it has been used as an ingredient in deworming agents used in 

veterinary medicine (Etya'ale, 2001). 

A WHO based project called MACROFIL which has been established to develop a 

macrofilaricidal drug to treat onchocerciasis, had identified moxidectin as a potential 

candidate (Etya'ale, 2001). On July 1, 2009, WHO announced a phase III trial designed to 

compare the efficacy of moxidectin relative to that of ivermectin. However, it is important to 

note that moxidectin is not currently licenced for humans.  

1.7.3. Flubendazole 

Flubendazole is a potent and efficacious anthelmintic for gastrointestinal nematode infections 

in domestic animals. In a number of experimental filarial rodent models prolonged 

administration of flubendazole was found to have essentially a 100% efficacy as a 
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macrofilaricide (Mackenzie & Geary, 2011). A trial for human onchocerciasis was carried out 

in Mexico in the 1980’s (Dominguez-Vazquez et al. 1983) which had promising results. 

However, wider testing in humans was restricted, due to problems associated with the route 

of administration (via intramuscular injection) (Mackenzie & Geary, 2011). Currently efforts 

are under way to reformulate flubendazole so that it can be administered orally to provide a 

long half-life, required for anti-filarial activity.  

 

1.8. Cost of the Programmes  

The financial cost of the OCP (from 1975–2002) was approximately US$570 million 

(provided by donors) (Remme et al. 2006). APOC (from 1995 –2015) has been projected to 

cost US$478 million – excluding economic costs (such as the donated ivermectin tablets) 

(Coffeng et al. 2013). The costs of the further extension to 2025 have not been estimated. 

OEPA cost US$10 million between 1991-2003 (Remme et al. 2006), and it has been 

supported by The Carter Center. 

A cost-benefit analysis has estimated the net present value (NPV– see glossary) for the OCP 

over a 39 year project horizon (1974 to 2012), to range from US$3.7 billion to US$485 

million depending on the discount rate assumed (values shown are for 3% and 10%, 

respectively) (Kim & Benton, 1995). These values correspond to an internal rate of return 

(IRR– see glossary) of approximately 20%, which is due mainly to increased labour 

productivity and increased land use (a IRR above 10% is considered by the World Bank as 

the standard for successful public health programme) (Kim & Benton, 1995). This value is 

consistent with other cost-benefit analysis of the OCP such as Benton & Skinner (1990) who 

estimated a minimum IRR of 11-13% and Haddix (1997) who estimated an IRR of 24%. A 

similar cost-benefit analysis was performed for APOC by the World Bank, which found that 

the programme IRR (for 1996 through 2017) was 17% (Benton, 1998). These studies are 

summarized in more detail in Waters et al. (2004). 

However, many of the cost-benefit analyses for onchocerciasis control do not account for the 

benefit attributable to the reduction in onchocercal associated skin disease and consequently 

may notably underestimate the control programmes benefits. 
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It is noteworthy that a recent modelling study by Coffeng et al. (2013) has estimated that 

APOC costs US$27 per DALY averted, and is therefore considered highly cost-effective. 

However, there are very few other analyses systematically evaluating the cost-effectiveness 

of onchocerciasis control. 

 

1.9. Prospects of Onchocerciasis Elimination in Africa  

Recent epidemiological and entomological evaluations conducted in Mali and Senegal 

suggest that 15-17 years of annual (or biannual) ivermectin distribution (in the absence of 

vector control) may be sufficient to lead to local onchocerciasis elimination in certain foci 

(Diawara et al. 2009; Traore et al. 2012). In addition, local elimination may also have been 

achieved with 15–17 years of annual ivermectin distribution in 26 villages in Kaduna state, 

Nigeria (the first report of such evidence for the APOC operational area) (Tekle et al. 2012). 

These studies have provided proof of principle that elimination with annual ivermectin 

distribution may be feasible in some African foci. In 2009, an international expert group 

convened to discuss the implications of these results (African Programme for Onchocerciasis 

Control, 2010). Based on experiences with cessation of onchocerciasis control in West 

Africa, and ONCHOSIM projections, the group developed an operational framework for 

elimination and provisionally defined operational thresholds for treatment interruption 

followed by surveillance (OTTIS), namely, a microfilarial prevalence below 5% in all 

surveyed villages (and below 1% in 90% of the villages), and a proportion of local simuliid 

vectors harbouring < 0.5 L3 larvae per 1,000 flies (African Programme for Onchocerciasis 

Control, 2010).  

Spurred by the documented success in the Mali, Nigeria, and Senegal foci (Diawara et al. 

2009; Tekle et al. 2012; Traore et al. 2012), there has recently been a shift in onchocerciasis 

control policy in Africa, with the aim changing from morbidity control to elimination of 

infection. For instance the APOC has a new goal of elimination of onchocerciasis where 

possible by 2025 (World Bank, 2012), and the London Declaration on Neglected Tropical 

Diseases (LDNTD), on 31 January 2012, joined the World Health Organization’s (WHO) 

2020 Roadmap on NTDs (London Declaration on Neglected Tropical Diseases, 2013) and set 

goals for elimination of onchocerciasis in selected countries of Africa by 2020 (World Health 
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Organization, 2013). The feasibility of reaching these goals, is supported by the results of 

ONCHOSIM, a microsimulation model for onchocerciasis transmission, which have 

indicated that elimination of onchocerciasis from most endemic foci in Africa is possible with 

annual ivermectin distribution at a high coverage (African Programme for Onchocerciasis 

Control 2010) – the transmission models and their projections are discussed in more detail in 

Chapter 2.  

However, based on Plaisier et al. (1995), the ONCHOSIM model projections have assumed 

that ivermectin has a large cumulative impact on female adult worm fertility (a large        

anti-macrofilarial action). However, as discussed in section 1.6, this may not be the case 

(Bottomley et al. 2008; Pion et al. 2013). Furthermore, the foci where elimination has been 

reported had a low pre-control endemicity and strongly seasonal transmission. Consequently, 

the conclusions regarding the feasibility of elimination with annual ivermectin distribution 

alone cannot necessarily be generalised to other areas (Diawara et al. 2009; Tekle et al. 2012; 

Traore et al. 2012). Additionally, a review assessing the impact of repeated ivermectin MDA 

in the former OCP area indicated that long term annual ivermectin treatment is unlikely, on 

its own, to lead to the elimination of transmission of onchocerciasis from West Africa 

(Borsboom et al. 2003); though it would likely lead to the elimination (or near elimination) of 

its public health burden.  

 

1.10. Rationale 

Although onchocerciasis elimination has been reported in some African foci (with a low pre-

control endemicity) the feasibility of the current elimination goals, with annual ivermectin 

distribution alone remains uncertain. Recently, increasing the treatment frequency to twice a 

year in some African foci has come under consideration. This has been shown in Latin 

America to have the potential to interrupt transmission (Gonzalez et al. 2009; Rodriguez-

Perez et al. 2010). However, it is unknown in what ecological and programmatic 

circumstances this strategy may be advisable in Africa. It should be noted that a biannual 

ivermectin distribution strategy was used in one of the three Mali and Senegal foci 

investigated by Diawara et al. (2009) (described in section 1.9), and was reported to show no 

clear advantage over annual treatment; as it took a similar number of years to reach 
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elimination as the other two foci using annual treatment (Diawara et al. 2009). However, it 

was acknowledged that the study design did not determine exactly when the “elimination 

threshold” was reached, and it is possible that it was achieved several years earlier in the foci 

that used biannual treatment (Diawara et al. 2009). Furthermore the pre-control endemicity 

level in the foci that used biannual treatment (River Gambia) was notably higher than the 

other two foci which treated annually (River Bakoye and River Faleme); (only 3 of the 39 

(8%) villages in the foci treated annually were hyperendemic compared to 9 of 22 (40%) of 

the villages in the foci treated biannually (De Sole et al. 1993; De Sole et al. 1991; Diawara 

et al. 2009) (when defining hyperendemic as in Table 1.1). Therefore these foci are not 

directly comparable, making it difficult to make accurate conclusions regarding the benefit of 

biannual treatment. In this regard, mathematical models of the dynamics onchocerciasis 

transmission can be a useful tool to investigate the potential benefit of a biannual treatment 

strategy.  

 

1.11. Research Aims and Thesis Structure 

The central aim of this thesis is to further develop a sex- and age-structured deterministic 

onchocerciasis transmission model (EpiOncho) (Churcher & Basanez, 2009; Filipe et al. 

2005), to evaluate the impact of biannual versus annual ivermectin distribution in a range of 

endemic, economic and programmatic scenarios typical of savannah onchocerciasis foci in 

Africa. The specific aims and principal findings of the analyses are summarised before each 

chapter and so only a brief synopsis is given here. 

In Chapter 2, EpiOncho is described, and further developed to incorporate treatment 

compliance and account for the potential cumulative effect of ivermectin on adult worm 

fertility (section 1.6). The implications of the assumption that ivermectin has a large            

anti-macrofilarial action, as assumed in the current elimination projections using 

ONCHOSIM was explored.  

In Chapter 3, a mathematical model of the dynamics of onchocercal disease was developed, 

by linking ocular and skin morbidity, as well as excess mortality to infection output from 
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EpiOncho. This was used to investigate the impact of long term ivermectin control on disease 

and infection in different ecological and programmatic scenarios. 

In Chapter 4, a study was conducted in Ghana to assess the economic cost of biannual 

relative to annual ivermectin distribution. 

In Chapter 5, the health impact, programmatic cost, and projected duration of biannual vs. 

annual ivermectin treatment were evaluated in a range of endemic, economic and 

programmatic scenarios typical of savannah onchocerciasis foci in Africa. 

In the concluding chapter (Chapter 6) the wider implications of the work are considered with 

particular reference to the potential policy implications. Future applications of the model are 

also discussed. In order to facilitate reading, the various chapters focus on the general 

methods and discussion of the results, leaving the mathematical detail to the corresponding 

supplementary materials located at the end of the relevant chapters. 
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Chapter 2: Uncertainty Surrounding 

Current the Onchocerciasis 

Elimination Projections  

2.1. Summary  

Recently, and spurred by the documented success in several foci (in Mali, Nigeria, and 

Senegal) there has been a shift in onchocerciasis control policy in Africa, with the aim of 

programmes changing from morbidity control to elimination of infection. The feasibility of 

achieving these goals is supported by the projections of ONCHOSIM (a microsimulation 

model for onchocerciasis transmission). However, these model projections are assuming that 

ivermecitn has a strong cumulative impact on microfilarial production (i.e. a large anti-

macrofilarial action), which several studies have indicated may not be the case. In this 

Chapter, a deterministic onchocerciasis transmission model (EpiOncho) was modified to 

explore how assumptions regarding: a) treatment effects on microfilarial production by 

female worms (fertility),and b) treatment coverage and compliance, effect the long term 

impact of annual and biannual ivermectin treatment on microfilarial load and prevalence in a 

highly endemic African savannah setting. It was found that if ivermectin does not have a 

large anti-macrofilarial action, elimination of onchocerciasis in highly endemic areas of 

Africa may not be feasible with annual ivermectin distribution alone. Furthermore 

assumptions regarding the proportion of systematic non-compliers (those who never taking 

treatment), were found to be just as influential as those for overall coverage when projecting 

the long-term impact of ivermectin distribution. 

 

 

A modified version of this chapter has been is published: Turner, H.C., Churcher, T.S., Walker, M., 

Prichard, R.K., Osei-Atweneboana, M.Y. and Basáñez, M-G. (2013) Uncertainty surrounding projections 

of the long term impact of ivermectin treatment on human onchocerciasis. PLoS Negl Trop Dis 7: e2169. 

(See Appendix A) 
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2.2. Introduction 

Recent epidemiological and entomological evaluations conducted in Mali, Nigeria, and 

Senegal have shown that ivermectin distribution on its own may, in some foci, lead to local 

elimination of onchocerciasis (Diawara et al. 2009; Tekle et al. 2012; Traore et al. 2012). 

These results have paved the way towards considering that it may be possible, in certain foci 

in Africa, to eliminate onchocerciasis using ivermectin. 

2.2.1. ONCHOSIM projections 

ONCHOSIM is a computer program for modelling the transmission and control of 

onchocerciasis which was developed in collaboration with the Onchocerciasis Control 

Programme in West Africa (OCP) and the Department of Public Health of the Erasmus 

University, Rotterdam. The model uses stochastic microsimulation to calculate the life events 

of individual persons and inhabitant parasites, and a deterministic simulation of the dynamics 

of the Simulium population and the development of the parasite in the flies (Plaisier et al. 

1990). See Habbema et al. (1996) and Plaisier et al. (1990) for a more detailed description of 

the model. ONCHOSIM has been used to investigate the impact of different control strategies 

such as chemotherapy with ivermectin (with and without concomitant vector control) and has 

recently been used to predict the duration of annual ivermectin distribution required for 

elimination in Africa (African Programme for Onchocerciasis Control, 2010; Plaisier et al. 

1997; Winnen et al. 2002). The results indicated that elimination of onchocerciasis from most 

endemic foci in Africa is possible with a high coverage of annual ivermectin distribution 

(Table 2.1). 
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Table 2.1. ONCHOSIM’s predicted probability of onchocerciasis elimination in relation to pre-
control endemicity levels  

Pre-control 
intensity (CMFL) 

Number of years of annual treatment 

        65% overall coverage                              80% overall coverage 

 10 yrs  15 yrs 20 yrs 25 yrs  10 yrs  15 yrs 20 yrs 25 yrs 

10 Mf per skin snip 95% 100% 100% 100%  100% 100% 100% 100% 

30 Mf per skin snip    4%   89% 100% 100%    40% 100% 100% 100% 

50 Mf per skin snip   0%   12%   82%   99%      0%   68% 100% 100% 

70 Mf per skin snip   0%     0%   19%   75%      0%   11%   85% 99% 

CMFL: community microfilarial load, Mf: microfilariae. Table adapted from African Programme for 
Onchocerciasis Control (2010). 

 

 

In these modelling projections, the overall therapeutic treatment coverage was varied as part 

of the sensitivity analysis (African Programme for Onchocerciasis Control, 2010), however, 

the potential influence of different levels of systematic non-compliers (the proportion of the 

eligible population who never take treatment) on the feasibility of elimination was not 

independently investigated. Furthermore, as mentioned in the previous chapter, a crucial 

conjecture of these projections was that adult female worms, after temporarily ceasing 

microfilarial production due to the embryostatic effect of ivermectin, gradually reach a new 

production level which is reduced irreversibly by an average of 30-35% after each treatment 

round (Plaisier et al. 1995), effectively assuming a strong cumulative effect of ivermectin on 

microfilarial production. This is equivalent to an increasing proportion of worms not 

contributing to transmission i.e. a strong anti-macrofilarial action (a cumulative adverse 

effect on adult worm reproductive fitness / longevity).  
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Figure 2.1. ONCHOSIM projections fitted to Asubende trial data under two different proposed 

effects of ivermectin on Onchocerca volvulus microfilarial production. The markers represent the 

trial data (Alley et al. 1994). The red line represents model projections assuming no cumulative 

impact on microfilarial productivity and the blue assuming a 35% cumulative reduction after each 

treatment. This figure was reproduced from Plaisier et al. (1995). 

 

 

The data that informed the model in Plaisier et al. (1995) comprised longitudinal microfilarial 

load follow up, from 74 individuals who all received five annual ivermectin doses in a 

community trial in Asubende, Ghana (Alley et al. 1994). Figure 2.1. contrasts two model fits 

by Plaisier et al. (1995) to the five mean (geometric) annual microfilarial counts from Alley 

et al. (1994). The two hypotheses being tested to explain the observed trend are a null 

hypothesis of all ivermectin-exposed adult worms regaining their full microfilarial 

productivity vs. an alternative hypothesis of a 35% reduction in productivity with each 

treatment round. The authors of Plaisier et al. (1995) concluded that the model assuming the 

alternative hypothesis provided a better fit to the data. However, given that:  
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a) the microfilarial loads were measured per skin snip instead of per mg of skin; 

however, the weight of a skin snip sample can range between 0.5 and 3 mg (and 

lighter snips are more likely yield a false negative result), 

b) microfilarial counts originated from snips incubated for only 30 minutes in distilled 

water (Prost & Prod'hon, 1978) (which is likely to underestimate the microfilarial load 

as microfilaridermia decreases),  

there is the possibility of considerable measurement error (Walker et al. 2012). This is 

particularly important regarding the last two data points in the dataset (the most influential for 

discriminating between the two hypotheses – see Figure 2.1.). Furthermore for the last two 

years of the community trial in Asubende, the study area was receiving vector control in 

addition to ivermectin, potentially making it difficult to disentangle the effects of treatment 

from those of antivectorial measures. However the authors of Plaisier et al. (1995) indicate 

that the impact of vector control was taken into account in their model.  

Another modelling study, using data from a community trial with five biannual treatment 

rounds in Guatemala (Collins et al. 1992), did not find evidence for a cumulative effect on 

microfilarial production (Bottomley et al. 2008).This study followed 510 individuals (7 times 

as many as Alley et al. (1994)), who took all five 6-monthly doses of ivermectin from 1988 

to 1990 in the absence of vector control in Guatemala, with microfilarial loads measured per 

mg of skin after 24 hours incubation (Collins et al. 1992). In addition a recent 

epidemiological evaluation in Cameroon (Pion et al. 2013), found a similar distribution of 

microfilarial densities after ivermectin treatment from a group of communities that had been 

under ivermectin control for 13 years (with the number of ivermectin doses received ranging 

between 5 and 24), compared to a group of communities from an endemic area with no 

previous history of large-scale treatments. Observing similar response profiles in these two 

groups of communities after ivermectin treatment does not support the operation of a strong 

cumulative effect of repeated treatments on the microfilarial productivity of female worms.  

Whether or not ivermectin has a strong cumulative effect on microfilarial production (a large 

anti-macrofilarial action) will have important implications for the optimal design of mass 

drug administration (MDA) programmes, and given the sparse data that exist, this issue 
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represents an area of considerable uncertainty which needs to be taken into account in 

modelling studies estimating the long-term impact of ivermectin treatment.  

In this Chapter, a deterministic onchocerciasis transmission model (EpiOncho) (Basáñez & 

Boussinesq, 1999; Basáñez et al. 2008; Churcher & Basáñez, 2008; Filipe et al. 2005) is 

modified to explore the uncertainty in modelling projections of the long-term impact of 

ivermectin on Onchocerca volvulus populations due to assumptions concerning: a) strong 

cumulative impact on microfilarial production (i.e. a large anti-macrofilarial action), and b) 

treatment coverage and compliance. How these affect the benefit of annual vs. biannual 

treatment frequency was also explored. 

 

2.3. Method 

2.3.1. EpiOncho  

EpiOncho is a sex- and age-structured deterministic onchocerciasis transmission model 

(Churcher & Basanez, 2009; Filipe et al. 2005), which describes the rate of change with 

respect to time and host age of the mean (arithmetic) number of fertile and non-fertile adult 

worms per host, the mean (arithmetic) number of microfilariae (Mf) per mg of skin (Mf/mg), 

and the mean (arithmetic) number of larvae per fly. The equations and model parameters are 

described in section 2.8 presented at the end of the chapter.  

Human age- and sex-structure reflects the demography in savannah areas of northern 

Cameroon (Anderson et al. 1974; Filipe et al. 2005; Renz et al. 1987), as it is in savannah 

areas of Africa that the prevailing O. volvulus– Simulium damnosum combinations are 

responsible for the most severe sequelae of onchocerciasis (Basáñez et al. 2006; Bradley et 

al. 2005; Duke, 1990). Parameters for vector competence, survival, and host choice were 

those for savannah species of the S. damnosum sensu lato (s.l.) complex (S. damnosum sensu 

stricto (s. str.)/and S. sirbanum) (Basáñez et al. 2009; Filipe et al. 2005), responsible for 

onchocerciasis transmission in the region (Duke et al. 1975; Renz & Wenk, 1987).  

The annual biting rate (ABR) by blackfly vectors was set to 37,300 bites per person per year 

(well within the range of values recorded in savannah areas (Duke et al. 1975; Renz & Wenk, 

1987; Schulz-Key et al. 1985)), to achieve a baseline mean (arithmetic) microfilarial load of 
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36 Mf/mg across all ages in the population, (which corresponds to a mean (arithmetic) 

microfilarial load of 60 Mf/mg of skin in those aged 20 years and above). Note that the mean 

microfilarial load per mg of skin in those aged ≥ 20 years here is an arithmetic mean, not a 

geometric mean of the number of Mf per skin snip in the same age group, known as the 

community microfilarial load (CMFL) (Remme et al. 1986). This resulted in an overall 

microfilarial prevalence (all ages) of 70%, representing an hyperendemic area (a microfilarial 

prevalence above 60% – see Table 1.1). (The parameterisation of the relationship between 

microfilarial prevalence and microfilarial load is described in section 2.8.4.) Understanding 

the long-term impact of ivermectin in hyperendemic areas is particularly important, as they 

will be the ones in which controlling the disease has the highest priority (morbidity will be 

more severe), elimination of the infection reservoir is likely to be more difficult and take 

longer (Winnen et al. 2002), and from which the infection could reinvade controlled areas.  

2.3.2. Ivermectin effects  

The model has previously been modified to incorporate the temporal dynamics of the 

microfilaricidal and embryostatic effects of a single ivermectin treatment (Basáñez et al. 

2008; Churcher & Basáñez, 2008). This was further extended to allow ivermectin to have a 

cumulative adverse effect on microfilarial production (i.e. anti-macrofilarial action), as in 

ONCHOSIM. (The equations modelling this effect are described in section 2.8.2).  

After each dose of ivermectin there is a microfilaricidal effect with 99% efficacy, and a 

reduction in microfilarial production (embryostatic effect) by fertile female worms (Basáñez 

et al. 2008). The ivermectin-exposed adult worms were then assumed either to: a) reach a 

new microfilarial production rate which is reduced by 30% ten months after each treatment 

round (representing a cumulative effect, depicted in Figure 2.2A), or b) resume microfilarial 

production, which ten months after each treatment would reach 70% of its baseline value i.e. 

is also reduced by 30 % from baseline, but the reduction is not additive (representing a non-

cumulative effect, as concluded in (Bottomley et al. 2008), and illustrated in Figure 2.2B).  

For the sake of comparison, this chapter compared ivermectin having a strong cumulative 

impact on microfilarial production (i.e. a large anti-macrofilarial action), as assumed in 

ONCHOSIM (Winnen et al. 2002)) verses having no cumulative effect (Bottomley et al. 

2008). However, other possible scenarios such as a smaller more gradual adverse effect on 
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adult worms (potentially due to possible effects on intranodular sex ratios or a reduction in 

the longevity adult worms – see section 1.6) was not considered. This is addressed in the next 

chapter. 

Figure 2.2. Schematic representation of two different proposed effects of ivermectin on 

Onchocerca volvulus microfilarial production. The schematic represents a closed population of adult 

worms (i.e., no incoming worms due to transmission or worm death). A: Ivermectin is assumed to 

have a large cumulative effect on adult worm fertility by which the microfilarial production of 

ivermectin-exposed adult worms is reduced by 30% after each treatment round (red solid line). 

B: Ivermectin is assumed not to have a cumulative effect; ivermectin-exposed adult worms resume 

microfilarial production to 70% of its baseline value ten months after each treatment (Basáñez et al. 

2008) (blue solid line). 
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Although the cumulative reduction proposed in Plaisier et al. (1995) was estimated from data 

corresponding to annual ivermectin distribution (Alley et al. 1994), it was assumed that in the 

case of biannual treatments, each 6-monthly treatment causes the same proportional 

reduction. An analysis of the sensitivity of model outputs to this assumption was conducted 

following Winnen et al. (2002). Ivermectin was assumed to have intact efficacy, i.e. no sub-

optimal response (Osei-Atweneboana et al. 2007). 

2.3.3. Treatment coverage, compliance, and frequency 

The model was further stratified into four treatment compliance classes (section 2.8.1): a first 

group who takes treatment every round; two groups who take treatment every other round 

alternately, and a fourth group who never takes treatment. The latter class represents 

individuals in the community who are systematic non-compliers, as opposed to a situation in 

which a proportion of individuals sometimes miss some treatment rounds (e.g. because they 

are absent or pregnant at the time of treatment). The proportion of systematic non-compliers 

was set at 0.1%, 2%, and 5% to investigate its effect on model outputs. These values were 

chosen to explore potential variability in this parameter. A recent ivermectin compliance 

study reported that 6% had never taken the drug over the course of eight consecutive 

treatment rounds (Brieger et al. 2011) (but the proportion of those never taking treatment 

may decrease over time). The four compliance groups were assumed not to differ in exposure 

to vectors (which depends on age and sex according to Filipe et al. (2005)). Children under 

five years were not treated in the model as they are not eligible to receive ivermectin. 

2.3.4. Examined outputs and sensitivity analysis 

The model was used to explore the effect of 15 years of (annual or biannual) mass ivermectin 

distribution on: a) microfilarial intensity (defined as mean (arithmetic) microfilarial load per 

mg of skin in those aged ≥20 years), and b) prevalence of microfilaridermia in the overall 

population. 15 years was chosen as a suitable timescale to investigate the impact of long-term 

of ivermectin, motivated by the epidemiological studies in Mali, Nigeria, and Senegal 

(Diawara et al. 2009; Tekle et al. 2012; Traore et al. 2012).  
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The sensitivity of the above model outputs was explored with regards to the following 

assumptions: a) strong cumulative effect of ivermectin on microfilarial production (present 

vs. absent); b) overall therapeutic coverage (proportion of the total population receiving 

ivermectin at each round: 60%, 70%, 80%); c) proportion of systematic non-compliers 

(proportion of the eligible population who never take treatment): 0.1%, 2%, 5%); and d) 

treatment frequency (annual vs. biannual). In order to explore the extent to which the results 

were sensitive to the assumption that each biannual treatment caused the same proportional 

reduction on microfilarial production as an annual treatment (30% per dose), the analysis was 

repeated with a more conservative reduction of 16.5% per 6-monthly treatment (which gives 

an overall annual reduction of 30%).  

 

2.4. Results 

2.4.1. Cumulative vs. non-cumulative effect of ivermectin on microfilarial 

production  

Model outputs indicate that the assumption of a strong cumulative impact of ivermectin on 

microfilarial production (i.e. a large anti-macrofilarial action) has a substantial effect on 

projections of long-term ivermectin treatment (Figure 2.3). Regarding microfilarial intensity 

(in adults aged 20 years and older), there would be a very pronounced decrease partly due to 

little repopulation of the skin by Mf, and partly due to the ensuing suppressed transmission. 

This is because, under this conjecture, the model assumes that the fertility of ivermectin-

exposed adult worms would progressively be reduced to a very low level. By contrast, under 

the assumption of ivermectin not exerting a strong cumulative effect on microfilarial 

production, there is a substantial amount of repopulation of the skin by Mf in between annual 

treatments, leading to more transmission and a smaller overall impact on microfilarial 

intensity. 
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Figure 2.3. Impact on microfilarial intensity of annual ivermectin distribution under two 

assumptions of ivermectin effects. The red and blue solid lines represent, respectively, model 

outputs assuming the operation of a strong cumulative impact on the fertility of O. volvulus 

(illustrated in Figure 2.2A), or the absence of such an effect (Figure. 2.2B). Results shown assume a 

pre-control microfilarial prevalence of 70% (all ages), a therapeutic coverage of 80%, and 0.1% of 

systematic non-compliance. Microfilarial intensity is quantified as the mean (arithmetic) microfilarial 

load per mg of skin in those aged ≥ 20 years. 

 

2.4.2. Annual vs. biannual treatment frequency 

Assumptions regarding the operation or absence of a strong cumulative effect of ivermectin 

on microfilarial production can also influence the expected relative benefits of annual vs. 

biannual treatment frequency regarding reductions in microfilarial intensity, prevalence, and 
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transmission. In the presence of a cumulative reduction with each treatment round, there is 

initially a very marked benefit of the biannual distribution on the reduction of parasitological 

indicators (as the fertility rate is rapidly reduced). However, after repeated treatments, there 

would be much less difference in the long-term impact of ivermectin treatment on 

microfilarial prevalence compared to an annual treatment strategy (Figure 2.4A). In the 

absence of a cumulative effect, biannual treatments are more beneficial both in the short and 

long terms in reducing microfilarial prevalence than annual treatments (Figure 2.4B). With 

the more conservative 16.5% reduction in female fertility per 6-monthly treatment, the initial 

benefit of microfilarial prevalence reduction is less pronounced than in the previous scenario, 

but again, there is little difference in the long-term impact of biannual compared to annual 

ivermectin treatments (Figure 2.5). 
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Figure 2.4. Impact on microfilarial prevalence of annual/biannual ivermectin distribution under 

two assumptions of ivermectin effects. Solid and dashed lines represent, respectively, annual and 

biannual treatment frequency. A: Red lines correspond to model outputs assuming that ivermectin 

exerts a large cumulative reduction in microfilarial production by the adult female worm. B: Blue 

lines correspond to model outputs assuming the absence of such cumulative reduction. Assumptions 

are as in Figure 2.3.  

 

 

 

 

 



52 
 

 

Figure 2.5. A comparison of the long-term impact of annual and biannual treatment strategies on 

microfilarial prevalence. Solid and dashed lines denote, respectively, annual and biannual treatment 

frequency. Results assume that ivermectin exerts a large cumulative reduction in fertility, with a 

more pessimistic 16.5% reduction in the rate of microfilarial production per treatment when 

frequency is biannual. Assumptions are as in Figure 2.3. 
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2.4.3. Therapeutic coverage and compliance patterns 

Varying the therapeutic coverage in the overall population, and the proportion of systematic 

non-compliers had a large influence on the microfilarial intensity achieved at the end of the 

15th year of ivermectin distribution. An increased overall coverage, or a decreased proportion 

of systematic non-compliers lead to lower microfilarial loads 12 months after the 15th year of 

intervention (Figure 2.6). Under annual treatment, overall coverage had a larger effect on 

projected microfilarial intensity (Figure 2.6A) and microfilarial prevalence (Figure 2.7A) 

than under biannual treatment (Figures 2.6B and 2.7B). (Because of the nonlinear 

relationship between microfilarial prevalence and intensity, the proportional reductions in 

prevalence are smaller.) For instance, under the assumption of a strong cumulative effect of 

ivermectin, and for a 5% proportion of non-compliers, increasing therapeutic coverage from 

60% to 80% decreased microfilarial load by ~55% for annual frequency compared to 20% for 

biannual frequency. The corresponding values when no cumulative effect was assumed were 

~34% and ~30%. By contrast, the assumed proportion of systematic non-compliers had a 

more pronounced effect on the impact of biannual treatment. Under the assumption of a 

strong cumulative effect of ivermectin, and for a 70% therapeutic coverage, decreasing 

systematic non-compliance from 5% to 0.1% decreased microfilarial load by ~54% for 

annual frequency and by ~97% for biannual frequency. The corresponding values when no 

cumulative effect was assumed were ~20% and ~53%. 
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Figure 2.6. The effect of coverage and compliance on microfilarial intensity after 15 years of 

ivermectin treatment. Panels A and B correspond respectively, to one year after the 15th treatment 

(for annual frequency), and one year after the 30th treatment (for biannual frequency). Red and blue 

bars represent, respectively, a cumulative and a non-cumulative effect of ivermectin on microfilarial 

production by the female worm. Dotted bars: 0.1% systematic non-compliance; dashed bars: 2% 

systematic non-compliance; solid bars: 5% systematic non-compliance. Assumptions are as in Figure 

2.3. Microfilarial intensity is quantified as the mean (arithmetic) microfilarial load per mg of skin in 

those aged ≥ 20 years. 
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Figure 2.7. The effect of coverage and compliance on microfilarial prevalence after 15 years of 

ivermectin treatment. Panels A and B correspond respectively, to one year after the 15th treatment 

(for annual frequency), and one year after the 30th treatment (for biannual frequency). Red and blue 

bars represent, respectively, a cumulative and a non-cumulative effect of ivermectin on microfilarial 

production by the female worm. Dotted bars: 0.1% systematic non-compliance; dashed bars: 2% 

systematic non-compliance; solid bars: 5% systematic non-compliance. Assumptions are as in Figure 

2.3. 
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2.5. Discussion  

2.5.1. Cumulative vs. non-cumulative effect of ivermectin on microfilarial 

production  

Mathematical models can play a fundamental role in informing control programmes, but 

crucially, policy makers must realise that model outputs are highly dependent on implicit and 

explicit model assumptions (Basáñez et al. 2012). Among the latter, is the effect long term 

ivermectin has on O.volvulus adult worms, which represents an area of considerable 

uncertainty where further research is urgently needed. These results illustrate that the 

question of whether or not ivermectin effects on female microfilarial production are strongly 

cumulative i.e. ivermectin has a large anti-macrofilarial action, is highly influential on the 

projections of the long-term effect of annual or biannual MDA with ivermectin, particularly 

in areas with high baseline onchocerciasis endemicity. An appropriate and updated 

incorporation of any action on adult worms into models, will be essential to reliably inform 

control policy, and fully assess ivermectin efficacy (Chavasse et al. 1993; Cupp et al. 2004; 

Cupp et al. 2011; Duke, 2005; Duke et al. 1990; Duke et al. 1991b; Gardon et al. 2002; Tekle 

et al. 2012; Whitworth et al. 1996a).  

ONCHOSIM’s projections indicate that with a high coverage of annual ivermectin 

distribution, elimination of onchocerciasis from most endemic foci in Africa is possible 

(Table 2.1). However, ONCHOSIM’s simulations assume that ivermectin has a strong 

cumulative effect on microfilarial production (i.e. a large anti-macrofilarial action), and the 

results presented in this chapter suggest that, in the absence of such an effect, ivermectin 

would have a less pronounced long-term impact in areas with a high pre-control endemicity. 

This indicates that if ivermectin does not have a large anti-macrofilarial action, a longer 

duration of ivermectin distribution than previously estimated may be required, especially in 

areas with a high initial infection intensity and perennial transmission. 

These results are compatible with those of other modelling studies (Duerr et al. 2011), which 

indicate that the higher the transmission intensity, the higher the necessary effectiveness of 

treatment (a net measure comprising coverage, number of treatment rounds per year and drug 

efficacy) to reach elimination. However, the results of this chapter also emphasizes how 
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different modelling assumptions can have profound effects on model outcomes and 

conclusions (a more extensive summary of the main structural assumptions of different 

onchocerciasis models is presented in Basáñez & Ricardez-Esquinca (2001)). This further 

highlights the need, discussed in Basáñez et al. (2012) for helminth modellers to investigate 

key questions regarding helminth control more collaboratively, exploring the reasons for any 

disparity between the results of different models using the best available data.  

2.5.2. Annual vs. biannual treatment frequency 

Biannual ivermectin treatment was found to have a large additional benefit in both reducing 

microfilarial prevalence and intensity compared to annual treatment when no cumulative 

reduction on microfilarial production was assumed. When such a cumulative effect was 

assumed, the model indicated that there would be an initial substantial benefit (as worm 

fertility is reduced quickly) of the biannual strategy, but that there would be relatively little 

difference in Mf prevalence at the end of the 15
th

 year compared to annual treatment (Figure 

2.4A). A possible reason for the pronounced difference between the two treatment 

frequencies, if ivermectin does not decrease worm fertility cumulatively, is that there would 

be substantially more transmission between annual than between 6-monthly treatments 

(distributing the drug every 6 months does not allow the adult worms to regain their fertility 

to a substantial level). Understanding ivermectin’s effect on the reproduction and survival of 

adult worms has important policy implications regarding switching to a biannual (or more 

frequent) treatment strategy in Africa.  

2.5.3. Therapeutic coverage 

Varying therapeutic coverage (for fixed non-compliance) had less effect on the impact 

achieved with a biannual treatment frequency than it had for annual distribution. This can be 

explained as the model accounts for the fact that if someone misses a treatment round, there 

is another chance to get treated during that year, ensuring that at least one annual treatment is 

received. With an annual frequency, a missed treatment would result in a gap of at least two 

years between treatments, allowing microfilaridermia levels to build-up and contribute to 

transmission in the between-treatments period. This has implications regarding policy 

decisions in areas that have been found to have low coverage in the past, and highlights the 

potential benefit of switching to a biannual treatment strategy.  
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2.5.4. Compliance patterns 

Assumptions regarding the proportion of systematic non-compliers were found to be just as 

influential as those for overall coverage when projecting the long-term impact of ivermectin 

distribution. The proportion of systematic non-compliance (for a fixed level of therapeutic 

coverage) was also found to have a marked influence on the impact achieved by a biannual 

treatment strategy, particularly when assuming a strong cumulative effect of ivermectin; the 

higher the non-compliance, the smaller the benefit of biannual treatment. This indicates that 

the effect of systematic non-compliance may not simply be overcome by increasing treatment 

frequency and has implications when considering switching to a biannual treatment strategy, 

as two areas with the same overall coverage but different proportion of systematic non-

compliers may lead to very different results regarding the feasibility of elimination (Boyd et 

al. 2010).  

As control programmes move towards elimination goals, the proportion of systematic non-

compliers in the population becomes increasingly important. Studies of coverage and 

compliance for lymphatic filariasis treatment have indicated that, in addition to heterogeneity 

in transmission and vector density, and missed rounds of MDA, continuing transmission 

seems to be linked to rates of systematic non-compliance (Boyd et al. 2010). Therefore, when 

evaluating the progress of elimination programmes, the proportion of, and factors 

contributing to, systematic non-compliance should be investigated in addition to those 

determining overall coverage (Brieger et al. 2012; Brieger et al. 2011), as an assessment of 

the latter on its own may mask reasons behind transmission persistence.  

Modelling studies should also routinely vary the proportion of systematic non-compliers in 

addition to levels of treatment coverage as part of their sensitivity analysis to help understand 

the impact of prolonged treatment in populations. Although there are some data indicating 

that treatment compliance may depend on host age and sex, Brieger et al. (2012) found that 

older members of the community were more likely to take ivermectin than younger sections 

of the population, and men were more likely to comply than women in a Cameroon, Nigeria 

and Uganda multi-centre study. Further investigation regarding patterns of systematic non-

compliance (i.e. the characteristics of individuals who never take the drug) will be essential to 

parameterise such modelling studies. 
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2.6. Conclusions  

There is substantially more uncertainty surrounding model-derived projections of the long-

term impact of and the feasibility of onchocerciasis elimination with ivermectin distribution 

than previously recognised. When assuming that ivermectin does not have a strong 

cumulative effect on microfilarial production (Bottomley et al. 2008; Pion et al. 2013), i.e. 

not a large anti-macrofilarial action, these results indicate that it may not be feasible to 

eliminate onchocerciasis in areas with high pre-control endemicity with annual ivermectin 

alone. This highlights the need for the further consideration and economic evaluations of 

alternative treatment strategies, such as biannual treatment. Furthermore, these projections 

indicate that the proportion of systematic non-compliers in the population will be a key 

determinant of the success of the control programmes and emphasises the need for this to be 

recognised when evaluating the progress of the programmes and included in modelling 

studies.  

