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Strength does not come from winning. Your struggles develop your strengths.
When you go through hardships and decide not to surrender, that is strength.

A. Schwarzenegger

3



To my parents

4





Acknowledgments

I would like to express my deepest gratitude to my exceptionally knowledgeable,
patient and inspirational academic supervisors: Dr. Rafael Palacios and Dr.
Silvestre Pinho. Muchas gracias y muito obrigado to both for your advice and
guidance throughout the project.
I am very grateful to Dr. Henrik Hesse and Mr. Robert Simpson for developing

SHARP.beams, the geometrically nonlinear beam solver which I have used in this
work to couple my homogenisation tool with. I would also like to thank Dr. Nelson
Vieira De Carvalho (currently at NASA Langley) and Dr. Matthew Laffan for their
involvement and participation. Furthermore, my gratitude goes to all the members
of the Composites and Aeroelastics groups for their encouragement and interesting
discussions.
Financial support for part of my graduate and post-graduate studies came from the

Spanish Fundación para el desarrollo de la formación en las zonas mineras del carbón
and it is gratefully acknowledged. Travel grants from the Royal Aeronautical Society,
Imperial College Trust and Old Centralians’ Trust are also greatly appreciated.
Finally, I would like to thank my parents Julián and Josefina, my brother Eduardo

and my grandparents for their support. Also, thank you Mira and Leonardo for
humouring me and making the British winter (or summer) bearable throughout the
duration of this work.

6





Abstract

The increasing efficiency and performance requirements on current aircraft requires
the use of novel configurations and analysis methodologies which capture their
behaviour both accurately and efficiently. In spite of the great improvements in
computational power, simulating the full 3D structure is too costly and unviable for
conceptual design stages. Hence, reduced order models that accurately describe the
behaviour of these engineering structures are demanded. This work focuses on those
that have a dominant dimension and, because the characteristic length of the sought
response so allows it, can be assimilated into a 1-D beam model. A homogenisation
technique is introduced to obtain the full 6×6, i.e. including transverse shear effects,
equivalent 1-D stiffness properties of complex slender composite structures. The
classical 4×4 stiffness matrix is obtained for periodic structures, that is, without
the usual assumption of constant cross sections. The problem is posed on a unit cell
with periodic boundary conditions such that the small-scale strain state averages
to the large-scale one and the deformation energy is conserved between scales. The
method is devised such that its implementation can be carried out using a standard
finite-element package whose advantages can be exploited. This technique is readily
applicable to engineering models. It provides a new level of modelling flexibility
by employing tie constraints between different parts so that parametric analyses or
optimisation can be performed without re-meshing. The proposed methodology
allows local stress recovery and local (periodic) buckling strength predictions;
nonlinear effects such as skin wrinkling can therefore be propagated to the large
scale. Numerical examples are used to obtain the homogenised properties for several
isotropic and composite beams, with and without transverse reinforcements, taper or
thickness variation, and for both linear and geometrically-nonlinear deformations.
The periodicity in the local post-buckling response disappears in the presence of
localisation in the solution and this is also illustrated by a numerical example.
Finally, the code originated from this work, SHARP.cells, is coupled with a nonlinear
beam solver.
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Nomenclature

The main symbols used in this dissertation are listed below:

Symbols
AR aspect ratio
a body-fixed frame of reference
B deformed (material) frame of reference of each cross section
b unit cell depth, m
CBa coordinate transformation matrix, from a to B
Cijkl material elasticity tensor
D full vector of degrees of freedom
E Young’s modulus
eαβ Levi-Civita permutation symbol
F nodal external forces
F cross-sectional internal forces
G shear modulus
H cross-sectional angular momenta
h transverse dimension of the beam
I identity matrix
Jij cross-sectional moment of inertia
K global stiffness matrix
KB local curvature
L length of the beam (or total length of all beams)
M global mass matrix
M cross-sectional mass matrix or nodal external moments
M cross-sectional internalm moments
m mass per unit length
N matrix of shape functions
Ne number of nodes
n unit vector
P cross-sectional translational momenta
Q generalised forces
R full vector of forces
S cross-sectional stiffness matrix
s semi-width
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Nomenclature

Symbols (contd.)
T kinetic energy
T tangential rotation operator
t physical time or thickness
U internal (strain) energy
ui large scale (beam) displacements
Vb local translational velocity
va rigid-body translational velocity
vi small scale (unit cell) displacements
~v inertial translational velocity of the body-fixed frame, a
W virtual work
wi warping field
xi small scale (unit cell) coordinates
xcg location of the centre of gravity
y large scale (beam) reference coordinate

Greek
β variable containing nodal displacements and velocities
γi beam strains
∆ increment
η variable containing nodal displacements and rotations
ε vector of beam strains
εij small scale strain tensor
ζ orientation of the A-frame
η nodal displacements and rotations
θi local beam rotations
κi beam curvatures
ν Poisson’s ratio
ρ density
σij small scale stress tensor
ξ in-plane coordinates
φ single rotation about a unit vector
δΦ local virtual rotations
Ψ Cartesian rotation vector
Ω unit cell volume
ωa rigid-body rotational velocity
Ωb local rotational velocity
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Nomenclature

Operators, subscripts, superscripts and others
•̇ time derivatives, d

dt

•′ spatial derivatives along arc length, d
dy

〈•〉 average integral over the volume of a unit cell
•̃ cross-product or skew-symmetric operator
•,j partial derivatives, = ∂•

∂xj

[•] matrix
{•} column vector
*.py Python file
•c condensed degrees of freedom
•r retained degrees of freedom
•a body-fixed, main frame of reference
•B local, deformed frame of reference
# number of

Abbreviations
AIAA American Institute of Aeronautics and Astronautics
ATR Active Twist Rotor (blade)
BEM Boundary Element Method
CPU Central Processing Unit
CRV Cartesian Rotation Vector
d.o.f. degree(s) of freedom
EoM Equations of Motion
EUCASS European Conference for Aeronautics and Space Sciences
FEM Finite Element Method
GECB Geometrically-Exact Composite Beam
HALE High-Altitude Long-Endurance
HDD Hard Disk Drive
MIT Massachusetts Institute of Technology
NACA National Advisory Committee for Aeronautics (now NASA)
NASA National Aeronautics and Space Administration (formerly NACA)
OS Operating System
PBCs Periodic Boundary Conditions
RAM Random Access Memory
RPM Revolutions Per Minute
SHARP Simulation of High-Aspect-Ratio Planes
SSD Solid State Drive
UAV Unmanned Aerial Vehicle
UM/VABS University of Michigan Variational Asymptotic Beam Section (code)
w.r.t. with respect to
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Chapter 1

Introduction

Despite significant advances in computational power in the last decade, which allow

direct solid modelling of most engineering structures, there is still a practical interest

in dimensionally-reduced structural models. Beam models, in particular, provide

excellent approximations of the primary structures for low-frequency aeroelastic

analysis of high-aspect-ratio wings, helicopter rotor blades or wind turbines.

Slenderness, defined by the existence of a predominant dimension much larger than

the other two, is a property that is common to all these structures. High altitude

long endurance (HALE) unmanned aerial vehicles (UAV) (like those from Figure

1.2) are an aircraft example that employs slender wings. They are designed to fly

during extended periods of time, sometimes weeks, performing missions such as

cartography, weather sensing or telecommunication relay (replacing satellites for a

fraction of the price). This means heavy payloads (relative to their weight) which

require high aerodynamic and structural efficiency. Hence, high-aspect-ratio wings

made out of composite materials, which have very good stiffness-to-weight ratios, are

used. As a result, the efficient and accurate modelling of these lightweight structures

represents a significant engineering challenge [72].

The suitability of idealising slender structures as beams lies not only on the

topology of the structure but also on the desired aim of the analysis. For instance,
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(a) X-Hale from the University of Michigan [21] (b) Solar Eagle from Boeing

Figure 1.1.: Two concepts of HALE UAVs with very high AR wings

if one seeks to predict the flight dynamics behaviour of one of these aircraft when

flying through a gust, then a geometrically nonlinear beam model, populated with

the right elastic and inertial properties, and tightly coupled with an adequate

aerodynamic model will most likely be appropriate. However, if the root assembly

of the aforementioned aircraft wing with the fuselage is to be sized under static

loads then a more detailed representation is required; full 3D finite element analysis

is then unavoidable. Most of the time, when dealing with slender structures for

said applications, a considerable amount of time is spent in the conceptual design

stage using beam models that enable engineers to assess the relative performance of

multiple configurations: different materials, layups, geometries, etc. There exists a

vast range of options for the way that these models are constructed. It is paramount

that the chosen option is as accurate as possible while being computationally

efficient, flexible in its implementation and versatile in its applicability. This way,

the best possible solutions for the engineering problems at hand will be determined

early in the design stage and avoid unnecessary development expenses for inadequate

ones during the detail design.

This research addresses the need for an efficient homogenisation technique to

create a beam model that can be used with complex cross sections, that is able to

account for the effects of transverse shear for composite structures and that allows

variations of the cross section along the main dimension of the beam. Transverse

reinforcements like ribs carry the loads from the control surfaces, store stations and

landing gear to the spars and skins [90]. This type of reinforcement and spanwise
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1.1. Previous Work

thickness variations are frequently encountered in such applications to strengthen the

otherwise too flexible structure and/or to divide different compartments within. We

aim to include such variations in a novel unit cell approach that will be implemented

using an unmodified, off-the-shelf finite element solver and that therefore takes

advantage of the capabilities that standard finite element packages have in the

present time.

1.1. Previous Work

As noted above, there are many available analysis methods for the study of

composite slender structures. This section provides an overview of the most relevant

ones and the state-of-the-art alternatives to the work presented in this thesis. The

first subsection covers some of the most common areas of application for beam

models. In general, the modelling process can be split into two different stages:

Firstly, there is a homogenisation step, which determines the constitutive relations

of the reduced model (i.e. beam sectional properties); secondly, there is a solution

step, in which one evaluates the response of the dimensionally-reduced model to the

set of applied loads. Both stages are interrelated as assumptions on one affect the

other. Subsection 1.1.1 covers the former step and it explains the different options

available to obtain the properties of the reduced order models and Subsection 1.1.2

treats the latter. The amount of literature dedicated to beam theories is so large

that a comprehensive revision of all the contributions is impractical and only the

most important ones will be detailed here.

Applications of Beam Models

Beam models have proven to be very useful in a wide range of applications

where the structure under investigation presents a morphology and a typical

response conforming with the conditions introduced above. As an example, we have

introduced HALE UAVs, where nonlinear beam models are used due to the presence

of large deformations of the lifting surfaces which can change the natural frequencies
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of the wings [84]. A review of the available analysis methods for these aircraft was

presented by Palacios et al. [83] where the three main types of structural models were

compared: displacement-based, strain-based and intrinsic formulations. The first

option is the most commonly found in literature but it is not very computationally

efficient. It also proses the problem of how the parameterisation of finite rotations

is handled. The strain-based formulation offers an efficient alternative to remedy

this. The third and most efficient formulation is the intrinsic model, also known as

hybrid or mixed formulation, which can greatly reduce the computational cost of

the conventional, displacement-based method by combining velocities and internal

forces to define the independent structural states of the aircraft. Very recently,

Palacios presented a further possibility based on the nonlinear normal modes of the

structure expressed in terms of nodal strains and velocities alone [81]. Additionally,

considerable work has been done in the area of helicopter rotor blades where the

abundance of proposed methodologies and the lack of public access to experimental

results and benchmark problems have made it difficult to know which theories

work best in which cases. A good review of these theories and their relative

performance was presented almost simultaneously by Jung et al [59] and Volovoi

et al [109]. They concluded that, in the context of helicopter rotor blades, the

addition of refined, higher-order theories (with more degrees of freedom and larger

cross-sectional stiffness matrices) was unjustified and unnecessary and claims of

increased accuracy were based on miscalculated classical stiffness terms. They

also mistrust the influence of transverse shear and Vlasov’s warping on sufficiently

long box beams. Of course, they acknowledge the importance of these in shorter

or open-section beams. The application of beam models to rotating blades was

naturally extended to wind turbines [23]. In this case, beam models are not limited

to the calculation of effective cross sectional properties [57] used in a static analysis.

Instead, they are also used to model wind turbine vibration modes [61] or assess

their fatigue resistance, as it was proven by Mandell et al [73]. They manufactured

and tested an extensive set of I-beams to represent the wind turbine blade spar.

Carbon nanotubes are another relevant application for beam models particularly
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since the rise in computational power at the beginning of this century that allowed

large enough simulations to characterise the properties of this helical nanostructures

[70]. Messager and Cartraud adapted their work on wire springs and stranded ropes

[17] to calculate the axial stiffness of single-walled nanotubes [75]. Response of

materials at the nanoscale is different from those in their bulk counterparts, hence

nonlocal elasticity assumes that stress at a reference point is a functional of the

strain field at every point of the continuum [36]. Therefore, nonlocal beam models

employed in the analysis of double-walled carbon nanotubes [2] must use material

constitutive relations based on nonlocal parameters [35]. Furthermore, marine riser

pipes [62] protein chains [62] and even long bones [8] have also been modelled using

beams. The simplicity of construction of the models also makes them essential tools

in many other applications for conceptual studies.

(a) Single-walled carbon nanotube [67] (b) Offshore wind turbines in Denmark[13]

Figure 1.2.: Example of slender structures which can be idealised with a beam model

1.1.1. Homogenisation Stage

All the previous models and applications require an estimate of the cross-sectional

properties; the available procedures to obtain these properties used in the

dimensionally reduced models are detailed next. This step is the main focus of

this work. Solution methods to the 1D problem are treated in Subsection 1.1.2.
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Classical Models and Transverse Shear

The study of slender structures begins with the classical assumptions that solid

homogeneous isotropic structures, under small deformations follow a specific set of

kinematic relations for the displacement field. If the cross-sectional plane remains

perpendicular to the beam reference axis we have the Euler-Bernoulli beam. If it

does not, we have the Timoshenko beam [107]. Depending on the shape of the

cross section, Timoshenko introduced a shear correction factor that calibrates the

assumption of constant shear strain over the cross section. This shear coefficient

approximates the correct integrated value of strain energy due to shear to a constant

average at the reference line [1]. Over the years, much discussion has been generated

around the correctness or even existence of such correction factors [32, 44]. Shear

correction factors are closely linked to kinematic assumptions on sectional warping.

Warping aims to capture the difference between the real behaviour of the actual cross

section –when subject to certain loadings– and the assumed, larger scale one. It was

first introduced in Saint-Venant’s theory of torsion in 1856 [31]. Over a century and

a half later, the application of warping has been extended to all six classical degrees

of freedom and to solid, as well as thin, cross sections made of anisotropic materials

too [89]. There are two main strategies that can be used to obtain the 1-D properties

of heterogeneous anisotropic beams: one can solve the 3-D equations of elasticity

asymptotically or introduce an assumption on the warping field that calibrates the

displacement field. The main contributions for each group of theories are described

next. In the second group we include not only those theories that pose assumptions

on the warping field but also those that solve it exactly by discretising the domain.

Asymptotic Solutions

For composite beams, one of the most successful approaches in dealing with

arbitrary sectional properties is the Variational Asymptotic Method (VAM) [19]

based on the variational framework developed by Berdichevsky [6, 7]. The

analysis asymptotically approximates the 3D warping of the displacement field

23



1.1. Previous Work

that minimises the cross-sectional deformation energy for each beam strain state

and thus finds the constitutive relations for the 1D beam analysis. After the

global deformation from the 1D (possibly nonlinear) beam analysis is obtained,

the original 3D displacements, stresses and strains can also be recovered using

those 3D warping influence coefficients. It is worth noting that solutions based

on VAM only apply to the interior solutions in constant-section beams. Recently,

Lee and Yu [68] have proposed, as a partial remedy to that shortcoming, to use the

smallness of the heterogeneity and incorporate a spanwise dimensional reduction,

in the homogenisation step of the variational asymptotic method. The resulting

formulation is then similar to that obtained by the Formal Asymptotic Method

[9, 10, 65], which exploits the existence of two scales in the original dynamic

3D equations governing the elastic response of the beam structure to perform an

asymptotic homogenisation. However, it is not always apparent in the original

formulation how to define an adequate set of boundary conditions, implementing

it numerically or adapting it to conventional engineering models. This was later

remedied by Cartraud and Messager [17], who restricted the solution to the four

"classical" beam elastic states (axial, torsion and bending in two directions). The

resulting problem was then implemented in a commercial finite-element packages

(Samcef). This work resulted in an approach similar to that of Ghiringhelli and

Mantegazza [41] who modified a finite element software’s matrix solution procedure

to apply the theory developed by Giavotto et al. [42], based on an eigenvalue problem

for the basic beam motions, to obtain stiffness and stresses of a beam section made

of anisotropic materials.

