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Abstract

It is the main goal of this text to study certain aspects of time-frequency analysis on

the 2n ` 1-dimensional Heisenberg group. More specifically, we will discuss how the

well-studied notions of modulation spaces and Weyl quantization can be extended from

the Euclidean space Rn to the Heisenberg group Hn.

For quite a long time already this group has served as a good test object to verify

which concepts and results from Euclidean (thus Abelian) analysis carry over to simple

instances of non-Abelian structures.

In the case of the Weyl quantization a reasonable answer for Hn was first proposed

by A. S. Dynin almost forty years ago, although it was studied in more detail only some

twenty years after that by G. B. Folland. We will review the foundations laid by Dynin

and Folland and present some new results about left-invariant differential operators and

the natural product of symbols, the Moyal product.

The special tool for our analysis is a 3-step nilpotent Lie group to which we will refer

as the Dynin-Folland group. As the name suggests it originates in the works of the

afore-mentioned authors. The group’s unitary irreducible representations are in fact the

key to both the Weyl quantization and modulation spaces on Hn.

Our results on modulation space on the Heisenberg group are based on H. Feichtinger

and K. Gröchenig’s coorbit theory and a more recent adaption of it by I. and D. Beltiţă,

which focuses on modulation spaces arising from nilpotent Lie groups. We will use a

blend of both approaches and discuss the modulation spaces induced by the Dynin-

Folland group, among them a type of modulation spaces on Hn.
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Introduction

This text is dedicated to the study of certain aspects of analysis, in particular time-

frequency analysis, on the 2n ` 1-dimensional Heisenberg group Hn. More precisely, it

evolved from the endeavour to give a satisfying answer to the following question: is it

possible to define in a plausible way modulation spaces on a quite simple non-compact

non-Abelian Lie group like the Heisenberg group, say?

Since their introduction by H. Feichtinger [18] over thirty years ago modulation spaces

have become a widely used tool in time-frequency analysis, especially Gabor analysis,

and PDE theory. Although originally introduced as a family of Banach function spaces

on arbitrary locally compact Abelian groups, the bulk of applications of modulation

spaces seems to focus on Rn.

One way to think of the (now classical) modulation spaces Mp,qpRnq is to say that

they measure the global time-frequency distribution of a signal f P S
1

pRnq in terms of

mixed Lp,q-norms on phase space, i.e., R2n. The most important tool of contemporary

time-frequency analysis is the so-called short-time Fourier transform, or STFT (cf. [19]),

whose point values on phase space represent simultaneously ”localized” portions of the

time-frequency spread of such f .

The convenient abundance and availability of diverse families of Banach function

spaces like Lp-spaces, Sobolev spaces, Hölder spaces, Besov spaces, etc., on Rn, bounded

subsets of it or even on manifolds has led to questions about localization and invariance

under coordinate transformations of the modulation spaces Mp,qpRnq. Both operations

are of fundamental importance for the introduction of function spaces on manifolds.

A brief look at the compact Abelian group Tn reveals that already in this very special

case the corresponding modulation spaces Mp,qpTnq reduce to the Fourier Lebesgue

spaces F `qpZnq, and similarly one obtains
`

Mp,qXE 1
˘

pRnq “
`

FLqXE 1
˘

pRnq. (Cf.[62],

e.g.) Moreover, it has turned out that the only C1-changes of variables on Rn which

leave modulation spaces invariant are in fact affine transformations (cf. [49, 62]).

This is, of course, bad news for their extension to manifolds in general, yet not nec-

essarily so bad if the manifold is non-compact and possesses a global chart like any

connected simply connected stratified (nilpotent) Lie group, for example. In such case

10



Introduction

one is furthermore tempted to make use of the Fourier analytic methods at hand (group

Fourier transform, sub-Laplacian, heat kernel, etc.) to define modulation spaces in anal-

ogy to the Abelian case.

This particular approach to modulation spaces employed in the case of the stratified

group Hn met some fierce resistance in the very Abelian nature of the notion itself.

The concept of frequency shifts on non-Abelian groups is a priori not quite viable even

for groups like Hn, whose algebraic dual is very well-studied and quite simple. In

Subsection 2.2.2 we show in detail which obstacles in the representation theory of Hn

rendered this approach practically futile.

Another approach, which soon seemed more promising in terms of what could be

achieved formally, was based on the theory of coorbit spaces first introduced by Fe-

ichtinger and Gröchenig [21]. The techniques in this more abstract approach are heavily

based on the theory of square-integrable unitary irreducible group representations. A

so-called coorbit space can be a subspace or otherwise related to the representation space

Hπ, in practice some L2-space, on which some locally compact group G acts via some

unitary group representation π.

As the authors discovered, modulation spaces were only one family of Banach function

spaces out of many that could be defined in this elegant general framework. Others

include Besov spaces and Triebel-Lizorkin spaces on Rn, Bergman spaces on the upper

half-plane, Bargmann-Fock spaces, Besov spaces on compact homogeneous spaces as well

as on stratified Lie groups, etc. (Cf. [20, 39, 35, 36, 37, 38, 34, 31, 7].) In the specific

case of Mp,qpRnq, the representation involved is the Schödinger representation of the

Heisenberg group (modulo its centre), which acts on the space L2pRnq by combined

time and frequency shifts.

The quest to find a locally compact group which acts on L2pHnq via the natural Hn-

group translation and Euclidean frequency shifts, admittedly a somewhat contestable

compromise, led to the rediscovery of the Dynin-Folland group, a nilpotent Lie group

first introduced by A. A. Dynin [13] and some twenty years later studied from a much

broader perspective by G. B. Folland [29].

The group had originally been proposed as a means to define a Weyl calculus on the

Heisenberg group, in analogy to how Hn itself is employed to define the classical Weyl

quantization on Rn. The Dynin-Folland group was thus conceived as some sort of a

Heisenberg group of the Heisenberg group (cf. [28] p. 90). The approach to view it as

just one of a whole class of so-called meta-Heisenberg groups was much later proposed by

Folland in the elegant paper [29], which seems to have gained little attention yet. Therein

the author studies the Lie algebra and generic representations of meta-Heisenberg groups
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of (fully non-Abelian) two-step nilpotent groups G as well as their automorphism groups,

and to some extent the Weyl calculus arising from them. In the special case of G “ Hn

one recovers the quantization proposed by Dynin. Moreover, a connection between

the Hn-Weyl quantization and the Beal-Greiner calculus on Heisenberg manifolds is

established.

It is worthwhile mentioning at this point that there exists a strong connection between

this Weyl quantization and modulation spaces on Hn as this is already the case for their

Rn-counterparts. More precisely, this relation is established by the so-called ambiguity

function, a close relative of the STFT.

A considerably more abstract approach to modulation spaces induced by arbitrary

unitary irreducible representations (unirreps) of nilpotent Lie groups has been proposed

by Ingrid and Daniel Beltiţă [5, 6]. The techniques involved are a blend of abstract

coorbit theory and the use of a Weyl quantization for nilpotent Lie groups first introduced

by N. V. Pedersen [51]. Originally proposed as an intentionally transparent approach to

geometric quantization associated with the co-adjoint orbits of nilpotent Lie groups

(cf. [50]), Pedersen’s extended calculus Weyl-quantizes tempered distributions a priori

defined on the co-adjoint orbits. Each class of orbits thus induces a different Weyl-

calculus defined via the corresponding unirreps. In the case of the Heisenberg group, it

turns out that the Weyl correspondence proposed by Dynin agrees with Pedersen’s, an

indicator of soundness as we understand it.

Beltiţă and Beltiţă now associate an ambiguity function to each orbit employing tools

from Pedersen’s calculus. The corresponding modulation spaces are then defined in

terms of the mixed Lp,q-behaviour of the ambiguity function of a vector, i.e., function or

distribution, f in the representation space (or more precisely its superspace, the dual of

the representation’s smooth vectors). The emerging calculations are carried out rather

on the Lie algebra than the Lie group itself, the latter being identified exclusively via

exponential coordinates. This fact undoubtedly contributes to the main strength of their

approach, its elegance, but it also excludes strong features of the original coorbit theory

based on groups.

Our approach to modulation spaces can be viewed a strong blend of both. The def-

initions essentially follow the Beltiţă-Pedersen versions, but instead of an exclusive use

of the ambiguity function we also employ a Heisenberg analogue of the STFT. This way

we can assure independence of the defining window function of the modulation spaces

induced by the Dynin-Folland group as well as many other nilpotent Lie groups which

are given as semi-direct products and which possess square-integrable unirreps.

Our approach via the Dynin-Folland group has furthermore led us to study certain
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properties of the Weyl calculus on Hn which to our knowledge had not yet been inves-

tigated. The results we obtained constitute the second main part of this essay.

The present thesis is structured as follows. Chapter 1 recalls some important notions

and concepts from Fourier analysis on locally compact groups, especially Abelian groups.

The latter are then employed to give a brief review of modulation spaces on Abelian

groups, particularly Rn, in the first half of Chapter 2. The latter half of Chapter 2

provides a short discussion about the extent of applicability of two approaches we have

tested in search of an adequate framework for modulation spaces on Hn. In particular,

we will point out why the Dynin-Folland group based coorbit type approach seemed

promising early on.

Chapter 3 provides a detailed meta-Heisenberg type construction of the Dynin-Folland

Lie algebra and group, which right from the beginning indicates what the group’s generic

unirreps should look like. The construction is followed by a complete classification

of unirreps in terms of Kirillov’s orbit method. Chapter 3 is concluded with a brief

discussion of its semi-direct product structure and the Plancherel formula for the group

Fourier transform.

We will finally present our results on modulation spaces on the Heisenberg group in

Chapter 4. Apart from a case-by-case study based on the classification of the Dynin-

Folland unirreps, we will provide some general results for modulation spaces induced by

specific semi-direct product type nilpotent groups.

Chapter 5, which comprises the second half of our results, is motivated by the rela-

tion between modulation spaces and the Weyl calculus on the Heisenberg group. After

motivating Dynin’s Weyl quantization on Hn, we show that it in fact coincides with

Pedersen’s Weyl calculus for the Dynin-Folland group and its generic representation.

We then recall a few facts already present in Folland [29], although somewhat more ex-

plicitly. Moreover, we show that the left-invariant differential calculus on the Heisenberg

group is covered by the Hn-Weyl correspondence, namely by quantizing precisely the

polynomials in the frequency variable. In particular, we prove that the Hn-Weyl quanti-

zation coincides with the left symmetrization in the sense of Helgasson [43] (cf. Chapter

II Section 4).

We continue to introduce Hörmander type symbol classes which respect the homo-

geneous nature of Hn. Although these quite natural and simple symbol classes were

already suggested by Dynin [13] and taken up in a slightly modified version by Folland

[29], the latter authors rather make use of the subclasses of polyhomogeneous symbols.

In our case we employ the full classes instead and show that the corresponding pseudod-

ifferential operators map the Schwartz space S pHnq continuously into itself.
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Subsequently we define a Moyal product of symbols for which we provide a full asymp-

totic expansion. The latter, however, does not live up to the success of its Euclidean

counterpart. Interestingly, this is not so much indebted to the specific symbol classes as

to the occurrence of terms one misses on Rn due to the less intricate nature of Euclidean

phase space. Nevertheless, we can recover a closed expression of the Moyal product in

the shape of an oscillatory integral. This approach finally allows us to show that the

product satisfies the usual mapping properties on our symbol classes, a fact which auto-

matically follows from the asymptotic series expansion in the case of polyhomogeneous

symbols.

We conclude Chapter 5 revisiting a link to the Beals-Greiner calculus on Heisenberg

manifolds [3] first established by Folland [29]. Incidentally we thereby discover another

connection with the theory of modulation spaces.

14



List of Symbols

R (C) real (complex) numbers

H,H1,H2, ... complex Hilbert spaces

} . }H norm on H
x . , . yH natural inner product on H
X 1 the dual space of some topological vector space X

BpHq space of bounded linear operators on H
UpHq space of unitary operators on H
S2pHq Schatten-von Neumann p-class on H
}T }HS the Hilbert-Schmidt norm of an operator T

Tr pT q the trace of an operator T

G,G1, G2, ... locally compact groups, in particular Lie groups

H subgroup

N normal subgroup

N ¸H semi-direct product

T compact group tz P C | |z| “ 1u

Hn Heisenberg group

H2,n Dynin-Folland group

g, h, n, ... Lie algebras

hn Heisenberg Lie algebra

h2,n Dynin-Folland Lie algebra

x, y... group elements of a locally compact group

g, h... group elements of a Lie group

X “ pp, q, tq, ... group elements of Hn

Y “ ppY , qY , tY q, ... specified group elements of Hn

X,Y, Z, ... elements of R2n`1

dx, dy, ... Haar measure on a locally compact group

dg, dh, ... Haar measure on a Lie group

π unitary group representation of some group G

dπ infinitesimal representation of some Lie algebra g

15



Introduction

ρ, ρλ Schrödinger representations of Hn

π, πλ Schrödinger-type representations of H2,n

O co-adjoint orbit of some Lie group

O co-adjoint orbit corresponding to some unirrep π

Hπ representation space of π

H8π semi-normed vector space of smooth vectors of π

S pRnq Schwartz class on Rn

S
1

pRnq tempered distributions on Rn

S pGq Schwartz class on some nilpotent Lie group G

S
1

pGq tempered distributions on some nilpotent Lie group G

x . , . yS 1
pGq sesqui-linear S

1

pGq-S pGq duality

Mp,qpRnq classical (unweighted) modulation space on Rn

M r,spπq (unweighted) modulation space induced by unirrep π

σpD,Xq,Opρ classical Weyl quantization on Rn of symbol σ P S
1

pR2nq

σpD ,X q,Opπ Hn-Weyl quantization of symbol σ P S
1

pR4n`2q

OpπP Weyl-Pedersen quantization induced by unirrep π

OpπBG Beals-Greiner quantization induced by unirrep π

16



1 Preliminaries

This chapter provides a brief introduction to the most basic notions and tools from

abstract harmonic analysis, which will appear frequently throughout this text. In Sec-

tion 1.2 we recall some facts about the Haar measure and representation theory on ar-

bitrary locally compact groups, while Section 1.3 focuses on the 2n ` 1-dimensional

Heisenberg group Hn. The most important aspects of the notation and conventions we

will use throughout this text are discussed in Section 1.1.

1.1 Notation and Conventions

Following Folland’s convention, shared by Feichtinger and Gröchenig, of having 2π in the

exponent of the Fourier integral, we our standard definition for the Fourier transform

will be

pfpξq :“

ż

fpxqe´2πixξ dx.

We use the same convention for Fourier series on the torus group T, which we associate

with the interval r0, 1s equipped with the group law of the circle group S1.

1.2 Some Elementary Ingredients for Harmonic Analysis on

Groups

Since the theory of classical modulation spaces uses Fourier transformation in one form

or another we will briefly introduce the required notions in the most general framework,

namely for locally compact groups G. A locally compact group is a locally compact

space G which moreover possesses a group structure such that group multiplication is

continuous from GˆG to G and such that group inversion is a homeomorphism on G. A

detailed account on abstract harmonic analysis can be found in the excellent monograph

Folland [30].
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1 Preliminaries

1.2.1 Locally Compact Groups and Haar Measure

Locally compact groups posses (up to positive mulitplicative constants) uniquely deter-

mined left-invariant and right-invariant Borel measures, the so-called left and right Haar

measures, often denoted by λ and ρ. For certain types of groups these two measures

coincide. These groups are referred to as unimodular groups. Examples of unimodular

groups are the Abelian groups, the compact groups and all nilpotent Lie groups (cf. [30],

Chapter 2). The latter types of groups in fact cover most of the groups that we will

deal with in practice. Whenever the left and right Haar measures differ the so-called

modular function ∆G of G, a continuous group homomorphism from G into R`, grants

the relation dρpxq “ ∆Gpx
´1qdλpxq. In case the of unimodular groups we thus have

∆G “ 1.

In general we will always adhere to the left Haar measure, frequently denoting it simply

by dx instead of dλ. In the context of Abelian groups, where the left and right Haar

measures coincide, dρ may occasionally denote the Haar measure on the corresponding

dual group pG, but we will always explicitly fix the notation before use. Note that

whenever we write LppGq, unless otherwise stated, we refer to the Lebesgue space defined

by the left Haar measure on G.

Remark 1.1. We should point out that our notation for group elements will vary be-

tween x, y, . . . P G and g, g1, h, . . . P G, depending on the context and the risk of confusion

with other notation, thus exhibiting a slight preference for the former one in the more

abstract context of arbitrary locally compact groups whereas the latter notation will be

more prevalent in the context of Lie groups. This notational ambiguity carries over to

the Haar measure, which is correspondingly denoted by dx, dg, . . ..

1.2.2 Unitary Irreducible Group Representations

In order to dispose of a Fourier transform on a locally compact group G, we need to

employ a class of functions which corresponds to the family of

eξ : Rn Ñ T : x ÞÑ e2πi x ¨ξ, (1.1)

with ξ P Rn, in the case of Rn and to

ek : Tm Ñ T : x ÞÑ e2πi x ¨k, (1.2)

with k P Zm, in the case of Tm. Theses functions are the so-called irreducible unitary

group representations, or unirreps, which are defined as follows.
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1 Preliminaries

Definition 1.2. Let G be a locally compact group with identity element e, and let H be a

complex Hilbert space. A strongly continuous unitary representation (or simply unitary

representation) π of G on H is a map π : GÑ UpHq, set of all unitary operators on H,

satisfying the following properties

(i) πpx1x2q “ πpx1qπpx2q for all x1, x2 P G,

(ii) πpeq “ IH,

(iii) xj
G
ÝÑ x ñ πpxjqu

H
ÝÑ πpxqu for all u P H,

The space H is called the representation space of π. It is frequently denoted by Hπ. Such

a representation is furthermore said to be (topologically) irreducible if it satisfies

(iv) π is non-trivial, i.e., π ‰ x ÞÑ IHπ : G Ñ tIHπu Ď UpHπq, and the only closed

subspaces of Hπ invariant under πpGq are t0u and Hπ itself.

Two unitary representations π : GÑ UpHπq and ρ : GÑ UpHρq are said to be unitarily

equivalent if there exists a unitary map U : Hρ Ñ Hπ, called equivalence, such that

πpxq “ UρpxqU˚ for all x in G.

Note that unitarity implies pπpxqq˚ “ pπpxqq´1 “ πpx´1q for all x P G. Conditions

piq and piiq tell us that π is a group homomorphism from G into UpHπq. Condition

piiiq expresses pointwise continuity of π, i.e., continuity in the strong operator topology.

Finally, Condition pivq states that there are no proper sub-representations of π. This

property is referred to as (topological) irreducibility of π.

Now, it is easily checked that eξ, ξ P Rn, and ek, k P Zm, satisfy Conditions piq´piiiq. In

both cases their corresponding representation space Hπ is the one-dimensional Hilbert

space C. The proof of Condition pivq is usually more involved, but there are several

general statements which classify irreducible representations for certain types of groups.

In the Abelian case, e.g., all unirreps are one-dimensional (cf. [30] Chapter 3 Corollary

3.6). Since they have to satisfy the group homomorphism properties, they must be of

the form (1.1) and (1.2) in the cases G “ Rn and G “ Tm, respectively. For compact

groups one can prove that all unirreps must be finite-dimensional and every unitary

representation is given as a direct sum of unirreps (cf. [30] Chapter 5 Theorem 5.2).

In the case of the non-Abelian, non-compact Heisenberg group Hn we will see that

all relevant unirreps are infinite-dimensional time-frequency shift operators on L2pRnq
(cf. Subsection 1.3.3).
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Example 1.3. The arguably most prototypical example of a unitary representation of

a locally compact group G is its left regular representation

L : GÑ UpL2pGqq,

Lpxqpfq :“ Txf “ y ÞÑ fpx´1yq,

provided we use the left Haar measure. Its unitarity follows straight away from the

left-invariance of dx. If we work with the right Haar measure or a bi-invariant Haar

measure, we can define the right regular representation

R : GÑ UpL2pGqq,

Rpxqpfq :“ Txf “ y ÞÑ fpyxq.

It is usually of interest to see how L (or R) can be decomposed into unirreps of G.

We will frequently speak about the set of all unirreps of a given group G . It makes

sense to define this set up to unitary equivalence.

Definition 1.4. Given a locally compact group G, we define its unitary dual pG to be the

set of all equivalence classes (in the sense of Definition 1.2 pivq) of irreducible unitary

representations of G.

In the case of an Abelian group G, the dual set pG possesses a natural group structure

which makes it into a locally compact topological group with respect to the w˚-topology

inherited from L8pGq, thus possessing a bi-invariant Haar measure (cf. [30] p. 89). We

will refer to pG as the dual group of G and its members will frequently be called characters.

1.2.3 The Group Fourier Transform

We want to conclude this section with the definition of the so-called group Fourier

transform (GFT). In analogy to the Fourier transform on Rn given by

pfpξq :“

ż

Rn
fpxqe´2πi x ¨ξ dx “

ż

Rn
fpxqeξp´xq dx “

ż

Rn
fpxqpeξpxqq

˚ dx “: pfpeξq, (1.3)

we define the GFT of a given function f : G Ñ C evaluated at a representation π

as the integral of f against π˚. Since π can be operator-valued, we will define this

integral pointwise as a Bochner integral (cf. [30] for a short introduction to vector-valued

integration as well as [12] for a detailed account) with respect to the Haar measure:
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Definition 1.5. Let π be an irreducible unitary representation of the locally compact

group G on some Hilbert space Hπ. For f P L1pGq we define its group Fourier transform

at π to be the map

pfpπq : Hπ Ñ Hπ,

u ÞÑ

ż

G
fpxqπpxq˚u dx “

ż

G
fpxqπpx´1qu dx. (1.4)

Due to linearity and certain other properties of the Bochner integral the operator pfpπq

is linear and bounded on Hπ, with
›

›

›

pfpπq
›

›

›
ď }f}L1pGq. As a function on L1pGq the map

f ÞÑ pf is also linear and it satisfies the convolution identity

{pf ˚ gqpπq “ pgpπq pfpπq, (1.5)

provided the (left) group convolution is defined by

pf ˚ gqpxq :“

ż

G
fpyqgpy´1xqdy. (1.6)

One of the most important operations in the context of harmonic analysis on Abelian

groups is the modulation of a function.

Definition 1.6. Given a locally compact Abelian group G and a character ξ P pG we

define modulation by ξ by

Mξ : L1
locpGq Ñ L1

locpGq,

pMξfqpxq :“ ξpxqfpxq, (1.7)

that is as the multiplication by the character ξ.

In electrical engineering the terminology of frequency modulation refers to conveying

information via a carrier signal, say f : R3 Ñ C. Modulation is performed by shifting

the frequency of f , that is, by translating its frequency pf to Tξ pf “ pfp . ´ ξq. But this

in fact translates to a modulation of the signal f by ξ since

{pMξfqpηq “

ż

R3

e´2πixηpe2πixξfq dx “

ż

R3

e´2πixpη´ξqf dx “ pfpη ´ ξq “ Tξ pf. (1.8)

More generally, this observation (involving the same one-line calculation) holds true for

any locally compact Abelian groups G as we have ξpxq ¨ ηpxq “ ξ ´ ηpxq, x P G.
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Much more can be said about the GFT; we refer the interested reader to [30]. We will

also provide further information on special cases whenever it seems necessary.

Let us also note that will occasionally make use of the symbol Ff or FG for pf .

Usually, this notation is reserved for the Plancherel-Fourier transform, which extends

the GFT restricted to L1pGq X L2pGq to a unitary transform on L2pGq (at least for all

types of G we will consider more closely). Whenever we abuse this notation, however,

it will be unambiguously clear from the context.

1.3 The Heisenberg Group

In this subsection we realize the Heisenberg group Hn following a recipe we could call

”How to construct a meta-Heisenberg group of . . ..” In our case, the Heisenberg group

is the meta-Heisenberg group of Rn, and we explicitly mention this type of construction

at this early stage as it will play an important role throughout this text. The term

meta-Heisenberg group was first used in Folland [29] and employed for meta-Heisenberg

groups of 2-step nilpotent Lie groups. This, of course, includes the 1-step nilpotent Lie

group Rn, and we will point out shortly precisely what the name meta-Heisenberg group

refers to.

This subsection also comprises a construction of the Schrödinger representations, the

natural unirrep of Hn obtained via the meta-construction, and some explicit formulas for

the left- and right- invariant vector fields which will be needed later on. Furthermore,

we will have a look at the group Fourier transform and list some of its noteworthy

properties.

1.3.1 A Meta-Type Realization of Hn

Let us define the operators Qk and Pj , j, k “ 1, . . . , n, acting on the Schwartz space

S pRnq via

Qkfpxq :“ xkfpxq, (1.9)

Pjfpxq :“
1

2πi

Bf

Bxj
pxq, (1.10)

where f P S pRnq and x P Rn.

One checks easily that for any j, k “ 1, . . . , n,

rPj , Pks “ rQj , Qks “ 0, rPj , Qks “
δj,k
2πi

I, (1.11)
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where I denotes the identity operator. Let use the convention that the Lie bracket for two

essentially adjoint operators A,B acting on S pRnq is defined by 2πi times the standard

commutator rA,Bs :“ AB ´BA.

Definition 1.7. Equalities (1.11) (times 2πi) are called the Canonical Commutation

Relations (CCR) or Heisenberg Commutation Relations.

Let us denote by xQk, Pjy the Lie algebra generated by the operators Qk and Pj . This

means that xQk, Pjy is the smallest real Lie algebra of operators which contains the

operators Qk and Pj , j, k “ 1, . . . , n, the Lie bracket being 2πi times the commutator

bracket. The CCR show that

xQk, Pjy :“ RP1 ‘ . . .‘ RPn ‘ RQ1 ‘ . . .‘ RQn ‘ RI.

This Lie algebra has dimension 2n ` 1 and is 2-step nilpotent. Moreover, xQk, Pjy is

isomorphic to the Heisenberg Lie algebra hn whose definition we now recall.

Definition 1.8. The Heisenberg Lie algebra hn is the real Lie algebra with underlying

vector space R2n`1 endowed with the Lie bracket defined via

j, k “ 1, . . . n,
rXpj , Xpks “ rXqj , Xqks “ rXpj , Xts “ rXqj , Xts “ 0

rXpj , Xqks “ δjkXt,

+

(1.12)

where pXp1 , . . . , Xpn , Xq1 , . . . , Xqn , Xtq denotes the standard basis of R2n`1.

Note that the Lie algebra isomorphism between xQk, Pjy and hn is

dρ : hn ÝÑ xQk, Pjy (1.13)

defined via

dρpXqkq “ 2πiQk, dρpXpj q “ 2πi Pj , j, k “ 1, . . . , n, and dρpXtq “ 2πi I.

The Lie algebra hn is nilpotent of step 2 and its centre is RXt. In standard coordinates

pp, q, tq :“ pp1, . . . , pn, q1, . . . , qn, tq,

and similarly for pp1, q1, t1q, its Lie bracket given by (1.12) becomes

rpp, q, tq, pp1, q1, t1qs :“ p0, 0, pq1 ´ qp1q (1.14)
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if pq1 abbreviates the standard inner product of p and q1 on Rn.

Definition 1.9. The Heisenberg group Hn is the connected simply connected Lie group

corresponding to the Heisenberg Lie algebra hn.

Hence Hn is a nilpotent Lie group of step 2 and its centre is exppRXtq. The group

law of Hn may be given by the Baker-Campbell-Hausdorff formula, which we now recall

for a general Lie group G and corresponding Lie algebras g (see, e.g., [10, p.11,12]). It

reads

expGpXq dG expGpY q “ expGpX ` Y `
1

2
rX,Y sg `

1

12
prX, rX,Y sgsg

´ rY, rX,Y sgsgq ´
1

24
rY, rX, rX,Y sgsgsg ` . . .q. (1.15)

This formula always holds at least on a neighbourhood of the identity of G and in

fact whenever the series in the right hand side converges. If G is a connected simply

connected nilpotent Lie group, the exponential mapping expG : gÑ G is a bijection and

Formula (1.15) holds on g since the series on the right hand side is finite. For the case

g “ hn it yields

expHn
pXq dHn expHn

pY q “ expHn

ˆ

X ` Y `
1

2
rX,Y s

˙

(1.16)

for all X,Y in hn.

We now realize the Heisenberg group Hn using exponential coordinates. This means

that we identify an element of Hn with an element of R2n`1 via

pp, q, tq “ expHn

`

n
ÿ

j“1

ppjXpj ` qjXqj q ` tXt

˘

Hence, using this identification, the centre of Hn is tp0, 0, tq : t P Ru and the group law

given in (1.16) becomes

pp, q, tq dHn pp
1, q1, t1q “

`

p` p1, q ` q1, t` t1 `
1

2
ppq1 ´ qp1q

˘

. (1.17)

Remark 1.10 (On the Meta-Heisenberg-Construction). This term coined by Folland

refers to the construction of a nilpotent Lie group HpGq of one step m ` 1, given an

m-step nilpotent group G, such that the nilpotent structure of HpGq is essentially given

by the commutation relations of the left-invariant vector fields of G and multiplication

by each coordinate function.
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Remark 1.11 (On the Haar measure). Since the Hn-Haar measure coincides with the

Lebesgue measure on R2n`1, we can make further use of the latter coordinates and write

the Hn-Haar measure as dp dq dt. It hence follows that LrpHnq – LrpR2n`1q for all

r P R`.

It is furthermore worth mentioning that the identification Hn – R2n`1 allows us to

define S pHnq – S pR2n`1q.

1.3.2 Left-invariant Vector Fields

Let us recall that the left and right regular representations L and R (defined as in Exam-

ple 1.3) of a unimodular Lie group G on L2pGq are unitary and that their infinitesimal

representations yield the isomorphisms between the Lie algebra of G and the Lie algebra

of the smooth right- and left-invariant vector fields on G, respectively. More precisely,

the left-invariant vector field dRpXq corresponding to a vector X P g at a point g P G is

given by

dRpXqfpgq “
d

dτ

ˇ

ˇ

ˇ

ˇ

τ“0

fpg expHn
pτXqq,

for any differentiable function f on G, whereas the right-invariant vector field dLpXq

corresponding to X is given by

dLpXqfpgq “
d

dτ

ˇ

ˇ

ˇ

ˇ

τ“0

fpexpHn
p´τXqgq.