 

2.7. Limitations 

EpiOncho is a deterministic model and does not account for the influence of random events. 

Therefore it cannot be used to formally investigate the probability of reaching elimination, 

which requires a more complicated stochastic model. 

The model’s parameters for vector competence, survival, and host choice were those for 

savannah species of the S. damnosum s.l. complex (S. damnosum s. str and S. sirbanum) 

(Basáñez et al. 2009; Filipe et al. 2005). The influences of the potential uncertainties 

surrounding the key biological parameters (such as the combinations of vectors and life-

expectancy of the adult worms) on the impact of control require further investigation. 

Furthermore the host population structure is only parameterized for one area (Filipe et al. 

2005).  

Moreover, the presented results assume that transmission is perennial i.e. occurs all year. 

Further investigation of the influence that different seasonal patterns of transmission and the 

relative timing of drug distribution have on the overall impact of long term is needed. 
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2.8. Supporting Information for Chapter 2 

2.8.1. Onchocerciasis population dynamics model 

The system of partial differential equations is based on a host age- and sex-structured 

onchocerciasis dynamics model presented by Filipe et al. (2005), and modified to incorporate 

the effects of repeated ivermectin treatment and treatment compliance. These equations 

describe, respectively, the rate of change with respect to time and host age of the numbers of 

non-fertile, N, and fertile, F, adult female worms per host, of Mf per milligram of skin, M, 

and of infective (L3) larvae, L, per blackfly vector. The host population (and subsequently the 

parasite population) is partitioned into different treatment groups according to how regularly 

they receive ivermectin treatment (a group who takes treatment every round; two groups who 

take treatment every other round alternately, and a fourth group of systematic non-compliers 

who never takes treatment). These different compliance groups (are denoted with subscript d 

(their proportion in the population by  ), host sex groups (males and females) with subscript 

s (their proportion in the population by q), τ is time since last treatment, and a is host age. 

Definitions and values of model parameters (for savanna O. volvulus–S. damnosum s. str. and 

S. sirbanum in northern Cameroon (Filipe et al. 2005)) are given in Table 2.2. Equations 

(omitting time and age dependencies on the left terms for simplicity, and assuming a 

balanced worm sex ratio) are as follows, 
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Microfilarial intensity:  

In the main text, microfilarial intensity refers to the mean (arithmetic) microfilarial load in 

those aged ≥20 years. This is calculated from Equation (2.3) by integrating over age (from a 

= 20 to a = am) and summing over sex s and compliance group d, 

daatMaqtM
maa

a

dsd

s d

s ),()(')(
20

,20 




   ,                (2.6) 

where ’(a) is the probability density function of host age between 20 and ma = 80 years, 
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and 
H is the per capita death rate of humans. 

2.8.2. Modelling the cumulative effect of ivermectin 

At any time after the start of a simulated treatment programme, the worm population in 

compliance group d comprises worms previously exposed to different numbers of ivermectin 

treatments. This is because: a) worms continually infect hosts throughout the treatment 

programme, and b) hosts in different compliance groups receive different numbers of 

treatments at different times. If ivermectin is assumed to suppress cumulatively the fertility of 

female O. volvulus, then the average reduction in fertility of the worm population will 

critically depend on the fraction of worms exposed to different numbers of treatments. To this 

end, n was defined as the maximum number of previous exposures to ivermectin, and n + 1 

sub-models were formulated to track worm populations acquired during discrete time 

intervals throughout the course of a simulated treatment programme. Note that n varies 

among compliance groups (for example, for systematic non-compliers n = 0), and that some 

worms, acquired after the final treatment, will be unexposed to ivermectin (j = 0). The 

possibility of unexposed worms gives rise to the n + 1 (as opposed to n) sub-models. 

Consider a treatment programme starting at time τ’ (that is, the first dose of ivermectin is 

administered at time t = τ’). Worms exposed to all n treatments (j = n) are acquired at time 

t < τ’. By redefining the rate of establishment of female adult worms from Equation (2.1) as, 
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the rate of establishment of adult worms exposed to all n treatments in compliance group d 

can be expressed as, 
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By contrast, unexposed worms (j = 0) are acquired after the last treatment which, if the n 

treatments were administered at frequency f, indicates that infection occurred at t > τ’ + (n –

 1)/f. That is,  
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It follows that the rate of establishment of adult worms exposed to the intervening numbers of 

ivermectin treatments j = 1, 2,…, n – 1 is given by,  
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These conditions are used to define partial differential equations for the mean (arithmetic) 

number of female adult worms, ),(,, atW jds , in each exposure group j = 0, 1,…, n,  
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Note that for the purposes of tracking adult worms exposed to different numbers of 

treatments, the fertility status (fertile/non-fertile) of female worms is not distinguished. 

Taking the expectation of ),(,, atW jds  with respect to host age a and sex s yields, 

, , ,( ) ( ) ( , )d j s s d j

s a

W t q a W t a da  ,                           (2.13) 

where )(a , the probability density function of host age, a, is 
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Summing over exposure groups gives the mean number of worms per host in compliance 

group d, 
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The fraction of the total female worm population in ivermectin exposure group j, denoted

)(, tu jd , is now trivially given by, 
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Each subsequent exposure to ivermectin (after the first exposure) was assumed to cause a 

30% reduction in female worm fertility (see main text), such that the fertility of female 

worms exposed to j treatments, Ψj, is given by, 
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with parameter  = 0.3 (Table 2.3). Note that for j = 0 (and for j = 1), j  = 1 indicates that 

worms previously unexposed to ivermectin, or exposed to a single dose (j = 1) have, 

respectively, full fertility, or the potential to regain full fertility (Basáñez et al. 2008). 

Subsequent treatments may cause a cumulative reduction of female worm fertility in this 

scenario. 

The average reduction in female worm fertility in compliance group d, )(td , is calculated 

using the fraction of the total worm population in each exposure group )(, tu jd  (Equation 

(2.16)) and j  (Equation (2.17)), 
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Definitions and values of parameters are given in Table 2.3. 

2.8.3. Mating probability  

It is assumed that the distribution of adult worms among hosts of the same compliance group 

is adequately described by a negative binomial distribution (NBD) with arithmetic mean 

(female) worm load, ),(, atW ds , and overdispersion parameter, Wk . Assuming polygamous 

mating (i.e., a single male can fertilise all females within a host) and a balanced worm sex 

ratio, the probability that a female worm is mated according to May, (1977) is,  

.
),(

11]),,([

)1(

,

,













Wk

W

ds

Wds
k

atW
katW                (2.19) 

Note that the degree of overdispersion of the adult worm population (inversely measured by 

the value of Wk ) is assumed to be unaffected by ivermectin treatment. Definitions and values 

of parameters are given in Table 2.4.  

2.8.4. Microfilarial prevalence  

Overall (all ages) microfilarial prevalence is derived by using a relationship between 

prevalence and microfilarial load at the community level in Cameroon (Figure 2.8). This 

relationship, previously described in Basáñez & Boussinesq, (1999), was refitted assuming an 

average (arithmetic mean) skin snip sample weight of 1.7 mg as opposed to the 2.84 mg used 

previously and based on Prost & Prod'hon, (1978). This lower weight was estimated using the 

mean skin snip weight from samples collected by Collins et al. (1992), and is in agreement 

with other studies (Emukah et al. 2004). The prevalence–intensity relationship assumes that 

the load of microfilaridermia per person is distributed according to a negative binomial 

distribution with an overdispersion parameter Mk . The best fit was obtained when Mk was 

allowed to be a function of mean (arithmetic) microfilaridermia load using a hyperbolic as 

opposed to the power functional form used in previous fits (Basáñez & Boussinesq, 1999). 

Assuming that the degree of microfilarial overdispersion does not depend on compliance 

group, )(td  is given by, 
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where )(tMd is given by, 
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and 
Mk  is given by,  
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The overall population prevalence at time t was obtained by summing )(td  across 

compliance groups, 

)()( tt d

d
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Definitions and values of parameters are given in Table 2.4. 
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Figure 2.8. Observed and fitted microfilarial prevalence as a function of mean microfilarial load. 

The data are from 25 north Cameroonian villages studied by Boussinesq, (1991) and presented in 

Basáñez & Boussinesq, (1999). It was assumed that on average there skin snip sample weighs 1.7 

milligrams (as opposed to the 2.84mg quoted in Prost & Prod'hon, (1978)). Red markers correspond 

to the age- and sex-adjusted microfilarial prevalence in the communities (Basáñez & Boussinesq, 

1999). The blue line is the function given in Equation (2.20) with maximum likelihood estimates 

k0 = 0.013 and k1 = 0.024 (Table 2.4). 
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Table 2.2. Definition and values of parameters and variables for the onchocerciasis population dynamics 
model 

Symbol Definition of variables and parameters Expression, average value 
and units 

Pertaining to human host 

, ( , )s d t aN

 

Mean (arithmetic) number of non-fertile female adult worms 
per person at time (t) and age (a); subscript s denotes host sex 
and d denotes treatment compliance category 

Equation (2.1) 

, ( , )s d t aF

 

Mean (arithmetic) number of fertile female adult worms per 
person at time (t) and age (a); subscripts s and d as above 

Equation (2.2) 

, ( , )s d t aM

 

Mean (arithmetic) number of microfilariae per milligram of skin 
at time (t) and age (a); subscripts s and d as above 

Equation (2.3) 

)]([ tLH

 
Proportion of L3 larvae developing to adult worms within the 
human host as a function of the number of infective larvae 
received per unit time (Filipe et al. 2005) 

)(1

)(
0

tLmc

tLmc

H

HHH







 
 

0
H

  
Proportion of L3 larvae developing to adult worms within the 
human host when 0)( tLm  (Basáñez & Boussinesq, 1999) 

0.0854 

 

H



 

Proportion of L3 larvae developing to adult worms within the 
human host when )(tLm  (Basáñez et al. 2002) 

0.00299 

H
c  Severity of transmission intensity-dependent parasite 

establishment within the human host (Basáñez et al. 2002) 
5.86 x 10–3 yr per L3 larva 

H
  The net rate of population loss (due to death, emigration and 

other process) determining the age distribution of the 
population (Filipe et al. 2005) 

0.04 yr–1 

W  Per capita death rate of adult worms (Basáñez & Boussinesq, 
1999) 

0.1 yr–1 

0M
  Per capita death rate of microfilariae in the absence of 

ivermectin (Basáñez & Boussinesq, 1999) 
0.8 yr–1 

  Per capita rate at which untreated, non-reproducing female 
worms become fertile (Basáñez et al. 2008) 

0.59 yr–1 

 

0
  Per capita rate at which untreated fertile female worms become 

non-fertile in the absence of ivermectin (Basáñez et al. 2008) 
0.33 yr–1 

d  Rate of production of microfilariae per fertile female worm 
scaled by the total weight (in milligrams) of microfilariae-
bearing skin (Basáñez & Boussinesq, 1999; Duke, 1993) 

1.1538 yr–1 

ma  Maximum recorded human age in the reference population of 
northern Cameroon (Filipe et al. 2005) 

80 yr 

p Prepatent period from infection with L3 larvae to presence of 
detectable microfilariae in the skin (Filipe et al. 2005) 

2 yr 
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Table 2.2. Continued 

Symbol Definition of variables and parameters Expression, average value 
and units 

Pertaining to human host (continued) 

( )a  Probability density function of host age a (using a truncated 
exponential distribution of survival times) (Filipe et al. 2005) 

)exp(1

)exp(

mH

HH

a

a








 

d  
Proportion of the host population in compliance group d – 

sq  
Proportion of the host population in sex group 
(females/males) s (Filipe et al. 2005) 

0.45/0.55 

Pertaining to simuliid vector 

( )tL  Mean (arithmetic) number of infective larvae per fly at time (t) Equation (2.5) 

m  Vector to host ratio (for ABR = 37,300 bites person–1 yr–1) 1196 

  Biting rate per fly on humans assuming a human blood index = 
0.3 (Basáñez et al. 2002; Filipe et al. 2005) 

31.2 yr–1 

0V  Proportion of ingested microfilariae developing to the 
infective stage within the vector, per bite (Filipe et al. 2005) 

0.005 

, ( , )[ ]L s dM t a

 

Per capita net rate of loss of L3 larvae from vectors (Basáñez 
& Boussinesq, 1999) 

0 ,( / ) ( , )
H V VL s da g M t a    

 

H
a  Proportion of infective, L3 larvae shed per bite (Basáñez & 

Boussinesq, 1999) 
0.5 

g  Average duration between consecutive blood-meals (Basáñez 
& Boussinesq, 1999) 

0.0096 yr 

0L  Per capita death rate of L3 larvae within the vector (Basáñez & 
Boussinesq, 1999; Basáñez et al. 2002) 

104 yr–1 

V  Per capita death rate of uninfected blackflies (Basáñez & 
Boussinesq, 1999; Basáñez et al. 2002) 

52 yr–1 

V  Parasite induced death rate of infected blackflies (Filipe et al. 
2005) 

0.6 yr–1 per microfilaria 

( )s a  Age- and sex-specific measure of exposure to vectors (Filipe et 
al. 2005) 

0
, '

exp[ ( ')], '

s s

s s s

E E a a

E a a a a



 



  





 

sE  Sex-specific exposure to vector bites (females/males) (Filipe et 
al. 2005) 

0.90/1.08 

0E  Fraction of exposure at age 0 in relation to that at age a’ from 
which exposure is allowed to change with age (Filipe et al. 
2005) 

0.10 

s  Normalisation factors to ensure that the distribution of bites 
among age groups sums to 1 (females/males) (Filipe et al. 
2005) 

0.548/1.154 

s  Age-specific change in contact rate with vectors for human 
hosts of sex s (females/males) (Filipe et al. 2005) 

–0.023/0.007 
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Table 2.3. Definition and values of parameters and variables for ivermectin treatment effects 

Symbol Definition of variables and parameters Expression, average value 
and units 

n Maximum number of previous exposures to ivermectin by 
worms in a given compliance group  

0 for those hosts never 
taking treatment to 15 
(annual) or 30 (biannual) for 
those taking all treatments 

f Frequency of treatment Annual or biannual 

  Time since last ivermectin treatment years 

1( )   Excess per capita rate at which fertile females become non-
fertile following ivermectin treatment (embryostatic effect) 
(Basáñez et al. 2008) 

32.4exp( 19.6 ) yr–1 

1
( )M   Excess per capita death rate of microfilariae following 

ivermectin treatment (microfilaricidal effect) (Basáñez et al. 
2008) 

 
1.25

3
9.6 10




  yr–1 

τ’ Treatment programme start time – 

, , ( , )s d j t a

 

The rate of establishment of female adult worms at time t in 
hosts of age a, sex s, treatment compliance group d and 
exposure group (number of treatments to which worms have 
been exposed to) j 

Equations (2.9) and (2.10) 

, , ( , )s d j t aW

 

Mean (arithmetic) number of female adult worms at time (t) 
and age (a); s denotes sex, d denotes treatment compliance 
category and j ivermectin exposure group 

Equation (2.12) and (2.13) 

, ( )d j tu  The fraction of the total worm population in exposure group j Equation (2.16) 

j  The net reduction in fertility of adult worms in exposure group 
j 

Equation (2.17) 

  The per dose reduction in fertility caused by ivermectin when 
a cumulative effect is assumed (Plaisier et al. 1995) 

0.30 

 d t  The average reduction in fertility in compliance group d  Equation (2.18) 
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Table 2.4. Definition and values of parameters for mating probability and microfilarial prevalence 
calculations 

Symbol Definition of variables and parameters Expression, average value 
and units 

,
[ ( , ), ]

s d W
W t a k  Mating probability at time t, age a, sex s and treatment 

compliance group d 
Equation (2.19) 

),(, atW ds  Mean (arithmetic) number of female adult worms per 
person at time (t) and age (a), s denotes sex and d denotes 
treatment compliance category 

, ,( , ) ( , )s d s dt a t aN F  

Wk  Inverse measure of degree of overdispersion in the 
distribution of worms among hosts (Bottomley et al. 2008)  

0.35 

)(td  Microfilarial prevalence at time t in compliance group d Equation (2.20) 

[ ( )]
M d

k M t  Inverse measure of the degree of overdispersion in the 
distribution of skin microfilariae among hosts of 
compliance group d, as a function of the mean (arithmetic) 
microfilarial load  

Equation (2.22) 

0k  Parameters of the relationship between 
Mk and skin 

microfilarial load 

0 013 

1
k  0.024 
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Chapter 3: Impact of Ivermectin on 

Onchocerciasis and its Disease 

Burden  

3.1. Summary  

In this chapter a mathematical model of the dynamics of onchocercal disease is presented, 

which links documented associations between Onchocerca volvulus infection and the 

prevalence and incidence of morbidity and mortality to model outputs from EpiOncho (an 

onchocerciasis transmission model described in the previous chapter). This was used to 

assess the impact of annual ivermectin distribution on onchocercal infection and associated 

disease burden according to different endemicity and programmatic scenarios. It was found 

that annual ivermectin treatment is highly effective at reducing the disease burden associated 

with onchocerciasis; however, its overall impact on microfilarial prevalence and intensity 

depends strongly on baseline endemicity, treatment coverage and compliance. This indicates 

that although the goals of eliminating the public health burden of onchocerciasis will be met 

where long-term ivermectin distribution is feasible, those of eliminating the infection 

reservoir will depend on epidemiological and programmatic variables, precluding a one-size-

fits-all approach to onchocerciasis elimination in Africa. 

  

 

 

 

 

 

 

 

A modified version of this chapter is currently under review: Turner, H.C., Walker, M., Churcher, T.S. and 

Basáñez, M-G. Modelling the impact of ivermectin on River Blindness and its burden of morbidity and 

mortality in African savannah: EpiOncho projections. 
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3.2. Introduction 

Human onchocerciasis is responsible for a considerable burden of disease and is associated 

with visual impairment, blindness, disfiguring skin disease, and severe troublesome itching 

(Duke, 1990). This is a protracted and chronic process because continual exposure to many 

infective vector bites is needed for the building up of a substantial worm burden and ensuing 

microfilarial infection, and because adult female worms (which produce hundreds to 

thousands of microfilariae (Mf) daily) live, on average, for ten years (Plaisier et al. 1991). 

The adult stages (macrofilariae) reside in worm bundles located subcutaneously (palpable 

nodules) or deeply in the body, where they produce the Mf which migrate to the skin 

(microfilaridermia) and the eyes (Bradley et al. 2005). Immunological responses to filarial 

products (Hall & Pearlman, 1999), either of parasite origin or particularly of their 

endosymbiotic Wolbachia bacteria (Tamarozzi et al. 2011), lead to long-standing, non-

resolving inflammation associated with chronic onchocerciasis pathology (Brattig, 2004). 

Skin pathology ranges from troublesome itching to (disfiguring) skin changes, including 

early-stage reactive lesions, and late-stage depigmentation (leopard skin) and atrophy 

(Murdoch et al. 1993). Moreover, individuals with high microfilaridermia suffer an increased 

risk of death (Little et al. 2004b; Walker et al. 2012), independent of that related to blindness 

(Kirkwood et al. 1983) i.e. sighted individuals are also subject to an excess risk of death.  

In practice, the impact of annual mass drug administration (MDA) with ivermectin on the 

burden of infection and (but not necessarily in the same manner) the burden of disease, will 

vary according to epidemiological and programmatic factors. Mathematical models of 

infection and disease dynamics can be used to understand and quantify how these variables 

affect the projected impact of control programmes. These so-called ‘disease models’ couple 

output from an infection transmission dynamics model to the prevalence and/or incidence of 

disease sequelae, using statistical relationships deduced from epidemiological data and 

formalising current understanding of the relationship between infection and morbidity. Such 

models have been developed for trachoma (Gambhir et al. 2009), soil-transmitted 

helminthiases (Chan et al. 1994), schistosomiasis (Chan et al. 1996; Medley & Bundy, 1996), 

lymphatic filariasis (Chan et al. 1998), and onchocerciasis (Coffeng et al. 2013), and are 

essential tools for conducting cost-effectiveness analysis of control interventions against 

these neglected tropical diseases (NTDs).  
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Spurred by the documented success in the Mali, Nigeria, and Senegal foci (Diawara et al. 

2009; Tekle et al. 2012; Traore et al. 2012), there has recently been a shift in onchocerciasis 

control policy in Africa, with the aim changing from morbidity control to elimination of 

infection (section 1.9). For instance, the APOC has a new goal of elimination of 

onchocerciasis where possible by 2025 (World Bank, 2012), and the London Declaration on 

Neglected Tropical Diseases (LDNTD), joined the World Health Organization’s (WHO) 

2020 Roadmap on NTDs (London Declaration on Neglected Tropical Diseases, 2013) and set 

goals for elimination of onchocerciasis in selected countries of Africa by 2020 (World Health 

Organization, 2013). Rigorous evaluation of the feasibility of achieving these targets, and of 

the benefits already accrued necessitates of the contribution of dynamic models of 

onchocerciasis infection and disease. 

To this end, in this chapter a mathematical model of the dynamics of onchocercal disease is 

developed by linking documented associations between infection and morbidity to output 

from EpiOncho (described in the previous chapter). Incorporated in the model is the direct 

association between the intensity of infection with O. volvulus Mf and excess human 

mortality which has been omitted elsewhere (Coffeng et al. 2013), and not included in the 

recent estimates of the global burden of onchocercal disease (Murray et al. 2012). The model 

is used to assess the long-term impact of annual MDA of ivermectin on onchocercal infection 

and associated disease burden in savannah areas of Africa, and explore how this impact may 

depend on different epidemiological and programmatic scenarios.  

 

3.3. Method 

3.3.1. Disease model 

An onchocerciasis disease model was developed by linking output from EpiOncho (described 

in Chapter 2) to the prevalence and incidence of onchocerciasis-associated morbidity and 

mortality (Figure 3.1). In particular, the average (arithmetic mean) microfilarial load over 

time; the corresponding microfilarial prevalence, and the prevalence of adult female worms, 

were coupled to the incidence and prevalence of blindness; visual impairment; prevalence of 

troublesome itch and the incidence of excess mortality. A summary of how each disease state 

was represented is found below, with a further detailed description provided in section 3.8. 
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Figure 3.1. Schematic representation of the disease model. The prevalence of troublesome itch was 

estimated based on a relationship with the prevalence of adult female worms, previously derived 

using the ONCHOSIM model (Coffeng et al. 2013; Habbema et al. 2007). The incidence of blindness 

was estimated as a function of microfilarial load (lagged by 2 years) based on a log-linear Poisson 

model (Little et al. 2004a). The number of individuals with visual impairment was estimated using a 

published ratio between the prevalence of visual impairment and that of blindness (Remme, 2004a). 

Excess mortality due to onchocerciasis was assumed to occur via mortality among individuals 

suffering onchocerciasis-related vision loss (blindness and visual impairment) (Kirkwood et al. 1983; 

Shibuya et al. 2006), plus an (independent from the former) risk of mortality among sighted 

individuals with high microfilarial load (lagged by 2 years) (Little et al. 2004b; Walker et al. 2012).  

 

 

Vision Loss: 

The number of people blind due to onchocerciasis (defined as corrected visual acuity of 

<3/60 or restriction of visual field to less than 10° in the better eye (Remme, 2004a)), was 

calculated by means of a partial differential equation comprising two rates, namely, the 

incidence of new onchocercal related blindness cases, and the loss of already blind 

individuals due to (excess) mortality (Kirkwood et al. 1983; Shibuya et al. 2006). The former 

rate was estimated based on a log-linear Poisson model developed by Little et al. (2004a), 

which describes incidence of blindness as a function of microfilarial load lagged by 2 years 

(fitted to the cohort dataset of the Onchocerciasis Control Programme in West Africa (OCP)). 

The Poisson model assumes that the incidence of blindness is associated with lagged 

microfilarial load (a 2-year lag provided the best fit to the data (Little et al. 2004a), probably 

reflecting that the loss of visual acuity of an individual in the present is associated with the 

microfilarial load of that individual in the past). Consequently, the decline in prevalence of 

vision loss was lagged by two years after the start of ivermectin distribution. The latter 

mortality rate, was calculated by multiplying the age-specific background mortality rate 
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(described in section 3.8.6) by an excess relative risk of mortality (of 2.5) according to 

(Shibuya et al. 2006). 

The number of individuals with visual impairment or low vision (defined as corrected visual 

acuity of <18/60 and ≥3/60 in the better eye (Remme, 2004a)) caused by onchocerciasis was 

estimated using a published ratio of visual impairment to blindness (of 1.78) according to 

(Remme, 2004a). Prevalent blindness and visual impairment cases were assumed to be 

irreversible conditions and not to respond to ivermectin treatment (Ejere et al. 2001), which 

does not reverse established ocular sequelae (such as sclerosing keratitis and optic nerve 

atrophy). 

Troublesome Itch: 

Troublesome itch has been found to be associated with the presence of infection (Murdoch et 

al. 2002) but not with microfilarial infection intensity (Ghalib et al. 1987; Kipp & 

Bamhuhiiga, 2002). Due to this, the estimated prevalence of troublesome itch is based on a 

relationship between the prevalence of troublesome itch and that of adult female worms, 

previously derived using ONCHOSIM (Coffeng et al. 2013; Habbema et al. 2007). 

Troublesome itch was related to the presence of female adult worms because the association 

between the presence of Mf and troublesome itch does not hold during ivermectin treatment; 

the reduction in prevalence of itch being smaller and more delayed than the drop in 

microfilarial prevalence and load (Brieger et al. 1998b; Coffeng et al. 2013; Habbema et al. 

2007). In addition, the therapeutic effect of ivermectin on troublesome itch was parameterised 

based on the results of a multi-centre trial of ivermectin for the treatment of onchocercal skin 

disease and severe itching (Brieger et al. 1998b) as described in section 3.8.5. Consequently, 

there is an initial sharp decline in the prevalence of troublesome itch (as a result of 

ivermectin’s therapeutic effect) followed by a more gradual decrease as the prevalence of 

adult worms declines. Since the model assumes a pre-patent period of two years (Filipe et al. 

2005; Prost, 1980b), there is a delay between the former and the latter. 

Excess Mortality: 

Excess mortality due to onchocerciasis was assumed to occur via an additional risk of 

mortality among individuals suffering onchocercal related vision loss (Kirkwood et al. 1983; 

2006), and an additional (but independent from the former) risk of mortality among (sighted) 
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individuals with high microfilarial loads (Little et al. 2004b; Walker et al. 2012). The former 

was modelled using a excess risk of mortality among the blind and those with visual 

impairment that is, respectively, 2.5 and 1.5 times higher than that for those fully sighted 

(Shibuya et al. 2006). The latter was modelled using a published non-linear, host age-

dependent association between the relative risk of mortality of sighted individuals and their 

microfilarial load (lagged by two years) estimated from the OCP dataset as mentioned above 

(Walker et al. 2012). 

Disability-Adjusted Life Years (DALYs):  

Disability-Adjusted Life Years (DALYs) due to onchocerciasis at baseline were used to 

quantify the pre-control burden of disease combining into a single metric the burden of 

onchocercal disease resulting from blindness, visual impairment, troublesome itching (years 

lived with disability, YLD), and premature death (years of life lost, YLL). The DALYs were 

estimated using the disability weights provided by the Global Burden of Disease (2004) study 

(World Health Organization, 2004). The equivalent disability weights from the Global 

Burden of Disease (2010) study (Salomon et al. 2012) were not used, because (other than 

blindness) they are stratified by severity levels. For example, the skin disease disability 

weights were stratified into three “disfigurement levels”, and visual impairment into “mild”, 

“moderate”, and “severe”. Without more detailed definitions, it was not possible to relate 

such levels to the modelled disease sequelae. 

The YLLs were discounted at a rate of 3% per year—in agreement with WHO guidelines 

(World Health Organization, 2003). Furthermore, based on the methodology presented in the 

Disease Control Priorities Project (Disease Control Priorities Project, 2006), I did not apply 

any age weighting to DALY estimates (whereby healthy life lived at younger and older ages 

is given a lower weight than that at productive adult ages). Further description of the DALY 

calculations is provided in section 3.8.7. 

3.3.2. Ivermectin’s anti-macrofilarial effect 

Although the initial clinical trial studies that investigated the effects of a single standard dose 

(150 µg /kg) of ivermectin have shown no evidence of a macrofilaricidal effect (killing of 

adult worms) (Albiez et al. 1988; Schulz-Key et al. 1985), various studies have reported that 

multiple doses over several years may have a cumulative adverse effect on adult worm 
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reproductive fitness / longevity (Chavasse et al. 1993; Cupp et al. 2004; Cupp et al. 2011; 

Duke, 2005; Duke et al. 1991b; Plaisier et al. 1995; Tekle et al. 2012; Whitworth et al. 

1996a). Though, (as discussed in the previously chapter) this effect may not be as high as 

previously assumed (Plaisier et al. 1995), ivermectin may be having a small, gradual adverse 

effect on adult worms (potentially due to effects on intranodular sex ratios – see section 1.6). 

To account for this potential anti-macrofilarial action of long-term ivermectin MDA, it was 

assumed that each dose causes a 7% cumulative reduction in the per capita rate of 

microfilarial production by adult worms. This value was approximated by matching the 

model output (via varying the per dose reduction) to data on microfilarial load after three 

years of three-monthly ivermectin treatments (over twelve treatments rounds) presented in 

Gardon et al. (2002) for Cameroon. These authors estimated the magnitude and statistical 

significance of the ivermectin effect on female worm fertility to be greater than upon worm 

mortality; therefore, the former was chosen to represent a cumulative, per dose, anti-

macrofilarial action of the drug. Despite the higher treatment frequency examined (three-

monthly), this dataset was chosen to assess the per dose anti-macrofilarial action of the 

ivermectin, due to the number of treatement rounds the participants were exposed to (over 

twelve treatment rounds) and because the Mf load is presented per mg and not per skin snip 

(allowing for accurate comparison to EpiOncho’s output); there is a lack of well-

characterized long-term (individual) longitudinal data (including previous treatment history), 

to more accurately estimate the potential anti-macrofilarial action of ivermectin. This 

estimated per dose reduction is consistent with the epidemiological evaluation in Cameroon 

by Pion et al. (2013) (whose results do not support the operation of a strong cumulative effect 

of repeated ivermectin treatments and more broadly by the modelling study by Bottomley et 

al. (2008), which indicated that ivermectin did not have a cumulative effect on microfilarial 

production after two and a half years of six-monthly treatments (a relatively small reduction 

would have a minor initial impact, and thus may not have been detectable / statistically 

significant in the short time frame).  

However, due to the importance of this parameter (as discussed in the previous chapter) the 

strength of the anti-macrofilarial action of ivermectin was varied in the sensitivity analysis 

(based on the 30–35% irreversible reduction estimated by Plaisier et al. (1995)).  
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3.3.3. Model outputs and sensitivity analysis 

The model was used to estimate the overall microfilarial prevalence (all ages) and intensity 

(defined as microfilarial load per mg of skin in those aged ≥20 years) and its associated 

morbidity and mortality over the course of 15 annual ivermectin treatment rounds. As in the 

previous chapter, 15 years was chosen as a suitable timescale to investigate the impact of 

long-term treatment of onchocerciasis motivated by the epidemiological studies in Mali, 

Nigeria, and Senegal (Diawara et al. 2009; Tekle et al. 2012; Traore et al. 2012). The 

model’s outputs were stratified by the pre-control microfilarial prevalence, representing a 

range of hypo-, meso-, hyper- and highly hyperendemic onchocerciasis foci (Table 1.1) by 

varying the annual biting rate (ABR) of the simuliid vectors (Table 3.1). In addition, the            

pre-control DALY disease burden associated with onchocerciasis in African savannah areas 

was estimated within the range of endemicity explored. 

The sensitivity of model projections was explored with regards to the following assumptions 

a) overall therapeutic coverage (proportion of the total population receiving ivermectin at 

each round) of 60% and 80% coverage; b) proportion of systematic non-compliance 

(proportion of the eligible population who never take treatment) of 5% and 0.1%; c) anti-

macrofilarial effect of ivermectin (the, per dose, cumulative reduction in microfilarial 

production by ivermectin-exposed female adult worms) of 7% (small) and 30% (large) 

(Plaisier et al. 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

 

 

3.4. Results 

3.4.1. Impact of ivermectin on microfilarial prevalence and intensity 

Long-term (15 years of consecutive) annual ivermectin distribution is projected to reduce 

progressively and markedly (by more than 90%) the intensity of microfilarial infection 

(measured in the population aged 20 years). However, due to the dynamic nature of 

ivermectin’s action on the production of Mf by adult female worms, and under conditions of 

ongoing transmission, these parasite stages will reappear in the skin (and be transmitted to 

vectors) between consecutive annual treatments (Figure 3.2A). The degree of skin 

repopulation by Mf is strongly related to pre-control endemicity level (reflecting initial adult 

worm burden as well as vector density) and is substantially larger for (highly) hyperendemic 

areas. Impact on microfilarial prevalence (all ages) is less marked than that on microfilarial 

intensity (due to the nature of the non-linear relationship between these two variables).The 

magnitude of the impact also deceases with increasing levels of pre-control endemicity 

(Figure 3.2B).  

 

Table 3.1. Summary of baseline (pre-control) modelled epidemiological scenarios 

Pre-control 

endemicity 

Microfilarial 

prevalence 

in all ages 

Annual 

biting 

rate 

(ABR)§ 

Annual 

transmission 

potential 

(ATP)¶ 

Mean 

(arithmetic) 

microfilarial 

intensity in 

all ages 

(Mf/mg) 

Mean 

(arithmetic) 

microfilarial  

intensity in those 

aged ≥ 20 years 

(Mf/mg) 

Mesoendemic 40% 7,300 88 11.2 18.7 

Hyperendemic 60% 15,470 373 23.9 40.0 

Highly hyperendemic 80% 85,800 4,290 58.9 98.0 
§ Annual biting rate (ABR): the average number of Simulium bites to which a person is exposed during a 

whole year.¶ Annual transmission potential (ATP): the average number of infective larvae (L3) of O. volvulus 

potentially received during a whole year by a person exposed to the annual biting rate; model assumes 

perennial transmission. Both the ABR and ATP are for a proportion of vector blood meals of human origin 

equal to 0.3 (Basáñez & Boussinesq, 1999).  
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Figure 3.2. Impact of annual ivermectin distribution on the intensity (A) and prevalence (B) of 

microfilarial infection. The red, blue and green lines correspond, respectively, to a baseline 

endemicity of 80%, 60% and 40% microfilarial prevalence. Intensity of infection is quantified as the 

mean (arithmetic) microfilarial load per mg of skin in those aged ≥ 20 years. The dashed horizontal 

lines illustrate the upper and lower bounds (5% and 1% prevalence) of the current operational 

thresholds for cessation of treatment, namely an observed a microfilarial prevalence below 5% in all 

surveyed villages and 1% in 90% of the surveyed villages) (African Programme for Onchocerciasis 

Control, 2010). Results shown assume a therapeutic coverage of 80%, 0.1% of systematic non-

compliance, perennial transmission, and a 7% cumulative reduction in microfilarial production by 

female adult worms per ivermectin dose. The inset in Figure 3.2A zooms in microfilarial infection 

intensity (in the 20 yr of age) for the last four years of the simulated intervention programme. 

 

 

3.4.2. Pre-control disease burden 

Before the inception of mass ivermectin distribution and in the absence of other control 

interventions, infection by O. volvulus in African savannah areas can be associated with a 

large burden of disease, which is non-linearly related to the baseline endemicity level. This is 

A 

 

B 
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illustrated by the pre-control (total) DALY burden stratified by level of baseline endemicity 

in Table 3.2 and Figure 3.3, which shows that relative to the burden for the mesoendemic 

level (represented by a microfilarial prevalence of 40%), the burden corresponding to the 

hyperendemic level is three times as high, and for the highly hyperendemic level (80% 

microfilarial prevalence at baseline), is seven times as high. At pre-control, onchocerciasis 

was found to be associated with high levels of blindness and visual impairment, with the 

baseline overall prevalence (across all ages) of onchocercal related blindness reaching over 

8% in highly hyperendemic areas (Figures 3.4A and 3.4B). In addition, onchocerciasis was 

associated with high levels of troublesome itch (Figure 3.4C), with the estimated pre-control 

overall prevalence reaching over 30% in highly hyperendemic areas.  

  

Figure 3.3. Relationship between the level of endemicity and pre-control disease burden 

associated with onchocerciasis in savannah areas of Africa.  Total disability adjusted life-years 

(DALY) associated with onchocerciasis,  Years lived with disability (YLD) associated with 

onchocerciasis-related blindness,     YLD associated with onchocerciasis-related visual impairment,                                            

Y   YLD associated with onchocerciasis-related troublesome itch,     Years of life lost (YLL) associated 

with vision loss,     YLL associated with high microfilarial load. 
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Table 3.2. Baseline (pre-control) model-derived burden of disease (DALYs) associated with 

onchocerciasis in savannah areas of Africa at different levels of endemicity 

 Disability Adjusted Life Years§ (per 1000 person-years) 

 Years lived with disability (YLD) Years of life lost (YLL)†  

Pre-control 

endemicity 

Blindness 

 

Visual 

impairment 

Troublesome 

itch 

 

Associated 

with vision 

loss  

Associated 

with high 

microfilarial 

load  

Total 

DALY 

burden
¶  

Mesoendemic 3.6 1.4 14.0 2.7 5.9 27.6 

Hyperendemic 11.4           4.4         17.7         8.8           29.6      71.9   

Highly hyperendemic 49.0  18.8        21.6         37.0   72.3          198.7  

§ See section 3.8.7 for a detailed description of the methods used to calculate DALYs.† In line with WHO 

guidelines, a discount rate of 3% was applied to YLLs (World Health Organization, 2003). Pre-control 

microfilarial prevalence as in Table 3.1.  ¶ In comparison, the 2010 global burden of disease project estimated 

that a total of 1040 DALY were lost (all causes) per 1000 people living in western sub-Saharan Africa in the 

year 1990 (Murray et al. 2012). 
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Figure 3.4. Impact of annual ivermectin distribution on the morbidity associated with 

onchocerciasis in the savannah areas of Africa. A: Prevalence of blindness due to onchocerciasis 

(across all ages). B: Prevalence of visual impairment due to onchocerciasis (across all ages). C: 

Prevalence of troublesome itch due to onchocerciasis (across all ages). The red, blue and green lines 

correspond, respectively, to a baseline endemicity of 80%, 60% and 40% microfilarial prevalence. 