Non-asymptotic Methods

As an extension to the classical beam theories, one can refine the

through-the-thickness representation based on assumptions made in the out of plane

warping. Rand [89] did this for composite beams as Reddy had done much earlier

24



1.1. Previous Work

Figure 1.3.: Phases present in a typical FEM cross-sectional analysis of composite beams
[22].

for laminated composite plates [91]. Thin- and thick-walled rotor blades were also

given this upgrade by Jung et al. [60].

Finite element analysis has been widely used in the calculation of the effective

beam sectional properties. It is not uncommon to wrap the homogenisation process

around a finite element solver roughly following the stages shown in Figure 1.3. Hill

and Weaver [48] used Nastran to extrude a 2D section of an anisotropic beam and

retrieve the full 6×6 stiffness matrix via a 2-stage analysis: Firstly a set of unit loads

is applied to the classical degrees of freedom and finally, using the reaction forces

due to bending a second analysis can be run which computes the shear components

by eliminating the bending moment and all remaining coupling terms. In essence,

this is very similar, albeit superior due to the applicability to anisotropic materials,

to the work by Jonnalagadda and Whitcomb [57] to calculate the transverse shear

components of the stiffness matrix. Their approach is also based on applying to the

section a bending moment equal in magnitude, but with opposite sign, than that

created by the shear force, however this is only presented for isotropic structures of

25



1.1. Previous Work

constant cross sections. Carrera et al employed a finite element formulation for static

[15] and vibration [16] analyses overcoming the limitations that their closed-form

hierarchical solution [14] faces when dealing with arbitrary cross sections.

The boundary element method (BEM) is also used to analyse the behaviour

of composite beams as an alternative to the finite element method. Instead of

discretising the whole cross section into area (triangular or quadrilateral) elements

limited to certain shape and distortion, only the boundary is discretised, resulting

in line or parabolic elements with a comparatively small number required to

achieve good accuracy. Sapountzakis and Tsiatas [94] have studied the effects

of transverse shear in a nonlinear analysis of a Timoshenko beam with arbitrary

variable cross sections. The same group of researchers have used this approach

to model flexural-torsional linear buckling [93], post-buckling behaviour [33] and

transverse shear loading [76]. Chakravarty [22] has reviewed the most relevant

contributions using BEM and summarised its advantages and disadvantages over

a FEM approach. The BEM only requires a mesh on the boundary and it only

approximates the boundary conditions, not the differential equations. However, the

solution at the domain points (stresses and strains) needs to be computed as a

separate step, fully-populated, nonsymmetric matrices are generated and storage

requirements and computational time grows with the square of the problem size.

Furthermore, element integrals are more difficult to evaluate, some integrands

become singular and pose problems even in the linear cases and it is much more

difficult to implement than the FEM.

A further possibility is that proposed by Kennedy and Martins [63], which builds

a kinematic description of the beam from a linear combination of fundamental

state solutions. The first fundamental solutions are axially-invariant, and their

corresponding deformation state is calculated at the mid plane of the beam by using

a 2D finite-element method to obtain the stresses and strains due to the Saint-Venant

(axial, bending, torsion and shear) [54] and Almansi-Michell (distributed surface

load) loadings [55]. This method, improved from an earlier work by the authors
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which only applied to orthotropic materials [64], yields solutions with accuracy

comparable to that of full 3D analysis using the Finite-Element Method (FEM),

for the interior solution, as long as the sections do not vary along the axis of the

beam and the loads are statically determined.

It is worth noting that in the majority of the above contributions, the response of

the beam is assumed static or quasi-static in order to obtain its stiffness. This is not

always valid especially when interested in the vibratory response of beams where

discretisation errors of the domain or of its boundary greatly affects the accuracy

of the results when excitation frequency increases [108]. The dynamic stiffness of

the structure needs then to be computed [69]. As large as fully populated 14 × 14

matrices can result from this approach which is mainly used in civil engineering

applications: for concrete beams [78], circular columns [66] and sandwich beams

[3]. These type of beams have substantially more material through the cross section

than those present in aeronautical applications and hence the vibrational response

requires this increase in modelling fidelity.

The previous solutions either were limited to constant-section geometries, required

dedicated -and often quite involved- implementations, or user-created modules

or subroutines in a standard finite-element solution package. Furthermore, the

mentioned methodologies are linear approaches that therefore only provide strength

estimates based on linear stress and strain distributions. Due to their high

strength-stiffness ratio, composite thin wall structures usually exhibit local or

distortional buckling before material failure [87] and this is often a design constraint.

1.1.2. Solution Stage: Geometrically Nonlinear Beam Models

Once an adequate set of cross-sectional properties has been obtained via any of the

homogenisation methods described in the previous section, the dynamic equations

of motion of the one-dimensional reference line that represents the slender structure

must be solved. A great deal of effort has been put into developing composite beam
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models and more comprehensive review of the available solution methods can be

found in Chapter 1 of the treatise by Hodges [51].

The first geometrically nonlinear beam theories that were developed [24, 34, 43]

were based on an inertial reference frame that included both the rigid-body motion

and the structural deformations of the beam into a single expression. The kinematics

for these beams were obtained as special cases of the general theory introduced by

Cosserat and Cosserat [28] as described by Love [71] for extension, bending and twist

and by Reissner [92] including transverse shear effects. The term "geometrically

exact" is often used to describe the exact treatment of the parameterisation of

the rotations of the cross-sectional frame. Euler angles were used by Reissner [92]

with the consequent problems that their singularity poses. Quaternions, which are

an extension of the complex numbers, from a plane to a three-dimensional space,

can be used to deal with rotations and remedy the shortcomings of Euler angles.

Simo and Vu-Quoc [98, 100] employed them to extend the methodology to fully

three-dimensional dynamic cases. The resulting equations are based on displacement

and finite rotation coordinates and solved with the finite element method. The same

authors further improved the approach by including a global body-fixed reference

frame to keep track of the large, unconstrained rigid-body motions of the beam in

space [99, 101]. Cardona and Géradin [12, 40] used the Cartesian Rotation Vector

(CRV) as an alternative to quaternions to express the sectional rotations. The CRV

is a vector parallel to the rotation axis and whose amplitude is the rotation angle.

Compared to quaternions, the CRV offers savings in storage and more favourable

expressions for the linearisation of the rotation tensor [47].

Danielson and Hodges [30] introduced a crucial simplification to the models

described above: they separated the cross-sectional rotations into their global and

local components to represent the large rotations of the body-fixed frame and the

small local rotations of the cross section respectively. This contribution facilitated

the move from the displacement-based solutions described above to the more recent

work that solves the geometrically-exact problem posing the equations in their
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intrinsic, strain-based, variables [18, 95]. This approach allows the formulation of

the problem in its state-space form, which, in the case of the formulation by Su

and Cesnik [105], has a constant stiffness matrix. Naturally, this is numerically

more efficient but it requires additional post-processing to obtain the displacements

and rotations which can be a problem in a multibody configuration with arbitrary

external constraints and loads [83].

The final consideration that must be made when dealing with large rotations is the

objectivity of the description, that is the fact that the strain measures should remain

constant regardless of how large the rigid-body motions are. Intrinsic formulations

[49] assure this property but displacement-based ones violate it due to the inertial

description of the beam kinematics, as demonstrated by Jelenić and Crisfield [29].

Their remedy is a co-rotational beam formulation that separates rotations into

global, rigid-body ones and local, elastic ones [56] and introduces a new, local

reference frame such that the local elastic deformations are always small with respect

to this new frame. It is therefore possible to deal with large beam deflections while

still having small strain measures locally [53] which facilitates the coupling of these

beam solvers with homogenisation techniques.

1.2. Research Aims of the Thesis

The usefulness of a beam theory is determined by its applicability, the accuracy

of its results and the effort required, both computationally and user wise, for the

analysis [63]. The presented literature review clearly manifests the existence of

a wide array of available methodologies for obtaining the homogenised properties

of slender, beam-like structures. However, there is no comprehensive solution for

complex-geometry composite slender structures, that can be seamlessly integrated

into a standard geometrically-nonlinear beam solver.

Consequently, the objectives of the present work are the following:
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1. To introduce a general methodology that evaluates the full elastic and inertial

properties of composite beams with spanwise periodic characteristics (this

eliminates the constant cross section simplification and it enables transverse

reinforcements to be included).

2. To calculate additional strength parameters related to local buckling

characteristics, such as skin wrinkling [106], and predict the nonlinear evolution

of the stiffness constants as the geometry changes.

3. To define the above methodology in such a way that can be implemented into

general-purpose finite-element code, thus taking advantage of all the advanced

modelling features of the leading commercial packages. This has a great effect

in the amount of time and effort saved if one wishes to perform parametric

analysis or optimisation on the number/position/size of said reinforcements

because it eliminates the need to re-mesh.

4. To demonstrate the integrability and computational suitability of the proposed

technique by coupling it with a nonlinear composite beam solver [47] and

comparing performance and accuracy against 3D analysis.

1.3. Present Approach

The methodology proposed in this dissertation to address the research objectives

of the previous section is based on the static analysis of a unit cell, which is

assumed to be much smaller than the characteristic wavelength in the beam response.

Assumptions on the definition of the global variables as an average of the local ones

and conservation of internal energy between scales yield a final set of equations

to obtain the beam fully populated stiffness matrix, that is, including transverse

shear effects. The solution will be sought using periodic boundary conditions in

an off-the-shelf finite-element solver (Abaqus). The utilised models are generated

automatically from a list of basic geometry parameters and assembled using

tie constraints from substructures with non-coincident nodes, which considerably
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simplifies model generations with a negligible impact on the homogenised properties.

Inertial properties are also calculated on the discretised model by summing all the

contributions from each element of the model. The solution method is also extended

to certain geometrically-nonlinear (but still periodic) problems and coupled with a

nonlinear composite beam solver for the calculation of tip deflections and (linear)

normal modes.

1.4. Outline of the Thesis

Developing a homogenisation technique which is exclusively based on an

unmodified, commercial, finite element, linear elastic analysis is an approach which

requires a simple yet powerful and widely applicable formulation. The addition of

the two transverse shear degrees of freedom is a strong challenge both from the

theoretical as well as the implementation point of view. This dissertation is divided

in three major sections: the theory description of the problem is encompassed

in Chapter 2, the implementation using a standard finite element package plus a

Python-based pre- and post-processor is included in Chapter 3 and the numerical

examples used to demonstrate all the different capabilities of the method are

separated into Chapter 4 (linear static analysis) and 5 (nonlinear and dynamic

analyses). In more detail, each of the chapters contains:

Chapter 2 focuses on the development of a framework of homogenisation for slender

periodic composite structures and the interaction with a geometrically-exact

composite beam solver. It describes the kinematics of both the beam reference

line and the representative unit cell and it postulates the equilibrium conditions

between the two scales that allow the derivation of a set of periodic boundary

conditions which define the static problem to be solved for the calculation of the

stiffness properties. Additionally, it includes details about the determination

of the inertial properties and the chosen method to apply the multipoint

constraints that impose the periodic boundary conditions. Finally, Chapter

2 contains an overview of the method employed to solve the 1-D geometrically
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nonlinear beam and how this is coupled to the methodology derived in this

chapter.

Chapter 3 presents the implementation of the methodology developed in the

previous chapter in a Python code named SHARP.cells which is part of the

SHARP (Simulation of High-Aspect-Ratio Planes) aeroelastic framework. The

code generated from this work uses Abaqus to solve the static problem on a

representative unit cell and to obtain its elastic and inertial characteristics.

An overview of the blocks involved in SHARP.cells is given in Chapter 3 with

special emphasis on the geometry generation, which is a novel aspect of this

approach, and the different types of analyses available thanks to the use of a

commercial finite element package.

Chapter 4 contains the first set of numerical examples which validate the method

for a number of cross sections of increasing complexity. It explores different

material configurations ranging from isotropic aluminium to diverse composite

layups with several materials in the same model. All test cases included in this

chapter are subject to a linear static analysis and some of them have transverse

reinforcements or variations in thickness along the beam’s main direction.

Chapter 5 includes a selection of test cases that showcase some of the advanced

features of this methodology in terms of analysis type. Buckling characteristics

under both compressive and torsional loads are studied. The solutions obtained

from a linear perturbation analysis (eigenvalue analysis) are compared to

those obtained from a fully geometrically nonlinear one. Effects arising from

localisation, present when the geometry of the whole structure is deformed

past its (local) buckling point load, are analysed in this chapter too. Finally

vibration modes and frequencies of a prismatic composite beam –obtained via

the coupling established between SHARP.cells and the 1-D beam solver– are

also presented in this chapter.

Chapter 6 summarises the key contributions and accomplishments of this work both

in the theoretical development field or in the novel aspects of its numerical
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implementation highlighted by the numerical examples. Additionally, it lists

some recommendations for future work that will expand the capabilities of this

approach and suggest further applications to be addressed.
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Chapter 2

Theory

This chapter focuses on the development of a framework of homogenisation for

slender periodic composite structures and the interaction with a geometrically-exact

composite beam solver. Firstly, the kinematics of both the beam reference line and

the representative unit cell are described in Section 2.1. Then, the equilibrium

conditions between the two scales are postulated in Section 2.2 and this allows

us to derive a set of periodic boundary conditions that define the static problem

to be solved for the calculation of the stiffness properties. Acquiring the inertial

properties is explained next. After that, two subsections (2.2.2 and 2.2.3) describe

the method chosen to apply the multipoint constraints which impose the periodic

boundary conditions and the justification behind the choice of constraints for the

shear degrees of freedom. Finally, Section 2.3 contains an overview of the method

employed to solve the 1-D geometrically-nonlinear beam and how this is coupled to

the methodology derived in the aforementioned sections.

The one-dimensional, nonlinear beam solver calculates the response of the

structure to a given set of forces and moments using Hamilton’s principle, in which

the kinetic energy, T , and the internal (strain) energy, U , per unit length are

quadratic forms of the beam strains and velocities. These can only be accurately

computed if the constant matrices that define them –the mass matrix, M , and the
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nonlinearbeamsolver.

stiffnessmatrix,S,respectively–arewellknown.Theequationsofmotionare

t2

t1 L
[δT−δU+δW]dydt=0 (2.1)

whereδWisthevirtualworkdonebytheexternalforcesandmoments. These

quantitiesareintegratedalongthelengthofthebeam,L,andthetimeintervalof

interest[t1,t2].

Themainobjectiveofthemethodologypresentedinthischapteristoobtain

thefull6×6stiffnessmatrixthatcharacterisestheelasticresponseofthe3D,

detailedstructure,whenreducedtoa6d.o.f. Timoshenkotypeofbeam. The

firstsectiondefinesthekinematicsofthebeamandtheunitcellandtheirrelation.

Thesecondsectionexplainstheequilibriumconditionsthatapplyontheunitcell

sothatarelationbetweenthedisplacementoneithersidesofitcanbederived.

Thesedisplacementrelationsareintheformofperiodicboundaryconditionsthat

areusedtointroduceeachloadingintheunitcelland,hence,linkingtheresponse

withtheinput,thestiffnessmatrixisobtained.Inthefinalsection,considerations

toextendthistononlinearcasesaredetailed.Thisincludesperiodicbucklingand

thedeterminationofrealstrainsandcurvaturescalculatedfromthe1-Dnonlinear
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Figure 2.2.: Schematic diagram of a slender periodic structure consisting of repeated unit
cells.

beam, that can then be used to either a) update the stiffness matrix or b) assess

the structural integrity of the structure by comparing the local stresses and strains

with the maximum allowed for a given material.