Short computations in the case of the Heisenberg group Hn yield the following ex-

pressions for the left and right-invariant vector fields corresponding to the basis vectors

Xpj , Xqk , Xt for j, k “ 1, . . . n. For the left-invariant vector fields we adopt the notation

Dpj :“ p2πiq´1dRpXpj q “ p2πiq´1
´

B
Bpj
´ 1

2qj
B
Bt

¯

,

Dqk :“ p2πiq´1dRpXqkq “ p2πiq´1
´

B
Bqk
` 1

2pk
B
Bt

¯

,

Dt :“ p2πiq´1dRpXtq “ p2πiq´1 B
Bt ,

,

/

/

.

/

/

-

(1.18)

while for the right-invariant vector fields we obtain

´dLpXpj q “

˜

B

Bpj
`

1

2
qj
B

Bt

¸

, ´dLpXqkq “

ˆ

B

Bqk
´

1

2
pk
B

Bt

˙

, ´dLpXtq “
B

Bt
.
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1.3.3 The Schrödinger Representation

Here we show that there is only one possible representation of the Heisenberg group Hn

with infinitesimal representation dρ defined in (1.13). This ‘natural’ representation ρ

will turn out to be the well known (canonical) Schrödinger representation of Hn.

We start with the following three observations. Firstly, from the group law, we have

pp, q, tq “ p0, q, 0qpp, 0, 0qp0, 0, t`
pq

2
q

“ expHn
pq1Xq1q . . . expHn

pqnXqnq expHn
pp1Xp1q . . . expHn

ppnXpnq

expHn

´

pt`
pq

2
qXt

¯

.

Secondly, from the definition of an infinitesimal representation, we know that if dρ is the

infinitesimal representation of ρ, then we must have for every X P hn, and τ P R

ρpexpHn
pτXqq “ eτdρpXq,

where the right hand side is understood as the 1-parameter group of operators with

generator dρpXq. Therefore, if it can be constructed, the representation ρ will be char-

acterised by the 1-parameter groups with generators

dρpXpj q “ 2πi Pj “
B

Bxj
, dρpXqkq “ 2πiQk “ ˆp2πi xkq and dρpXtq “ 2πi I.

Thirdly, it is well known that the operators 2πi Pj , 2πiQk and 2πi I are essential skew-

adjoint on S pRnq and generate the 1-parameter unitary groups of operators on L2pRnq

tedρpτXpj quτPR, tedρpτXqk quτPR, tedρpτXtquτPR,

given respectively by

edρpτXpj qfpxq “ fpx1, . . . , xj ` τ, . . . xnq,

edρpτXqk qfpxq “ e2πiτxkfpxq,

edρpτXtqfpxq “ e2πiτfpxq,

for f P L2pRnq, x P Rn.

From the three observations above, the unique candidate ρ for a representation of Hn
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having infinitesimal representation dρ must satisfy

ρ
`

expHn
ppjXpj q

˘

fpxq “ edρppjXpj qfpxq “ fpx1, . . . , xj ` pj , . . . xnq,

ρ
`

expHn
pqkXqkq

˘

fpxq “ edρpqkXqk qfpxq “ e2πiqkxkfpxq,

ρ
`

expHn
ptXtq

˘

fpxq “ edρptXtqfpxq “ e2πitfpxq,

for f P S pRnq and x P Rn, and we must have

ρpp, q, tqfpxq “ edρpq1Xq1 q . . . edρpqnXqn qedρpp1Xp1 q . . . edρppnXpn qedρppt`
pq
2
qXtqfpxq

“ e2πiqx
´

edρpp1Xp1 q . . . edρppnXpn qedρppt`
pq
2
qXtq

¯

fpxq

“ e2πiqx
´

edρp0,0,t`
pq
2
q
¯

fpx` pq

“ e2πiqxe2πipt` pq
2
qfpx` pq,

that is,

ρpp, q, tqfpxq “ e2πipt`qx` pq
2
qfpx` pq. (1.19)

Conversely, one checks easily that the expression ρ defined via (1.19) gives a unitary

representation of Hn. In fact we recognize the so-called Schrödinger representation of

Hn.

1.3.4 The Family of Schrödinger Representations

In this subsection we describe the complete family of Schrödinger representations ρλ,

λ P Rzt0u, of Hn.

We prefer to define a Lie algebra or a Lie group via a concrete description (the most

common realization or the most useful for a certain purpose) rather than as a class of

isomorphic objects given via a representative. Indeed, we have defined the Heisenberg

Lie algebra hn via the CCR on the standard basis of R2n`1 and we have considered a

concrete realization of the Heisenberg group Hn. However, it is interesting to define other

isomorphisms than dρ. Indeed, let us consider the linear mapping dρλ : hn Ñ xQk, Pjy

defined via

dρλpXqkq “ 2πiλQk, dρλpXpj q “ 2πi Pj , j, k “ 1, . . . , n, and dρλpXtq “ 2πiλI ,

for a fixed λ P Rzt0u.
Proceeding as for ρ, the following property is easy to check:
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Lemma 1.12. For each λ P Rzt0u, the mapping dρλ is a Lie algebra isomorphism from

hn onto xQk, Pjy. It is the infinitesimal representation of the unitary representation ρλ

of Hn on L2pRnq given by

ρλpp, q, tqfpxq “ e2πi λpt`qx` 1
2
pqqfpx` pq,

for f P L2pRnq, x P Rn.

Naturally ρ “ ρ1.

The representations ρλ, λ P Rzt0u, given in Lemma 1.12 are also called Schrödinger

representations. A celebrated theorem of Stone and Von Neumann says that, up to

unitary equivalence, these are all the irreducible unitary representations of Hn that are

nontrivial at the centre:

Theorem 1.13 (Stone-von Neumann). For any λ P Rzt0u, the representation ρλ of

Hn is unitary and irreducible. If λ, λ1 P Rzt0u with λ “ λ1 then the representations ρλ,

λ P Rzt0u, are inequivalent. Moreover, if π is an irreducible and unitary representation

of Hn such that πp0, 0, tq “ e2πiλt for some λ “ 0, then π is unitarily equivalent to ρλ.

For a proof, see, e.g., [28, ch 1 §5].

For example, the mapping ρ̃λ of Hn defined via

ρ̃λpp, q, tq :“ ρp
a

|λ|p,
λ

a

|λ|
q, λtq,

is a unitary representation of Hn on L2pRnq which is unitarily equivalent to ρλ. This

can be chosen as another realization of the Schrödinger representation coinciding with

the character e2πiλ¨ at the centre of Hn.

The Stone-von Neumann Theorem gives an almost complete classification of the Hn-

unirreps. In fact, we see that the only other unirreps which can appear are trivial at the

centre. Passing the centre through the quotient, those representations are now unirreps

of R2n, hence characters of R2n. We thus have:

Theorem 1.14 (Classification of Hn-Unirreps). Every irreducible unitary representation

ρ of Hn on a Hilbert space H is unitarily equivalent to one and only one of the following

representations:

(i) ρλ, λ P Rzt0u, acting on L2pRnq,

(ii) σpa,bq : pp, q, tq ÞÑ e2πipap`bqq, a, b P Rn, acting on C.
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Historical Remark 1.15. One can argue that the Heisenberg group Hn arose in con-

nection with the early quantum mechanics. In fact, measurements of momentum and

position of a quantum particle are, up to a factor i, represented by operators on L2pRnq
given by (1.9) and (1.10) and thus satisfy the (CCR) given in (1.11). The parameter λ

can then be viewed as the Planck constant, modulo normalisation. (For a presentation

of these ideas cf. [28] Section 1.1, e.g.)

1.3.5 Group Center and the Reduced Heisenberg Group

The group centre ZpHnq and the commutator subgroup

Hn
c “

 

ghg´1h´1 | g, h P Hn

(

both coincide with the set tp0, 0, tq | t P Ru.
The periodicity in t P R of the Schrödinger representation ρλ can be very inconvenient

in the context of certain applications. As a result, the map ρλ : Hn Ñ UpL2pRnqq is

neither faithful, i.e., injective, nor square-integrable in the sense of Definition 2.20. It is

therefore useful to occasionally use the so-called reduced Heisenberg group

Hn,red :“ Hn{tp0, 0, kq | k P Zu.

1.3.6 Group Fourier Transform and Plancherel Formula

There is indeed quite a bit that can be said about the GFT on Hn. In order to keep

this subsection short, we very briefly collect the some important facts, in particular the

Plancherel theorem. The theorem will give an answer as to why the one-dimensional

representations σpa,bq, a, b P Rn, are negligible for the GFT.

For the sake of convenience, let us denote by pfpa, bq the GFT pfpσpa,bqq and by pfpλq

the GFT pfpρλq since up to unitary equivalence these are the only possible values for
pfpπq, π P pHn.

In fact there is not much to say about the case of π P rσpa,bqs P pHn since the GFT

coincides with the Euclidean Fourier transform on R2n.

The ρλ-case in turn is quite different from Abelian Fourier transforms; all statements

are given for arbitrary λ P Rzt0u. For a function f in L1pHnq we have observed in

Subsection 1.2.3 that the operator pfpλq bounded, but in fact much more can be said

about the GFT in the cases f P L1pHnq and f P L2pHnq.

Proposition 1.16. Let f P L1pHnq and let g P L2pHnq. Then, pgpλq is compact on

L2pRnq and pfpλq is Hilbert-Schmidt on L2pRnq. Moreover, the Hilbert-Schmidt norm of
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pfpλq is given by

} pfpλq}2HS “ |λ|
´n

ż

R2n

| pfph, q, pq|2 dq dp (1.20)

Let us recall that the set of Hilbert-Schmidt operators on a Hilbert space H, also

know as the Schatten-von Neumann 2-class S2pHq, can be turned into a Hilbert space

of operators if we equip it with the inner product xA,ByHS :“ Tr pB˚Aq for A,B P

HSpHq. Hence, the GFT of an L2pHnq-function f defines a Hilbert space-valued map
pf : Rzt0u Ñ S2pL

2pRnqq : λ ÞÑ pfpλq with a certain decay behaviour in λ as we observe

in Identity (1.20).

A closer look reveals that the function pf is actually square-integrable over Rzt0u in

the sense of strong Bochner integrals if we choose the right measure µ. In that case its

L2-norm equals }f}L2pHnq
. This gives a very strong statement for the GFT, that is, a

Plancherel-type theorem:

Theorem 1.17 (Plancherel Theorem on Hn). Let the measure µ on Rzt0u be defined

by dµpλq :“ |λ|n dλ. Then, the group Fourier transform f ÞÑ pf restricted to L1pHnq X

L2pHnq extends to a unitary isomorphism F of L2pHnq onto L2pRzt0u,S2pL
2pRnqq;µq.

In particular, we have

}f}2L2pHnq
“

ż

Rzt0u
}F pfqpλq}2HS dµpλq

for all f P L2pHnq.

This in fact is a statement of existence for the Plancherel-measure on the unitary dual

pHn, which moreover states that the subset trσpa,bqs P pHn | a, b P Rnu is of vanishing

measure. That is, the only relevant representation for the Hn-GFT are the Schrödinger

representations.

The measure µ furthermore allows for an inversion formula for GFT of nicely-behaved

functions such as the Schwartz functions, e.g.

Theorem 1.18. For all f P S pHnq, the inverse Fourier transform F´1 : F pfq “ pf ÞÑ

f is given by the formula

fpp, q, tq “

ż

Rzt0u
Tr

´

pfpλqπhpp, q, tq
¯

dµpλq. (1.21)
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2 Modulation Spaces Revisited - A Review

and Incentive

2.1 A Review of the Original Concepts with a Focus on Rn

The first part of this chapter is mainly dedicated to the review and comparison the two

different methods in the Abelian case, particularly in the case of Rn. Each of them

is formulated in a specific context of representation theory of locally compact groups

and the theory of function spaces arising thereof. For each review we will briefly recall

the corresponding theoretical backgrounds, highlighting important notions, technicalities

and certain statements that we desire to transfer to Heisenberg group.

The second part of the chapter discusses the conclusions we draw from both approaches

in view of adapting them to the Hn-setting.

2.1.1 Classical Modulation Spaces via Uniform Frequency Decompositions

and Wiener Amalgam Spaces on Locally Compact Abelian Groups

In 1983 H. G. Feichtinger introduced the concept of modulation spaces based upon a

notion of Banach spaces of distributions called Wiener-type spaces or more frequently

nowadays Wiener amalgam spaces (cf. Feichtinger [15]). The idea was to generalize a

recipe for creating (families of) function spaces in the spirit of a very specific space

introduced by N. Wiener in his study of Tauberian theorems in 1932 (cf. [72, 73]).

This space, now widely known as Wiener’s space, is a Banach space of locally bounded

measurable functions that are globally in l1pZnq in the following sense: if we denote by

Q the unit cube in Rn, then a function f is said to be in W pRnq if

ÿ

kPZn
ess sup
xPQ

|fpx` kq| “
›

›

›

´

}fχQ`k}L8pRnq

¯

k

›

›

›

l1pZnq
“

›

›

›
p}fT´kχQ}L8pRnq

›

›

›

l1pZnq
ă 8,

(2.1)

where χ denotes the characteristic function of a subset of Rn and Ty denotes the left

shift by y P Rn.
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The idea behind these spaces is that local and global behaviours, respectively, of

functions and distributions are measured by two different spaces. A question that arises

immediately is how much amalgamated spaces depend on the way one localizes in the first

place. For that reason it is important to observe that on the one hand the amalgamated

norm in (2.1) can be viewed as localizing f over a cover of Rn, globally bounded in size,

consisting of compact neighborhoods around of members of a discrete subset of Rn, in

our case the lattice Zn.

Alternatively, we could view it as localizing f by discrete translates indexed by some

set, in our case again Zn, of one fixed function, usually referred to as window, which in our

case is given by the characteristic function of the translate of a compact neighborhood

of 0 in Rn. Now, one can go one step further and ask what happens if we exchange

discrete shifts for continuous ones and replace the discrete l1pZnq-norm by the continuous

L1pRnq-norm. Moreover, what happens if we take Lp and Lq-norms other than L8 and

L1?

Such questions and others about the possibility to interpolate between the latter amal-

gamates seem to have inspired Feichtinger to introduce the concept of general Wiener

amalgam spaces as Banach spaces of functions and distributions over locally compact

Abelian groups that possess two equivalent descriptions: one where the norms involve

continuously shifted windows and another one where the shifts could be replaced by a

uniform decomposition of the underlying structure, i.e., the Abelian group.

Modulation spaces eventually arose essentially as the inverse Fourier image of Wiener

amalgam spaces over pG. The idea behind this is the following: in analogy to Besov

spaces, e.g., where the description via modules of continuity could be expressed by

operations on the Fourier spectrum, modulation spaces decompose functions on a group

G into frequency localized pieces.

It is then checked whether these pieces, still being functions or distributions on G,

belong to certain Banach spaces over G like Lp-spaces, e.g. This is the so-called local

behaviour of f . The global behaviour is checked in terms of Lq or `q-summability over

the whole Fourier spectrum pG. That is, modulation spaces are apparently amalgamated

spaces whose local components are Banach spaces over G and whose global components

are Banach space over pG.

If we now Fourier transform the whole space, that is, all f on G with finite modulations

space norm, we obtain an amalgamated space over pG whose local component has turned

into a Fourier-Lebesgue space whereas the global one is still the same.

Many properties about Wiener amalgam spaces, like dualities, interpolation proper-

ties, etc., thus translate one-to-one to the case of modulation spaces. Also, the equiv-
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alency between of continuous and discrete descriptions is given through the Wiener

amalgam perspective. It was apparently for that very reason that Feichtinger coined

the name modulation spaces: shifts Tξ applied to windows on the Fourier side are given

through modulations Mξ, i.e., multiplying by characters ξ P pG, of the inverse Fourier

images of the windows on G. That is, we analyze function spaces through uniform

modulations.

Let us as a first step introduce Wiener amalgam spaces on an Abelian group pG. Since

by Pontryagin’s duality there is no distinction between an abstract locally compact

Abelian group G and its dual group pG we pick the latter as the more convenient choice

for the subsequent definition of modulation spaces on G. The local components that we

will need to employ should include spaces like FLpp pGq for 1 ď p ď 8, C0p pGq, etc.

It is therefore reasonable to describe a class of spaces which satisfy properties common

to those spaces. The first criterium is that they be in standard situation with respect to

some weighted Fourier algebra.

Definition 2.1. Let w be a strictly positive, locally bounded and measurable function on

G which satisfies 1 ď wpxq, wpxyq ď wpxqwpyq and wpx´1q “ wpxq for all x, y in G.

Then w is called a weight function on G. It will be called admissible if it furthermore

satisfies the so-called Beurling-Domar condition (or BD-condition)

8
ÿ

k“1

k´2 logpwpkxqq ă 8 (2.2)

for all x in G. A function m is called w-moderate if it is strictly positive and continuous

on G, satisfying mpxyq ď mpxqwpyq.

We define the Beurling algebra L1
wpGq to be the Banach convolution algebra ptf |

fw P L1pGqu, ˚ q equipped with the norm } . }L1
wpGq

:“ } . w}L1pGq and its corresponding

Fourier algebra to be the symmetric, pointwise multiplicative Banach algebra Awp pGq :“

t pf | f P L1
wpGqu, equipped with the norm || pf ||

Awp pGq
:“ }f}L1

wpGq
.

We furthermore define Aw,0p pGq to be the semi-normed vector space given by the set

Awp pGqXCcp pGq equipped with the natural inductive limit topology induced by the semi-

normed space Ccp pGq.

Note that throughout the text E1 stands for the topological dual of a given locally

convex vector space E, usually equipped with the weak topology unless otherwise stated.

(In case of double duals like L8 the space usually carries the w˚-topology.)

Definition 2.2. A Banach space pB, } }Bq is said to be in standard situation with respect

to Awp pGq if
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(i) Aw,0p pGq ãÑ B ãÑ A1w,0p
pGq, where ãÑ stands for a continuous embedding,

(ii) pB, } }Bq is a Banach module with respect to pointwise multiplication over Awp pGq,

i.e., }hf}B ď }h}Awp pGq }f}B for all h in Awp pGq and all f in B,

(iii) pB, } }Bq is a Banach module with respect to convolution on pG over a Beurling

algebra L1
pwp

pGq, where pw is an admissible weight on pG (but not to be understood as

the Fourier transform of a weight w on G!).

The space Aw,0p pGq obviously serves as a test function space in the case and its dual as

our standard distribution space. The second embedding in Condition piq finally justifies

our recurrent reference to Banach spaces of distributions. We will furthermore speak of

distributions locally belonging to B: we denote by Bloc all f in A1w,0p
pGq such that hf

lies in B for all h in Aw,0p pGq.

Definition 2.3. A Banach space pB, } }Bq in standard situation is said to be

(i) left-invariant (or left translation-invariant) if all left translations Tx are bounded

operators on B, i.e., Tx : B Ñ B with }Tx} ď Cx ă 8 for all x in pG,

(ii) right-invariant (or right translation-invariant) if the right translations f ÞÑ TRx f :“

fp . xq are bounded operators on B,

(iii) translation-invariant if it is both left and right-invariant.

We say the space is homogenous if it is

(i) isometrically translation-invariant, i.e., }Tyf}B “ }f}B for all y in pG,

(ii) translation acts continuously on B, i.e., limyÑe }Tyf ´ f}B “ 0.

The spaces described so far fulfill the criteria usually required of local components

in Wiener amalgam spaces. Some typical examples for Banach spaces in the standard

situation are the spaces Lpp pGq and LpwpGq for 1 ď p ď 8, C0p pGq, Awp pGq or FLppGq

and FLpwpGq, 1 ď p ď 8. The latter example will be our typical local component in the

description of modulation spaces as inverse Fourier images of Wiener amalgam spaces. In

case of G “ Rn even Besov-Lizorkin-Triebel spaces Bs
p,qpRnq and Triebel spaces F sp,qpRnq

(for a definition cf. Triebel [69]), among them the Sobolev spaces W k,ppRnq, satisfy all

these criteria.

Thus, let us finally define Wiener amalgam spaces and provide a few statements. The

first definition given here will be the continuous version of Wiener amalgam spaces.
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Definition 2.4. Let pB, } }Bq be a homogenous Banach space in standard situation with

respect to Awp pGq and let 1 ď q ď 8. Let moreover v be a w-moderate function on pG.

We then define the Wiener amalgam space W pB,Lqvqp pGq the space of all f in Bloc such

that for any arbitrary, but fixed non-zero window h in Aw,0p pGq their control functions

F phq : pGÑ C : ξ ÞÑ }Tξh f}B

lies in Lqvp pGq, i.e.,

}f}
W pB,Lqvqp pGq

:“
›

›

›
F phq

›

›

›

Lqvp pGq
ă 8. (2.3)

As insinuated in the formulation of Definition 2.4, the particular choice of window does

not matter. Norms with two different windows h1 and h2 are equivalent, thus define the

same space.

The equivalent discrete definition involves as mentioned above certain partitions of

the underlying space, or to be more precise, nicely behaved partitions of unity. The

constituents of these partitions will have to be members of Awp pGq for the definitions

to prove equivalent. Their support will be uniformly bounded and ”centered” around

discretely distributed points ξj in pG, which makes it plausible for a continuously shifted

fixed window to induce the same action. Also, for the partition to be globally uniform,

the number of supports that intersect should be locally finite and globally bounded.

Definition 2.5. Let us call a family Ψ :“ pψjqjPJ a bounded uniform partition of

unity in Awp pGq of size pQ if there exists some non-empty relatively compact set pQ Ď pG

and a family Ξ “ pξjqjPJ such that

(i)
ř

jPJ ψj “ 1,

(ii) supjPJ }ψj}Awp pGq “: CΨ,0 ă 8,

(iii) supppψjq Ď ξj pQ for all j P J ,

(iv) supkPJ 7tj ‰ k | ξj pQX ξk pQ ‰ Hu “: CΨ,1 ă 8.

In this case we will say the family Ξ “ pξjqjPJ is pQ-dense and relatively separated refer-

ring to
Ť

jPJ ξj
pQ “ pG and Condition pviq, respectively, or simply well-spread.

Proposition 2.6. Given a BUPU Ψ of size pQ in Awp pGq, the space W pB,Lqvqp pGq is
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defined to be the set of all distributions f in Bloc of finite discrete amalgamated norm

||f |W p pQ,B, `qvq|| :“

˜

ÿ

jPJ

}ψjf}
q
B vpξjq

q

¸1{q

“

›

›

›

`

}ψjf}B vpξjq
˘

jPJ

›

›

›

`qv
. (2.4)

As in the case of Definition 2.4, where the particular choice of window did not alter the

space, different BUPU’s give equivalent norms, hence define the same Wiener amalgam

spaces. It is thus a matter of convenience, and in fact very often determined by appli-

cations, to choose between either description; the same applies to the concrete choice of

window and BUPU, respectively. The proofs of all these equivalences can be found in

Feichtinger [15].

Many useful and desired properties of modulation spaces are in fact inherited from

Wiener amalgam spaces since modulation spaces on locally compact Abelian groups can

be viewed as Fourier transforms of Wiener amalgam spaces on their dual groups. The

local components B of modulation spaces have to satisfy a few more properties since

they need to fulfill certain requirements of function spaces on both G and pG.

Definition 2.7. Let G be a locally compact Abelian group. A Banach space pB, } }Bq

is called a BF-space on G if it is continuously embedded into the semi-normed space

L1
locpGq.

A BF-space B is said to be

(i) solid if g P L1
locpGq, f P B and |gpxq| ď |fpxq| locally almost everywhere (l.a.e.)

implies g P B and }g}B ď }f}B,

(ii) rearrangement-invariant if |tx | |gpxq| ě αu| “ |tx | |fpxq| ě αu| for all α ą 0 im-

plies }g}B “ }f}B.

Finally, a solid BF-space will be referred to as a Banach function space.

Note that rearrangement-invariant BF-spaces are solid and isometrically translation-

invariant. If B contains CcpGq as a dense subspace, the translations are also continuous

on B, which renders B homogeneous.

Our most prominent examples for B will be weighted and unweighted Lp-spaces and

other weighted versions of BF-spaces such as Bm :“ tf | fm P Bu for a given solid,

translation-invariant BF-space pB, } }Bq and a w-moderate m. The space Bm is naturally

equipped with the norm } }Bm :“ } .m}B. The translation operators Ty are then bounded

on Bm with }Ty} ď wpyq for all y in G. If CcpGq is dense in B, then it is also dense in
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Bm and translation is a continuous operation on Bm. Moreover, it turns out that Bm is

a Banach convolution module over the Beurling algebra L1
wpGq, i.e.,

}f ˚ h}Bm ď }f}Bm ¨ }h}L1
wpGq

holds for all f in Bm and all h in L1
wpGq. Finally, we will call a BF-space admissible if

it is of the form Bm as just described.

We can now give the definition of what is nowadays often referred to as classical

modulation spaces.

Definition 2.8. Let G be a locally compact Abelian group G and let w and pw be ad-

missible weight functions in the sense of Definition 2.1 on G and pG, respectively. Given

an admissible BF-space pB, } }Bq and a pw-moderate function v on pG, we define for any

1 ď q ď 8 and any arbitrary, but fixed non-zero window

ϕ P ΛKw :“ tf P L1
wpGq | suppp pfq Ť pGu “ tf | pf P Aw,0p pGqu,

with ψ :“ Fϕ, the modulation space MpB,LqvqpGq to be the set of all distributions f

in pΛKw q
1 such that f ˚Mξk belongs to B for all ξ in pG and ξ ÞÑ }f ˚Mξk}B belongs to

Lqvp pGq, i.e.,

}f}MpB,LqvqpGq :“

ˆ
ż

pG
}f ˚Mξϕ}

q
B vpξq

q dξ

˙1{q

“
›

›ξ ÞÑ ||F´1pTξψ ¨Ffq||B
›

›

Lqvp pGq
ă 8

(2.5)

for 1 ď q ă 8 and

}f}MpB,L8v qpGq :“ sup
ξP pG

`

}f ˚Mξϕ}B vpξq
˘

“
›

›ξ ÞÑ ||F´1pTξψ ¨Ffq||B
›

›

L8v p
pGq
ă 8 (2.6)

for q “ 8, respectively.

The independence of the particular choice of window follows from the general fact

for Wiener amalgam spaces, i.e., from F pMpB,LqvqpGqq “ W pFB,Lqvqp pGq. Also, the

equivalent discrete description comes for free via Proposition 2.6.

Corollary 2.9. Let Ψ :“ pψjqjPJ be a bounded uniform partition of unity in Awp pGq of
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size pQ. A distribution f in ΛKw is a member of MpB,LqvqpGq if and only if

›

›

›
f |Mp pQ,B, `qvq

›

›

›
:“

˜

ÿ

jPJ

}f ˚ ϕj}
q
B vpξjq

q

¸1{q

“

›

›

›

`›

›F´1pψj ¨Ffq
›

›

B
vpξjq

˘

jPJ

›

›

›

`qv
ă 8

(2.7)

for 1 ď q ă 8 and

›

›

›
f |Mp pQ,B, `8v q

›

›

›
:“ sup

jPJ

`

}f ˚ ϕj}B vpξjq
˘

“

›

›

›

`›

›F´1pψj ¨Ffq
›

›

B
vpξjq

˘

jPJ

›

›

›

`8v
ă 8

(2.8)

for q “ 8, respectively, where ϕj :“ F´1ψj for all j in J .

Depending on the norm we use, that is, either (2.5) or (2.7), we will occasionally

distinguish nominally between MpB,LqvqpGq and Mp pQ,B, `qvq, respectively.

Some important results for modulation spaces are collected in form of the following

theorem.

Theorem 2.10. For an admissible BF-space pB, } }Bq, pw-moderate functions v, v1, v2

on pG and a w-moderate function m on G the following assertions hold true.

(i) The modulation spaces MpB,LqvqpGq, 1 ď q ď 8, are Banach spaces with respect

to the norms (2.5) and (2.4), satisfying

ΛKw pGq ãÑMpB,LqvqpGq ãÑ pΛKw q
1pGq

(ii) The spaces MpB,LqvqpGq depend neither on the particular choice of window k P ΛKw

or BUPU Ψ nor on the particular choice of weights w and pw. (That is, it only

matters that w and pw satisfy the pBDq-condition (2.2).)

(iii) The fact that CcpGq is dense in B implies that ΛKw is dense in MpB,LqvqpGq for

1 ď q ă 8 and thus continuity of translation on MpB,LqvqpGq.

(iii) For 1 ď q ă 8 the dual space of MpB,LqvqpGq can be identified with

MpB1, Lq
1

1{vqpGq.

(iv) For any pK Ť pG the norms } }B and } }MpB,LqvqpGq are equivalent on tf P B |

suppp pfq Ď pKu.
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(v) For 1 ď p1, q1 ă 8, 1 ď p2, q2 ă 8 and θ P p0, 1q we have the interpolation space

identity

`

MpLp1m1
, Lq1v1qpGq,MpL

p2
m2
, Lq2v2qpGq

˘

θ
“MpLpm, L

q
vqpGq,

where

1

p
“

1´ θ

p1
`

θ

p2
,

1

q
“

1´ θ

q1
`
θ

q2
, m “ m1´θ

1 mθ
2, v “ v1´θ

1 vθ2.

(vi) For 1 ď p1 ď p2 ď 8, 1 ď q1 ď q2 ď 8 and v1 ď v2 we have

MpLp1m1
, Lq1v1qpGq ãÑMpLp2m2

, Lq2v2qpGq.

(vii) For m “ 1G, and v “ 1
pG

we have MpL2
1, L

2
1qpGq “MpL2, L2qpGq “ L2pGq.

(viii) The Segal algebra S0pGq :“ MpL1, L1qpGq, nowadays usually referred to as the

Feichtinger algebra, is invariant under the GFT:

F pS0pGqq “ S0p pGq.

In case G “ Rn – xRn “ pG the functions ws : x ÞÑ p1`|x|2qs{2 “ pws : ξ ÞÑ p1`|ξ|2qs{2,

with s P R, are a particularly common choice for admissible weights and moderate

functions, respectively. In this case it turns out that we can replace ΛKw pGq and Aw,0p pGq,

respectively, by the Schwartz space S pRnq – S pxRnq.
If one chooses to use exponential weights, one leaves the realm of tempered distribu-

tions and has to use ultra-distributions instead (cf. [], e.g.).