Assumptions are as in the legend of Figure 3.2. The commencement of the intervention at year 1 is 

represented by the vertical dashed lines. Delays in the decrease of blindness and visual impairment 

prevalence are due to a 2-year lag between vision loss in the present and microfilarial infection in the 

past. The initial sharp decline in the prevalence of troublesome itch is due to the assumed therapeutic 

effect of ivermectin followed by a more gradual decrease as adult worm prevalence declines.  

 

Onchocerciasis was also associated with a notable incidence of excess mortality, which 

increased non-linearly with the pre-control endemicity level (Table 3.2 and Figure 3.3). The 

YLLs associated with high microfilarial load were responsible for a substantially higher 

proportion of excess host mortality than those associated with onchocercal related vision loss 

(Table 3.2 and Figure 3.5). 

  

A 

 

B 
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Figure 3.5. Impact of annual ivermectin distribution on the excess mortality associated with 

onchocerciasis in savannah areas of Africa. A: The excess death associated with a high microfilarial 

load. B: The excess death associated with vision loss (blindness / visual impairment). C: The total 

excess death associated with onchocerciasis. The red, blue and green lines correspond, respectively, 

to a baseline endemicity of 80%, 60% and 40% microfilarial prevalence. Assumptions are as in the 

legend of Figure 3.2. The commencement of the intervention at year 1 is represented by the vertical 

dashed lines. The initially delayed decrease of excess mortality is due to a 2-year lag between 

incidence of death in the present and microfilarial load in the past. 

 

 

3.4.3. Impact of ivermectin on onchocerciasis disease burden 

Morbidity: 

Model outputs indicate that long-term annual distribution of ivermectin has an enormous 

impact on the morbidity associated with onchocerciasis (Figure 3.4). Two years into the 

programme, the incidence of blindness (associated with lagged microfilarial load) is projected 

to fall to very low levels (Figure 3.6). By contrast, the proportion of individuals with 

blindness and visual impairment due to onchocerciasis would decline more gradually, as 

prevalent cases are progressively removed due to host mortality (but not replaced at the same 

pre-control incidence level). Model results suggest a very strong initial decline in the 

prevalence of troublesome itch due to the therapeutic benefit of ivermectin on cutaneous 
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pathologies (Brieger et al. 1998b), followed by a more steady decline during the programme 

due to a gradual reduction in transmission (and prevalence of adult female worms), the 

magnitude of which depends on pre-control endemicity level (the higher the level the lower 

the rate of decrease).  

 

Figure 3.6. Impact of annual ivermectin distribution on incidence of blindness due to 

onchocerciasis in savannah areas of Africa. The red, blue and green lines correspond, respectively, to 

a baseline endemicity of 80%, 60% and 40% microfilarial prevalence. The commencement of the 

intervention at year 1 is represented by the vertical dashed line. The initially delayed decrease is due 

to a 2-year lag between blindness incidence in the present and microfilarial load in the past. Results 

shown assume a therapeutic coverage of 80%, 0.1% of systematic non-compliance, perennial 

transmission, and a 7% cumulative reduction in microfilarial production by female adult worms per 

ivermectin dose. 

 

 

Excess Mortality: 

Under ivermectin distribution the incidence of excess mortality associated with high 

microfilarial load is projected to decrease rapidly to low levels (Figure 3.5A). The decline is 

delayed by two years after the start of ivermectin distribution because of the assumption in 
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the model that the incidence of excess mortality due to infection is associated not with 

present microfilarial load but that with that experienced two years in the past (Little et al. 

2004b). The incidence of excess mortality associated with onchocercal related vision loss 

decreases at a slower rate, following the decline in the prevalence of vision loss (Figure 

3.5B). Figure 3.5C represents the total excess mortality due to onchocerciasis. 

3.4.4. Impact of programmatic variables: therapeutic coverage and  

compliance patterns 

Varying in the model the levels of therapeutic coverage in the overall population and the 

proportion of systematic non-compliers influences the projected impact of long-term 

ivermectin distribution on microfilarial prevalence and intensity. An increased level of 

overall therapeutic coverage (from 60% to 80%), or an increased level of treatment 

compliance (a decreased proportion of systematic non-compliers, from 5% to 0.1%) 

decreased the output values of microfilarial prevalence and intensity measured 1 year after 

the 15
th

 annual treatment (Tables 3.3 and 3.4). By and large, the proportional reductions in 

infection due to improved coverage or compliance are greater in magnitude for the meso- and 

hyperendemic levels than for the highly hyperendemic level. The proportional reductions of 

onchocerciasis-associated disease burden gained as a result of improved coverage and 

compliance were generally relativity small in comparison. 
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Table 3.3. The effect of annual ivermectin treatment coverage on the microfilarial prevalence and 

intensity of onchocerciasis and its associated morbidity and mortality according to baseline 

endemicity 

Pre-control 

endemicity 

Mesoendemic Hyperendemic Highly hyperendemic 

Therapeutic 

coverage 

60% 80% %† 

change 

60% 80% %† 

change 

60% 80% %† 

change 

Skin microfilarial 

prevalence (%) 

3.46 1.84 47% 9.52 4.74 50% 27.53 16.69 39% 

Microfilarial 

intensity (Mf/mg) 

1.08 0.49 55% 3.10 1.31 58% 11.14 5.47 51% 

Blindness 

prevalence (%) 

0.299 0.297 0.67% 0.95 0.91 4% 4.25 4.13 3% 

Visual impairment 

prevalence (%) 

0.4015 0.4014 0.02% 1.27 1.22 4% 5.7 5.54 3% 

Troublesome itch 

prevalence (%) 

5.57 3.59 36% 10.94 7.45 32% 17.9 14.51 19% 

Excess mortality 

annual incidence 

(per 1000) 

0.09 0.08 11% 0.29 0.26 10% 1.39 1.13 19% 

Values correspond to model outputs 12 months after the 15th annual ivermectin treatment assuming 

perennial transmission, 0.1% of systematic non-compliance and a 7% cumulative, per ivermectin dose, 

reduction in the rate of microfilarial production by adult female worms. Intensity of infection is quantified as 

mean (arithmetic) microfilarial load per mg of skin in those aged ≥ 20 years. Pre-control microfilarial 

prevalence as in Table 3.1.† Proportional (percent) reduction in parasitological, morbidity and mortality 

indicators relative to the lower (60%) treatment coverage of the total population (overall therapeutic 

coverage).  
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Table 3.4. The effect of the proportion of systematic non-compliance with annual ivermectin 

treatment on the microfilarial prevalence and intensity of onchocerciasis infection and its associated 

morbidity and mortality according to baseline endemicity 

Pre-control 

endemicity 

Mesoendemic Hyperendemic Highly hyperendemic 

Systematic non-

compliance 

5% 0.1% %† 

change 

5% 0.1% %† 

change 

5% 0.1% %† 

change 

Skin microfilarial 

prevalence (%) 

2.60 1.84 29% 6.68 4.74 29% 20.08 16.69 17% 

Microfilarial 

intensity(Mf/mg) 

0.80 0.49 39% 2.20 1.31 40% 8.18 5.47 33% 

Blindness 

prevalence (%) 

0.299 0.297 1% 0.95 0.91 4% 4.26 4.13 3% 

Visual impairment 

prevalence (%) 

0.41 0.40 2% 1.27 1.22 4% 5.70 5.54 3% 

Troublesome itch 

prevalence (%) 

4.44 3.59 19% 8.88 7.45 16% 15.40 14.51 6% 

Excess mortality 

annual incidence 

(per 1000) 

0.09 0.08 11% 0.30 0.26 13% 1.29 1.13 12% 

Values correspond to model outputs 12 months after the 15th annual ivermectin treatment assuming 

perennial transmission, an overall treatment coverage of 80% (high coverage), and a 7% cumulative, per 

ivermectin dose, reduction in the rate of microfilarial production by adult female worms. Intensity of 

infection is quantified as mean (arithmetic) microfilarial load per mg of skin in those aged ≥ 20 years. Pre-

control microfilarial prevalence as in Table 3.1. † Proportional (percent) reduction in parasitological, morbidity 

and mortality indicators relative to the higher (5%) proportion of systematic non-compliance.  
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3.4.5. Impact of the efficacy of ivermectin anti-macrofilarial action 

The magnitude of the assumed anti-macrofilarial action of ivermectin (i.e. the per dose 

proportion by which microfilarial production by female worms is cumulatively reduced) 

influenced the long-term impact of annual ivermectin distribution on microfilarial prevalence 

and intensity. The higher value (30%) had a more pronounced effect than the lower (7%) 

value (Figure 3.7 in comparison to Figure 3.2). However, this effect also depended on the 

baseline level of onchocerciasis endemicity; the lower the pre-control endemicity, the smaller 

the impact of assuming the stronger anti-macrofilarial effect (Table 3.5). By contrast, the 

assumed value of this effect had little influence regarding the impact of annual ivermectin 

MDA on onchocerciasis-associated disease burden (Table 3.5). 
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Figure 3.7. Impact of annual ivermectin distribution on microfilarial intensity (A) and microfilarial 
prevalence (B) when assuming a stronger anti-macrofilarial action. The red, blue and green lines 
correspond, respectively, to a baseline endemicity of 80%, 60% and 40% microfilarial prevalence. 
Microfilarial intensity is quantified as the mean (arithmetic) microfilarial load per mg of skin in those 
aged ≥ 20 years. The dashed horizontal lines illustrate the upper and lower bounds (5% and 1% 
prevalence) of the current operational thresholds for cessation of treatment, namely an observed a 
microfilarial prevalence below 5% in all surveyed villages and 1% in 90% of the surveyed villages) 
(African Programme for Onchocerciasis Control, 2010). Results shown assume a therapeutic coverage 
of 80%, 0.1% of systematic non-compliance, perennial transmission, and a 30% cumulative reduction 
in microfilarial production by female adult worms per ivermectin dose. The inset in Figure 3.7A zooms 

in microfilarial infection intensity (in the 20 yr of age) for the last four years of the simulated 
intervention programme.  
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Table 3.5. The effect of the magnitude of the anti-macrofilarial action of ivermectin on the microfilarial 

prevalence and intensity of onchocerciasis infection and its associated morbidity and mortality according 

to baseline endemicity 

Pre-control 

endemicity 

Mesoendemic Hyperendemic Highly hyperendemic 

Cumulative per 

dose reduction in 

Mf production 

7% 30% %† 

change 

7% 30% %† 

change 

7% 30% %† 

change 

Skin microfilarial 

prevalence (%) 

1.84 0.78 58% 4.74 1.80 62% 16.69 6.92 59% 

Microfilarial 

intensity (Mf/mg) 

0.49 0.06 88% 1.31 0.19 85% 5.47 1.59 71% 

Blindness 

prevalence (%) 

0.297 0.296 0.3% 0.913 0.910 0.3% 4.13 4.12 0.2% 

Visual impairment 

prevalence (%) 

0.40 0.39 2.5% 1.223 1.221 0.2% 5.54 5.52 0.4% 

Troublesome itch 

prevalence (%) 

3.59 2.67 26% 7.45 5.41 27% 14.51 12.99 10% 

Excess mortality 

annual incidence 

(per 1000) 

0.0818 0.0815 0.4% 0.26 0.25 4% 1.13 1.10 3% 

Values correspond to model outputs 12 months after the 15th annual ivermectin treatment assuming perennial 

transmission, an overall treatment coverage of 80% (high coverage), and 0.1% of systematic non-compliance). 

Intensity of infection is quantified as mean (arithmetic) microfilarial load per mg of skin in those aged ≥ 20 years. 

Pre-control microfilarial prevalence as in Table 3.1.† Proportional (percent) reduction in parasitological, 

morbidity and mortality indicators relative to the lower (7%) cumulative reduction in the rate of microfilarial 

production by adult female worms.  
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3.5. Discussion  

3.5.1. The influence of the epidemiological setting 

Impact of Ivermectin on Microfilarial Prevalence and Intensity: 

The benefit of long-term annual ivermectin distribution on onchocerciasis prevalence and 

intensity was influenced by the pre-control level of endemicity. This trend is consistent with 

other modelling studies investigating the impact of annual ivermectin control (African 

Programme for Onchocerciasis Control, 2010; Duerr et al. 2011; Winnen et al. 2002). 

Although the projections indicate that prolonged annual ivermectin distribution reduces 

substantially the ocular morbidity and excess mortality associated with onchocerciasis, partly 

due to vast reductions in microfilarial infection intensity, its impact on the prevalence of 

infection (and arguably on transmission) is less pronounced. This will be the product of a 

combined effect of the non-linear relationship between microfilarial prevalence and intensity, 

and the relaxation of the density-dependent processes that affect parasite development and 

vector survival incorporated in the model (Basáñez et al. 2009). These findings are consistent 

with the conclusions of a review assessing the impact of repeated ivermectin MDA in the 

former OCP area (Borsboom et al. 2003), highlighting that although the disease burden 

associated with onchocerciasis will certainly be reduced to very low levels, likely leading to 

the elimination (or near elimination) of the public health burden of the disease, continued 

drug distribution as well as sustained efforts to keep high levels of treatment coverage and 

compliance, will be vital to interrupt transmission and lead to elimination of the infection 

reservoir. 

After 15 years of annual ivermectin MDA, with consistently high therapeutic coverage, 

compliance and drug efficacy, projected values of microfilarial prevalence in mesoendemic 

(1.8%) and hyperendemic (4.7%) areas (Figure 3.2, Table 3.3), start approaching operational 

thresholds for treatment interruption followed by surveillance (OTTIS) proposed by APOC 

(African Programme for Onchocerciasis Control, 2010). (These thresholds include a 

microfilarial prevalence lower than 5% in all surveyed villages and lower than 1% in 90% of 

these.) Therefore, the model’s projections are consistent with those obtained in 

epidemiological surveys in Mali, Senegal and Nigeria after 15–17 years of ivermectin 

distribution (Diawara et al. 2009; Tekle et al. 2012; Traore et al. 2012). 
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However, projected reductions in microfilarial prevalence and intensity were less optimistic 

for higher levels of the hyperendemicity range (80% initial microfilarial prevalence). In such 

settings there would be a higher rate of microfilarial reappearance in the skin between 

consecutive treatments as adult female worms resume microfilarial production. Although 

under repeated and prolonged ivermectin treatment this rebound in microfilarial intensity was 

found not to have severe implications for morbidity, it will make it harder to achieve the 

proposed OTTIS. 

Now that there has been a shift in onchocerciasis control policy in Africa, from the 

elimination of morbidity to the elimination of infection, the dynamics of transmission during 

the inter-treatment periods will become increasingly relevant, highlighting the need to use 

mathematical models to capture and understand the underlying processes. Furthermore, the 

modelling results indicate that if ivermectin does not have a strong anti-macrofilarial action, 

elimination in highly hyperendemic areas would not be feasible with annual ivermectin MDA 

alone. This underscores the importance of the continued search and consideration for novel 

interventions and optimal combinations of currently available tools (Taylor et al. 2010). 

Potential tools include vector control, macrofilaricidal therapies, more potent microfilaricides 

or repositioning of current anthelmintics with different regimes and vaccines, as well as the 

use of transmission dynamic models with which to assess rigorously the impact of such 

interventions (singly or in combination) according to epidemiological, parasitological and 

entomological features (as done in malaria (Griffin et al. 2010)). 

The current operational thresholds for cessation of treatment (African Programme for 

Onchocerciasis Control, 2010), are based on results from foci with strongly seasonal 

transmission and with pre-control values of microfilarial prevalence ranging from 

mesoendemicity to the lower end of hyperendemicity (though only 3 of 39 (8%) villages in 

the Mali/Senegal foci treated annually were hyperendemic (Diawara et al. 2009) (as defined 

in Table 1.1). Likewise, in the foci located in Kaduna state, Nigeria, where elimination has 

also been reported, the median community microfilarial load (CMFL) was only 4 Mf per skin 

snip (and the median baseline prevalence only 52%) (Tekle et al. 2012). These results advise 

caution when generalising conclusions regarding the feasibility of parasite elimination with 

annual ivermectin treatment in areas of high pre-control endemicity and perennial 

transmission. This emphasizes the need for evaluation and validation of the proposed OTTIS 
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criteria (Diawara et al. 2009; Traore et al. 2012), and the importance of not equating them 

with true transmission breakpoints (below which the parasite population is not able to 

maintain itself) (Basáñez et al. 2009; Duerr et al. 2011; Gambhir et al. 2009). These 

cautionary conclusions are supported by a range of recent epidemiological reports by 

Katabarwa and co-workers which provide evidence of continued transmission after more than 

15 years of annual ivermectin treatment in foci of Cameroon and Uganda with high pre-

control endemicity or transmission levels (Katabarwa et al. 2013a; Katabarwa et al. 2011; 

Katabarwa et al. 2013b). 

Pre-control Disease Burden: 

In the absence of control interventions, onchocerciasis poses a high disease burden which is 

non-linearly related to pre-control endemicity level. Model outputs of baseline prevalence of 

onchocercal related vision loss and troublesome itch in different epidemiological settings are 

consistent with published data (Hougard et al. 2001; Murdoch et al. 2002; Prost & Prescott, 

1984; Remme et al. 1989). The estimated blindness rates are in good agreement with those 

reported prior to the commencement of interventions in the core area of the former OCP 

(Hougard et al. 2001; Prost & Prescott, 1984; Remme et al. 1989). However, there is 

heterogeneity in reports of (observed) prevalence of onchocerciasis-associated morbidity, 

particularly regarding the prevalence of troublesome itch (Hougard et al. 2001; Murdoch et 

al. 2002; Prost & Prescott, 1984; Remme et al. 1989). 

Estimates of DALYs included the component of disease burden due to the relationship 

between excess host mortality of sighted individuals and heavy microfilarial load (Little et al. 

2004b; Walker et al. 2012). At baseline, this contribution was greater than that of mortality 

associated with vision loss. The difference between the two components of premature death 

increased with the level of pre-control endemicity. This suggests that premature death related 

to onchocerciasis, and consequently its overall contribution to disease burden may be higher 

than previously estimated (Coffeng et al. 2013; Habbema et al. 2007; Shibuya et al. 2006). 

Furthermore, the recent values of the global disease burden of onchocerciasis (Murray et al. 

2012), which did not include excess host mortality, are potentially underestimated. 

Additionally, the relative contribution of the different disease states to the overall disease 

burden depends on the epidemiological setting. For example, troublesome itch is responsible 
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for 51% of the overall pre-control DALY burden in mesoendemic areas broadly consistent 

with previous estimates reporting that onchocercal itching accounts for 60% of the DALYs 

due to infection with O. volvulus (Remme et al. 2006). However, this proportion amounts 

only to 11% in the highly hyperendemic setting. By contrast, the contribution to the total 

DALY burden by vision loss is 28% in the mesoendemic scenario compared to 53% in the 

highly hyperendemic setting (Table 3.2). 

Impact of Ivermectin on Onchocerciasis Disease Burden: 

Prolonged annual ivermectin distribution is undoubtedly highly effective at reducing the 

morbidity and excess mortality associated with onchocerciasis. The projections of a steady 

decline in the prevalence of blindness are in line with studies investigating the long-term 

impact of onchocerciasis control on vision loss as well as with ONCHOSIM projections 

(Coffeng et al. 2013; Dadzie et al; Hougard et al. 2001; Prost & Prescott, 1984; Thylefors & 

Tonjum, 1980). However, the projected reduction in onchocercal related vision loss was not 

as high as that reported by Emukah et al. (2004), who observed a fall in prevalence from 16% 

to 1% (a 95% reduction) after only eight years of annual ivermectin distribution. This 

difference could potentially be due to a higher incidence of excess mortality than that 

assumed in the model being experienced by those with vision loss in the study area (Emukah 

et al. 2004). Others have assumed that four rounds of ivermectin treatment would reduce the 

burden of visual impairment and blindness by 35% (Remme et al. 2006). In the model there 

is no therapeutic benefit of ivermectin on (irreversible) vision loss; therefore, reductions in 

prevalence are due to gradual mortality of those with blindness/visual impairment. This 

contrasts with the faster reduction in the incidence of blindness, which reaches very low 

levels within a few years of ivermectin MDA (due to its pronounced effect on microfilarial 

load). However, onchocerciasis-related vision loss may still account for a non-negligible 

disease burden during on-going control programmes due to remaining prevalent cases. This 

aspect was not included in recent estimates of the global burden of disease due to 

onchocerciasis (Murray et al. 2012). 

Model outputs indicating that the overall prevalence of troublesome itch due to 

onchocerciasis would roughly halve after 5–6 years of annual ivermectin treatment are 

consistent with data from a multi-centre trial assessing the impact of CDTI on itching and 

skin disease within APOC (Ozoh et al. 2011). This study consisted of two cross-sectional 
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surveys using a standardised study protocol across seven sites. Other authors have assumed 

that four rounds of ivermectin treatment would reduce the prevalence of troublesome itching 

by 85% (Remme et al. 2006), but this optimistic expectation is not supported by the results of 

Ozoh et al. (2011) or these modelling outputs. With the exception of two studies by 

Whitworth et al. (1996b; 1992), which concluded that ivermectin had no effect on skin 

disease, the projected reductions are in broad agreement with the literature (Brieger et al. 

1998b; Kennedy et al. 2002; Ozoh et al. 2011; Somo et al. 1993; Whitworth et al. 1996a). 

Subsequent studies by Whitworth and colleagues using a longer time period and an improved 

study design, reported a reduction in troublesome itch of 30% after six years of annual 

ivermectin treatment (Whitworth et al. 1996a). The estimated impact of ivermectin on 

troublesome itch was slightly lower in highly hyperendemic settings, probably due to the 

degree of continued transmission and reinfection that takes place during inter-treatment 

annual ivermectin rounds. 

3.5.2. The influence of programmatic and drug efficacy variables 

Therapeutic Coverage and Compliance Patterns: 

Varying levels of overall coverage (comparing a moderate therapeutic coverage of the total 

population of 60% with a higher coverage of 80%), and varying levels of systematic non-

compliance (comparing 5% of individuals never taking treatment with a higher compliance of 

only 0.1%) had little effect on the substantial impact that regular and prolonged ivermectin 

treatment has on the morbidity and excess mortality associated with onchocerciasis. 

However, both these programmatic considerations had a marked influence on the projected 

impact of annual ivermectin treatment on the prevalence and intensity of microfilarial 

infection (Chapter 2). This indicates that under the new impetus for elimination of infection 

(as opposed to elimination of morbidity only) (London Declaration on Neglected Tropical 

Diseases, 2013; World Bank, 2012; World Health Organization, 2013), the proportion of the 

population that for whatever reason always refuse treatment, cannot take it, or cannot be 

reached will become very important in terms of achieving parasite elimination goals. 

Operational research efforts should be made to understand what proportion and (age- and 

sex-) groups of the population do not take treatment (Brieger et al. 2012; Brieger et al. 2011), 

what are the reasons behind this non-compliance, and how to develop effective strategies to 

increase treatment adherence/compliance (see Chapter 2). In addition, it will also be 
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important to ascertain whether and to which extent systematic non-compliers are represented 

in monitoring and evaluation sampling protocols, as it is conceivable that individuals who are 

non-compliant to treatment may not be present during parasitological assessments, biasing 

the results and potentially leading to erroneous decisions concerning cessation of treatment. 

Anti-Macrofilarial Effect of Ivermectin: 

It was assumed that ivermectin only has a relatively small anti-macrofilarial action 

(Bottomley et al. 2008; Gardon et al. 2002; Pion et al. 2013), i.e., effecting a 7% cumulative 

reduction on the rate of microfilarial production by adult female worms per standard dose. 

However, due to uncertainty in the magnitude of this effect (discussed in Chapter 2), analyses 

were also conducted assuming the operation of a stronger (30% per dose) anti-macrofilarial 

action (Plaisier et al. 1995). Varying the efficacy of this proposed effect of ivermectin had a 

prominent impact on projected microfilarial prevalence and intensity, but did not greatly 

affect the projected impact on disease burden. The degree to which the assumed magnitude of 

the anti-macrofilarial effect influenced infection model outputs decreased with decreasing 

pre-control endemicity, as the amount of residual transmission occurring between 

consecutive treatments would be considerably lower. 

 

3.6. Conclusions  

Long term annual ivermectin treatment is highly effective in reducing the morbidity and 

excess mortality associated with onchocerciasis. Consequently, the goals of eliminating the 

public health burden of onchocerciasis will most likely be met in those areas where long-

term, annual ivermectin distribution is feasible. However, due to the dynamic nature of 

ivermectin’s action on the production of microfilaria (Basáñez et al. 2008), these parasite 

stages will reappear in the skin between consecutive annual treatments; this degree of 

microfilarial repopulation is substantially larger in (highly) hyperendemic areas making the 

infection much harder to eliminate. This indicates the goals of eliminating the onchocerciasis 

infection reservoir will depend on epidemiological and programmatic variables, precluding a 

one-size-fits-all approach to onchocerciasis elimination in Africa.  
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3.7. Limitations 

Currently, EpiOncho has been calibrated for savannah settings of Africa; thus, results are not 

necessarily directly generalisable to forest settings which have different relationships between 

infection and sequelae (Basáñez et al. 2006; Bradley et al. 2005; Duke, 1990), different 

transmission intensities (Duke et al. 1972), and where onchocerciasis vectors are different 

members of the Simulium damnosum s.l. complex (Dadzie et al. 1989) (but also see (Cheke & 

Garms, 2013) for a review of blindness associated with different epidemiological and 

entomological settings in savannah and forest areas). 

The present version of the model assumes a stationary age distribution and a stable (closed) 

population and consequently does not account for potential effects of onchocerciasis-related 

excess host mortality on the population distribution or host migration. Additionally, the 

results presented here assume that transmission occurs all year round. Further investigation of 

the influence of different seasonal transmission patterns on the optimal timing of ivermectin 

distribution will be essential. 

As in other modelling studies of the health impact of ivermectin (Coffeng et al. 2013), I only 

included disease manifestations for which data were available for model parameterisation. 

Consequently, the disease burden associated with several types of skin disease (such as 

leopard skin) (Murdoch et al. 2002; Ozoh et al. 2011) was not quantified and therefore the 

pre-control disease burden and the overall health impact of ivermectin may be 

underestimated. Furthermore, it has been suggested that onchocerciasis may be associated 

with epilepsy (Boussinesq et al. 2002; Pion et al. 2009) and nodding disease, as well as 

responsible for other neurological and hormonal involvement such as the Nakalanga 

syndrome (Kipp et al. 1996; Newell et al. 1997), which have not yet been included in disease 

models. It is clear that further work and data are required to improve assessment of the 

disease burden associated with onchocerciasis in future iterations of the Global Burden of 

Disease study. 

Additionally, it is noteworthy that most disease models (including this one) are parameterised 

with data on sequelae collected prior to the onset of control interventions, and it is possible 

that relationships between infection and morbidity could be influenced by the treatment per 
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se. Consequently, there is some uncertainty regarding any model-derived predictions of the 

long-term impact of ivermectin on the dynamics of onchocercal disease. 

Furthermore, it is important to note that despite their common use, DALYs do have several 

important limitations (King & Bertino, 2008): 

 By intentionally avoiding the ‘‘patient perspective’’ the DALY weighting system 

ignores the local context as a modifier of disease burden.    

 In an effort to avoid over counting actual life-years, the DALY scoring system does 

not address the reality of shared disabilities in the presence of comorbidities or 

concurrent infections. 

In addition criticisms of the DALY framework have come from many other sectors, including 

objections based on philosophical and ethical concerns about its approach to quantifying and 

discounting the value of disabled life (King & Bertino, 2008; Reidpath et al. 2003). 

 

3.8. Supporting Information for Chapter 3 

This supporting text describes in full detail the onchocerciasis disease model which was 

developed by coupling output from the onchocerciasis transmission (EpiOncho) model (see 

Chapter 2)—namely the mean (arithmetic) number of Mf per mg of skin, the derived 

prevalence of Mf, and the derived prevalence of adult female worms—to the incidence and 

prevalence of onchocercal morbidity and mortality using statistically documented 

associations between infection and disease previously published. Details are also given on 

how DALYs were calculated using output from the disease model. Definitions and, where 

appropriate, values of parameters introduced in the text are given in Table 3.6 for the 

onchocerciasis disease model and Table 3.7 for the calculation of DALYs. 

3.8.1. Microfilarial prevalence  

As described in the previous chapter (section 2.8.4) the prevalence of skin Mf (prevalence of 

microfilaridermia), , ( , ),
M

s d t a  at time t, in hosts of age, a; sex, s, and treatment compliance 
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group, d, was calculated as a function of microfilarial load per milligram (Mf/mg) of skin, 

, ( , )s d t aM , determined by the onchocerciasis transmission model,  

, ( , )

,

,

,

( , )
( , )

( , )
1 1

M s d t a

s dM
s d

M s d

k M

t a
t a

t a

M

k M


 
  


 
 

  
  

   ,               (3.1)

 

where , ( , )[ ]
M s dk M t a  is given by, 

  0

1

,

,

,

( , )
( , )

1 ( , )

s d

M s d

s d

k M t a
M t a

k M t a
k 


.                 (3.2) 

3.8.2. Human population  

To calculate the stratum-specific population size, ,
( )

s d
aP , the total population size, P, was 

multiplied by the proportion of individuals of sex s, ;sq  age a, ( );a  and compliance group d, 

d ,  

,
( ) ( )

s d s d
P a q a P  .                   (3.3) 

The age and sex distributions of the population, modelled by the function ( )a  and the 

parameter 
sq  respectively, were estimated from demographic data on individuals living in the 

Vina Valley region of northern Cameroon (Filipe et al. 2005). The population structure and 

size were assumed to be stationary; the latter set to an arbitrary constant large enough to 

ensure accuracy of numerical integration. 

3.8.3. Blindness  

The incidence of blindness due to onchocerciasis, denoted 
, ,( , )s d t a  is given by the 

incidence of blindness not due to onchocerciasis, 
, ( , )s d t a   (i.e. the background incidence of 

blindness), subtracted from the total incidence of blindness, ,
,

( , )
T

s d
t a  

, , ,
( , ) ( , ) ( , )

T

s d s d s d
t a t a t a     .             (3.4) 
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The background incidence of blindness is given by the per capita background rate at which 

individuals of sex s and age a become blind (Little et al. 2004a), 0 ( )s a , multiplied by the total 

number of individuals who are not blind. The latter is given by subtracting the total number 

of blindness cases in each stratum,
,

( , )
T

s d
t aB , from the stratum population size, ,

( )
s d

aP , 

0, , ,, ( )( ) ( ) ( , ) .T

ss d s d s dat a a t aP B        (3.5)  

The total incidence of blindness in the population of sex s and compliance group d is 

calculated from the background incidence of blindness (Equation (3.5)) multiplied by the 

relative risk of blindness associated with a mean (arithmetic) number of Mf per skin snip, 

, ( , ),s d t ar  

, , ,
( , ) ( , ) ( , )T

s d s d s d
t a t a t ar  .  (3.6) 

Substituting 
, ( , )s d t a   (Equation (3.5)) and 

, ( , )T

s d t a  (Equation (3.6)) into Equation (3.4) 

yields the desired expression for the incidence of blindness due to onchocerciasis, 

0, , , ,( )( , ) ( , ) ( ) ( , )1
T

ss d s d s d s dat a t a a t ar BP          . (3.7) 

The relative risk term on the right hand side (RHS) of Equation (3.7) was calculated using a 

log-linear model previously fitted to data on the incidence of blindness throughout the entire 

duration of the OCP (Little et al. 2004a),  

1, , ,
( , ) exp ( 2, ) ( 2, )

M

s d s d s dt a t a t ar M      .  (3.8) 

Here 
, ( 2, )s dM t a   denotes mean (arithmetic) microfilarial load per skin snip (as opposed to 

per mg of skin, see below) lagged by two years, reflecting that loss of visual acuity is 

associated with past microfilarial load, with the best lag estimated as 2 years (Little et al. 

2004a). The term 
1  on the RHS of Equation (3.8) is the regression coefficient for the relative 

risk of blindness associated with a microfilarial load, as estimated in Little et al. (2004a) 

(Table 3.6). The microfilarial load per skin snip was derived by multiplying the microfilarial 

load per mg of skin (obtained from the transmission model) by the mean (arithmetic) weight 

in milligrams of a skin snip sample taken from the iliac crest using a Holth-type corneoscleral 
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punch. This mean (arithmetic) was estimated as 1.7 mg (S.E. = 0.012) from data presented by 

Collins et al. (1992). This conversion was necessary because the OCP did not weigh the skin 

snips and consequently Equation 3.8 was parameterized using data on Mf per skin snip rather 

than per mg. The prevalence term, 
,

( 2, ),M
s d

t a  in Equation (3.8) ensures that the relative 

risk of blindness due to onchocerciasis applies only to those who are infected. 

The total number of people blind—the 
, ( , )T

s dB t a  term on the RHS of Equation (3.7) —was 

calculated by means of a partial differential equation comprising two (host age- and sex-

dependent) rates: the total incidence of new blindness cases, 
, ( , )T

s d t a  (Equation (3.6)), 

minus the loss due to mortality of already blinded individuals, with per capita rate as the 

product of the background mortality rate ( )a  and the excess risk of mortality associated with 

blindness B
E (Shibuya et al. 2006),  

, ,

, ,( , ) ( , ) ( )
( , ) ( , )

.

T T

T T Bds s d

s d s dt a t a a
B t a B t a

B E
t a

 
 

  
 

              (3.9) 

The expression for the background mortality rate, ( ),a  is given in section 3.8.6. The number 

of blindness cases due to onchocerciasis,
, ( , )s d t aB (as opposed to the total number of 

blindness cases) was calculated in a similar fashion but using 
, ( , );s d t a the incidence of 

blindness due to onchocerciasis (Equation (3.7)),  

, ,

, ,( , ) ( , ) ( )
( , ) ( , )

.
Bs d s d

s d s dt a t a a
B t a B t a

B E
t a

 
 

 
 

             (3.10) 

The relative risk of blindness due to onchocerciasis, 
,

( , )
s d

t ar (Equation (3.8)) was 

determined by analysing data where blindness was defined as a visual acuity of less than 3/60 

based on tests for central vision (Little et al. 2004a). It does not include individuals with 

visual acuity equal to or better than 3/60 but who have a restriction of visual field to less than 

10° of fixation. Such individuals would have been classified as blind if peripheral visual field 

assessment had been conducted. It has been estimated that this approach misses 25% of 

functional blindness cases (Remme, 2004a; World Health Organization, 1983). To account 

for this, the number of age- and sex-dependent blindness cases due to onchocerciasis per 
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stratum (given by the solution of Equation (3.10)) was multiplied by 4/3 (Coffeng et al. 2013; 

Remme, 2004a). The total number of blindness cases due to onchocerciasis was calculated by 

integrating over host age and summing over sex and treatment compliance strata,  

,( ) ( , )
4

.
3

s d

d as

t t aB daB                             (3.11) 

The prevalence of onchocercal blindness, ( ),B
t  is calculated by dividing the total number 

of blindness cases by the population size, P , 

( )
( )

B t
t

B

P
  .                            (3.12) 

3.8.4. Visual impairment 

The number of visual impairment cases, 
, ( , ),s d t aV was calculated using a ratio of 1.78 cases of 

visual impairment for every case of blindness (when blindness is defined as a visual acuity of 

less than 3/60 alone) (Remme, 2004a). This ratio was estimated from data collected in 

hyperendemic onchocerciasis foci (without adjusting for the functionally blind cases as 

described above), but it was assumed to hold for lower endemicity foci (Remme, 2004a). 

Hence, 

, ,
( , ) ( , )1.78 .

s d s d
t a t aV B                                    (3.13) 

The prevalence of onchocercal visual impairment ( ),V t  is then given by, 

( )
( ) ,

V t
t

V

P
                   (3.14) 

where, 

,( ) .( , )
s d a

s dtV dat aV                 
(3.15) 

The Therapeutic Effect of Ivermectin on Visual Loss: 
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It was assumed that both blindness and visual impairment are irreversible conditions which 

do not respond to ivermectin treatment. This is supported by a Cochrane review of placebo-

controlled trials that found no statistically significant effect of ivermectin on prevalent vision 

loss (Ejere et al. 2001). 

3.8.5. Troublesome itch 

Following ONCHOSIM (Coffeng et al. 2013; Habbema et al. 2007), the baseline prevalence 

of troublesome itch, , ( ),T

s d t   is defined as the prevalence of troublesome itch in the absence 

of ivermectin treatment. This is calculated using a previously published association between 

troublesome itch and the prevalence of adult female worms, , ( )
W

s d t (Coffeng et al. 2013; 

Habbema et al. 2007),  

  2

1 2, , ,( ) ( ) ( )1 exp ,W WT

s d s d s dt t t           
             (3.16) 

where 
1 and

2 are regression coefficients estimated by Habbema et al. (2007) (Coffeng et 

al. 2013) (Table 3.6). The prevalence of adult female worms 
,

( )
W

s d
t was calculated 

assuming that worms are distributed among hosts according to a negative binomial 

distribution with mean  , ,s dW t a  and overdispersion parameter ,Wk  

,

,

( )
( ) 1 1 ,

W

W

W

k

s d

s d

t
t

k

W




 
   

 

                          (3.17) 

where 0.35Wk   as estimated by Bottomley et al. (2008). The prevalence of troublesome itch 

was related to female adult worms because the association between the presence of Mf and 

troublesome itch does not hold during ivermectin treatment; the reduction in prevalence of 

itch is smaller and more delayed than the drop in microfilarial prevalence and load (Brieger et 

al. 1998b; Coffeng et al. 2013; Habbema et al. 2007). 

The number of baseline troublesome itch cases per stratum, 
, ( ),s d tT   is the product of the 

baseline prevalence of troublesome itch, the proportion of individuals of each sex,
sq , 

compliance group, 
d , and the population size P, 
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, ,( ) ( ) .
T

s d s d s dt tT q P                    (3.18) 

The total number of baseline troublesome itch cases is then given by summing over the sex 

and compliance strata, 

,
( ) ( )

s d
ds

t T tT   .                 (3.19) 

Therapeutic Effect of Ivermectin on Troublesome Itch: 

The number of baseline cases of troublesome itch is multiplied by a factor ( )1 d t  to yield 

the total number of troublesome itch cases, ( )tT , 

( ) ( ) ( )1 ,dt t tT T                            (3.20) 

and the prevalence of troublesome itch is given by, 

( )
( ) .