2.1. Kinematics

We define a slender prismatic solid as a longitudinal tessellation of a unit cell

characterised by − b
2 ≤ y ≤ b

2 (Figure 2.2). The beam-like nature of the structure is

enforced by the transverse dimension, h, being much smaller than the longitudinal

length of the beam, i.e. h << L. The coordinate y in the undeformed configuration

is chosen to coincide with the neutral axis of the 1-D large scale (beam). The

longitudinal dimension of the unit cell is b << L and it is measured along the x1

coordinate, which in the reference configuration lies along the large scale coordinate

y. Small scale displacements associated with xi are named vi and large scale

displacements of the reference line, y, are designated ui. The beam stiffness
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constants are obtained based on two assumptions between the scales [39]: a) the

large (1-D beam) scale variables (ui) are averages of the small (3-D unit cell)

scale ones (vi), and b) the deformation energy is conserved between scales. All

throughout this section, Einstein notation is used for repeated indices, with Latin

indices assuming values from 1 to 3 and Greek ones assuming values of 2 and 3.

eαβ is the Levi-Civita or permutation symbol which takes the following values:

e23 = 1, e32 = −1 and e22 = e33 = 0.

Under linear assumptions, the deformation of the reference line can be described

by three local displacements ui(y) and three local rotations θi(y) along the axes xi
of the coordinate system in Figure 2.2. The beam strain measures are obtained from

linearisation of the strain-displacement kinematic relations in [83], as

γ1(y) = u
′

1,

γα(y) = u
′

α − eαβθβ,

κi(y) = θ
′

i.

(2.2)

where •′ denotes spatial derivatives along arc length, d
dy
. The fact that this theory

includes transverse shear, γα(y) 6= 0, implies θ2 6= −u
′
3; θ3 6= u

′
2. This is equivalent to

saying that the cross sections are no longer perpendicular to the reference line and

the shear strain has two contributions: the angle arising from the deformation of

the reference line (u′
α) and the angle created between the cross-sectional plane and

the reference line (θβ). We define the vector of beam strains containing extensional

strain γ1, transverse shear strain in two directions γ2, γ3, torsional curvature κ1 and

bending curvatures in two directions κ2, κ3, as

εT =
{
γ1 γ2 γ3 κ1 κ2 κ3

}
. (2.3)

At the small scale level, we consider the 3-D deformation of a cell of volume Ω

centered at y (see Figure 2.2). The undeformed position within the cell will be

given by coordinates xi, where x1 is parallel to y, but measures lengths at cell scales

(i.e. dx1

dy
= b

L
) and it can be seen as a magnified coordinate system [11]. The
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three components of the small scale displacement field are vi(y;x1, x2, x3). The two

longitudinal dependencies are introduced to separate between small scale (∼ x1) and

large scale fluctuations (∼ y) of the structural deformations [68]. The warping field,

wi is then defined as the difference between the small and large scale displacement

fields, as

v1(y;x1, x2, x3) = u1(y)− eαβxαθβ(y) + w1(y;x1, x2, x3),

vα(y;x1, x2, x3) = uα(y)− eαβxβθ1(y) + wα(y;x1, x2, x3).
(2.4)

Note that if the warping field is zero, Eq.(2.4) is the kinematic assumption used

in Timoshenko beam theory. In general, the warping field depends on the cell and,

consequently, it was explicitly written as a function of the spanwise coordinate, y.

The independent large scale variables are defined from averages in the cell, as

ui(y) = 〈vi〉 ,

θ1(y) = 1
2 〈v3,2 − v2,3〉 ,

θα(y) = eαβ 〈v1,β〉 .

(2.5)

where 〈•〉 = 1
Ω
∫

Ω •dx1dx2dx3 and •,j = ∂•
∂xj

. Assuming that the reference axis is at

the centroid of the cell, i.e. 〈xα〉 = 0, these definitions impose six constraints on the

warping field,

〈wi〉 = 0,

〈w2,3 − w3,2〉 = 0,

〈w1,α〉 = 0.

(2.6)

The choice of homogenising the stiffness properties about the centroidal axis is not

a limitation of the theory but rather an advantage that simplifies the formulation

when dealing with rotations.

38



2.2. Equilibrium Conditions

2.2. Equilibrium Conditions

Our interest is in the interior solution of the problem, that is the response of the

majority of the beam which is not subject to end effects [52] or concentrated loads, to

obtain the 6×6 homogenised cross-sectional stiffness matrix, S. It will be enforced by

assuming constant large scale strains, that is, ε(y) = ε̄, which effectively correspond

to the fundamental solutions from Kennedy and Martins [63]. We then postulate

constitutive relations in the homogenised problem such that the strain energy is

conserved between the small and large scale levels [39]. Due to the periodicity of

the problem, the large scale strain energy per unit beam length is independent of

the cell in the interior solution, and it is

U = 1
2 ε̄

TSε̄ = 1
2b

∫
Ω
Cijklεijεkldx1dx2dx3, (2.7)

with Cijkl being the material elasticity tensor and εij = 1
2(vi,j + vj,i) the components

of the small scale strain tensor. Define now the magnitudes ∆vi = vi(y; b2 , x2, x3)−

vi(y;− b
2 , x2, x3) which represent the difference in the local displacement field between

corresponding points on either boundary surface of the unit cell. Eq.(2.4) becomes

∆v1(y;x2, x3) = γ̄1b− eαβxακ̄βb+ ∆w1(y;x2, x3),

∆vα(y;x2, x3) = γ̄αb+ b2

2 eαβκ̄β − eαβxβκ̄1b+ ∆wα(y;x2, x3).
(2.8)

The second term on the right hand side of the second equation in Eq. (2.8)

( b2

2 eαβκ̄β) comes from double integration of shear-related terms in Eq. (2.2). Firstly,

the curvatures (κi(y) = θ
′
i) are integrated once and substituted into (γα(y) = u

′
α −

eαβθβ). Then, uα is found by integrating again. These terms denote the coupling of

bending curvatures and transverse shear and would not appear in an Euler-Bernoulli

theory in which cross sections remain perpendicular to the reference line: θ2 =

−u′
3 and θ3 = u

′
2. For this solution to be independent of the cell, it must be

∆wi(y;x2, x3) = 0, i.e. the warping field is periodic. This is equivalent to saying

that, due to periodicity, the strain field must be compatible and the only difference

in displacement allowed between both faces of the cell is a rigid body motion, which
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does not create strain. We are finally left with the problem of obtaining the static

equilibrium conditions on a generic cell under an applied displacement field given

by

v1( b2 ;x2, x3) = v1(− b
2 ;x2, x3) + γ̄1b− eαβxακ̄βb,

vα( b2 ;x2, x3) = vα(− b
2 ;x2, x3) + γ̄αb+ b2

2 eαβκ̄β − eαβxβκ̄1b.
(2.9)

where the reference to the long-scale coordinate, y, is no longer necessary. This

problem can be set up in any standard FEM solver using multipoint constraints to

enforce the periodic boundary conditions defined by Eq. (2.9). See Subsection 2.2.2

for more details on multipoint constraints. Loading to the structure is introduced

via displacements, not forces.

Twenty-one different combinations of loading cases are then considered,

corresponding to unit values in each of the six components of the beam strain ε̄, and

unit values in each of the fifteen possible different pairs of strains and curvatures

(e.g., coupled axial/torsion, axial/shear, etc.). For each load state, the strain energy

of the whole unit cell is computed after a linear elastic analysis using the right

hand side of Eq.(2.7). This strain energy corresponds exclusively to the degree(s)

of freedom excited in a given loading case. When direct terms from the stiffness

matrix are being considered, the strain energy per unit length and the single strain

or curvature value chosen to load the unit cell uniquely determine that stiffness

diagonal term. The off-diagonal terms can be calculated using the difference in

strain energy levels that exists between a unit cell loaded simultaneously in two

degrees of freedom and the sum of strain energy of that same unit cell loaded in the

same two degrees of freedom but separately. Please note that the reaction forces

or moments are not needed to solve the twenty-one independent coefficients of the

stiffness matrix, S, in Eq.(2.7).

In order to capture transverse shear correctly, an additional constraint

corresponding to the last term of Eq.(2.6) is needed. This is the case because the

shear loading is not statically determinate and is linked to a bending moment, or
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rotation (see Eq. (2.2)). If, for example, γ2 is to be imposed as a periodic loading,

the associated rotation, θ2, must be zero to decouple the energy from pure shear from

that of bending. This means that for every section, θα is nullified but in an average

manner (see Eq. (2.5)) such that section warping is still allowed. This converts

shear loadings into periodic loadings. The average rotation constraint is conveniently

enforced via a zero average first moment (which is numerically well-posed and proven

to be equivalent to a zero average rotation in Subsection 2.2.3) for each section as

∫
Ω
u1xα dx2dx3 = 0 if γα 6= 0. (2.10)

2.2.1. Inertial Properties

The inertial properties of the section are given by the mass matrix, M , which is

defined as

M =

 m mx̃cg

mx̃cg J

 , (2.11)

where m is the mass per unit length, x̃cg is is the location of the centre of gravity

and J are the cross-sectional moments of inertia. They are defined as

Jij = 1
b

∫
Ω
ρξiξ

T
j dV, (2.12)

with ρ as the local density, b is the unit cell spanwise length, ξ = (0 x2 x3) as the

axially-invariant position vector and dV as the infinitesimal volume associated with

the unit cell domain Ω. It is worth noting that all the calculations required for the

mass properties are done on the discretised model.

2.2.2. Multipoint Constraints

The static problem which is the backbone of this formulation – defined by the

set of periodic boundary conditions in Eq. (2.9) –, that will lead to the calculation

of the 6 × 6 stiffness matrix, is implemented in a standard finite element solver

using multipoint constraints. These can be introduced via static condensation [110],
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also known as partial Gauss elimination or substructuring, Lagrange multipliers and

penalty functions [25]. The first method, as implemented in Abaqus, is utilised here

and hence will be explained in detail.

We begin from the standard structural equation

[
K
] {
D
}

=
{
R
}
, (2.13)

whereK is the original (before the multipoint constraints are applied) global stiffness

matrix, D is the original full vector of degrees of freedom and R is the original full

vector of forces. Assume that there are c independent multipoint constraints, Cc,

expressed by the matrix relation:

[
Cr Cc

]
Dr

Dc

 =
{

0
}
, (2.14)

where the full vector of degrees of freedom, D, is split between those retained, Dr,

and those condensed, Dc. There must be an equal number of independent equations

to the number of degrees of freedom to eliminate and therefore [Cc] is square and

can be inverted. The condensed degrees of freedom can be expressed in terms of the

retained ones as:

{
Dc

}
=
[
Crc

] {
Dr

}
where [Crc] = − [Cc]−1 [Cr] . (2.15)

We define the transformation matrix, [T ], that is to be applied to the original stiffness

matrix, [K] = [T ]T
[
K
]

[T ], and the original force vector, {R} = [T ]T
{
R
}
, in Eq.

(2.13) as:


Dr

Dc

 =
[
T

] {
Dr

}
with

[
T

]
=

 I

Crc

 . (2.16)

We also partition said structural equation similarly to Eq.(2.14):

Krr Krc

Kcr Kcc



Dr

Dc

 =


Rr

Rc

 . (2.17)
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Finally, the condensed system is:

[
Krr +KrcCrc + CT

crKcr + CT
rcKccCrc

] {
Dr

}
=
{
Rr + CT

rcRc

}
. (2.18)

Overall, the static condensation technique reduces the number of equilibrium

equations to be solved but it requires significant manipulation and it usually

increases the bandwidth of the condensed stiffness matrix [26]. As described in

Wilson [111], there are two other methods for imposing multipoint constraints:

Lagrange multipliers and the Penalty method. Their advantages and disadvantages

will be summarised next:

• The method of Lagrange’s undetermined multipliers is used to find the

maximum or minimum of a function whose variables are not independent but

have some prescribed relation. It solves the constraint equations exactly and is

especially suited if there are a few constraint equations that couple many d.o.f.

The transformation can be carried out element by element when the matrices

are still small and more manageable. The down side is that it increases the

number of variables and the size of the matrices [25].

• The Penalty method introduces constraints by creating semi-rigid links that

satisfy the structural equations in their variational formulation. It does

not modify the number of variables but it solves the constraint equations

approximately. Additionally, it increases the wavefront of the structural matrix

and requires the penalty numbers to be chosen carefully to avoid numerical

issues [88].

2.2.3. Equivalence between Zero Average First Moment of Area and

Zero Average Rotation

The following mathematical proof demonstrates the equivalence between applying

a zero average first moment of area constraint, α, and a zero average rotation

constraint, β. Applying a zero average rotation is crucial in order to eliminate

the strain energy corresponding to the bending degree of freedom but without
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modifying the local warping field, hence the average approach. Consider a simplified,

rectangular cross section with dimensions of unit width and 2h height (the area is

A = 2h). Then we obtain the moment of area and the rotation measures, α and β,

as:

α = 1
A2

∫
v1(x2) x2 dx2 ; β =

∫ v1(x2)− v1

x2
dx2. (2.19)

Normalising the moment of area measure, α, by the square of the area so that both

α and β have dimensions of length, it is possible to subtract one from the other:

α− β =
∫ [

v1(x2)
(
x2

A2 −
1
x2

)
+ v1

x2

]
dx2 =

=
∫
v1(x2)

(
x2

A2 −
1
x2

)
dx2 + v1

∫ h

−h

1
x2

dx2.

(2.20)

Integrating by parts and evaluating:

=
∫ h

−h
v1 dx2

[
x2

A2 −
1
x2

]h
−h
−
∫
Av1

(
1
A2 −

1
x2

2

)
dx2 + ���

0
v1 =

= A v1

(
A

A2 −
4
A

)
− v1 − A v1

∫ 1
x2

dx2 =

= v1(1− 4)− v1 + A v1

[ 1
x2

]h
−h

= 0.

(2.21)

Hence it is proven that enforcing a zero average first moment of area results in the

same response as a zero average rotation (but without the numerical problems).

This can be extended to any arbitrary cross section as long as the reference line

coincides with the centroidal axis.

