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Growth is a dynamic process whereby cells accumulate mass.

Growth rates of single cells are connected to RNA and protein

synthesis rates, and therefore with biomolecule numbers.

Noise in gene expression depends on these numbers, and is

thus linked with cellular growth. Whether these global attributes

of the cell participate in gene regulation is still largely

unexplored. New experimental and modelling studies suggest

that systemic variations in biomolecule numbers can

coordinate cellular processes, including growth itself, through

global regulatory feedback that acts in addition to genetic

regulatory networks. Here, we review these findings and

speculate on possible implications of this less appreciated

layer of gene regulation for cellular physiology and adaptation

to changing environments.
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A global regulation of gene expression by
cellular growth
Gene expression is plastic, and is controlled by intrinsic

and extrinsic cues. Signalling pathways control networks

of transcription factors that regulate expression levels of

defined target genes. For example, transitions between

successive phases of the division cycle are controlled by a

series of signalling events that result in cell cycle phase

specific changes in expression of regulatory proteins.

This form of gene expression is commonly called ‘peri-

odic’. In reality, the numbers of all mRNAs and proteins

per cell exhibit periodic variation during the division cycle,

because RNA and protein molecule numbers increase

gradually as the cell accumulates mass and decrease
www.sciencedirect.com 
sharply at cell division when molecules partition random-

ly between daughter cells (Figure 1a). For this reason,

changes in cellular growth rate of single cells (e.g. in

response to nutrient availability) are reflected by the

expression dynamics of all genes (in addition to any

specific regulation through signalling and gene-regulatory

networks). Non-deterministic cell-to-cell variability in

mRNA and protein numbers, which is commonly referred

to as noise in gene expression, is also connected to cellular

growth. This is because intracellular noise levels are

related to cellular copy numbers of genes, mRNAs and

proteins (Figure 1b–d) [1].

These systemic variations in mRNA and protein numbers

and noise levels can intrinsically and globally alter the

dynamics of biochemical networks involved in metabo-

lism, signalling and gene regulation [2–4]. Interestingly,

perturbed networks dynamics can in turn affect, or ‘feed-

back’, to cellular growth rates as illustrated in

Figure 2. We refer to this phenomenon as ‘global feed-

back’ as it connects cellular growth dynamics of individ-

ual cells to gene expression programmes through

modulation of all genes independently from, or in addi-

tion to, dedicated signalling pathways or transcription

factors. Recently, pioneering studies have started to shed

light on the mechanisms underlying this systemic layer of

regulation and its impact on cell physiology. In this short

review, we highlight some of these works with a particular

focus on the role of noise in gene expression, and discuss

their impact on our understanding of how cells integrate

environmental conditions through growth (for a recent

perspective on the subject with a more deterministic

focus see Ref. [5]). For clarity and to avoid confusion,

the key terms used in this review are defined in Box 1.

Mathematical models of global feedback
As described above, regulation through global feedback

arises from systemic interconnected processes and is there-

fore challenging to study experimentally (Figure 2). Using

mathematical models of cellular physiology has been a

powerful approach to bring the mechanisms of global

feedback regulation to light. These models take into

account aspects of metabolism, gene expression, and cel-

lular resource allocation to predict growth in single cells

and populations. Two main modelling strategies have

been explored. Whole-cell detailed models are designed

to include as much information as possible of the system

they describe [6]. These models can capture different

aspects of global feedback and phenotypic variability

but are very complex and difficult to implement even
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Figure 1
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Relationship between cellular growth and gene expression. (a) Illustration of cellular growth, cellular division and gene expression. The expression

of a typical protein is illustrated as it accumulates in the cell during cellular growth. The protein molecules are randomly partitioned between the

daughter cells during cell division. Therefore protein numbers and noise are modulated during cellular growth and the cell division cycle. To

explore the effect of cellular growth rate on protein numbers and noise three hypothetical scenarios are considered in the panels (b), (c) and