Also, in the Euclidean case the focus mostly lies on spaces of the formMpLps1 , L
q
s2qpRnq,

where Lrs stands for Lrws or Lr
pws

, respectively. Thus for classical modulation spaces on

G “ Rn one usually gives the following slightly altered definition:

Definition 2.11. Let 1 ď p, q ď 8, s P R and let ϕ be an arbitrary, but fixed non-zero

member of S pRnq. Then we define the modulation space

Mp,q
s pRnq :“ tf P S

1

pRnq | f ˚Mξ P L
ppRnq for all ξ P xRn,

ξ ÞÑ }f ˚Mξ}LppRnq P L
q
sp
xRnqu

and its corresponding norm is defined in analogy to (2.5) and (2.6).

For these spaces the following theorem lists some of the most important properties.
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Theorem 2.12. (i) For any 1 ď q ď 8 the spaces Mp,q
s pRnq does not depend on the

particular choice of window and coincides with MpLp, LqsqpRnq. Moreover, all the

norms defining either space are equivalent.

(ii) For 1 ď q ă 8 and s P R the Schwartz space S pRnq is dense in Mp,q
s pRnq and we

have the continuous embeddings

S pRnq ãÑMp,q
s pRnq ãÑ S

1

pRnq.

The dual space of Mp,q
s pRnq is given by Mp1,q1

´s pRnq.

(iii) The spaces M2,2
s pRnq coincide with the Sobolev spaces HspRnq.

(iv) The identification Rn – xRn yields invariance under the Fourier transform of the

Feichtinger algebra S0pRnq “M1,1
0 pRnq, i.e., F pS0pRnqq “ S0pRnq.

In the following we will prove two important properties explicitly for the Euclidean

case: first we will prove the recurring statement that modulation spaces are independent

of the particular choice of BUPU. To this end, we will construct one model BUPU that

can henceforth be used as a convenient toy example and show equivalence with any other

arbitrary, but fixed abstract BUPU.

Our second proof concerns the very useful embedding property in Theorem 2.10 pviq.

For the sake of simplicity and clarity we will give both proofs for the unweighted case

Mp,qpRnq “Mp,q
1 pRnq.

Before we start, let us briefly define a class of band-limited Lp-spaces. The construction

of our model BUPU essentially involves choosing a nice compactly supported function

ρ : xRn ÞÑ C and translating it across xRn, followed by normalization.

Thus let ρ P S pxRnq, taking values in r0, 1s, with ρpξq “ 1 for 0 ď |ξ| ď
a

n{2 and

ρpξq “ 0 for |ξ| ě
?

2n. For such ρ we set ρk :“ Tkρ “ ρp´kq for k P Zn. This almost

yields the desired partition except for normalization: for k P Zn let

σk :“ ρk

˜

ÿ

kPZn
ρk

¸´1

. (2.9)

Normalization is perfectly possible since by construction each supppρkq intersects only

finitely many other supppρlq, l P Zn, and the number of intersections is globally constant.

Denoting by pQk the closed unit cube with centre k P Zn, we observe that the following

properties hold for all k P Zn:

(i)
ř

kPZn σk “ 1.

40



2 Modulation Spaces Revisited - A Review and Incentive

(ii) F´1σk P L1
ΩpRnq and there exist CΣ,0 ă 8 such that }σk}ApRnq “

›

›F´1σk
›

›

L1pRnq ď CΣ,0 ă 8 for all k P Zn.

(iii) supppσkq Ď Bpk,
?

2nq for all k P Zn.

(iv) supkPZ 7tl P Zn | supppσkq X supppσlq ‰ H “: CΣ,1 ă 8.

Thus, by Definition 2.5 the family Σ :“ pσkqkPZn is a BUPU. For the sake of a brief

notation let us define for a given BUPU Ψ “ pψkqkPZn with ϕk “ F´1ψk the frequency

localization operator

lΨ
k : S

1

pRnq Ñ S
1

pRnq,

f ÞÑ F´1pψk ¨Ffq “ f ˚ ϕk.

For a given tempered distribution f , its uniform frequency decomposition with respect

to Ψ is thus given by tlΨ
k fukPZn . (This notation is inspired by [2, 63].)

Proposition 2.13. Any BUPU’s Ψ “ tψlulPZn in ApRnq a is equivalent to the BUPU

Σ :“ pσkqkPZn with σk defined as in (2.9) in the sense that they define equivalent norms

on Mp,qpRnq for all 1 ď p, q ď 8. In particular, this implies that all BUPU’s are

equivalent and define the same modulation spaces.

Proof. Given a BUPU Ψ “ tψlulPZn let us denote by

∆pΣ,Ψ, kq :“ tl P Zn | supppσkq X supppψk`lq ‰ Hu.

Due to Condition piiq in Definition 2.5 (applied applied to both Ψ and Σ) the cardinality

of ∆pΣ,Ψ, kq is globally bounded and of finite order. Thus, let us set supk |∆pΣ,Ψ, kq| “:

CΣ,Ψ. We note that
ř

lP∆pΣ,Ψ,kq ψk`lpξq “ 1 for all ξ P supppσkq. Applying Young’s

inequality and Condition piiq again, this implies that

›

›lΣ
k f

›

›

LppRnq ď
ÿ

lP∆pΣ,Ψ,kq

›

›F´1σk ψk`lFf
›

›

LppRnq “
ÿ

lP∆pΣ,Ψ,kq

›

›lΣ
k lΨ

k`lf
›

›

LppRnq

ď
ÿ

lP∆pΣ,Ψ,kq

}σk}ApRnq
›

›lΨ
k`lf

›

›

LppRnq ď CΣ,0

ÿ

lP∆pΣ,Ψ,kq

›

›lΨ
k`lf

›

›

LppRnq .

(2.10)

Hence, summing up and estimating the maximal number of k+l-summands for each
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k-term by CΣ,Ψ, we obtain

ÿ

kPZn

›

›lΣ
k f

›

›

LppRnq ď CΣ,Ψ ¨ CΣ ¨ C ¨
ÿ

kPZn

›

›lΨ
l f

›

›

LppRnq
q
,

where C is the constant from the p-norm equivalence on Rn. Our arguments’ symmetry

in Σ and Ψ finally yields the result.

The embeddings

M1,1pRnq Ď . . . ĎMp1,q1pRnq ĎMp2,q2pRnq Ď . . . ĎM8,8pRnq.

for 1 ď p1 ď p2 ď 8 and 1 ď q1 ď q2 ď 8 is based upon two facts: The q1 - q2-embedding

is due to the analogous inclusion relation for the spaces lq1 and lq2 , 1 ď q1 ď q2 ď 8.

The p1 - p2-embedding follows from the fact that

L1
ΩpRnq Ď . . . Ď Lp1Ω pR

nq Ď Lp2Ω pR
nq Ď . . . Ď L8Ω pRnq,

where for a compact set Ω Ť xRn we define

LpΩpR
nq :“ tf P S

1

pRnq | suppp pfq Ď Ω, }f}LppRnq ă 8u.

Let furthermore SΩpRnq :“ tf P S pRnq | suppp pfq Ď Ωu.

Proposition 2.14. For all 1 ď p ď q ď 8 there exists a positive constant Cp,q such

that LpΩpR
nq Ď LqΩpR

nq with }f}LqpRnq ď Cp,q }f}LppRnq.

Proof. Let f P LpΩpR
nq and R ą 0 such that Ω Ď Bpξ0, Rq for some ξ0 P xRn. Let

furthermore ψ P SBpξ0,2Rq
pRnq. We then have

f “ F´1
S 1
pRnqp

pψ ¨ pfq “ f ˚ ψ

in the distributional sense, which coincides with standard convolution for f P LppRnq.
By Young’s inequality for r “ 8, we furthermore have

}f}L8pRnq ď }ψ}Lp1 pRnq ¨ }f}LppRnq :“ Cp,8 }f}LppRnq . (2.11)

Hence, we have proved the statement for q “ 8. Now, let 1 ď p ď q ă 8. Supposing,
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without loss of generality, that f P L8Ω pRnq, it follows that

}f}LqpRnq “

ˆ
ż

Rn
|fpxq|p ¨ |fpxq|q´p dx

˙1{q

ď ess sup
xPRn

|fpxq|1´p{q ¨

ˆ
ż

Rn
|fpxq|p dx

˙1{q

“ }f}
1´p{q
L8pRnq ¨ }f}

p{q
LppRnq ď C

1´p{q
p,8 }f}

1´p{q
LppRnq ¨ }f}

p{q
LppRnq :“ Cp,q }f}LppRnq .

Here we have used (2.11) for the second inequality. This completes the proof.

We conclude this subsubsection with an application of modulation spaces techniques

to a problem from PDE theory; the following argument is due to [2]: by replacing

LppRnq-spaces by the modulation spaces Mp,qpRnq, one significantly improves certain a

priori estimates for the Schrödinger semi-group t ÞÑ Sptq :“ eit∆ on Rn ˆ r0,8q. The

basic Lp-Lp
1

-estimates

}Sptqf}LppRnq À |t|
´np1{2´1{pq

}f}Lp1 pRnq , (2.12)

with 2 ď p ď 8, are important to solve Cauchy problems for the non-linear Scrhödinger

equation. In order to control the singularity in t “ 0 on the right-hand side of (2.12),

one generally has to impose the restrictive condition np1{p1 ´ 1{pq ď 1. Yet, one can

readily remove the singularity if one combines Estimate 2.12 with the following one:

let Σ :“ pσkqkPZn and tlΣ
k ukPZn be defined as above. Reasoning along the lines of

Estimate (2.10), we obtain

›

›lΣ
k Sptqf

›

›

LppRnq ď
ÿ

lP∆pΣ,Σ,kq

›

›

›
F´1 σkσk`le

´i|ξ|2t Ff
›

›

›

LppRnq

ď C1

ÿ

lP∆pΣ,Σ,kq

›

›

›
σke

´i|ξ|2tσk`l Ff
›

›

›

Lp1 pxRnq

ď C1

ÿ

lP∆pΣ,Σ,kq

›

›

›
e´i|ξ|

2tσk`l

›

›

›

L8pxRnq
}σk Ff}

Lp1 pxRnq

ď C1CΣ,Σ ¨ 1 ¨ }σk Ff}
Lp2 pxRnq ď C2C1CΣ,Σ

›

›lΣ
k f

›

›

LppRnq ,

that is,

›

›lΣ
k Sptqf

›

›

LppRnq À
›

›lΣ
k f

›

›

LppRnq , and thus }Sptqf}Mp,qpRnq À }f}Mp,qpRnq , (2.13)

for all 1 ď q ď 8. Here we have used the Hausdorff-Young inequality in the second and

the last estimate and the fact that }g}Lp1 pRnq ď }g}Lq1 pRnq for all 1 ď p ď q ď 8 and all
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compactly supported functions g on Rn. Combining the estimates (2.12) and 2.13 gives

}Sptqf}Mp,qpRnq À p1` |t|q
´np1{2´1{pq }f}Mp1,qpRnq .

2.1.2 The Short Time Fourier Transform and Modulation Spaces as Coorbit

Spaces

A quite different perspective at modulation spaces is offered by the observation that the

convolution operators (respectively Fourier multipliers) from (2.5) can be rewritten the

following way for G “ Rn: if we denote rϕpxq :“ ϕp´xq, we observe

pf ˚Mξϕqpxq “

ż

Rn
fpyqe2πipx´yqξϕpx´ yq dy (2.14)

“ e2πixξ

ż

Rn
fpyqe2πiyξ

rϕpy ´ xq dy

“ e2πixξ xf,Mξ Tx rϕyL2pRnq (2.15)

“: e2πixξ V
rϕfpx, ξq (2.16)

for all f in S pRnq, say. Since the modulation e2πixξ is not noticed in } }B and rϕ is also

a member of S pRnq we can rewrite Definition 2.11 in terms of the Lp-Lq-integrability of

the coefficients V
rϕfpx, ξq.

Definition 2.15. Let ϕ be a function in the Schwartz space S pRnq. We define the

short-time Fourier transform (STFT) with respect to the window ϕ by

Vϕ : S
1

pRnq Ñ S pR2nq,

f ÞÑ
´

px, ξq ÞÑ e´2πixξ pf ˚Mξ rϕqpxq
¯

“ xf,Mξ TxϕyS 1
pRnq, (2.17)

where x , yS 1
pRnq denotes the conjugate linear S

1

pRnq-S pRnq duality.

The classical modulation spaces Mp,q
s pRnq can thus equivalently be defined in terms

of the STFT and its mixed Lp,q-integrability over Rn ˆ xRn – R2n.

Definition 2.16. Let 1 ď p, q ď 8, s P R, and let ϕ be an arbitrary, but fixed non-zero

member of S pRnq. Then we define the modulation space Mp,q
s pRnq to be the space of all

distributions f in S
1

pRnq such that

}f}Mp,q
s pRnq :“

˜

ż

xRn

ˆ
ż

Rn
|Vϕfpx, ξq|

p dx

˙q{p

vspξq
q dξ

¸1{q

ă 8 (2.18)
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for 1 ď p, q ă 8, with the standard modifications otherwise.

The operators involved in Identity (2.17) are so-called time-frequency shifts since they

combine translations in both the ”time-variable” x and the ”frequency-variable” ξ. It

is therefore not by chance that the application of modulation space techniques to signal

processing, etc. is considered to be an integral part of the field called ”time-frequency

analysis”.

An important yet quite immediate observation is that the STFT involves the action of

the Schrödinger representation of Hn: for λ “ 1 and pp, q, tq “ p´x, ξ, 0q Identity (1.19)

gives

pρp´x, ξ, 0qϕqpyq “ e´πixξ`2πiξy ϕpx´ yq “ e´πixξ pMξTxϕqpyq,

and thus

Vϕfpx, ξq “ e´πixξxf, ρp´x, ξ, 0qϕyS 1
pRnq

for all tempered distributions f . The STFT can hence be viewed as the matrix coef-

ficients of ρ with respect to f and ϕ, and Condition (2.18) is a statement about the

mixed Lp - Lq-integrability of these coefficients over R2n, and, due to compactness of T,

essentially over the reduced Heisenberg group Hn,red. More precisely, we know that any

integrable function F : Hn,red – RnˆRnˆTÑ C can be expanded into a Fourier series

in the central variable t P T:

F pp, q, tq “
ÿ

kPZ

pFkpp, qq e
2πikt.

But integrating over T, only pF´1, the Fourier coefficient of order ´1, remains; so F can

be identified with a function of pp, qq P R2n.

In the same spirit we can identify Lp,qpHn,redq with Lp,qpR2nq, and the STFT ought to

be viewed as an operation that transforms a given distribution into matrix coefficients of

a group representation, ρ that is, which in turns acts on some test function space dense

in L2pRnq, and via duality on its dual space, i.e., some distribution space.

One can therefore recast Defintions 2.15 and 2.16 in the following way with a slightly

more general class of moderate functions m.

Definition 2.17. Let ρ “ ρ1 be the Schrödinger representation of the reduced Heisenberg

group Hn,red acting L2pRnq, and let ϕ be an arbitrary, but fixed non-zero member of
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S pRnq. We define the so-called ambiguity function with respect to the window ϕ by

Aϕ : S pRnq Ñ S pHn,redq,

f ÞÑ
´

pp, q, tq ÞÑ xf, ρpp, q, tqϕyS 1
pRnq

¯

. (2.19)

For an admissible weight w on Hn,red, a w-moderate function m and 1 ď p, q ď 8 we

define the modulation spaces

Mp,q
m pRnq :“ tf P S

1

pRnq | ||V 1ϕf | Lp,qm pHn,redq|| ă 8u

Remark 2.18. For mpx, ξq “ vpsq we recover the classical spaces from Defintion 2.16.

The name

According to [19], another family of function spaces described in terms of a coefficient

transform, the Besov-Lizorkin-Triebel spaces Bp,q
s pRnq, seems to have been an additional

inspiration for Feichtinger and Gröchenig’s novel generalized framework [21, 22].

In the latter case another equivalent description for the spaces Bp,q
s pRnq was found,

involving Lp,q-integrability of the coefficient transform

Wϕfpa, bq :“ a´n{2
ż

Rn
fpxqϕpa´1px´ bqq dx, (2.20)

defined for complex-valued functions f and ϕ on Rn, a P R` and b P Rn. This transform

is usually referred to as the (continuous) wavelet transform (WT) on Rn. (Cf. [40],

Chapter 10, e.g.)

As in the case of the ambiguity function Aϕ in Definition 2.17, Identity (2.20) actually

involves a representation of a locally compact group, the so-called ax` b-group or affine

group. It is given as the semi-direct product

An :“ R` ˙ Rn, pa, bq ¨ pa1, b1q :“ paa1, ab1 ` bq

with left Haar measure db a´pn`1qda. Its unitary dual xAn splits up into two classes: the

one-dimensional representations πλpa, bq “ aiλ and an infinite-dimensional representa-

tion

π : An Ñ UpL2pRnqq,

pπpa, bqfqpxq :“
1
?
an
fpa´1px´ bqq “ pDaTbfqpxq. (2.21)
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This representation obviously acts via a combination of translation by b and dilation by

a.

It is therefore not surprising that π is the representation associated to the natural

action of An on Rn (in the sense that x ÞÑ a´1px ´ bq is just the inverse function of

x ÞÑ ax ` b). We conclude that the continuous wavelet transform (2.20) is another

instance of coefficient transform arising from a group representation.

Supposing we have made the right choice of test function space, namely S0pRnq,
the space of Schwartz functions with all moments vanishing, we can characterize the

Besov-Lizorkin-Triebel space Bp,q
s pRnq as follows:

Theorem 2.19. Let S0pRnq be the space of Schwartz functions with all moments vanish-

ing and let S 1
0pRnq be its dual, the space of tempered distributions modulo polynomials.

Furthermore, let ϕ be an arbitrary, but fixed non-zero member of S0pRnq. For any

1 ď p, q ď 8 the Besov-Lizorkin-Triebel space Bp,q
s pRnq coincides with the space

tf P S 1
0pRnq | pa, bq ÞÑ xf, πpa, bqϕyS 1

0pRnq
“Wϕf P L

p,q
s`n{2´n{qpA

nqu,

where the Lp,qs pAnq-norm is defined by

}F }Lp,qs pAnq :“

˜

ż

R`

ˆ
ż

Rn
|fpa, bq|p db

˙q{p

a´qs{2
da

a

¸1{q

.

According to Feichtinger’s own accounts (cf. [18, 19], e.g.), it seems that the similar-

ities in the descriptions of Besov-Lizorkin-Triebel spaces and modulation spaces on Rn

insinuated that there might be a more general theory in the background. Iindeed, a few

years later an abstract unifying approach was presented in Feichtinger and Gröchenig’s

seminal paper [20].

Not only did it describe so-called coorbit spaces (including Besov and Besov-Lizorkin-

Triebel spaces, modulation spaces, certain Bergmann spaces, etc.) in terms of generalized

”wavelet transforms”, it but also provided generalized atomic decompositions. More

precisely, this implies that for such a space of functions or distributions each of its

members could be represented as a sum of ”simple functions”, called atoms. Atomic

decompositions in turn would facilitate the study of properties like duality, interpolation,

embeddings, operator theory on these spaces, etc.

Thus let us briefly introduce the most important notions and results of coorbit theory.

We refer the interested reader to [20, 21, 22, 39, 23] for the original work by Feichtinger

and Gröchenig and to [52, 58, 53, 54, 56, 57, 55, 9, 8, 31, 47] for recent generalizations

and extensions of the coorbit framework.
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An essential prerequisite for the theory of coorbit spaces is integrability (or the

somewhat weaker square-integrability) of the involved unirreps π. In their early pa-

pers [20, 21, 22] Feichtinger and Gröchenig still highlight the use of integrable unirreps

but eventually relax the condition to square-integrability in [39, 23] since they have to

impose a further, independent integrability condition on the analyzing vectors (windows).

Some more recent accounts on coorbit theory (cf. [8, 9], e.g.) completely drop square-

integrable unirreps in favor of (possibly reducible) cyclic representations on Fréchet

spaces S that satisfy a reproducing kernel identity and some continuity conditions. In

the cases of Hn and the ax ` b-group An, e.g., the corresponding Fréchet spaces can

be identified with the spaces of admissible windows, the Schwartz space S pRnq and its

proper Fréchet subspace S 1
0pRnq, respectively, and one can reinterpret this approach in

the context of so-called Gelfand triples. In [31] H. Führ and A. Mayeli make use of this

approach in order to characterize Besov spaces on stratified Lie groups such as, e.g., the

Heisenberg group.

Yet other approaches completely circumvent the use of representation theory and for-

mulate a generalized coorbit theory in terms of continuous Banach frames [52, 58, 53, 54,

56, 57, 55]. The importance of Banach frames is also emphasized in Gröchenig’s mono-

graph [40] on time-frequency analysis in Euclidean space, where an equivalent description

of modulation spaces is given in terms of discrete frames.

In this subsection we will focus on Feichtinger and Gröchenig’s approach and recall

some important definitions and results for the case of square-integrable unirreps.

Definition 2.20. Let G be a locally compact group with left Haar measure dx and let π

be a unitary representation of G on the Hilbert space Hπ. We say π is square-integrable

if there exists a non-zero u P Hπ such that

ż

G

ˇ

ˇxu, πpxquyHπ

ˇ

ˇ

2
dx ă 8,

respectively. We call such vectors u square-integrable.

It turns out that for a square-integrable unirrep π there exists a positive, self-adjoint

(thus densely defined) operator A on Hπ such that the orthogonality relation

ż

G
xv1, πpxqu1yHπ

xv2, πpxqu2yHπ
dx “ xAu2, Au1yHπ

xv1, v2yHπ
(2.22)

holds for all v1, v2 in Hπ and all u1, u2 in DpAq. In the spirit of the identities (2.19) and

(2.20) one defines the corresponding coefficient transform (CT) (also voice transform
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(VT), generalized wavelet transform (GWT) or simply wavelet transform (WT)) by

Vu : Hπ Ñ L2pG q,

x ÞÑ
`

v ÞÑ xv, πpxquyHπ

˘

. (2.23)

We observe that Identity (2.22) now implies

Vu1v1 ˚ Vu2v2 “ xAu1, Av2yHπ
Vu2v1,

for all v1, u2 in Hπ and all u1, v2, with the group convolution on G defined as in Iden-

tity (1.6). Thus, for u :“ u1 “ u2 “ v2 with }Au}Hπ
“ 1, we obtain the reproducing

identity

Vuv ˚ Vuu “ Vuv

for all v in Hπ. We can furthermore rewrite the orthogonality relation as

xVu1v1, Vu2v2yL2pG q “ xAu2, Au1yHπ
xv1, v2yHπ

.

Moreover, we notice that the CT Vu intertwines the representation π and the left regular

representation L of G . More precisely, Vu : Hπ Ñ L2pG q : v ÞÑ Vuv is isometric and

satisfies

Vupπpxqvq “ LpxqpVuvqq “ TxVuv

for all v in Hπ and all x in G.

The definition of coorbit spaces we will give is the original one, which presumes the

existence of a aquare-integrable u in Hπ.

To begin with, let us assume that Y is a translation-invariant Banach function space

over G (Definitions 2.2 and 2.7 carry over to the not necessarily Abelian case without

any changes). For the weight

wpxq :“ maxt}Tx} , }Tx´1} ,
›

›TRx
›

› ,
›

›TRx´1

›

› ¨∆px´1qu ă 8

we define the set of analyzing vectors

Aw :“ tu P Hπ | Vuu P L
1
wpG qu.
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Assuming that Aw is not empty, irreducibility of π implies that it is a dense linear

subspace of Hπ. Given an arbitrary, but fixed non-zero member u of Aw we furthermore

define the test function space

H 1
w :“ tv P Hπ | Vuv P L

1
wpG qu,

which we equip it with the norm }v}H 1
w

:“ }Vuv}L1pG qw. The space pH 1
w , } }H 1

w
q is a

π-invariant Banach space, dense in pHπ, } }Hπ
q, on which π|H 1

w
is strongly continuous.

Moreover, it turns out that H 1
w does not depend on the particular choice of u in Aw and

that for each such vector the set tπpxqu | x P G u is total in pH 1
w , } }H 1

w
q. (Note that for

an isometrically translation-invariant BF-space Y , i.e., if w “ 1, H 1
w is just the set of

integrable vectors.)

If pH 1
w q
1 denotes the conjugate dual space of H 1

w , called the reservoir, we finally define

the coorbit space

CouFGpY q :“ tφ P pH 1
w q
1 | Vuφ P Y u.

Not surprisingly, it turns out that for modulation spaces and Besov spaces as de-

fined/characterized in Definition 2.17 and Theorem 2.19, respectively, we have

Mp,q
m pRnq “ CoϕFGpL

p,q
m pHn,redqq and Bp,q

s pRnq “ CoϕFGpL
p,q
s`n{2´n{qpA

nqq .

This is due to the following observation: The windows ϕ in S pRnq and S0pRnq, re-

spectively, are analyzing vectors in the sense of their membership in Aw. Now this

implies

S pRnq Ď Aw Ď H 1
w ĎMp,q

m pRnq Ď pH 1
w q
1 Ď S

1

pRnq

and

S0pRnq Ď Aw Ď H 1
w Ď Bp,q

s pRnq Ď pH 1
w q
1 Ď S 1

0pRnq,

but as we will see in what follows pH 1
w q
1 is the biggest of all modulation spaces. Thus,

the spaces S pRnq and S0pRnq on the one hand and H 1
w on the other define the same

coorbit spaces. Knowing this, it follows immediately that in the case of modulation

spaces we have H 1
w “M1,1

w pRnq.
Let us extend the notation π to both its restriction to H 1

w and its extension to pH 1
w q
1

by conjugate-linear duality. The following theorem now gives a list of important prop-

50



2 Modulation Spaces Revisited - A Review and Incentive

erties of CouFGpY q and Vu.

Theorem 2.21. Let Y be a translation-invariant BF-space over G and let u be an

arbitrary, but fixed non-zero element of Aw. We then have

(i) The space CouFGpY q is a π-invariant Banach space which is continuously embedded

into pH 1
w q
1.

(ii) The definition of CouFGpY q is independent of the particular choice of analyzing

vector, i.e., different vectors define equivalent norms and thus the same space.

(iii) The definition is furthermore independent of the reservoir pH 1
w q
1 in the sense that

if w1 is another weight with wpxq ď Cw1pxq for some positive constant C and all

x in G with Aw1 ‰ t0u, then CouFGpY q “ Cou
1

FGpY q.

(iv) The coefficient transform Vu : CouFGpY q Ñ Y intertwines π and the left regular

representation, i.e., left translation.

(v) If left translation is continuous on Y , then π acts continuously on CouFGpY q.

(vi) The map Vu : CouFGpY q Ñ Y restricts to an isometric isomorphism from CouFGpY q

onto the closed subspace Yu :“ Y ˚Vuu of Y , whereas the map F ÞÑ F ˚Vuu defines

a bounded projection from Y onto Yu.

(vii) The inverse operator to the isomorphism Vu : CouFGpY q Ñ Yu is given by its adjoint

V ˚u : F ÞÑ
ş

G F pxqπ
˚pxqu dx.

(viii) Every function F in Yu is continuous, it belongs to L81{wpG q and the evaluation

map F ÞÑ F pxq coincides with the map

F ÞÑ xF, TxVuuyL1
wpG q,L

8
1{w
pG q.

(ix) CouFGpL
8
1{wpG qq “ pH

1
w q
1.

(x) CouFGpL
2pG qq “ Hπ.

We notice that for a homogenous space like Lp,qpHn,redq, e.g., the weight w is simply 1.

Also note that although we have S pRnq ĎH 1
w in the case of the Heisenberg group Hn,

we never explicitly make us of it and rather work with a smaller space of test functions

and a bigger reservoir. The same holds true for the ax` b-group. That is, although the

representations involved in each case are square-integrable they seem to have inspired

the more general definition in [8, 9].
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Finally, we would like to discuss the above-mentioned atomic decomposition of the

spaces CouFGpY q. The coorbit approach makes use of BUPU’s and related decompositions

on the space Y , which in the case of CouFGpY q “Mp,q
m pRnq means discretization not only

takes place on the frequency space pG “ Rn as described in Subsection 2.1.1 but on the

whole group G “ Hn,red which acts on Hπ “ L2pRnq. (Because Hn,red – R2n ˆ T, in

practice this means on R2n.) To be more precise, the discretization will be applied to

the projector F ÞÑ F ˚ Vuu : Y Ñ Yu. In the case of the (reduced) Heisenberg group

this will yield discretized time-frequency shifts and hence an equivalent description of

Mp,q
m pRnq as an `p,qm -space on a suitable lattice. (The latter will often be Zn in view of

Hn,red – R2n ˆ T and Lemma 2.24 piiiq below.)

Note that even in the more general case of modulation spaces Mp,q
v pGq on Abelian

groups G the coorbit approach is possible and yields a description equivalent to Fe-

ichtinger’s original one for B “ Lps1 . At the end of this subsection we will briefly sketch

the reasoning.

Remark 2.22 (On BUPU’s). In the following we will make use of BUPU’s Ψ of size W

and well-spread sets X on G . To this end, note that Definition 2.5 carries over almost

literally literally to the setting of an arbitrary locally compact group G with the only

difference that our multiplicative algebra pC0pG q, } }8q is not necessarily the Fourier

algebra of a pre-dual group K . Let us furthermore denote by χW the characteristic

function of a set measurable set W .

Let us furhermore point out that for any locally compact group G it is possible to

construct arbitrarily fine BUPU’s, i.e., BUPU’s of size W for any given W . (Cf. [16],

e.g.)

Definition 2.23. Given a discrete family X “ pxjqjPJ in G , a non-empty relatively

compact set W Ď G and a translation-invariant Banach function space pY, } }Y q we

define the associate discrete BK-space

YdpXq :“ tΛ | Λ “ pλjqjPJ ,
ÿ

jPJ

λjχxjW P Y u,

equipped with the natural norm }Λ}Yd :“
›

›

›

ř

jPJ λjχxjW

›

›

›

Y
.