2.3. Extension to Geometrically-nonlinear Problems and

Two-way Coupling with a 1-D Beam Solver

The previous formulation can be directly extended to geometrically-nonlinear

problems in two situations: Firstly, when there are geometrically-nonlinear effects

at the cell level but the solution is still periodic; and, secondly, when the nonlinear

effects appear in the macroscopic scale but relative displacements are still small

at the local (cross-sectional) scale. The first problem is representative of panel

buckling or skin wrinkling in an aircraft wing. This is a local phenomenon that
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u
A

G

,vω

Figure2.3.:BeamrepresentationofaHALEaircraftwiththeframesofreferenceusedin
theGECBcode[47].GistheEarth’sreferenceframe,Aisthebody-fixed
frameandBisthelocalreferenceframe.

maynotbreakperiodicityanditisassumedthatallcellsundergothesamelevelof

loadingandbucklinginitiatessimultaneouslyinallofthem. Thesecondproblem

appearswhenweareinterestedinupdatingthestiffnessand massproperties

usedingeometrically-nonlinearbeam modelling. Inordertostudytheeffect

offullypopulated6×6stiffness(withsheareffects)and mass matrices,the

currentmethodologyiscoupledtoageometrically-exactcompositebeam(GECB)

model[83]. Thisbeammodelisusedtorepresentallprimarystructuresofthe

aircraftbycurvilinear,composite(anisotropic)beamsthatarecapableoflarge

deformationsandglobalrotations[102]. Thebody-fixed,maincoordinateframe

oftheone-dimensionalbeam,A,isatthereferencelinedenotedbytheycoordinate

showninFigure2.3. Wedefinealocal,deformedcoordinatesystem,B,ateach

flexiblememberofthebeam. Vectorsinthree-dimensionalspaceareboldwhile

theircomponentsarewritteninitalicswithasubindexindicatingthereference

frameinwhichtheyareprojected.Inordertoparameterisetherelativeorientation

betweenthetwoframes,thecoordinatetransformationmatrixCBA(y,t)=C(Ψ)is

used.Itisdefinedas:

C=I+
sinφ

φ
Ψ+

1−cosφ

φ2
Ψ2=

∞

k=0

1

k!
Ψk, (2.22)
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where (•̃) is the cross-product or skew-symmetric operator and Ψ is the Cartesian

Rotation Vector (CRV). This rotation vector is defined based on Euler’s rotation

theorem, which states that any sequence of rotations of a rigid body about a given

point are equivalent to a single rotation, φ, about some unit vector, n, which passes

through that point: Ψ = φn. Ψ tracks the local orientations of the cross-sections

and, similarly, uA tracks their positions. uA (see Figure 2.3) is the position vector

that determines the instantaneous location of a point in the deformed structure

with respect to the body-fixed reference frame, A, expressed in its components in

its body-fixed frame. For instance, for a rigid body with rigid body motions, this

vector would be constant. Ψ and uA are the independent set of variables in this

formulation. We define the tangential rotation operator, T , that obtains the local

curvature, KB, from the local orientation, Ψ, as KB = T (Ψ)Ψ′ –where (•′) is the

spatial derivative with respect to the y coordinate. Hence, T (Ψ) can be obtained in

closed form from the CRV as [101]

T = I + cosφ− 1
φ2 Ψ̃ +

(
1− sinφ

φ

)
Ψ̃2

φ2 =
∞∑
k=0

(−1)k

(k + 1)!Ψ̃
k. (2.23)

Having T (Ψ) allows us to formulate relations between the local positions and

rotations and the beam strains and curvatures. This is a very important step as

it provides the necessary input data for the homogenisation tool. The relations

between the local positions and rotations and the beam strains and curvatures are

[49]

γ(y, t) =C(Ψ(y, t))u′A(y, t)− C(Ψ(y, 0))u′A(y, 0),

κ(y, t) =T (Ψ(y, t))Ψ′(y, t)− T (Ψ(y, 0))Ψ′(y, 0). (2.24)

Similarly, the local translational and angular velocities that constitute the inertial

properties of the beam can be calculated as

VB(y, t) = C (Ψ(y, t)) u̇A(y, t) + C (Ψ(y, t)) [vA(t) + ω̃A(t)uA(y, t)] ,

ΩB(y, t) = T (Ψ(y, t)) Ψ̇(y, t) + C (Ψ(y, t))ωA(t),
(2.25)
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where (•̇) is the temporal derivative with respect to t, vA and ωA are the translational

and angular velocities of the body-fixed frame.

Using Hamilton’s principle, the dynamics of the beam in a time interval [t1, t2]

were given at the beginning of this chapter as

∫ t2

t1

∫
L

[δT − δU + δW ] dydt = 0, (2.26)

where T and U are the kinetic and strain energy densities respectively. L for a full

aircraft such as that from Fig. 2.3 is the sum of lengths of all the individual beams

that compose the aircraft. The energies can be written as [49]

δU =
[
δγ> δκ>

]
S
[
γ> κ>

]>
,

δT =
[
δV >B δΩ>B

]
M
[
V >B Ω>B

]>
.

(2.27)

After additional manipulation (see Appendix A for details), a finite element

approximation with linear or quadratic interpolation (2 or 3 nodes per element

respectively) is used. The nodal displacements and rotations are grouped into the

variable η and velocities are grouped as β> = {v>A ω>A}. Equation (2.26), can be

written in discrete form as

M (η)


η̈

β̇

+


QS
gyr

QR
gyr

 (η, η̇, β) +


QS
stif

0

 (η) =


QS
ext

QR
ext

 (η, η̇, β, ζ) , (2.28)

where ζ is the orientation of the A-frame measured in terms of quaternions,

integrated from its angular velocity, ωA. The top row corresponds to structural

effects and the bottom one to rigid-body ones. From left to right we have inertial,

gyroscopic, stiffness and external loading terms. If Ne is the number of nodes, the

size of the vector of nodal variables, η(y, t), is 6 · Ne. These equations are solved

using Newmark-β in [47]. If we now linearise the equations for β = 0, the final

discretised form of the equations of motion is

M(η0)η̈ +K(η0)η = Qext, (2.29)
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where η refers to perturbations around an equilibrium condition η. M(η0) and K(η0)

are the assembled global mass and stiffness matrices. K(η0) is related to QS
stiff as

K(η0) =
∂QS

stiff

∂η

∣∣∣
η=η0

calculated in the 1-D beam solver using the element-wise

matrices obtained through the homogenisation step. When η is known at a given

time step, it is used to compute strains and curvatures using Equation (2.24) and

the homogenisation technique discussed in sections 2.1 and 2.2 is once more used to

provide updated stiffness and mass matrices, closing the loop. More details about

the flow of information from the beam solver to the homogenisation step and vice

versa can be found in Section 3.2.
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Chapter 3

Numerical implementation

The homogenisation methodology developed in Chapter 2 has been implemented

in a Python code named SHARP.cells which is part of the SHARP (Simulation

of High-Aspect-Ratio Planes) aeroelastic framework [27, 47, 77, 79]. SHARP

is a multidisciplinary framework for the simulation of novel flexible aircraft

configurations and large offshore wind turbines. Such highly-efficient platforms can

exhibit very large deformations which are captured accurately with this high-fidelity

simulation tool developed in Python, Matlab and Fortran. SHARP includes a

range of powerful capabilities for the simulation of very flexible aircraft with large

wing deformations: trim computations, open- and closed-loop dynamic response,

gust and manoeuvre loads, linear stability analyses, robust flutter suppression, gust

load alleviation and real-time simulations. SHARP.cells uses Abaqus to solve the

problem defined in Eq.(2.8) by applying Eq.(2.9) and Eq.(2.10). The code outlined

in this chapter is effectively a wrapper around a standard, unmodified finite element

package. Firstly, it creates or imports the geometry of the unit cell. Secondly, it sets

the right periodic boundary conditions for the finite element analysis and, finally,

it post-processes that information to calculate, primarily, the elastic and inertial

properties of the equivalent 1-D beam. Furthermore, it can also compute additional

characteristics such as buckling loads, post-buckling stiffness or vibration modes,

to name a few. It is important to note that, unlike the methodology proposed by
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Input 
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Figure 3.1.: Flow of information between the different modules of SHARP.cells

Giavotto et al [42], the solution procedure of the finite element packaged remains

unmodified in this approach and internal reinforcements can be analysed.

This chapter describes details of the implementation and software architecture,

including the interaction with the finite element package and the nonlinear beam

solver SHARP.beams. It also contains information about the modules and functions

that it uses, the format and content of its input and output files, the modelling

conventions and some performance considerations.

3.1. Description of the Python Code

Python was chosen as the scripting language for the implementation of the

dimensional reduction of slender periodic composite structures for several reasons.

Firstly, it is the language employed in Abaqus to store and organise all the

information in the output database and therefore it is very convenient to use it to
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request the analysis data natively without invoking the graphical interface. Secondly,

it is a highly-readable, clean and compact language which is widespread in the

scientific community and has many scientific packages ready available. Thirdly, it

is free, open source and OS-independent. Thanks to its compactness, the necessary

code written for this application has a combined line count of just over 3000 lines,

with three main files and 22 modules, 16 of which are originally developed and 6

are external modules (mainly from NumPy [80] and one piece of C code used for

Delaunay triangulation and meshing called Triangle [96]).

The main structure of the program is shown in Figure 3.1. The higher level

script, which governs everything else, calls the preprocessor to generate the input

file (more details in section 3.1.1). After that, it creates an Abaqus job using the

generated input file and sends it to the Abaqus’s solver (this process is carried

out automatically in both Windows and Linux). The number of cores (or threads)

and maximum RAM to be used are determined in this step. More details on the

computational performance of the code can be found in section 3.1.5. Finally, it uses

the post-processor to access the output database (an Abaqus .odb file) and calculates

the required properties. It is also this module that controls the interactions with the

1-D beam solver and can run loops for parametric analysis using the aforementioned

sub-files.

The bulk of the effort from this work comprises the pre- and post-processor files

and these will be described in further detail below.

3.1.1. Program Input/Output

In this section we distinguish between the input required for the Python code to

work and the input file created to be used by the finite element package. Similarly

the output from the code is not the same as the output from the FE solver, although

it is naturally based on this.

The first part, or pre-processor, performs the following tasks: it creates the

geometry of the unit cell, assigns the material properties and sections and creates
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all 21 load cases that will be run in the static analysis and any additional ones that

may be requested such as a linear perturbation step or nonlinear steps.

3.1.2. Geometry Generation

The geometry generation is based on a 2D planar surface which is then

automatically extruded to create the unit cell. Thickness variations and transverse

reinforcements can be added during and after the extrusion stage respectively. The

two-dimensional cross section can be defined as:

a) A set of coordinates corresponding to the outer contour of the surface

(represented with squares in Fig. 3.2). Linear interpolation is assumed between

these «master corners» and a variable number of intermediate nodes can be

automatically created for additional refinement (represented with circles in Fig.

3.2). If the section is composed of thin walls, the skin is meshed and its thickness

(measured from the outer wall) is required as an input: for composite layups, this

is the thickness of a single ply and the number of plies is automatically understood

from the layup configuration (see Subsection 3.1.3). The skin is meshed first and

further reinforcements can be added later. On the other hand, if the section is

solid, a Delanauy triangulation [96] is performed and no further parts can be

added (see Fig. 3.2 for an example of a solid NACA-4412 section meshed defined

with 21 main coordinates and 221 elements per section, 663 in total). There are

a variety of modules that have been included to facilitate the generation of the

most common shapes, including aerofoils. For example, circ2cart.py includes

a simple function of the same name that creates a thin walled cylinder centered

at the origin. It takes as arguments the outer radius and the thickness of the

cylinder. naca.py is a more sophisticated suite of functions which allows creating

any 4- or 5-digit NACA profile by simply specifying these digits and the number

of points as arguments of the function.

b) Geometry imported directly from UM/VABS [82] or Nastran style input files.

These are accepted directly as long as valid geometry, in text format, is
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contained within. At the time of writing SHARP.cells exclusively recognises the

keywords GRID, CQUAD8, MAT3D and PSHELL as accepted inputs for nodes, element

connectivities, material properties and section assignments respectively. [74]

c) Any combination of pre-meshed parts –including those generated in a)– that are

then bonded together using tie constraints. This includes parts generated in

any CAD preprocessor that follows the Abaqus format for the description of the

mesh. description or any reinforcement from the included libraries to add spars,

stringers and ribs (spar.py, stringer.py and rib.py respectively). For the

homogenisation step, details such as stress concentrations at joints have a very

small effect in the beam stiffness constants (as they are averaged over the whole

unit cell volume). Therefore, the meshing can be done independently for the

various subcomponents of the cells without affecting the accuracy of the solution.

Matching nodes are not required and both master (inner surface of the skin) and

slave surfaces (reinforcement) are bonded via tie constraints in the Abaqus model

[103].

In general, the models are meshed using ’C3D8R’ (3D-cuboid-8node) elements,

with reduced integration for the calculation of the linear stiffness properties.

Reduced integration uses only one integration point (Gauss point) and is

computationally cheaper than full integration at the expense of less accuracy. Full

integration is used for buckling analysis or complicated geometries such as the ATR

blade in Figure 4.12 in Section 4.3. This is to remedy hourglassing, which usually

occurs in the complex buckling deformed shapes. The only exception to this is a

solid section generated with a) and discretised using Delaunay triangulation; in this

case ’C3D6’ (3D-wedge-6node) elements are used.

3.1.3. Material Properties

In terms of material properties, SHARP.cells handles isotropic, orthotropic or

fully anisotropic materials using Abaqus convention for their definition. For the

anisotropic cases, each element has its own local coordinate system that defines the
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Figure3.2.:Unitcellfinite-elementdiscretisationofasolidNACA-4412profilemeshed
usingDelaunaytriangulation. Squaresrepresentthe masternodesofthe
geometryandcirclesdepictthosenodescreatedbetweensquaresinalinear
interpolatedfashion1.

plyorientation.The0-degreeaxisrunsparalleltothex1axisandpositiveangles

aremeasuredclockwisearoundx3. Eachcompositeplyismodelledwithalayer

ofelementsandSHARP.cellsunderstandsstandardcompositelayupnotation(i.e.

[0,90]3).

Theinertialpropertiesofthesectionarecalculatedonthediscretisedmodelin

thepre-processingstageand,asitstands,SHARP.beamscannotupdatethemass

matrixwithdeformedgeometries.

3.1.4. AnalysisTypes

Theonlyremainingparametertobedefinedbeforetheinputfileisgeneratedis

thetypeofanalysistobeperformed.Thefollowinglistcontainsanenumerationof

allthepossibleanalysisandthecodesinvolvedineachofthem:

1Pleasenotethattheprofileisin3Dandmasternodesareshownonboththefrontandthebackfaceof
theunitcell.Therearethreeelementsthroughthedepthofit.
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Linear This is the standard linear elastic analysis used to calculate the 6×6 mass

and stiffness matrices and it is performed by default. Adding the keyword

’static’ to the run_abaqus() function is therefore not required. It involves

using SHARP.cells and Abaqus static with the NLGEOM flag OFF. It is also

used as part of the vibration analysis, the linear coupled and the linear tapered

analyses.

Linear coupled This involves coupling the above results to the beam code

SHARP.beams for an actual beam simulation. The beam description might

be nonlinear but the stiffness is linear and is not updated with deformed

geometries.

Nonlinear coupled This is potentially the most useful type of analysis in an

aeroelastic simulation. It involves using SHARP.beams and Abaqus (with the

NLGEOM flag ON) repeatedly to update the cross sectional stiffness and mass

properties of the beam being studied in SHARP.beams. Information travels

both ways and SHARP.cells provides updated matrices when required by the

beam solver and takes nodal positions and rotations to convert them into

strains and curvatures and use those exact values as the reference loading for

the nonlinear unit cell analysis.

Linear tapered When a tapered structure is under consideration, the stiffness varies

along the span of the idealised beam. SHARP.cells is first run for a few

representative unit cells at discrete positions on the beam representation which

provide the required stiffness parameters for SHARP.beams. The beam is

initialised using this if the number of beam elements is the same as the number

of unit cells for which properties have been acquired or, alternatively, a linear

interpolation between known stiffness values. The same would apply to inertial

properties. After that SHARP.beams performs the beam study of interest as it

would in the linear coupled case, that is, without further update on the cross

sectional characteristics.
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Vibration In order to obtain the normal mode frequencies and shapes of a slender

structure, a vibration analysis is performed which involves SHARP.cells

obtaining representative cross sectional properties through a linear Abaqus

analysis and using SHARP.beams to assemble the global mass and stiffness

matrices. As a final step, SHARP.cells performs an eigenvalue analysis with

the aforementioned matrices using the linear algebra tools available in the

Numpy package.

Buckling (linear perturbation) An estimate of the strength of a structure may be

obtained via a local buckling analysis. In this particular one, SHARP.cells uses

Abaqus’ linear perturbation analysis to assess the response of the unit cell to

a given loading. Only deformed shapes and buckling strains/curvatures are

calculated here.

Post-buckling/fully nonlinear This is a full geometrically nonlinear analysis in

which SHARP.cells uses Abaqus recursively and with the NLGEOM flag ON,

to characterise the evolution of the stiffness matrix as the geometry changes.

This change in geometry is introduced by varying one of the components of

the strain, γ, or curvature, κ, vector in a discretised domain of interest; the

tangent stiffness is calculated for small increments of all degrees of freedom

around those values. As described in Section 2.3, this is especially useful to

determine local post-buckling characteristics, hence the name chosen.