(d). The plots show qualitative changes in protein numbers and noise at a given point in the cell division cycle (e.g. midpoint in the cell cycle) and

are in arbitrary units. In (b) the rate of gene expression and cell size at division remains constant as cellular growth rate is increased. As the

dilution rate of proteins increases at faster growth rate protein numbers go down with growth rate. As protein noise is inversely related to protein

numbers, it increases sharply with growth rate. In (c) gene expression perfectly matches dilution (and cellular growth), so protein concentrations

remain fixed. As cell volume at division is assumed to be fixed in this case as well, protein numbers remain constant as a function of cellular

growth rate. In this case, protein noise may still increase slowly with cellular growth rate because cells experience more partitioning events per

unit time. This contribution may increase protein noise at faster growth. In (d) both the rate of gene expression and the cell volume at division

increases with cellular growth rate. In this case it is expected that protein numbers increase with cellular growth rate, while noise in gene

expression decreases with cellular growth rate. This is the scenario that matches observation in E. coli [3�]. Protein concentrations are reduced at

faster cellular growth rate as increase in the rate of gene expression does not perfectly match increase dilution rate. Exact stochastic simulations

that capture the effect of cellular growth and partitioning using the experimental parameters of gene expression in E. coli [3�] reveals that indeed

noise in gene expression is reduced at faster growth rates [39].
for the simplest model organisms [7]. Promising alterna-

tives use coarse-grained approaches that model only spe-

cific aspects of the cell’s physiology, such as metabolic

processes, or regulation of large groups of proteins like the

ribosome [8�]. These models have succesfully described

cellular resource allocation and economy, and are particu-

larly powerful when built from quantitative data as in

recent models of proteome partitioning and growth

[9�,10,11��]. For instance, they were found to recapitulate

phenomenological population ‘growth laws’ without

modelling detailed molecular processes [5]. They could

also predict shifts in population growth strategies [8�],
scaling and distribution of promoter activities in response

to external conditions [12,13��], cellular growth bi-stability
Current Opinion in Microbiology 2015, 25:127–135 
of single cells through positive global feedback [14��,15],

gene-dosage compensation for growth related genes

[11��], and suppressive drug interactions in different envir-

onments [16]. Current coarse-grained models have been

developed for studying exponential growth of cell popula-

tions, and (with few exceptions) ignore unbalanced popu-

lation growth dynamics, cell size, cell-to-cell phenotypic

variability and gene expression noise. These are all fea-

tures that are likely to play important roles in regulation

through global feedbacks, and it may be useful to consider

them in future models. Nevertheless, as described in the

rest of this review, coarse-grained models have been

instrumental in revealing regulation through global feed-

back and its mechanisms.
www.sciencedirect.com
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Schematics of global feedback routes. During adaptation to environmental conditions cell growth, size and gene expression impact on protein

concentration and noise that in turn affect the dynamics of different biochemical networks inside the cell. In the absence of significant

degradation, protein numbers, concentration and noise are determined by the balance of production (gene expression), dilution (cell growth) and

cell volume (size). Protein levels determine the dynamics of all cellular processes (biochemical networks) that in turn control, or ‘feedback’ to,

cellular phenotypes (including cell size, growth and gene expression). The colours used in the diagram are just to guide the eye.
Global feedback and molecular
concentrations
In a growing cell, the balance between production, deg-

radation and dilution of biomolecules determines their

concentrations. Gene expression is tuned globally to

growth conditions and cell size [17]. Yet, unless rates

of gene expression are perfectly in tune with the cellular

growth rates, overall mRNA and protein concentrations

(and numbers) could vary due to the changes in cell

volume that accompany cellular growth (Figure 1). As

the rate of biochemical reactions depends on molecular

concentrations, this imbalance can then affect cell physi-

ology globally and be a source of global feedback

(Figure 2). In line with this, the concentration of a

constitutively expressed gene in Escherichia coli was in-

deed reduced at a faster population growth rate (shorter

population doubling time), and growth-dependent

changes in protein concentration were found to impact

on small regulatory networks behaviour [3�]. Imbalance

between molecule production or degradation and in-

crease in cellular volume can give rise to coordinated

change in large fractions of proteome. Recent analysis

from the Hwa laboratory revealed that the bacterial

proteome can be partitioned in three fractions: one frac-

tion that does not change with the population growth rate,

and two fractions that do, one dedicated to protein
www.sciencedirect.com 
synthesis, which includes ribosomes, and one containing

metabolic enzymes [9�,10]. The ribosomal fraction was

found to increase in proportion during faster population

growth, resulting in a decrease in proportion of the

metabolic fraction [9�,10]. In the case where total protein

concentration remains unchanged across growth condi-

tions, growth-related relative changes in proteome frac-

tions are directly linked to protein concentrations [3�].
Indeed, recent absolute measurements of protein num-

bers in E. coli combined with coarse-grained modelling

revealed that concentrations of a number of large prote-

ome fractions are regulated with population growth [18��].
These coordinated changes in concentrations of large