T T t
t

P
      (3.21) 

Parameter ( )d t  captures the observed therapeutic effect of ivermectin in reducing the average 

year-round baseline prevalence of troublesome itch by 47% in individuals treated annually 

and by 52% in those treated biannually, an effect which was assumed to develop gradually 

during the first six months of the first treatment round (Brieger et al. 1998b) and which was 

consistent with the results of a multicentre study conducted by the African Programme for 

Onchocerciasis Control (APOC) (Ozoh et al. 2011). These reductions are not assumed to act 

cumulatively with each treatment round but rather over the timespan of ivermectin 

distribution. It was further assumed that individuals treated every other year experience a 

10% reduction in troublesome itch in the year they are not treated, due to the residual effects 

of ivermectin on cutaneous pathologies. This was estimated by the difference between the 

reduction of itch prevalence at 12 and 15 months after a single treatment and assumes the rate 

of recovery is constant from 15 months onwards (Brieger et al. 1998b). Long-term reductions 

in the prevalence of troublesome itch are not just caused by the therapeutic activity of 

ivermectin but rather by its community-level suppression of transmission which leads to a 

gradual decrease in the prevalence of adult female worms. 
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3.8.6. Excess mortality 

The excess mortality due to onchocerciasis is assumed to occur via two processes; an 

additional risk of mortality among individuals suffering from onchocerciasis-related vision 

loss (Kirkwood et al. 1983; Shibuya et al. 2006), and an additional risk of mortality 

(independent of the former) among infected individuals with high microfilarial loads (Little et 

al. 2004b; Walker et al. 2012). To calculate the incidence of (excess) mortality associated 

with onchocerciasis these additional risks were multiplied by the age-specific background 

mortality (hazard) rate, ( )a , 

 ( ) ln ( ) ,a
d

a
da

                    (3.22) 

where ( )a  is the survivorship function, 

2

2 3 4

for 5years,

for 5years.

exp ( )
( )a

a a

a a a






     





 

            (3.23) 

The regression coefficients
1

 ,
2

 ,
3

  and 
4

  were estimated by fitting ( )a to the same data 

that were used to parameterise the host survivorship function in ONCHOSIM (Habbema et 

al. 1996) (Figure 3.8). This makes my estimates of the excess mortality due to onchocerciasis 

comparable with other modelling studies. 
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Figure 3.8. Human host survivorship function. The blue line represents the fitted model 

(Equation (3.23)) and the red squares the host survivorship data (proportion of hosts surviving to a 

particular age) presented in Habbema et al. (1996). The model was fitted using non-linear least 

squares regression yielding parameter estimates ω1 = 0.04, ω2 = 0.81, ω3 = -7.7×10-5 and ω4 = 2.1×10-

3(Table 3.6). 

 

 

Excess Mortality Associated with Vision Loss:  

It was assumed that the relative risk of mortality among blind individuals, E
B
,
 
and among 

those with visual impairment, E
V
, were, respectively, 2.5 and 1.5 according to (Shibuya et al. 

2006). The incidence of excess mortality associated with blindness, ,
( , )B

s d
t aD  and visual 

impairment, ,
( , )V

s d
t aD are given by,  

 , , 1 ,( , ) ( , ) ( )
B B

s d s d ED Bt a t a a                           (3.24)

 

and  

 , , 1( , ) ( , ) ( ) .V V

s d s d ED Vt a t a a                 (3.25)  
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By analogy with the derivation of the incidence of blindness due to onchocerciasis given by 

Equations (3.4) to (3.7), the minus 1 term on the RHS of Equation (3.25) and Equation (3.26) 

adjusts the relative risks to give the incidence of mortality due to onchocerciasis, as opposed 

to the total incidence of mortality. 

 Excess Mortality Associated with Microfilarial Load: 

A density-dependent association has been quantified between excess human mortality and 

microfilarial load (Little et al. 2004b; Walker et al. 2012). This was incorporated into the 

model using a published non-linear, host age-dependent association between the relative risk 

of mortality, , ( , ),
M

s d t aE  in those infected (but without vision loss) and their past (lagged by 

two years) microfilarial load per skin snip denoted as ,s dM  , as opposed to ,s dM for Mf/mg, 

see also Equation (3.8), 

  4

, , ,exp( , ) 2,( 2, ) ( )
M M

s d s d s dt a aE M t a a tf
    .                                  (3.26) 

Here  , 2,s d t af M     describes a sigmoid functional form,  

 
3

3

2

,

,

,

( 2, )
( 2, )

1 ( 2, )

s d

s d

s d

t a
f t a

t a

M
M

M












 
 





,              (3.27) 

where 
1
 ,

2
 ,

3
 and

4
 are regression parameters as estimated in Walker et al. (2012) (Table 

3.6). The prevalence term in Equation (3.26), , 2,( ),
M

s d at   ensures that the relative risk of 

excess mortality associated with high microfilarial load only applies to those infected and not 

to the whole population. 

The incidence of excess mortality associated with the mean (arithmetic) number of Mf per 

skin snip, ,
,( , )M

s d
t aD is given by 

 , , , , ,( , ) ( , ) ( , ) ( ) ( , )( ) 1 .
M M

s d s d s d s d s dt a t a t a a t aD P a B V E                    (3.28)

        
The term , , ,( , ) ( , )( )s d s d s dt a t aP a B V     on the RHS of Equation (3.28) ensures that the 

incidence of excess mortality does not apply to prevalent cases of blindness or visual 
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impairment; such individuals suffer a separate excess risk of mortality as described by 

Equation (3.24) and Equation (3.25). 

Total Incidence of Excess Mortality: 

The total incidence of excess mortality aassociated with onchocerciasis—either via blindness 

(Equation (3.24)), visual impairment (Equation (3.25)) or via the direct association with 

microfilarial load (Equation (3.28))—is the sum of the component incidence rates, 

, , , ,( , ) , ) ( , ) ( , )(
B V M

s d s d s d s dt a t a t a t aD D D D  .             (3.29)

   
3.8.7. Disability adjusted life years  

Disability-adjusted life years (DALYs) are a time-based measure of disease burden 

accounting for years lived with disability (YLDs) and years of life lost (YLLs) due to 

premature mortality (Murray & Lopez, 1994). 

The YLDs were calculated by multiplying the number of cases of blindness, visual 

impairment and troublesome itch by their respective disability weights , ,
B V T

h h h  (World 

Health Organization, 2004),  

( ) ( ) ( ) ( )YLDs
B V T

t t t th h hB TV  .
 
               (3.30) 

The YLLs were calculated using the ‘period expected years of life lost’ method (World 

Health Organization, 2003), where the duration of life lost is the local future life-expectancy 

of individuals at each age, ,( )a minus there current age, multiplied by the incidence of 

mortality, , ( , )s d t aD , 

  ,( ) ( , )( )ΥLLs s d
s d a

t t aa daa D                (3.31) 
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The age-specific future life-expectancy is derived directly from the host survivorship 

function,  ,a  

 

 
( )

u

u aa

u du

a







 


.                (3.32) 

The YLLs were discounted at a rate of 3% per year in line with WHO guidelines (World 

Health Organization, 2003). 

The total DALY burden is the sum of YLDs and the YLLs, 

( ) ( ) ( )DALYs YLDs ΥLLst t t .               (3.33)
 

In line with the methodology outlined in the Disease Control Priorities Project: Priorities in 

Health report (Disease Control Priorities Project, 2006), I did not apply any age weighting 

(whereby healthy life lived at younger and older ages is given a lower weight than that at 

productive adult ages) to the DALYs estimates (Disease Control Priorities Project, 2006). 

Definitions and values of parameters are given in Table 3.7. 
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Table 3.6. Definition and values of parameters and variables for the onchocerciasis disease model  

Symbol Definition of variables and parameters Expression, average value 
and units 

Infection & demography 

, ( , )
M
s d t a  Microfilarial prevalence at time (t) and age (a); 

subscript s denotes host sex and subscript d denotes 
treatment compliance category 

Equation (3.1) 

,
( , )

s d
t aM

 
Mean (arithmetic) number of microfilariae per 
milligram of skin at time (t) and age (a); subscripts s 
and d as above 

Derived from transmission 
model (see Chapter 2) 

,
( , )[ ]

M s d
t ak M  Inverse measure of the degree of overdispersion in 

the distribution of skin microfilariae as a function of 
the mean  (arithmetic) microfilarial load at time (t) 
and age (a); subscripts s and d as above 

Equation (3.2) 

0k  Parameters determining the shape of the relationship 
between 

Mk and skin microfilarial load (Equation (S.2)) 
0.013 

1k  0.024 

d
 Proportion of the host population in treatment 

compliance group d 

– 

sq  Proportion of the host population of sex s (Filipe et al. 
2005) 

0.45/0.55 

( )a  Truncated exponential probability density function of 
host age (a) (Filipe et al. 2005) )exp(1

)exp(

mH

HH

a

a








 

H
  The net rate of population loss (due to death, 

emigration and other process) determining the age 
distribution of the population (Filipe et al. 2005) 

0.04 yr–1 

ma  Maximum recorded human age in the reference 
population of northern Cameroon (Filipe et al. 2005) 

80 yr 

P  Total population size for accuracy of numerical 
integration 

100,000 
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Table 3.6. Continued 

Symbol Definition of variables and parameters Expression, average 
value and units 

Blindness 

, ( , )s d t a  Incidence of blindness due to onchocerciasis at time (t) 
and age (a); subscript s denotes host sex and subscript d 
denotes treatment compliance category 

Equation (3.4) 

, ( , )s d t a   The background incidence of blindness at time (t) and age 
(a); subscripts s and d as above 

Equation (3.5) 

, ( , )
T
s d t a  The total incidence of blindness at time (t) and age (a); 

subscripts s and d as above 
Equation (3.6) 

, ( , )s d t ar  Relative risk of blindness incidence at time (t) and age (a); 
subscripts s and d as above (Little et al. 2004a) 

Equation (3.8) 

1  
Microfilarial load regression coefficient for the relative 
risk of blindness incidence (Little et al. 2004a) 

2
1 10


  

0 ( )s a  Background incidence of blindness i.e. incidence of 
blindness not associated with onchocerciasis at age (a), 
subscript s denotes host sex (Little et al. 2004a) 

– 

, ( , )s d t aM   Mean (arithmetic) number of microfilariae per skin snip 
(with an average skin snip sample weight of 1.7mg 
(Collins et al. 1992)) at time (t) and age (a); subscripts s 
and d as above  

– 

, ( , )T

s d t aB  The total number of blindness cases at time (t) and age 
(a); subscripts s and d as above 

Equation (3.9) 

, ( , )s d t aB  Number of blindness cases due to onchocerciasis at time 
(t) and age (a); subscripts s and d as above 

Equation (3.10) 

( )
B

t  Overall prevalence of blindness due to onchocerciasis at 
time (t) 

Equation (3.12) 

Visual impairment 

, ( , )s d t aV  Number of visual impairment cases due to onchocerciasis 
at time (t) and age (a); subscripts s and d as above 

Equation (3.13) 

( )
V

t  Prevalence of visually impairment due to onchocerciasis 
at time (t) 

Equation (3.14) 
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Table 3.6. Continued 

Symbol Definition of variables and parameters Expression, average value 
and units 

Troublesome itch 

, ( )
T

s d t  Baseline prevalence of troublesome itch due to 
onchocerciasis at time (t); subscript s denotes host sex 
and subscript d denotes treatment compliance category 
(Coffeng et al. 2013; Habbema et al. 2007) 

Equation (3.16) 

, ( )
w
s d t  Prevalence of females worms at time (t); subscripts s 

and d as above 

Equation (3.17) 

 
1  

2  

Coefficients describing the shape of the relationship 
between troublesome itch and female adult worms 
(Coffeng et al. 2013; Habbema et al. 2007) 

-0.043  
 

-0.46 

, ( )s d tW  Mean (arithmetic) number of female adult worms per 
person at time (t); subscripts s and d as above 

Derived from transmission 
model (see Chapter 2) 

wk  Inverse measure of degree of overdispersion in the 
distribution of female worms among hosts (Bottomley 
et al. 2008) 

0.35 

,
( )

s d
T t

 
Number of baseline cases of troublesome itch due to 
onchocerciasis at time (t); subscripts s and d as above 

Equation (3.18) 

( )tT  Number of cases of troublesome itch due to 
onchocerciasis at time (t) 

Equation (3.20) 

( )d t
 

Average year-round reduction in the prevalence of itch 
associated with annual ivermectin at time (t); subscript 
d denotes treatment compliance category (Brieger et al. 
1998b) 

See section 3.8.5.  

( )T t  Prevalence of troublesome itch due to onchocerciasis at 
time (t)  

Equation (3.21) 
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Table 3.6. Continued  

Symbol Definition of variables and parameters Expression, average 
value and units 

Excess Mortality 

( )a  Per capita background death rate of humans at age (a) Equation (3.22) 

( )a  Host survivorship function (Habbema et al. 1996) Equation (3.23) 

2

3

4









 

Regression coefficients for the host survivorship function  

5

0.04

0.81

7.7 10

0.0021


 



 

B
E  The relative risk of mortality associated with blindness 

(Shibuya et al. 2006) 

2.5 

 
VE  The relative risk of mortality associated with visually 

impairment (Shibuya et al. 2006) 

1.5 

, ( , )
B
s d t aD  Incidence of excess mortality due to blindness at time (t) 

and age (a); subscript s denotes host sex and d denotes 
treatment compliance category 

Equation (3.24) 

, ( , )
V
s d t aD  Incidence of excess mortality due to visual impairment at 

time (t) and age (a); subscripts s and d as above 

Equation (3.25) 

, ( , )
M
s d t aE  The relative risk of mortality associated with high 

microfilarial loads at time (t) and age (a); subscripts s and 
d as above (Walker et al. 2012) 

Equation (3.26) 

, 2,( )[ ]s d t af M   Function describing the relationship between relative 
risk of mortality and microfilarial load per skin snip; 
subscripts s and d as above (Walker et al. 2012) 

Equation (3.27) 

2

3

4











 

Regression coefficients of the function describing the 
relative risk of mortality associated with high microfilarial 
loads(Walker et al. 2012) 

1.8

1.8

2.5

0.59

 

, ( , )
M
s d t aD  Incidence of excess mortality associated with high 

microfilarial loads at time (t) and age (a); subscripts s and 
d as above 

Equation (3.28) 

, ( , )s d t aD  Incidence of excess mortality due to onchocerciasis at 
time (t) and age (a); subscripts s and d as above 

Equation (3.29) 
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Table 3.7. Definition and values of parameters for the disability adjusted life years estimates  

Symbol Definition of variables and parameters Expression, average 
value and units 

Bh
 

Blindness disability weight (World Health Organization, 
2004) 

0.59 

V
h

 
Visual impairment disability weight (World Health 
Organization, 2004) 

0.17 

T
h

 
Troublesome itching disability weight (World Health 
Organization, 2004) 

0.068 

YLDs( )t  Years lived with disability due to onchocerciasis at time 
(t) 

Equation (3.30) 

YLLs( )t  Years of life lost due to onchocerciasis at time (t) Equation (3.31) 

( )a  Age specific life expectancy at age (a) (Habbema et al. 
1996) 

Equation (3.32) 

( )DALYs t  Disability adjusted life years burden due to 
onchocerciasis at time (t) 

Equation (3.33) 
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Chapter 4: The Cost of Annual 

versus Biannual Treatment with 

Ivermectin 
 

4.1 Summary 

Recently it has come under consideration to change from annual biannual (twice yearly) 

ivermectin distribution strategy is some African foci, which has been shown in Latin Africa 

to have the potential to interrupt transmission. However, relatively few communities have 

received biannual treatments in Africa. Consequently there are no cost data associated with 

increasing ivermectin treatment frequency at a large scale, essential pre-requisites to provide 

reliable information for evidence-based decision making regarding adoption of a biannual 

treatment strategy. This chapter describes the results of study undertaken to estimate costs 

associated with biannual compared to annual ivermectin delivery in Ghana, which since 2009 

has implemented a biannual treatment strategy in selected priority areas. The costing data 

were collected as part of a field work project, conducted in January-February 2012, in 

collaboration with the Council for Scientific and Industrial Research, Ghana. The results 

indicate that the cost of biannual ivermectin treatment per year is approximately 60% higher 

than the cost of annual treatment. In addition, large-scale mass biannual treatment was 

reported as being well received by communities and health workers, and considered 

sustainable in the context of the Ghanaian NTD control programme This study provides 

tangible evidence of the different costs associated with annual and biannual ivermectin 

treatment, which can be used to inform economic evaluations and policy decisions regarding 

the optimal treatment frequency required to eliminate onchocerciasis in Africa. 

 

 

A modified version of this chapter has been is published: Turner, H.C., Osei-Atweneboana, M.Y., Walker, 

M., Tettevi, E.J., Churcher, T.S. Asiedu, O., Biritwum, N-K. and Basáñez, M-G. (2013) The cost of annual 

versus biannual community-directed treatment of onchocerciasis with ivermectin: Ghana as a case study. 

PLoS Negl Trop Dis, 7(9): e2452. (See Appendix A) 
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4.2. Introduction  

It is thought that switching from annual to biannual mass community directed treatment with 

ivermectin (CDTI) might improve the chances of onchocerciasis elimination in circumscribed 

African foci. However, in the past only a small number of foci (such as River Gambia in 

Senegal (Diawara et al. 2009)) have received biannual treatment in Africa, and therefore 

there are no ground-truth data on the cost associated with increasing the treatment frequency 

to twice per year on a large scale. In Uganda, the cost of biannual CDTI was simply 

estimated by doubling that of the annual treatment (Ndyomugyenyi et al. 2007). To perform 

economic evaluations of increasing the treatment frequency, it is vital to understand how the 

costs of treatment change and to evaluate if any complications arise from using the higher 

frequency.  

Some countries such as Ghana (in the former Onchocerciasis Control Programme in West 

Africa (OCP)), and Uganda (in the African Programme for Onchocerciasis Control (APOC)), 

have recently adopted a biannual treatment strategy at a large scale; the former because of 

suspected suboptimal responses to ivermectin treatment (Osei-Atweneboana et al. 2007), and 

the latter because, in combination with vector control, elimination may be accelerated 

(Ministry of Health, Republic of Uganda, 2007). In this chapter, I report the results of a study 

undertaken to estimate the costs associated with annual (the standard strategy) vs. biannual 

CDTI (the newly adopted strategy) in Ghana. Furthermore, given that other countries in the 

region may be considering switching from annual to biannual ivermectin distribution, 

potential factors that may hamper the scaling up of treatment frequency at a large scale were 

also assessed. The data were collected as part of a field work project conducted in January-

February 2012, in collaboration with the Council for Scientific and Industrial Research, 

Ghana. 

4.3. Methods 

4.3.1. Description of study areas 

In Ghana, onchocerciasis is endemic in 9 out of 10 regions with a total at-risk population of 

approximately 3.2 million (Taylor et al. 2009). Responsibility for ivermectin distribution 



118 

 

(which occurs in 73 districts) was devolved from the OCP to Ghana in 2002 (under the 

supervision of APOC). Since 2006, onchocerciasis control has been implemented in the 

context of a Neglected Tropical Diseases Programme (NTDP) (Taylor et al. 2009), and in 

2009, 40 (55%) districts started using a biannual ivermectin distribution strategy. The 

decision regarding which areas should change to the biannual treatment strategy was based 

on the combined results of rapid epidemiological mapping of onchocerciasis (REMO) 

conducted in Ghana in 2009, parasitological evaluation via skin snipping and determination 

of microfilarial prevalence, and entomological evaluations (according to unpublished results 

of the Ghana onchocerciasis mapping exercise conducted in 2009). Areas with an infection 

prevalence in the adults above 20%, were allocated to a biannual treatment frequency 

considering also a buffer zone of 20 Km around these CDTI priority areas. Therefore, NTDP 

decisions as to whether to allocate districts to annual or biannual CDTI were not made on a 

priori criteria of associated costs but only based on transmission criteria. 

The study focused on the Brong-Ahafo and Northern regions in Ghana (Figure 4.1). In the 

former, data were collected in the Wenchi district where CDTI takes place annually; the Pru 

district and the Kintampo North district, where CDTI is taking place biannually, and in the 

latter, data were also collected in the Kpandai district, where a mixed strategy (some 

communities being treated annually and others biannually) is used (Table 4.1). These districts 

were selected partly based on logistics at the time of the study, and partly because already 

established relationships with the Ghana Health Service (GHS) at the district and sub-district 

levels would ensure collection of accurate data via the purposely designed questionnaires 

(Appendix B). Figure 4.1 shows the locations of the districts where the study was conducted. 

As stated earlier, decisions to switch to a biannual treatment frequency were based on 

infection and transmission criteria alone, so there were no obvious reasons why the decision 

to change treatment frequency would have been influenced by the local district-specific 

programme cost. 
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Figure 4.1. Map of Ghana indicating the sampled regions and districts. The Brong-Ahafo and 

Northern regions are highlighted in light blue and light pink respectively. 1-Wenchi, 2-Kintampo 

North, 3-Pru, 4- Kpandai. Figure prepared by Mr Simon O’Hanlon (Imperial College London).  
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Data were collected at various levels in the organization of the GHS. Firstly, information was 

gathered by conducting semi-structured interviews at the headquarters of the NTDP in Accra, 

and at the Regional Health Service directorates in the Brong-Ahafo region. Secondly, districts 

(and sub-districts where appropriate) were chosen to represent a range of geographical sizes, 

and population densities (Table 4.1). Thirdly, community drug distributors (CDDs) were 

interviewed in at least three communities in each district. 

4.3.2. Perspective 

In this study, the costs under investigation were those borne by the health care providers 

(such as the GHS, the major in-country partners, and the local communities). Therefore the 

cost of drug manufacture and transport to Ghana were excluded. Only data on the cost of 

Table 4.1. Description of ivermectin treatment in the areas where cost data were obtained in Ghana 

Region District 

 

Treatment 

Frequency 

Number of 

Persons 

Treated Per 

Year 

Overall 

Therapeutic 

Coverage§ 

Total 

Population 

Size 

Size  

(km2) 

Brong-Ahafo Wenchi 

 

Annual in all 

communities 

27,881 90% 30,979 3,494 

Brong-Ahafo Kintampo 

North 

Biannual in all 

communities 

57,802 82% 70,490 5,108 

Brong-Ahafo Pru 

 

Biannual in all 

communities 

68,506 88% 77,848 2,195 

Northern Kpandai  Annual in 122 

(55%) and 

biannual in 100 

(45%) of 222 

communities† 

90,183 79% 114,156 1,772 

§ For the Wenchi and Kpandai districts, therapeutic coverage estimates were taken directly from national 

records pertaining to the last treatment round of 2010. For the Pru and Kintampo North districts, coverage 

estimates were derived from an average of two treatment rounds (the last round of 2010 and the first 

round of 2011). † A biannual strategy is used in 15 of 76 (20%) communities in the sampled sub-district, 

whereas the remainder 80% receive treatment annually. Therefore, the costs are likely to reflect more 

closely those of annual rather than biannual distribution. 
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CDTI were collected; costs associated with individual, clinic-based treatment with ivermectin 

were ignored. 

Data were collected on both the financial and economic costs of CDTI. Financial costs are 

those where a monetary transaction has taken place for the purchase of a resource. Economic 

costs also include, in addition to the financial costs described above, estimates of the 

monetary value of goods or services for which no financial transaction has taken place. 

Therefore, economic costs also account for the value of goods or services which could have 

been used for another purpose (opportunity costs). Examples of resources which have no 

financial costs but do have important economic costs are the ‘free’ use of building space 

provided by the Ghana Ministry of Health, the use of donated vehicles, and the time devoted 

to CDTI by unpaid CDDs. The costs associated with CDTI arise from various programmatic 

activities as outlined in Box 4.1. 

 

Box 4.1. Programmatic Activities (partly based on (McFarland et al. 2005))  

 Drug Distribution Chain: the process of getting the drugs from where they entered the 

country to the target population 

 Mobilization and Sensitization: promotion, information dissemination and advocacy related 

to the project 

 Training of Volunteers: training of community drug distributors (CDDs) (includes the costs 

incurred by both the trainers and the trainees) 

 Other Training: all other training at whatever level (includes the costs incurred by both 

trainers and trainees) 

 Reporting: the preparation and transmission of reports 

 Surveillance and Evaluation: surveillance of the disease and treatment distribution at all 

levels 

 All Other Administration: all other general office administration 

 Other Project Activities: all other activities not already mentioned above 
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4.3.3. Data collection  

Data collection was organized at the national, regional, district, sub-district and community 

levels and involved interviewing key personnel and scrutinizing national records. Data 

collected at the national level included records of funds provided by non-governmental 

organizations (NGO) such as Sightsavers, and others such as APOC (managed by the World 

Bank and implemented by the World Health Organization), among others. Given these 

multiple sources, it would have been most interesting to obtain a detailed breakdown of the 

relative contribution of each organization to the funding of onchocerciasis control in Ghana. 

Unfortunately, even at the national sampling level, it was rarely possible to separate the costs 

by their funding source. This, however, did not affect the study, which focused on the 

aggregate cost of onchocerciasis control. The costs collected were incurred in the year 2011. 

At each level, costs were collected according to different resource types (Box 4.2) using an 

approach based on methods described by McFarland et al. (2005) and the UNAIDS 

guidelines for costing studies (UNAIDS, 2000). First, the total gross expenditure on a 

resource (per year) was calculated from national records and/or questionnaires. Second, the 

most appropriate person(s) to answer questions on how the resource is used for activities 

relating to onchocerciasis control was selected for interview. Third, the interviewee was 

asked to indicate what fraction of time the resource was used for onchocerciasis control over 

the year (this was corroborated by multiple sources where possible). Multiplication of the 

total gross cost and fraction of time attributable to onchocerciasis control yielded an estimate 

of the recurrent yearly cost for a resource (such as an employee). The cost of capital 

resources (goods that last for more than one year, such as cars and computers) were estimated 

in a similar fashion, but the gross cost was spread over the average useful lifetime of the 

resource (a technique known as ‘annualization’) to arrive at an average yearly cost (UNAIDS, 

2000). An annualization and discount rate of 3% was used to calculate the economic costs of 

capital resources (Johns et al. 2003). The average useful lifetime of all capital goods was 

assumed to be five years, in line with the value estimated by McFarland et al. (2005) and 

corroborated by study participants at the national level. However, the sensitivity of the results 

to this assumption was investigated by varying the average useful lifetime between 5 and 8 

years (Nonvignon et al. 2012). The annual cost of building space was estimated as the 
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equivalent market rental value for the space being used for the control programme (UNAIDS, 

2000). 

The interviewee was also asked to estimate the fraction of time that the resource was used for 

itemized onchocerciasis control programmatic activities (Box 4.1). In addition, in districts 

receiving ivermectin biannually, the interviewees were asked to describe how their time spent 

on different CDTI activities had changed since increasing the treatment frequency to twice 

per year, and to indicate which of the CDTI activities are repeated for both treatment rounds.  

 

    Box 4.2. Resource Types (partly based on (McFarland et al. 2005)) 

 Transportation (Capital Costs): the capital costs associated with vehicles 

(e.g. the annualizeda cost of motorbikes and cars) 

 Transportation (Recurrent Costs): the recurrent costs associated with transport (e.g. fuel, 

insurance, maintenance, repairs, and rental costs) 

 Personnel: the recurrent costs associated with paying salaries to employees (including any 

supplements or other benefits of employment) 

 Per Diems: the recurrent costs associated with daily allowances (per diems) 

 Supplies and Equipment (Capital Costs): other capital costs associated with a project, (e.g. 

annualizeda costs of computers, photocopiers, and generators etc.) 

 Supplies and Equipment (Recurrent Costs): the recurrent costs associated with project 

activities and general office running 

 Overheads: the recurrent indirect costs associated with a project’s specific utilities charges, 

building rental or equivalent 

 Volunteer Community Drug Distributor (CDD) Time: the monetary value of the donated 

time of CDDs and other community members in implementing community directed 

treatment with ivermectin (CDTI) 

       

           a The annual share of the initial cost of capital equipment 
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At each level, and where relevant, interviewees were given the opportunity to express 

whether they had encountered any specific difficulties with the increasing of treatment 

frequency. 

4.3.4. Data analysis  

Costs collected at the national and regional levels, were factored down and costs from the 

sub-district and community levels factored up, with the aim of arriving at a value for the cost 

per person treated per year in each district (Figure 4.2). This is described for each of the 

levels below. 

 

 

Figure 4.2. Organization levels at which data on cost of ivermectin distribution were collected. 

NGO: Non-Governmental Organization.  
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National costs: 

Of the 73 districts in Ghana where ivermectin is distributed, 40 (55%) are implementing 

biannual treatment. Consequently, when allocating the national costs to the districts, the costs 

were weighted according to the district’s frequency of treatment. Based on responses to 

questionnaires, scrutinizing of national records, and conduction of semi-structured interviews, 

it was estimated that districts treating biannually were responsible for 70% of the total 

national cost. Separate costs (according to annual or biannual treatment) were allocated 

equally across districts receiving a certain treatment frequency. Based on interviews at the 

headquarters of the NTDP and the McFarland et al. (2005) study, it was assumed that the 

main drivers of the national costs were independent of target population size and therefore I 

did not adjust the national costs by the size of districts’ target populations. 

Regional costs: 

These were distributed among districts using the same frequency of treatment-based 

weighting as used for the national costs. Due to logistic reasons on the terrain, it was only 

possible to estimate regional costs from one of the two regions from which districts were 

sampled. Thus, the costs incurred by the Northern region were assumed to be the same as 

those estimated from data pertaining to the Brong-Ahafo region. 

Sub-district costs:  

In each district included in this study one sub-district was sampled. The costs incurred by the 

sampled sub-districts were multiplied by the number of sub-districts within each district to 

aggregate the costs to the district level. 

Community costs: 

In each district included in this study three communities were sampled. In each sampled 

community, questionnaires were administered to the CDDs to ascertain to how many people 

they distributed ivermectin, and whether they received compensation from the district (this 

was corroborated at the local district health centres). Additionally, the opportunity cost of the 

volunteer CDDs’ donated time was estimated by asking CDDs how much time they spent 

distributing the drug each treatment round. This donated time was converted to an equivalent 

number of 8-hour working days, which were valued according to the minimum wage in 

Ghana in 2011 (3.73 Ghana Cedis (GHC) per day (Wageindicator.org, 2012)). This figure 
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was reported to be equivalent to the daily wage of a hired farmland worker in the Brong-

Ahafo region, the occupation of the majority of the interviewed distributors, and was 

subsequently used to estimate the value of the CDDs donated time across each district. 

However, to place a precise value on a CDD’s donated time is difficult and whether or not it 

should be included is a matter of debate. Furthermore, the daily wage of a hired farmland 

worker can vary from district to district, and especially from region to region (Asante & 

Asenso-Okyere, 2003; Nonvignon et al. 2012). Therefore, the economic cost was calculated 

both including and excluding CDD’s donated time, and the sensitivity of the results to the 

assumed daily wage was investigated (increasing or decreasing it by GHC1.00). 

Currency conversion:  

All costs were converted from the Ghanaian local currency (GHC), to United States dollars 

(US$), using the average 2011 exchange rate of US$1.00 to GHC1.58 (Exchange-rates.org, 

2012). Reported costs from other studies were also converted to 2011 US dollars (using a 

consumer price index inflation calculator (United States Department of Labor, 2012)) to 

allow for valid comparison with these results. 

 

4.4. Results 

Table 4.2 shows the estimated financial and economic costs (including and excluding 

volunteer CDDs’ time) of CDTI in the four sampled districts. The majority of the costs 

associated with CDTI were financial, with the extra economic cost per person per year 

(excluding CDDs’ time) only adding US$0.01–US$0.03 (this includes the value of donated 

vehicles and use of free building space). 

The estimated economic cost (excluding CDDs’ time) of annual treatment in Wenchi district 

is US$0.40 per person per year. The economic costs (excluding CDD’s time) of biannual 

treatment in the Pru and Kintampo North districts are approximately 50–60% higher 

(US$0.60 and US$0.64 per person per year respectively) than the corresponding annual costs. 

The estimated economic cost (excluding CDDs’ time) for the Kpandai district (which uses a 

combination of an annual and biannual strategy –see Table 4.1 for description) is US$0.43 

per person per year. These results were not sensitive to the assumed average useful lifetime of 
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capital goods; changing this from 5 to 8 years only changed the cost per treatment by a 

maximum of US$0.015. 

 

 

Table 4.2. Financial and economic Costs (US$) per person treated per year in each district 

Frequency of CDTI§ Annual Biannual Biannual Mixed† 

Cost type Wenchi Kintampo North Pru Kpandai 

Financial cost 0.39 0.62 0.58 0.40 

Economic cost (excluding 

volunteer CDD’s‡ time) 

0.40 0.64 0.60 0.43 

Economic cost* (including 

volunteer CDD’s‡ time) 

0.45 0.73 0.69 0.50 

§ CDTI: Community-directed treatment with ivermectin. † Data from Kpandai district reflect a combination 

of annual (in 61 of 76 (80%) of the communities in the sampled sub-district) and biannual treatment 

frequency (see Table 4.1 and main text).‡ CDD: Community Drug Distributor.* Economic costs include 

financial costs (monetary transactions) and estimates of the monetary value of goods or services for which 

no financial transaction has taken place (for example, the opportunity cost of the CDDs’ time donated to 

administer ivermectin rather then working their fields) (UNAIDS, 2000). 

 

 

4.4.1. Costs disaggregated by resource type and programmatic activity 

Figure 4.3 depicts the cost of onchocerciasis control by CDTI disaggregated by resource type 

in the four sampled districts. The largest proportion of the total cost was associated with the 

payment of personnel. Recurrent transportation costs, such as the costs of fuel and vehicle 

maintenance, were the next most costly resource and showed the most variation among 

districts. 

Figure 4.4 depicts the cost of CDTI-based onchocerciasis control disaggregated by 

programmatic activity in the four sampled districts. Surveillance and evaluation incurred the 

highest cost, followed by the drug distribution chain. For Pru and Kintampo North districts, 

the data show a noticeable increase in the reporting cost compared to Wenchi district. 
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Figure 4.3. Economic costs at district, sub-district, and community levels disaggregated by resource 

type (excluding CDDs’ time).  Personnel,  Per Diems,  Supplies and Equipment (Capital costs),  

Supplies and Equipment (Recurrent costs),  Transportation (Capital costs),  Transportation 

(Recurrent costs),  Overheads. Definitions of different resource types are given in Box 4.2. *Data 

from Kpandai district reflect a combination of annual and biannual treatments. 
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Figure 4.4. Economic costs at district, sub-district, and community levels disaggregated by 

programmatic activity (excluding CDDs’ time).  Training of Volunteers,  All Other Training,  

Mobilization/Sensitization,  Drug Distribution Chain,  Surveillance and Evaluation,  Reporting,  

All Other Administration,  Other Project Activities. Definitions of programmatic activities are given 

in Box 4.1. *Data from Kpandai district reflect a combination of annual and biannual treatments. 
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4.4.2. Community distributors 

From the pooled community data, it was estimated that there is one CDD for every 390 

individuals and they spend an average of 61 hours distributing ivermectin each treatment 

round. The above value was used with data on the number treated in each district (Table 4.1) 

to estimate the total amount of time CDDs spend distributing the drug across the whole 

district. This increased the economic cost by US$0.046 per person per year when treating 

annually, and by US$0.092 when treating biannually (Table 4.2). This result was robust to the 

assumed daily wage of a hired farmland worker, which when increased or decreased 

by GHC1.00, only changed the economic cost of CDD per treatment by plus or 

minus US$0.012. 

The CDDs reported receiving an average equivalent of US$3.17 in compensation for 

attending the distribution training sessions (which are conducted before each treatment 

round), and between US$3.17 and US$9.52 after distributing the drug. In this analysis, it was 

assumed that each distributor received the average (arithmetic mean) of the reported values (a 

total of US$9.96 in compensation for both training and distribution for each treatment round). 

4.4.3. Reported difficulties 

The implementation of a large-scale, mass biannual ivermectin treatment strategy was 

reported at the district and sub-district level as being well received and perceived as 

sustainable in the future. However, the disease control officers at the district health centres in 

the sampled districts in which biannual treatment is being implemented, reported that 

increasing the treatment frequency to twice per year substantially increased the workload by 

increasing the amount of time they spent on reporting activities (the percentage of the 

economic cost at the district, sub-district, and community levels attributed to reporting 

activities increased from 6% in the districts (Wenchi) treated annually to 15% in the districts 

treated biannually (Pru and Kintampo North) (Figure 4.4)). 

 

4.5. Discussion  

The estimated economic cost of annual CDTI in Wenchi district, i.e. US$0.40 per person per 

year excluding CDDs’ time, is consistent with the lower range of costs reported by 
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McFarland et al. (2005), who estimated an average economic cost (excluding CDDs’ time) of 

US$0.62 (2011 prices) per person per year from 10 regions (excluding one region co-endemic 

with Loa loa) across Cameroon, Nigeria and Uganda (with values ranging from US$0.39 to 

US$2.77 (2011 prices)). The estimated cost of annual CDTI presented here is 1.4 times 

higher than the US$0.29 (2011 prices) per person estimated by Onwujekwe et al. (2002) 

using data from two Nigerian communities. However, the Nigerian study used a smaller 

sample of only two communities, and did not collect costs from as an extensive range of 

sources as this study, or as done by McFarland et al. (2005). Katabarwa et al. (2002) 

estimated that in districts of a similar population size to Wenchi, the cost per treatment was 

US$0.34 (2011 prices). However, in districts with a larger population (> 100,000 inhabitants) 

the cost fell substantially to US$0.13 (2011 prices). These estimates are broadly consistent 

with the cost of annual mass drug administration (MDA) for lymphatic filariasis control 

presented by Goldman et al. (2007), in which the estimated financial cost per treatment (with 

donated ivermectin and albendazole) in Ghana was US$0.21 (2011 prices) but varied 

between US$0.08 and US$2.91 (2011 prices) across the whole multi-country study. 

The estimated cost of biannual CDTI per person per year in the Pru and Kintampo North 

districts was 50–60% higher than the estimated cost of annual (in Wenchi) treatment. This is 

consistent with the estimated increase in costs associated with biannual MDA for lymphatic 

filariasis control provided by Stolk et al. (2013) (who estimated for Africa, a 63% increase in 

the cost of treatment per year excluding the value of donated drugs). These costs are higher 

than estimates for biannual treatment at smaller scales and specific age groups, such as in 

school-based anthelmintic treatment programmes. For instance, Phommasack et al. (2008) 

found that the annual cost of treatment of soil-transmitted helminthiases in a school-based 

programme was 35% higher in provinces treating biannually than in those treating annually. 

However, school-based treatment programmes are implemented differently than community-

based programmes and therefore the change in costs of different treatment frequencies cannot 

be directly compared. 