The second part, or post-processor, is in charge of accessing the Abaqus output

database (.odb file), calculating the elastic strain energy for the whole model. Using

Eq.(2.7), the stiffness matrix is then calculated for the unit cell. It prints this 6× 6

matrix to an output text file together with the mass matrix (calculated during

the geometry generation), centroidal location and moments of inertia. Optionally, it

can also output the buckling characteristics of the unit cell under the chosen loading

state.
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3.1.5. PerformanceAnalysis

ThePythoncodewrittenforthisapplicationisdevisedtobeincludedina

conceptual-design-stageaeroelastictooland,assuch,itwasdesignedtobefastand

efficient.InordertobenchmarkSHARP.cellsarepresentativeunitcellhasbeen

created.DepictedinFig.3.4,thisunitcellisaunitradiuscircularcylinderwhich

includeseightcompositeplies[0,+45,−45,90]2. Thewallthicknessis5%ofthe

lengthoftheradius.Itismeshedusing2164nodesand1280C3D8Relements.The

computationaltimerequiredfortheSHARP.cellsPythoncodeplusthefiniteelement

packagewhencalculatingthefullypopulated6×6massandstiffnessmatricesforthis

representativeunitcellhasbeenexploredinTable3.1. Werecallthat21loading

casesarerequiredtodetermineallthetermsinthestiffnessmatrix. Thetotal

runningtimeisaroundfivesecondswithanIntelCorei72600k@4.5GHzasopposed

toacoupleofminutesifthewhole3Dstructure(extrudedto50timesthelengthof

theunitcell)isruninAbaqus. Mostofthetimeisconsumedbythefiniteelement

solverstage.Theinfluencethatdifferentcomputerhardwarehasontheanalysistime

isalsoreflectedonTable3.1.Evidently,thenumberofavailablelogicalcoresplays

animportantroleinthefiniteelementstage.Thebenefitsofusingalargernumber

ofcoresaremorepronouncedinfairlylargefiniteelementmodelsanditisnot

evidenthere;wecanobservediminishingreturnsafterfourcoresareemployedand

communicationbecomesmorerelevantthanavailablecores.Ingeneral,wecanstate

57



3.2.Integrationwith1-DBeamSolver

x
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Figure3.4.:3Dviewofthe8-plycylinderusedtobenchmarkSHARP.beams. Tworows
ofelementsarenotnecessarybutthesecondoneiskepttocheckspanwise
invariance.

Table3.1.:Representativerunningtimes of SHARP.cells with different hardware
configurations.ThePythoncolumnincludesthepre-andpost-processorCPU
timeandtheAbaquscolumnindicatestheFEanalysisCPUtime.

Storagetype #ofcores Python[s] Abaqus[s] Totalwallclocktime[s]

HDD 1 0.913 3.82 4.73
HDD 2 0.916 2.86 3.78
HDD 4 0.912 2.47 3.38
HDD 8 0.912 2.52 3.43

SDD 8 0.644 1.88 2.52

thattwofastx86processingcoresareenoughtorunSHARP.beamsadequately.The

Pythoncodeissingle-threadedanddoesnotbenefitfrommultiplecores.I/Ospeed

fromthestoragedrivewasexploredbytestingSHARP.cellsinahigh-performing

solidstatedriveasopposedtoamechanical7200RPMharddisk.Improvementsare

presentbutmaynotjustifythecostoftheformeranditsreducedstoragesize.

3.2.Integrationwith1-DBeamSolver

Thegeometricallynonlinearbeamsolver,SHARP.beams,developedbyHesse

andPalacios[47](basedonageometrically-exactdisplacement-basedformulation
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3.2. Integration with 1-D Beam Solver

[40, 99]) and wrapped with Python by Simpson and Palacios [102] is coupled

to this homogenisation code for certain analysis types as described in Subsection

3.1.4. Thanks to both programs being written in the same language, the transfer

of information is straight forward. Also, certain functions and classes from

SHARP.cells can be imported and used in SHARP.beams and vice versa.

In a general geometrically nonlinear case, SHARP.cells calculates the mass and

stiffness matrices for each beam element, following the procedure described in the

previous section, and then transfers them as an input for the initialisation of

the nonlinear beam solver. Aside from a tapered structure, each beam element

is given the same properties at the start of the simulation. At each time step,

the nonlinear beam solver in the aeroelastic framework (see Figure 3.5) uses the

forces computed from the unsteady aerodynamics solver on the previous step’s

deformed shape to update the geometry. The number of time steps required for

requesting an updated stiffness matrix from SHARP.cells depends on the tolerances

set for changes in the strain state. Once that condition is met, the instantaneous

beam strains and curvatures of the current deformed shape are computed. These

are determined at a discrete and small number, Ns, of span-wise locations using

Eq.(2.24). The instantaneous beam strains and curvatures are then used as

an exact input for a Ns number of unit cells. For each of these unit cells, a

21-loading-case, geometrically-nonlinear, static analysis is performed to obtain the

updated stiffness that corresponds to that specific deformed geometry. Alternatively,

these geometrically-nonlinear, static analyses can be employed to assess the integrity

of the structure. One possibility is to compare the resulting stresses and strains

with predetermined maximum allowed stresses and/or strains for a given material.

Please note that, in the current approach, materials are always treated following a

linear-elastic law, with no plasticity. A second possibility is to limit the amount,

if any, of local buckling, at the unit cell level, and use that as a design constraint,

on its own or in addition to the maximum stress approach. Other options could be

considered as well.
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3.2.Integrationwith1-DBeamSolver
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Figure3.5.:MainanalysisblocksinthemultidisciplinaryaeroelasticframeworkofSHARP.
ThemodulesingreenareSHARP.cells.

Freevibrationnormalmodesandfrequenciescanalsobeobtainedbyusingthe

beamsolvertoassembletheglobalmassandstiffnessmatrices(usingthecross

sectionalonesobtainedfromthehomogenisationtool)andthenusingNumpy’s

linearalgebramodule(numpy.linalg)tocomputetheeigenvalueproblemdefined

inEq.(2.29).

ItisworthnotingthatSHARP.cellsisOS-independentandhasbeentestedinboth

WindowsandLinux.Thankstothedynamicvariablesusedfordirectoriesandthe

factthatallcommandsusedtorunAbaqusanalysesareimplementedusingtheOS

module,portingthePythoncodefrom WindowstoLinuxrequiresnomodifications

atall.
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Chapter 4

Homogenisation of Slender

Composite Structures with

Reinforcements

This chapter gives examples of the linear static part of the homogenisation

methodology described in Chapter 2. Most of the implementation details explained

in Chapter 3 will also be illustrated via the test cases included here. These will

cover a wide variety of cross sections –ranging from a simple circular cylinder to a

complex, active twist rotorblade[20]–, material configurations –isotropic, orthotropic

and fully anisotropic– and geometry variations in the spanwise direction. Special

implementation advantages of SHARP.cells, such as the ability to use tie constraints

between differently meshed parts (see Subsection 4.1.1 or Section 4.3) or the ability

to recover accurate 3D stresses (see Section 4.2), are highlighted. The test cases

are: two varieties of prismatic box beams and a tapered box beam in Section 4.1,

a circular cylinder with spanwise thickness variation in Section 4.2 and a real-life

helicopter rotorblade in Section 4.3.

Whenever possible, the results obtained here will be compared with UM/VABS[82]

and/or full 3D finite element results obtained from Abaqus.
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4.1. Prismatic Box Beam

4.1. Prismatic Box Beam

This section presents three different models of a prismatic box beam. The first one

is an initial validation of the method, for isotropic materials and classical stiffness

components (i.e. no shear components). It includes transverse reinforcements. The

second one investigates the suitability of this approach for tapered slender structures

by coupling SHARP.cells to SHARP.beams and using different levels of fidelity to

populate the stiffness matrix of the 1-D beam solver. Finally, the third one explores

the behaviour of different composite layups and it includes transverse shear terms.

4.1.1. Isotropic Prismatic Box Beam with Reinforcements

This first model is a ribbed prismatic box beam made out of homogeneous isotropic

material (aluminium: E = 70GPa, ν = 0.3) with width and height equal to 2m and

1m, respectively, and with 0.025m-thick walls. The distance between ribs is b = 1m,

which defines the unit cells. In order to define a reference for comparison, a full

box-beam of length L = 20m is built-in on one end and all the loads or moments

are applied via a reference point at the other end. This reference point is linked

to the structure using a rigid body constraint which ties all the nodes on the end

of the beam to said reference point. The full model is meshed using 10400 C3D8R

elements with 17421 nodes and is partially shown in Figure 4.1 (a cut-out has been

included for better visualization). The unit cell mesh has a twentieth of the number

of elements. There are ten elements along the height, width and span of one cell,

and three through the thickness. The transverse reinforcements in both models (full

and unit cell) are added to the model via tie constraints, which avoids local mesh

refinement in the joints between rib and outer skin. The geometry and the von Mises

stress contour of the full structure subject to a tip bending curvature (κ2 = 0.1m−1)

are shown in 4.1.

Stiffness results for the extensional (S11), torsional(S44) and both bending

directions(S55, S66) are summarised in Table 4.1. The results from SHARP.cells
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4.1. PrismaticBoxBeam

Figure4.1.:Verticalcut-outofthedeformedreinforcedbox-beammodelunderabending
curvatureofκ2=0.1m

−1).ContourplotshowsvonMisesstress.

fortheunreinforcedbeamarecomparedtothosefrom: a)analyticalresults

fromthin-walledbeamtheory;b)full3DFEManalysisusingstaticloading;c)

UM/VABS.However,theresultsinitalicsshowtheeffectofaddingatransverse

ribtoallunitcellsattheirmid-spanlocation.Thethicknessofthereinforcement

isthesameasthatoftheouterwallsofthebeam. Theagreementoftheresults

producedbythishomogenisationmethodisexcellentbothwiththetheoryandthe

currentavailabletools. Thesmalldiscrepancythatthin-walltheoryhas,inthe

caseoftorsion,withbothUM/VABS[82]andtheproposedmethod,isduetothe

thin-wallassumptionoftheformer.Thin-walledclosedsectionshaveuninterrupted

circuitsfortheshearflowandifthewallthicknessismuchsmallerthantheother

cross-sectionaldimensions,thenthisshearflowcanbeassumedtobeuniformacross

thewallthickness[5].Thesuppressionofwarpingatthebuilt-inends,ontheother

hand,hasnegligibleeffectsatthescalethatthetorsionalrigidityiscalculated.

Finally,theadditionofthetransversewallresultsinasmallchangeofstiffness,

whichcanneverthelessbeestimatedwiththepresentapproach.
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4.1. Prismatic Box Beam

Table 4.1.: Homogenised stiffness constants for the prismatic box beam. Numbers in italics
correspond to the stiffness of the beam with transverse reinforcements present
in the structure.

Stiffness constant FE Analytical UM/VABS [82] SHARP.cells(with ribs) (full beam) (thin wall)
S11(EA) [GN] 10.3 (10.5) 10.3 10.3 10.3 (10.5)
S44(GJ) [GNm2] 1.71 (1.72) 1.79 1.71 1.71 (1.72)
S55(EI22) [GNm2] 1.91 (1.94) 1.91 1.91 1.91 (1.94)
S66(EI33) [GNm2] 5.58 (5.62) 5.58 5.58 5.58 (5.62)

4.1.2. Tapered Isotropic Square Box Beam

Most aircraft use tapered wings to get as close as possible to the elliptical

lift distribution along the length of the wing without actually having to build a

complex shape like an ellipse. Additionally, tapered wings are lighter than the

aerodynamically comparable straight ones and experience a less severe root bending

moment because they can be shorter for equivalent performance in terms of lift

[90] The current methodology does not include taper but we are interested in the

accuracy of three different approximations. For this purpose, a modified problem

is defined to investigate the effect of a draft or taper angle in a box beam whose

response is approximated by:

Approximation 1. A piecewise discretisation of the beam.

Approximation 2. A linear interpolation based on stiffness values calculated at the

tip and at the root of the beam.

Approximation 3. An average approach using only the middle span geometry for

the calculation of the beam properties.

The metric used to assess this accuracy is the tip deflection under a vertical tip load.

The model considered is a 10m long, 1m wide at the root, square box beam with

0.025m-thick walls. It is a cantilever beam anchored at the root and with no internal

ribs. The full beam is discretised with 12000 solid (C3D8R) elements which result

in 10 along the cross sectional dimensions, 100 along the span and 3 through the
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4.1. PrismaticBoxBeam
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Figure4.2.:von Misesstressdistributioninacantilevertaperedboxbeamwitha5kN
verticaltiploadandataperangleof2degrees.

Figure4.3.:EvolutionofthestiffnessparametersalongthenormalisedspanofaL=10m
long,52%taperratiobeam.Thestiffnessconstantsarenormalisedwiththe
valuesattherootofthebeam:S11,root=683GN;S22/33,root=31.6 MN;
S44,root=63.1GNm

2;S55/66,root=108GNm
2.
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4.1. Prismatic Box Beam

thickness. Material properties remain unchanged from the previous example and

the tip force, which is applied to the end section nodes via a reference point located

at the centre of the section and rigidly link to them, is 5kN. For the first approach,

the beam is represented using 10 representative unit cells. These are located at

the 0.5m, 1.5m,...,9.5m positions along the main dimension of the beam and are

only one element deep given that there is no variation in geometry in the spanwise

direction for this case. For the second and third approaches, the beam cross sectional

properties are obtained from a linear interpolation of actual values at the extremes

(several FE solvers do that for beam elements [37]) and a constant distribution of the

central properties respectively. Five taper angles are studied ranging from zero to 2

degrees which corresponds to 0% (no taper) to 70% taper ratio. The semi-width at

any span position is given by the trigonometric relation s(y) = 0.5− y tan(α) where

y is the spanwise position (measured from the root) and α is the taper angle. The

taper ratio can then be calculated using the width at the tip. Fig. 4.2 shows the

extreme case where the taper angle is 2 degrees and the tip section is only 302mm

wide ( 70% taper ratio).

Table 4.2.: Tip vertical displacement under a 5kN tip load for an encastred tapered beam.
The percentage difference with respect to the full 3D Abaqus solution is shown
in italics.

Taper ratio [%] Abaqus 1D beam 1D beam 1D beam
(% diff w.r.t. Full 3-D Approx. 1 Approx. 2 Approx. 3
Abaqus Full 3-D) [mm] [mm] [mm] [mm]
0 1.582 1.593 (0.65) 1.593 (0.65) 1.593 (0.65)
17 1.821 1.852 (1.68) 1.742 (-4.34) 2.112 (15.98)
35 2.161 2.231 (3.24) 1.955 (-9.53) 2.869 (32.72)
52 2.690 2.824 (4.99) 2.255 (-16.17) 3.856 (43.36)
70 3.649 3.950 (8.22) 2.732 (-25.19) 5.947 (62.95)

Table 4.2 shows the tip deflections in mm for the three different approaches

described above and the percentage discrepancy with the full 3D solution from

Abaqus. As expected the best solution is achieved with the most accurate

representation of the stiffness variation throughout the span. Having 10 unit cells

yields just under 5% error for a taper ratio of 52% which is not very desirable.
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4.1. Prismatic Box Beam

The accuracy increases with a finer discretisation but then the advantages of this

combination of tools versus a full 3D finite element analysis are hard to justify. The

linear discretisation performs better than the average approach and it suggests that

having a good estimate in the evolution of the stiffness is crucial for obtaining the tip

displacement correctly. For that reason, the stiffness constants are plotted in Fig.

4.3 for the 52% taper ratio beam. It demonstrates that a linear interpolation is only

valid for the extensional stiffness. For a tip load, shear and bending stiffness play

the most important role and higher order polynomials, at least quadratic, should

be employed in order to greatly improve the results, as suggested by Friedman and

Kosmatka for Timoshenko beams [38].

4.1.3. Full 6× 6 Stiffness Properties of Composite Prismatic Box Beams

The third model in this section is a thin-walled box-beam made of six composite

plies of thickness t=0.127mm. Two different composite layups are considered:

a)([0,-30]3) for all walls and b)[−15]6, [15]6, [15/−15]3, [−15/15]3 for the top, bottom,

right and left walls respectively. The width and height of the model are respectively:

w=24.21mm and h=13.46mm. The material used is AS4/3501-6 graphite-epoxy

unidirectional pre-preg, and it has the following properties: E11 = 142 GPa;

E22 = E33 = 9 GPa; ν12 = ν13 = 0.42; ν23 = 0.34; G12 = G13 = 5.998 GPa;

G23 = 4.799 GPa; ρ = 1265 kg m−3.