portions of the proteome in response to external condi-

tions could affect behaviour of gene regulatory networks

and be an intrinsic part of global regulatory feedback from

cellular growth rate to gene expression. The molecular

processes that underlie these changes or that are affected

by them remain largely elusive. Interestingly, global

changes in proteome resource allocation can result from

regulation by a single molecule as in the case of cAMP

regulation in response to catabolic and anabolic limita-

tions [19]. This example provides a simple mechanism

that connects the cellular environment and relative

changes in proteome fractions. A coarse-grained model

was instrumental in revealing the feedback mechanisms
Current Opinion in Microbiology 2015, 25:127–135
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Box 1 Biomolecule: refers to proteins, mRNAs or metabolites.

Cell size: the total volume of a cell, which is related to its dimensions

and surface area.

Cell division rate: the increase in cell number per unit of time. It is

also called population doubling rate. It is inversely proportional to the

population cell division time and population doubling time. In the

literature, cell division rate and growth rate have sometimes been

used interchangeably, but they do not refer to the same thing as

population growth rate refers to the rate of increase in total cell mass.

Cellular concentration: the number of molecules per unit of volume

in a cell.

Cellular economy: Allocation of cellular resources in different

conditions by balancing supply and demand.

Coarse-grained cell model: a mathematical model of some aspect

of cell physiology that focuses on a small number of key factors or

processes.

Detailed whole-cell model: a computer model of a particular cell

type with as much detail as one can handle, for example, it includes

all the genes.

Fitness: ability of a single cell with a given phenotype and genotype

to survive and reproduce as part of a cell population.

Gene expression: the processes that mediate expression of a gene

into a protein or another gene product, which includes transcription,

translation, or mRNA and protein degradation.

Global feedback: describes processes by which global regulation of

gene expression by growth (or cell size) can feedback to cell

physiology and in turn affect growth (or size) (see Figure 2). Crucially,

this kind of global regulation operates at a different level than the

signalling and gene-regulatory networks and connects cellular

context to global features of gene expression. Although their

existence is more and more recognised, the molecular mechanisms

at play remain vastly mysterious.

Growth laws: phenomenological and quantitative relations between

growth and gene expression, in particular linear relations observed in

proteome resource allocation (see Ref. [9�]).

Cellular growth rate: the mass increase of a cell per unit of time. We

use the term ‘cellular growth rate’ when referring to increase in mass

or volume of a single cell. In the literature, the cell growth rate is

sometimes expressed as the rate of exponential mass increase in a

population. This is problematic because the cellular growth rate of a

cell and of mass increase in a population are often different. This is

especially the case when cellular growth rate differ between cells of a

population for instance.

Cellular interdivision time: the time between two cell division for a

single cell. Also called cell cycle time or generation time. This is

inversely related to cellular growth rate.

Noise: non-genetic stochastic fluctuations in biomolecule numbers

due mainly to random timing of biochemical reactions. Noise levels

can be measured by temporal fluctuations in single cells or cell-to-

cell variability across an isogenic populations (for ergodic systems

these measures are equivalent). We refer to noise in mRNA and

protein number as noise in gene expression.

Phenotypic variability: non-genetic cell-to-cell variability in a given

phenotype. As gene expression levels are also phenotypes, noise is

an example of phenotypic variability. However, the term noise is

usually specifically used to refer to gene expression and molecular

variability. Examples of phenotypic variability, relevant to this review,

are cell size variability and cellular growth rate variability.

Population growth rate: the rate of exponential mass increase in a

cell population.

Current Opinion in Microbiology 2015, 25:127–135 
at work in this case [19]. Absolute quantification of

molecular concentration under different conditions is rare

in eukaryotic systems, yet it is known that total mRNA

levels are reduced by a factor greater than the decrease in

volume when fission yeast cells exit the division cycle to

enter quiescence, while global protein concentrations

remain relatively constant [20�]. In summary, molecule

concentrations do vary with the population growth rate

providing an underlying mechanism for global feedback

propagation. Absolute measurements of mRNA/protein

numbers across growth conditions will be essential to

study further the impact of this variability on biochemical

networks and the resulting global feedback.