Caution is also advised when comparing the costs of different strategies estimated using data 

from different districts. This is because districts have different characteristics, such as road 

conditions, spread of communities, and population densities, which will affect the estimated 

cost of CDTI. Because of these potential difficulties, study participants in the Pru and 
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Kintampo North districts were asked to estimate (based on their previous experience) the 

percentage allocated to a given resource had this resource hypothetically been used for an 

annual treatment strategy. Thus, the estimated hypothetical economic cost (Table 4.3) of 

treating annually in the Pru and Kintampo North districts (US$0.39 and US$0.43 per person 

per year, respectively) were consistent with the actual cost estimates of treating annually 

obtained for Wenchi (US$0.40 per person per year). This supports the estimated 50–60% 

increase in costs when treating biannually compared to treating annually. The difficulties 

associated with comparing fairly costs among districts within Ghana exemplify a more 

general conundrum of comparing results of health economic analyses conducted in different 

locations, such as the complexity of comparing data collected from different countries with 

differently structured economies and healthcare systems, and where public health 

interventions may comprise different (e.g. school-based versus community-based) modalities 

of delivery. 

 

 

Table 4.3. Hypothetical cost (US$) of annual CDTI in Kintampo North and Pru districts, Brong-

Ahafo region, Ghana 

Cost Type Estimated Annual Cost Per Person Treated if Annual 

Distribution were Implemented 

 Kintampo North Pru 

Financial cost 0.42 0.38 

Economic cost                                     

(excluding volunteer CDD’s time) 

0.43 0.39 

Economic Cost                                       

(including volunteer CDD’s time) 

0.47 0.44 

 

 

The estimated economic cost of CDTI in the Kpandai district, where both annual and 

biannual treatments are delivered, likely reflects more closely the cost of annual rather than 

biannual CDTI since only 15 of 76 (20%) of the communities in the sampled sub-district 

receive biannual treatment (with the remaining 80% receiving annual CDTI). This possibly 

explains why the estimated cost per person per year in the Kpandai district was only 
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marginally higher than that in Wenchi (US$0.43 for the former versus US$0.40 for the latter), 

in which only annual treatments are delivered. Furthermore, Kpandai has a very high 

population density which could reduce the cost per treatment (as found in Katabarwa et al. 

(2002)). Across the whole district, 122 of 222 (55%) of the communities are treated annually 

and the remaining 45% receive biannual CDTI. Therefore, it is reasonable to expect overall, 

the actual cost of ivermectin treatment for Kpandai will lie in between the estimated costs of 

annual and biannual CDTI. 

4.5.1. Costs disaggregated by resource type and programmatic activity 

The costs disaggregated by resource type were consistent among the sampled districts. These 

data are also similar to those presented by McFarland et al. (2005). The recurrent 

transportation cost was notably higher in Kpandai compared with the other districts. This may 

in part be due to the poorer quality of roads in the area, resulting in higher vehicle 

maintenance and fuel costs (although many other factors, including the spread of the 

communities, also affect transportation costs). The costs disaggregated by programmatic 

activity showed slightly more variation among districts than among the different resource 

types. It is noteworthy that in the Pru and Kintampo North districts (and to a lesser extent in 

the Kpandai district), the percentage of the economic cost attributed to reporting activities at 

the district, sub-district, and community levels is substantially higher than that in the Wenchi 

district (15% in Pru and Kintampo North compared to 6% in Wenchi) (Figure 4.4). This was 

attributed to the increase in treatment frequency and is discussed in further detail in section 

4.5.3. 

4.5.2. Community distributors  

The compensation system for CDDs has recently been implemented in Ghana to cover their 

transport costs, to facilitate attendance of training days, and to help serve as an added 

incentive. The amount received by CDDs per treatment round was corroborated at the district 

health centres. Generally, the reported amount received by the community distributors was 

very consistent across communities and districts. 

Accounting for the volunteer CDDs’ time added approximately US$0.05 per person per 

treatment round. The is consistent with the value reported by Onwujekwe et al. (2002), who 
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found that taking into account volunteer CDD time in two Nigerian communities added 

approximately US$0.07 (2011 prices) per person per treatment round (using the Nigerian 

minimum wage to value the volunteer CDDs’ time). However, both the estimates presented 

here and the those of Onwujekwe et al. (2002) are substantially lower than that reported by 

McFarland et al. (2005), who estimated that accounting for volunteer CDDs’ time added an 

average of US$0.19 (2011 prices) per treatment round (valuing volunteer time based on the 

average per capita Gross National Income (GNI) for each of the three countries studied in 

McFarland et al. (2005), namely, Cameroon, Nigeria and Uganda). However, this estimate 

was highly variable between the different study sites (US$0.05–0.54 (2011 prices) per 

treatment round). The use of different methods to value donated CDDs’ time (see below) 

could partly explain the difference (i.e. estimation using the country’s minimum wage, or 

using the country’s per capita GNI). Other possible explanations include the occurrence of 

cultural differences affecting the time it takes to distribute the drug. 

As mentioned above, the method used to value the volunteer CDD’s time has marked effects 

on the cost output. For example, it was assumed the market value of the volunteer CDD’s 

time to be US$2.36 per day (the minimum wage in Ghana of GHC3.73 divided by the 1.58 

exchange rate (Exchange-rates.org, 2012)) based on the wage that a farmland worker would 

receive (i.e. the wage received for the most common alternative occupation) 

(Wageindicator.org, 2012; World Bank, 2013)). However, had the volunteer CDDs’ time 

been valued using the per capita GNI method (as used by McFarland et al. (2005)), this figure 

would have increased to US$4.96 per day (Wageindicator.org, 2012; World Bank, 2013). 

This difference may seem relatively small but when these costs are factored up to the district 

level, they can become substantial. 

4.5.3. Reported obstacles associated with switching from annual to biannual 

CDTI 

Disease control officers at the district health centres reported that increasing the treatment 

frequency to twice per year increased substantially the amount of time they spent on reporting 

activities. This is consistent with the costs disaggregated by programmatic activity (Figure 

4.4), which indicate that the time spent on reporting activities increased more than any other 

project activity when comparing biannual and annual treatments. This may potentially lead to 
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delays in ivermectin being delivered to the districts, if the necessary reports for the next 

dispatch of drugs are not completed on time (delivery of the next batch of ivermectin being 

contingent on reporting). Delays in the delivery of treatment to communities not only will 

have administrative implications, but more importantly, transmission implications. Treating 

individuals every 6 months is highly important for transmission suppression, as it has been 

estimated that adult Onchocerca volvulus female worms start recovering from the temporary 

sterilising (embryostatic) effects of ivermectin approximately between three and four months 

after treatment, and by six months microfilarial production has recuperated to a substantial 

degree (Basáñez et al. 2008). Therefore, delays in treatment will permit more transmission, 

ultimately making the disease harder to eliminate and diminishing the benefit of treating 

biannually. National onchocerciasis control programmes which consider increasing CDTI 

frequency may need to support reporting activities at the district level and potentially at the 

drug donation programme level to encourage timely reporting but also to allow greater 

flexibility in deadlines to minimize delays in drug distribution. 

 

4.6. Conclusions  

The estimate of the cost of annual CDTI is consistent with the range of values previously 

reported in the literature (Katabarwa et al. 2002; McFarland et al. 2005; Onwujekwe et al. 

2002). The results indicate that the cost of biannual ivermectin treatment was approximately 

50–60% higher than the cost of annual treatment, and that simply doubling the cost of annual 

CDTI does not yield a correct estimate as some studies have assumed (Ndyomugyenyi et al. 

2007). This is higher than estimates for increasing treatment frequency obtained at smaller 

scales and when targeting specific age groups, such as those associated with school-based 

anthelmintic treatment programmes (Phommasack et al. 2008), which are not truly relevant 

for onchocerciasis, but similar to estimates for the more comparable lymphatic filariasis 

control programme (Stolk et al. 2013). This study will be beneficial in informing economic 

evaluations regarding cost-effectiveness analyses of increasing CDTI frequency from annual 

to biannual in the African context for the control and elimination of human onchocerciasis. 
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4.7. Limitations  

In Ghana, onchocerciasis control is under the remit of the NTDP and therefore different 

disease control programmes are often integrated. For example, onchocerciasis and lymphatic 

filariasis control activities are often carried out simultaneously. Potentially, this can lead to 

difficulties in obtaining accurate costs for a single disease intervention. In addition, this study 

was retrospective, and therefore, to a certain extent, the data obtained were subject to some 

degree of recall bias. 

In order to reduce the time and logistical complexity involved in collecting the cost data, the 

sampling strategy was not random, as we purposely visited local government offices and 

communities in districts where CDTI was annual, biannual, or a combination of the two. 

Furthermore, it was only possible to obtain data in one district that implements annual 

treatment and one sub-district in each of the districts. Also, the selected districts may have 

been more accessible by road from Accra, the capital of Ghana, than other more remote 

locations. Nonetheless, there is no reason to assume that the costs reported for the sites 

included in this study (either delivering annual or biannual CDTI) are not representative of 

other sub-districts in the area, nor is there a treatment cost-associated reason as to why an 

area switched from annual to biannual CDTI other than the parasitological criteria listed 

above. This is confirmed by the similarity of cost estimation of annual treatment between the 

districts delivering only annual CDTI and the sub-districts also delivering yearly treatment 

within districts implementing both strategies. Due to logistic reasons, the regional level costs 

in the Northern region were assumed to be the same as those estimated from Brong-Ahafo 

region. However, due to differences between the regions (such as road networks and 

community scattering), the costs incurred in the Northern region may be higher. 

Nevertheless, this assumption will not affect the main conclusions of the study regarding the 

relative costs of annual vs. biannual treatment. 
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Chapter 5: An Economic Evaluation 

of Increasing the Frequency of 

Ivermectin Treatment in Africa 
 

5.1 Summary 

In this chapter the health impact, programmatic cost, and projected duration of biannual vs. 

annual ivermectin treatment is evaluated in a range of endemic, economic and programmatic 

scenarios typical of savannah onchocerciasis foci in Africa. The findings indicate that though 

biannual treatment yields only small additional health benefits (in terms of DALYs averted) 

over those of annual treatment, its benefit is pronounced in the context of elimination goals, 

shortening timeframes to reach the proposed operational thresholds for stopping treatment. 

Additionally, these projected reductions in programme duration were found to potentially 

lead to programmatic cost savings. Furthermore, the results indicate that switching to a 

biannual treatment strategy reduces the heterogeneity in the projected timeframe for 

elimination among settings with a different pre-control endemicity, and consequently may 

substantially reduce cross transmission among contiguous onchocerciasis foci and infection 

re-introduction into controlled areas. However, notwithstanding these conclusions, the 

feasibility of increasing from one to two treatments yearly will vary with the specific 

programmatic circumstances. 

 

 

 

 

 

 

 

 

A modified version of this chapter is currently under review: Turner, H.C., Walker, M., Churcher, T.S., 

Osei-Atweneboana, M.Y., Biritwum, N-K., Hopkins, A., Prichard, R.K. and Basáñez, M-G. Reaching the 

London Declaration on Negected Tropical Diseases for onchocerciasis: an economic evaluation of 

increasing the frequency of ivermectin treatment in Africa 
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5.2. Introduction  

The predominant onchocerciasis control strategy in Africa is annual mass drug administration 

(MDA) with ivermectin. Recently, there has been a shift in onchocerciasis control policy in 

Africa, with the aim of programmes’ changing from morbidity control to elimination of 

infection (Section 1.9). In this context, switching to biannual (twice per year) treatment in 

Africa might improve chances of elimination (Gustavsen et al. 2011; Ndyomugyenyi et al. 

2007), a strategy partly motivated by its success in onchocerciasis foci in Latin America 

(Gustavsen et al. 2011) (Gonzalez et al. 2009; Rodriguez-Perez et al. 2010). Some African 

countries, such as Ghana and Uganda, have already adopted large-scale biannual treatments 

in selected foci (Ndyomugyenyi et al. 2007; Osei-Atweneboana et al. 2007). However, the 

likely impact of this strategy more generally in Africa, and how it can help achieve the goals 

set by the World Health Organization (WHO) and London Declaration on Neglected Tropical 

Diseases (LDNTD) (World Health Organization, 2013), has not been investigated. 

In this chapter, by linking a transmission dynamics model (Chapter 2), disease model 

(Chapter 3) and cost data (Chapter 4), the health impact, programmatic cost and projected 

duration, of biannual versus annual ivermectin treatment is evaluated evaluate in a range of 

endemic, economic and programmatic scenarios typical of savannah onchocerciasis foci in 

Africa.  

 

5.3. Method 

5.3.1. Operational thresholds for treatment interruption followed by surveillance 

(OTTIS) 

Based on experiences in foci in Mali and Senegal (Diawara et al. 2009; Tekle et al. 2012), 

cessation of onchocerciasis control in the OCP and ONCHOSIM projections, APOC has set 

operational thresholds for treatment interruption followed by Surveillance (OTTIS). Namely, 

these are a microfilarial prevalence (by skin snipping) <5% in all surveyed villages and <1% 

in 90% of such villages, and <0.5 infective larvae per 1,000 flies (African Programme for 

Onchocerciasis Control, 2010). Based on these thresholds, it was assumed that when the 

modelled microfilarial prevalence (all ages) fell to <1.4% (the weighted mean (arithmetic) of 
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the two prevalence thresholds above), measured just before the next treatment round, the 

OTTIS would have been achieved, determining MDA programme duration. It is important to 

realise that the OTTIS values are not truly a transmission breakpoint (parasite density below 

which the worm population would not be able to maintain itself (Basáñez et al. 2009; Duerr 

et al. 2011; Gambhir et al. 2009)), but rather programmatic goals indicating the cessation of 

MDA and the commencement of post-MDA surveillance. As OTTIS values are provisional, 

they are varied in the sensitivity analysis (Table 5.1). 

5.3.2. Health impact 

The number of disability-adjusted life years (DALYs) averted were used to quantify the 

health impact of ivermectin, combining into a single metric the burden of onchocercal disease 

resulting from blindness, visual impairment, troublesome itching and premature death (see 

Chapter 3 for a description of the disease model). DALYs are particularly useful for policy 

makers and healthcare providers, because they are a more comprehensive measure of 

population health than mortality estimates, allowing comparisons among a wide range of 

health interventions (Disease Control Priorities Project, 2006).  

5.3.3. Costs of mass drug administration  

Based on costing data collected in savannah foci in Ghana (Chapter 4), it was estimated that 

the economic cost of annual community-directed treatment with ivermectin (CDTI) is 

US$41,536 per target population of 100,000 individuals (overall population) per year (2012 

prices) and that this would increase by 60% when treating biannually (Chapter 4). (This cost 

of annual CDTI was derived from the cost per treatment and population size of the Wenchi 

district, presented in Tables 4.1 and 4.2 (inflated to 2012 US$ (United States Department of 

Labor, 2012))). However, due to uncertainty in generalising this estimated cost increase to 

other African countries, this was varied in the sensitivity analysis (Table 5.1). Costs were 

collected from the health care providers’ perspective, i.e., national control programmes of 

endemic countries, non-government organization (NGO) partners, and volunteer community 

distributors (CDD) (Chapter 4). However, as part of the sensitivity analysis the additional 

economic value of donated ivermectin tablets was also included, assuming a commercial, per 

tablet, price of US$1.50 plus US$0.005 shipping costs, and that an average treatment requires 

2.8 tablets per person (Coffeng et al. 2013).  
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5.3.4 Model outcomes and sensitivity analysis 

The model was used to compare the impact of annual versus biannual CDTI over a 50-year 

time horizon in terms of the projected health impact (DALYs averted), programme cost and 

duration. This long-time horizon was used in order to compare adequately the two strategies 

in the context of 2020/2025 elimination goals; MDA programmes have been on-going in 

many areas since the mid 1990’s (and in some since 1988) – see section 1.5. Three pre-

control endemicity levels, namely, 40%, 60% and 80% pre-control microfilarial prevalence, 

were investigated to represent a range from mesoendemic to highly hyperendemic areas 

(Table 1.1). A summary of the pre-control conditions for the three endemicity levels 

investigated is shown in Table 3.1. Changing to a biannual treatment strategy at different 

stages of an ongoing annual MDA programme was also investigated; switching to twice-

yearly CDTI at microfilarial prevalence values of 30%, 20% and 15%, motivated by 

programmatic assessments conducted in Ghana before switching to biannual treatment in 

2009 (Chapter 4). In line with WHO guidelines (World Health Organization, 2003), a 

discount rate of 3% was applied to both the health benefits and the costs, and this rate was 

varied in the sensitivity analysis. 

Table 5.1 summarises the parameter definitions and values that were explored in the 

sensitivity analysis. 
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5.4. Results  

Model outputs indicate that annual CDTI is highly cost-effective (Table 5.2 and Figure 5.1). 

The health impact, cost-effectiveness, and projected MDA duration, were strongly related to 

pre-control endemicity levels; the higher the pre-control microfilarial prevalence, the greater 

the health impact and cost-effectiveness but the longer the projected programme duration 

(Table 5.2 and Figure 5.2). 

 

 

 

 

  

Table 5.1. Summary of parameter definitions and values explored in the sensitivity analysis 

Parameters Values  

Overall proportion of the total population receiving 
ivermectin at each round, referred to as therapeutic 
coverage 

60-80% 

Proportion of the eligible population who never take 
treatment, referred to as the proportion of systematic non-
compliers 

0.1-5% 

Increase in cost (per year) of biannual compared to annual 
community-directed treatment with ivermectin (CDTI)  

40-80%  

Discount rate applied to the health benefits and costs 0-6% 

Inclusion of the economic value of the donated ivermectin 
tablets  

See 5.3.3. Cost of mass drug 
administration  

The per dose reduction in microfilarial production of female 
adult worms, referred to as the anti-macrofilarial action of 
ivermectin  

7-30% 

Operational thresholds for treatment interruption followed 
by surveillance (OTTIS) 

1.4±0.5% microfilarial prevalence 
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Table 5.2. Cost-effectiveness of annual and biannual ivermectin treatment programmes for onchocerciasis control at different levels of 
pre-control endemicity 

Pre-control endemicity 

(microfilarial prevalence) 

Ratio of total            
health impact     
(biannual/annual) 

Ratio of total cost 
(biannual/annual) 

Cost-effectiveness 
ratio of annual 
ivermectin treatment 
( US$) † 

Incremental cost-
effectiveness ratio of 
biannual ivermectin 
treatment ( US$) § 

Mesoendemic (40%) 1.03 1.13 11** 48* 

Hyperendemic (60%) 1.03 1.16   5** 31** 

Highly hyperendemic (80%) 1.03 1.12   3** 12** 

† The ratio of the total cost and the total number of DALYs averted (i.e. the cost per DALY averted) of an annual ivermectin treatment 

programme. § The ratio of the incremental cost and the incremental number of DALYs averted by a biannual compared to annual ivermectin 

treatment programme (i.e. the extra cost per extra health gain). **Highly cost-effective (< US$40 per DALY averted), *cost-effective ( US$40 to 

US$238 per DALY averted) based on the World Bank cost-effectiveness thresholds (inflated to their 2012 equivalent) (World Bank, 1993). The 

analysis was performed with a 50-year time horizon, discount rate of 3% applied both to costs and health benefits, therapeutic coverage of 80%, 

0.1% systematic non-compliers, perennial transmission, and 7% cumulative reduction in microfilarial production by female adult worms per 

ivermectin dose. Costs do not include those incurred by Merck & Co. A summary of the pre-control conditions is provided in Table 3.1. 
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Figure 5.1. Univariate sensitivity analysis of the cost-effectiveness of an annual ivermectin 

treatment programme for onchocerciasis control. Panels A, B, and C correspond to, respectively, a 

pre-control endemicity of 40%, 60%, and 80% microfilarial prevalence. The baseline cost-

effectiveness (with the assumptions outlined in the legend of Table 5.2) is indicated by the thin grey 

horizontal line. i: Decrease in therapeutic coverage from 80% to 60%. ii: Increase in the proportion of 

systematic non-compliance from 0.1% to 5%. iii: Change in the discount rate from 3% ± 3% (i.e. 0-

6%). iv: Inclusion of the value of the donated ivermectin tablets. v: Higher anti-macrofilarial action of 

ivermectin (i.e. a 30% instead of a 7% per dose reduction in microfilarial production of exposed 

female adult worms). vi: Different operational thresholds for treatment interruption (1.4 ± 0.5%). 

Thick and thin dashed lines represent the thresholds for the intervention being highly cost-effective 

<US$40 per DALY averted), and cost-effective (<US$238 per DALY averted), based on World Bank 

criteria of cost per DALY averted (inflated to their 2012 equivalent).  

A 

 

B 

 

C

c 
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Figure 5.2. Comparison of annual vs. biannual ivermectin treatment in areas where onchocerciasis 

control has not been previously implemented. Annual and biannual ivermectin treatments are 

indicated by solid and dashed bars respectively. Error bars represent varying the operational 

thresholds for treatment interruption (1.4% microfilarial prevalence) by ± 0.5%. The analysis was 

performed with a 50-year time horizon, discount rate of 3% applied both to costs and health benefits, 

therapeutic coverage of 80%, 0.1% of systematic non-compliers, perennial transmission, and a 7% 

cumulative reduction in microfilarial production by female adult worms per ivermectin dose. A 

summary of the pre-control conditions is provided in Table 3.1. *Operational threshold for treatment 

interruption not attained within the 50 year time horizon. † Costs do not include those incurred by 

Merck & Co.  

 

The projected incremental health gain of biannual versus annual CDTI (i.e. the additional 

number of DALYs averted) was small, with biannual treatment not being more cost-effective 

than annual treatment (Table 5.2). However, biannual treatment notably shortened the 

projected duration of MDA. Additionally, switching from an annual to a biannual treatment 

strategy during an ongoing MDA programme can also reduce programme duration, 

particularly in highly hyperendemic areas (where annual CDTI would not suffice to reach 

OTTIS), potentially generating programmatic cost savings (Figure 5.3). Though, in 

mesoendemic foci the reduction in programme duration was less pronounced. Furthermore, 

the heterogeneity in the projected programme duration among areas of different pre-control 

endemicity is substantially reduced when using a biannual treatment strategy (Figure 5.3). 
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Figure 5.3. Impact of switching to biannual ivermectin treatment at different stages of an ongoing 

annual onchocerciasis treatment programme. Panels A, B, and C correspond to, respectively, 

switching from annual to biannual treatment at 30%, 20%, and 15% microfilarial prevalence. The 

green, blue and red lines correspond to, respectively, a pre-control endemicity of 40%, 60%, and 80% 

microfilarial prevalence. Annual and biannual ivermectin treatments are indicted by solid and dashed 

bars respectively. Error bars represent varying the operational thresholds for treatment interruption 

by ± 0.5%. The number of additional years of treatment and the ratio of additional costs are 

considered from the point of the switch to biannual treatment (as opposed to the start of control). 

The microfilarial prevalence at the time of the switch was assumed to be measured just before the 

next round of treatment is distributed. Modelling assumptions are as in the legend of Figure 5.2.* 

Operational threshold for treatment interruption not attained within the 50 year time horizon. † 

Costs do not include those incurred by Merck & Co.  
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5.4.1 Sensitivity analysis  

Therapeutic Coverage and Compliance:  

Varying the levels of therapeutic coverage and systematic non-compliance (Table 5.1) did not 

affect substantially the projected health impact of annual or biannual CDTI (Table 5.3). 

However, if the therapeutic coverage is low, there is a slightly greater incremental health gain 

when treating biannually (Table 5.4). Varying coverage and compliance markedly influenced 

the projected programme duration and total cost of MDA; therapeutic coverage exerted a 

more pronounced effect (which increased with increasing pre-control endemicity) on annual 

CDTI, while systematic non-compliance had a pronounced effect on biannual CDTI (Tables 

5.3-5.4 and Figure 5.4). 

 

 

 

 

 

 

Table 5.3. Sensitivity of health impact, total cost and duration of annual and biannual ivermectin 
treatment programmes for onchocerciasis control to different levels of coverage and systematic non-
compliance 

Pre-control 
endemicity 

Percentage change in 
health impact  

Percentage change in 
total cost  

Percentage change in 
programme duration 

Annual Biannual Annual Biannual Annual Biannual 

Effect of assuming 60% versus 80% overall therapeutic coverage 

Mesoendemic -5% -1% 24% 15% 35% 27% 

Hyperendemic -4% -1% 27% 14% 48% 19% 

Highly hyperendemic -3% -1% NA 25% NA 46% 

Effect of assuming 5% versus 0.1% systematic non-compliance 

Mesoendemic -2% -2% 13% 35% 18% 45% 

Hyperendemic -2% -3% 17% 34% 28% 50% 

Highly hyperendemic -3% -4% NA 43% NA 285% 

NA: Operational thresholds for treatment interruption not attained within the 50-year time horizon. 

Pre-control microfilarial prevalence and modelling assumptions are as in the legend of Table 5.2.  
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Table 5.4. Sensitivity of the relative health impact and total cost of biannual compared to annual ivermectin treatment 
programmes for onchocerciasis control to different levels of coverage and systematic non-compliance 

Pre-control endemicity Systematic  

non-compliance 

80% overall therapeutic coverage 60% overall therapeutic coverage 

Ratio of total 

health impact 

(biannual/annual) 

Ratio of total cost 

(biannual/annual) 

Ratio of total 

health impact 

(biannual/annual) 

Ratio of total cost 

(biannual/annual) 

Mesoendemic 0.1% 1.03 1.13 1.07 1.11 

 5.0% 1.03 1.35 1.07 1.24 

Hyperendemic 0.1% 1.03 1.16 1.07 1.04 

 5.0% 1.02 1.33 1.06 1.19 

Highly hyperendemic 0.1% 1.03 1.12 1.07 1.40 

 5.0% 1.02 1.60 1.05 1.60 

Pre-control microfilarial prevalence and modelling assumptions are as in the legend of Table 5.2. 
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Figure 5.4. Sensitivity of the projected duration of an annual and biannual ivermectin treatment 

programme for onchocerciasis control to different levels of coverage and systematic non-

compliance. Panels A, B, and C correspond to, respectively, a pre-control endemicity of 40%, 60%, 

and 80% microfilarial prevalence. Dark brown bars represent the increment in programme duration 

as a result of a decrease in the assumed therapeutic coverage from 80% to 60%. Annual and biannual 

ivermectin treatments are indicted by solid and dashed bars respectively. The analysis was performed 

with a 50-year time horizon and a 7% cumulative reduction in microfilarial production by female 

adult worms per ivermectin dose.* Operational threshold not attained within the 50 year time 

horizon. 
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Economic Assumptions: 

The incremental total cost of starting with, or switching to, biannual treatment was highly 

sensitive to the relative increase in the cost of biannual versus annual CDTI (Table 5.5). 

Increasing the discount rate reduced the cost-effectiveness of both annual and biannual CDTI, 

with this reduction being more pronounced the lower the pre-control endemicity level.  

The cost-effectiveness of both annual and biannual CDTI (and the potential cost savings) was 

substantially reduced by the inclusion of the economic value of the donated ivermectin 

tablets. However, the cost-effectiveness ratios of annual treatment remained under the World 

Bank thresholds for this strategy to be considered as cost-effective (Tables 5.6 and 5.7) 

(World Bank, 1993). 
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Table 5.5. Sensitivity of the total cost of biannual compared to annual treatment programmes for 
onchocerciasis control to an increase in the yearly cost of biannual community-directed treatment 
with ivermectin 

Schedule of biannual ivermectin 
treatment strategy 

Pre-control endemicity  Increase in cost (per year) of biannual 
with respect to annual community-
directed treatment with ivermectin 

40%   80% 

Biannual ivermectin treatment implemented from start of 
the programme 

Ratio of the total costs  
(biannual/annual) 

 Mesoendemic 0.99 1.27 

 Hyperendemic 1.02 1.31 

 Highly hyperendemic 0.98 1.26 

Switching to biannual treatment at different levels of 
microfilarial prevalence in an ongoing annual treatment 
programme 

Ratio of the additional total costs* 

(biannual/annual) 

30% microfilarial prevalence Mesoendemic 0.99 1.27 

 Hyperendemic 1.04 1.34 

 Highly hyperendemic 0.85 1.09 

20% microfilarial prevalence Mesoendemic 0.95 1.23 

 Hyperendemic 0.97 1.25 

 Highly hyperendemic 0.76 0.97 

15% microfilarial prevalence Mesoendemic 0.95 1.23 

 Hyperendemic 0.91 1.17 

 Highly hyperendemic 0.66 0.85 

* The ratio of additional costs is considered from the point of switching from annual to biannual treatment 

(as opposed to from the start of control). When switching from annual to biannual treatment, infection 

(microfilarial) prevalence was assumed to be measured at the beginning of the programmatic year (i.e. just 

before treatment is distributed). Pre-control microfilarial prevalence and modelling assumptions are as in 

the legend of Table 5.2.  
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Table 5.6. Sensitivity of the cost-effectiveness of annual and biannual ivermectin treatment 
programmes for onchocerciasis control to the discount rate, and the economic value of the donated 
ivermectin tablets 

Pre-control 
endemicity 

Cost-effectiveness ratio of annual 
ivermectin treatment ( US$)† 

Incremental cost-effectiveness 

ratio of biannual ivermectin 

treatment (US$) § 

Excluding the value of (donated) ivermectin tablets 

 Discount rate Discount rate 

 0% 3% 6% 0% 3% 6% 

Mesoendemic 6** 11** 17** 13** 48* 87* 

Hyperendemic 3** 5** 9** 5** 31** 61* 

Highly hyperendemic 2** 3** 5** 2** 12** 42* 

Including the value of (donated) ivermectin tablets 

 Discount rate Discount rate 

 0% 3% 6% 0% 3% 6% 

Mesoendemic 51* 97* 156* 846 1,302 1,789 

Hyperendemic 26** 49* 80* 408 750 1,118 

Highly hyperendemic 19** 29** 42* 16** 334 717 

† The ratio of the total cost and the total number of DALYs averted (i.e. the cost per DALY averted) of an 

annual ivermectin treatment programme. § The ratio of the incremental cost and the incremental number 

of DALYs averted by a biannual compared to annual ivermectin treatment programme (i.e. the extra cost 

per extra health gain). ** Highly cost-effective (< US$40 per DALY averted), * cost-effective ( US$40 to 

US$238 per DALY averted) based on the World Bank cost-effectiveness thresholds (inflated to their 2012 

equivalent) (World Bank, 1993). Pre-control microfilarial prevalence and modelling assumptions are as in 

the legend of Table 5.2. 
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Table 5.7. Sensitivity of the relative total cost of biannual compared to annual treatment programmes for 

onchocerciasis control to the discount rate 

Schedule of biannual ivermectin treatment strategy 
and initial level of onchocerciasis endemicity 

Ratio of total cost 

(biannual/annual) 

Ratio of total cost 

(biannual/annual) 

Excluding the value of 
(donated) ivermectin 
tablets 

Including the value of 
(donated) ivermectin 
tablets 

Biannual ivermectin treatment implemented from 
start of the programme 

Discount rate Discount rate 

0% 3% 6% 0% 3% 6% 

 Mesoendemic 1.04 1.13 1.22 1.27 1.38 1.49 

 Hyperendemic 1.03 1.16 1.28 1.26 1.42 1.57 

 Highly hyperendemic 0.83 1.12 1.34 1.02 1.37 1.64 

Switching to biannual treatment at different levels 
of microfilarial prevalence in an ongoing annual 
treatment programme 

Discount rate Discount rate 

0% 3% 6% 0% 3% 6% 

30% microfilarial prevalence Mesoendemic 1.04 1·13 1.22 1.27 1.38 1.49 

 Hyperendemic 1.07 1.19 1.30 1.31 1.46 1.59 

 Highly hyperendemic 0.67 0.97 1.22 0.82 1.19 1.49 

20% microfilarial prevalence Mesoendemic 1.00 1.09 1.18 1.23 1.34 1.44 

 Hyperendemic 0.99 1.11 1.22 1.22 1.36 1.49 

 Highly hyperendemic 0.58 0.87 1.13 0.71 1.06 1.38 

15% microfilarial prevalence Mesoendemic 1.00 1.09 1.18 1.23 1.34 1.44 

 Hyperendemic 0.93 1.04 1.14 1.14 1.27 1.40 

 Highly hyperendemic 0.48 0.75 1.02 0.59 0.92 1.24 

Pre-control microfilarial prevalence and modelling assumptions are as in the legend of Table 5.2 
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Ivermectin Anti-Macrofilarial Action:  

The magnitude of the assumed anti-macrofilarial effect of ivermectin (on rates of 

microfilarial production by female worms) had little influence on health impact (Chapter 3). 

However, the larger the assumed effect, the shorter the projected duration of annual MDA 

(underscoring the desirability of having a truly macrofilaricidal drug, or a drug with a more 

profound effect on female worm fertility). This consequently decreased the incremental 

benefit (in terms of the reduction in programme duration) of switching to biannual treatment, 

particularly in highly hyperendemic areas. Under greater anti-macrofilarial action scenarios, 

biannual treatment would still considerably shorten projected programme duration, but would 

not generate programmatic cost savings (Table 5.8). 
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Table 5.8. Sensitivity of the health impact, total cost and duration of annual and biannual ivermectin 
treatment programmes for onchocerciasis control to the magnitude of the anti-macrofilarial action of 
ivermectin 

Schedule of ivermectin treatment strategy and 
initial level of onchocerciasis endemicity 

Ratio total 
of health 
impact 
(biannual/ 
annual) 

Ratio total 
of costs 
(biannual/ 
annual) 

Projected duration of 
treatment 
programme (years)  

Annual 
frequency 

Biannual 
frequency 

Annual or biannual ivermectin treatment implemented from start 
of the programme 

   

 Mesoendemic 1.03 1.26 12   9 

 Hyperendemic 1.04 1.38 17 14 

 Highly hyperendemic 1.04 1.14 38 22 

Switching to biannual treatment at different levels of microfilarial 
prevalence in an ongoing annual treatment programme 

   

30% microfilarial prevalence  Mesoendemic 1.03 1.22 11   8 

 Hyperendemic 1.04 1.44 16 14 

 Highly hyperendemic 1.04 1.09 34 19 

20% microfilarial prevalence  Mesoendemic 1.03 1.22 11   8 

 Hyperendemic 1.04 1.43 15 13 

 Highly hyperendemic 1.04 1.09 32 18 

15% microfilarial prevalence  Mesoendemic 1.03 1.22 11   8 

 Hyperendemic 1.03 1.39 13 11 

 Highly hyperendemic 1.04 1.08 30 17 

The analysis was performed with a 50-year time horizon, discount rate of 3% applied both to costs and health 

benefits, therapeutic coverage of 80%, 0.1% systematic non-compliers, perennial transmission, and 30% 

cumulative reduction in microfilarial production by female adult worms per ivermectin dose. Costs do not 

include those incurred by Merck & Co.  



155 

 

5.5 Discussion 

These results suggest that annual CDTI has a large and highly cost-effective impact on 

human health. This is consistent with previous appraisals (Benton, 1998; Remme et al. 2006), 

including a study by Coffeng et al. (2013) which estimated that APOC costs US$27 per 

DALY averted, (this programme wide estimate would include forest areas, which have a 

different relationship between infection and sequelae; for example generally less blindness is 

found in forest foci – see section 1.2). Reaching the operational thresholds suggested by 

APOC (African Programme for Onchocerciasis Control, 2010), in mesoendemic and 

borderline hyperendemic areas (those close to 60% microfilarial prevalence) is likely to be 

feasible for 2020/2025 using annual CDTI if coverage and compliance levels are high, in 

agreement with epidemiological observations (Diawara et al. 2009; Tekle et al. 2012). 

However, these observations pertain to foci with seasonal by Simulium sirbanum as opposed 

to perennial transmission. 

By contrast, these projections indicate that in initially highly hyperendemic areas (represented 

here by 80% microfilarial prevalence), it may not be feasible to reach the proposed 

operational thresholds with annual ivermectin treatment alone, even with high levels of 

coverage and compliance. This is because, in the absence of vector control, there is 

substantial transmission between consecutive annual treatments under scenarios of perennial 

transmission (Chapter 3) (Figure 5.5). Although under these conditions, biannual ivermectin 

treatment would only have a small additional health impact—and would be deemed less cost-

effective than annual treatment in terms of the additional cost per additional DALY averted—

it would lead to reduced programme duration. 

 

 



156 

 

Figure 5.5. A comparison of the impact of annual and biannual ivermectin treatment on 

onchocercal microfilarial intensity. Annual and biannual ivermectin treatments are indicated by 

solid and dashed lines respectively. Panels A, B, and C correspond to, respectively, a pre-control 

endemicity of 40%, 60%, and 80% microfilarial prevalence. Microfilarial intensity is quantified as the 

mean (arithmetic) microfilarial load per mg of skin in those aged ≥ 20 years. The analysis was 

performed assuming a therapeutic coverage of 80%, 0.1% systematic non-compliers, perennial 

transmission, and a 7% cumulative reduction in microfilarial production by female adult worms per 

ivermectin dose. 

 

 

The impact of biannual treatment was strongly related to pre-control endemicity, with greater 

projected benefits for higher initial infection prevalence, greatly reducing the residual inter-

treatment transmission (Figure 5.5). In areas with lower pre-control endemicity (lower vector 

biting rates) such transmission becomes less important and biannual treatment has a lesser 

impact, yet still shorten programme duration (Figure 5.2 and 5.5). These projections also 

indicate a notable benefit of switching to biannual treatment during an ongoing annual MDA 

programme (Figure 5.3). This is supported by a recent epidemiological study in the Abu 

Hamed focus of Sudan, which reported that switching from annual to biannual treatment from 

2007 hastened interruption of transmission (Higazi et al. 2013), as well as by reports of 

interruption of transmission in the Wadelai focus of northwest Uganda, where treatment 

frequency was increased to twice a year from 2006 (Katabarwa et al. 2012). This suggests 



157 

 

that the true value of a biannual treatment strategy lies in its potential to accelerate progress 

towards reaching the elimination goals proposed by the LDNTD and WHO, instead of 

bringing additional health gains. Therefore, cost-effectiveness ratios (i.e. the cost per DALY 

averted or health gain within a given time horizon), are not necessarily the most informative 

metric by which to judge biannual CDTI. This highlights the need for the development of 

further economic evaluation frameworks, which better account for the long term benefits of 

elimination, to appraise more appropriately the potential impact of alternative treatment 

strategies for those NTDs targeted for elimination (World Health Organization, 2013). 

5.5.1 Sensitivity analysis  

Coverage and Compliance:  

The health impact of ivermectin treatment was very robust across a range of different levels 

of therapeutic coverage and systematic non-compliance. Therapeutic coverage has a large 

bearing on the projected programme duration and total cost of annual treatment, which is 

consistent with the results of other modelling studies (African Programme for Onchocerciasis 

Control, 2010; Winnen et al. 2002). However, levels of systematic non-compliance have an 

even larger influence on the projected incremental cost and programme duration of biannual 

MDA (Figure 5.4). This has important programmatic implications; in areas where there is 

low coverage but high compliance, biannual treatment may still provide benefit. This 

highlights the need to evaluate and understand the determinants of systematic non-

compliance in programmatic evaluations (Chapter 2). The deleterious effect of low coverage 

and high systematic non-compliance increased in areas of high initial endemicity. In highly 

hyperendemic areas with low coverage and/or high systematic non-compliance, even a 

biannual treatment strategy may not be sufficient to reach the proposed OTTIS. This 

highlights the importance of implementing or developing alternative or complementary 

intervention tools (Taylor et al. 2010) such as vector control, macrofilaricidal therapies, more 

potent microfilaricides, and/or vaccines, as well as of conducting modelling studies to inform 

how best to combine these according to epidemiological and programmatic setting. 