The unit cell model consists of 20 C3D8R elements per side and one per ply

through the thickness. The full beam model is constructed with 20 unit cells. The

geometry of the unit cell, along with the von Mises stress contour plot corresponding

to a transverse shear loading of γ2 = 0.1 for the [0,-30]3 layup, is shown in Figure

4.4. Results from the present method are shown in tables 4.3 and 4.4. They

agree very well with published results (UM/VABS, from Ref. [82]) and with the

full 3-D solution. The coupling terms present in the unbalanced [0,-30]3 layup

are due to extensional-twist coupling and shear-bending coupling. If we normalise
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4.1. PrismaticBoxBeam
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Figure4.4.:vonMisesstresscontourplotforaloadingstrainofγ22=0.1.

Table4.3.:Fullstiffnessmatrixresultsforarectangularprismaticcompositebeam.Layup
is[0,30]3

Stiffnessconstant
AbaqusFull3-D UM/VABS Present method(%diffw.r.t.

AbaqusFull3-D)

S11[MN] 5.497 5.496(0.0) 5.497(0.0)
S22[MN] 0.442 0.4375(-1.0) 0.4377(-1.0)
S33[MN] 0.1843 0.1855(0.6) 0.1858(0.8)
S44[Nm

2] 50.06 49.73(-0.6) 49.89(0.4)
S55[Nm

2] 169.16 170.5(0.8) 171.2(1.2)
S66[Nm

2] 434.1 430.4(-0.9) 432.2(-0.4)

S14[kNm] 5.280 5.830(10.0) 5.48(3.78)
S25[kNm] -2.583 -2.947(14.0) -2.874(11.2)
S36[kNm] -3.26 -3.121(-4.2) -3.185(-2.3)
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4.1. Prismatic Box Beam

Table 4.4.: Full stiffness matrix results for a rectangular prismatic composite beam. Layup
is (from top wall and clockwise): [−15]6, [15]6, [15/− 15]3, [−15/15]3

Stiffness constant
Abaqus Full 3-D UM/VABS Present method(% diff w.r.t.

Abaqus Full 3-D)
S11 [MN] 6.162 6.161 (0.0) 6.162 (0.0)
S22 [MN] 0.412 0.410 (-0.4) 0.418 (1.4)
S33 [MN] 0.182 0.1806 (-1.2) 0.186 (1.7)
S44 [Nm2] 49.2 48.58 (-1.3) 49.35 (0.3)
S55 [Nm2] 168.9 169.5 (0.3) 169.4 (0.3)
S66 [Nm2] 408.1 405.3 (-0.7) 406.5 (-0.3)
S12 [MN] -0.796 -0.855 (7.4) -0.788 (-1.0)
S45 [Nm2] 53.12 50.51 (4.9) 52.15 (-1.8)

these coupling terms S14 and S25 by the corresponding direct terms as S14√
S11S44

and
S25√
S22S55

respectively, we can explain why the up-to-10% discrepancy occurs: the

coupling terms are exactly two orders of magnitude smaller than the corresponding

direct terms. With the symmetric layup, we only encounter extensional-shear

and extensional-bending couplings in the axis about which the wing profile is not

symmetrical. It is worth noting that in order to calculate the shear stiffness using a

full beam model, this has to be made remarkably long in order to avoid end effects

(see the following sub-section) which results in very computationally expensive

models that take hours rather than seconds in a desktop PC.

4.1.4. End Effects

Transverse shear is characterised by having end effects that propagate further

than other types of loadings such as bending. This becomes a problem when

obtaining shear stiffness properties from a full 3D model: knowing how far these

propagate dictates the accuracy obtained via the current method which assumes very

slender structures. This is given as an example in Figure 4.5 where the error in the

compliance terms associated with bending and shear has been plotted. (Compliance

is calculated in the full beam model because the loading is introduced in terms

of forces and not strains). It can clearly be seen that in the bending case, most

length of the beam produces results with a very low percentage error, whereas in
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4.2. Laminated Cylinder with Constant Ply Angle and Span-wise Variable Thickness
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Figure 4.5.: Characteristic length of the propagation of end effects for the shear and
bending compliance terms. The spanwise coordinate, y, is normalised with
the cross sectional dimension, h.

the shear case, if the beam aspect ratio is smaller than 5, the majority of the length

of the beam is affected by these end effects. The thickness of the wall also has

an influence on how far these end effects propagate. Figure 4.6 shows that results

calculated at a comparable distance from the root of the beam disagree more with

the internal solution the thicker the walls are. Both bending stiffness and shear

stiffness coefficients seem to be affected in a similar manner by the thickness of the

wall as shown by the slope of the sensitivity plots in Figure 4.6.

4.2. Laminated Cylinder with Constant Ply Angle and

Span-wise Variable Thickness

Next, we will consider two subcases: a 2-ply, constant-fibre-orientation-angle

circular cylinder, which will be used to demonstrate the stiffness variation as the ply

angle changes; and a modified section of this, that will be used to give an example
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Figure4.6.: Wallthicknesseffectsonthepropagationofend-effectsfortheshear(top)and
bending(bottom)stiffnesscoefficients.
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4.2. Laminated Cylinder with Constant Ply Angle and Span-wise Variable Thickness

of the approach for cross sections of varying thickness along the span. The ply angle

is measured clockwise around the radial direction of the tube, with the x1 direction

take as the reference for a zero-degree ply angle.

Table 4.5.: Ply properties of the laminated cylinder.
E11 = 1.42× 1011 Pa E22 = E33 = 9.8× 109 Pa

G12 = G13 = 6.0× 109 Pa G23 = 4.8× 109 Pa
ν12 = ν13 = 0.3 ν23 = 0.3

For the reference (constant-section) case, the cylinder has unit radius, R = 1m,

measured to the outer wall, and 5% thickness (t = 0.05m), as depicted in Figure 4.7.

The length of the unit-cell model, which does not affect the homogenised results,

is b = 0.1m. This has been meshed with 320 C3D8R elements (724 nodes). There

are two elements per 9 degrees in the circumferential direction, one per ply and

two in the spanwise direction (only one is needed). The material properties of the

composite used are given in Table 4.5. The non-zero terms of the 4 × 4 stiffness

matrix have been plotted in 4.8 together with the results obtained using UM/VABS

[82]. There are no transverse shear terms included because, in its current state, the

methodology presented here cannot produce results for the transverse shear terms

when the geometry is not constant along the length of the beam. The classical

stiffness terms included are then: extensional (S11), torsional (S44) and bending

(S55/66) stiffnesses plus the coupling between the first two (S14). Only one bending

stiffness is shown in the figure, as the section is symmetric. As one should expect,

S44 has a maximum around 30°, while S11 and S55/66 decrease with θ. The evolution

of these constants with the ply angle agrees very well between both methods and

the error is always less than 0.1%.

A modified version of the previous example will be used next to explore the

capabilities of the method to model 3D cells that include heterogeneity along the x1

direction. For that purpose, the outer radius will remain the same, but the thickness

of the section will vary as a function of the span-wise position, as shown in Figure
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Figure4.7.:Cross-sectionaldiscretisationanddimensionsofthereferencelaminated
cylinder.(Cellmodelis3-D.)

Figure4.8.:Stiffnessconstantsasafunctionoftheplyangleforthelaminatedcylinder
withconstantwallthickness.
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4.2. LaminatedCylinderwithConstantPlyAngleandSpan-wiseVariableThickness

t=0.025m

Linear variation

b=1m

R=1m
a

x1

x2

x3

0.75t

b-a
4

b-a
4

Figure4.9.:Longitudinalcutofthecellofthelaminatedcylindershowingthethickness
variation.

4.9.Thischangeconsistsofa25%reductioninthicknessoftheinnersections(length

a)withalinearvariationregionjoiningtheoutermostsectionswhichremainthe

samethickness.Pleasenotethatthisisonlyanacademicexampleascompositeplies

cannotbemadethinner. ThematerialpropertiesarethosefromTable4.5. The

compositelayupisnowa[45,-45,0,90]s.Thenewmeshhas6elementsinthespanwise

direction,oneperply(8plies)and50intheazimuthcoordinate.Theunit-cellresults

willbecomparedtoafullsizelinearFEanalysisofa10-cellbeamcreatedwitha

tessellationofthecelljustdescribed,whichresultsinaratherlargemeshwith24000

C3D8Relements.Itisclampedononeendandloadedwithaκ3=0.1m
−1bending

curvature.Thisisachievedbyapplyingarotationtoareferencenodeplacedatthe

otherendandlinkedviaarigidbodytothenodesatthatextremityofthestructure.

Itisworthnotingthattheunitcellmodelrunsinsecondsbutthefull-sizemodel

requiresover16GBofRAMandtakestwoordersofmagnitudelongertorun.Table

4.10showsthedeflectionofthetopnodes(x2=R,x3=0)asafunctionofx1in

thefullmodelascomparedtothedeflectionofabeamofthehomogenisedstiffness

underthesameload.Bothsolutionsareveryclosewithminordiscrepanciesatthe

boundariesofthebeam,sinceendeffectsarenotaccountedforinthehomogenised

model.Table4.6containsthevonMisesstressvaluesthroughthethicknessofall
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4.3. Application to a Real Structure: ATR Blade

Table 4.6.: Interpolated von Mises stress values accross plies at mid-span nodes on vaying
thickness cylinder

[
a
b = 1

3 and κ3 = 0.1m−1
]
.

Ply angle (deg) von Mises stress (MPa)
Homogenised FE (full beam, centre cell)

45 400.0 400.5
-45 386.0 386.5
0 910.1 910.3
90 211.2 210.9
90 209.1 208.8
0 780.2 780.9
-45 283.7 278.9
45 233.4 239.0

plies at an azimuth location of 45°(x2 = x3 = √
2/2m) and at the mid-span location

(x1 = b/2). It confirms that the technique not only predicts homogenised stiffness

and displacements correctly, but it also provides small scale stress levels across the

plies of the periodic structure.

Given the level of automation of the mesh generation it is easy to perform a

parametric analysis to check the sensitivity of the structure to variations of one

(or more) of its variables. In this case, the effect of the thickness of the wall has

been studied. This is done by increasing the relative length of the thin region

(25%-reduced thickness part) with respect to the total length, b. The results are

plotted in Figure 4.11. Note that in the limit when a/b = 1 this corresponds to a

cylinder of constant thickness 0.75t. The evolution of the stiffness constants follows

an expected mild decrease as the thickness is reduced.

4.3. Application to a Real Structure: ATR Blade

The Active Twist Rotor blade (ATR) was jointly developed at NASA and MIT,

and has served as a benchmark for several homogenisation techniques because of

its high geometrical complexity of the cross section and the fact that it combines

different anisotropic materials [97]. Its dimensions and material distribution can

be seen in Figure 4.12 and the elastic properties of the conforming materials are
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4.3. ApplicationtoaRealStructure:ATRBlade

Fairing

E-Glass 0/90

Mid-Section

E-Glass   0/90
AFC         45
E-Glass   45/-45
AFC         -45
E-Glass   0/90

Nose

E-Glass   0/90
S-Glass   0
E-Glass   45/-45
E-Glass   0/90

Web

E-Glass   0/90
E-Glass   0/90

107.70

47.75

4.85

12.10

Figure4.12.:Dimensions(inmm)andmaterialsusedinthedifferentpartsoftheATR
wing.

includedinTable4.7.Thecrosssectionhasbeenmodelledwithoutthefoamcore,

andextrudedtocreateaunitcellwithatotaldepthof20%thechordoftheprofile.

Note,however,thattheresultsareindependentofthechoiceofdepthfortheunit

cell. Giventhefactthatthecurrentmethodologyallowsforadvancedmodelling

featuresoftheFEMpackagetobeusedinthesolution,thevariouspartsofthe

section(skin,spars,joints,etc.)weremeshedindependently,withouttheneedfor

coincidentmeshesontheinterface,andwereassembledusingAbaqustieconstraints

[103](penaltymethod)forameshtransitioningbetweenpairsofsurfaces.Asalready

mentioned,thisenhancesthescalabilityandpossibilitiesofthecurrentsolution

method,asthedetailsintheconnectionbetweensparandskinhaveasmalleffect

inthehomogenisedstiffness. Themeshusedconsistsof3912C3D8elementsand

6171nodeswhichisaverysimilardiscretisationtothatin[82].Fullintegrationwas

usedheretomitigateaproblemofartificialstrainenergycreation.

Table4.7.:MaterialpropertiesofthepliesintheATRwing[20].

Material
Units

E-Glass(Style S-Glass Active-Fibre
Property 120Fabric) (Unitape) Composite

E1 [GPa] 20.7 46.9 22.18
E2/E3 [GPa] 20.7 12.1 14.91
G [GPa] 4.1 3.6 5.13
ν - 0.13 0.28 0.454
tply [mm] 0.114 0.229 0.203
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4.3. Application to a Real Structure: ATR Blade

Table 4.8.: Stiffness matrix including transverse shear of the ATR blade
Stiffness constant

Abaqus Full 3-D UM/VABS Present method(% diff w.r.t.
Abaqus Full 3-D)
S11 [kN] 1681 1677 (-0.3) 1678 (0.2)
S22 [kN] 209.2 208.4 (-0.4) 205.1 (1.9)
S33 [kN] 24.6 24.50 (-0.8) 24.2 (1.6)
S44 [Nm2] 39.1 38.11 (-2.5) 38.59 (1.3)
S55 [Nm2] 41.17 41.18 (0.0) 41.08 (0.2)
S66 [Nm2] 1092 1086 (-0.5) 1077 (1.3)
S16 [Nm] 395 369.4 (6.4) 384 (2.7)
S34 [Nm] -243.2 -285.2 (17) -253.1 (4.1)

The stiffness constants obtained through this method have been summarised in

Table 4.8 and compared to those in UM/VABS [82] and the full 3D finite element

solution. The direct terms are in full agreement with the UM/VABS model, and

the coupling terms are very accurate. The observed discrepancy in the torsional

stiffness, S44, is due to a ply angle orientation error already identified in Palacios

and Cesnik [82] that wrongly modelled the nose of the profile. There is also an

element missing in the same area. There are two significant coupling terms in this

model: S16 and S34. Following the same procedure of Subsection 4.1.3, we can

determine that the coupling terms are, once more, two order of magnitude smaller

than the direct terms. Consequently, bigger discrepancies were observed. These

coupling terms link extensional to bending and shear (about the non symmetrical

axis) to torsional degrees of freedom, respectively. The former is due to material

anisotropy and the latter arises from the non-symmetric geometry of the model (i.e.

it is still present in an isotropic model). Aside from the coupling terms, the biggest

discrepancy is found in the S22 term which corresponds to the vertical shear direction

along which the blade is really stiff anyway. Increasing the number of elements by

two reduces the error to under 1% hence this is believed to be a convergence issue.

As it can be seen, the tie constraints introduced to link the various parts in the

model have a negligible effect on the solution.
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Chapter 5

Non-linear, Buckling and Vibration

Analyses

This chapter encompasses all the advanced capabilities, in terms of analysis type,

of the methodology proposed in this dissertation. After exploring the linear static

solutions in Chapter 4, local buckling, nonlinear and vibration analyses are presented

next. We begin the chapter with two different cases of local buckling for a prismatic

ribbed structure: skin wrinkling under a torsional load and panel (skin) buckling

between reinforcements for a compressive load. For the same situations, nonlinear

analyses are performed to assess the evolution of the stiffness with said loading

conditions and to explore the interesting phenomenon of localisation. All this is

included in Section 5.1. The last part of the chapter is dedicated to the coupling

of SHARP.cells with SHARP.beams for the calculation of the normal modes of a

composite structure with and without shear effects (Section 5.2).

5.1. Buckling and Geometrically-nonlinear Analyses

5.1.1. Skin Wrinkling under a Torsional Load for a Ribbed Beam

Skin wrinkling between ribs under a torsional load is a sizing factor for aircraft

wings [106]. In this numerical example, a 2×1m box beam made out of isotropic
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5.1. Buckling and Geometrically-nonlinear Analyses

material (E=70GPa, ν = 0.3) is considered. The skin thickness is tskin=2cm and

ribs of trib=10cm are placed every metre. The unit cell is discretised using 20 C3D8R

elements along the cross sectional dimensions, x2 and x3, two through the thickness

and 20 again for the depth, b = 1m, of the unit cell. The full 3D structure is created

using 8 of these unit cells. A linear perturbation buckling analysis is run on both

models and the buckling load computed. Results for the unit cell and the full 3-D

structure are in very good agreement: κ1,unitcell = 0.1207 and κ1,fullbeam = 0.1203.