It turns out that for a well-spread family X (cf. Definition 2.5) YdpXq is independent

of the particular choice of W in the sense that different sets W yield equivalent norms

on YdpXq. The following lemma collects some basic properties of BK-spaces.
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Lemma 2.24. Given two discrete families X “ pxjqjPJ and X 1 “ px1j1qj1PJ 1 in G , a

non-empty relatively compact set W Ď G and two translation-invariant Banach function

spaces pY, } }Y q and pZ, } }Zq, the following statements hold true:

(i) If the functions of compact support are dense in Y then the set finite sequences

forms a dense subspace in Yd.

(ii) For wpxq :“ }Tx} and wpiq :“ wpxjq we have `1w Ď Yd Ď `81{w.

(iii) If both X and X 1 are well-spread we have YdpXq Ď ZdpXq if and only if YdpX
1q Ď

ZdpX
1q, which allows us to simply write Yd from now on.

(iv) If for well-spread X and X 1 over the same index set J there exists a compact

set Q Ť G such that x´1
j x1j P Q for all j P J , then YdpXq “ YdpX

1q and the

corresponding norms are equivalent.

(v) Given a weighted Lebesgue space LpmpG q, the associated BK-space over X is given

by `pm with mpjq :“ mpxjq for j P J . The same is true for general rearrangement-

invariant Banach function spaces over G .

(v) For a well-spread family X and any finite partition Jr0r“1 of the index set J the

projections

Pr : Yd Ñ Yd,

Λ ÞÑ Λr :“ pλjqjPJr

define an partition of unity on Yd and
řr0
r“1

›

›

›

ř

jPJr
λjχxjW

›

›

›

Y
defines an equivalent

norm on Yd.

As a matter of fact we could have introduced BK-spaces already in Subsection 2.1.1

in order to define Wiener Amalgam spaces W pB, Y q and their discrete counterparts

W pB, Ydq, as Feichtinger introduced them this in [15]. Yet there were two reasons not

to do so: Historically, Feichtinger introduced the classical modulation spaces in [18] only

with Y “ Lqvp pGq. The second and probably more important reason is conceptual lucidity.

For the sake of completeness we include the following statement.

Proposition 2.25. For two left-invariant Banach function spaces B and Y over G

we have f P W pB, Y q if and only if p}ψjf}BqjPJ P Yd for some BUPU Ψ and
›

›p}ψjf}BqjPJ
›

›

Yd
defines an equivalent norm.

Moreover, we have W pB, Y1q Ď W pB, Y2q if and only if Y1d Ď Y2d holds for the

corresponding sequence spaces.
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In order to discretize the convolutive projector

T : Y Ñ Y,

F ÞÑ F ˚ Vuu “

ż

G
F pyqVuupy

´1 . q dy,

given as a Bochner integral in Y , we need to introduce a restricted class of analyzing

vectors, the so-called better vectors

Bw :“ tu P Hπ | Vuu PW
RpC0, L

1
wqpG qu.

The superscript R here indicates that the control function in Definition 2.4 is defined

in terms of the right translation TR instead of the left translation T . For an arbi-

trary function V in WRpC0, L
1
wqpG q and a given BUPU Ψ we define the approximating

operator

TΨ : Y Ñ Y ˚ V,

F ÞÑ
ÿ

jPJ

xF,ψjyL1
wpG q,L

8
1{w
pG qTxjV.

As we will refine the BUPU’s Ψ in size, i.e., W running a basis of neighborhoods of

e P G , the operators TΨ approximate T not only in the strong operator topology, as one

would expect in view of Bochner integration theory, but even in the norm topology:

Proposition 2.26. Let Y be a translation-invariant Banach function space over G and

let V P WRpC0, L
1
wqpG q. Then TΨ maps Y into Y ˚ V for all BUPU’s Ψ on G and

any net pTΨqΨ running through a system of W -BUPU’s is uniformly bounded by C ¨

}V }WRpC0,L1
wqpG q

, C being independent of V and tΨu, and converges to T in the operator

norm.

We can now state the following fundamental theorem about atomic decompositions.

Theorem 2.27. Let Y be a translation-invariant Banach function space over G . For

any u P Bw there exist positive constants C and C 1 and a neighborhood W of e P G such

that for any W -dense and relatively separated family X Ď G the following holds true:

(i) There exists a bounded linear operator

A : CouFGpY q Ñ YdpXq,

Apvq :“ Λpvq :“ pλjpvqqjPJ ,
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called analysis operator, satisfying }Λpvq}YdpXq ď C }v}CouFGpY q
, such that every

v P CouFGpY q can be represented as

v “
ÿ

jPJ

λjpvqπpxjqu.

(ii) Conversely, assuming that X Ď G is W -dense and relatively separated there exists

a bounded linear operator

S : YdpXq Ñ CouFGpY q,

SpΛq :“ vpΛq :“
ÿ

jPJ

λjpvqπpxjqu,

called synthesis operator that satisfies }vpΛq}CouFGpY q
ď C 1 }Λ}YdpXq.

In both cases we have convergence in the CouFGpY q-norm if the finite sequences are dense

in Yd, and in the w˚-sense of pH 1
w q
1, otherwise.

Sufficient conditions for Theorem 2.27 to hold, say, in the case of CouFGpY q “Mp,q
m pRnq

are usually expressed in terms of the analyzing window u “ ϕ belonging to certain

modulation spaces (in the spirit of u P Bw in Theorem 2.27) and explicit descriptions of

X as a lattice αZn ˆ βZn Ă Rn ˆ Rn.

Let us give the following example:

Theorem 2.28. Let 1 ď p, q ď 8, α, β ą 0, 0 ‰ ϕ PM1,1
v and let m be any v-moderate

weight function. Let us furthermore denote by x , y the conjugate-linear dual pairing

x , y
M1,1
v ,M8,8

1{v
and let us write m̃pk, lq :“ mpαl, βlq. Then the analysis operator

Aϕ : Mp,q
m pRnq Ñ `p,qm̃ ,

f ÞÑ
`

xf, TαkMβlϕy
˘

k,lPZn

and the synthesis operator

Sϕ : `p,qm ÑMp,q
m̃ pRnq,

c “ pck,lqk,lPZn ÞÑ
ÿ

k,lPZn
ck,lTαkMβlϕ (2.24)

are bounded, and

}Aϕ} ď Cpv, α, βq }Vϕϕ}L1,1
v pR2nq

and }Sϕ} ď C 1pv, α, βq }Vϕϕ}L1,1
v pR2nq

,
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the constants being positive and independent of p, q,m.

For p, q ă 8 the sum in Identity (2.24) converges unconditionally in the Mp,q
m pRnq-

norm, and in the w˚-topology of M8,8
1{v pR

nq otherwise.

A proof for Theorem 2.28 can be found in Gröchenig [40]. (Cf. Theorems 12.2.3 and

12.2.4)

The atomic description of modulation spaces has immediate consequences such as a

quick proof for the embeddings

M1,1
v pRnq Ď . . . ĎMp1,q1

m1
pRnq ĎMp2,q2

m2
pRnq Ď . . . ĎM8,8

1{v pR
nq

for 1 ď p1 ď p2 ď 8, 1 ď q1 ď q2 ď 8 and v-moderate m1 ď Cm2 due to the easily

checked statement

`1,1v pZ2nq Ď . . . Ď `p1,q1m1
pZ2nq Ď `p2,q2m2

pZ2nq Ď . . . Ď `8,81{v pZ
2nq.

2.1.3 Abstract Heisenberg Groups and Coorbit Spaces on Locally Compact

Abelian Groups

As we will see in the following, one can define a STFT, and thus modulation spaces,

for an arbitrary locally compact Abelian group G, making use of a Heisenberg group

construction for G. A calculation identical to (2.16) then implies that also in this more

general case Feichtinger’s original approach coincides with the coorbit approach.

Thus, given an arbitrary locally compact Abelian group G, we can define a locally

compact non-Abelian group arising from G that in the case of G “ Rn corresponds

to the reduced version of the so-called polarized Heisenberg group. (The latter is just

another realization of (CCR) in the sense that instead of using exponential coordinates,

i.e., canonical coordinates of the first kind, ones uses canonical coordinates of the second

kind. Cf. [28, p. 19].)

We will refer to this group as the Heisenberg group HpGq of G. More precisely, it is

given by the set Gˆ pGˆT equipped with the product topology and the following group

law:

px, ξ, zq ¨ px1, ξ1, z1q :“ pxx1, ξξ1, zz1ξ1pxqq.

By an argument analogous to the one in the Euclidean case, HpGq possesses a family

of irreducible unitary representations πj , j P N0, on L2pGq which exhaust all irreducible

unitary representations that are non-trivial on the centre (cf. the Section ”Postscripts”
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at the end of Chapter 1 in [28]). For f P L2pGq the representation πj is given by

pπjpx, ξ, zqfqpyq “ zj ξpyqj fpxyq.

Again we can define a STFT making use of π1: For ϕ P ΛKw pGq we define the STFT

by

Vϕfpx, ξq : Gˆ pG ÞÑ C,

Vϕfpx, ξq :“
@

f, π1px
´1, ξ, 1qϕ

D

L2pGq
“

ż

G
fpyqξpyqϕpx´1yq dy. (2.25)

And again we can perform exactly the same calculation as above in order to rewrite the

STFT as a convolution operator:

Vϕfpx, ξq “ ξpx´1q

ż

G
fpyq ξpxq ξpy´1q rϕpy´1xq dy “ ξpxq pf ˚ ξ rϕqpxq.

As in the Euclidean case we can disregard T whenever we integrate over HpGq and hence

identify Lp,qv pHpGqq with Lp,qv pGˆ pGq. Also note that the semi-normed space ΛKw pGq is

a dense subspace of the representation space Hπ “ L2pGq as well as a linear subspace

of the space of analyzing vector Aw :“ tu P Hπ | Vuu P L
1
wpG ˆ

pGqu, which we infer as

follows: For ϕ P ΛKw pGq the functions Mξϕ and ϕ ˚Mξϕ are also members of ΛKw pGq.

Moreover, the map

ξ ÞÑ

ż

G
|ϕ ˚Mξϕ| dx

is continuous and compactly supported since modulation acts continuously on ΛKw pGq

and ϕ ˚Mξϕ “ 0 whenever suppppϕqX supppTξ pϕq “ H, which is the case for all ξ outside

a compact neighborhood of e. We conclude that

ż

pG

ż

G
|Vϕϕ| dxwpξq dξ “

ż

pG

ż

G
|ϕ ˚Mξϕ| dxwpξq dξ ă 8,

that is, ϕ P Aw. As in the Euclidean case we have

ΛKw pGq Ď Aw Ď H 1
w ĎMp,q

m pRnq Ď pH 1
w q
1 Ď pΛKw q

1.
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It thus follows that for all 1 ď p, q ď 8

CoϕFGpL
p,q
v pGˆ

pGqq “ tf P pH 1
w q
1 | Vϕϕ P L

p,q
v pGˆ

pGqu

“ tf P pΛKw q
1 | Vϕϕ P L

p,q
v pGˆ

pGqu “MpLp, LqvqpGq,

that is, Feichtinger’s original modulation spaces MpLp, LqvqpGq coincide with the coorbit

spaces CoϕFGpL
p,q
v pHpGqqq.

2.2 Approaches to Modulation Spaces on the Heisenberg

Group

2.2.1 Motivation

The definition of modulation spaces on the Heiseberg group is motivated by various ap-

plications in the Euclidean case that we aim to study in a similar way for the Heisenberg

group. One particularly important aspect is the strong and fruitful relation between

modulation spaces and pseudodifferential operators.

The definition of pseudodifferential operators on Hn follows completely different paths

depending whether one is interested in a Kohn-Nirenberg-type or a Weyl-type quanti-

zation. Different approaches to the Kohn-Nirenberg quantization have been studied by

various authors, in particular Taylor [68], and Fischer and Ruzhansky [24, 26, 25].

In resemblance to the Euclidean calculus, the main idea is, roughly speaking, to ex-

press the symbol σK of an operator K as an operator-valued function px, πq ÞÑ σKpx, πq :

Hn ˆ pHn Ñ L8p pHnq. This obviously involves the GFT and could potentially relate to

an application of frequency localization techniques in the spirit of Feichtinger’s classi-

cal modulation spaces. A particularly interesting problem arises with the definition of

Schrödinger evolution groups on Hn defined in terms of the sub-Laplacian ∆Hn .

The pursuit of a Weyl quantization on the Heisenberg group leads to a completely

different underlying structure, one we could call ”the Heisenberg group of the Heisenberg

group.” (In fact, cf. [28, p. 90].) As we will indeed see in Chapter 4 one can employ the

STFT arising from this new group in order to investigate the role of modulation spaces

on Hn.

2.2.2 The Uniform Frequency Decomposition Approach

Note that throughout this subsection G stands for a locally compact Abelian group.

The approach to modulation spaces on the Heisenberg group Hn via uniform frequency
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decompositions is quite different from the Abelian case. If we simply tried to imitate the

action of a convolution operator like f ÞÑ f ˚Mξϕ in order to achieve frequency-shifts

and frequency-localization, we would very quickly realize that the natural substitute for

modulations Mξ on Abelian groups, namely multiplication by a Schrödinger representa-

tion ρλ, does not yield a translation on pHn. Indeed, what we get is the following: let,

for the sake of simplicity, f be in L1pHnq X L2pHnq and let ϕ be in S pHnq. Then for

λ ‰ 0 we compute

pf ˚ ρλϕqpgq “

ż

Hn

fphqρλph
´1gqϕph´1gq dh “

ż

Hn

fphqρλph
´1qrϕpg´1hq dh ¨ ρλpgq

“

ż

Hn

fphqρ˚λphqTg rϕphq dh ρλpgq “
{fTg rϕpλq ρλpgq.

Hence, we observe that the convolution with a ”modulated window” is already an S2-

valued function (since ρλ is unitary it does not alter the S2-norm) but not complex-

valued as f ˚Mξ, in which case one can still apply the GFT to get a translation on the

unitary dual in the sense of Identity (1.8).

Apart from the problem of dimensionality, we struggle with the lack of structure on

the unitary dual. The unitary dual pG of any Abelian group G also possesses an Abelian

group structure, given by the pointwise product of two characters. (In fact, it is even a

locally compact (Abelian) group. Cf. [30] Section 4.3, e.g.) Also, all the characters have

the same representation space, that is, H “ C. Although by the Stone-von Neumann

theorem any infinite-dimensional unirrep is unitarily equivalent to some ρλ, there is no

group structure on pHn, while there is one on every pG.

Nevertheless we can explicitly calculate the pointwise product of two Schrödinger

representations to see what it gives: let f P L2pRnq and let pp, q, tq P Hn. For λ1, λ2 P

Rzt0u we compute

pπλ2pp, q, tqπλ1pp, q, tqfqpxq “ e2πiλ2t`2πiqx`πiλ2p¨qe2πiλ1t`2πiqpx`λ2pq`πiλ2p¨qfpx` λ1pq

“ e2πipλ1`λ2qt`2πiqx`πipλ1`λ2qp¨qfpx` pλ1 ` λ2qpq ¨ e
2πiqx`2πiλ2q¨p

“ pπλ1`λ2pp, q, tqfqpxq ¨ e
2πiqx`2πiλ2q¨p.

A repetition of this argument shows that for λ1, λ2, . . . , λk P Rzt0u we have

pπλ1pp, q, tqπλ2pp, q, tq . . . πλkpp, q, tqfqpxq

“ eikq¨x`ikλ1q¨p`ipk´1qλ2q¨p`...`iλk´1q¨p pπλ1`...`λkfqpxq.
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We notice two things: neither is the pointwise product a group product nor is it

commutative. This is not surprising. An outcome like, say

πλ1 ¨ πλ2 “ πλ1`λ2`rpλ1,λ2q

with some error term rpλ1, λ2q P Rzt0u, would in fact imply commutativity of the prod-

uct since pHn is parameterized by Rzt0u and the indices would still have to satisfy a

group homorphism property. But by the Pontryagin duality theorem this would imply

commutativity of Hn, thus a contradiction.

We conclude that it does not make sense to aim at frequency shifts for functions

f : Hn Ñ C by convolving them with modulated windows. This is admittedly bad news

for the STFT in the sense of Identity (2.25).

It is worthwhile remarking at this point that it is generally difficult to get useful

operations on Hn defined by manipulations on pHn. It is also remarkable that Hn does

not seem to admit any concise and illustrative description of the image of S pHnq under

the GFT (cf. D. Geller [33]).

Our observations thus imply that the frequency decompositions are not performed by

a priori well-know operations on Hn; it rather seems one would have to perform the

decompositions directly on pHn. To be more precise, it is not sufficient to decompose

1
pHn but rather the ” pHn-unity” I

pHn :“ λ ÞÑ Iλ, where Iλ stands for the identity operator

on Hρλ – L2pRnq. A Fourier multiplier defined exclusively in terms of λ P Rzt0u would

yield a convolution operator whose distributional kernel behaves like a Dirac delta in

p “ q “ 0. The Fourier transform would essentially be performed in the central variable

t.

Yet, it is an interesting observation that, disregarding the operator’s singularity for a

moment, modulation space-like semi-norms defined by continuous and discrete spectral

shifts in λ P pHn are formally equivalent if one only accepts a priori-weighted `q-spaces

as the global component of discrete modulation spaces. The weight factors |j|n , j P Z,
in that case are due to the factor |λ|n in the Plancherel measure on pHn.

It is also still not completely clear how to perform a clever frequency decomposition of

I
pHn , but one might guess that joint spectral multipliers m of the sub-Laplacian ∆Hn and

the central derivative Dt might do the job. The latter spectrum, called the Heisenberg

fan, consists of the pairs
`

λ, |λ| p2 |k| ` nq
˘

with λ P Rzt0u and a multi-index k P Nn.

Joint work by F. Ricci et al [60, 61, 59] has shown that the convolution kernel of

mpL,Dtq is a Schwartz function if and only if m is the restriction to the Heisenberg

fan of some Schwartz function on R2. A discrete decomposition of I
pHn can then be
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performed be finding a useful BUPU-like decomposition of unity on R2.

It still remains an open question how much the modulation spaces defined this way

would differ from homogeneous Besov spaces on Hn since the latter can also be charac-

terized by a similar, namely dyadic, spectral decomposition. (Cf. [32, 31].)

2.2.3 The Coorbit Approach

A coorbit-type approach for modulation spaces on Hn is discussed in Chapter 4. Al-

though originally inspired by Feichtinger and Gröchenig’s paper [21], the present author

and his collaborators decided to start the description in terms of an adapted frame-

work due to Daniel and Ingrid Beltiţă [5, 6], only to resort to the original approach for

technical as well as conceptual reasons.

The representation theory involved is discussed very explicitly in Chapter 3. We should

point out that there is also a strong link between these modulation spaces and Weyl-

quantized operators Hn as this is already the case on Rn. We refer the interested reader

to Chapter 5, in particular Subsection 5.2.2.
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Representation Theory

In [13], A. S. Dynin was apparently first to consider the Lie algebra generated by (left- or

right-) invariant vector fields on the Heisenberg group Hn and multiplication by the 2n`1

coordinate functions (multiplied by 2πi). This Lie algebra of operators of L2pHnq is in

fact finite dimensional, moreover it turns out to be nilpotent of step 3. Viewing it as an

abstract nilpotent Lie algebra, the corresponding (connected simply connected) nilpotent

Lie group, denoted here by H2,n, acts naturally on L2pHnq. This Schrödinger-type

representation of H2,n on L2pHnq is the main ingredient in the subsequent Weyl-type

quantization on Hn developed by Dynin. As Dynin was motivated by this quantization,

his account on the group H2,n and its Schrödinger-type representation was not very

explicit.

G. B. Folland mentiones the paper [13] by Dynin in a miscellaneous remark in his

monograph [28, p.90], saying that the group H2,n might be called ”the Heisenberg group

of the Heisenberg group.” Almost twenty years later, in [29], Folland provides a more

rigorous account on such Heisenberg constructions and explores the structure of ”meta-

Heisenberg groups” of 2-step groups. There he also discusses how Dynin’s quantization

extends to an arbitrary meta-Heisenberg group and how it relates to other symbolic

calculi (namely the classical Weyl and Kohn-Nirenberg correspondences in the Euclidean

setting as well as the Beals-Greiner calculus on Heisenberg manifolds introduced in [3]).

Since Folland’s account is quite general, this chapter aims at giving some more explicit

formulas for H2,n and its unitary irreducible representations (unirreps). Paying tribute

to both its first introduction by Dynin and its more precise description by Folland, we

will call H2,n the Dynin-Folland group.

In Sections 3.1 and 3.2 we will construct the Lie algebra and group mentioned at the

beginning of this introduction. Section 3.3 introduces some useful notation which will

facilitate to express the group law and many formulas.

We will then give explicit formulas for the Schrödinger-type representations of H2,n

in Section 3.4. In Section 3.5 we cross-check our results and complete the set of unirreps
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(up to unitary equivalence) by classifying the co-adjoint orbits of H2,n and constructing

the corresponding representations.

We then briefly describe the semi-direct product structure of H2,n in Section 3.6, and

conclude the chapter with Section 3.7, where we discuss the Plancherel formula on the

group H2,n.

3.1 The Lie Algebra hn,2

In this subsection we study the Lie algebra generated by the left-invariant vector fields

Dpj ,Dqk ,Dt on Hn (cf. Subsection 1.3.2), j, k “ 1, . . . , n, and the multiplications by

coordinate functions:
Xpjf pp, q, tq “ pjfpp, q, tq,

Xqjf pp, q, tq “ qjfpp, q, tq,

Xtf pp, q, tq “ tfpp, q, tq,

,

/

.

/

-

(3.1)

where j “ 1, . . . n and f P S pHnq. To this end, we compute all possible commutators

between these operators, up to skew-symmetry. The symbol I will denote the identity

operator on L2pHnq. As in Section 1.3 we define the Lie bracket for two essentially self-

adjoint operators A,B acting on S pRnq is defined by 2πi times the standard commutator

rA,Bs :“ AB ´BA.

The commutator brackets between the Xpj , Xqj , and Xt, are zero since scalar multi-

plication operators commute:

rXpj ,Xqks “ rXpj ,Xts “ rXqk ,Xts “ 0.

The commutator brackets between the left invariant vector fields Dpj ,Dqk ,Dt, for

j, k P t1, . . . , nu, can be computed directly using their expressions given in (1.18):

p2πiq2 rDpj ,Dqks “ rBpj ´
1
2qjBt, Bqk `

1
2pkBts “ rBpj ,

1
2pkBts ` r´

1
2qjBt, Bqks

“ 1
2δj,kBt `

1
2δk,jBt “ δj,k Bt “ 2πiδj,k Dt,

p2πiq2 rDpj ,Dts “ rBpj ´
1
2qjBt, Bts “ 0,

p2πiq2 rDqj ,Dts “ rBqj `
1
2pjBt, Bts “ 0.

Naturally we obtain that these operators satisfy also the CCR since the space of

left-invariant vector fields on Hn form a Lie algebra of operators isomorphic to hn, see

Section 1.3.2. Let us compute the commutator brackets between the left-invariant vector

fields and the coordinate operators, first the commutators with Dpj :
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p2πiq rDpj ,Xpks “ rBpj ´
1
2qjBt, pks “ rBpj , pks “ δj,k I,

p2πiq rDpj ,Xqks “ rBpj ´
1
2qjBt, qks “ 0,

p2πiq rDpj ,Xts “ rBpj ´
1
2qjBt, ts “ r´1

2qjBt, ts “ ´1
2qj “ ´1

2Xqj ,

then with Dqj :

p2πiq rDqj ,Xpks “ rBqj `
1
2pjBt, pks “ 0,

p2πiq rDqj ,Xqks “ rBqj `
1
2pjBt, qks “ rBqj , qks “ δj,k I,

p2πiq rDqj ,Xts “ rBqj `
1
2pjBt, ts “ r12pjBt, ts “

1
2pj “ 1

2Xpj ,

and eventually with Dt:

p2πiq rDt,Xpks “ rBt, pks “ 0,

p2πiq rDt,Xqks “ rBt, qks “ 0,

p2πiq rDt,Xts “ rBt, ts “ I.

We have obtained that the linear space generated by the first order Lie brackets

between the operators Dpj ,Dqj ,Dt and Xpj , Xqk , Xt is

RDt ‘ RI‘ RXq1 ‘ . . .‘ RXqn ‘ RXp1 ‘ . . .‘ RXpn .

The whole lot of commutators tells us that very few second order commutators remain.

More precisely, the Lie brackets of Dt, Xpj or Xqk with any Dpj1 ,Dqj1 ,Dt and Xpj1 ,

Xqk1 , Xt can only vanish or be equal to I, and the operator I clearly commutes with

all operators, hence does not create any new structure. Therefore, the second order

commutator brackets are all proportional to I and all third order commutators must be

zero. We have obtained:

Lemma 3.1. The real Lie algebra of operators generated by the left-invariant vector

fields and the coordinate functions multiplied by i is

xDpj ,Dqj ,Dt,Xpj ,Xqk ,Xty “ RDp1 ‘ . . .‘ RDpn ‘ RDq1 ‘ . . .‘ RDqn ‘ RDt

‘RXp1 ‘ . . .‘ RXpn ‘ RXq1 ‘ . . .‘ RXqn ‘ RI.

In other words, the identity operator I is the only newly generated element. Furthermore

this Lie algebra is of topological dimension 2p2n` 1q ` 1 and 3-step nilpotent.

We now define the ”abstract” Lie algebra that will naturally be isomorphic to
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xDpj ,Dqj ,Dt,Xpj ,Xqk ,Xty. First we index the standard basis of R2p2n`1q`1 as

pXu1 , . . . , Xun , Xv1 , . . . , Xvn , Xw, Xx1 , . . . , Xxn , Xy1 , . . . , Xyn , Xz, Xsq.

Then we consider the linear isomorphism

dπ : R2p2n`1q`1 ÝÑ xDpj ,Dqj ,Dt,Xpj ,Xqk ,Xty (3.2)

defined via

dπpXuj q “ 2πiDpj , dπpXvj q “ 2πiDqj , dπpXwq “ 2πiDt,

dπpXxj q “ 2πiXpj , dπpXyj q “ 2πiXqj ,

dπpXzq “ 2πiXt, dπpXsq “ 2πi I.

Definition 3.2. We denote by hn,2 the real Lie algebra with underlying linear space

R2p2n`1q`1 and Lie bracket r¨, ¨shn,2 defined so that dπ is a Lie algebra morphism.

This means that the vectors in the standard basis of R2p2n`1q`1 satisfy the following

commutator relations
rXuj , Xvkshn,2 “ δj,kXw

rXuj , Xxkshn,2 “ δj,kXs

rXuj , Xzshn,2 “ ´1
2Xyj

rXvj , Xykshn,2 “ δj,kXs

rXvj , Xzshn,2 “ 1
2Xxj

rXw, Xzshn,2 “ Xs.

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

(3.3)

In (3.3), we have only listed the non-vanishing Lie brackets of h2,n, up to anti-symmetry.

Our choice of notation hn,2 for the Lie algebra reflects the fact that we just have

applied a further type of Heisenberg construction to hn. We will refer to hn,2 as the

Dynin-Folland Lie algebra in recognition of Dynin’s and Folland’s works [13, 14] and

[29], respectively.

The following properties are straightforward:

Proposition 3.3. (i) The Lie algebra hn,2 is nilpotent of step 3, with centre RXs.

(ii) The mapping dπ is a morphism from the Heisenberg Lie algebra hn,2 onto

xDpj ,Dqj ,Dt,Xpj ,Xqk ,Xty.

(iii) The subalgebra RDp1‘. . .‘RDqn‘RDt is isomorphic to the Heisenberg Lie algebra

hn, and so is the subalgebra RXu1‘. . .‘RXvn‘RXw. Furthermore, the restriction
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of dπ to the subalgebra RXu1 ‘ . . .‘RXvn ‘RXw coincides with the infinitesimal

right regular representation of Hn on L2pRnq.

(iv) The subalgebra RXp1 ‘ . . . ‘ RXqn ‘ RXt is abelian and so is the subalgebra

RXx1 ‘ . . .‘ RXyn ‘ RXs.

3.2 The Lie Group H2,n

Here we describe the connected simply connected 3-step nilpotent Lie group that we

obtain by exponentiating the Dynin-Folland Lie algebra hn,2. We denote this group by

H2,n.

As in the case of the Heisenberg group (cf. Subsection 1.3.1) we can again make use of

the Baker-Campbell-Hausdorff formula recalled in (1.15). Since the Dynin-Folland Lie

algebra is of step 3, we obtain the group law

expH2,n
pXq dH2,n expH2,n

pX 1q “ expH2,n
pZq,

with

Z :“ X `X 1 `
1

2
rX,X 1shn,2 `

1

12
rpX ´X 1q, rX,X 1shn,2shn,2 . (3.4)

Let us compute Z more explicitly. We write

X “

n
ÿ

j“1

pujXuj ` vjXvj q ` wXw `

n
ÿ

j“1

pxjXxj ` yjXyj q ` zXz ` sXs,

and similarly for X 1. As in the Heisenberg case, we abbreviate for instance sums like
řn
j“1 ujXuj by the dot-product-like notation uXu. Consequently we have

X “ uXu ` vXv ` wXw ` xXx ` yXy ` zXz ` sXs.

Lemma 3.4. With the notation above, the expression of Z given in (3.4) becomes

Z “ pu` u1qXu ` pv ` v
1qXv `

´

w ` w1 `
uv1 ´ vu1

2

¯

Xw

`

´

x` x1 `
1

4
pz1v ´ zv1q

¯

Xx `

´

y ` y1 ´
1

4
pz1u´ zu1q

¯

Xy ` pz ` z
1qXz

`

´

s` s1 `
ux1 ´ xu1

2
`
vy1 ´ yv1

2
`
wz1 ´ zw1

2
´
z ´ z1

8
puv1 ´ vu1q

¯

Xs.
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Proof. Employing the commutation relations (3.3) we compute

rX,X 1shn,2 “ puv
1 ´ vu1qXw ´

1

2
pz1u´ zu1qXy `

1

2
pz1v ´ zv1qXx

` pux1 ´ xu1 ` vy1 ´ yv1 ` wz1 ´ zw1qXs (3.5)

for the first order commutator, and for the second commutator:

rpX ´X 1q, rX,X 1shn,2shn,2

“ ´pz ´ z1qpuv1 ´ vu1qXs ´ pv ´ v
1q

1

2
pz1u´ zu1qXs ` pu´ u

1q
1

2
pz1v ´ zv1qXs,

that is, the vector cXs with

c “ ´pz ´ z1qpuv1 ´ vu1q `
zpu1pv ´ v1q ´ v1pu´ u1qq ` z1p´upv ´ v1q ` vpu´ u1qq

2

“ ´pz ´ z1qpuv1 ´ vu1q `
zpu1v ´ v1uq ` z1puv1 ´ vu1q

2

“ ´
3

2
pz ´ z1qpuv1 ´ vu1q.