These projections indicate that in communities with only moderate therapeutic coverage of 

annual CDTI (e.g. 60%), efforts to increase the coverage to a higher level (e.g. 80%) may 

have a similar (yet smaller) effect than increasing treatment frequency. However, it was 
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assumed that the level of therapeutic coverage and systematic non-compliance is independent 

of treatment frequency. Yet it is conceivable that increasing treatment frequency to twice 

yearly may reduce systematic non-compliance and/or increase coverage because drug 

distribution would not always occur at the same time each year, with some individuals 

potentially being consistently missed due to seasonal work. In these circumstances, biannual 

treatment might have a larger impact than that presented here (provided sufficient efforts are 

made to maintain high coverage and compliance).  

Economic Assumptions: 

The Ghana-specific estimate of a 60% increase in the cost (per year) of biannual versus 

annual CDTI (excluding the value of the donated drug) (Chapter 4) is consistent with values 

for the increase in cost of biannual drug distribution for lymphatic filariasis control in Africa 

(Stolk et al. 2013). However, this cost will undoubtedly vary among countries and 

programmatic scenarios. The sensitivity analysis illustrates that it has a large effect on the 

incremental cost of implementing from the start, or switching to biannual treatment. This 

highlights the need for countries considering changing to biannual treatment to assess the 

potential cost increase for their specific situation and other co-endemic infections.  

Despite the inclusion of the large economic value of the donated ivermectin tablets, annual 

CDTI remained cost-effective, although such inclusion did raise the incremental cost of 

biannual treatment (Tables 5.6 and 5.7). Further examination is necessary of other potential 

costs associated with increasing treatment frequency incurred by Merck & Co., such as those 

of establishing new production lines to meet higher demands for ivermectin tablets.  

Ivermectin Anti-Macrofilarial Action: 

The magnitude of ivermectin-induced anti-macrofilarial effects has an important bearing on 

the relative benefit of biannual treatment (and possibly drives potential discrepancies between 

the conclusions of different modelling studies regarding the relative benefit of biannual 

treatment) (Chapter 2). Under assumptions of a larger cumulative reduction on microfilarial 

production by adult worms, the relative impact of biannual treatment decreases and ceases to 

be strongly associated with pre-control endemicity levels. This is because a greater 

cumulative effect on microfilarial production reduces the level of residual transmission 

occurring between consecutive annual treatments (Chapter 2). Nevertheless, a biannual 
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treatment strategy would still shorten programme duration, particularly in highly 

hyperendemic areas, although it might not generate cost savings (Table 5.8). 

 

5.6. Conclusions  

Biannual ivermectin treatment yields only small additional health benefits over those of 

annual treatment. However, in the context of elimination goals, the benefit of biannual 

treatment is pronounced, shortening timeframes to reach proposed operational thresholds in 

the 2020/2025 timeframes. This applies both to scenarios deploying the biannual strategy 

from the outset, or switching from an existing annual strategy. This effect becomes more 

pronounced for settings with high pre-intervention endemicity; in highly hyperendemic areas 

reaching such thresholds would only be possible using biannual CDTI, provided therapeutic 

coverage and compliance are high. A biannual treatment strategy also reduces the 

heterogeneity in the projected programme duration among settings with a different pre-

control endemicity, and could act to mitigate cross transmission among contiguous 

onchocerciasis foci, as well as to reduce infection re-introduction into controlled areas. 

Reductions in programme duration could potentially lead to programmatic cost savings. 

Projected outputs depend on assumptions of effects of prolonged ivermectin treatment on 

adult worms, coverage, compliance, and association between infection and disease. 

Besides cost, shorter programmes are more attractive to donors, health officials and 

politicians, and are at a lower risk of disruption by economic and political instability. 

Notwithstanding these conclusions, the feasibility of increasing from one to two treatments 

yearly will vary with the specific programmatic circumstances of the country, availability of 

resources, and incremental cost. The benefit and cost of biannual treatment is particularly 

sensitive to levels of systematic non-compliance, (i.e. the proportion of the eligible 

population who never take treatment) stressing the need for programmes to strive for high 

compliance or at least quantify it, not just focusing on therapeutic coverage, in order to 

understand the determinants of success or lack thereof when monitoring and evaluating 

progress towards the LDNTD and WHO elimination goals.   
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5.7. Limitations  

Currently, EpiOncho is parameterised for savannah areas of Africa (Filipe et al. 2005). 

Consequently, conclusions are not necessarily directly generalizable to forest settings, which 

have different relationships between infection and sequelae, and where onchocerciasis 

vectors are different members of the S. damnosum s.l. complex (section 1.2) (Basáñez et al. 

2006; Bradley et al. 2005; Dadzie et al. 1989; Duke, 1990). Additionally, the disease burden 

associated with disfiguring skin lesions was not quantified, and therefore the overall health 

impact and cost-effectiveness of CDTI may be underestimated (as discussed in Chapter 3). 

A fundamental assumption of the model is that of closed populations; there is no cross 

transmission or ‘spill over’ infection between contiguous or otherwise proximate 

onchocerciasis foci. In reality, this is seldom the case, and in some areas treatment cannot be 

stopped due to the threat of re-introduction of infection from nearby areas where transmission 

is more intense, requiring more frequent or longer MDA. This would incur a cost which is not 

captured in this study. Consequently, the true programmatic value of the potential for 

biannual treatment to reduce heterogeneity in programme duration among areas with different 

infection endemicities (different transmission intensities) is likely to be considerably 

underestimated. Furthermore, this analysis is performed within a 50-year time horizon, and 

therefore, the true cost of having to continue annual CDTI beyond this point, particularly in 

highly hyperendemic areas is not captured. Consequently, the potential cost savings 

generated by biannual CDTI are also underestimated.   

Furthermore, it was implicitly assumed that onchocerciasis control is conducted 

independently from other control programmes. However, onchocerciasis and lymphatic 

filariasis control activities are often carried out simultaneously. The possible implications of 

this on the programme costs, drug supplies, donation programmes, and duration of drug 

distribution were not considered in this analysis. For instance, if MDA frequency were 

increased for lymphatic filariasis control, it may reduce the relative increase in cost of 

biannual CDTI for onchocerciasis. 

Additionally, the analysis assumed that ivermectin’s efficacy remained unchanged for the 

entire duration of the MDA programmes and does not decrease due to development of 

ivermectin resistance. Further investigation is needed regarding how sub-optimal responses to 
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ivermectin (such as those reported in several communities in Ghana (Awadzi et al. 2004a; 

Awadzi et al. 2004b; Osei-Atweneboana et al. 2011; Osei-Atweneboana et al. 2007)), may 

influence the potential benefit of biannual compared to annual ivermectin treatment. 

Moreover, it will be important to develop more comprehensive costing functions, accounting 

for how the costs of annual and biannual MDA may change with scale (and as mentioned 

above, be influenced by other related control strategies).  

Although the current OTTIS, are supported by the epidemiological and entomological 

evaluations in Mali and Senegal (Diawara et al. 2009; Tekle et al. 2012) (for both annual and 

biannual MDA), further validation / comparison to true transmission breakpoints in different 

ecological and epidemiology settings is required. 

EpiOncho is a deterministic model and it does not account for the influence of random events 

(which become particularly important at low infection levels). Consequently the potential 

influence of stochastic process on the time to reach the OTTIS was not captured in this 

analysis. Though, it should be noted that the current simulations are consistent with 

epidemiological observations in Mali, Senegal and Nigeria (Diawara et al. 2009; Tekle et al. 

2012; Traore et al. 2012), where the OTTIS was reached after 15–17 years of annual 

ivermectin distribution.  Furthermore, the goal was not to predict the time to reach the OTTIS 

(or elimination) accurately for any particular country, but to investigate the relative benefit of 

biannual treatment and although stochastic process may cause variations in the estimated 

number of years to reach the OTTIS, they are unlikely to affect this relative benefit of 

biannual treatment. 
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Chapter 6: Conclusions 

6.1. Summary of Key Findings 

The key findings of this thesis are as follows: 

 If ivermectin does not have a large anti-macrofilarial action, as previously assumed in 

many modelling studies (Coffeng et al. 2013; Winnen et al. 2002), elimination of 

onchocerciasis in (highly) hyperendemic areas may not be feasible with annual 

ivermectin distribution alone. 

 The recent estimates of the global burden of onchcoercal disease (Murray et al. 2012), 

which did not include any excess mortality associated with onchocerciasis or 

prevalent vision loss cases, are being underestimated. 

 Although, long term annual ivermectin treatment is highly effective at reducing the 

morbidity and excess mortality associated with onchocerciasis, its overall impact on 

microfilarial prevalence and intensity depends strongly on baseline endemicity, 

treatment coverage and compliance. 

 The cost (per year) of biannual ivermectin distribution is approximately 60% higher 

than the cost of annual treatment. Therefore simply doubling the cost of annual 

community-directed treatment with ivermectin (CDTI) (as some studies have assumed 

(Ndyomugyenyi et al. 2007)) does not yield a correct estimate. 

 Biannual treatment increases the feasibility of, and shortens the timeframes for, 

reaching the proposed operational thresholds for stopping treatment. 

 The benefit and cost of biannual treatment are particularly sensitive to levels of 

systematic non-compliance. 

 

6.2. Policy Implications  

While biannual treatment yields only small additional health benefits over those of annual 

treatment, in the context of the recent elimination goals, its benefit is pronounced, shortening 

the timeframes for and increasing the feasibility of, reaching the proposed operational 

thresholds for stopping treatment. Indeed, in settings with high pre-control endemicity 
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reaching such thresholds would only be possible by switching to biannual ivermectin 

treatment. A biannual treatment strategy could also act to mitigate cross transmission among 

contiguous onchocerciasis foci, as well as to reduce the chance of infection re-introduction 

into controlled areas. This has important policy implications and implies that increasing the 

treatment frequency should be considered, particularly in highly hyperendemic areas. 

However, as discussed in Chapter 5, it may not always be feasible to increase the treatment 

frequency, particularly where resources or access to the villages are limited. Additionally the 

benefit of biannual treatment is highly sensitive to the level of systematic non-compliance, 

stressing the need for programmes to evaluate treatment compliance as well as therapeutic 

coverage. 

A summary of the principal findings of the thesis was presented at a Mectizan Donation 

Program (MDP) meeting held in Accra, Ghana, in April 2013 (see Appendix A). 

 

6.3. Future Research Directions 

6.3.1. Further model parameterization 

EpiOncho is parameterised for the savannah areas of Africa and the results are not necessarily 

directly generalizable to the forest areas which have a different relationship between infection 

and sequelae (Basáñez et al. 2006; Bradley et al. 2005; Duke, 1990). Furthermore, the 

model’s parameters for vector competence, survival, and host choice were those for savannah 

species of the Simulium damnosum sensu lato (s.l.) complex (Basáñez et al. 2009; Filipe et 

al. 2005). The influence of different combinations of vectors, such as those in the forest 

areas, on the impact of ivermectin control and the optimum treatment strategy requires further 

investigation.   

Additionally, the presented results assume that transmission is perennial i.e. occurs all year. 

Further examination of the influence different seasonal patterns of transmission (and the 

relative timing of drug distribution), have on the overall impact of long term ivermectin 

control will be essential to best inform the design of control programmes.  
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Furthermore, it will be important that a stochastic version of EpiOncho is developed, that can 

capture the potential influence of stochastic process on the model projections. 

6.3.2. Alternative interventions 

This thesis focused on evaluating increasing the treatment frequency of ivermectin 

distribution to twice a year. However a number of alternative strategies are also being 

developed that require further consideration. 

Macrofilaricides: 

The macrofilaricidal drugs (such as flubendazole and anti-Wolbachia therapies) that are 

under development may be useful in several situations,such as; in highly hyperendemic areas; 

where Onchocerca volvulus-Loa loa are co-endemic; in communities where sub-optimal 

responses to ivermectin have been reported; and mop-up activities in areas close to 

elimination (Taylor et al. 2009). However, further work is needed to investigate the most 

cost-effective target group and treatment frequency of these drugs.  

Moxidectin: 

Moxidectin is a highly efficacious microfilaricide, which may cause a more prolonged 

suppression of adult worm fertility (as it has a longer half-life) (Cotreau et al. 2003). It is 

possible that annual moxidectin may be comparable to biannual ivermectin distribution 

without the increase in programmatic costs (described in Chapter 4) or the potential strain on 

programmatic resources. Moxidectin has also been identified as a candidate by MACROFIL, 

a World Health Organization (WHO) based project established to develop a macrofilaricidal 

drug to treat onchocerciasis. However, it is important to note that moxidectin’s 

macrofilaricidal effects are unknown and it is not currently licenced for humans. 

Foci vector control: 

Although wide spread vector control, as used in Onchocerciasis Control Programme in West 

Africa (OCP), is no longer considered a feasible strategy, foci vector control targeting 

transmission hotspots may be achievable (and is being conducted in some foci in Uganda 

(Ndyomugyenyi et al. 2007)). A further investigation of the ecological circumstances in 

which this would be cost-effective is needed.  
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Vaccines: 

There are currently three O. volvulus vaccine candidates that have all proven efficacious in 

animal model systems. However, further investigation of what characteristics will be required 

for their efficacious use in disease endemic countries (i.e. their target product profile) is 

needed to help with future development.  

6.3.3. The impact of sub-optimal responses to ivermectin treatment  

As discussed in section 1.6.3, some communities in Ghana have been identified, in which the 

adult worms may be becoming resistant to the embryostatic effect of ivermectin (i.e. the adult 

female worms are resuming reproductive activity earlier than expected in individuals 

responding well to treatment) (Awadzi et al. 2004a; Awadzi et al. 2004b; Osei-Atweneboana 

et al. 2011; Osei-Atweneboana et al. 2007). Further investigation of how these sub-optimal 

responses to ivermectin may affect the feasibility of the elimination goals and the best choice 

of intervention is required. In particular, it is noteworthy that it is possible that increasing the 

treatment frequency to twice a year could alter the selection pressure for higher levels of 

suboptimal response to ivermectin. The evolutionary impact of any changes in policy / 

strategy need to be considered.    

6.3.4. Integrated interventions  

Neglected tropical disease (NTD) control programmes are becoming more integrated 

(targeting more than one disease/group of diseases at once), and there is a growing need for 

modelling studies evaluating interventions to account for this. For instance, onchocerciasis 

and lymphatic filariasis control activities are often carried out simultaneously. However, the 

implications of this on the best treatment frequency (for both diseases), total programme cost, 

and the optimum timing of treatment in relation to different seasonal patterns of transmission 

have not be explored and require a more holistic modelling approach. 

 

6.4. Conclusion  

While the goals of eliminating the public health burden of onchocerciasis will likely be met 

in areas where long-term annual ivermectin distribution is feasible, those of eliminating the 
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infection will depend on the epidemiological and programmatic setting, precluding a one-

size-fits-all approach to onchocerciasis elimination in Africa. 

Although increasing the treatment frequency of ivermectin distribution to twice a year only 

yields small additional health benefits, in the context of the elimination goals its benefit is 

pronounced, increasing the feasibility of and shortening the timeframes for reaching the 

proposed operational thresholds for stopping treatment. Furthermore, these projected 

reductions in programme duration were found to potentially lead to programmatic cost 

savings. Additionally, a biannual treatment strategy reduces the heterogeneity in the projected 

timeframe for elimination among settings with a different pre-control endemicity, mitigating 

the problem of cross transmission among proximate onchocerciasis foci and the potential for 

re-introduction of infection into controlled areas. Notwithstanding these conclusions, the 

feasibility of increasing from one to two treatments yearly will vary with the specific 

programmatic circumstances. 
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Abstract

Background: Recent studies in Mali, Nigeria, and Senegal have indicated that annual (or biannual) ivermectin distribution
may lead to local elimination of human onchocerciasis in certain African foci. Modelling-based projections have been used
to estimate the required duration of ivermectin distribution to reach elimination. A crucial assumption has been that
microfilarial production by Onchocerca volvulus is reduced irreversibly by 30–35% with each (annual) ivermectin round.
However, other modelling-based analyses suggest that ivermectin may not have such a cumulative effect. Uncertainty in
this (biological) and other (programmatic) assumptions would affect projected outcomes of long-term ivermectin
treatment.

Methodology/Principal Findings: We modify a deterministic age- and sex-structured onchocerciasis transmission model,
parameterised for savannah O. volvulus–Simulium damnosum, to explore the impact of assumptions regarding the effect of
ivermectin on worm fertility and the patterns of treatment coverage compliance, and frequency on projections of
parasitological outcomes due to long-term, mass ivermectin administration in hyperendemic areas. The projected impact of
ivermectin distribution on onchocerciasis and the benefits of switching from annual to biannual distribution are strongly
dependent on assumptions regarding the drug’s effect on worm fertility and on treatment compliance. If ivermectin does
not have a cumulative impact on microfilarial production, elimination of onchocerciasis in hyperendemic areas may not be
feasible with annual ivermectin distribution.

Conclusions/Significance: There is substantial (biological and programmatic) uncertainty surrounding modelling
projections of onchocerciasis elimination. These uncertainties need to be acknowledged for mathematical models to
inform control policy reliably. Further research is needed to elucidate the effect of ivermectin on O. volvulus reproductive
biology and quantify the patterns of coverage and compliance in treated communities.
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Introduction

Human onchocerciasis, caused by Onchocerca volvulus and

transmitted by Simulium blackflies, is a parasitic disease leading

to ocular (vision loss, blindness) and cutaneous (itching, dermatitis,

depigmentation) pathology [1,2], as well as to increased host

mortality [3,4,5].

The Onchocerciasis Control Programme in West Africa (OCP)

started in 1974. The programme was initially based on vector

control until, in 1987, ivermectin was registered for human use

against onchocerciasis. Thereupon, Merck & Co. Inc. took the

unprecedented decision to donate ivermectin for as long as needed

to eliminate onchocerciasis as a public health problem [6]. Mass

drug administration (MDA) of ivermectin began in some OCP

regions in 1988–1989, particularly in extension areas [7]. In some

areas of the OCP both antivectorial and antiparasitic measures

were combined, whilst in others (mainly in the western extension)

ivermectin distribution alone, annually or biannually, was

implemented [7,8]. The African Programme for Onchocerciasis

Control (APOC) was launched in 1995 to target the 19
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onchocerciasis endemic countries in Africa not covered by the

OCP [8,9]. APOC’s strategy involved the establishment of

effective and sustainable, community-directed, annual mass

ivermectin treatment for all those aged five years and older

[10,11]. The programme, initially conceived to end in 2007 [8],

and subsequently in 2015 [12], has recently been extended until

2025 with the new goal and commitment for the elimination of

onchocerciasis [13].

In addition to OCP western extension areas that were treated

twice-yearly (e.g. Senegal [7]), some countries such as Ghana (in

the former OCP), and Uganda (in APOC), have adopted a

biannual treatment strategy in selected foci; the former because of

suspected suboptimal responses to ivermectin treatment [14], and

the latter because, in combination with vector control, elimination

may be accelerated [15,16].

Ivermectin is a potent microfilaricide, causing a greater than

90% reduction in skin microfilarial load within a few days, and a

maximum reduction of 98–99% two months after treatment [17].

Ivermectin also has an embryostatic effect on adult female worms,

temporarily blocking the release of microfilariae (mf) [18]. The

efficacy of the embryostatic effect is approximately 70%, with the

maximum reduction of microfilarial production reached one to

two months after treatment [17]. Recuperation of adult worms’

fertility occurs slowly from three to four months after treatment

onwards [17,18] but may not regain its original level up to 18

months after treatment. (The term fertility is used here to refer to

worms producing live, stretched mf, by contrast with females

producing oocytes or embryos, which would correspond to worm

fecundity [17].)

Recent epidemiological and entomological evaluations conduct-

ed in Mali and Senegal suggest that 15–17 years of annual (or

biannual) ivermectin distribution (in the absence of vector control)

may be sufficient to lead to local onchocerciasis elimination in

certain foci [19]. In addition, local elimination may have been

achieved with 15–17 years of ivermectin distribution in 26 villages

in Kaduna state, Nigeria (the first report of such evidence for the

operational area of APOC) [20]. These studies have provided

proof of principle that elimination with annual ivermectin

distribution may be feasible in some African foci. In 2009, an

international expert group convened to discuss the implications of

these results [21]. Based on experiences with cessation of

onchocerciasis control in West Africa and predictions from

mathematical models, the group developed an operational

framework for elimination and provisionally defined transmission

thresholds, namely, a microfilarial prevalence below 5% in all

surveyed villages (and below 1% in 90% of the villages), and a

proportion of local simuliid vectors harbouring ,0.5 L3 larvae per

1,000 flies [19,21].

Mathematical models such as [22], have been used to assess the

feasibility of, and predict the duration of ivermectin distribution

required for elimination [23]. In these modelling projections,

overall (therapeutic) treatment coverage was varied as part of the

sensitivity analysis, and those not taking treatment included a

(correlated but unreported) fraction of systematic non-compliers.

However, the effect of systematic non-compliers (i.e. the

proportion of the population aged five years and older who

never take treatment) on the feasibility of elimination was not

investigated independently from that of coverage. A crucial

conjecture of these projections (based on analysis of a 5-year

community ivermectin trial in Asubende, Ghana [24]), was that

adult female worms, after temporarily ceasing microfilarial

production due to the embryostatic effect of ivermectin, gradually

reach a new production level which is reduced irreversibly by an

average of 30–35% after each treatment round [25], effectively

assuming a cumulative effect of ivermectin on female worm

fertility (equivalent to an increasing proportion of worms not

contributing to transmission; a sort of ‘macrofilaricidal’ effect

[23,25]). However, another modelling study, using data from a

community trial with five biannual treatment rounds in

Guatemala [26], did not find evidence for a cumulative effect

on microfilarial production [27].

Whether or not ivermectin has a cumulative effect on female

worm fertility [28,29] will have important implications for the

optimal design of MDA programmes, and given the sparse data

that exist, this issue represents an area of considerable uncertainty

which needs to be taken into account in modelling studies

estimating the long-term impact of ivermectin treatment on

parasite populations in humans and vectors.

In this paper, we modify our current onchocerciasis transmis-

sion model [30] to explore the uncertainty in modelling

projections of the long-term impact of ivermectin on O. volvulus

populations due to assumptions concerning: a) the effect of

ivermectin on mf production by female worms (biological

variables), and b) treatment coverage and compliance (program-

matic variables). We also explore how these affect the benefit of

annual vs. biannual treatment frequency.

Methods

Mathematical Model
We modified our sex- and age-structured deterministic oncho-

cerciasis transmission model [30,31], which describes the rate of

change with respect to time and host age of the mean number of

fertile and non-fertile female adult worms per host, the mean

number of microfilariae per milligram (mg) of skin (mf/mg), and

the mean number of infective (L3) larvae per fly. To obtain

infection prevalence from infection intensity in humans, we

assumed that the distribution of mf among hosts is negative

binomial as described in [32]. A detailed description of the model

equations is given in Supporting Information Text S1: Protocol

S1, Onchocerciasis Population Dynamics Model. Parameter definitions

Author Summary

Studies in Mali, Nigeria, and Senegal suggest that, in some
settings, it is possible to eliminate onchocerciasis after 15–
17 years of ivermectin distribution. Computer models have
been used to estimate the required duration of ivermectin
distribution to reach elimination. Some models assume
that annual ivermectin treatment reduces the fertility of
the causing parasite, Onchocerca volvulus, by 30–35% each
time the drug is taken. Other analyses suggest that
ivermectin may not have such an effect. We explore how
assumptions regarding: a) treatment effects on microfilar-
ial production by female worms (fertility), b) proportion of
people who receive the drug (coverage), c) proportion of
people who adhere to treatment (compliance), and d)
whether people are treated once or twice per year
(frequency) affect temporal projections of infection load
and prevalence in highly endemic African savannah
settings. We find that if treatment does not affect parasite
fertility cumulatively, elimination of onchocerciasis in
highly endemic areas of Africa may not be feasible with
annual ivermectin distribution alone. If two areas have
equal coverage but dissimilar compliance, they may
experience very different infection load, prevalence and
persistence trends. Projections such as these are crucial to
help onchocerciasis control programmes to plan elimina-
tion strategies effectively.

Projected Impact of Ivermectin on Onchocerciasis

PLOS Neglected Tropical Diseases | www.plosntds.org 2 April 2013 | Volume 7 | Issue 4 | e2169



and values can be found in Supporting Information Text S2:

Supplementary Tables, Table S1.

Ivermectin Effects
After each dose of ivermectin there is a microfilaricidal effect

with 99% efficacy, and a reduction in microfilarial production

(embryostatic effect) by fertile female worms [17]. The ivermectin-

exposed adult worms are then assumed either to: a) reach a new

microfilarial production rate which is reduced by 30% ten months

after each treatment round (representing a cumulative effect,

depicted in Figure 1A), or b) resume microfilarial production,

which ten months after each treatment would reach 70% of its

baseline value, i.e. is also reduced by 30% from baseline, but the

reduction is not additive (representing a non-cumulative effect, as

concluded in [27], and illustrated in Figure 1B). The equations

modelling the effect of ivermectin in female worm fertility are

described in Supporting Information Text S1: Protocol S2,

Modelling the Cumulative Effect of Ivermectin. Parameter definitions

and values can be found in Supporting Information Text S2:

Supplementary Tables, Table S2.

Although the cumulative reduction proposed in [25] was

estimated from data corresponding to annual ivermectin distribu-

tion [24], it was assumed that in the case of biannual treatments,

each 6-monthly treatment causes the same proportional reduction.

An analysis of the sensitivity of model outputs to this assumption

was conducted following [23]. Ivermectin was assumed to have no

macrofilaricidal action (i.e. not to reduce adult worm life-

expectancy) at the standard dose used for MDA [17,33,34], and

to have intact efficacy, i.e., no sub-optimal response [14] or drug

resistance [35] were included.

Treatment Coverage, Compliance, and Frequency
The model is stratified into four treatment compliance classes: a

first group of individuals who take treatment every round; two

groups who take treatment every other round alternately, and a

fourth group who never take treatment. The latter class represents

individuals in the community who are systematic non-compliers, as

opposed to a situation in which a proportion of individuals miss

some treatment rounds (e.g. because they are absent or pregnant at

the time of treatment). The proportion of systematic non-compliers

was set at 0.1%, 2%, and 5% to investigate its effect on model

outputs. These values were chosen to explore potential variability in

this parameter. A recent ivermectin compliance study reported that

6% had never taken the drug over the course of eight consecutive

treatment rounds [36]. The four compliance groups were assumed

not to differ in exposure to vectors (which depends on age and sex

according to [30]). Children under five years were not treated in the

model as they are not eligible to receive ivermectin.

Figure 1. Schematic representation of two different proposed effects of ivermectin on Onchocerca volvulus microfilarial production.
The schematic represents a closed population of adult worms (i.e., no incoming worms due to transmission or worm death). A: Ivermectin is assumed
to have a cumulative effect on adult worm fertility by which the microfilarial production of ivermectin-exposed adult worms is reduced by 30% after
each treatment round (red solid line). B: Ivermectin is assumed not to have a cumulative effect; ivermectin-exposed adult worms resume microfilarial
production to 70% of its baseline value ten months after each treatment [17] (blue solid line).
doi:10.1371/journal.pntd.0002169.g001
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Model Parameterisation and Examined Outputs
Human age- and sex-structure reflects the demography in

savannah areas of northern Cameroon [37,38], as it is in

savannah areas of Africa that the prevailing O. volvulus–S.

damnosum combinations are responsible for the most severe

sequelae of onchocerciasis [1,2]. Parameters for vector compe-

tence, survival, and host choice were those for savannah species

of the Simulium damnosum complex (S. damnosum sensu stricto and S.

sirbanum) [30,39], responsible for onchocerciasis transmission in

the region [40,41].

The overdispersion parameter for the distribution of adult

worms among hosts was as estimated in [27] (see Supporting

Information Text S1: Protocol S3, Mating Probability and

Supporting Information Text S2: Supplementary Tables, Table

S3). The parameterisation of the relationship between microfi-

larial prevalence and load was that for West African savannah

areas [32] (see Supporting Information Text S1: Protocol S4,

Microfilarial Prevalence and Supporting Information Text S2:

Supplementary Tables, Table S3). The annual biting rate

(ABR) by blackfly vectors was set to 19,000 bites per person

per year (well within the range of values recorded in savannah

areas [32,40,41]), to achieve a baseline mean microfilarial load of

27 mf/mg (all ages), and of 44 mf/mg of skin in those aged 20

years and above. This resulted in an overall microfilarial

prevalence (all ages) of 70%, representing an area of high

baseline endemicity. In onchocerciasis, hyperendemic areas are

those with overall infection prevalence above 60% [42], but this

class can encompass a wide range of transmission and infection

intensities. (Note that the mean microfilarial load per mg of skin

in those aged $20 years here is an arithmetic mean, not a

geometric mean of the number of microfilariae per skin snip (ss)

(mf/ss) in the same age group, known as the community

microfilarial load (CMFL) [43].) Understanding the long-term

impact of ivermectin in highly hyperendemic areas is particularly

important, as such areas will be those in which controlling the

disease has the highest priority (morbidity will be more severe),

elimination of the infection reservoir is likely to be more difficult

or take longer [23], and from which the infection could reinvade

controlled areas.

The model was used to explore the effect of 15 years of (annual

or biannual) mass ivermectin distribution on: a) infection intensity

defined as mean microfilarial load per mg of skin in those aged

$20 years, and b) prevalence of microfilaridermia in the overall

population. We choose 15 years as a suitable timescale to

investigate the impact of long-term treatment of onchocerciasis

with ivermectin, motivated by the epidemiological studies

described in [19,20]. Since the model is deterministic, the

probability of reaching elimination was not investigated.

Sensitivity Analysis
The sensitivity of the above model outputs was explored

regarding the following assumptions: 1) cumulative effect of

ivermectin on female worm fertility (present vs. absent); 2) overall

therapeutic coverage (proportion of the total population receiving

ivermectin at each round: 60%, 70%, 80%); 3) proportion of

systematic non-compliers (those who never take treatment: 0.1%,

2%, 5%); and 4) treatment frequency (annual vs. biannual). In

order to explore the extent to which our results were sensitive to

the assumption that biannual treatments each caused the same

reduction in fertility of 30% per treatment; we also explored model

outputs with a more conservative reduction of 16.5% per 6-

monthly treatment (which gives an overall annual reduction of

30%).

Results

Cumulative vs. Non-cumulative Effect of Ivermectin on
Microfilarial Production by O. volvulus

Model outputs indicate that the assumption of a cumulative

impact of ivermectin on microfilarial production by female O.

volvulus has a substantial effect on projections of long-term

ivermectin treatment (Figure 2). Regarding infection intensity in

adults aged 20 years and older, there would be a very pronounced

decrease partly due to little repopulation of the skin by mf, and

partly due to the ensuing suppressed transmission. This is because,

under this conjecture, the model assumes that the number of mf

produced per female worm per unit time would progressively be

reduced to a very low level. By contrast, under the assumption of

ivermectin not exerting a cumulative effect on microfilarial

production, there is a substantial amount of repopulation of the

skin by mf in-between annual treatments, leading to more

transmission and a smaller impact on infection intensity.

Annual vs. Biannual Treatment Frequency
Assumptions regarding the operation or absence of a cumulative

effect of ivermectin on parasite fertility can also influence the

expected relative benefits of annual vs. biannual treatment

frequency regarding reductions in infection intensity, prevalence,

and transmission. In the presence of a cumulative reduction with

each treatment round, there is initially a very marked benefit of the

biannual distribution on the reduction of parasitological indicators

(as the rate of microfilarial production is rapidly reduced).

However, after repeated treatments, there would be much less

difference in the long-term impact of ivermectin treatment on

microfilarial prevalence compared to an annual treatment strategy

(Figure 3A). In the absence of a cumulative effect, biannual

treatments are more beneficial both in the short and long terms in

Figure 2. Impact on infection intensity of annual ivermectin
distribution under two assumptions of ivermectin effects.
Intensity of infection is quantified as microfilarial load per mg of skin
in those aged $20 years. The red and blue solid lines represent,
respectively, model outputs assuming the operation of a cumulative
impact on the fertility of O. volvulus (illustrated in Fig. 1A), or the
absence of such an effect (Fig. 1B). Model calibration corresponds to an
ABR of 19,000 (savannah) Simulium damnosum bites/person/year; a
baseline mean microfilarial load of 44 mf/mg (in those aged $20 years);
a 70% microfilarial prevalence (all ages); a therapeutic coverage of 80%
(overall population); and a systematic non-compliance rate of 0.1%. The
demography of the human population is that of northern Cameroon
[30,37,38].
doi:10.1371/journal.pntd.0002169.g002
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reducing microfilarial prevalence than annual treatments

(Figure 3B). With the more conservative 16.5% reduction in

female fertility per 6-monthly treatment, the initial benefit of

microfilarial prevalence reduction is less pronounced than in the

previous scenario, but again, there is relatively little difference in

the long-term impact of biannual compared to annual ivermectin

treatments (Supporting Information Text S3: Supplementary

Figures, Figure S1).

Therapeutic Coverage and Compliance Patterns
Varying the therapeutic coverage in the overall population, and

the proportion of systematic non-compliers had a large influence

on the infection intensity achieved at the end of the 15th year of

ivermectin distribution. An increased overall coverage, or a

decreased proportion of systematic non-compliers lead to lower

microfilarial loads 12 months after the 15th year of intervention

(Figure 4). Under annual treatment, overall coverage had a larger

effect on projected infection intensity (Figure 4A) and microfilarial

prevalence (Supporting Information Text S3: Supplementary

Figures, Figure S2A) than under biannual treatment (Supporting

Information Text S3: Supplementary Figures, Figure 4B and

Figure S2B). (Because of the nonlinear relationship between

infection prevalence and intensity, the proportional reductions in

prevalence are smaller.) For instance, under the assumption of a

cumulative effect of ivermectin, and for a 5% proportion of non-

compliers, increasing therapeutic coverage from 60% to 80%

decreased microfilarial load by ,50% for annual frequency

compared to 16% for biannual frequency. The corresponding

values when no cumulative effect was assumed were ,37% and

,30%. By contrast, the assumed proportion of systematic non-

compliers had a more pronounced effect on the impact of biannual

treatment delivery. Under the assumption of a cumulative effect of

ivermectin, and for a 70% therapeutic coverage, decreasing

systematic non-compliance from 5% to 0.1% decreased microfi-

larial load by ,69% for annual frequency and by ,97% for

biannual frequency. The corresponding values when no cumula-

tive effect was assumed were ,23% and ,53%.

Discussion

Cumulative vs. Non-cumulative Effect of Ivermectin on
Microfilarial Production by O. volvulus

Mathematical models can play a fundamental role in informing

control programmes and strategies, but crucially, policy makers

must realise that model outputs are highly dependent on implicit

and explicit model assumptions [44]. Among the latter and for

onchocerciasis in particular, the effects that (yearly or 6-monthly)

ivermectin treatments exert on the reproductive biology of O.

volvulus represent an area of considerable uncertainty, where

further research is urgently needed. Although ivermectin’s

Figure 3. Impact on infection prevalence of annual/biannual ivermectin distribution under two assumptions of ivermectin effects.
Solid and dashed lines represent, respectively, annual and biannual treatment frequency. A: Red lines correspond to model outputs assuming that
ivermectin exerts a cumulative reduction in microfilarial production by the adult female worm. B: Blue lines correspond to model outputs assuming
the absence of such cumulative reduction. Calibration of the model is as in Figure 2.
doi:10.1371/journal.pntd.0002169.g003
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microfilaricidal effect is well established [17], the embryostatic

effect and its repercussions on female worm fertility [18]; whether

or not such effects on fertility are irreversible [25,28]; the rate of

resumption of microfilarial production [17]; and possible effects on

intranodular sex ratios and insemination rates [45,46,47], remain

poorly understood. An appropriate and updated incorporation of

these effects into models, and an understanding of any enhanced

macrofilaricidal activity of ivermectin under increased treatment

frequency regimes [45,47,48,49], are essential to reliably inform

control policy, and fully assess ivermectin efficacy. Our results

illustrate that the question of whether or not the drug effects on

microfilarial production are cumulative, is highly influential on the

projections of the long-term effect of annual or biannual MDA

with ivermectin, particularly in areas with high baseline oncho-

cerciasis endemicity.

The data that informed the model in [25], and presented in

[24], comprised longitudinal microfilarial load follow up at various

time-points after each of five annual treatment rounds in 74

individuals who received all five annual ivermectin doses from

1987 through to 1991 in an early community trial in the savannah

focus of Asubende, Ghana [24]. The focus had been under vector

control since 1986 during the OCP, and experienced a 70%

reduction in parasite exposure during the trial despite antivectorial

measures being interrupted for the first three years of ivermectin

treatment. Figure 3 of [25] contrasts two model fits explaining the

temporal trends in five annual data points of [24], corresponding

to (decreasing) microfilarial counts just before each treatment

round. The two hypotheses being tested to explain such trends are

a null hypothesis of all—ivermectin-exposed—adult worms

regaining their full microfilarial productivity vs. an alternative

hypothesis of a 35% reduction in productivity with each treatment

round. The authors of [25] concluded that the model assuming the

alternative hypothesis provided a better fit to the data. However,

given that: a) microfilarial loads were measured per skin snip

instead of per mg of skin; b) the weight of a skin snip may range

between 0.5 and 3 mg; c) lighter snips more likely yield a false

negative result, and d) microfilarial counts originated from snips

incubated for only 30 minutes in distilled water [24,50] (likely to

underestimate microfilarial load as microfilaridermia decreases),

there is the possibility of considerable measurement error [5]. This

is particularly important regarding the last two data points in the

dataset (the most influential for discriminating between the two

Figure 4. The effect of coverage and compliance on infection intensity after 15 years of ivermectin treatment. Intensity of infection is
quantified as microfilarial load per mg of skin in those aged $20 years. The values presented correspond to one year after the 15th treatment (for
annual frequency, Fig. 4A), or one year after the 30th treatment (for biannual frequency, Fig. 4B). Red and blue bars represent, respectively, a
cumulative and a non-cumulative effect of ivermectin on microfilarial production by the female worm. Dotted bars: 0.1% systematic non-compliance;
hashed bars: 2% systematic non-compliance; solid bars: 5% systematic non-compliance. Calibration of the model is as in Figure 2. Note the different
scale on the vertical axis between 4A and 4B.
doi:10.1371/journal.pntd.0002169.g004
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hypotheses), as for the last two years of the community trial in

Asubende, the study area was receiving full vector control in

addition to ivermectin, making it difficult to disentangle the effects

of treatment from those of antivectorial measures. (The authors of

[25] indicate, however, that the impact of vector control was taken

into account in their model.) By contrast, the study in [27], based

on the data presented in [26], which did not detect a cumulative

effect of ivermectin on the production of microfilariae by female

worms, used longitudinal data from 510 individuals (7 times as

many as [24]), who took all five 6-monthly doses of ivermectin

from 1998 to 1990 in the absence of vector control in Guatemala,

with microfilarial loads measured per mg of skin after 24 h

incubation [26].