The buckling modes can be observed in Figure 5.1.

The analysis of local buckling using a unit cell requires that the wavelength of

the response be the same length as the unit cell depth. In this skin wrinkling case,

it is interesting then to investigate the effect of rib thickness to determine whether

the period of the deformation is ever longer than the distance between two ribs.

In Figure 5.2 it can be appreciated that even with a rib thickness of t=0.5mm the

period is still the length between ribs. Further decrease in the thickness of the rib

results in these ribs actually buckling, before it can be observed full-beam wrinkling

period independent of the reinforcements.

The skin thickness also affects the stiffness as a function of loading. A

geometrically-nonlinear analysis can be performed and the evolution of the stiffness

compared between the present method and the full 3-D model. Figure 5.3 shows

the secant stiffness S44 for a varying range of skin thicknesses from the full Abaqus

beam and the unit cell approach. As one should expect, the thicker the skin the

higher stiffness constant. This is captured with excellent agreement by both the unit

cell and the full 3D structure. The initial plateau corresponds to the pre-buckling

stiffness (mostly linear in this case). For all skin thicknesses tested, the stiffness

decays gradually after the buckling curvature κ1 ≈ 0.12, as expected.
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5.1. Buckling and Geometrically-nonlinear Analyses

Figure 5.1.: Deformed shape of the unit cell (top) and full 3-D structure (bottom, with
oblique side-cut) for a torsional load of κ1 = 0.1203 and a rib thickness of
5mm. Unity deformation scale factor.
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5.1. BucklingandGeometrically-nonlinearAnalyses

Figure5.2.:Longitudinalcutonthedeformedshapeoftheribbedprismaticbeamunder
ahightorsionalloadofκ1=0.1203
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Figure5.3.:Evolutionofthetorsionalstiffnessasafunctionofthetorsionalstrainfor
differentskinthicknesses.
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5.1. Buckling and Geometrically-nonlinear Analyses

5.1.2. Local Compressive Buckling of a Reinforced Prismatic Box Beam

This case explores the suitability of a unit cell analysis to obtain local buckling

loads under compressive forces when the solution is still periodic. Global buckling

is not accounted for here but could instead be computed by the homogenised beam

model. The model used is similar, in shape, to those from Section 4.1, a prismatic

box beam with perpendicular wall reinforcements, but the thicknesses of the skin

and the reinforcement have been modified to ensure skin-buckling response. The new

thicknesses are hence: 1mm for the skin and 10cm for the transverse reinforcement.

The material used is the same aluminium as in the aforementioned case and the

boundary conditions for the full beam are also the same. From a convergence test,

the full beam mesh is created with 24000 C3D8R elements, while the model of the

unit cell one is a sixth of that, that is, 4000 elements. The transverse reinforcements

are linked to the skin of the structure via tie constraints. All elements have a planar

characteristic length of 10cm; there are three elements through the thickness in the

skin and two elements through the thickness of the reinforcement walls. As it can

be seen from Figure 5.4, the buckling mode of the structure is coincident in both

models -the unit cell one and the full 3D one. The maximum displacement is in

both cases normalised to one, and the magnitude of the axial strain at which local

buckling occurs (eigenvalue) is found to be very close: γ1,buckling = 3.042 · 10−3 for

the full 3D model and γ1,buckling = 3.058 · 10−3 for the unit cell one. It is clear that

both approaches find the same solution for the first buckling mode.

A geometrically-nonlinear analysis is then performed on the same model (with

C3D8, full-integration elements now) to compute its post-buckling stiffness. Please

note that this approach is only valid on the assumption that all cells deform the

same and hence the periodicity of the structure is not broken. Figure 5.5 shows the

vertical displacement at the centre top node of the horizontal top wall, as a function

of the axial strain. Note that the vertical displacement shown in Figure 5.5 is

measured relative to a baseline deformed geometry considered right after the initial
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5.1. BucklingandGeometrically-nonlinearAnalyses

U, U2

−5.5e−04
−4.6e−04
−3.7e−04
−2.8e−04
−1.8e−04
−9.1e−05
+9.8e−07
+9.3e−05
+1.9e−04
+2.8e−04
+3.7e−04
+4.6e−04
+5.5e−04

x
1

x
2

x
3

a)

U, Magnitude

0.00
0.08
0.17
0.25
0.33
0.42
0.50
0.58
0.67
0.75
0.83
0.92
1.00

b)

Figure5.4.:(a)Verticaldisplacementinalinearribbedprismaticbeamsubjecttoa
compressiveloadofγ1=0.5γ1,buckling;(b)Contourplotofthefirsteigenshape
ofaribbedprismaticbeamundercompressiveloads.Full3-Dmodel(witha
cut-out)shownontheleftandunitcellontheright.
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5.1. Buckling and Geometrically-nonlinear Analyses

perturbation load (if there is any) is applied. Results are normalised with γ1,buckling of

the unit cell. The deflection at that node starts to grow shortly after the normalised

strain is unity, in agreement with the linear buckling analysis. The plot depicts

three different load paths: one for the original structure and two corresponding to

configurations with point normal loads of 500N and 1000N (positive inwards). The

point forces are applied at the node where the displacement is measured, and in an

antisymmetric manner; that is, the reciprocal node in the lower wall has the same

load magnitude but opposite sign. The buckling of the original structure occurs

with the horizontal walls buckling outwards and the side walls inwards (see Figure

5.4(b))naturally, that is, without the need of a perturbation load. The deformation

before buckling, shown in Figure 5.4(a) for a linear analysis with γ1 = 0.5 ·γ1,buckling,

leads to a non-uniform displacement field which triggers the bifurcation shown in

Figure 5.5. For large enough perturbation loads (1000N in the example) vertical

displacements in the opposite direction are obtained but the bifurcation load remains

unchanged.

Geometrically-nonlinear Analysis of Periodic Compressive Buckling

The same energy-based procedure used in the linear cases in Chapter 4 can be

applied to each increment in the nonlinear step in order to calculate the stiffness

constants as a function of a given loading or strain. In Figure 5.6, the axial (secant)

stiffness, S11,secant, has been computed for axial deformations of up to 10% strain

and three different wall thicknesses. This stiffness is calculated applying the same

procedure described at the end of Section 2.2 to each of the increments in the

nonlinear analysis in absolute terms. As the thick transverse reinforcements act

as essentially rigid supports, the buckling strain is almost independent of the wall

thickness. The nominal-thickness unit cell has also been compared with a full 3-D

model, created with seven cells. As in previous cases, the boundary conditions on

the full 3D model are: encastre on one side and rigid body plus reference point (to

apply the loading displacement and measure the reaction force) on the other. The
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Figure5.5.:Nonlinearloadpathasafunctionoftheaxialstrain,γ1,fortheunitcellmodel
andthefullbeamone.

resultsagreewellbut,asexpected,thefullmodelisslightlystifferthantheunit

cell. Thiscanbeattributedtothewaythattheloadingisintroducedinthefull

3Dstructureviarigidbodieswithreferencepointsandthefactthatthestiffness

iscalculatedusinganaveragestraindeterminedbytheaxialdisplacementofthe

loadingreferencepoint.

Inaddition,itcanbeobservedthatanegativetangentstiffness(slopeofthe

loadstraincurvesinFigure5.7isobtainedathighstrains,whichimpliesthat

localisationhasoccurred[85]. Consequently,pastthispoint(γ1greaterthan∼

0.1),theassumptionofperiodicityisbrokenandthecell-basedsolutiondiverges

fromtheactualresponse.Inthisparticularexample,withverythicktransverse

reinforcements,theunitcellmodelstillgivesareasonableapproximation,butthis

willnotbethecaseifwarpinginformationispropagatedacrossseveralunitcells.
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Figure5.6.:Post-bucklingaxialsofteningofthereinforcedprismaticbeamforvariouswall
thicknesses.

Continuingwiththeanalysisofthisexample,whenthetangentstiffnessbecomes

zero,thebeamresponseisnolongerperiodicandoneofitscellswillgreatlydeform,

withoutincreasingtheload,whiletheothersrelaxandgobacktoalesserstrain.

InFigure5.7,thereactionforceandtheaxialcomponentofthetangentstiffness

havebeenplottedversustheaxialstraininordertobetterunderstandthesequence

ofeventsinthislocalisationprocess. Thestrainfortheadjacentbeamcellshas

beencomputedusingthedisplacementofthereferencepointatoneendofthe

beam,subtractingthedisplacementduetothecentrecell,andaveragingitover

alladjacentbeamcells.Beforelocalisation,thestraininallunitcells(depictedin

Figure5.8afortheunitcelland5.8bforthefullbeamatγ1=0.05)isthesame.

Theloadisalwaysconstantthroughthecells. Whenthetangentstiffnessbecomes

negative(γ1∼=0.1),oneofthecellswillcontinuetodeform(growingγ1,seeFigure

5.8c)forarepresentationofγ1=0.35)andtheotherswillrelax(decreasingγ1,see
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Figure5.7.:Load(leftaxis,blacklines)andtangentstiffness(rightaxis,50%graylines)
asafunctionofaxialcompressivestrain,γ1. Pleasenotethatalladjacent
cellsinthefullbeammodelfollowtheloadstrainpathbackwardsoncethere
islocalisation.

Figure5.8d). Notethatafterlocalisationhasoccurred,foragivenload,various

strainstatesarepossible.

Notethatasingleunitcellwithperiodicboundaryconditionspredictsthe

conditionsofthecentrecellratheraccuratelythankstothethicknessofthe

transversereinforcements,whichmeansthatthereisnowarpingintheboundaries.

Itisstressedthatthisisaspecialcasegiventhewallthicknessandwouldnotbe

observedwiththinnerwalls. Asdescribedabove,thechoiceofwallthicknesswas

madeforthelocalbucklingtooccurpriortothecolumnbuckling.
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a) Unit cell, γ
1
=0.05

c) Unit cell, γ
1
=0.35

b) Full model, γ
1
=0.05

d) Full model, γ
1
=0.35

Figure5.8.:Deformedshapes,withscalefactorofone,fortheunitcellandthefullmodelof
thereinforcedboxbeamatdifferentstagesofthelocalisationprocess(contour
plotshowscorrespondingvonMisesstress).
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5.2. Shear Effects on the determination of Normal Modes for an Anisotropic Prismatic
Beam

5.2. Shear Effects on the determination of Normal Modes

for an Anisotropic Prismatic Beam

In this final example, the natural frequencies of a composite beam are investigated

using the current method. The geometry of the cross section, material and mesh

refinement are those from section 4.1. The total length of the beam is ten times

its width dimension: 0.1346m. The composite layup is b) from section 4.1. The

6× 6 stiffness and mass matrices have been computed using the unit cell approach.

This information is then used in the 1D-beam solver (see Eq. (2.29)) to assemble

the global stiffness and mass matrices and an eigenvalue analysis is performed. The

results of such analysis are included in Table 5.1. The first two modal frequencies

show good agreement for the full 6 × 6 but this accuracy is decreased without

shear components. The mode shapes for these two frequencies are bending in the

vertical (shown in Figure 5.9) and horizontal directions with a quarter-wave type

of deformation. The 3rd and 4th bending modes (three-quarter-wave type) indicate

the need of a complete formulation, that is, which includes shear stiffness, in the

calculation of composite beam natural frequencies. The discrepancy between the full

3-D model and the classical 4× 4 approach for the highest frequency bending mode

studied, reaches up to 7.9% while the full 6 × 6 achieves one order of magnitude

better agreement (≈ 0.5%). In the last frequency shown, which would correspond

to a coupled torsional/bending mode, the present method deviates slightly (2.5%)

from the full beam solution due to the lack of restrained warping effects [82].

Without properly capturing shear effects, the prediction is even worse for short

beams because we know from Subsection 4.1.4 that shear-related end effects are

present in a generous portion of the beam. In Figure 5.9 the deformed shape of the

first bending/torsional mode has been plotted to show the large elastic couplings

existing in this particular composite structure.
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Table 5.1.: First five natural frequencies (in kHz) of a composite prismatic beam
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Full Abaqus 3D 1.132 2.023 3.308 4.353 5.075
Unit cell+ 1.135 2.028 3.324 4.377 5.2031D beam solver
Unit cell (4× 4)+ 1.215 2.140 3.578 4.649 5.8811D beam solver

U, Magnitude

+0.000e+00
+8.348e−02
+1.670e−01
+2.504e−01
+3.339e−01
+4.174e−01
+5.009e−01
+5.844e−01
+6.678e−01
+7.513e−01
+8.348e−01
+9.183e−01
+1.002e+00

Figure 5.9.: 1st mode of the composite beam. Note the coupling between bending and
torsion.
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Chapter 6

Conclusions and Recommendations

This chapter presents a summary of the main contributions and achievements of

this multiscale analysis on slender periodic composite structures. The first section

covers the main outcomes of the theoretical and practical characteristics of the

approach presented in this work. Section 6.2 highlights the key accomplishments of

this thesis which in turn provide the basis for the recommendations for future work

and alternative applications of the presented technique.

6.1. Overall Conclusions

The design of novel aircraft configurations and ever more powerful wind turbines

requires a set of tools that integrate the effects of the dynamics of the structure

with the aerodynamic forces and the control mechanisms. For each configuration

and set of test cases, it would be prohibitively costly and computationally unviable to

simulate the full 3D structure. Hence beam models are used where the slenderness

of the structure permits such idealisation. There are generally two steps present

in the evaluation of the response from such beams. The solution step calculates

the deformation and overall response of the beam subject to the external forces

and all other inputs. This step is well developed and composite beam models

[51] that include geometrically-nonlinear effects are readily available thanks to the

contributions of, among others, Simo and Vu-Quoc [99]; Cardona and Géradin [12]
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and Hodges [49][50]. The homogenisation step is related with the determination of

the cross-sectional inertial and stiffness properties that better represent the actual

behaviour of the real structure. This latter stage, on the other hand, was dealt

with excessive assumptions or solved via mathematical implementations for which

boundary conditions were hard to find. In this work, we showed a method of

obtaining such properties by analysing a representative unit cell. This is, inherently,

a more flexible description of the geometry of the beam than those based on constant

cross sections [63][57]. The level of fidelity was also increased by including shear

effects as opposed to the classical degrees of freedom [41], and the versatility and

ease of implementation were greatly improved by the use of a standard finite element

package.

The methodology that was presented here is based on the static analysis of a

unit cell, which was assumed to be much smaller than the characteristic wavelength

in the beam response. Assumptions on the definition of the global variables as

an average of the local ones and the conservation of internal energy between scales

yielded a final set of equations to obtain the beam cross sectional full stiffness matrix,

that includes transverse shear effects. These equations were solved using periodic

boundary conditions and additional zero-average rotation constraints for all sections

in the transverse shear case. As a consequence of the use of this zero-average rotation

constraint, it was impossible to calculate the shear stiffness coefficients for beams

where the cross sections varied in the spanwise direction or that it had transverse

reinforcements. In these situations, an alternative methodology that is able to isolate

the shear loading from the bending moments remains to be found. The calculation

of inertial properties was also included in the discretised model by summing all the

contributions from each element.

Numerical examples were used to validate the proposed approach and the accuracy

of the results for prismatic, cylindrical and aerofoil-like beams was verified. Taper

was an interesting case –given that most modern aircraft wings and wind turbine

blades have some taper in them– to which reasonable solutions were obtained
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if several representative unit cells were used to populate the 1D beam solver,

i.e. using a piecewise approximation. Consistently, the local buckling behaviour

of the structure was correctly captured when the wavelength of the response

was known a priori, both in terms of the load required to achieve buckling and

the deformed shape when that occurred. In the compressive local buckling the

phenomenon of localisation was explored to investigate the limits of applicability of

the current method when the periodicity is broken. Fully geometrically-nonlinear

and vibration analyses were also presented where the code developed for this

application, SHARP.cells, was successfully coupled with the 1D beam solver,

SHARP.beams. Overall the methodology performed as expected, with a level

of accuracy in accordance with the discretisation level and demonstrated the

advantages and flexibility of using a standard finite element package by making

use of tie constraints to join the different parts that constituted the model. This

was done without an impact on the homogenised stiffness calculation. While the

local stress field would be affected by the presence of tie constraints, the method

did achieve good ply-by-ply agreement recovering local stresses.