Collecting the commutators of order 0,1 and 2 computed above and inserting them into

Formula (3.4), we obtain the expression for Z stated above.

As in the case of the Heisenberg group, we identify an element of the group with an

element of the underlying vector space R2p2n`1q`1 of the Lie algebra:

pu, v, w, x, y, z, sq “ expH2,n

´

uXu ` vXv ` wXw ` xXx ` yXy ` zXz ` sXs

¯

.

Proposition 3.5. With the convention explained above, the centre of the H2,n is

expH2,n
pRXsq “ tp0, 0, 0, 0, 0, 0, sq : s P Ru, and the group law becomes

pu, v, w, x, y, z, sq dH2,n pu
1, v1, w1, x1, y1, z1, s1q

“

´

u` u1 , v ` v1 , w ` w1 `
uv1 ´ vu1

2
,

x` x1 `
1

4
pz1v ´ zv1q , y ` y1 ´

1

4
pz1u´ zu1q , z ` z1 ,

s` s1 `
ux1 ´ xu1

2
`
vy1 ´ yv1

2
`
wz1 ´ zw1

2
´
z ´ z1

8
puv1 ´ vu1q

¯

. (3.6)

Furthermore, the subgroup tpu, v, w, 0, 0, 0, 0q : u, v P Rn, w P Ru is isomorphic to the

Heisenberg group Hn.
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3.3 An Extended Notation - Ambiguities and Usefulness

In this Section, we introduce new notation to be able to perform computations in a

concise manner. Unfortunately, this will mean on the one hand identifying many different

objects and on the other hand having several ways for describing one and the same

operation. Yet, the nature of our situation requires it.

Having identified the groups Hn and H2,n with the underlying vector space (via ex-

ponential coordinates), many computations involve the variables p, q, t, u, v, w, x, y,

z, s, which may refer to elements or the components of elements of the Lie algebras Rn,

hn, h2,k as well as elements or components of elements of the Lie groups Rn, Hn, H2,n.

Certain specific calculations moreover involve sub-indices j, k, l, . . . “ 1, . . . , n of the lat-

ter, that is, the scalar variables pj , qk, t, ul, . . .. Yet other formulas become not only less

cumbersome but more lucid if we also introduce capital letters to denote members of

Hn – hn – R2n`1 and calligraphic capital letters for either Hn-valued or scalar-valued

components of the 2 p2n` 1q ` 1-dimensional elements of hn,2 – H2,n.

Let the standard variables that define the elements of the Heisenberg group Hn –

hn – R2n`1 once and for all be fixed to be

X :“ pp, q, tq :“ pp1, . . . , pn, q1, . . . , qn, tq, (3.7)

and let the standard variables defining the elements of the Dynin-Folland group H2,n –

hn,2 – R2 p2n`1q`1 be denoted by

pP,Q,Sq :“ ppu, v, wq, px, y, zq, sq (3.8)

:“ ppu1, . . . , un, v1, . . . , vn, wq, px1, . . . , xn, y1, . . . , yn, zq, sq.

This purely notational identification of elements belonging to Lie groups, Lie algebras

and Euclidean vector spaces will prove very useful in many instances. The Hn and H2,n-

group laws, for example, can be expressed in a very convenient way. Let expressions like

p1q or uv1, e.g., again denote the standard Rn-inner products of the vectors p1, q and

u, v1, respectively, whereas R2n`1-inner products will be denoted by

x . , . y :“ x . , . yR2n`1 .

Moreover, let us introduce the ‘big dot-product’

X ¨X 1 :“ pp, q, tq ¨ pp1, q1, t1q
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for elements in hn – Hn – R2n`1 as an abbreviation of the Hn-product (1.17), and let

us agree that for all such vectors we can employ the hn-Lie bracket notation

rX,X 1s :“ rX,X 1shn :“ p0, 0, pq1 ´ qp1q.

We can then rewrite the Hn-group law as

X dHn X
1 “ pp, q, tq dHn pp

1, q1, t1q “
`

p` p1, q ` q1, t` t1 `
1

2
ppq1 ´ qp1q

˘

“ X ¨X 1 “ X `X 1 `
1

2
rX,X 1s. (3.9)

Let us turn our attention to the group law of H2,n. The beginning of Formula (3.6)

can be rewritten as

ˆ

u` u1, v ` v1, w ` w1 `
1

2
puv1 ´ vu1q

˙

“ P ¨P 1,

if P “ pu, v, wq and similarly for P 1. For the rest of the formula we need to introduce

the operation

ad˚Hn
pXqpX 1q “ pt1q,´t1p, 0q, (3.10)

if X “ pp, q, tq as in (3.7) and similarly for X 1.

Remark 3.6. As the notation suggests, the operation ad˚Hn
is the co-adjoint represen-

tation, where hn and its dual have been identified with R2n`1. Indeed, the adjoint

representation of hn is the Lie algebra morphism adHn from hn to its algebra of auto-

morphisms defined by adHnpXqpY q “ rX,Y s. This representation of hn on itself yields

a dual representation of hn on its dual, called dual of the adjoint representation, or

co-adjoint representation, denoted here by ad˚Hn
. It is defined via

ad˚Hn
pXqpφq “ ´φ ˝ adHnpXq,

for X in hn and φ a real linear form on hn. It is an easy exercise left to the reader to

check that when hn and its dual of hn are identified with R2n`1 via the standard basis

and its dual respectively, one finds (3.10).

With (3.10) and P, Q as in (3.8) and similarly for P 1, Q1, we have

pz1v,´z1u, 0q “ ad˚Hn
pPqpQ1q and pzv1,´zu1, 0q “ ad˚Hn

pP 1qpQq,
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and we can now express the next set of coordinates in Formula (3.6):

ˆ

x` x1 `
1

4
pz1v ´ zv1q , y ` y1 ´

1

4
pz1u´ zu1q, z ` z1

˙

“ Q`Q1 ` 1

4

`

ad˚Hn
pPqpQ1q ´ ad˚Hn

pP 1qpQq
˘

.

For the last coordinate in Formula (3.6), we observe that

s` s1 `
ux1 ´ xu1

2
`
vy1 ´ yv1

2
`
wz1 ´ zw1

2
´
z ´ z1

8
puv1 ´ vu1q

“ s` s1 `
xpu, v, wq, px1, y1, z1qy ´ xpx, y, zq, pu1, v1, w1qy

2

´
1

8

@

px´ x1, y ´ y1, z ´ z1q, p0, 0, uv1 ´ vu1q
D

“ S ` S 1 ` 1

2

`@

P,Q1
D

´
@

Q,P 1
D˘

´
1

8

@

Q´Q1, rP,P 1s
D

.

Hence we have found the following expression for the group law of H2,n:

Lemma 3.7. With the convention explained above, the product of two elements pP,Q,Sq
and pP 1,Q1,S 1q in H2,n – h2,n is

pP,Q,Sq dH2,n pP 1,Q1,S 1q

“
`

P ¨P 1 , Q`Q1 ` 1

4
pad˚Hn

pPqpQ1q ´ ad˚Hn
pP 1qpQqq ,

S ` S 1 ` 1

2

`@

P,Q1
D

´
@

Q,P 1
D˘

´
1

8

@

Q´Q1, rP,P 1s
D˘

, (3.11)

whereas their Lie bracket is given by

rpP,Q,Sq, pP 1,Q1,S 1qsh2,n

“

´

rP,P 1shn ,
1

2

`

ad˚Hn
pPqpQ1q ´ ad˚Hn

pP 1qpQq
˘

,
@

P,Q1
D

´
@

Q,P 1
D

¯

.

(3.12)

Proof. The second claim follows from the above discussion and a direct comparison with

Formula (3.5).

The following technical identities will be needed later. They are best expressed and

proved using the notation explained above.
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Lemma 3.8. 1. Any element pP,Q,Sq in H2,n can be written as

pP,Q,Sq “
ˆ

0,Q` 1

4
ad˚Hn

pPqpQq, 0
˙

dH2,n pP, 0, 0qdH2,n

ˆ

0, 0,S ` 1

2
xQ,Pyq

˙

.

2. For any X,X1, X2 P R2n`1, the following scalar products coincide:

@

ad˚Hn
pXqpX1q, X2

D

“ xX1, rX2, Xsy .

3. For any X P R2n`1 and pP,Q,Sq P H2,n, we have

pX, 0, 0q dH2,n pP,Q,Sq “ p0,Q1,S 1q dH2,n pX ¨P, 0, 0q

for some Q1 P R2n`1 and S 1 P R given by

S 1 :“ S `
B

Q, X ¨ p
1

2
Pq

F

.

Proof of Lemma 3.8. Part (2) could be proved using the definition of the co-adjoint ex-

plained in Remark 3.6 but we show it here by direct calculations using (3.10):

@

ad˚Hn
pXqpX1q, X2

D

“ xpt1q,´t1p, 0, pp2, q2, t2qy “ t1qp2 ´ t1pq2.

Let us prove Part (1). Firstly we notice that ad˚Hn

2
“ 0 since Hn is of step 2 or by

direct calculations using (3.10):

ad˚Hn

2
pXqpX 1q “ ad˚Hn

pXqpt1q,´t1p, 0q “ 0.

Secondly, we have
@

ad˚Hn
pXqpX 1q, X

D

“ 0

as a consequence of Part (2). Now we apply the newly found expression for the group

71



3 The Dynin-Folland Group and its Representation Theory

law in (3.11) to

ˆ

0,Q` 1

4
ad˚Hn

pPqpQq, 0
˙

dH2,n pP, 0, 0q

“

´

P,Q` 1

4
ad˚Hn

pPqpQq ´ 1

4
ad˚Hn

pPq
ˆ

Q` 1

4
ad˚Hn

pPqpQq
˙

,

´
1

2

B

Q` 1

4
ad˚Hn

pPqpQq,P
F

¯

“
`

P,Q´ 1

16
pad˚Hn

pPqqpad˚Hn
pPqpQqq,´1

2
xQ,Py ´ 1

8

@

ad˚Hn
pPqpQq,P

D˘

“
`

P,Q,´1

2
xQ,Py

˘

,

having applied for the last line of the computations the two observations above. Since

the centre of Hn,2 is tp0, 0,Sq : S P Ru, Part (1) is proved.

Let us prove Part (3). Using the group law expressed in (3.11) and the decomposition

given in Part (1), we have

pX, 0, 0q dH2,n pP,Q,Sq

“

ˆ

X ¨P,Q`
1

4
ad˚Hn

pXqpQq,S ` 1

2
xX,Qy ` 1

8
xQ, rX,Psy

˙

“ p0,Q1, 0q dH2,n pX ¨P, 0, 0q dH2,n p0, 0,S 1q,

for some Q1 P R2n`1, whose expression we do not need to compute, and for the centre

component

S 1 :“ S ` 1

2
xX,Qy ` 1

8
xQ, rX,Psy ` 1

2

B

Q` 1

4
ad˚Hn

pXqpQq, X ¨P
F

.

Let us use Part (2) for the last term:

B

Q` 1

4
ad˚Hn

pXqpQq, X ¨P
F

“ xQ, X ¨Py `
1

4

@

ad˚Hn
pXqpQq, X ¨P

D

“ xQ, X ¨Py `
1

4
xQ, rX ¨P, Xsy . (3.13)

Now since X ¨P “ X ` P ` 1
2 rX,Ps (see (3.9)) and the iterated bracket is zero, (3.13)
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becomes

B

Q, X ` P ` 1

2
rX,Ps

F

`
1

4

B

Q,
„

X ` P ` 1

2
rX,Ps, X

F

“

B

Q, X ` P ` 1

2
rX,Ps

F

`
1

4
xQ, rP, Xsy “

B

Q, X ` P ` 1

4
rX,Ps

F

.

Therefore, we have for S 1:

S 1 “ S ` 1

2
xX,Qy ` 1

8
xQ, rX,Psy ` 1

2

B

Q, X ` P ` 1

4
rX,Ps

F

“ S `
B

Q, X ` 1

2
P ` 1

4
rX,Ps

F

.

This concludes the proof of Part (3).

3.4 The Schrödinger-type representations of H2,n

In this Section, we show that the isomorphism dπ defined in (3.2) can be viewed as the in-

finitesimal representation of a Schrödinger-type representation π of h2,n. We will present

the argument for the whole family πλ, λ P Rzt0u, of Schrödinger-type representations

which contains π1 “ π.

We begin by defining for each λ P Rzt0u the linear mapping

dπλ : R2p2n`1q`1 ÝÑ xDpj ,Dqj ,Dt,Xpj ,Xqj ,Xty,

via

dπλpXuj q “ 2πiDpj , dπλpXvj q “ 2πiDqj , dπλpXwq “ 2πiDt,

dπλpXxj q “ 2πiλXpj , dπλpXyj q “ 2πiλXqj ,

dπλpXzq “ 2πiλXt, dπλpXsq “ 2πiλ I.

,

/

.

/

-

(3.14)

With all our conventions (see Section 3.3) we can also write

dπλpu, v, w, x, y, z, sq “ 2πi
`

uDp ` vDq ` wDt ` λxXp ` λyXq ` λzXt ` λsI
˘

.

The main property of this subsection is:

Proposition 3.9. 1. For any λ P Rzt0u, the linear mapping dπλ is a Lie algebra

isomorphism between hn,2 and xDpj ,Dqj ,Dt,Xpj ,Xqj ,Xty.
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2. dπ1 “ dπ.

3. Let λ P Rzt0u. The representation dπλ is the infinitesimal representation of the

unitary representation πλ of H2,n acting on L2pHnq given by

`

πλpP,Q,Sqf
˘

pXq “ e2πiλpS`xQ,X¨p 12Pqyq fpX ¨Pq, (3.15)

for pP,Q,Sq P H2,n, X P Hn and f P L2pHnq.

4. If λ “ λ1 in Rzt0u, the representations πλ and πλ1 are inequivalent.

Proof. Parts 1 and 2 are easy to check.

For Part 3, one can check by direct computations that Formula (3.15) defines a unitary

representation πλ of H2,n and that its infinitesimal representation coincides with dπλ.

Clearly each πλ coincides with the characters S Ñ e2πiλS on the centre of the group

H2,n. Hence, two representations πλ and πλ1 corresponding to different λ “ λ1 are

inequivalent, and Part 4 is proved.

Let us explain how Formula (3.15) appears by showing that the unique candidate for

the representation πλ of Hn,2 on L2pHnq – L2pR2n`1q that admits dπλ as infinitesimal

representation is given by (3.15).

As in Proposition 3.3 (iii) (see also Section 1.3.2), we see that the restriction of dπλ to

the subalgebra RXu1 ‘ . . .‘RXvn ‘RXw coincides with the infinitesimal right regular

representation of Hn on L2pRnq. Therefore, the restriction of πλ to tpP, 0, 0q : P P

R2n`1u must be given by the right regular representation of Hn:

`

πλpP, 0, 0qf
˘

pXq “ fpX ¨Pq. (3.16)

This could also be proved with a simple argument about unitary one-parameter groups

in the spirit of Stone’s Theorem. The same argument also yields that such πλ must

satisfy

`

πλp0,Q, 0qf
˘

pXq “ e2πiλxQ,XyfpXq, (3.17)
`

πλp0, 0,Sqf
˘

pXq “ e2πiλS fpXq. (3.18)

Using (3.16), (3.17) and (3.18), together with the group law and, more precisely, Part
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(1) of Lemma 3.8, we must have

`

πλpP,Q,Sqf
˘

pXq

“
`

πλp0,Q`
1

4
ad˚Hn

pPqpQq, 0qπλpP, 0, 0qπλp0, 0,S `
1

2
xQ,Pyqf

˘

pXq

“ e2πiλxQ` 1
4

ad˚Hn
pPqpQq,Xy`πλpP, 0, 0qπλp0, 0,S `

1

2
xQ,Pyqf

˘

pXq

“ e2πiλxQ` 1
4

ad˚Hn
pPqpQq,Xy`πλp0, 0,S `

1

2
xQ,Pyqf

˘

pX ¨Pq

“ e2πiλxQ` 1
4

ad˚Hn
pPqpQq,Xye2πiλpS` 1

2
xQ,PyqfpX ¨Pq.

By Lemma 3.8 Part (2), we have

@

ad˚Hn
pPqpQq, X

D

“ xQ, rX,Psy ,

thus

B

Q` 1

4
ad˚Hn

pPqpQq, X
F

`
1

2
xQ,Py “ xQ, Xy ` 1

4
xQ, rX,Psy ` 1

2
xQ,Py

“

B

Q, X ` 1

2
P ` 1

2
rX,

1

2
Ps

F

“

B

Q, X ¨ p
1

2
Pq

F

,

with the convention that the dot product denotes the Heisenberg group law

(cf. Section 3.3). Therefore, we have obtained that the unique candidate for πλ is given by

(3.15). Conversely, one checks easily that Formula (3.15) defines a unitary representation

of H2,n.

Remark 3.10. In exponential coordinates pu, v, w, x, y, z, sq the representation πλ is

given by

`

πλpu, v, w, x, y, z, sqf
˘

pp, q, tq “ e2πiλ
`

xpx,y,zqt,pp,q,tqty` 1
2xpx,y,zq

t,pu,v,wqty` 1
4
z ppv´uqq`s

˘

ˆ f
`

p` u, q ` v, t` w `
1

2
ppv ´ uqq

˘

.

In the next section we list all the unirreps of H2,n up to unitary equivalence using the

orbit method. Since πλ will be among these, this will show its irreducibility.
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3.5 The Unitary Irreducible Representations of the

Dynin-Folland Group - A Classification via the Orbit

Method

In this subsection we will classify the unitary irreducible representations of the Dynin-

Folland group employing Kirillov’s orbit method. We refer to, e.g., [10] for a description

of this method. We will first give a description of the co-adjoint orbits of H2,n. Sub-

sequently, we will construct the corresponding unirreps. Finally, for each orbit we will

have a look at the corresponding jump sets.

3.5.1 The Co-adjoint Orbits

In order to classify the H2,n-co-adjoint orbits, we first we give an explicit formula for

the co-adjoint representation K of H2,n on the dual h˚2,n of its Lie algebra hn,2. Recall

that K is given by

xKpgqF,Xy “
@

F,Adpg´1qX
D

, (3.19)

if F P h˚n,2, g P H2,n and X P hn,2. We denote by

pX˚u1 , . . . , X
˚
un , X

˚
v1 , . . . , X

˚
vn , X

˚
w, X

˚
x1 , . . . , X

˚
xn , X

˚
y1 , . . . , X

˚
yn , X

˚
z , X

˚
s q,

the dual standard basis of R2p2n`1q`1.

Lemma 3.11. For any X P h2,n and F P h˚n,2 written as

F “ fuX
˚
u ` fvX

˚
v ` fwX

˚
w ` fxX

˚
x ` fyX

˚
y ` fzX

˚
z ` fsX

˚
s ,

X “ uXu ` vXv ` wXw ` xXx ` yXy ` zXz ` sXs,

we have

KpexpH2,n
pXqqF “

`

fu ` fwv ´
z

2
fy ` fsx`

3

4
fszv

˘

X˚u

`
`

fv ´ fwu`
z

2
fx ` fsy ´

3

4
fszu

˘

X˚v

`
`

fw ` fsz
˘

X˚w `
`

fx ´ fsu
˘

X˚x `
`

fy ´ fsv
˘

X˚y

`
`

fz ´
fxv

2
`
fyu

2
´ fsw

˘

X˚z ` fsX
˚
s .

Proof. We apply (3.19) to g “ expH2,n
pXq. We notice that due to nilpotency of H2,n,
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we have

Adpg´1qX 1 “ AdpexpH2,n
pXq´1qX 1 “ AdpexpH2,n

p´XqqX 1 “ eadp´XqX 1

“ X 1 ´ rX,X 1s `
1

2
rX, rX,X 1ss.

For X as in the statement and a similar expression for X 1, we compute

AdpexpH2,n
p´XqqpX 1q

“
`

u1, v1, w1 ´ uv1 ` vu1, x1 `
1

2
pzv1 ´ z1vq, y1 `

1

2
pz1u´ zu1q, z1,

s1 ´ ux1 ` xu1 ´ vy1 ` yv1 ´ wz1 ` zw1 ´
3

4
zpuv1 ´ vu1q

˘

,

and hence

A

KpexpH2,n
pXqqF,X 1

E

“ fuu
1 ` fvv

1 ` fwpw
1 ´ uv1 ` vu1q

` fx

ˆ

x1 `
1

2
pzv1 ´ z1vq

˙

` fy

ˆ

y1 `
1

2
pz1u´ zu1q

˙

` fzz
1

` fs

ˆ

s1 ´ ux1 ` xu1 ´ vy1 ` yv1 ´ wz1 ` zw1 ´
3

4
zpuv1 ´ vu1q

˙

.

A reorganisation of the terms gives the stated equality.

We can now describe the co-adjoint orbits of H2,n by giving their representatives.

Given our convention, we may write RnXx for RXx1 ‘ . . . ‘ RXxn and similarly for

RnXy, RnXu, RnXv etc.

Proposition 3.12. Any co-adjoint orbit of H2,n has exactly one representative among

the following elements of h˚n,2:

(Case (1)) fsX
˚
s if fs “ 0,

(Case (2)) fwX
˚
w ` fxX

˚
x ` fyX

˚
y ` fzX

˚
z with fs “ 0 but fw “ 0,

(Case (3)) fuX
˚
u ` fvX

˚
v ` fxX

˚
x ` fyX

˚
y with the equality fufy “ fvfx between the scalar

products, and vanishing of the coordinates fs “ fw “ fz “ 0 but the non-vanishing

of the R2n-vector pfx, fyq “ 0,

(Case (4)) fuX
˚
u ` fvX

˚
v ` fzX

˚
z with fs “ fw “ 0, fx “ fy “ 0.
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All the co-adjoint orbits are affine subspaces of h˚n,2. More precisely, in Case (1), the

orbit of fsX
˚
s is the affine hyperplane passing through fsX

˚
s given by

KpH2,nqpfsX
˚
s q “ fsX

˚
s ‘ RnX˚u ‘ RnX˚v ‘ RX˚w ‘ RnXx ‘ RnX˚y ‘ RX˚z . (3.20)

The orbits KpH2,nqpfsX
˚
s q, fs P Rzt0u, are the generic co-adjoint orbits. They form an

open dense subset of h˚2,n.

In Case (2), the orbits are 2n-dimensional affine subspaces:

KpH2,nqpfwX
˚
w ` fxX

˚
x ` fyX

˚
y ` fzX

˚
z q

“ fwX
˚
w ` fxX

˚
x ` fyX

˚
y ` fzX

˚
z ` tṽX

˚
u ` ũX

˚
v ´

fxṽ ` fyũ

2fw
X˚z : ũ, ṽ P Rnu. (3.21)

In Case (3), the orbits are 2-dimensional affine subspaces:

KpH2,nqpfuX
˚
u ` fvX

˚
v ` fxX

˚
x ` fyX

˚
y q

“ fuX
˚
u ` fvX

˚
v ` fxX

˚
x ` fyX

˚
y ` Rp´fyX˚u ` fxX˚v q ` RX˚z . (3.22)

In Case (4), the orbits are singletons.

Proof. Case p1q Let F P h˚n,2zt0u be such that its component fs is not zero. Then we

choose X as in Lemma 3.11 with z, u, v such that the coordinates of KpexpH2,n
XqpF q

in X˚w, X˚x and X˚y are zero, that is,

fw ` fsz “ 0, fx ´ fsu “ fy ´ fsv “ 0,

then w, x, y such that the coordinates in X˚z , X˚u and X˚v are zero, that is,

fz ´
fxv

2
`
fyu

2
´ fsw “ 0,

and

0 “ fu ` fwv ´
z

2
fy ` fsx`

3

4
fszv “ fv ´ fwu`

z

2
fx ` fsy ´

3

4
fszu.

We have obtained KpexppXqqF “ fsX
˚
s . Therefore, the orbit KpH2,nqF describes the

2p2n` 1q-dimensional hyperplane at height fs parallel to the subspace hn,2
˚{RX˚s .

Case p2q. We assume fs “ 0 but fw “ 0, so that we have

KpexpH2,n
pXqqF “

`

fu ` fwv ´
1

2
zfy

˘

X˚u `
`

fv ´ fwu`
1

2
zfx

˘

X˚v

`fwX
˚
w ` fxX

˚
x ` fyX

˚
y `

`

fz ´
1

2
fxv `

1

2
fyu

˘

X˚z .
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We choose u and v such that the coordinates in X˚u and X˚v vanish, that is,

v “
1

fw
p´fu `

1

2
zfyq and u “

1

fw
pfv `

1

2
zfxq.

Then the X˚z -coordinate of KpexpH2,n
pXqqF becomes

fz ´
1

2
fxv `

1

2
fyu “ fz `

1

2fw
pfufx ` fvfyq,

independently of the other entries w, x, y, z, s of X. Therefore, F 1 :“ fwX
˚
w ` fxX

˚
x `

fyX
˚
y ` f 1zX

˚
z with f 1z “ fz `

1
2fw
pfufx ` fvfyq is in the same orbit as F and F 1 is the

only element of the orbit with zero coordinates in X˚u and X˚v . We choose F 1 as the

representative of the co-adjoint orbit that contains F . Similar computations as above,

together with setting ṽ “ fwv ´
z
2fy P R

n and ũ “ ´fwu`
z
2fx P R

n, yield

KpexpH2,n
pXqqF 1 “ F 1 ` ṽX˚u ` ũX

˚
v `

´fxv ` fyu

2
X˚z

“ F 1 ` ṽX˚u ` ũX
˚
v ´

fxṽ ` fyũ

2fw
X˚z .

This yields the description of the F 1-orbit.

Case (3). We assume fs “ 0 “ fw. Then

KpexpH2,n
pXqqF “

`

fu ´
z

2
fy
˘

X˚u `
`

fv `
z

2
fx
˘

X˚v

`fxX
˚
x ` fyX

˚
y `

`

fz ´
1

2
fxv `

1

2
fyu

˘

X˚z .

We also assume pfx, fyq “ 0. Then we can choose v or u such that the X˚z -coordinate

vanishes, and we also choose z such that the following scalar product in R2n vanishes:

xpfu, fvq `
z

2
p´fy, fxq, p´fy, fxqyR2n “ 0.

This means that, in this case, F and F 1 :“ f 1uX
˚
u ` f

1
vX

˚
v ` fxX

˚
x ` fyX

˚
y with pf 1u, f

1
vq K

p´fy, fxq in R2n are in the same orbit. Furthermore F 1 is the only element of this

orbit with pf 1u, f
1
vq K p´fy, fxq. Similar computations as above, with z̃ “ z

2 P R and

ã “ ´1
2 fxv `

1
2 fyu P R, give

KpexpH2,n
pXqqF 1 “ F 1 ´ z̃fyX

˚
u ` z̃fxX

˚
v ` ãX

˚
z .

This yields the description of the F 1-orbit.
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If fx “ fy “ 0, then F “ fuX
˚
u ` fvX

˚
v ` fzX

˚
z “ KpexpH2,n

pXqqF for any X P hn,2.

This corresponds to Case (4). This concludes the proof of Proposition 3.12.

Corollary 3.13. If we denote by F1, . . . , F4 the representatives of the co-adjoint orbits

given by Cases p1q - p4q, then the corresponding stabilizer subgroups of H2,n, denoted by

StabpFjq, j “ 1, . . . , 4, are given by:

(Case (1)) StabpF1q “ expH2,n
pRXsq,

(Case (2)) StabpF2q “ expH2,n

`

RXw ‘ RnXx ‘ RnXy ‘ RXz ‘ RXs

˘

,

(Case (3)) StabpF3q “ tpu, v, w, x, y, z, sq P H2,n | z “ 0, fxv “ fyuu,

(Case (4)) StabpF4q “ H2,n.

Proof. Cases p1q and p4q are straight-forward in view of Lemma 3.11. To prove Case p2q,

we find that the necessary and sufficient condition

KpexpH2,n
pXqqF2 “

`

fu ` fwv ´
1

2
zfy

˘

X˚u `
`

fv ´ fwu`
1

2
zfx

˘

X˚v

` fwX
˚
w ` fxX

˚
x ` fyX

˚
y `

`

fz ´
1

2
fxv `

1

2
fyu

˘

X˚z

“ fwX
˚
w ` fxX

˚
x ` fyX

˚
y ` fzX

˚
z

“ F2,

is equivalent to

`

fu ` fwv ´
1

2
zfy

˘

“
`

fv ´ fwu`
1

2
zfx

˘

“
`

´
1

2
fxv `

1

2
fyu

˘

“ 0. (3.23)

It is now easily seen that the largest subgroup satisfying (3.23) is the one asserted above.

In order to determine StabpF3q, we observe that

KpexpH2,n
pXqqF3 “

`

fu ´
z

2
fy
˘

X˚u `
`

fv `
z

2
fx
˘

X˚v

` fxX
˚
x ` fyX

˚
y `

`

´
1

2
fxv `

1

2
fyu

˘

X˚z

“ fuX
˚
u ` fvX

˚
v ` fxX

˚
x ` fyX

˚
y

“ F3

holds if and only if z “ 0 and fxv “ fyu. This concludes the proof.
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3.5.2 The Unirreps

To begin with, let us show that the representations corresponding to the orbits of Case

(1) via the orbit method coincide with the representations πλ constructed in Section 3.4:

Proposition 3.14. Let fs “ λ P Rzt0u. The representation πλ as defined by Equal-

ity (3.15) is unitarily equivalent to the unirrep corresponding to the linear form λX˚s ,

and the (maximal polarising λX˚s -subordinated) subalgebra

l :“ RnXx ‘ RnXy ‘ RXz ‘ RXs.