Since our current model is deterministic, we cannot presently

explore the probability of elimination. However, comparison of

our projections with those of other models is informative.

ONCHOSIM projections indicate that with a coverage of 80%,

and an initial intensity of 70 mf/ss (in those aged 20 years and

older), a minimum of 25 years of annual ivermectin distribution

would be necessary to achieve a 99% probability of elimination

[21]. In previous projections with the same model [23], the

required duration of ivermectin distribution increases steeply and

nonlinearly as heterogeneity in individual variation to vector

exposure increases. Our model includes age- and sex-dependent

exposure to vector bites [30] but does not consider inter-individual

variation. The simulations in [21,23] assume that ivermectin has a

cumulative effect on the production of mf by female worms, and

our results suggest that, in the absence of such an effect, ivermectin

would have a less pronounced long-term impact. This indicates

that if ivermectin does not have a cumulative effect on the fertility

of O. volvulus, a longer duration of ivermectin distribution than

previously estimated may be required to reach elimination

thresholds, especially in areas with a high initial infection intensity

and perennial transmission. In some areas of Cameroon that have

received 13 years of ivermectin treatment, recent analyses of

microfilarial dynamics do not support the operation of a strong

cumulative effect of repeated treatments on the microfilarial

productivity of female worms [51].

Comparison with provisional thresholds for elimination is also

interesting. Operational thresholds based on [19,21] suggest a

microfilarial prevalence ,5% in all of the sampled villages, or

,1% in 90% of sampled villages. Our results indicate that

microfilarial prevalence would remain above 5% after 15 years of

annual or biannual treatment if ivermectin does not affect

microfilarial production by O. volvulus cumulatively, even with a

therapeutic coverage of 80% and only 0.1% of non-compliers

(Figure 3B). Our hypothetical baseline infection levels were set at

70% microfilarial prevalence and .40 mf/mg in those aged $20

years, and the ABR to 19,000 bites per person per year, with

perennial transmission. The baseline prevalence in the Senega-

lese/Malian foci reporting elimination ranged from mesoendemi-

city to the lower end of hyperendemicity (20% to .60%), and the

CMFL from 10 to 48 mf/ss in 16 (27%) of the villages, with

CMFL ,10 in the remaining 44 (73%) of the 60 surveyed villages.

In addition, transmission in these foci is seasonal as opposed to

perennial, enhancing the impact of annual treatment on trans-

mission when ivermectin is distributed just before the start of the

rains; microfilarial loads are lowest during the transmission season

and there are no blackflies around to ingest mf when these start

reappearing in the skin [19]. Also, the difference with a biannual

strategy would be less pronounced. These factors may have

contributed to the feasibility of elimination in these areas and the

reported lack of a significant difference between annual and 6-

monthly treatment frequency. Likewise, in the foci located in

Kaduna state, Nigeria, the median baseline prevalence was 52%,

the median CMFL was 4 mf/ss, and transmission was also

seasonal [20]. It should be noted that ONCHOSIM projections

are consistent with current observations of elimination [19,20,21].

However, as described above, the areas where elimination has

currently been achieved had lower baseline endemicity levels, and

seasonal vector presence, leading to less transmission during inter-

treatment periods. Under these conditions, assumptions of

ivermectin effects on adult worms would likely have a lesser effect

on models projections.

Our results are compatible with those of other modelling studies

[52], which indicate that the higher the transmission intensity, the

higher the necessary effectiveness of treatment (a net measure

comprising coverage, number of treatment rounds per year and

drug efficacy) to reach elimination. However, our study also

emphasizes how different modelling assumptions can have

profound effects on model outcomes and conclusions (a more

extensive summary of the main structural assumptions of different

onchocerciasis models is presented in [53]). This further highlights

the need, discussed in [44] for helminth modellers to investigate

key questions regarding helminth control more collaboratively,

exploring the reasons for any disparity between the results of

different models using the best available data.

Annual vs. Biannual Treatment Frequency
Biannual ivermectin treatment was found to have a large

additional benefit in both reducing microfilarial prevalence and

intensity compared to annual treatment when no cumulative

reduction in parasite fertility was assumed. When such effect was

assumed, the model indicated that there would be an initial

substantial benefit (as rates of microfilarial production are reduced

quickly) of the biannual strategy, but that there would be relatively

little difference in microfilarial prevalence at the end of the 15th

year compared to annual treatment (Figure 3A). A possible reason

for the pronounced difference between the two treatment

frequencies, if ivermectin does not decrease worm fertility

cumulatively, is that there would be substantially more transmis-

sion between annual than between 6-monthly treatments (distrib-

uting the drug every 6 months does not allow the adult worms to

regain their fertility to a substantial level if there is perennial

transmission, but there may be less additional benefit in seasonal

transmission scenarios). Understanding ivermectin’s effect on the

reproduction and survival of adult worms [17,18,28,29,

45,46,47,48,49] has important policy implications regarding

switching to a biannual (or more frequent) treatment strategy in

Africa. Three-monthly ivermectin treatments have contributed to

acceleration towards local elimination in initially hyperendemic

foci in Mexico [54].

Therapeutic Coverage
Varying therapeutic coverage (for fixed non-compliance) had

less effect on the impact achieved with a biannual treatment

frequency than it had for annual distribution. This can be

explained as the model accounts for the fact that if someone misses

a treatment round, there is another chance to get treated during

that year, ensuring that at least one annual treatment is received.

In annual frequency, a missed treatment would result in a gap of at

least two years between treatments, allowing microfilaridermia

levels to build-up and contribute to transmission in the between-

treatments period. This has implications regarding policy decisions

in areas that have been found to have low coverage in the past,

and highlights the potential benefit of switching to a biannual

treatment strategy. In any case, a higher therapeutic coverage

would prevent more disease during the intervention as the
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intensity of infection would decrease more rapidly. Incidence of

blindness [55], and relative risk of excess mortality in sighted

individuals [4,5] depend on microfilarial load. It is also important

to bear in mind that our model, at this stage, does not include the

possibility of sub-optimal response or resistance to ivermectin or

financial costs, in which case, the described benefits of a biannual

treatment frequency could be very different.

Compliance Patterns
Assumptions regarding the proportion of systematic non-

compliers were found to be just as important as those for overall

coverage when projecting the long-term impact of ivermectin

distribution. The proportion of systematic non-compliance (for a

fixed level of therapeutic coverage) was also found to have a

marked influence on the impact achieved by a biannual strategy,

particularly when assuming a cumulative effect of ivermectin; the

higher the non-compliance rate, the smaller the benefit of

biannual treatment. This indicates that the effect of systematic

non-compliance may not simply be overcome by increasing

treatment frequency and has implications when considering

switching to a biannual treatment strategy, as two areas with the

same overall coverage but different proportion of systematic non-

compliers may lead to very different results regarding the

feasibility of elimination [56].

As control programmes move towards elimination goals, the

proportion of systematic non-compliers in the population becomes

increasingly important. Studies of coverage and compliance for

lymphatic filariasis treatment have indicated that, in addition to

heterogeneity in transmission and vector density, and missed

rounds of MDA, continuing transmission seems to be linked to

rates of systematic non-compliance [56]. Therefore, when

evaluating the progress of elimination programmes, the proportion

of, and factors contributing to, systematic non-compliance should

be investigated in addition to those determining overall coverage

[36,57], as an assessment of the latter on its own may mask reasons

behind transmission persistence.

Modelling studies should also routinely vary the proportion of

systematic non-compliers in addition to levels of treatment

coverage as part of their sensitivity analysis to help understand

the impact of prolonged treatment in populations. Although there

are some data indicating that treatment compliance may depend

on host age and sex (Brieger et al. found that older members of the

community were more likely to take ivermectin than younger

sections of the population, and men were more likely to comply

than women in a Cameroon, Nigeria and Uganda multi-centre

study [57]), further investigation regarding patterns of systematic

non-compliance (i.e. the characteristics of individuals who never

take the drug) will be essential to parameterise such modelling

studies.

Conclusions and Future Directions
There is substantially more uncertainty surrounding model-

derived projections of the long-term impact of, and feasibility of

onchocerciasis elimination with ivermectin distribution than

previously recognised. This uncertainty arises from an incomplete

understanding of the effects of ivermectin on parasite survival,

population structure, and reproductive biology, when the drug is

administered at the standard dose annually, biannually (or more

frequently, e.g. quarterly). Although the results presented in

[45,46,47,48,49] would be invaluable to parameterise mathemat-

ical models incorporating such effects, further empirical and

theoretical research is needed. Regarding the former, there is a

need for well-characterized long-term (individual) longitudinal

data (including previous treatment history), to estimate reliably the

potential macrofilaricidal effects of ivermectin. However, to avoid

the potentially confounding effect of ongoing transmission (which

may lead to underestimating macrofilaricidal effects, particularly

under annual treatment), studies could be conducted in areas

where transmission has been interrupted (in geographical or

ecological islands by elimination of the local vector [58,59]). In

areas near to elimination due to ivermectin distribution alone,

rates of skin repopulation by mf could be investigated by fitting

models to these data under a variety of ivermectin effects

assumptions. Regarding the more theoretical aspects, a more

adequate formulation of the parasite’s mating probability in light

of drug effects, decreasing male to female sex ratios [60], and

changes in parasite distribution resulting from prolonged treat-

ment [61] would also be important for assessing the feasibility of

elimination.

Our results indicate that in areas with high baseline endemicity

and perennial transmission, 15 years of annual or biannual

treatment with ivermectin may not be sufficient to bring infection

levels below potential elimination thresholds. Further incorpora-

tion of ivermectin effects into models; comparison of perennial vs.

seasonal patterns of transmission; consideration of other O.

volvulus–Simulium combinations; calibration of models for a wide

range of baseline endemicity levels; assessment of patterns of

treatment coverage and compliance; and inclusion of parasite

genetic structure regarding sensitivity to ivermectin, will be

essential to evaluate uncertainty surrounding model-derived

projections. This, together with cost-effectiveness analysis, and

development of stochastic frameworks will be crucial for informing

control policy regarding annual vs. biannual treatment strategies

in Africa, and for exploring the feasibility of elimination in foci

with varying degrees of baseline endemicity. Finally, whether

prolonged ivermectin treatment has a profound effect on the

parasite’s reproductive fitness has implications for the risk of

ivermectin resistance evolving [35], and the risk of resurgence

when treatment ceases. This highlights the importance of post-

control surveillance in those foci where treatment is deemed to

have been sufficiently successful to be stopped [62,63,64].
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onchocerciasis today: status and challenges. Trends Parasitol 17: 558–563.

9. Remme JH (1995) The African Programme for Onchocerciasis Control:

preparing to launch. Parasitol Today 11: 403–406.
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Abstract

Background: It has been proposed that switching from annual to biannual (twice yearly) mass community-directed
treatment with ivermectin (CDTI) might improve the chances of onchocerciasis elimination in some African foci. However,
historically, relatively few communities have received biannual treatments in Africa, and there are no cost data associated
with increasing ivermectin treatment frequency at a large scale. Collecting cost data is essential for conducting economic
evaluations of control programmes. Some countries, such as Ghana, have adopted a biannual treatment strategy in selected
districts. We undertook a study to estimate the costs associated with annual and biannual CDTI in Ghana.

Methodology: The study was conducted in the Brong-Ahafo and Northern regions of Ghana. Data collection was organized
at the national, regional, district, sub-district and community levels, and involved interviewing key personnel and
scrutinizing national records. Data were collected in four districts; one in which treatment is delivered annually, two in which
it is delivered biannually, and one where treatment takes place biannually in some communities and annually in others.
Both financial and economic costs were collected from the health care provider’s perspective.

Principal Findings: The estimated cost of treating annually was US Dollars (USD) 0.45 per person including the value of time
donated by the community drug distributors (which was estimated at USD 0.05 per person per treatment round). The cost
of CDTI was approximately 50–60% higher in those districts where treatment was biannual than in those where it was
annual. Large-scale mass biannual treatment was reported as being well received and considered sustainable.

Conclusions/Significance: This study provides rigorous evidence of the different costs associated with annual and biannual
CDTI in Ghana which can be used to inform an economic evaluation of the debate on the optimal treatment frequency
required to control (or eliminate) onchocerciasis in Africa.
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Introduction

Human onchocerciasis or river blindness is a neglected tropical

disease (NTD) caused by the parasitic filarial nematode Onchocerca

volvulus and transmitted by the bites of Simulium blackflies [1]. In

addition to ocular pathology (vision loss, blindness), and increased

host mortality [2,3], onchocerciasis also causes disfiguring skin

lesions and severe dermal itching that can drastically impair an

individual’s quality of life [4]. In 1987, ivermectin was registered

for human use against onchocerciasis, and Merck & Co., Inc.

took the unprecedented decision to donate ivermectin for as long

as needed to eliminate onchocerciasis as a public health problem

[5].

Two major onchocerciasis control programmes have been

launched in Africa. The former was the Onchocerciasis Control

Programme in West Africa (OCP), which started in 1974 and

closed in 2002, and was initially based solely on vector control

until ivermectin was licensed for human use in 1987. For the most

part, the OCP used an annual treatment strategy (alone or in

combination with antivectorial measures), but in the Western

extension, some foci were treated biannually in the absence of

vector control [6,7]. Currently, the former OCP countries
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undertake their own national onchocerciasis control programmes.

The African Programme for Onchocerciasis control (APOC) was

launched in 1995 and it has recently been extended to 2025 [8]. It

targets the 19 onchocerciasis endemic countries in Africa that were

not covered by the OCP (though three of them, Kenya, Rwanda,

and Mozambique, were found not to be endemic) [9]. APOC’s

predominant strategy involves annual, community-directed treat-

ment with ivermectin (CDTI) in areas where the prevalence of

onchocercal nodules is greater than 20%, for all those aged five

years and older (excluding pregnant or breastfeeding women in the

first week after delivery) [9,10].

Based on the experience in Uganda [11], and the success

achieved in most onchocerciasis foci in the Americas [12], there

have been recent discussions of switching to biannual treatments

(twice yearly) to increase the feasibility of elimination. In the past,

only a small number of foci within the OCP (such as River

Gambia in Senegal [7]) have received biannual treatment in

Africa, and therefore there are no ground-truth data on the cost

associated with increasing the treatment frequency to twice per

year on a large scale. (In Uganda, the cost of biannual CDTI was

simply estimated by doubling that of the annual treatment [11].)

Motivated by ivermectin efficacy studies suggesting sub-optimal

responses of O. volvulus to the drug [13,14,15], Ghana (an ex-OCP

country), has recently adopted a biannual treatment strategy at a

large scale [15].

In Ghana, onchocerciasis is endemic in 9 out of 10 regions with

a total at-risk population of approximately 3.2 million [16].

Responsibility for ivermectin distribution—which occurs in 73

districts—was devolved from the OCP to Ghana in 2002 (under

the supervision of APOC). Since 2006, onchocerciasis control has

been implemented in the context of the Neglected Tropical

Diseases Programme (NTDP) [16], and in 2009, 40 (55%) districts

started using a biannual ivermectin distribution strategy. The

decision regarding which areas should change to the biannual

treatment strategy was based on the combined results of rapid

epidemiological mapping of onchocerciasis (REMO) conducted in

Ghana in 2009, parasitological evaluation via skin snipping and

determination of microfilarial prevalence, and entomological

evaluations (according to unpublished results of the Ghana

onchocerciasis mapping exercise conducted in 2009, and the

REMO report summarised in 2010). Areas with an infection

prevalence in the adults above 20%, were allocated to a biannual

treatment frequency considering also a buffer zone of 20 Km

around these CDTI priority areas. Therefore, NTDP decisions as

to whether to allocate districts to annual or biannual CDTI were

not made on a priori criteria of associated costs but only based on

transmission criteria.

In this paper, we report the results of a study undertaken to

estimate the costs associated with annual (the standard strategy) vs.

biannual CDTI (the newly adopted strategy) in Ghana. We also

assess some factors that may hamper the scaling up of treatment

frequency at a large scale given that other countries in the region

may consider switching from annual to biannual ivermectin

distribution.

Methods

Ethics Statement
Ethical approval for the study in Ghana was obtained from

Imperial College Research Ethics Committee (ICREC) and the

Ethics Review Committee (ERC) of the Ghana Health Service

(GHS).

Description of Study Areas
The study focused on the Brong-Ahafo and Northern regions in

Ghana. In the former, data were collected in the Wenchi district

where CDTI takes place annually; the Pru district and the

Figure 1. Map of Ghana indicating the sampled regions and
districts. The Brong-Ahafo and Northern regions are highlighted in
light blue and light pink respectively. 1-Wenchi, 2-Kintampo North, 3-
Pru, 4- Kpandai. Figure prepared by Mr Simon O’Hanlon (Imperial
College London).
doi:10.1371/journal.pntd.0002452.g001

Author Summary

The African Programme for Onchocerciasis Control (APOC)
has recently been extended until 2025, with renewed
commitment towards onchocerciasis elimination. This aim
is aligned with the goals stated by the World Health
Organization and the London Declaration on Neglected
Tropical Diseases in January 2012. Switching from annual
to biannual (twice yearly) ivermectin distribution might
increase the feasibility of onchocerciasis elimination in
some African foci. However, relatively few communities
have received biannual treatments in Africa, and there are
no cost data associated with increasing ivermectin
treatment frequency at a large scale, essential pre-
requisites to provide reliable information for evidence-
based decision making regarding adoption of a biannual
treatment strategy. Therefore, we undertook a study to
estimate costs associated with biannual compared to
annual ivermectin delivery in Ghana, which since 2009 has
implemented a biannual treatment strategy in selected
priority areas. Our results indicate that the cost of biannual
ivermectin treatment per year is approximately 60% higher
than the cost of annual treatment. This study provides
tangible evidence of the different costs associated with
annual and biannual ivermectin treatment, which can be
used to inform economic evaluations and policy decisions
regarding the optimal treatment frequency required to
eliminate onchocerciasis in Africa.

Cost of Annual vs. Biannual CDTI in Ghana
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Kintampo North district, where CDTI is taking place biannually,

and in the latter, data were also collected in the Kpandai district,

where a mixed strategy (some communities being treated annually

and others biannually) is used (Table 1). These districts were

selected partly based on logistics at the time of the study, and

partly because already established relationships with the GHS at

the district and sub-district levels would ensure collection of

accurate data via the purposely designed questionnaires (see

below). Figure 1 shows the locations of the districts where the study

was conducted. As stated earlier, decisions to switch to a biannual

treatment frequency were based on infection and transmission

criteria alone, so there were no obvious reasons why the decision

to change treatment frequency would have been influenced by the

local district-specific programme cost.

Data were collected at various levels in the organization of the

GHS. Firstly, information was gathered by conducting semi-

structured interviews at the headquarters of the NTDP in Accra,

and at the Regional Health Service directorates in the Brong-

Ahafo region. Secondly, districts (and sub-districts where appro-

priate) were chosen to represent a range of geographical sizes, and

population densities (Table 1). Thirdly, community drug distrib-

utors (CDDs) were interviewed in at least three communities in

each district.

Perspective
In this study, the costs under investigation were those borne by

the health care providers (such as the GHS, the major in-country

partners, and the local communities). Therefore the cost of drug

manufacture and transport to Ghana were excluded. Only data on

the cost of CDTI were collected; costs associated with individual,

clinic-based treatment with ivermectin were ignored.

Data were collected on both the financial and economic costs of

CDTI. Financial costs are those where a monetary transaction has

taken place for the purchase of a resource. Economic costs also

include, in addition to the financial costs described above,

estimates of the monetary value of goods or services for which

no financial transaction has taken place. Therefore, economic

costs also account for the value of goods or services which could

have been used for another purpose (opportunity costs). Examples

of resources which have no financial costs but do have important

economic costs are the ‘free’ use of building space provided by the

Ghana Ministry of Health, the use of donated vehicles, and the

time devoted to CDTI by unpaid CDDs. The costs associated with

CDTI arise from various programmatic activities as outlined in

Box 1.

Data Collection
Data collection was organized at the national, regional, district,

sub-district and community levels and involved interviewing key

personnel and scrutinizing national records. Data collected at the

national level included records of funds provided by non-

governmental organizations (NGO) such as Sightsavers (http://

www.sightsavers.org/), and others such as APOC (managed by the

World Bank and implemented by the World Health Organization)

(http://www.who.int/apoc/en/), among others. Given these

multiple sources, it would have been most interesting to obtain a

detailed breakdown of the relative contribution of each organiza-

tion to the funding of onchocerciasis control in Ghana.

Unfortunately, even at the national sampling level, it was rarely

possible to separate the costs by their funding source. This,

however, did not affect the study, which focused on the aggregate

cost of onchocerciasis control. The costs collected were incurred in

the year 2011. At each level, costs were collected according to

different resource types (Box 2) using an approach based on

methods described by McFarland et al. [17] and the UNAIDS

guidelines for costing studies [18]. First, the total gross expenditure

on a resource (per year) was calculated from national records and/

Table 1. Description of ivermectin treatment in the areas where cost data were obtained in Ghana.

Region District Treatment Frequency

Number of
Persons
Treated Per
Year

Overall
Therapeutic
Coverage (%)a Size (km2)

Brong-Ahafo Wenchi Annual in all communities 27,881 90.43 3,494

Brong-Ahafo Kintampo North Biannual in all communities 57,802 82.10 5,108

Brong-Ahafo Pru Biannual in all communities 68,506 88.08 2,195

Northern Kpandai Annual in 122 (55%) and biannual
in 100 (45%) of 222 communitiesb

90,183 79.10 1,772

aFor the Wenchi and Kpandai districts, therapeutic coverage estimates were taken directly from national records pertaining to the last treatment round of 2010. For the
Pru and Kintampo North districts, coverage estimates were derived from an average of two treatment rounds (the last round of 2010 and the first round of 2011).
bA biannual strategy is used in 15 of 76 (20%) communities in the sampled sub-district, whereas the remainder 80% receive treatment annually. Therefore, the costs are
likely to reflect more closely those of annual rather than biannual distribution.
doi:10.1371/journal.pntd.0002452.t001

Box 1. Programmatic Activities (partly based
on [17])

N Drug Distribution Chain: the process of getting the
drugs from where they entered the country to the target
population

N Mobilization and Sensitization: promotion, informa-
tion dissemination and advocacy related to the project

N Training of Volunteers: training of community drug
distributors (CDDs) (includes the costs incurred by both
the trainers and the trainees)

N Other Training: all other training at whatever level
(includes the costs incurred by both trainers and
trainees)

N Reporting: the preparation and transmission of reports

N Surveillance and Evaluation: surveillance of the
disease and treatment distribution at all levels

N All Other Administration: all other general office
administration

N Other Project Activities: all other activities not
already mentioned above

Cost of Annual vs. Biannual CDTI in Ghana
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or questionnaires. Second, the most appropriate person(s) to

answer questions on how the resource is used for activities relating

to onchocerciasis control was selected for interview. Third, the

interviewee was asked to indicate what fraction of time the

resource was used for onchocerciasis control over the year (this was

corroborated by multiple sources where possible). Multiplication of

the total gross cost and fraction of time attributable to

onchocerciasis control yielded an estimate of the recurrent yearly

cost for a resource (such as an employee). The cost of capital

resources—goods that last for more than one year, such as cars

and computers—were estimated in a similar fashion, but the gross

cost was spread over the average useful lifetime of the resource (a

technique known as ‘annualization’) to arrive at an average yearly

cost [18]. (An annualization and discount rate of 3% was used to

calculate the economic costs of capital resources [19].) The

average useful lifetime of all capital goods was assumed to be five

years, in line with the value estimated by McFarland et al. [17] and

corroborated by study participants at the national level. However,

the sensitivity of the results to this assumption was investigated by

varying the average useful lifetime between 5 and 8 years [20].

The annual cost of building space was estimated as the equivalent

market rental value for the space being used for the control

programme [18].

The interviewee was also asked to estimate the fraction of time

that the resource was used for itemized onchocerciasis control

programmatic activities (Box 1). In addition, in districts receiving

ivermectin biannually, the interviewees were asked to describe

how their time spent on different CDTI activities had changed

since increasing the treatment frequency to twice per year, and to

indicate which of the CDTI activities are repeated for both

treatment rounds.

At each level, and where relevant, interviewees were given the

opportunity to express whether they had encountered any specific

difficulties with the increasing of treatment frequency.

Data Analysis
Costs collected at the national and regional levels, were factored

down and costs from the sub-district and community levels

factored up, with the aim of arriving at a value for the cost per

person treated per year in each district (Figure 2). This is described

for each of the levels below.

National costs. Of the 73 districts in Ghana where

ivermectin is distributed, 40 (55%) are implementing biannual

treatment. Consequently, when allocating the national costs to the

districts, the costs were weighted according to the district’s

frequency of treatment. Based on responses to questionnaires,

scrutinizing of national records, and conduction of semi-structured

interviews, it was estimated that districts treating biannually were

responsible for 70% of the total national cost. Separate costs

(according to annual or biannual treatment) were allocated equally

across districts receiving a certain treatment frequency. Based on

interviews at the headquarters of the NTDP and the McFarland et

al. study [17], it was assumed that the main drivers of the national

costs were independent of target population size and therefore we

did not adjust the national costs by the size of districts’ target

populations.

Regional costs. These were distributed among districts using

the same frequency of treatment-based weighting as used for the

national costs. Due to logistic reasons on the terrain, it was only

possible to estimate regional costs from one of the two regions

from which districts were sampled. Thus, the costs incurred by the

Northern region were assumed to be the same as those estimated

from data pertaining to the Brong-Ahafo region.

Sub-district costs. In each district included in this study one

sub-district was sampled. The costs incurred by the sampled sub-

districts were multiplied by the number of sub-districts within each

district to aggregate the costs to the district level.

Community costs. In each district included in this study

three communities were sampled. In each sampled community,

questionnaires were administered to the CDDs to ascertain to how

many people they distributed ivermectin, and whether they

received compensation from the district (this was corroborated at

the local district health centres). Additionally, the opportunity cost

of the volunteer CDDs’ donated time was estimated by asking

CDDs how much time they spent distributing the drug each

treatment round. This donated time was converted to an

Box 2. Resource Types (partly based on [17])

N Transportation (Capital Costs): the capital costs
associated with vehicles (e.g. the annualizeda cost of
motorbikes and cars)

N Transportation (Recurrent Costs): the recurrent
costs associated with transport (e.g. fuel, insurance,
maintenance, repairs, and rental costs)

N Personnel: the recurrent costs associated with paying
salaries to employees (including any supplements or
other benefits of employment)

N Per Diems: the recurrent costs associated with daily
allowances (per diems)

N Supplies and Equipment (Capital Costs): other
capital costs associated with a project, (e.g. annualizeda

costs of computers, photocopiers, and generators etc.)

N Supplies and Equipment (Recurrent Costs): the
recurrent costs associated with project activities and
general office running

N Overheads: the recurrent indirect costs associated with
a project’s specific utilities charges, building rental or
equivalent

N Volunteer Community Drug Distributor (CDD)
Time: the monetary value of the donated time of CDDs
and other community members in implementing com-
munity directed treatment with ivermectin (CDTI)

a The annual share of the initial cost of capital equipment

Figure 2. Organization levels at which data on cost of
ivermectin distribution were collected.
doi:10.1371/journal.pntd.0002452.g002

Cost of Annual vs. Biannual CDTI in Ghana

PLOS Neglected Tropical Diseases | www.plosntds.org 4 September 2013 | Volume 7 | Issue 9 | e2452



equivalent number of 8-hour working days, which were valued

according to the minimum wage in Ghana in 2011 (3.73 Ghana

Cedis (GHC) per day [21]). This figure was reported to be

equivalent to the daily wage of a hired farmland worker in the

Brong-Ahafo region, the occupation of the majority of the

interviewed distributors, and was subsequently used to estimate

the value of the CDDs donated time across each district. However,

to place a precise value on a CDD’s donated time is difficult and

whether or not it should be included is a matter of debate.

Furthermore, the daily wage of a hired farmland worker can vary

from district to district, and especially from region to region

[20,22]. Therefore, we calculated the economic cost both

including and excluding CDD’s donated time, and investigated

the sensitivity of the results to the assumed daily wage (increasing

or decreasing it by GHC 1.00).

Currency conversion. All costs were converted from the

Ghanaian local currency (GHC), to United States dollars (USD),

using the average 2011 exchange rate of USD 1.00 to GHC 1.58

[23]. Reported costs from other studies were also converted to

2011 US dollars (using a consumer price index inflation calculator

[24]) to allow for valid comparison with our results.

Results

Table 2 shows the estimated financial and economic costs—

including and excluding volunteer CDDs’ time—of CDTI in the

four sampled districts. The majority of the costs associated with

CDTI were financial, with the extra economic cost per person per

year (excluding CDDs’ time) only adding USD 0.01–USD 0.03

(this includes the value of donated vehicles and use of free building

space).

The estimated economic cost (excluding CDDs’ time) of annual

treatment in Wenchi district is USD 0.40 per person per year. The

economic costs (excluding CDD’s time) of biannual treatment in

the Pru and Kintampo North districts are approximately 50–60%

higher (USD 0.60 and USD 0.64 per person per year respectively)

than the corresponding annual costs. The estimated economic cost

(excluding CDDs’ time) for Kpandai district—which uses a

combination of an annual and biannual strategy (see Table 1 for

description)—is USD 0.43 per person per year. These results were

not sensitive to the assumed average useful lifetime of capital

goods; changing this from 5 to 8 years only changed the cost per

treatment by a maximum of USD 0.015.

Costs Disaggregated by Resource Type and
Programmatic Activity

Figure 3 depicts the cost of onchocerciasis control by CDTI

disaggregated by resource type in the four sampled districts. The

largest proportion of the total cost was associated with the

payment of personnel. Recurrent transportation costs, such as the

costs of fuel and vehicle maintenance, were the next most costly

resource and showed the most variation among districts.

Figure 4 depicts the cost of CDTI-based onchocerciasis control

disaggregated by programmatic activity in the four sampled

districts. Surveillance and evaluation incurred the highest cost,

followed by the drug distribution chain. For Pru and Kintampo

North districts, the data show a noticeable increase in the

reporting cost compared to Wenchi district.

Community Distributors
From the pooled community data, it was estimated that there is

one CDD for every 390 people and they spend an average of

61 hours distributing ivermectin each treatment round. The above

value was used with data on the number treated in each district

(Table 1) to estimate the total amount of time CDDs spend

distributing the drug across the whole district. This increased the

economic cost by USD 0.046 per person per year when treating

annually, and by USD 0.092 when treating biannually (Table 2).

This result was robust to the assumed daily wage of a hired

farmland worker, which when increased or decreased by GHC

1.00, only changed the economic cost of CDD per treatment by

plus or minus USD 0.012.

The CDDs reported receiving an average equivalent of USD

3.17 in compensation for attending the distribution training

sessions (which are conducted before each treatment round), and

between USD 3.17 and USD 9.52 after distributing the drug. In

this analysis, it was assumed that each distributor received the

average (arithmetic mean) of the reported values (a total of USD

9.96 in compensation for both training and distribution for each

treatment round).

Reported Difficulties
The implementation of a large-scale, mass biannual ivermectin

treatment strategy was reported at the district and sub-district level

as being well received and perceived as sustainable in the future.

However, the disease control officers at the district health centres

in the sampled districts in which biannual treatment is being

implemented, reported that increasing the treatment frequency to

twice per year substantially increased the workload by increasing

Table 2. Financial and economic costs (USDa) per person treated per year in each district.

Frequency of CDTIb Annual Biannual Biannual Mixedc

Cost type Wenchi Kintampo North Pru Kpandai

Financial cost 0.39 0.62 0.58 0.40

Economic cost (excluding volunteer CDD’sd time) 0.40 0.64 0.60 0.43

Economic coste (including volunteer CDD’s time) 0.45 0.73 0.69 0.50

aUSD: US Dollars.
bCDTI: Community-directed treatment with ivermectin.
cData from Kpandai district reflect a combination of annual (in 61 of 76 (80%) of the communities in the sampled sub-district) and biannual treatment frequency (see
Table 1 and main text).
dCDD: Community Drug Distributor.
eEconomic costs include financial costs (monetary transactions) and estimates of the monetary value of goods or services for which no financial transaction has taken
place (for example, the opportunity cost of the CDDs’ time donated to administer ivermectin rather than working their fields) [18].
doi:10.1371/journal.pntd.0002452.t002

Cost of Annual vs. Biannual CDTI in Ghana

PLOS Neglected Tropical Diseases | www.plosntds.org 5 September 2013 | Volume 7 | Issue 9 | e2452



the amount of time they spent on reporting activities (the

percentage of the economic cost at the district, sub-district, and

community levels attributed to reporting activities increased from

6% in the districts (Wenchi) treated annually to 15% in the

districts treated biannually (Pru and Kintampo North) (Figure 4)).

Discussion

The estimated economic cost of annual CDTI in Wenchi

district, i.e. USD 0.40 per person per year excluding CDDs’ time,

is consistent with the lower range of costs reported by McFarland

et al. [17], who estimated an average economic cost (excluding

CDDs’ time) of USD 0.62 (2011 prices) per person per year from

10 regions (excluding one region co-endemic with Loa loa) across

Cameroon, Nigeria and Uganda (with values ranging from USD

0.39 to USD 2.77 (2011 prices)). The estimated cost of annual

CDTI presented here is 1.4 times higher than the USD 0.29 (2011

prices) per person estimated by Onwujekwe et al. [25] using data

from two Nigerian communities. However, the Nigerian study

used a smaller sample of only two communities, and did not collect

costs from as an extensive range of sources as we did here, or as

done by McFarland et al. [17]. Katabarwa et al. [26] estimated that

in districts of a similar population size to Wenchi, the cost per

treatment was USD 0.34 (2011 prices) [26]. However, in districts

with a larger population (.100,000 inhabitants) the cost fell

substantially to USD 0.13 (2011 prices) [26]. These estimates are

Figure 3. Economic costs at district, sub-district, and community levels disaggregated by resource type (excluding CDDs’ time).
Personnel (dark blue); Per Diems (red); Supplies and Equipment (Capital costs) (green); Supplies and Equipment (Recurrent costs) (purple); Transportation
(Capital costs) (turquoise blue); Transportation (Recurrent costs) (orange); Overheads (light blue). Definitions of different resource types are given in Box
2. *Data from Kpandai district reflect a combination of annual and biannual treatments.
doi:10.1371/journal.pntd.0002452.g003
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broadly consistent with the cost of annual mass drug administra-

tion (MDA) for lymphatic filariasis control presented by Goldman

et al. [27], in which the estimated financial cost per treatment (with

donated ivermectin and albendazole) in Ghana was USD 0.21

(2011 prices) but varied between USD 0.08 and USD 2.91 (2011

prices) across the whole multi-country study.

The estimated cost of biannual CDTI per person per year in the

Pru and Kintampo North districts was 50–60% higher than the

estimated cost of annual (in Wenchi) treatment. This is consistent

with the estimated increase in costs associated with biannual MDA

for lymphatic filariasis control provided by Stolk et al. [28] (who

estimated for Africa, a 63% increase in the cost of treatment per

year excluding the value of donated drugs). These costs are higher

than estimates for biannual treatment at smaller scales and specific

age groups, such as in school-based anthelmintic treatment

programmes. For instance, Phommasack et al. [29] found that

the annual cost of treatment of soil-transmitted helminthiases in a

school-based programme was 35% higher in provinces treating

biannually than in those treating annually. However, school-based

treatment programmes are implemented differently than commu-

nity-based programmes and therefore the change in costs of

different treatment frequencies cannot be directly compared.

Figure 4. Economic costs at district, sub-district, and community levels disaggregated by programmatic activity (excluding CDDs’
time). Training of Volunteers (dark blue); All Other Training (red); Mobilization/Sensitization (green); Drug Distribution Chain (purple); Surveillance and
Evaluation turquoise blue); Reporting (orange); All Other Administration (light blue); Other Project Activities (pink). Definitions of programmatic activities
are given in Box 1. *Data from Kpandai district reflect a combination of annual and biannual treatments.
doi:10.1371/journal.pntd.0002452.g004
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Caution is also advised when comparing the costs of different

strategies estimated using data from different districts. This is

because districts have different characteristics, such as road

conditions, spread of communities, and population densities,

which will affect the estimated cost of CDTI. Because of these

potential difficulties, study participants in the Pru and Kintampo

North districts were asked to estimate—based on their previous

experience—the percentage allocated to a given resource had this

resource hypothetically been used for an annual treatment

strategy. Thus, the estimated hypothetical economic cost

(Table 3) of treating annually in the Pru and Kintampo North

districts (USD 0.39 and USD 0.43 per person per year,

respectively) were consistent with the actual cost estimates of

treating annually obtained for Wenchi (USD 0.40 per person per

year). This supports the estimated 50–60% increase in costs when

treating biannually compared to treating annually. The difficulties

associated with comparing fairly costs among districts within

Ghana exemplify a more general conundrum of comparing results

of health economic analyses conducted in different locations, such

as the complexity of comparing data collected from different

countries with differently structured economies and healthcare

systems, and where public health interventions may comprise

different (e.g. school-based versus community-based) modalities of

delivery.

Our estimated economic cost of CDTI in the Kpandai district,

where both annual and biannual treatments are delivered, likely

reflects more closely the cost of annual rather than biannual CDTI

since only 15 of 76 (20%) of the communities in the sampled sub-

district receive biannual treatment (with the remaining 80%

receiving annual CDTI). This possibly explains why the estimated

cost per person per year in the Kpandai district was only

marginally higher than that in Wenchi (USD 0.43 for the former

versus USD 0.40 for the latter), in which only annual treatments

are delivered. Furthermore, Kpandai has a very high population

density which could reduce the cost per treatment (as found in

[26]). Across the whole district, 122 of 222 (55%) of the

communities are treated annually and the remaining 45% receive

biannual CDTI. Therefore, it is reasonable to expect overall, the

actual cost of ivermectin treatment for Kpandai will lie in between

the estimated costs of annual and biannual CDTI.