Global feedback and cell size
Cell size homeostasis is an interesting example of a

process that could be affected by global feedback on

protein concentration. Cell size is tightly regulated as a

function of cellular growth and division. Although, mech-

anisms controlling cell size homeostasis are not entirely

understood, several genes have been identified that are

involved in size regulation in bacteria and yeast (for

review see [21,22]). The number of biomolecules in a

cell is linked to its size, as at equal molecular concentra-

tions bigger cells have on average higher copy numbers of

molecules. Therefore, changes in overall cellular mole-

cule numbers associated with an imbalance between

molecule production/degradation and increase in volume

(as described above), could affect concentrations of reg-

ulators of cell size homeostasis and feedback to size itself.

Such global feedback could impact on cellular ‘sizing’

mechanisms that are required for correct cell size homeo-

stasis. In the fission yeast Schizosaccharomyces pombe, the

protein kinase Cdr2p accumulates at the medial cellular

cortex proportionally to the cell surface area and contrib-

utes to size control [23]. Mathematical modelling that

assumes constant concentration of Cdr2p during cell

elongation explains the above experimental observation.

Therefore it is crucial that Cdr2p expression levels pre-

cisely scale with cell volume to ensure proper sizing [23].

Cdr2p acts in a network of other factors that includes

Pom1p [24,25]. A polar concentration gradient of Pom1p

regulates Cdr2p activity [26,27]. Altogether, these ho-

meostatic mechanisms are potentially susceptible to reg-

ulation via global feedback because global effects that

would affect ‘sizer’ molecule concentrations would in turn

affect cell size. Recent data propose an alternative mech-

anism of size control distinct from the ‘sizer’ principle.

Microfluidic measurements of cell size in bacteria has

revealed that the slope of the relation between cell size

and cellular growth rate depends on whether quantification

is based on single cells or population averages [28]. These

data combined with mathematical modelling hint at a new

‘adder’ size homeostasis principle, in which cells add a

constant mass at each generation, irrespective of their

newborn size [29]. As for ‘sizer’ molecules, ‘adder’ regu-

lators could be affected via global feedback on molecule
www.sciencedirect.com
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concentrations. Altogether this raises the hypothesis that

multiple fine tuning mechanisms of cell size homeostasis

could have evolved in order to confer robustness against

global regulation of protein concentration through global

feedback. To investigate this possibility, models of cellular

size control should take into account global regulation of

size sensing factors, since non-trivial feedback are likely to

occur (Figure 1). In summary, we propose that global

feedback of cell size and cellular growth on protein con-

centrations could be an integral element of size sensing

mechanisms.

Global feedback and noise in gene expression
Noise in gene expression scales with the inverse square

root of protein copy numbers in bacteria and yeast [30,31].

Therefore size and cellular growth related changes in

biomolecule numbers in single cells can affect protein

noise levels. Changes in noise levels of regulatory or

metabolic factors can in turn impact, or feedback, to

cellular growth itself (see below). Noise has an important

role in regulating cell fate, and such variations could also

have consequences for cell survival or differentiation.

Indeed, phenotypic variability and gene expression noise

are thought to adversely affect population growth and

division rates. Accordingly, genome scale data in yeast

suggest that noise is minimized in genes affecting popu-

lation growth [32]. Together, these observations suggest

that noise and growth are functionally connected at the

level of a cell population. In single cells, growth kinetics

could impact on noise levels in several ways. Recent

evidence suggests that stochastic promoter bursting of

constitutively expressed genes varies between cell cycle

phases [33]. Cellular growth (i.e. increase in cellular mass

of individual cells) can occur in different cell-cycle phases

depending on the organism and/or environmental condi-

tions. Because stochastic transcriptional bursting is a

potent source of noise, these observations taken together

provide a potential mechanistic link between cellular

growth and gene expression noise through cell-cycle

specific features of transcription. Growth-related variabil-

ity in the energetic status of the cell can affect gene

expression and noise as well. For instance, cell-to-cell

variability in numbers of mitochondria propagate to tran-

scription through cellular ATP levels resulting in vari-

ability in RNA polymerase II elongation rates [34]. More

generally, variability in cellular growth rates of single cells

contributes to gene expression noise as suggested by

modelling [35–37] (see also discussion of Ref. [48��]).
Another phenomenon that links cellular growth and divi-

sion of single cells with gene expression noise is the

random partitioning of biomolecules at cell division

(Figure 1a). Cellular pools of mRNA and proteins are

distributed binomially between daughter cells and each

partitioning event generates noise [38]. When cellular

interdivision time decreases, a single cell experiences

more partitioning events per unit time, potentially in-

creasing noise levels (Figure 1c). Interestingly, a shorter
www.sciencedirect.com 
cellular interdivision time is connected with an increase

in cell size at division in many unicellular organisms

including yeast and bacteria [21,22]. It is not completely

understood whether reaching a larger size at division is

advantageous at a faster cell division rate, and if it is, why?