Proof. One checks easily that the subspace l of h2,n is a maximal subalgebra subordinated

to F :“ λX˚s and that its corresponding subgroup is

L “ expH2,n
plq “ tp0,Q,Sq : Q P R2n`1, S P Ru.

Let ρF,L be the character of the subgroup L with infinitesimal character iF . It is given

for any X “ xXx ` yXy ` zXz ` sXs P l by

ρF,LpexpH2,n
pXqq “ e2πiF pXq “ e2πiλxs .

and also for any p0,Q,Sq P L by

ρF,Lp0,Q,Sq “ e2πiλS . (3.24)

In order to define the representation induced by ρF,L, we consider F0, the space of

continuous functions ϕ : H2,n Ñ C that satisfy

ϕp`dH2,n gq “ ρF,Lp`qϕpgq, for all ` P L, g P H2,n, (3.25)

and whose support modulo L is compact. Let indpρF,Lq
H2,n

L be the representation in-

duced by ρF,L on the group H2,n that acts on F0. It may be realized as

´

`

indpρF,Lq
H2,n

L pgq
˘

ϕ
¯

pg1q :“ ϕpg1 dH2,n gq, g, g1 P H2,n, ϕ P F0.

By Proposition 3.5, the subset tpX, 0, 0q : X P R2n`1u of Hn,2 is a subgroup of H2,n

which is isomorphic to the Heisenberg group Hn. Here, we allow ourselves to identify

this subgroup with Hn. Let U denote the restriction map from H2,n to Hn, that is,

UpϕqpXq “ ϕpX, 0, 0q.
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for any scalar function ϕ : H2,n Ñ C. Clearly, if ϕ P F0, then Uϕ is in CcpHnq, the

space of continuous functions with compact support on Hn. In fact, a function ϕ P F0

is completely determined by its restriction to Hn since the Lie algebra of Hn within hn,2

complements l. With this observation it is easy to check that U is a linear isomorphism

from F0 to CcpHnq. Since CcpHnq is dense in the Hilbert space L2pHnq, the proof will be

complete once we have shown that the induced representation indpρF,Lq
H2,n

L intertwined

with U coincides with the representation πλ acting on CcpHnq, that is,

@g P H2,n, @ϕ P F0 U
”

indpρF,Lq
H2,n

L pgqpϕq
ı

“ πλpgqpUϕq. (3.26)

Let us prove (3.26). We fix a function ϕ P F0. By Lemma 3.8 Part (3), we have for

g “ pP,Q,Sq and g1 “ pX, 0, 0q P Hn

´

`

indpρF,Lq
H2,n

L pgq
˘

ϕ
¯

pX, 0, 0q “ ϕ
`

pX, 0, 0q dH2,n pP,Q,Sq
˘

“ ϕ
`

`dH2,n pX ¨P, 0, 0q
˘

with

` “

ˆ

0,Q1,S `
B

Q, X ¨ p
1

2
Pq

F˙

P L,

for some Q1 P R2n`1. Since ϕ is in F0, it satisfies (3.25) and we have

ϕ
`

`dH2,n pX ¨P, 0, 0q
˘

“ ρF,Lp`qϕpX ¨P, 0, 0q

“ e2πiλpS`xQ,X¨p 12PqyqϕpX ¨P, 0, 0q

by (3.24). We recognise πλpgqfpXq with f “ Uϕ due to (3.15). Therefore, Formula

(3.26) is proved, and the proof is complete.

Let us now give concrete realizations in L2pRnq and L2pRq of the unirreps associated

with the co-adjoint orbits of Cases (2) and (3) in Proposition 3.12:

Proposition 3.15. ‚ (Case (2)) Let F2 :“ fwX
˚
w ` fxX

˚
x ` fyX

˚
y ` fzX

˚
z P h˚n,2 with

fs “ 0 but fw “ 0. A maximal (polarising) subalgebra subordinated to F2 is

l2 :“ RnXv ‘ RXw ‘ RnXx ‘ RnXy ‘

"

z

2fw
fxXu ` zXz : z P R

*

‘ RXs.

The associated unirrep of H2,n may be realized as the representation πpfw,fx,fy ,fzq acting
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unitarily on L2pRnq via

`

πpfw,fx,fy ,fzqpgqψ
˘

pũq “ ψpũ` u´
z

2fw
fxqe

2πipwfw`xfx`yfy`zfzq

expπi

B

2ũ` u´
z

2fw
fx, fwv ´

z

2
fy

F

Rn

for g “ pu, v, w, x, y, z, sq P H2,n, ψ P L2pRnq, and ũ P Rn.

‚ (Case (3)) Let F3 :“ fuX
˚
u ` fvX

˚
v ` fxX

˚
x ` fyX

˚
y P h˚n,2 with fufy “ fvfx and

fs “ fw “ fz “ 0 but pfx, fyq “ 0. A maximal (polarising) subalgebra subordinated to

F3 is

l3 :“ RnXu ‘ RnXv ‘ RXw ‘ RnXx ‘ RnXy ‘ RXs.

The associated unirrep of H2,n may be realized as the representation πpfu,fv ,fx,fyq acting

unitarily on L2pRq via

`

πpfu,fv ,fx,fyqpgqψ
˘

pz̃q “ ψpz̃ ` zqe2πipfuu`fvv`fxx`fyyq

expπi
´2z̃ ` z

2
p´fxv ` fyuq

¯

,

for g “ pu, v, w, x, y, z, sq P H2,n, ψ P L2pRq, and z̃ P R.

Proof. In both cases, we proceed as in the proof of Proposition 3.14.

For Case (2), we have the following identity with g “ pu, v, w, x, y, z, sq P H2,n

pũ, 0, . . . , 0q dH2,n g “
´

ũ` u, v, w `
ũv

2
, x, y ´

z

4
ũ, z, s1

¯

“

´ z

2fw
fx, v, w `

1

2
vp2ũ` u´

z

2fw
fxq, x, y ´

1

4
zp2ũ` u´

z

2fw
fxq, z, s2

¯

dH2,n

´

ũ` u´
z

2fw
fx, 0, . . . , 0

¯

,

for some s1 and s2 we do not need to compute. This yields that the unirrep of H2,n

associated with F2 and l2 may be realized as the unitary representation πpfw,fx,fy ,fzq

acting on L2pRnq via

`

πpfw,fx,fy ,fzqpgqψ
˘

pũq “ ψpũ` u´
z

2fw
fxq exp 2πi

´

pw `
1

2
vp2ũ` u´

z

2fw
fxqqfw

¯

exp 2πi
´

xfx ` py ´
1

4
zp2ũ` u´

z

2fw
fxqqfy ` fzz

¯

,

for g “ pu, v, w, x, y, z, sq P H2,n, ψ P L2pRnq, and ũ P Rn.
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For Case (3), we have for some s1, s2 P R,

exppz̃Xzq dH2,n g “ pu, v, w, x´
z̃

4
v, y `

z̃

4
u, z̃ ` z, s1q

“

ˆ

u, v, w, x´
1

4
p2z̃ ` zqv, y `

1

4
p2z̃ ` zqu, 0, s2

˙

dH2,n expH2,n
ppz̃ ` zqXzq .

This yields that the unirrep of H2,n associated with F3 and l3 may be realized as the

unitary representation πF3 acting on L2pRq via

`

πpfu,fv ,fx,fyqpgqψ
˘

pz̃q “ ψpz̃ ` zq exp 2πi
´

fuu` fvv ` fxpx´
1

4
p2z̃ ` zqvq

`fypy `
1

4
p2z̃ ` zquq

¯

,

for g “ pu, v, w, x, y, z, sq P H2,n, ψ P L2pRq, and z̃ P R.

By Kirillov’s orbit method [45, 10], Propositions 3.12, 3.14, and 3.15 imply the follow-

ing classification of the unitary dual of the Dynin-Folland group:

Theorem 3.16. Any unitary irreducible representation of the Dynin-Folland group H2,n

is unitarily equivalent to exactly one of the following representations:

• πλ for λ P Rzt0u, acting on L2pHnq, defined in Proposition 3.9,

• πpfw,fx,fy ,fzq for any fx, fy P Rn, fz P R and fw P Rzt0u, acting on L2pRnq, defined

in Proposition 3.15,

• πpfu,fv ,fx,fyq for any fu, fv, fx, fy P Rn with fufy “ fvfx but pfx, fyq “ 0, acting on

L2pRq, defined in Proposition 3.15,

• the characters πfu,fv ,fz given by

πfu,fv ,fz : pu, . . . , sq P H2,n ÞÝÑ e2πipufu`vfv`zfzq,

for any fu, fv P Rn and fz P R.

3.5.3 Jump Sets

For the sake of usefulness at some later stage we will describe each orbit’s set of jump

indices. For a detailed account on jump indices we refer the reader to [10] Section 3.1.

Our use of jump sets and related notions below essentially follows Pedersen’s exposition

in [51].

84



3 The Dynin-Folland Group and its Representation Theory

To start with, let us recall that for any n-dimensional nilpotent Lie group G there

exists a sequence of ideals gj Ď g, dimpgjq “ j, j “ 1, . . . , n, with

t0u Ď g1 Ď . . . Ď gn “ g, (3.27)

dimpgj{gj´1q “ 1 and rg, gjs Ď gj´1, j “ 1, . . . , n.

For every such flag of ideals in fact there exists a basis tXju
n
j“1 for g such that

Xj P gj{gj´1 for all j “ 1, . . . , n. Such a basis is often referred to as a Jordan-Hölder

basis. (Cf. [10] Theorems 1.1.9 and 1.1.13.)

Let us recall that for a fixed Jordan-Hölder basis tXju
n
j“1, an arbitrary but fixed co-

adjoint orbit O and some representative FO the jump set eO consists of those indices

j1, . . . , j2d P t1, . . . , nu which satisfy gj Ę gj´1 ` stabpFOq.

Proposition 3.17. Let O1, . . . ,O4 denote the co-adjoint orbits of the Dynin-Folland

group (for arbitrary, but fixed constants in each case), classified in Proposition 3.12.

Then the corresponding jump sets for each orbit are the following:

(Case (1)) eO1 “ tx1, . . . , xn, y1, . . . , yn, z, w, u1, . . . , un, v1, . . . , vnu,

(Case (2)) eO2 “ tu1, . . . , un, v1, . . . , vnu,

(Case (3)) eO3 “ tz, uju or eO3 “ tz, vku, for some j or some k in t1, . . . , nu, where the

second index is determined by the vector pfy, fxq “ pfy1 , . . . , fxnq ‰ 0 P R2n,

(Case (4)) eO4 “ H.

Proof. In the case of G “ H2,n it is easily checked that the basis

B :“ tXs, Xx1 , . . . , Xxn , Xy1 , . . . , Xyn , Xz, Xw, Xu1 , . . . , Xun , Xv1 , . . . , Xvnu, (3.28)

form in fact a Jordan-Hölder basis.

Cases p1q, p2q and p4q follow immediately from Corollary 3.13.

Case p3q also uses Corollary 3.13 and the specific order in which we nest the Jordan-

Höoder flag (3.27). The order is determined up to permutations in the x-, y-, u- and

v-variables. If we fix the order of gj to match the order of vectors Xj as in (3.28), then

the first non-vanishing summand fxjvj or fykuk on the right-hand-side of the equation

fxv ´ fyu “ 0 determines second variable of eO3 . The fact that z P eO3 anyway follows

from the condition z “ 0.
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3 The Dynin-Folland Group and its Representation Theory

3.6 The Semi-direct Product Structure

Let us briefly discuss why the Dynin-Folland group is actually given as a semi-direct

product R2n`2 ¸α Hn. For this purpose we recall that given two simply connected

nilpotent Lie groups H and N , and a map τ : h Ñ Derpnq, there exists a simply

connected nilpotent Lie group G and a map α : H Ñ AutpNq such that G “ N ¸α H

with Lie algebra g “ n‘dᾱ h and such that dᾱ “ τ , where ᾱphq :“ dpαphqp . qq P Autpnq.

We recall that in this case the Lie bracket on g is given by

rpXh, Ynq, pX
1
h, Y

1
nqsg “ rXh, X

1
hsh ` dᾱpXqpY

1q ´ dᾱpX 1qpY q ` rYn, Y
1
nsn . (3.29)

(For details see A. Knapp [46] Theorem 1. 125.) As we seek to write H2,n “ R2n`2¸αHn,

we first recall that by Lemma 3.7 Formula (3.12) we have

rpP,Q,Sq, pP 1,Q1,S 1qsh2,n

“

´

rP,P 1shn ,
1

2

`

ad˚Hn
pPqpQ1q ´ ad˚Hn

pP 1qpQq
˘

,
@

P,Q1
D

´
@

Q,P 1
D

¯

(3.30)

:“ pP̃, Q̃, S̃q.

Bearing r . , . sR2n`2 “ 0 in mind, we immediately recognize that the components Q̃ and

S̃ represent the two dᾱ-terms in Equality (3.29). In view of Equality (3.10), we may

hence conclude that

τH2,n : P “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

...

un

v1

...

vn

w

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1
2v1 0

...
. . .

...
...

...
1
2vn
1
2u1

. . .
...

... 0 ´1
2un

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0
...

u1 ¨ ¨ ¨ un v1 ¨ ¨ ¨ vn w 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

indeed defines a linear map from hn into DerpR2n`2q, for wich the associated map αH2,n

defines a semi-direct product R2n`2 ¸αH2,n
Hn with Lie bracket given by (3.30).
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3 The Dynin-Folland Group and its Representation Theory

3.7 Group Fourier Transform and Plancherel formula

In this subsection we study the group Fourier transform on H2,n. In particular we obtain

the Plancherel formula for the Folland-Dynin group.

The group Fourier transform of an integrable function f P L1pH2,nq is defined via the

integral (convergent in norm)

pfpτq “

ż

H2,n

fpgqτpgq˚dg

for any unirrep τ of H2,n.

For the Schrödinger-type representations πλ, defined in Proposition 3.15, one can de-

scribe the corresponding group Fourier transform as follows:

Theorem 3.18. (i) Let f P L1pH2,nq, and let λ P Rzt0u be fixed. Then the operator
pfpπλq acts on L2pHnq, with integral kernel given by the locally integrable distribu-

tion Kf
λ defined via

Kf
λ pX,Y q :“

ĳ

R2n`2

fpY ´1 ¨X,Q,Sq e´2πiλS e´πiλxQ,X`Y y dQ dS.

(ii) Furthermore, if f P L1pH2,nqXL
2pH2,nq, then the operator pfpπλq is in the Hilbert-

Schmidt class with Hilbert-Schmidt norm

} pfpπλq}
2
HS “

ż

HnˆHn

|Kf
λ pX,Y q|

2dX dY

“ |λ|´p2n`1q }FsÑλf}L2pR2p2n`1qq (3.31)

where FsÑλf denotes the Fourier transform of f with respect to the central vari-

able, that is,

pFsÑλfq pX,Y q :“

ż

R
fpX,Y,Sq e´2πiλS dS.

Consequently,
ż

H2,n

|fpgq|2dg “

ż

Rzt0u
} pfpπλq}

2
HS |λ|

2n`1dλ. (3.32)
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Proof. Let us prove Part (i). Let ϕ P S pHnq. We then have

`

pfpπλqϕ
˘

pXq “

ż

H2,n

fpP,Q,Sq
`

πλpP,Q,Sq˚ϕ
˘

pXq dP dQ dS

“

ż

H2,n

fpP,Q,Sq
`

πλp´P,´Q,´Sqϕ
˘

pXq dP dQ dS

“

ż

H2,n

fpP,Q,Sq e´2πiλS e2πiλx´Q,X¨p´ 1
2
Py ϕpX ¨P´1q dP dQ dS.

We now apply the change of variables P ÞÑ Y :“ X ¨P´1. We observe that dY “ dP,

and, using P “ Y ´1 ¨X “ ´pX´1 ¨Y q, that

X ¨
´

´
1

2
P
¯

“ X ¨
`1

2
pX´1 ¨Y q

˘

“ X `
1

2
pX´1 ¨Y q `

1

4
rX,X´1 ¨Y s

“ X `
1

2

`

´X ` Y ´
1

2
rX,Y s

˘

`
1

4

`

´rX,Xs ` rX,Y s ´
1

2
rX, rX,Y ss

˘

“
1

2
pX ` Y q.

Therefore, we obtain

`

pfpπλqϕ
˘

pXq “

ż

Hn

Kf
λ pX,Y qϕpY q dY,

with Kf
λ as in the statement above. We observe that Kf

λ is the composition of the

Euclidean Fourier transform in the Q-variable of FSÑλf composed with the smooth

diffeomorphism X ÞÑ Y ´1 ¨X “ X 1 and then Y ÞÑ λ
2 pY ¨X

1 ` Y q “ Y 1. Since f

is integrable, the kernel Kf
λ pX,Y q makes sense as a locally integrable distribution on

Hn ˆHn by the properties of the Euclidean Fourier transform.

In order to prove Part (ii), let us compute the L2-norm of the kernel Kf
λ . First we

apply the change of variables X 1 “ Y ´1 ¨X, which has Jacobian determinant 1, and
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then Y 1 “ λ
2 pY ¨X

1 ` Y q, which has Jacobian determinant |λ|2n`1, to obtain

ż

HnˆHn

|Kf
λ pX,Y q|

2dX dY

“

ĳ

R2p2n`1q

ˇ

ˇ

ˇ

ˇ

ż

R2n`1

FSÑλfpX
1,Qqe´πiλxQ,Y ¨X 1`Y y dQ

ˇ

ˇ

ˇ

ˇ

2

dX 1dY

“ |λ|2n`1

ĳ

R2p2n`1q

ˇ

ˇ

ˇ

ˇ

ż

R2n`1

FSÑλfpX
1,Qqe´2πixQ,Y 1y dQ

ˇ

ˇ

ˇ

ˇ

2

dX 1dY 1

“ |λ|´p2n`1q

ĳ

R2p2n`1q

ˇ

ˇFSÑλfpX
1,Qq

ˇ

ˇ

2
dX 1dQ,

having used the properties of the Euclidean Fourier transform on R2n`1. (Here we use

our standard convention F pfqpξq :“
ş

fpxqe´i2πxξ dx.) Clearly, the L2-norm of Kf
λ is

finite since f P L1pH2,nqXL
2pH2,nq. Equivalently, the operator pfpπλq is Hilbert-Schmidt

with operator norm given by the L2-norm of Kf
λ . Thus (3.31) is proved.

Now we integrate (3.31) against |λ|2n`1 and use the property of the Euclidean Fourier

transform to obtain (3.32). This concludes the proof.

Formula (3.32) is the Plancherel formula. It implies that the definition of the group

Fourier transform may be extended unitarily from L1pGq X L2pGq to L2pGq.

The Plancherel formula can be also deduced from the orbit method, cf [10, Theorem

4.3.9]. As expected our expression for the Plancherel formula involves only the repre-

sentations of Schrödinger-type πλ since these representations correspond to the generic

orbits, see Proposition 3.12, Case (1).
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Group

In this Chapter we will finally discuss one possible answer to the question about mod-

ulation spaces on the Heisenberg group. Our approach is a blend of Feichtinger and

Gröchenig’s original coorbit approach and Daniel and Ingrid Beltiţă’s adapted frame-

work for nilpotent Lie groups. The latter is strongly based on useful techniques developed

in Pedersen [50, 51].

After a brief review of some basic ideas of the Pedersen-Beltiţă setting in Section 4.1

and some preliminary results on semi-direct product nilpotent Lie groups in Section 4.2,

we will study the modulation spaces that arise from the four types of H2,n-unirreps

classified by Theorem 3.16. We will proceed case-by-case following the theorem.

For the sake of convenience, we will use a simplified notation for the co-adjoint orbits

of H2,n and the corresponding unirreps throughout this chapter: orbits will be denoted

by Oj and unirreps by πj , where j “ 1, . . . , 4 according to the four cases of co-adjoint

orbits (cf. Proposition 3.12). Note that we have to assume arbitrary but fixed constants

fu, fv, fw, fx, fy, fz, fs for each case as the particular choice of constants determines the

individual orbit in each class.

Let us point out that many classical accounts on modulation spaces make use of

the reduced Heisenberg group Hn,red in order to operate within the classical coorbit

framework. (Cf. [20, 17, 40], e.g.) In contrast to this practice, we make no use of any

reduced versions of the Dynin-Folland group, but instead employ the quotient group

H2,n{P , where P stands for the projective kernel of the involved unirrep.

Let us furthermore remark that we denote our modulation spaces by M r,s
ϕ pπq, where

varphi denotes the analyzing window and π the specific unirrep which gives rise to

M r,s
ϕ pπq; the exponents r and s were chosen for the trivial reason that p and q are

already in use to denote elements pp, q, tq P Hn.
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4 Modulation Spaces of the Dynin-Folland Group

4.1 Modulation Spaces induced by Unirreps of Nilpotent Lie

Groups

In this section we want to give a brief review of Daniel and Ingrid Beltiţă’s approach to

modulation spaces induced by unitary irreducible representations of nilpotent Lie groups.

It is strongly based on the Weyl-Pedersen calculus introduced in [50, 51] since their

papers [5, 6] analyze mapping properties between modulation spaces of Weyl-quantized

operators with modulation space-valued symbols.

In particular, it focuses on the relation between conjoint orbits and certain subspaces

of the Lie algebra g isomorphic to them as it allows to use the corresponding unirreps

π without having to take care of their projective kernels, i.e., the subgroups of G on

which the unirreps reduce to periodic exponential multiples of the identity. In other

words, it permits the use of unirreps which are not necessarily square-integrable over the

whole of G as required in the original coorbit approach by Feichtinger and Gröchenig.

(Cf. [20, 21, 22].) Thus the notions employed in [5, 6] are rather based on subalgebras of

g than on the whole group G or subgroups of it.

Since in our case we are mainly interested in a specific instance of modulation spaces,

namely those induced by the Dynin-Folland group Hn,2, and whether these happen to

be independent of a special parameter in the definition, the so-called analyzing window

vector, we will employ equivalent but slightly altered definitions and notions more in the

spirit of the original coorbit. Our techniques rely on the fact that the projective kernel

Lie subalgebras of H2,n are actually ideals, hence giving rise to normal subgroups of G.

It is for this reason and due to some technical issues that we resort to work with groups

as in [21], e.g.

Yet as it is a priori not clear which conditions allow for this approach, we will start

with the Beltiţă-framework, adapting it to our case as we progress.

We start with a connected, simply connected nilpotent Lie group G of dimension

n and an arbitrary unitary irreducible representation π : G Ñ U pHπq corresponding

to a uniquely determined co-adjoint orbit O Ď g˚. Let us recall that each orbit is a

symplectic manifold equipped with a canonical Ad˚pGq-invariant measure, here denoted

by βO. Note that βO is uniquely determined up to a positive multiplicative constant,

which is usually chosen to suit certain formulas.

An object of particular importance is the following subspace ge Ď g, to which we will

refer as the predual of O: let us recall that for an arbitrary but fixed representative
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FO P g
˚ of O, i.e., Ad˚GpGqFO “ O its stabilizer group is defined by

StabpFOq :“ tg P G | Ad˚GpgqFO “ FOu.

StabpFOq is obviously a subgroup of G and G can be viewed as a fibre bundle over the

base O – G{StabpFOq. Let us denote the Lie algebra of StabpFOq by stabpFOq.

Definition 4.1. Let G be nilpotent Lie group. Let O be one of its co-adjoint orbits and

2d :“ dimpOq. Given any Jordan-Hölder sequence

F : t0u “ g0 Ď g1 Ď ¨ ¨ ¨ Ď gn “ g,

i.e., dimpgjq “ j and rg, gjs Ď gj´1, let tXjuj, with Xj P gj{gj´1, be a basis of g, thus a

so-called Jordan-Hölder basis for g. For any such basis tXjuj we then define the set of

jump indices, or simply jump set, of O by

e :“ eO :“t1 ď j1 ď . . . ď j2d ď n | gj Ę gj´1 ` stabpF0qu

“t1 ď j1 ď . . . ď j2d ď n | Xj R gj´1 ` stabpF0qu.

Then predual of O is ge is defined to be the linear span of tXjk | jk P eu.

Remark 4.2. Although the notion of jump indices is frequently used in representation

theory the name predual seems to go back to [4].

We immediately notice that by the definition of StabpFOq the Lie algebra g is given

as the direct sum g “ ge ‘ stabpFOq.

Given an orbit O, a representative FO and the corresponding jump set e “ eO, a

useful result by Pedersen yields that the map

φ : O Ñ R2d : F ÞÑ
`

xF,Xj1y , . . . , xF,Xj2dy
˘

(4.1)

defines a global chart of the manifold O which pushes βO forward to the 2d-dimensional

Lebesgue measure (modulo some positive multiplicative constant). That is, if we ele-

gantly ignore the isomorphism R2d – ge, φ yields in fact a global diffeomorphism between

O and ge. It worthwhile mentioning that this chart is in fact polynomial. (Cf. [50] Sub-

section 1.6 p. 521.)

Let us mention that we will frequently work with both G and g; our preferred coor-

dinate system on G will be the so-called exponential coordinates, also called canonical

coordinates of the first kind: given a basis X1, . . . , Xn of g the associated coordinates
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on G are defined by

exp : Rn – gÑ G : pt1, . . . , tnq ÞÑ expG

´

n
ÿ

j“1

tjxj

¯

.

Modulation spaces now enter the arena via the so-called ambiguity function. In order

to define the latter appropriately, we have to make use of the space of smooth vectors of

π, which we denote by H8π . (For further details confer the Appendix of [10], in particular

Section A.1 p. 226.)

Definition 4.3. Let G be a connected, simply connected nilpotent Lie group and let π be

a unitary irreducible representation of G on Hπ corresponding to some co-adjoint orbit

O. Furthermore, let ge be the predual of O. Then for any f P pH8π q1 and any ϕ P H8π
we define the ambiguity function of f with respect to the window vector ϕ by

Aπϕf : ge Ñ C,

X ÞÑ xf, πpexpXqϕypH8π q1 ,

where x . , . ypH8π q1 denotes the sesqui-linear pH8π q1-H8π -duality that coincides with the

Hπ-inner product in case f P Hπ.

Definition 4.4 (Modulation Spaces Ascending from Co-adjoint Orbits). Let G and π

be as in Definition 4.3. Let furthermore ge “ ge1 ‘ ge2 be a direct sum decomposition of

ge and let ϕ P H8π zt0u. For r, s P r1,8s we then define the modulation space M r,s
ϕ pπq for

the unitary irreducible representation π : G Ñ UpHπq with respect to the decomposition

ge “ ge1 ‘ ge2 and the analyzing window ϕ to be the space of all f P pH8π q1 such that

}f}Mr,s
ϕ pπq :“

›

›Aπϕf
›

›

Lr,spge1‘ge2q
“

´

ż

ge2

´

ż

ge1

ˇ

ˇAπϕfpX1, X2q
ˇ

ˇ

r
dX1

¯s{r
dX2

¯1{s
(4.2)

is finite, with the obvious changes whenever some r, s “ 8.

Remark 4.5. [On the Direct Sum Decomposition] Let us emphasize that the number

of precisely two summands in the direct sum decomposition is arbitrary and can be

extended to any number up to the topological dimension of ge. An important reason

for this specific choice is the endeavour to define spaces with properties similar to those

displayed by the classical modulation spaces M r,spRnq.
For our specific case of modulation spaces arising from the unirreps of the Dynin-

Folland group H2,n we will decompose the preduals according to the action of its corre-
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sponding unirreps on smooth vectors, that is, by either translating them or modulating

them. (Cf. Theorem 3.16 for an explicit description of the H2,n-unirreps.)

4.2 Semi-direct Products and Square-Integrability

A crucial property found in many instances of modulation spaces is their independence of

the analyzing window ϕ. In the general framework of coorbit spaces this is guaranteed for

square-integrable unirreps provided the mixed-norm space Lr,spGq is a Banach module

over L1pGq. (Cf. [21], Section 4 and in particular Theorem 4.2 piiq as well as p. 311.) For

a clarification of the notion of square-integrability we refer to Corwin and Greenleef [10]

p. 170 and More and Wolf [48]).

In the case of nilpotent Lie groups square-integrability of a unirrep (in the sense of

Moore and Wolf) is given precisely when the corresponding co-adjoint orbit is flat. But

a closer look at the orbits of the Dynin-Folland group immediately reveals that they are

indeed all flat. So, independence of the analyzing window should in principle, as we may

hope, be given for the modulation spaces described in the following subsection. In order

to prove this rigorously, however, we will have to show that our mixed-norm spaces

Lr,spGq allow for an adopted version of Young’s inequality, thus the Banach module

property. Whether or not this property is given strongly depends on the decomposition

ge “ ge1 ‘ ge2 and, a fortiori, on the structure of the group G itself.

Let us point out that we will make no further reference to Banach modules nor will we

refer to any abstract results from coorbit theory, even though the principal idea behind

the proof is an adaption of the abstract coorbit approach. Instead we will prove Young’s

inequality under certain conditions on the group and use it to provide the crucial estimate

to prove independence of the window. Although the core argument itself is classical and

well-known, we will write it out for the sake of a better reading.

Certain technicalities in our proof were originally inspired by Beltiţă and Beltiţă’s

approach in [5] (cf. particularly Theorem 3.3), yet had to be adopted to more relaxed

conditions in order to cover all possible instances of modulation spaces arising from the

Dynin-Folland group H2,n. To meet our target, we will focus on groups G given as the

semi-direct product G “ N ¸H of two nilpotent groups H and N .

Remark 4.6. Without loss of generality, let us work with the realization G “ NH,

writing elements of G as products nh, with n P N , h P H. This realization of G as a

product is in fact a very natural one if we keep in mind that N is a normal subgroup of

G, thus rendering H isomorphic to G{N .

Employing this realization, we can give the following definitions.
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Definition 4.7. Let G be a connected simply connected nilpotent Lie group given as the

semi-direct product G “ N ¸α H of the Lie groups H and N . For any r, s P r1,8s we

define the mixed-norm space Lr,spGq as the set of all f P S
1

pGq such that

}f}Lr,spGq :“
´

ż

N

´

ż

H
|fpnhq|r dh

¯s{r
dn

¯1{s
ă 8,

with the usual modifications for r “ 8 and s “ 8.