6.2. Key Contributions of this Thesis

The main contribution of this Thesis is the development of a complete

homogenisation tool that is based on the analysis of representative unit cells to

obtain the elastic and inertial properties of periodic composite beams, without the

need for constant cross sections and using an unmodified, standard finite element

package. The following specific key developments make this a novel and unique

approach:

Unit cells with transverse reinforcements and periodic thickness variation.

Unlike many of the currently available methodologies, this approach is not

restricted to axially-invariant cross sections. This fact makes the number

of applications of the methodology much larger than if only constant cross

sections were considered. Taking the example of HALE wings, the presence of
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transverse reinforcements or ribs can adequately be dealt with now. Periodic

thickness variation can also be accounted for if desired.

A one-step solution for transverse shear. The full 6×6 stiffness matrix is

obtained without ad hoc assumptions on the warping field. This is valid for

composite materials with arbitrary layups and the transverse shear response is

calculated in a single analysis step.

Meshing flexibility and tie constraints. The cross sectional and unit-cell

geometries are fully parametrised, ready to be linked to an optimisation

algorithm or simply to assess the sensitivity of the structure to a given

variable. Using tie constraints allows for arbitrary positioning and meshing

of reinforcement subcomponents such as ribs, spars and webs which is a clear

advantage in the conceptual design when the final geometry is not yet defined.

Efficient coupling with a 1D beam solver. This homogenisation method has been

successfully and seamlessly linked to a 1D beam solver to provide the latter

with accurate cross-sectional properties and also to use information on the

current values of strain to update the stiffness of the structure.

6.3. Impact and Significance of this Research

The work presented in this dissertation has led to the publication of the following

journal and conference papers:

• Julian Dizy, Rafael Palacios and Silvestre T. Pinho. Homogenization

of slender periodic composite structures. In Proceedings of the

53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and

Materials Conferences. Honolulu, Hawaii, AIAA-2012-1949, 2012. doi:

10.2514/6.2012-1949

• Julian Dizy, Rafael Palacios and Silvestre T. Pinho. Homogenisation of slender

periodic composite structures. International Journal of Solids and Structures,

50(9):1473 - 1481, 2013. ISSN 0020-7683. doi: 10.1016/j.ijsolstr.2013.01.017
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• Julian Dizy, Rafael Palacios and Silvestre Pinho. Shear effects in the

homogenisation of slender composite wings. In Proceedings of the 5th European

Conference for Aeronautics and Space Sciences (EUCASS). Munich, Germany,

EUCASS-2013, 2013.

The research contained in this thesis was awarded the following international

awards:

• Lockheed Martin award for best student paper in structures. (53rd AIAA

SDM Conference).

• Astrium award for best student paper. (5th EUCASS Conference).

6.4. Recommendations for Future Work

The homogenisation tool developed in this dissertation has proven to be an efficient

and flexible approach for modelling anisotropic slender structures. The numerical

cases that have been presented herein demonstrated the capabilities of SHARP.cells

code to deal with complex cross sections and material configurations, the accuracy

of the properties obtained –including the transverse shear– and the diverse range of

analysis types that can be applied to the unit cell representation of the beam. To

conclude, we present an overview of the main aspects of this approach that could

be further improved in order to broaden its applicability and a number of features

that could be added to it:

Including transverse shear for non-constant cross sections is a natural

improvement to the current formulation. Recalling the requirements for

the isolation of transverse shear from the corresponding bending moments,

zero average rotations (or moments of area) were necessarily imposed to each

of the sections of the unit cell. This ensured that no bending energy was

present when the solution for the shear stiffness was sought. Having spanwise

variations in the unit cell would mean that the bending moment component

of the shear loading would no longer be constant throughout the unit cell and
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could not be cancelled out as explained. This enhancement would certainly

benefit the completeness of the current approach.

Open-section beams have a torsional stiffness much smaller than either bending

stiffness and they experience heavy nonlinear coupling between these degrees of

freedom. They also exhibit the so-called "trapeze effect", which is a nonlinear

effect due to extension-torsion coupling in beams undergoing large axial forces.

It is so named because a trapeze, when twisted slightly under an axial force,

tends to restore itself to zero with a restoring moment that it is a function of

both the angle and the axial force [51]. This effect is very relevant when dealing

with helicopter rotor blades, propellers and turbomachinery blades as they all

have to cope with large centrifugal forces [86]. It leads to an effective torsional

rigidity that varies with axial force. Additionally, thin-walled open-section

beams show Vlasov effects (restrained warping at the boundaries) that make

it complicated to determine their buckling behaviour [58]. Extending the

current theory to treat thin-walled open-section beams requires dealing with

the aforementioned problems and assuring that the solutions are consistent for

a variety of open-section shapes.

Distributed loads create beam responses that require polynomial approximations

one order higher than those obtained from tip-applied moments and forces.

Furthermore, for distributed loads that are not constant (e.g. linear, quadratic,

etc.) the order of the polynomial required to describe the periodic boundary

conditions would further increase [63]. While it is desirable to deal with this

type of loading directly in the homogenisation step, (for example to account

for a uniform distribution of lift along the span of the wing), it is a formidable

challenge to adapt the present method, that deals with a unit cell with

reinforcements and spanwise variations, to account for this directly. Instead,

distributed loads can still be applied to the 1D beam solver and approximate

solutions obtained that way.
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Non-classical beam deformations are degrees of freedom that can be added to

the classical six in beam models to increase the accuracy of the response, in

particular to vibration analysis. Also known as finite section modes [82], these

are more evident in shorter beams and could be added to SHARP.cells to

increase the accuracy in the calculation of the normal modes. Figure 5.9 shows

one of these modes.

Debonding between components could be studied with the present approach.

Multiple parts are used in the current model and these are bonded together

using tie constraints. This could easily be replaced with a row of cohesive

elements and hence the debonding behaviour under real strain conditions

(obtained directly from the coupled 1D beam solver) could be predicted. This

would assume that all unit cells behave in a similar fashion, i.e. debonding is

periodic. Moreover, delamination and other material failure modes could be

added to further improve predictions on the structural integrity of the beam.

Optimisation and aeroelastic tailoring can be explored thanks to the

parametrisation of the code and its meshing flexibility. This would allow for

the directionality and the inherent couplings present in composite materials to

be used as an advantage to obtain desired aeroelastic properties and achieve

significant weight reductions [45]. In terms of optimisation, any of the model

parameters (thickness, number of plies, position of stringers, etc.) could be

optimised for a given stiffness components by interfacing SHARP.cells with

the MATLAB® Optimisation Toolbox.
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Appendix A

Equations of motion of the GECB

This appendix contains the detailed steps to solve the dynamic equations of motion

for the composite beam solver used in this work, which was outlined in Section 2.3.

Infinitesimal Beam Kinematics

Expressions for the infinitesimal changes on the beam force and moment strains

are obtained by taking variations on the beam strains and curvatures given in Eq.

(2.24). This results in the virtual strain-displacement relations, which are written

as

δγ = Cδu′A(s, t) + ũ′AδΦB,

δκ = δΦ′B + K̃BδΦB,

(A.1)

where the local virtual rotation vector, δΦB, and the local curvature, KB, are

parametrised using the relation as δΦ̃B = CδC> = T̃ δΨ and K̃B = C
(
C>

)′
=

˜T (Ψ) Ψ′, respectively [40]. In a similar fashion, variation of the inertial velocities

leads to the expressions of infinitesimal beam velocities as

δVB = C (δu̇A + ω̃AδuA − ũAδωA + δvA) + ṼBδΦ,

δΩB = δΦ̇B + Ω̃BδΦB + CδωA.

(A.2)

For a derivation of the variation of the inertial rigid-body velocities please see [46].

This derivation of the beam kinematics highlights the benefits of using the CRV for
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the parametrisation of the cross-sectional orientations leading to compact definitions

of the local strain and velocity measures, which will be applied next to develop

expressions for the virtual work and energy densities of the flexible aircraft. The

solution process of the resulting transient equations requires linearisation of the

beam equations, which will repeatedly involve variations of the rotation operator C,

and the tangential rotation operator, T . The latter is given for an arbitrary 3 × 1

column matrix, h, as [40]

δT (Ψ)h = A1 (Ψ, h) =φ−2 (1− cosφ) h̃+ φ−1
[
sinφ− 2φ−1 (1− cosφ)

]
h̃nn>+

φ−1
(
2 + cosφ− 3φ−1 sinφ

)
ñh̃nn>+

φ−1
(
1− φ−1 sinφ

) (
h̃ñ− 2ñh̃

)
,

(A.3)
with the Cartesian rotation vector written as before with Ψ = φn.

Internal and Kinetic Energy Densities

We can now write the virtual strain and kinetic energies as [49]

δU =
[
δγ> δκ>

]
S
[
γ> κ>

]>
=
[
δγ> δκ>

] [
F>B M>B

]>
,

δT =
[
δV >B δΩ>B

]
M
[
V >B Ω>B

]>
=
[
δV >B δΩ>B

] [
P>B H>B

]>
,

(A.4)

where we have introduced the internal forces and moments, FB and MB, and the

local translational and angular momenta, PB and HB, respectively. In the above

expression the internal energy in the deformation of the flexible vehicle was defined

by the linearised strain energy, which is valid if the deformations of the flexible body

remain in the linear elastic regime of the material properties. Note however that

this does not prevent displacements and rotations from being large.

The 6× 6 cross-sectional mass and stiffness matrices, M and S, in Eq. (A.4) are

obtained through the homogenisation technique presented in the body of this thesis.
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Virtual Work of External Forces

Consider next the applied volume (or surface) forces µG acting on the beam sections.

The corresponding virtual work per unit length is δW =
〈
δX>GµB

〉
, where δXG is

the virtual position vector in the current configuration at the material points where

forces µG are applied, and 〈•〉 is the integral over the area (or area contour) of

the local cross section. The position vector of an arbitrary point on the local cross

section for a static body-fixed reference frame1, A is simply

XG = uA + C>ξB, (A.5)

where ξB are the local cross-sectional coordinates in the local material frame B.

From the definition of the position vector XG, the virtual work per unit length is

δW = δu>AC
>FB + δΦ>BMB, (A.6)

where the concept of the local virtual rotation δΦ̃B = CδC> was introduced above

[40]. The set of resultant forces and moments per unit beam length is then given as

FB = 〈µB〉,

MB = 〈ξ̃BµB〉.
(A.7)

Equations of Motion at an Arbitrary Reference Line

Finally, all virtual magnitudes are expressed in terms of the independent set of

variables, through the kinematic relations introduced in Eqs. (A.1) and (A.2).

Substitution of the contributions of the virtual work and the energy densities in

Eqs. (A.6) and (A.4), respectively, into the expressions of Hamilton’s principle, Eq.

(2.26), and integration by parts in time leads to the weak form of the beam dynamics

1For a complete formulation, with a moving body-fixed frame, A, with respect to the inertial frame, G,
please refer to [46] for more details.
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EoM as [83]

∫ t2

t1

{∫
L

{
δu>AC

>
(
ṖB + Ω̃BPB − FB

)
+ δu′

>
AC
>FB

+ δΦ>B
[
ḢB + Ω̃BHB + ṼBPB − K̃BMB − ũ′AFB −MB

]
+ δΦ′>BMB

}
dy

+ δr>GC
GA
[
Ṗ u
A + ω̃AP

u
A − F u

A

]
+ δϕ>A

[
Ḣu
A + ω̃AH

u
A −Mu

A

]}
dt =

=
∫
L

[
δu>AC

>PB + δΦ>BHB

]t2
t1
dy +

[
δr>GC

GAP u
A + δϕ>AH

u
A

]t2
t1

(A.8)
The local momenta, PB and HB, and the internal forces, FB and MB, respectively,

are expressed in the local material frame B and have been defined in Eq. (A.4). The

total momenta and external forces can be obtained in the global body-fixed reference

frame A through integration over all reference lines of the multi-beam configuration

as

P u
A =

∫
L
C>PBdy, Hu

A =
∫
L

(
ũAC

>PB + C>HB

)
dy,

F u
A =

∫
L
C>fBdy, Mu

A =
∫
L

(
ũAC

>FB + C>MB

)
dy.

(A.9)

Discrete Form of the Equations of Motions

To solve the governing beam EoM, Eq. (A.8), the position vector, uA, and the

Cartesian rotation vector, Ψ, are approximated using a finite-element discretisation

in terms of the the shape functions Ni(s) as [40]

uA(s) ∼=
3∑
i=1

Ni(s)uAi,

Ψ(s) ∼=
3∑
i=1

Ni(s)Ψi,

(A.10)

where uAi and Ψi are the nodal values of the position and rotation parameters. The

beam model has been implemented using 2- and 3-noded elements which corresponds

to linear and quadratic interpolations, respectively [46]. There are known issues with

objectivity of the interpolation operation of finite rotations [4, 29], however, good
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performance of the implementation is observed for quadratic elements or fine enough

discretisation with linear elements.

If η is the column vector with all the nodal displacements and rotations and

β> = {v>A ω>A}, the discrete form of the dynamic equation, Eq. (A.8), is written in

compact form as

M (η)


η̈

β̇

+


QS
gyr

QR
gyr

+


QS
stif

0

 =


QS
ext

QR
ext

 , (A.11)

where structural and rigid-body components (denoted by superscripts S and R)

have been identified in the gyroscopic, stiffness and external forces. The discrete

generalised forces in the above equation are written as

QS
stif (η) =

∫
Γ

(
N>Υ>AK +N>Υ′> +N ′>Λ>

)
F̂dy,

Qgyr (η, η̇, β) =
∫

Γ

[
ΛN ARC

]> (
McsV̂gyr + AV ΩMcsV̂

)
dy,

Qext (η, η̇, β, ζ) =
∫

Γ

[
ΛN ARC

]>
F̂ dy,

(A.12)

where ζ is the orientation of the body-fixed reference system, and, assuming a flat

Earth, is defined as [104]


ζ̇0

ζ̇v

 = −1
2

 0 ω>A

ωA ω̃A



ζ0

ζv

 . (A.13)

Also, the following variables for resultant loads, local inertial velocities, and

internal forces have been defined to simplify notation,

F̂ =


FB

MB

 , V̂ =


VB

ΩB

 , F̂ =


FB

MB

 . (A.14)

The gyroscopic velocities V̂gyr in the definition of the gyroscopic forces, Qgyr in Eq.

(A.12), are given as

V̂gyr (η, η̇, β) =


Vgyr

Ωgyr

 =


Cω̃Au̇A + ṼBT Ψ̇

Ṫ Ψ̇ + Ω̃BT Ψ̇

 , (A.15)
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and the following 6× 6 matrix operators were used in the definition of the discrete

generalised forces,

Υ =

I 0

0 T

 , AK =

 0 0

−ũ′A −K̃B

 , AV Ω =

Ω̃B 0

ṼB Ω̃B

 . (A.16)

The tangent mass matrices have been defined as a function of the deformed state,

η, as

M (η) =

MSS MSR

MRS MRR

 =
∫

Γ

[
ΛN ARC

]>
Mcs

[
ΛN ARC

]
, (A.17)

where the operators Λ and ARC are defined as


VB

ΩB

 = Λ


u̇A

Ψ̇

+ ARC


vA

ωA

 , (A.18)

to obtain the compact form of the inertial velocities. The resulting set of nonlinear

second-order differential EoM, Eq. (A.11), couples the geometrically-nonlinear beam

dynamics with the nonlinear rigid-body motion of the flexible body through the

inertial and gyroscopic forcing terms. This completes the full derivation of the

beam equations presented in Section 2.3.
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