We hypothesize that this regulation of cell size with cell

division rate may have evolved to minimize protein noise

during fast doubling, because copy numbers of mRNAs

and proteins are higher in larger cells (Figure 1d). Indeed,

mathematical modelling performed in our group shows

that increased size at faster population growth rates can

control noise in gene expression [39]. In summary, gene

expression noise and growth kinetics, in populations or in

single cells, are tightly interconnected. As changes in

global noise levels of biomolecules have the potential

to affect large number of genes, noise could be a mediator

of the systemic form of gene regulation discussed in this

review. This is indeed the case as in several examples

discussed below.

Global feedbacks and metabolism
In cell populations, the rates of growth and division are

complex phenotypes emerging from metabolic and envi-

ronmental cues. Even at constant population cell division

rates, the budding yeast transcriptome, proteome and

metabolome are dynamic, and cover a continuum of

physiological states [40]. For example, yeast oxygen

metabolic cycles involve thousands of genes, and are

tightly linked to cell culture dynamics [41,42]. Cycling

is particularly evident in conditions where cell division is

slow, and cycle frequencies are affected by culture den-

sity and population doubling time [41,42]. Interestingly,

single cells from a metabolically asynchronous population

were found to be in different phases of the metabolic

cycle suggesting that cycling can occur also in absence of

metabolic synchrony in the culture [43]. Moreover, recent

in silico simulations predict a broad distribution of meta-

bolic phenotypes and cellular growth rates among indi-

vidual cells due to expression noise in metabolic genes

[44]. Altogether, this illustrates how metabolic states and

growth dynamics can vary from cell to cell and are

heterogeneous traits within isogenic populations. Recent

data show that metabolic heterogeneity and noise have

implications for cellular decision making. Metabolic flux

is used as a controlling factor of phenotypic bi-stability on

gluconeogenic substrates [45�,46]. In yeast, the design of

the glycolysis pathway gives rise to two glycolytic states,

of which only one is compatible with cellular growth.

Modelling has revealed that variability in metabolic en-

zyme concentrations can generate both states [47]. This

indicates that noise in metabolic enzyme expression

underlies metabolic heterogeneity in a cell population

growing in a constant environment. An intriguing recent

study revealed that quantitative features of the cell con-

nect its metabolic status to cellular growth through noise

and global feedback. In E. coli, time-lapse imaging mea-

surements of cellular growth of single cells, lac enzyme
Current Opinion in Microbiology 2015, 25:127–135
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concentrations and lac production rates suggest that noise

in gene expression is transmitted to cellular growth and

generates cells with variable cellular growth rates [48��].
Interestingly, noise also propagates from cellular growth

back to gene expression and affects levels of genes

unrelated to the lac operon. Noise transmission was

maintained when specific gene expression regulators

were modified and could affect reporter constructs using

a range of different promoters [48��]. Thus metabolic

enzymes can connect cellular growth with gene expres-

sion of many genes in single cells without the need of

specific regulators. In other words, the metabolic state of

the cell spreads from its cellular growth dynamics to gene

expression, and back, through global non-specific feed-

back mechanisms. Taken together, these data demon-

strate how cellular growth and central metabolism are

connected via global feedback mechanisms involving

gene expression noise.

Global feedback on genes that affect fitness
We have seen in the previous section how global feed-

back through noise and metabolic enzymes can orches-

trate gene expression responses independently of the

cognate promoters or regulators of a gene. Another ex-

ample of this comes from regulation of genes that directly

affect the cell fitness. This provides an elegant mecha-

nism by which cells can adapt to unknown environments

in absence of dedicated signalling pathways. In a syn-

thetic bi-stable system where fluctuating environments

favour one of two stable gene expression states (at-

tractor), E. coli cells switch to the state supporting the

higher fitness [49]. Mathematical modelling revealed

that condition-dependent global feedback through mod-

ulation of gene expression noise is responsible for mak-

ing the state with the lower cellular growth rate unstable

[49]. This phenomenon is not restricted to bi-stable

circuits as global feedback was also found to affect

expression of a mono-stable gene required for population

growth even in absence of its cognate promoter [50]. In

this case, regulation seems to correlate with cell size and

noise in gene expression but the specific mechanisms at

play remain unclear [51]. Yet, global feedback through

noise in gene expression is a possible candidate that

should be tested with detailed modelling. In another

scenario, positive global feedback on gene expression

induces bi-stability in a cell population by generating

cell-to-cell variability in cellular growth rates [3�,15]. For

instance, expression of an antibiotic-resistance gene

becomes bi-stable due to a global positive feedback

through cellular growth on its own expression [14��].
Similar feedback on toxin-antitoxin systems could also