A concept well-known from the theory of modulation spaces on Rn is the so-called

short-time Fourier transform (STFT). In a nutshell, it can be viewed as the family of

pointwise matrix coefficients of the combined time-frequency shifts

pp, qq ÞÑ e2πiq . TRn
p “ ρp0, q, 0qρpp, 0, 0q “ ρ

`

p0, q, 0qpp, 0, 0q
˘

,

where ρ again denotes the Schrödinger representation of λ “ 1. But let us give the more

general definition of STFT for generic unirreps π of nilpotent semi-direct product groups

right away.

Definition 4.8. Let G be as in Definition 4.7 and let π be an irreducible unitary repre-

sentation of G on Hπ. Then the short-time Fourier transform of f P pH8π q1 with respect

to the window ϕ P H8π zt0u is defined by

V π
ϕ f : GÑ C,

nh ÞÑ xf, πpnhqϕypH8π q1 ,

where x . , . ypH8π q1 denotes the sesqui-linear pH8π q1-H8π -duality that coincides with the

Hπ-inner product in case f P Hπ.

Its intimate relation with the ambiguity function Aπϕf will become clear in the proof

of Theorem 4.11. The following two auxiliary results set the stage for the actual proof

of independence.

Proposition 4.9. Let G be a connected, simply connected nilpotent Lie group and let π

be a unitary irreducible representation of G on Hπ which is square-integrable modulo the

projective kernel P , that is, for the subgroup P :“ tx P G | πpxq P C IdHπu there exist

ψ1, ψ2 P Hπ such that

ż

G{P

ˇ

ˇxψ1, πpxqψ2yHπ

ˇ

ˇ

2
d 9x ă 8.
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In this case P is a normal subgroup of G and we can realize the quotient G{P as Ge :“

expGpgeq.

Proof. The first statement is proved by simply combining Theorems 3.2.3 and 4.5.2 in

[10] (see pages 99 and 171, respectively). The latter says that for a nilpotent Lie group G

square-integrability modulo the projective kernel P of a unirrep πO is equivalent to the

”flat-orbit” condition, that is, that O is an affine subspace of g˚. The former theorem

in turn says for nilpotent G and a co-adjoint orbit O with representative FO we have:

the flat-orbit condition ô stabpFOq “ p ô stabpFOq is an ideal of g.

Lemma 4.10. Let G be a connected simply connected nilpotent Lie group given as the

semi-direct product G “ N ¸α H of the nilpotent Lie groups H and N . Then the group

convolution on G maps continuously from Lr,spGq ˆ L1pGq into Lr,spGq. In particular,

Young’s inequality holds true for the mixed-norm space Lr,spGq.

The proof is similar to the classical one for Lp-spaces and makes use of the fact that

dn is invariant under the action of H.

Proof. Let us recall that we can identify N and H in G “ N ¸αH “ NH with pN, eHq

and peN , Hq, respectively, writing pn1, h1qpn2, h2q “
`

αph´1
2 qpn1qn2, h1h2

˘

. An easy cal-

culation now implies that conjpen,hq
`

pn, eHq
˘

“ pen, hqpn, eHqpen, hq “
`

αph´1qpnq, eH
˘

,

i.e., that H acts on N essentially via conjugation. But conj is measure-preserving on

unimodular groups, hence in particular on nilpotent Lie groups.

It is therefore easy to see that for the right regular representation R of G on the

Banach space Lr,spGq each operator Rpgq, g P G, is an isometry on Lr,spGq. For f P

Lr,spGq, ϕ P L1pGq, we can now regard the integral

f ˚ ϕ “

ż

G
fp . gqϕpg´1qdg “

ż

G
ϕpg´1qRpgqfdg

as an Lr,spGq-valued Bochner integral which converges since ϕ is intregable and

}Rpgqf}Lr,spGq “ }f}Lr,spGq ă 8. But a standard estimate for convergent Bochner

integrals then yields

›

›

›

›

ż

G
ϕpg´1qRpgqfdg

›

›

›

›

Lr,spGq

ď

ż

G

ˇ

ˇϕpg´1q
ˇ

ˇ }Rpgqf}Lr,spGq dg “ }ϕ}L1pGq }f}Lr,spGq .

Hence, we have shown }f ˚ ϕ}Lr,spGq ď }ϕ}L1pGq }f}Lr,spGq, which concludes the proof.

We can finally state our main observation. One of its interesting features is an alter-

native definition for modulation spaces in terms of the STFT.
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4 Modulation Spaces of the Dynin-Folland Group

Theorem 4.11. Let G be a connected simply connected nilpotent Lie group and let π

be a unitary irreducible representation of G on Hπ which is square-integrable modulo the

projective kernel P . Furthermore, let Ge :“ expGpgeq, indentified with G{P , be given

as the semi-direct product Ge2 ¸α Ge1 of the nilpotent Lie groups Ge1 and Ge2, and let

r, s P r1,8s.

If V π
ϕ f denotes the STFT defined on Ge, we then have

›

›V π
ϕ f

›

›

Lr,spGeq
“

›

›Aπϕf
›

›

Lr,spge1‘ge2q
(4.3)

for all f P M r,s
ϕ pπq. Thus the map f ÞÑ

›

›V π
ϕ f

›

›

Lr,spGeq
defines an equivalent norm

on M r,s
ϕ pπq, by an abuse of notation still denoted by } . }Mr,s

ϕ pπq. Thus M r,s
ϕ pπq is the

coorbit (in the sense of Feichtinger and Gröchenig) of Lr,spGeq under the representation

π : Ge Ñ U pHπq.

Moreover, M r,s
ϕ pπq does not depend on the particular choice of window ϕ, and any two

norms defined with respect to different windows ϕ1, ϕ2 P pH8π q1zt0u are equivalent.

Proof. In order to prove the first part of the statement, we make use of the identification

of elements g1 P Ge1 with elements peN , g1q P Ge and the analogous one for g2 P Ge2.

Furthermore, we know that for each g1 P Ge1 there exists an Xg1 P ge1 such that

expGepXg1q “ g1, with an analogous statement for g2 P Ge2.

This allows us to identify g2g1 with both pg2, eGe1qpeGe1 , g1q “
`

αpg´1
1 qpg2q, g1

˘

and

expGepXg2q expGepXg1q, whereas we may identify expGepXg1 `Xg2q with pg2, g1q by the

use of standard exponential coordinates. But since dg2 is Ge1-invariant, we hence com-

pute

›

›pV π
ϕ fq

›

›

Lr,spGeq
“

´

ż

Ge2

´

ż

Ge1

ˇ

ˇ

ˇ
xf, πpg2g1qϕypH8π q1

ˇ

ˇ

ˇ

r
dg1

¯r{s
dg2

¯1{s

“

´

ż

Ge2

´

ż

Ge1

ˇ

ˇ

ˇ

@

f, π
`

αpg´1
1 qpg2q, g1

˘

ϕ
D

pH8π q1

ˇ

ˇ

ˇ

r
dg1

¯r{s
dg2

¯1{s

“

´

ż

Ge2

´

ż

Ge1

ˇ

ˇ

ˇ
xf, πpg2, g1qϕypH8π q1

ˇ

ˇ

ˇ

r
dg1

¯r{s
dg2

¯1{s

“

´

ż

ge2

´

ż

ge1

ˇ

ˇ

ˇ

@

f, π
`

expGepXg1 `Xg2q
˘

ϕ
D

pH8π q1

ˇ

ˇ

ˇ

r
dXg1

¯r{s
dXg2

¯1{s

“
›

›Aπϕf
›

›

Lr,spge1‘ge2q
.

This proves the first part of our theorem.

Given the first part of the theorem, its second part is a standard result of coorbit theory

for square-integrable group representations (cf. [21] Theorem 4.2). A condensed version
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4 Modulation Spaces of the Dynin-Folland Group

of the argument is the following: recalling that for any ϕ1, ϕ2 P Hπ square-integrability

of π|Ge yields the reproducing identity

ϕ2 “
1

xϕ1, ϕ2yHπ

ż

Ge

xϕ2, πpgqϕ1ypH8π q1πpgqϕ1 dg,

a straight-forward computation furthermore shows that

V π
ϕ2
f “

1

xϕ1, ϕ2yHπ

´

V π
ϕ1
f ˚Ge V

π
ϕ2
ϕ1

¯

.

But since for ϕ1, ϕ2 P H8π we have Aπϕ2
ϕ1 P S pgeq (cf. [5] Corollary 2.9 (3)), equivalently

we have V π
ϕ2
ϕ1 P S pGeq Ď L1pGeq “ L1,1pGeq. We can now apply Young’s inequality to

estimate

}f}Mr,s
ϕ2
ď

1

xϕ1, ϕ2yHπ

}ϕ1}M1,1
ϕ2
}f}Mr,s

ϕ1
.

Since the order of ϕ1 and ϕ2 was arbitrary, } . }Mr,s
ϕ1
pπq is equivalent to } . }Mr,s

ϕ2
pπq and our

proof is complete.

Let us conclude this subsection with a technical lemma we will need in the following.

Lemma 4.12. Let G be a connected simply connected nilpotent Lie group given as the

semi-direct product G “ N ¸α H of the nilpotent Lie groups H and N and let π be a

unitary irreducible representation of G which is square-integrable modulo the projective

kernel P . Furthermore, let ge “ ge1 ‘ ge2 be a direct sum decomposition of the predual

ge of Oπ such that ge1 “ hX ge and ge2 “ nX ge.

Then the semi-direct product G “ N ¸α H factorizes through P , i.e., if PH :“

expHpge1q and PN :“ expN pge1q, then α induces a map β such that Ge “ N{PN ¸β

H{PH .

Proof. To start with, we recall that we can identify Ge with G{P since Oπ is flat

(cf. Proposition 4.9). Let us also point out that ge1 and ge2 are ideals in h and n, respec-

tively. Equivalently, PH and PN are normal subgroups in H and N , respectively. For the

quotients groups H{PH and N{PN one can easily verify that αpPHqpNq Ď PN and that

αphqpPN q Ď PN for every h P H. Hence, the homomorphism α : H Ñ AutpNq induces

a homomorphism β : H{PH ÞÑ AutpN{PN q such that Ge “ H{PH ˙β N{PN .
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4 Modulation Spaces of the Dynin-Folland Group

4.3 Case p1q - Modulation Spaces on Hn

Let us recall that by Proposition 3.17 the jump set in Case p1q was given by eO1 “

tx1, . . . , xn, y1, . . . , yn, z, w, u1, . . . , un, v1, . . . , vnu “: e, hence the predual of O1 is given

by

hn,2e – RnXu ‘ RnXv ‘ RXw ‘ RnXx ‘ RnXy ‘ RXz.

The direct sum decomposition we employ is

h2,ne :“ h2,nP ‘ h2,nQ

:“
`

RnXu ‘ RnXv ‘ RXw

˘

‘
`

RnXx ‘ RnXy ‘ RXz

˘

as it meets the above-mentioned meta-criterium of splitting the representation’s action

into right Hn-translations in P and modulations in Q. (See Remark 4.5.)

Proposition 4.13. The modulation spaces M r,s
ϕ pπλq are independent of the particular

choice of analyzing window ϕ.

Proof. In order to prove independence of ϕ, let us recall from Subsection 3.6 that the

Dynin-Folland group can be written as a semi-direct product R2n`2 ¸α Hn. Let us

furthermore recall from Proposition 3.12 and Corollary 3.13 that the co-adjoint orbit

corresponding to π1 is flat and that the projective kernel P coincides with the centre

of H2,n since P – StabpF1q – expH2,n
pRXsq. Hence, the conditions of Lemma 4.12 are

obviously satisfied for the direct sum decomposition h2,ne “ h2,nP ‘ h2,nQ. We can thus

employ Theorem 4.11 to conclude that the modulation spaces M r,s
ϕ pπλq are independent

of the particular choice of window ϕ.

Conjecture 4.14. The modulation spaces M r,spπλq are genuinely different from any

classical modulation space M r̃,s̃pR2n`1q for all r, s P r0,8q.

Although there are strong hints in this direction, there remains to be given a rigorous

proof.

Remark 4.15. It also remains unclear which global diffeomorphisms of the underlying

space R2n`1 leave the spaces M r,spπλq invariant. In the classical case, i.e., for M r,spRnq,
the only admissible diffeomorphisms are affine transformations. But this alone would

already exclude the use of many coordinates charts φ : hn Ñ Hn different from the

exponential map.
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4 Modulation Spaces of the Dynin-Folland Group

Such an answer would probably pose the unpleasant question of how much use such

spaces can be if they do not admit different (coordinate) realizations of the underlying

group Hn.

Proposition 4.16. The following properties hold true for the modulation spaces

M r,spπλq:

(i) For 1 ď r1 ď r2 ď 8, 1 ď s1 ď s2 ď 8 we have

M1,1pπλq ĎM r1,s1pπλq ĎM r2,s2pπλq ĎM8,8pπλq.

(ii) Let r1, s1 be the conjugate indices of r, s P r1,8s. Then
`

M r,spπλq
˘1
“M r1,s1pπλq.

Proof. By the reasoning in the proof of Theorem 4.13, we may consider π1 as a square-

integrable representation of the group H2,ne – H2,n{P , where P denoted the projective

kernel of π1. Square-integrability then yields M r,spπλq X M8,8pπλq “ M r,spπλq by

Feichtinger and Gröchenig [21] Corollary 4.4. Hence, the first claim is due to the general

fact pLr1,s1P,Q X L8,8P,Q qpR
4n`2q Ď pLr2,s2P,Q X L8,8P,Q qpR

4n`2q.

The second claim is owed to Theorem 4.9 of the same paper and the fact that the

Banach dual
`

Lr,sP,QpR
4n`2q

˘1
and the Köthe dual

`

Lr,sP,QpR
4n`2q

˘α
both coincide with

Lr
1,s1

P,QpR
4n`2q.

Remark 4.17 (Atomic Decompositions). The existence of arbitrarily fine BUPU’s for

any locally compact group (cf. Remark 2.22), thus specifically for H2,n, automatically

implies the existence of atomic decompositions in M r,spπλq. A concrete example of a

well-spread family of points in H2,n has yet to be given, though.

The existence of smooth BUPU’s (although not under this name) for homogeneous

groups, like H2,n, is shown in [] in the subsection on the Calderón-Vaillancourt Theorem.

4.4 Case p2q - A Quasi-Classical Case in n dimensions

As in Case p1q we start with the the predual of O2: since the corresponding jump set is

given eO2 “ tu1, . . . , un, v1, . . . , vnu, we obtain

h2,ne “ RnXu ‘ RnXv. (4.4)

But as the following shows this already reduces this case to the classical modulation

spaces on Rn.
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4 Modulation Spaces of the Dynin-Folland Group

Proposition 4.18. Let r, s P r1,8s. Then M r,s
ϕ pπ2q is isomorphic to M r,spρR

n

fw
q, that is,

the modulation spaces on Rn induced by the Schödinger representation of parameter fw.

In the special case of fw “ 1, M r,s
ϕ pπ2q even coincides with the classical space M r,spRnq.

In any case, the definition of M r,s
ϕ pπ2q is independent of the particular choice of ana-

lyzing vector ϕ.

Proof. To start with, let us recall that if we set g :“ pu, v, w, x, y, z, sq P H2,n, π2 was

given by

pπ2pgqψq pũq “ ψpũ` u´
z

2fw
fxq e

2πipfww`fxx`fyy`fzzq e
πi
A

2ũ`u´ z
2fw

fx,fwv´
z
2
fy

E

Rn .

Hence, restricting π2 to Ge “ expH2,n
ph2,neq (realized as the quotient group H2,n{P ) we

immediately observe that it coincides with the Schrödinger representation ρfw restricted

to R2n
u,v. This proves the first two assertions.

Our third claim follows from the observation that Ge decomposes as the direct product

H2,ne2
“ expH2,ne2

pRnXuq ˆ expH2,ne2
pRnXvq since rRnXu,RnXvs “ RXw Ď p. Since

this is a special instance of semi-direct product (with α “ id : H Ñ AutpNq), we can

apply Theorem 4.11 to H2,ne2
. This concludes our proof.

4.5 Case p3q - A Quasi-Classical Case in 1 dimension

Let us first recall that for the orbit O3 the jump set is given by either eO3 “ tz, uju or

eO3 “ tz, vku, for some j or some k in t1, . . . , nu, depending on the vector pfy, fxq P R2n.

(For more details see Proposition 3.17.)

This implies that the predual of O2 is given by either

h2,ne “ RXz ‘ RXuj or h2,ne “ RXz ‘ RXvk

for some j or some k in t1, . . . , nu. Without loss of generality, let us focus on the second

case, for which we obtain the following.

Proposition 4.19. Let r, s P r1,8s. Then M r,s
ϕ pπ3q is isomorphic to M r,spρ´fxk {2q, that

is, the modulation spaces on R induced by the Schödinger representation of parameter

´fxk{2. In the special case of ´fxk{2 “ 1, M r,s
ϕ pπ3q coincides with the classical space

M r,spRq.
In any case, the definition of M r,s

ϕ pπ3q is independent of the particular choice of ana-

lyzing vector ϕ.
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Proof. The proof is similar to the proof of Proposition 4.18. For g :“ pu, v, w, x, y, z, sq P

H2,n we have

pπ3pgqϕq pz̃q “ ϕpz̃ ` zq e2πipfuu`fvv`fxx`fyyq expπi
´2z̃ ` z

2
p´fxv ` fyuq

¯

.

Hence the restriction to Ge “ expH2,n
ph2,neq of π3 coincides with the representation

e2πifvkvkρ´fxk {2 restricted to R2
z,vk

. Since the factor e2πifvkvk is of modulus 1 and hence

plays no role in the modulation space norm (4.2), the rest of the proof reduces to a

2-dimensional special case of the proof of Proposition 4.18.

4.6 Case p4q - The Trivial Case

Since the corresponding orbits are singletons, the whole group stabilises each of them,

i.e., h2,ne – t0u. Recall that the functional dimension (being half the dimension of the

orbits) equals zero and hence equivalenty the corresponding representation spaces Hπ3

are isomorphic to C. As the flat-orbit condition is trivially satisfied, all modulation

spaces M r,s
ϕ pπ4q are all isomorphic to C.
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Heisenberg Group

This Chapter is mainly concerned with properties of the Weyl calculus on the Heisenberg

group first proposed by Dynin [13]. Seemingly little known to the scientific community,

Dynin’s rather brief account was picked up and studied more extensively by Folland [29]

almost two decades later. Dynin’s Weyl quantization is defined in terms of the generic

unitary irreducible representation of a 3-step nilpotent group which relates to the Heisen-

berg group the same way the Heisenberg group Hn relates to Rn. This relation can be

realized by constructing the big group’s Lie algebra as the set of commutator relations

of left-invariant vector fields and multiplication by coordinates. Briefly sketched by

Dynin, Folland gives a full account on the construction while extending it to all (fully

non-Abelian) 2-step nilpotent Lie groups G; he refers to the groups thus obtained as

meta-Heisenberg groups HpGq. In the special case of G “ Hn, we will refer to HpHnq

as the Dynin-Folland group, denoting it by H2,n.

As Folland’s account aims at proving the usefulness of meta-Heisenberg groups in

general rather than studying the induced operator calculus in every detail, the author

restricts himself to establishing some important basics, in particular formulas as well

as a link to other existing results such as Beals and Greiner’s calculus on Heisenberg

manifolds [3].

Another yet more abstract approach to Weyl quantization via the unirreps of nilpo-

tent Lie groups is found in Pedersen [50, 51]. The author of the present text and his

collaborators became aware of Pedersen’s work while studying the co-adjoint orbits and

unirreps of H2,n in their attempt at making sense of modulation spaces on Hn. In a very

general framework, Pedersen establishes an elegant and remarkably explicit approach to

geometric quantization of the co-adjoint orbits of nilpotent Lie groups, which in its ex-

tended setting provides strong results for the Weyl quantization of symbols that are

Schwartz class or tempered distributions.

For the special case of the Lie group being Hn, Pedersen recovers the classical Weyl

quantization on Rn; for H2,n Pedersen’s Weyl corresponde in fact coincides with Dynin’s,

103



5 Weyl-Quantized Operators on the Heisenberg Group

although it appears that so far the connection between the two approaches has not been

mentioned in the literature. Despite being elegant, Pedersen’s account is focused on

representation theory and abstains from any applications to PDE theory.

It is thus the purpose of our account to investigate a little further some ΨDO-related

questions. Sections 5.1 - 5.3 motivate the quantization from a pseudodifferential point

of view and present a few basic results, most of which are already present in [29]. In

particular, Section 5.2 provides some useful ways to rewrite the quantization, which

makes it easily applicable in ignorance of any representation theoretic background.

In Section 5.4 we give a brief account on left-invariant operators, especially differential

operators, from a rather Lie group theoretic point of view, while Section 5.5 returns

to the ΨDO perspective, introducing a type of global non-isotropic Hörmander symbol

classes first suggested by Dynin (and in a localized version used by Beals and Greiner).

We justify the definition by showing that their elements quantize continuous operators

on the Schwartz space S pHnq.

Section 5.6 is focussed on the natural Moyal product of symbols, i.e., the product of

symbols which quantizes the product of two ΨDO’s. We derive a formal asymptotic

expansion for it and discuss its limited use for the non-isotropic symbol classes we con-

sider. Another representation of the Moyal is given in form of an oscillatory integral,

which we employ to show the expected mapping properties between symbol classes.

Finally, we revisit the link with Beals and Greiner’s calculus on Heisenberg mani-

folds first established in [29]. Following Folland’s example, we discuss the special case

when the Heisenberg manifold is given by Hn ˆR2n`1, the phase space of the Hn-Weyl

quantization, and compare some of Beals and Greiner’s results with ours.

5.1 The Quantization Problem for the Heisenberg Group

Our approach to pseudodifferential operators on Hn is motivated by Hermann Weyl’s

quantization procedure on Rn, which can be expressed as follows: How can one associate

an operator S on L2pRnq (or some dense subspace of it) to a given function σ defined

on the classical phase space T ˚Rn – R2n such that the coordinate projections

ξ “ pξ1, . . . , ξn, x1, . . . , xnq ÞÑ ξj and x “ pξ1, . . . , ξn, x1, . . . , xnq ÞÑ xk,

j, k P t1, . . . , nu, correspond to the self-adjoint operators

Dxj “ p2πiq
´1 B

Bxj
and Xk “ f ÞÑ xk f,
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respectively? Weyl’s quantization correspondence suggests

σpD,Xq : “

ĳ

R2n

´

ĳ

R2n

σpξ, xq e´2πippξ`qxq dξ dx
¯

e2πippD`qXq dp dq. (5.1)

(Cf. Weyl [70] p. 27 and p. 33 for the original German version as well as [71] p. 274 and

p. 280 for an English translation.)

As we recognize the unitary operators e2πippD`qXq to be an instance of the Schrödinger

representation ρ “ ρ1, introduced in Sections 1.3.3 and 1.3.4, we can equally rewrite

Weyl’s correspondence (5.1) as

Opρpσq :“ σpD,Xq “

ĳ

R2n

σ̂pp, qqρpp, q, 0q dp dq.

Let us note that if we do not want to make use of representation theory at all, but rather

study the convergence of the defining integral in dependence of σ, e.g., we can easily

arrive at another useful representation:

pσpD,Xqfqpxq “

ĳ

σ
`

ξ,
1

2
px` yq

˘

e2πiξpx´yqfpyq dξ dy. (5.2)

With this at hand, it is now easily seen that the Weyl correspondence indeed solves the

above quantization problem.

Examples of other quantizations which satisfy the above criterium are the Kohn-

Nirenberg quantization, any extrapolated quantization between the Kohn-Nirenberg and

Weyl quantizations or beyond (cf. Shubin’s τ -calculus, [67] Subsection 23.3), the Born-

Jordan quantization (cf. [11]), etc. We shall say no more about these in the following.

On non-Abelian Lie groups G like Hn it is a priori not clear what the according phase

space should look like and how one should quantize. One thing we know for sure is that

the differential operators Dxj should be replaced by the standard left (or right) invariant

vector fields, i.e., the ones whose left (or right) trivialization at eˆTeG coincides with the

standard basis of the Lie algebra g. Let us, without loss of generality, focus on the left-

invariant vector fields. Moreover, the quantization correspondence should incorporate

multipliers in the group variable g.

A very satisfying answer to the quantization problem on compact groups is given by

Ruzhansky and Turunen [64, 65, 66]. Their approach makes use of the groups’ representa-

tion theory and defines a Kohn-Nirenberg-type quantization in terms of the natural group

Fourier transform. More precisely, the quantization employs representation-valued, i.e.,
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matrix-valued symbols, which are defined on G ˆ pG. An approach of similar build has

been successfully applied to graded Lie groups G such as the Heisenberg group by Fischer

and Ruzhansky [24, 26, 25].

Another quite different approach, the one we will study, is to employ a Heisenberg-type

structure based upon the group G and to find an adequate unitary representation of that

structure that eventually quantizes ΨDO’s. For G “ Hn the required meta structure is

precisely the Dynin-Folland group H2,n, which we introduced in Chapter 3.

Since in our case we have to quantize the 2n` 1 left-invariant vector fields defined in

Subsection 1.3.2 as well as multiplication by the 2n` 1 coordinates of Hn, we postulate

that our phase space is isomorphic to R4n`2.

Definition 5.1. Let us define the Hn-phase space to be the Euclidean space R4n`2,

whose elements we denote by

pΞ,X q :“ pξu, ξv, ξw, χx, χy, χzq

:“ pξu1 , . . . , ξun , ξv1 , . . . , ξvn , ξw, χx1 , . . . , χxn , χy1 , . . . , χyn , χzq.

We can now rephrase the quantization problem on Hn as the following task:
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How can we associate an operator S on L2pHnq (or some dense subspace of it) to a given

function σ on the Hn-phase space R4n`2 such that the following correspondences are

included:

ξuj ù Dpj , ξvk ù Dqk , ξw ù Dt, (5.3)

χxl ù Xpl , χym ù Xqm , χz ù Xt, (5.4)

for j, k, l,m “ 1, . . . , n, where the above operators are defined as in (1.18) and (3.1).

An answer, namely the one we shall study more closely throughout this chapter, is

given by what we call the Hn-Weyl quantization.

5.2 The Hn-Weyl-Quantization

In this section we first revisit the Weyl quantization on Hn proposed by Dynin [13].

After giving the original definition, we review some more useful representations of the

operator-valued integral defining it. Most of the useful formulas can in fact already be

found in Folland’s discussion of Dynin’s results (cf. [29] Section 4).

At the end of the section we discuss why Dynin’s Weyl quantization coincides with

Pedersen’s in this specific case. As we will see this is not mere coincidence but rather a

reflection of the fact that Weyl quantizations are an instance of geometric quantization.

In order not to have to verbally distinguish between the two quantizations, we will from

now only refer to the Hn-Weyl quantization.

The proof that this quantization in fact solves the quantization problem posed in

Section 5.1 is given in Section 5.3.

Notation 5.2. Just as for the Euclidean Weyl quantization we will have to consider

symbols σ defined Hn-phase space R4n`2 as well their Euclidean Fourier transforms

σ̂. For reasons that will be obvious in a moment, we will impose that the symbols

σ : R4n`2 Ñ C be functions of the variables

pΞ,X q :“ pξu, ξv, ξw, χx, χy, χzq

:“ pξu1 , . . . , ξun , ξv1 , . . . , ξvn , ξw, χx1 , . . . , χxn , χy1 , . . . , χyn , χzq,

pΞ1,X 1q :“ pξ1u, ξ
1
v, ξ

1
w, χ

1
x, χ

1
y, χ

1
zq

:“ pξ1u1 , . . . , ξ
1
un , ξ

1
v1 , . . . , ξ

1
vn , ξ

1
w, χ

1
x1 , . . . , χ

1
xn , χ

1
y1 , . . . , χ

1
yn , χ

1
zq

...
... ,
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or

pΞ, Xq :“ pξu, ξv, ξw, pX , qX , tXq

:“ pξu1 , . . . , ξun , ξv1 , . . . , ξvn , ξw, p1X , . . . , pnX , q1X , . . . , qnX , tXq,

pΞ, Y q :“ pξu, ξv, ξw, pY , qY , tY q

:“ pξu1 , . . . , ξun , ξv1 , . . . , ξvn , ξw, p1Y , . . . , pnY , q1Y , . . . , qnY , tY q,

...
... ,

whereas their Fourier transforms σ̂ : R4n`2 Ñ C shall be functions of

pP,Qq :“ pu, v, w, x, y, zq

:“ pu1, . . . , un, v1, . . . , vn, t, x1, . . . , xn, y1, . . . , yn, zq,

pP 1,Q1q :“ pu1, v1, w1, x1, y1, z1q

:“ pu11, . . . , u
1
n, v

1
1, . . . , v

1
n, t

1, x11, . . . , x
1
n, y

1
1, . . . , y

1
n, z

1q,

...
... .

The strange convention of using both X (to be read as an uppercase χ) and X is chosen

for the merit of reflecting the phase space character of R4n`2
Ξ,X on the one hand and offering

the possibility of keeping the standard functional variable X “ pp, q, tq on Hn on the

other hand.

5.2.1 Dynin’s Weyl Quantization

In the following f will denote a unspecified complex valued function of X P Hn.

Definition 5.3. Let π denote the generic representation (of λ “ 1) of the Dynin-Folland

group H2,n defined by Proposition 3.9 To a given symbol σ : R4n`2 Ñ C we formally

define the corresponding Hn-Weyl-quantized pseudodifferential operator on L2pHnq

σpD ,X q :“

ĳ

R4n`2

σ̂pP,Qq e2πipxP,Dy`xQ,X yq dP dQ

“

ĳ

R4n`2

σ̂pP,QqπpP,Q, 0q dP dQ. (5.5)

For the sake of a convenient reading, we will denote σpD ,X q also by Opπpσq.

Remark 5.4. The notation pP,Qq ÞÑ e2πipxP,Dy`xQ,X yq is explicitly used in [13] for
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the representation we usually denote by π “ π1 (for λ “ 1). We recall that π is indeed

generated by the left Hn-translations e2πixP,Dy and the Euclidean modulations e2πixQ,X y.

(Cf. Section 3.4.)