Costs Disaggregated by Resource Type and
Programmatic Activity

The costs disaggregated by resource type were consistent among

the sampled districts. These data are also similar to those

presented by McFarland et al. [17]. The recurrent transportation

cost was notably higher in Kpandai compared with the other

districts. This may in part be due to the poorer quality of roads in

the area, resulting in higher vehicle maintenance and fuel costs

(although many other factors, including the spread of the

communities, also affect transportation costs). The costs disaggre-

gated by programmatic activity showed slightly more variation

among districts than among the different resource types. It is

noteworthy that in the Pru and Kintampo North districts (and to a

lesser extent in the Kpandai district), the percentage of the

economic cost attributed to reporting activities at the district, sub-

district, and community levels is substantially higher than that in

the Wenchi district (15% in Pru and Kintampo North compared

to 6% in Wenchi) (Figure 4). This was attributed to the increase in

treatment frequency and is discussed in further detail in the section

on Reported Obstacles Associated with Switching from Annual to Biannual

CDTI.

Community Distributors
The compensation system for CDDs has recently been

implemented in Ghana to cover their transport costs, to facilitate

attendance of training days, and to help serve as an added

incentive. The amount received by CDDs per treatment round

was corroborated at the district health centres. Generally, the

reported amount received by the community distributors was very

consistent across communities and districts.

Accounting for the volunteer CDDs’ time added approximately

USD 0.05 per person per treatment round. The is consistent with

the value reported by Onwujekwe et al. [25], who found that taking

into account volunteer CDD time in two Nigerian communities

added approximately USD 0.07 (2011 prices) per person per

treatment round (using the Nigerian minimum wage to value the

volunteer CDDs’ time). However, both our and the Onwujekwe et

al. [25] estimates are substantially lower than that reported by

McFarland et al. [17], who estimated that accounting for volunteer

CDDs’ time added an average of USD 0.19 (2011 prices) per

treatment round (valuing volunteer time based on the average per

capita Gross National Income (GNI) for each of the three

countries studied in [17], namely, Cameroon, Nigeria and

Uganda). However, this estimate was highly variable between

the different study sites (USD 0.05–0.54 (2011 prices) per

treatment round). The use of different methods to value donated

CDDs’ time (see below) could partly explain the difference (i.e.

estimation using the country’s minimum wage, or using the

country’s per capita GNI). Other possible explanations include the

occurrence of cultural differences affecting the time it takes to

distribute the drug.

As mentioned above, the method used to value the volunteer

CDD’s time has marked effects on the cost output. For example,

we assumed the market value of the volunteer CDD’s time to be

USD 2.36 per day (the minimum wage in Ghana of GHC 3.73

divided by the 1.58 exchange rate [23]) based on the wage that a

farmland worker would receive (i.e. the wage received for the most

common alternative occupation) [21,30]). However, had we

valued the volunteer CDDs’ time using the per capita GNI

method (as used by McFarland et al. [17]), this figure would have

increased to USD 4.96 per day [21,30]. This difference may seem

Table 3. Hypothetical cost (USD) of annual CDTI in Kintampo North and Pru districts, Brong-Ahafo region, Ghana.

Cost Type Estimated Annual Cost Per Person Treated if Annual Distribution were Implemented

Kintampo North Pru

Financial cost 0.42 0.38

Economic cost (excluding volunteer CDD’s time) 0.43 0.39

Economic Cost (including volunteer CDD’s time) 0.47 0.44

Abbreviations and cost explanations as in Table 2.
doi:10.1371/journal.pntd.0002452.t003
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relatively small but when these costs are factored up to the district

level, they can become substantial.

Reported Obstacles Associated with Switching from
Annual to Biannual CDTI

Disease control officers at the district health centres reported

that increasing the treatment frequency to twice per year increased

substantially the amount of time they spent on reporting activities.

This is consistent with the costs disaggregated by programmatic

activity (Figure 4), which indicate that the time spent on reporting

activities increased more than any other project activity when

comparing biannual and annual treatments. This may potentially

lead to delays in ivermectin being delivered to the districts, if the

necessary reports for the next dispatch of drugs are not completed

on time (delivery of the next batch of ivermectin being contingent

on reporting). Delays in the delivery of treatment to communities

not only will have administrative implications, but more impor-

tantly, transmission implications. Treating individuals every 6

months is highly important for transmission suppression, as it has

been estimated that adult O. volvulus female worms start recovering

from the temporary sterilising effects of ivermectin approximately

between three and four months after treatment, and by six months

microfilarial production has recuperated to a substantial degree

[31]. Therefore, delays in treatment will permit more transmission,

ultimately making the disease harder to eliminate and diminishing

the benefit of treating biannually. National onchocerciasis control

programmes which consider increasing CDTI frequency may

need to support reporting activities at the district level and

potentially at the drug donation programme level to encourage

timely reporting but also to allow greater flexibility in deadlines to

minimize delays in drug distribution.

Data Limitations
In Ghana, onchocerciasis control is under the remit of the

NTDP and therefore different disease control programmes are

often integrated. For example, onchocerciasis and lymphatic

filariasis control activities are often carried out simultaneously.

Potentially, this can lead to difficulties in obtaining accurate costs

for a single disease intervention. In addition, this study was

retrospective, and therefore, to a certain extent, the data obtained

were subject to some degree of recall bias.

In order to reduce the time and logistical complexity involved in

collecting the cost data, our sampling strategy was not random, as

we purposely visited local government offices and communities in

districts where CDTI was annual, biannual, or a combination of

the two. However, we were only able to obtain data in one district

that implements annual treatment and one sub-district in each of

the districts. Also, the selected districts may have been more

accessible by road from Accra, the capital of Ghana, than other

more remote locations. Nonetheless, there is no reason to assume

that the costs reported for the sites included in this study (either

delivering annual or biannual CDTI) are not representative of

other sub-districts in the area, nor is there a treatment cost-

associated reason as to why an area switched from annual to

biannual CDTI other than the parasitological criteria listed above.

This is confirmed by the similarity of cost estimation of annual

treatment between the districts delivering only annual CDTI and

the sub-districts also delivering yearly treatment within districts

implementing both strategies. Due to logistic reasons, the regional

level costs in the Northern region were assumed to be the same as

those estimated from Brong-Ahafo region. However, due to

differences between the regions (such as road networks and

community scattering), the costs incurred in the Northern region

may be higher. Nevertheless, this assumption will not affect the

main conclusions of the study regarding the relative costs of annual

vs. biannual treatment.

Concluding Remarks
Our estimate of the cost of annual CDTI is consistent with the

range of values previously reported in the literature [17,25,26].

Our results indicate that the cost of biannual ivermectin treatment

was approximately 50–60% higher than the cost of annual

treatment, and that simply doubling the cost of annual CDTI does

not yield a correct estimate as some studies have assumed [11].

This is higher than estimates for increasing treatment frequency

obtained at smaller scales and when targeting specific age groups,

such as those associated with school-based anthelmintic treatment

programmes [29], which are not truly relevant for onchocerciasis,

but similar to estimates for the more comparable lymphatic

filariasis control programme [28]. Our study will be beneficial in

informing economic evaluations regarding cost-effectiveness anal-

yses of increasing CDTI frequency from annual to biannual in the

African context for the control and elimination of human

onchocerciasis.
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Abstract

Recent trials have indicated that women with prior exposure to Human papillomavirus (HPV) subtypes 16/18 receive
protection against reinfection from the HPV vaccines. However, many of the original models investigating the cost
effectiveness of different vaccination strategies for the protection of cervical cancer assumed, based on the trial
results at that time, that these women received no protection. We developed a deterministic, dynamic transmission
model that incorporates the vaccine-induced protection of women with prior exposure to HPV. The model was used
to estimate the cost effectiveness of progressively extending a vaccination programme using the bivalent vaccine to
older age groups both with and without protection of women with prior exposure. We did this under a range of
assumptions on the level of natural immunity. Our modelling projections indicate that including the protection of
women with prior HPV exposure can have a profound effect on the cost effectiveness of vaccinating adults. The
impact of this protection is inversely related to the level of natural immunity. Our results indicate that adult vaccination
strategies should potentially be reassessed, and that it is important to include the protection of non-naive women
previously infected with HPV in future studies. Furthermore, they also highlight the need for a more thorough
investigation of this protection.
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Introduction

Human papillomavirus (HPV) infection is necessary for the
development of cervical cancer in women. In the UK, despite a
well organised screening programme that achieves high
coverage [1], it is estimated that every year 2,890 women are
diagnosed with cervical cancer and 1,111 deaths a year are
associated with the disease [1]. In addition, HPV has been
linked to anal, vulval, vaginal, penile, and oropharyngeal
cancers [2]. These cancers would not be detected in the
current screening programme. Two high efficacy prophylactic
vaccines against HPV have been developed; a bivalent vaccine
(CervarixTM) which protects against types 16 and 18, which
are responsible for 79% of cervical cancers in the UK [1], and a
quadrivalent vaccine (GardasilTM) that also protects against
types 6 and 11 (which are associated with anogenital warts).

Since their license, many countries have introduced routine
HPV vaccination programmes targeting adolescent girls before
sexual debut. Several countries have also implemented catch-
up programmes covering older adolescents [3]. For example, in
the UK, the Joint Committee on Vaccination and Immunisation
recommended a catch-up vaccination programme of girls aged
13 to 17, which started in 2008 [4]. However, though the United
States offer HPV vaccination to women up to 26 years of age
[5], few countries have offered HPV vaccination to older age
groups, and the uptake for the catch-up programmes has been
generally low [6,7].

Due to the complexity of HPV transmission and natural
history of cervical cancer, as well as the long delay between
infection and clinical outcomes, mathematical models are
needed to predict the long-term benefits of different vaccination
strategies. Many of the older HPV models made the
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assumption (based on the trial results at that time) that the
vaccine only offers protection to women who had not been
previously infected (i.e. are naive to infection) [8,9,10,11,12].
However, when the analysis of the phase three bivalent
vaccine trial was expanded to include women that were not
currently infected but who had previous serological exposure to
HPV 16/18 infection (i.e. women who are non-naïve to
infection), it was found that the vaccine had a comparably high
efficacy in this group of women as the HPV naive women [13].
Similar trial results have also been reported for the quadrivalent
vaccine [14]. This is important as the results from models that
do not include vaccine protection in non-naive women may
underestimate the cost effectiveness of including older age
groups in catch-up programmes. This has implications for
policy decisions on which age groups should be included in
vaccination strategies.

Although many models have since included this protection to
non-naive women [15,16,17,18], to the best of our knowledge
no other model has been devised to explicitly investigate the
benefit of this protection and the implications it has on the cost
effectiveness of vaccinating adults using a dynamic
transmission model.

We constructed a model that quantifies the potential
protection of women with prior exposure to HPV16/18 to
investigate the effect of this protection on the cost effectiveness
of extending the vaccination catch-up programme to older age
groups in the UK. In addition, we explored a range of lower
vaccine costs than in previous economic analyses [15], to
reflect that the government negotiated vaccine price will likely
be lower than the list price assumed in many economic
evaluations.

Materials and Methods

Model procedures
We developed a deterministic, dynamic transmission model

to represent acquisition and heterosexual transmission of
infection, with an embedded progression model to represent
the subsequent development of HPV-related disease. The
model, partly based on Jit et al. [15] was stratified by HPV type,
age, gender and sexual activity based risk group. More detail is
provided in the File S1.

HPV types in the model were divided into four groups: type
16, type 18, other oncogenic high-risk types with vaccine cross
protection and other oncogenic high risk types without vaccine
cross protection. We used type specific model compartments to
represent women being susceptible to HPV infection, infected
with HPV or immune to infection. The susceptible
compartments were further subdivided into naive and non-
naive to HPV infection. Non-naive women (i.e. women with
prior exposure to HPV) were assumed to occupy the
susceptible non-naive or naturally immune compartments. The
type-specific infected compartments in women were subdivided
into being infectious but free of disease, having cervical
intraepithelial neoplasias of different grades (CIN I, II, or III),
and having invasive squamous cell carcinoma (SCC). We
adopted the same structure for adenocarcinomas, with states
for cervical glandular intraepithelial neoplasia (CGIN) replacing

CIN. A specific precursor lesion state could regress to a less
severe state, to the immune state, or to susceptible (non-naive)
state, either as a result of natural regression (at rates
independent of age) or age-dependent screening and
treatment (see Tables S4 and S5 in File S1 for progression/
regression and screening rates). Men were assumed only to
occupy type-specific model compartments representing HPV
susceptible, infected and immune.

The model population consisted of individuals aged between
12 and 74 years old, divided into 10 age classes based on data
from the Office of National Statistics [19]. The model population
was stratified into three sexual behaviour groups. More detail is
provided in Table S2 in File S1.

Parameter estimation
Using nonlinear least-squares regression the model was

fitted to HPV type and age-specific prevalence data [20], by
estimating a type-specific transmission probability (See File
S1for details). If women were found to be infected with multiple
types of HPV in the data, we assumed women to have the
most oncogenic HPV type(s) present when fitting the model
(i.e. if the data showed a woman was positive to both HPV16
and 18, that person was classified as HPV16 in the model). By
estimating the age dependent and HPV type specific
progression rate of CIN III to SCC and CGIN III to
adenocarcinomas, the model’s predicted cancer incidence was
fitted to data on the number of cancer cases reported in the UK
and to data describing the distribution of HPV types in cancer
cases [21,22]. Double counting of disease outcomes was
avoided by attributing cancer to the most oncogenic HPV
type(s) present. Due to the lack of knowledge of immunity
against HPV, we repeated our model simulations under
different assumptions of the level of natural immunity
(described in the sensitivity analysis section). The model was
refitted for each different natural immunity scenario i.e. for each
different immunity assumption we had a different transmission
probability and a different cancer progression rate to ensure
that the incidence of cancer matched the observed data in all of
the scenarios we investigated. The range of parameter values
estimated is shown in Table S8 in File S1.

Vaccination
The model assumed the vaccine gives naive women 100%

protection against HPV16/18 infections [23]. In addition, the
model assumed that the vaccine has cross protection to the
high risk HPV types not included in the vaccine (with a 47%
efficacy against infection) based on clinical trial data for the
bivalent vaccine [24], and other modelling studies [17]. To
quantify the effect of the protection of women non-naive to
HPV16/18, we varied their protective vaccine efficacy against
infection between 0% and 100%. It was assumed a woman
would need at least two doses of the vaccine to receive any
protection [25]. For catch-up campaigns, women aged over 16
years were assumed to receive their vaccination through
general practice clinics. Dose specific coverage estimates of
each age class were matched to reported annual HPV vaccine
coverage data (See Table S6 in File S1). All three doses of the
vaccine were assumed to be given in the same year [26].

Cost Effectiveness of HPV Vaccination in Adults
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Vaccine-induced protection may wane moving vaccinated
individuals to a susceptible (non-naive) compartment. The
duration of vaccine protection, which was varied as part of the
sensitivity analysis was assumed to be the same for both naive
and non-naive women. The vaccine is assumed to offer no
benefit to women who are currently infected with HPV providing
no effect on an individual’s lesion status and no effect on the
rate of HPV clearance [27,28]. The vaccine is assumed to have
no effect on non-naive individuals’ risks to other high-risk HPV
types.

Cost effectiveness analysis
We analysed the cost effectiveness of a range of vaccination

strategies using a healthcare provider perspective. The
baseline scenario was the current UK vaccination programme,
i.e. vaccination of girls aged 12-13 using a school based
programme and with a catch-up programme of 14-17 year olds
as well as screening and treatment of older women (based on
the current UK screening programme - see File S1 for details).
We investigated a range of other vaccination strategies by
varying the age of catch up. We did not explore vaccination
programmes targeting adolescent males.

We measured the incremental cost effectiveness ratio (cost
per Quality Adjusted Life Year (QALY) gained) of progressively
extending the catch-up programme to older age groups, over a
100 year time horizon. This was calculated by dividing the
additional cost by the additional benefit of a particular
vaccination programme compared to the previous vaccination
strategy i.e. the next most expensive option. Our baseline
scenario was compared to a programme using screening and
treatment only. The unit of effectiveness was QALY gained
(details provided in File S1). This analysis used a willingness to
pay threshold of £30,000 per QALY gained, which is the
standard cut-off value usually used by the National Institute for
Health and Clinical Excellence for evaluating health
technologies in the UK [29]. See Table 1 for the parameter
values for the cost and utility weights. Following the National
Institute for Health and Clinical Excellence guidelines, the costs
and the benefits were discounted at 3.5% at baseline and the
discount rate varied as part of the sensitivity analysis [30].

Sensitivity analysis
In order to investigate the effect of the protection of women

non-naive to HPV, we varied their vaccine efficacy between 0%
and 100%. To reflect the uncertainty surrounding the natural
history of the infection, we performed a multi-way sensitivity
analysis on the level of natural immunity; both the proportion
that experience immunity (25%, 50%, 75%, and 100%), and
the duration of immunity (2 years, 10 years, 20 years, and
lifelong) were varied. These simulations were summarised as
median values with an interquartile range (IQR) to illustrate the
variations in the potential cost-effectiveness of the vaccine
depending on the level of natural immunity. Because there is
no data providing an estimate of the duration of vaccine
induced immunity, we present a set of scenarios with different
durations of vaccine- associated immunity (10 years, 20 years,
and lifelong). Because the UK government purchased the
Cervarix vaccine from GlaxoSmithKline at a negotiated and

undisclosed price, we also varied the cost of each vaccine
dose (£20 and £40 per dose not including the costs of
administering the vaccination, which are described in Table
1and File S1). This assumes that the negotiated price is much
lower than the listed price of £80.50 per dose [38]. The
discount rate was varied between 0% and 6% [30]. In addition
the sensitivity of the results to the assumed vaccination
coverage of 12-13 year old school girls was investigated.

Results

On the basis of our model output’s ‘goodness of fit’ to HPV
prevalence data [20], we included 75% of our natural immunity
scenarios in our cost effectiveness analysis. The scenarios that
we excluded (based on their root-mean-square deviation)
notably underestimated HPV16 prevalence, and therefore
would have underestimated the vaccine’s impact (see File S1).
Table 2 shows the estimated costs that would be incurred and
the potential QALYs gained over a 100-year period after the
introduction of the vaccine (the results were averaged across
the estimates obtained for the different assumptions regarding
the level of natural immunity (which is unknown)). The
incremental cost of extending the vaccine programme
increased with the inclusion of older age groups (see Table 2).
However it should be noted that the true incremental cost of
extending the vaccine programme will be highly depended on
the cost of the vaccine. The vaccination programme generated
some cost savings to the health service (approximately £336
million for the current UK strategy) by reducing the number of
treatments (for precancerous lesions and cervical cancers), but
these savings were outweighed by the cost of the vaccination
programme itself.

Table 1. Parameters used in economic model.

Health State Utility
CIN I 0.91 [31]
CIN II 0.87 [31]
CIN III 0.87[31]
Cancer 0.6* [32]
Cancer Treatment 0.84* [32]
Positive pap smear result received 0.98 [31]

Screening and Treatment Costs
Cost per Screening (Pap Smear) £29.02 [33]
Colposcopy £173.58[34]
Treatment of precancerous lesions £383.63[34]
Treatment of cancer £20231.33* [34,35]

Vaccine Costs
Cost per dose £40 or £20 (estimates)
Administration cost per dose (School based) £5.30[36]
Administration cost per dose (GP based) £11.87 [37]
* indicates that the parameters are a weighted average of the four different
Federations of Gynecologists & Obstetrician stages.
CIN: cervical intraepithelial neoplasias. CGIN: cervical glandular intraepithelial
neoplasia. Prices are adjusted to 2011.
doi: 10.1371/journal.pone.0075552.t001
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The effect of including the protection of non-naive women on
the cost effectiveness of vaccinating 12-13 years olds was
negligible. However, it substantially increased the cost
effectiveness of vaccinating older women in catch-up
programmes. The outcome of the cost effectiveness analysis
was also highly dependent on the price of the vaccine and the
average duration of protection provided by the vaccine. The
level of natural immunity was also found to be inversely related
to the cost effectiveness of vaccination, with the higher the
level of natural immunity the lower the cost effectiveness of
vaccination. The variation in the incremental cost effectiveness
ratios caused by the different natural immunity assumptions
increased with the age of the group being vaccinated (the
median results averaged across the estimates for different
assumptions of natural immunity are shown in Table 3). In
addition, when higher levels of natural immunity are assumed,

Table 2. Discounted additional costs

Incremental QALYs gained:

Vaccination
Programme:

Mean
incremental
QALYs
gained
(total)

Mean
incremental
QALYs
gained due
to cancers
prevented

Mean
incremental
QALYs
gained due
to reduced
treatment

Median
incremental
QALYs

Ages 12-17 88,392* 52,313* 36,079* 90,108
(77,904-95,175)*

Ages 12-19 4,103† 2,428† 1,675† 4,424
(3,980-8765) †

Ages 12-24 7,979† 4,722† 3,257† 8,318
(7,750-10,049) †

Ages 12-29 4,927† 2,916† 2,011† 5532
(5,169-6,623) †

Ages 12-34 3,334† 1,973† 1,361† 3,347
(3,101-4,136) †

Incremental cost:

Vaccination
Programme:

Mean
incremental
cost of
programme

Mean
incremental
net cost

Mean
incremental
cost saved

Median
incremental net
cost

Ages 12-17 £884* £538* £336* £523 (514-565) *

Ages 12-19 £76† £57† £19† £55 (54-57) †

Ages 12-24 £180† £145† £35† £144 (142-148) †

Ages 12-29 £176† £162† £14† £160 (158-163) †

Ages 12-34 £174† £172† £2† £172 (168-174) †

The vaccine was assumed to cost £20 per dose, last an average of 20 years and
provide protection to women with previous exposure to HPV (100% efficacy). The
median and mean results are averaged across the estimates for different
assumptions of natural immunity (the 1st and 3rd quartiles are shown in brackets).
All programmes assume routine vaccine of 12-13 year old girls. QALY: Quality

adjusted life year.
* Costs or benefits compared to a programme only using screening and treatment
† Costs or benefits compared to the previous vaccination option i.e the next most
expensive option
doi: 10.1371/journal.pone.0075552.t002

the protection of non-naive women has a lower beneficial
impact on the cost effectiveness of the vaccine.

When assuming the presence of protection to non-naive
women, the majority of simulations for extending the vaccine
programme to include 18 and 19 year olds were cost effective
(using a threshold of £30,000 per QALY gained). This
extension strategy was not found to be cost effective in the
absence of protection to non-naive women, if the cost per dose
was £40. The cost effectiveness acceptability curves for
extending the catch-up programme to 19 year olds are shown
in Figure 1A.

Furthermore, when assuming the vaccine provides 20 years
of protection and a cost per dose of £20, extending the catch-
up programme further to include 20-24 year olds was found to
be cost effective (£22,286 per QALY gained) in the presence of
protection to non-naive women. However, this was not cost
effective in the absence of the protection to non-naive women
(£39,849 per QALY gained). In addition, when the vaccine was
assumed to provide both lifelong protection and protection to
non-naive women, the results for this strategy were highly cost
effective if the vaccine costs £20 per dose (£16,557 per QALY
gained), and borderline cost effective if the vaccine costs £40
per dose (£29,021 per QALY gained). However, in the absence
of the protection to non-naive women the cost effectiveness
decreased substantially (£34,839 and £62,011 per QALY
gained respectively). The cost effectiveness acceptability
curves for extending the catch-up programme to 25 year olds
are shown in Figure 1B. Strategies targeting women over 25
were only found to be borderline cost effective with a vaccine
cost of £20 per dose and assuming the vaccine provided both
lifelong protection and full protection to non-naive women.

When assuming a lower coverage of the school based
programme (targeting 12-13 year olds), the cost effectiveness
of extending the vaccine programme to include older women
notable increased (see Figure S4 in File S1).

Discussion

Our economic analysis indicates that the effect of including
the protection of women non-naive to HPV on the cost
effectiveness of vaccination of 12-13 years is negligible (likely
due to the low number of women that have experienced
infection in this age group). However, this protective effect can
have a substantial effect on the outcome of the cost
effectiveness of vaccinating older women in catch up
programmes. This was particularly evident in 18-25 year olds,
who are not often included in vaccination programmes in
Europe [3]. It is worth noting that the impact of including
vaccine protection to non-naive women on the vaccine’s cost-
effectiveness ratios is affected by the level of natural immunity
in the population (with lower benefits if a higher level of natural
immunity is assumed). This should be considered in future
modelling studies incorporating this protection. When assuming
the vaccine provides protection to non- naive women, we
assumed that efficacy against infection was the same as that
for naive women (i.e. 100%), which may be an overestimate
[13]. We therefore varied the efficacy in non-naive women as
part of our sensitivity analyses and found that even with a lower
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Table 3. The median incremental cost effectiveness ratios
of alternative vaccination catch-up programmes.

£20 per dose   

 
Protection to non-naive
women

Absence of protection to
non-naive women

Vaccination
Programme:

Median (IQR) Median (IQR)

20 years’ vaccine protection:

Ages 12-17
(Current)

£4,089 (3,981-5,910)* £4,101(4,027-5,774)*

Ages 12-19 £14,691 (12,820-20,047) † £20,380 (17,999-29,587) †

Ages 12-24 £22,286 (19,093-36,929) † £39,849 (35,691-55,984) †

Ages 12-29 £51,816 (41,723-74,516) † £116,327 (106,273-147,262) †

Ages 12-34
£103,156 (77,921-159,226)
† £335,481 (311,499-406,802) †

Lifetime vaccine protection:

Ages 12-17
(Current)

£1,627 (1,525-1,922)* £1,801 (1,714-2,001)*

Ages 12-19 £10,433 (9,110-12,455) † £16,769 (14,533-20,947) †

Ages 12-24 £16,557 (14,126-17,852) † £34,839 (30,060-42,360) †

Ages 12-29 £33,897 (30,850-36,915) † £105,637 (90,244-118,537) †

Ages 12-34 £50,125 (39,723-58,561) † £254,191 (200,629-324,487) †

£40 per dose
Protection to non-naive
women

Absence of protection to
non-naive women

Vaccination
Programme:

Median (IQR) Median (IQR)

20 years’ vaccine protection:

Ages 12-17
(Current)

£9,476 (8,145-13,357)* £9689 (8315-13521)*

Ages 12-19 £22,268 (17,152-33,507) † £38210 (33854-52774) †

Ages 12-24 £36,578 (31,321-60,042) † £70523 (63236-96679) †

Ages 12-29
£90,320 (73,986-128,491)
† £197865 (180770-249516) †

Ages 12-34
£162,040
(124,938-224,179) †

£563025 (522743-682016) †

Lifetime vaccine protection:

Ages 12-17
(Current)

£3,675 (3,317-4,694)* £3,802 (3,452-4,856)*

Ages 12-19 £21,623 (18,404-25,006) † £32,078 (27,300-38,695) †

Ages 12-24 £29,021 (27,203-33,887) † £62,011 (53,133-74,739) †

Ages 12-29 £60,394 (55,569-66,138) † £179,880 (153,387-201,579) †

Ages 12-34
£80,278 (65,898-105,678)
† £553,911 (473,101-531,305) †

The incremental cost effectiveness ratios in the presence and absence of
protection to non-naive women are shown. No strategies were dominated or
extendedly dominated. The median results averaged across the estimates for
different assumptions of natural immunity are presented (the 1st and 3rd quartiles
are shown in brackets). The costs and benefits have been discounted at 3.5% a
year. All programmes assume routine vaccine of 12 year old girls. Median results
under the £ 30,000 threshold are shown in bold.
IQR: Interquartile range.
* Cost effectiveness of particular option compared to a programme only using
screening and treatment.
† Ratio of additional costs and benefits of particular vaccination programme
compared with previous option i.e the next most expensive option.
doi: 10.1371/journal.pone.0075552.t003

value of 50% efficacy, the protection of non-naive women still
had a substantial benefit on the cost effectiveness of
vaccinating adults (see Figures S5 and S6 in File S1).
However, it should be noted that further investigation of this
protection and how it may differ from that experienced by HPV
naive women is essential.

Our estimates of the cost effectiveness ratios of vaccinating
over 18 year olds were substantially lower than those found by
the model which informed the UK vaccination strategy, which
also took into account this protection to non-naive women [15].
This may be due to the fact that we assumed a lower
(estimated) government negotiated price for the vaccine (rather
than the vaccine list price of £80.50 per dose) [38]. A study by
Bogaards et al. (2011) found that including vaccine protection
of non-naive women did not have much bearing on the cost-
effectiveness analysis [18]. However, a possible reason for this
difference is that their assumptions of vaccine efficacy were
only tested as part of a univariate sensitivity analysis, and
therefore the effect the level natural immunity has on the
projected additional benefits of including the protection of non-
naive women were not accounted for [18]. In addition, the study
did not account for the effect the increased vaccine protection
of non-naive women would have on herd immunity [18].

One of the key strengths of this analysis is that we performed
a variety of different simulations, both with and without
protection of non-naive women, allowing the additional benefit
to be quantified. In addition, dose specific coverage estimates
of each age class were matched to reported UK annual HPV
vaccine coverage data, capturing the increased dropout rate of
the age groups included in the current catch-up programme [6].
However, it should be noted that it is possible that the dropout
rate might increase for women aged >18, which requires further
investigation. In addition there were some limitations to our
approach. We modelled the progression and transmission of
each HPV type using separate models (using the method
described by [39]). When using separate models, the
progression of multiple typed lesions are attributed to the most
oncogenic HPV types and this can potentially cause some
lesions to be misattributed to the wrong HPV type. However it
is not currently possible to accurately parameterize a model for
each of the high risk HPV types not included in the vaccine.
Although further investigation and quantification of the vaccines
impact on other HPV related cancers is important, due to the
uncertainties inherent to the progression from HPV infections to
these cancers and the lack of available data, we did not
incorporate them into our model (therefore the overall health
impact from vaccination may be underestimated). Additionally,
the model assumed that CGIN lesions were not detected by
screening, but in practice some can be detected [40].
Furthermore we did not investigate possible strategies
involving vaccinating male adolescents, which though are not
used in the UK, are currently being used in Austria and the
USA [41]. Based on data reported by Kreimer et al. [25], it was
assumed that two doses of the vaccine provide full protection.
However it is currently unknown how the number of doses
received relates to the duration of vaccine derived immunity
(and how much protection is gained by only receiving one
dose). More data to inform these parameters in models will be
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Figure 1.  Cost Effectiveness Acceptability Curves for Extending the Vaccination Catch-up to (A) 19 year olds and (B) 24
year olds.  Different durations of vaccine induced immunity; Life (Δ), 20 years (○), 10 years (□). Thick lines represent presence of
protection to HPV non-naive women and thin the absence. The results presented assumed the vaccine cost is £20 per dose (not
including the cost of administering the vaccine) a 100 year time horizon and 3.5% discount rate for costs and benefits. QALY:
Quality adjusted life year.
doi: 10.1371/journal.pone.0075552.g001
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essential for more accurate estimates of the cost effectiveness
of different control strategies. Unfortunately the exact price of
the vaccine in the UK has not been disclosed publicly. We
assume the vaccine price that the government negotiated is
lower than the list price of £80.50 per dose [38]. However it is
possible that the negotiated price is higher that estimated. It
should be noted that an alternative possibility, not accounted
for in the model, is that a specific biological factor modulates
the capacity of some women to repeatedly clear an infection,
which would affect the added benefit of the protection of non-
naive women. Furthermore we assumed that the duration of
vaccine and natural derived immunity were independent of
each other, though it is possible that vaccination may boost the
duration of natural immunity. However, there is currently
insufficient data to accurately parameterize such features in an
HPV transmission model.

The results of this study indicate that the protection of
women non-naive to HPV provided by the vaccine has a
substantial effect on the cost effectiveness of HPV vaccination
catch-up programmes. This was particularly evident in 18-25
year olds for which the results indicate that if the negotiated
vaccine cost is below £40 per dose it may be cost effective to
extend the UK’s catch-up programme (when assuming
comparably high vaccine efficacy in HPV non-naive and naive
women). This suggests that if the price of the vaccine is less
than £40 per dose, the Department of Health in the UK should
reconsider either extending the current catch-up programme or
providing a subsidy reducing the cost of private vaccination for
women aged 18 to 25. In addition we found that the cost
effectiveness of extending the vaccine programme to include
older women notably increased when assuming a lower
achieved coverage of 12-13 year olds in the school based
programmes. This highlights the potential value of this strategy
in areas which are currently only attaining a low coverage.
However, it should be noted that it is plausible that extending
catch-up vaccination to older age groups may lead to women
delaying vaccination and this would require further
investigation. In addition it is important to consider that offering
vaccination to older age groups could potentially lead to a
stigmatisation of the school based vaccination programmes
(people might believe that only girls that are "planning on their
sexual debut" would have the vaccine, potentially decreasing
the achieved coverage). In late 2012, the UK’s Department of
Health switched to the quadrivalent vaccine, which also
includes protection against HPV 6/11 (linked to anogenital
warts) [42]. A detailed modelling comparison of the cost
effectiveness of the two vaccines is presented in Jit et al.
(2011) [17]. However, even though our study was based on the
bivalent vaccine and on the UK screening programme (so our
cost effectiveness estimates may not be directly generalizable
to other counties with different screening and vaccine
programmes) it still highlights the importance of both how this
protection of non-naive women (which has been found for both
vaccines) and how lower government negotiated vaccine

prices, may affect the cost effectiveness of vaccinating adult
women.

Our modelling projections indicate that the protection of non-
naive women can have a profound effect on the outcomes of a
cost effectiveness analysis of vaccinating adults. This indicates
that adult vaccination strategies should potentially be
reassessed and demonstrates the importance of including the
protection of non-naive individuals in future studies
investigating different HPV vaccination strategies such as male
vaccination. In addition, this highlights the need for a more
thorough investigation of this protection.
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Distributing treatments for river  blindness twice a year instead of annually doesn't double the cost, according to a study in Ghana.

Currently, many African countries  give out iverm ectin  treatment once a year to  control the disease, which causes irreversib le loss of

vis ion and unbearable i tching.

Many countries are now considering biannual  treatment in a  drive to eliminate river blindness , but unti l now little data has been available

on the cost o f adopting this  stra tegy.

The London Declaration on Neglected Tropica l Dis eases  (NTDs), a  comm itment made by global health organisations and

pharmaceutica l com panies in January 2012, s et a target of eliminating river bl indness in  selected countries in Africa by 2020. The goal

was  insp ired and endors ed by the World  Heal th Organization ’s 2020 Roadmap on NTDs.

Res earchers from Imperial College London, the Council  for Scientific and Indus trial  Research of Ghana, and the Neglected Tropica l

Dis eases  Programme of the Ghana Health  Service conducted a study to asses s the cost of b iannual ivermectin d istribution in Ghana.

They als o ass essed some of the factors  that may hinder the scal ing up of treatment frequency at a large scale.

The results, published in PLOS Neglected Tropica l Diseases, show that the yearly cost of biannual iverm ectin  treatment is only 50 to 60

per cent higher than that of annual treatment, rather than twice as much, as other programmes  have assumed. In addition, large-s cale

mas s biannual  treatment was reported as being well received by communities and heal th workers , and cons idered sus tainable in the

context of the Ghanaian NTD control program me.

Hugo Turner, from the School  of Public Heal th at Imperial College London, who led the study, said: “The results o f this study wi ll he lp to

inform decisions about whether to  increase treatment frequency from annual to biannual for the control and e limination of r iver

blindnes s in Africa.”

River bl indness, a lso called onchocerciasis , is caused by paras itic worms  that predominantly affect rural populations who l ive near fast-

flowing rivers in sub-Saharan Africa.

Regular and prolonged treatm ent with ivermectin can contribute to both reducing the disease burden and the occurrence of new

infections..

Fol lowing successful control  of the disease in s ome west African countries, the African Programme for Onchocerciasis Contro l recently

introduced a new policy aiming to  elim inate the infection where poss ible in addition to its previous goal of preventing the disease

caused by the parasite.

Som e countries, such as  Ghana and Uganda have al ready started d istributing ivermectin twice per year in  some areas. The Carter
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Center will oversee the implementation of b iannual distribution in parts of Ethiopia where treatment has never been deployed.

“Accurate cos t data are essential  to inform  economic evaluations and policy decisions regarding the implementation of a biannual

ivermectin distribution stra tegy in Africa,” Mr Turner said.
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Costing Questionnaire 

 
 

 

 
 

                                      Region:      |________________________| 

                                      District:               |________________________| 

 

 

 

 

 

 

Date 



What is your position? 

 

How much of your time is spent on onchocerciasis control activates (percentage of the year)? 

 

What is your salary?  

 

Do you receive any additional supplements (such as travel or per Diem)? 

 

 

What percentage of your time working on onchocerciasis is spent on the following activates:- SEE LAST PAGE 

 

 

How many people work in this health centre? 

 

 

How many of these people are associated with onchocerciasis control activates? 

 



Personnel:     

Name Position  Percentage of work time dedicated to 

onchocerciasis  control* 

 

What is their salary? Additional supplements*  

     

     

     

     

     

     

     

*Indicated how this might have changed since switching to biannual treatment 

 

 

 



* Indicated how this might have changed since biannual treatment 

 

 

 

Supplies and equipment (capital costs): 

Input Number of units Purchase price Value (if donated) Expected useful life  % used on  onchocerciasis  

control activities* 

            

            

            

      

      

      



* Indicated how this might have changed since biannual treatment 

 

 

 

 

Supplies and equipment (recurrent costs): 

Input Total annual cost   % used on  onchocerciasis  control  activities * 

   

   

   

   

   

   

   



Transportation (capital costs):  

 
Input * Quantity *              Purchase price Value (if donated) Expected useful life % used on  onchocerciasis  

control  activities * 

      

      

      

      

      

      

      

* Indicated how this might have changed since biannual treatment 

 

 



 

Transportation (recurrent costs): 

Input* Quantity*              Fuel cost  

(per litre) 

Insurance (average per 

item cost) 

Maintenance and 

repairs (average per 

item cost) 

Taxes, fees, etc. 

(average per item 

cost) 

% used on  

onchocerciasis  

control  activities * 

       

       

       

       

If rental vehicle, no. of days (dates) * Cost of daily rental 

  

  

* Indicated how this might have changed since biannual treatment 



 

Overheads: 

Is any space donated or rented for onchocerciasis control 

programme activities. 
 

If donated what would it cost to rent the space?  

Facility (date) Building maintenance (per year) Water (per year) Phone (per year) Electricity (per year) 

          

          

     

     

     

     



Are there any other costs not  included above  

 

 

 

 

 

 

Who gives you the money for the above activates 

 

 

 

 

 

 

 

 

 

 

Have there been any issues caused increasing the treatment frequency to twice a year: 

 

 

 

 

 

 

 

 

 



 

Percentage each input is used on different programmatic activities: 

Input   Training 

Volunteers 

Other 

Training 

Mobilization/

Sensitization 

Drug Distribution 

Chain 

Surveillance / 
Evaluation 

Reporting  All Other 

Administration 

Other Project 

Activities  
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