mediate antibiotic persistence in bacteria [3�,52,53]. Al-

though, in this case global feedback is not necessarily

required as slow fluctuations in toxin expression alone,

without feedback from cellular growth, can result in a

population of persister-like cells [54]. In summary, as in

the case of metabolic genes, mutual global feedback
Current Opinion in Microbiology 2015, 25:127–135 
between protein noise and cellular growth propagate

signals without the need of specific gene regulation

enabling survival in changing environments.

Mechanisms of global scaling of gene
expression with growth
Regulation of gene expression occurs at multiple levels

including transcription, translation, mRNA or protein

degradation. Defining how different regulatory layers

respond to quantitative features of the cell is key to

the understanding of the molecular mechanisms under-

lying global feedback. We have seen above that regula-

tion by global feedback can be maintained when gene

promoter sequences are altered or when genes specific

regulators are removed [48��,55��]. Intuitively, this ob-

servation points towards mechanisms either acting at the

post-transcriptional level or affecting transcription from a

large variety of promoter sequences. Recent studies shed

more light on this aspect of global regulation by demon-

strating that changes in population growth rate affect

global promoter activities [13��,55��,56��]. A study into

the arginine biosynthesis pathway in E. coli revealed

population growth rate dependent global regulation

alongside specific regulatory circuits [55��]. Global regu-

lation seems to serve the function of setting maximal

promoter activity during adjustment to new conditions,

whereas, specific regulation controls metabolic activity at

steady state [55��]. A larger scale study of around

900 yeast, and 1800 E. coli promoters reached similar

conclusions suggesting global scaling to growth condi-

tions is common with 60-90% of promoters affected

[13��]. Interestingly, this phenomenon is well explained

using a simple passive allocation of cellular resources

that assumes the overall promoter activity is a fixed

resource available to the cell per division cycle [13��].
Coordinately regulated genes under given conditions

preserve proportionality, suggesting that global regula-

tion contributes to ensuring stoichiometry. Expression of

genes with similar functions adjust to growth conditions

by similar scaling factors suggesting that levels of sys-

temic responsiveness to growth conditions is linked to

function. Therefore, in cell populations, growth-depen-

dent global regulatory mechanisms acting at the level of

transcription can shape gene expression programmes. In

E. coli, the observation that pools of free and active RNA

polymerase vary with population growth rates provides a

possible mechanism that can connect population growth

rates with global transcription [57]. Moreover, recent data

demonstrate that an increase in cell volume can regulate

transcription directly [58�]. Together, these data provide

evidence that population growth dynamics and quanti-

tative features of the cell impact globally on gene pro-

moter activities enabling global feedback between

population growth and gene expression. Further work

will be required to uncover how other layers of gene

expression control, such as mRNA stability and protein

degradation for instance, are integrated into this process.
www.sciencedirect.com
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In this context, genome-wide absolute measurements of

biomolecules production and degradations rates in cell

populations and ideally in single cells would be especial-

ly powerful resources. Finally, coarse-grained models

that take into account these additional layers of regula-

tion will be instrumental in shedding light on their

respective contributions.

Conclusion
Complex global regulatory feedback controls gene ex-

pression beyond classical gene regulatory circuits. These

processes are governed at least in part by quantitative

features of the cell. They simultaneously trigger, and

respond to, changes in single cell and population growth

dynamics. Appreciating their impact on complex traits

such as growth will help reveal genetic design principles

that allow cellular networks to function robustly across

environmental conditions [59�]. Quantifying absolute

protein numbers and noise across environmental condi-

tions will be used to inform the next generation of coarse-

grained models of cellular resource allocation that will

include gene expression noise and cell size. The quanti-

tative data on different aspects of cell physiology will be

used to constrain the topology and parameters of these

models and will increase their predictive power. We

believe that mathematical models of cellular processes

should be built on top of appropriate coarse-grained

models of cell physiology to help capture the effect of

global feedback. Ultimately, this kind of multi-scale

modelling will enable effective designs of synthetic bio-

logical systems that function robustly in changing envir-

onments.
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