In Dynin [13] Identity (5.5) is a priori understood in terms of Anderson’s Weyl func-

tional calculus for non-commuting self-anoint operators (cf. [1]).

The integral defining Identity (5.5) can in fact be viewed as an ordinary Bochner

integral (converging in the strong operator topology) provided that σ̂ P L1pR4n`2q. By

applying the operator to a function f P S pHnq we can rewrite the integrals and obtain

pσpD ,X qfqpXq “

ĳ

σ̂pP,Qq e2πixQ,X¨p 12PqyfpX ¨Pq dP dQ

“

żżżż

σpΞ,X q e´2πixΞ,Py e´2πixX ,Qy e2πixQ,X¨p 12Pqy

fpX ¨Pq dΞ dX dP dQ

“

¡

σpΞ,X q e´2πixΞ,Py δ0

`

X ´X ¨ p
1

2
Pq

˘

fpX ¨Pq (5.6)

dΞ dX dP (5.7)

“

ĳ

σ
`

Ξ, X ¨ p
1

2
Pq

˘

e´2πixΞ,Py fpX ¨Pq dΞ dP (5.8)

“

ĳ

σ
`

Ξ, X ¨
1

2
pX´1 ¨Y q

˘

e´2πixΞ,X´1¨Y y fpY q dΞ dY (5.9)

“

ĳ

σ
`

Ξ,
1

2
pX ` Y q

˘

e2πixΞ,Y ´1¨Xy fpY q dΞ dY (5.10)

“

ĳ

σ
`

Ξ,
1

2
pX ` Y q

˘

e2πixΞ,X´Y´ 1
2
rX,Y sy fpY q dΞ dY. (5.11)

Here we have used the Euclidean Fourier Inversion Theorem in line (5.7), and in line

(5.9) the fact that X ¨ 1
2pX

´1 ¨Y q “ 1
2pX ` Y q. Let us keep in mind that X´1 “ ´X

for all X P Hn due to its nilpotent structure. The change of variables applied in line

(5.8) does not affect the measure since on R2n`1 – Hn the Lebesgue measure coincides

with the Hn-Haar measure, which in turn is invariant under group multiplication and

inversion.

Remark 5.5. For the case we wish to completely forget about the Hn-group structure,
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we can rewrite Integral (5.11) in terms of Notation 5.2:

pσpD ,X qfqppX , qX , tXq “

ĳ

R4n`2

σ
´

ξu, ξv, ξw,
1

2
ppX ` pY q,

1

2
pqX ` qY q,

1

2
ptX ` tY q

¯

ˆ e2πixpξu,ξv ,ξwqt,ppX´pY ,qX´qY ,tX´tY qty e´πippXqY ´qXpY q

ˆ fppY , qY , tY q dξu dξv dξw dpY dqY dtY . (5.12)

We notice that Integral (5.12) is very similar to the 2n ` 1-dimensional version of its

Euclidean counterpart (5.2), which defines the Weyl quantization on Rn. The main

difference lies in the additional factor e´πippXqY ´qXpY q; as we will see in Section 5.6, it

yields a quite different Moyal product structure on the Hn-phase space in comparison

with its R4n`2 equipped with the standard Moyal product. (Cf. Definition 5.35.)

To complete what has been said, let us observe that the Hn-Weyl-quantized operator

σpD ,X q can be expressed as an integral operator with kernel

KσpX,Y q “

ż

R2n`1

σ
`

Ξ,
1

2
pX ` Y q

˘

e2πixΞ,Y ´1¨Xy dΞ

“
`

F1σ
˘`

Y ´1 ¨X,
1

2
pX ` Y q

˘

.

Thus the kernel is obtained from the symbol σ by applying a partial Fourier transform

in the first variable, followed by the measure-preserving change of variables

T : R4n`2 Ñ R4n`2 : pX,Y q ÞÑ
`

Y ´1 ¨X,
1

2
pX ` Y q

˘

.

Since F1 and the pullback T ˚ are isomorphisms on S pR4n`2q, and a fortiori on

S
1

pR4n`2q, as well as unitary isomorphisms on L2pR4n`2q, the integral kernel Kσ is

a member of S
1

pR4n`2q or L2pR4n`2q precisely when σ belongs to the respective spaces.

But the Schwarz kernel theorem classifies the continuous linear operators from S pR2n`1q

into S
1

pR2n`1q as those that possess an S
1

pR4n`2q-kernel. Another classical statement

classifies the Hilbert-Schmidt operators on L2pR2n`1q as those that possess an integral

kernel in L2pR4n`2q. This can be summarized by the following statement.

Proposition 5.6. The Hn-Weyl quantization defined for symbols

σ P FL1pR4n`2q extends uniquely to a quantization calculus for tempered distributions

and square-integrable functions:

piq A linear operator from S pHnq to S
1

pHnq is continuous if and only if it is given

as the Hn-Weyl quantization of a symbol in S
1

pR4n`2q.
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piiq A bounded linear operator on L2pHnq is Hilbert-Schmidt if and only if it is given

as the Hn-Weyl quantization of a symbol in L2pR4n`2q.

5.2.2 Pedersen’s Weyl Quantization

We conclude the section with a brief account on the link between Dynin’s and Pedersen’s

Weyl quantizations. To do so, we will recall a few important aspects of Pedersen’s

machinery.

As usual, let G be a nilpotent Lie group and O one of its co-adjoint orbits, which cor-

responds uniquely to a unirrep π : GÑ UpHπq. Let furthermore, FO be a representative

of O, and let the set of jump indices e “ eO, the predual ge and the global chart φ be

as in Defintion 4.1 and Identity (4.1), respectively.

The Schwartz space S pOq is well-defined: the orbit is equipped with a smooth struc-

ture via the identification O – G{StabpFOq, and also the polynomial structure defined

on G{StabpFOq carries over to O. (Cf. [51] Subsection 4.1 p. 31 and [50] Subsection 1.6

p. 521.)

If βO denotes the canonical measure on O, one can now define a Fourier transform on

S pOq by

pσpXq :“

ż

O

σpF qe´2πixF,Xy dβOpF q (5.13)

for σ P S pOq and X P ge. Here x . , . y denotes the standard g˚-g-duality.

It turns out that the map σ ÞÑ pσ|ge defines a topological isomorphism from S pOq
onto S pgeq, which satisfies the identity

ż

ge

pσpXq pτpXq dX “ CO

ż

O

σpF q τpF q dβO

for all σ, τ P S pOq. The constant CO only depends on the particular orbit O. In fact,

C´1
O equals the absolute value of the Pfaffian of the symplectic form of O. (Cf. [51]

Subsection 4.1 p. 31 as well as p. 10.) In the case of the non-degenerate orbits of Hn,

COλ is given by |λ|´n, whereas for the generic orbits of H2,n it equals |λ|´2n´1.

With this at hand, we can now give Pedersen’s definition of Weyl quantization.

Definition 5.7. Let σ P S pOq. The Weyl-Pedersen quantization of σ is then defined
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to be the operator

OpπP pσq :“ CO

ż

ge

pσpXqπpexppXqq dX, (5.14)

which is bounded linear on the representation space Hπ.

Remark 5.8. Like the integral in Defintion 5.3 Integral (5.14) can be viewed as Bochner

integral converging in the strong operator topology on BpHπq, the space of bounded

linear operators on Hπ. The fact that Opπpσq is bounded is due to pσ P L1pgeq and a

standard estimate for Bochner integrals converging in the strong operator topology.

We now easily conclude the following:

Proposition 5.9. The Weyl quantization on the Heisenberg group defined by Dynin [13]

coincides with the Weyl quantization defined by Pedersen [51] for the special case when G

is the Dynin-Folland group H2,n and the unirrep employed is the generic representation

π “ π1 defined in Section 3.4.

Proof. We recall from Proposition 3.12 that for the generic unirrep πl, λ ‰ 0, the corre-

sponding co-adjoint orbit Oπλ is given by

Oπλ “ λX˚s ‘ RnX˚u ‘ RnX˚v ‘ RX˚w ‘ RnXx ‘ RnX˚y ‘ RX˚z .

Moreover, we recall from Section 4.3 that the corresponding predual is

h2,ne :“ h2,nP ‘ h2,nQ

:“
`

RnXu ‘ RnXv ‘ RXw

˘

‘
`

RnXx ‘ RnXy ‘ RXz

˘

.

It follows that for any λ ‰ 0, the Fourier transform defined by (5.13) coincides with the

standard Euclidean Fourier transform restricted to S pR4n`2q times COλ “ |λ|´2n´1.

Hence, for λ “ 1 this immediately implies that σpD ,X q “ Opπ1pσq “ Opπ1P pσq.

From now on we will make no further distinction between the two quantizations and

drop the subindex P in OpπP .

Remark 5.10. As we have mentioned in the introduction to this chapter Pedersen’s

calculus for Hn agrees with the classical Weyl quantization. For a comparison between

(5.14) for generic ρλ and Opρλpσq “ σpλD,Xq we refer to [28, p. 109].
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Pedersen’s account [51] indeed features some very interesting properties of the quan-

tization Opπ, some of which we will list here. (The list is essentially the same as the one

given by [51] Theorem 4.1.4.)

Let us denote by S1pHπq the the Schatten-von Neumann 1-class, or trace class, of

operators acting on Hπ and by S2pHπq the Schatten-von Neumann 2-class, or Hilbert-

Schmidt class, on Hπ. The inner product on S2pHπq will be denoted by x . , . yHS .

Furthermore, let u pgCq denote the universal enveloping algebra of the complexification

of g. We then have

Theorem 5.11. For the Weyl correspondence Opπ defined by (5.13) the following prop-

erties hold true for all σ, τ P S pOq:

(i) Opπpσq P S1pHπq XS2pHπq and Tr pOpπpσqq “
ş

O
σpF q dβOpF q,

(ii) xOpπpσq,OpπpτqyHS “ Tr pOpπpτq˚Opπpσqq “
ş

O
σpF qτ̄pF q dβOpF q,

(iii) Opπpσq˚ “ Opπpsσq.

(iv) By duality Opπ extends to S
1

pOq and the image under Opπ of the polynomial

functions on O, PpOq, coincides with dπpu pgCqq.

(v) Opπp1q “ I.

(vi) Opπp2πi x . , Xyq “ dπpXq for all X P g,

(vii) Opπpe2πix . ,Xyq “ πpexpGpXqq for all X P g.

Remark 5.12. Theorem 5.11 pviiiq implies, in particular, that OpπP “ Opπ solves the

quantization problem for Hn, without assuming any prior knowledge about Dynin’s

quantization. (Cf. Identities (3.14).)

Remark 5.13. The strong link between Pedersen’s Weyl quantization and modulation

spaces as defined in the framework of [5, 6] is due to the relation

xOpπpσqf, ϕyHπ
“

@

σ̂, Aπϕf
D

L2pgeq
, (5.15)

which holds true for all σ P S pOq and f, ϕ P Hπ. Identity (5.46) is of particular interest

for operators Opπpσq whose symbols a members of some modulation space on G ¸ G.

(Cf. [5] Corollary 2.25 p. 306, e.g.)

Let us point, however, that this link has been widely used in the context of modulation

spaces on Rn, where the link exists for the classical Weyl quantization Opρ induced by

Hn. (Cf. [40, 41, 44] as well as [42] Chapter 8.)
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5.3 A First Justification of Usefulness

In this section we finally show that the Hn-Weyl quantization indeed solves the quan-

tization problem posed in Section 5.1. More generally, we will see that a finite order

polynomial in either ξu, ξv or ξw quantizes the corresponding polynomial of either Dp,

Dq or Dt, respectively, and that a function ofX quantizes multiplication by that function.

We provide elementary proofs for the formulas of adjoint and transposed operators

of any given σpD ,X q. Moreover, we show that for appropriately restricted symbols σ,

Opπpσq agrees with Opρpσq, its Euclidean Weyl quantization acting on L2pRnq.
Let us first check that Opπ solves the quantization problem.

Proposition 5.14. Suppose that σ, τ P S
1

pR4n`2q are such that the following two con-

ditions are satisfied:

(i) σpΞ,X q is a polynomial function of finite degree in either ξu, ξv or ξw only.

(ii) τpΞ,X q “ τpX q.

The Hn-Weyl quantization then yields:

(i) σpD ,X q defines the corresponding polynomial in either Dp, Dq or Dt defined by

the spectral calculus for self-adjoint operators.

(ii) pτpD ,X qfqpXq “ τpXq fpXq for all f P S pHnq.

This implies, in particular, that the Hn-Weyl quantization solves the quantization prob-

lem for Heisenberg group posed in Section 5.1.

Proof. In order to prove Case piq we can take advantage of the S -S 1-duality and show

the result for σ, τ P S pR4n`2q without loss of generality. We can now rewrite the

exponent in Equality (5.11) as

@

Ξ, Y ´1 ¨X
D

“

B

Ξ, X ´ Y ´
1

2
rX,Y s

F

“

B

pξu, ξv, ξwq
t, ppX , qX , tXq

t ´ ppY , qY , tY q
t ´ p0, 0,

1

2
ppXqY ´ qXpY qq

t

F

“ pξupX ` ξvqX ` ξwtXq ´ ppY pξu `
1

2
ξwqXq ` qY pξv ´

1

2
ξwpXq ` tY ξwq.
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Inserting some f P S pHnq into Equality (5.11) yields

pOpπpσqfqpXq “

¡

σpξu, ξv, ξwq e
2πipξupX`ξvqX`ξwtXq

¡

fppY , qY , tY q

ˆ e´2πippY pξu`
1
2
ξwqXq`qY pξv´

1
2
ξwpXq`tY ξwq dpY dqY dtY

dξu dξv dξw

“

¡

σpξu, ξv, ξwq e
2πipξupX`ξvqX`ξwtXq

f̂pξu `
1

2
ξwqX , ξv ´

1

2
ξwpX , ξwq dξu dξv dξw.

An application of the measure-preserving change of variables

pξu, ξv, ξwq ÞÑ pξu ´
1

2
ξwqX , ξv `

1

2
ξwpX , ξwq,

which leaves the exponent pξupX ` ξvqX ` ξwtXq unchanged, yields

pOpπpσqfqpXq “

¡

σpξu ´
ξw
2
qX , ξv `

ξw
2
pX , ξwqf̂pξu, ξv, ξwq

ˆ e2πipξupX`ξvqX`ξwtXq dξu dξv dξw.

Since σ is a polynomial of only one of the variables ξu, ξv, ξw, and w.l.o.g we can assume

it is ξu, we know that σpξu ´
ξw
2 qXq is a polynomial in ξu and ξw. Hence via the inverse

Fourier transform it acts as joint Fourier multiplier in p and t, or equivalently as a joint

spectral multiplier of the self-adjoint operators Dpj “ p2πiq´1Bpj , j “ 1, . . . , n, and

Dt “ p2πiq
´1Bt, thus as the polynomial σ in Dp “ pDp ´

1
2qDtq.

The proof of Case piiq is even shorter and only makes use of the fact F p1q “ δ0. For

an arbitrary f P S pHnq we compute

pτpD ,X qfqpXq “

ĳ

τ̂pQq δ0pPq e2πixQ,X¨p 12Pqy fpX ¨Pq dP dQ

“

ż

τ̂pQq e2πixQ,Xy fpXq dQ

“ τpXq fpXq.

This proves the proposition.

Remark 5.15. The operators discussed by Proposition 5.14 piq are clearly left-invariant

differential operators Hn. So, two questions that immediately arise from this result

are: What are the operators that correspond to arbitrary polynomials in Ξ? And how
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exhaustive is this method of quantizing polynomials? In other words, do we obtain all

left-invariant differential operators this way? We will give a full answer in Subsection 5.4.

The Hn-Weyl quantization also allows us to readily obtain the adjoint and the trans-

posed operators:

Proposition 5.16. For all symbols σ P S
1

pR4n`2q we have

pσpD ,X qq˚ “ σ̄pD ,X q and pσpD ,X qqt “ σp´D ,X q.

Proof. Once again we argue by an formal derivation for σ P S pR4n`2q and conclude the

result for distributional σ by duality. To this end, let f, g P S pHnq and let x . , . yS 1

denote the S -S 1-duality that extends the restriction to S pHnqˆS pHnq of the L2pHnq-

inner product x . , . yL2pHnq
. Due to Bochner integration theory we can repeatedly inter-

change integration and dual action to compute

xpσpD ,X qq˚f, gyS 1 “

B

f,

ĳ

σ̂pP,QqπpP,Q, 0qg dP dQ
F

S 1

“

ĳ

xf, σ̂pP,QqπpP,Q, 0qgyS 1 dP dQ

“

ĳ

A

σ̂pP,Qq f, πpP,Q, 0qg
E

S 1
dP dQ

“

ĳ

@

πp´P,´Q, 0q pσ̄p´P,´Qq f, g
D

S 1 dP dQ

“

B
ĳ

pσ̄pP̃, Q̃qπpP̃, Q̃, 0qf dP̃ dQ̃, g
F

S 1

“ xσ̄pD ,X qf, gyS 1 .

Under the same assumptions let p . , . qS 1
pHnq

denote the standard S
1

pHnq-S pHnq-dual
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action. The second claim then follows from

`

pσpD ,X qqtf, g
˘

S 1
pHnq

“

ż

fpXq

ĳ

σ̂pP,Qqe2πixQ,X¨p 12PqygpX ¨Pq dP dQ dX

“

ż

fpY ¨P´1q

ĳ

σ̂pP,Qq e2πiλxQ,Y ¨P´1¨p 12Pqy gpY q dP dQ dY

“

ż ĳ

σ̂pP,Qq e2πiλxQ,Y ¨p´ 1
2
PqyfpY ¨ p´Pqq dP dQ gpY q dY

“

ż ĳ

σ̂p´P̃,Qq e2πiλxQ,Y ¨p 12 P̃qyfpY ¨ P̃q dP̃ dQ gpY q dY

“ pσp´D ,X qf, gqS 1
pHnq

.

This concludes the proof.

The usefulness of this quantization has to pass another hurdle of some importance:

Since Hn forms a subgroup of H2,n we would like to confirm that Opπ in some way or

another defines an extension of Opρ on Rn, i.e., the standard Weyl quantization on Rn.

Proposition 5.17. Let σ P S
1

pR4n`2q be such that σpξu, ξv, ξw, χx, χy, χzq “ σ0pξu, χxq

for some σ0 P S
1

pR2nq. Then the Hn-Weyl quantization coincides with the Euclidean

Weyl quantization if its action is restricted to Schwartz functions of p P Rn.

Proof. By a standard duality argument it suffices to prove our claim for σ P S pR4n`2q.

It then follows from a straight-forward computation:

´

σpD ,X qfp . , 0, 0q
¯

ppq “

ż

. . .

ż

σ̂Rpu, xq δpvq δpwq δpyq δpzq

`

πpu, v, w, x, y, z, 0qfp . , 0, 0q
˘

ppq du dv dw dx dy dz

“

ż

. . .

ż

σ̂Rpu, xq δpvq δpwq δpyq δpzqe
2πipxp` 1

2
xuq

ˆ e2πi 1
4
zpvfpp` u, v, w `

1

2
pvq du dv dw dx dy dz

“

ĳ

σ̂Rpu, xqe
2πipxp` 1

2
xuqfpp` u, 0, 0q du dx

“

ĳ

σ̂Rpu, xq
´

ρpu, x, 0qf |Rnˆt0un`1

¯

ppq du dx

“

´

σ0pDp, Xpqf |Rnˆt0un`1

¯

ppq,

where f P S pHnq was arbitrary.
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Remark 5.18. The same result holds true for σ0 being a function or distribution of

ξv, χy or ξw, χz, where the latter case yields the Weyl quantization on R.

5.4 Left-invariant Operators

A very natural question which needs to be answered affirmatively is whether the Hn-

Weyl quantization covers all left-invariant differential operators on Hn. Fortunately our

answer is positive: since any left-invariant differential operator T is continuous as an

operator T : S pGq Ñ S
1

pGq, its distributional kernel κ P S
1

pGq given by the Schwartz

kernel theorem is automatically a right convolution kernel due to left invariance on G,

i.e., Tf “ f ˚ κ for all f P S pGq. (Cf. [25] Subsection 2.5, e.g.)

Remark 5.19. So let us note that in fact we can quantize every left invariant contin-

uous operator from S pHnq to S
1

pHnq via Opπ: For any symbol σpΞ,X q “ σpΞq “

σpξu, ξv, ξwq in S
1

pHnq the operator Opπpσq can be expressed as the Hn-group con-

volution with the inverse Euclidean Fourier transform σ̌. Indeed, for σ P S pHnq we

compute

`

Opπpσqf
˘

pXq “

ĳ

σ̂pPq δpQq e2πixQ,X¨p 12PqyfpX ¨Pq dP dQ

“

ĳ

σ̂pPq fpX ¨Pq dP dQ

“

ĳ

σ̌pP´1 ¨Xq fpPq dP

“
`

f ˚Hn σ̌
˘

pXq,

and a standard duality argument extends the last identity to S
1

pHnq. But since the

inverse Fourier transform is an isomorphism on both S pHnq and S
1

pHnq, the above

version of the Schwartz kernel theorem asserts our claim.

The symbol class S
1

pHnq is, of course, very general and covers all sensible classes of

pseudodifferential operators, but the obtained set of operators is too big and thus often

not very useful. We will not elaborate much more on S
1

pHnq but instead introduce

more convenient symbol classes in Section 5.5.

Having reassured ourselves that all left-invariant differential operators are covered

by the Hn-Weyl quantization still leaves the question to what sort of symbols they

correspond. An educated guess, drawn in analogy to the Euclidean case, would be

precisely the polynomials in Ξ.
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Our pursuit to check this will make use of the concept of symmetrization in the

sense of Helgason [43], e.g.: if we can show that Opπ is equivariant under the action of

Upnq “ UpCnq on the variables pu, vq P R2n – Cn, we can easily conclude that Opπ

coincides, modulo some powers of 2πi, with the so-called symmetrization λ on Hn. The

latter is a linear bijection between the symmetric algebra Sphnq over hn and the algebra

DpHnq of left-invariant differential operators on Hn that is uniquely determined by the

following property: If X̃ is a left-invariant vector field on Hn, that is, X̃ “ dRpXq for

some X P hn (cf. Subsection 1.3.2), then λpXmq “ X̃m for all m P N. In other words,

the polynomials in ξuj , ξvk , ξw, j, k “ 1, . . . , n, do ”quantize” (via λ) all left-invariant

differential operators on Hn. (For details see [43], Chapter II Section 4 and in particular

Theorem 4.3.)

Remark 5.20. We recall that the symmetrization λ satisfies two other interesting prop-

erties:

(i) If X1, . . . , X2n`1 forms a basis of hn and P P Sphnq, then

pλpP qfqpgq “
`

P pBp1 , . . . , Btq|pp,q,tq“0f
˘`

g expHn
pp1X1 ` . . .` tX2n`1q

˘

for all f P S pHnq and all g P Hn.

(ii) If Y1, . . . , Yp P hn, then

λpY1 ¨ ¨ ¨ Ypq “
1

p!

ÿ

σPSp

Ỹσp1q ¨ ¨ ¨ Ỹσppq,

which gives an account for the origin of the name.

To prove equivariance for Opπ, we need to agree on a few conventions: To start with,

let us consider pu, vq as a vector in Cn whenever it seems convenient. By an abuse of

notation we will subsequently treat the R2n-inner product as the Cn-inner product. Since

we will have to employ orthogonal transformations on R2n as well as symplectic matrices

(as autormorphisms of Hn), this convention is very useful in combination with the fact

that Upnq “ Op2n,Rq X Spp2n,Rq. Following another convention (found in Folland

[28], e.g.), we will then write App, q, tq “ AX for the Hn-automorphism pp, q, tqt ÞÑ

pAˆ IRq ¨ pp, q, tq
t with A P Spp2n,Rq, in particular for unitary A.

Thus, for any symbol σ let us set σ ˝A to be the symbol pΞ, Xq ÞÑ σpAΞ, AXq.

Lemma 5.21. For each U in Upnq there exists an operator Ũ in UpL2pHnqq such that

Opπpσ ˝ Uq “ ŨOpπpσqŨ˚
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for all symbols σ in S
1

pHnq for which Opπpσq is bounded on L2pHnq.

Proof. As usual we will prove the statement for Schwartz class σ and extend it by duality.

Thus, considering the symplectic group Spp2n,Rq as a subgroup of AutpHnq, we can use

the above conventions to write

B

U˚Q,X ¨ p
1

2
U˚Pq

F

“

B

Q,U
`

X ¨ p
1

2
U˚Pq

˘

F

“

B

Q,UX ¨ p
1

2
Pq

F

,

which holds true for all P,Q P Hn. If we now keep in mind that a unitary change of

variables in pu, vq is measure-preserving on Hn, then pP̃ , Q̃q :“ pUP, UQq implies

`

Opπpσ ˝ Uqf
˘

pXq

“

ĳ

σ̂pUP, UQq e2πixQ,X¨p 12PqyfpX ¨Pq dP dQ

“

ĳ

σ̂pP̃, Q̃q e2πixU˚Q̃,X¨p 12U
˚P̃qyfpX ¨U˚P̃q dP̃ dQ̃

“

ĳ

σ̂pP̃, Q̃q e2πixQ̃,UX¨p 12 P̃qypf ˝ U˚qpUX ¨Pq dP̃ dQ̃

“

´

Opπpσqpf ˝ U˚q
¯

pUXq

for any f P S pHnq, X P Hn. Finally, if for any U P Upnq we define Ũ in UpL2pHnqq to

be the map f ÞÑ f ˝U , we have just proved our claim as ĂU˚ “ Ũ˚ clearly holds true.

With this in hand we can prove our claim.

Theorem 5.22. The Hn-Weyl quantization Opπ restricted to complex coefficient poly-

nomials in the frequency variables ξu, ξv, ξw agrees with the symmetrization λ on the

Heisenberg group Hn (modulo powers of 2πi). In particular, it is precisely these polyno-

mials which quantize all left-invariant differential operators on Hn.

Proof. To prove that Opπ coincides with the symmetrization for all elements of the

symmetric algebra Sphnq, we have to show that for every polynomial P in ξu, ξv, ξw the

operator OpπpP q yields a symmetrized left-invariant differential operator on S pHnq.

More precisely, we will show that it agrees with the operator λpP̃ q, where

P̃ pξu, ξv, ξwq :“ P
´

p2πiq´1ξu, p2πiq
´1ξv, p2πiq

´1ξw

¯

.

(Cf. Identities (1.18).) We proceed in three reductive steps.

First we restrict the problem to polynomials in ξu, ξv only since any operator given as

the quantization of a polynomial in ξw only, i.e., a polynomial in Xt, commutes with all
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other left-invariant operators on Hn. (For further clarification we refer to the asymptotic

expansion of the natural Moyal product arising from the Hn-Weyl quantization. Confer

Subsection 5.6.1 and in particular Formula 5.25. The Moyal product of two polynomials

P pξu, ξvq and Qpξwq, say, reduces to the simple pointwise product P pξu, ξvqQpξwq.)

Second, we notice that polynomials of the form ξαu ξ
β
v “ ξα1

u1 ¨ ¨ ¨ ξ
βn
un can be expressed in

terms of sums of the polynomials pµξu ` νξvq
m “ pµ1ξu1 ` . . .` νnξvnq

m, with µ, ν P Rn

and m ď |α| ` |β|. So, if we can show that for σpξu, ξvq “ p2πiq
mpµξu ` νξvq

m, m P N,

Opπpσq agrees with λ
´

pµ1Xp1 ` . . .` νnXqnq
m
¯

on Hn, then we are done.

To start with, we observe that σX̃pξu, ξvq “ 2πipµξu ` νξvq is the symbol of the left-

invariant vector field X̃ “ pµX̃p ` νX̃qq. We furthermore know that there exists some

U P Upnq such that U˚pµ, νqt “ pα, 0, . . . , 0qt for some α P R. Let us assume, without

loss of generality, that α “ 1. We now find that

1

2πi
pσX̃ ˝ Uqpξu, ξvq “

@

˜

µ

ν

¸

, U

˜

ξu

ξv

¸

D

“
@

U˚

˜

µ

ν

¸

,

˜

ξu

ξv

¸

D

“ ξu1 “
1

2πi
σX̃p1

pξu, ξvq

and hence

p2πi ξu1q
m “ σX̃m

p1
pξu, ξvq “

`

pσX̃ ˝ Uqpξu, ξvq
˘m

“ pσX̃q
mpUpξu, ξvqq “

`

pσX̃q
m ˝ U

˘

pξu, ξvq “ pσ ˝ Uqpξu, ξvq.

Lemma 5.21 now implies the existence of an operator Ũ P UpL2pHnqq such that

ŨOpπpσqŨ˚ “ Opπpσ ˝ Uq “ p2πiqm Opπpξmu1q “ X̃m
p1 “ λpXm

p1q.

Rewriting the above, we obtain

p2πiqm Opπppµξu ` νξvq
mq “ Opπpσq “ OpπpσX̃m

p1
˝ U˚q

“ Ũ˚OpπpσX̃m
p1
qŨ “ Ũ˚X̃m

p1Ũ “
´

Ũ˚X̃p1Ũ
¯m

“
`

OpπpσX̃p1
˝ U˚q

˘m
“

`

OpπpσX̃q
˘m
“ X̃m “ λpXmq

for X “ µXp ` νXq. Since m P N was arbitrary this concludes the proof.

Corollary 5.23. Part piq of Proposition 5.14 now follows as a special case of Theo-

rem 5.22.

Remark 5.24 (On the Difference between Right and Left Invariance). If we had chosen

the representation πλ to be generated by Euclidean modulations and left Hn-translations,
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the quantization defined by Formula (5.5) would require σ̂p´P,´Qq instead of σ̂pP,Qq
and would yield right-invariant operators for symbols pΞ ÞÑ σpΞqq P S

1

pHnq.

Let us note that due to the lack of difference between left and right-invariant vector

fields in the Euclidean setting, and hence between right and left translations, there is

but one Schrödinger representation ρ that can be used for the Weyl quantization.

5.5 Hörmander-Type Symbol Classes and ΨDO’s

In this Section we will have a look at symbols that belong to some type of non-isotropic

Heisenberg analogues of the classes Sm1,0pR2n`1q, for which the usual decay estimates are

given with respect to an Hn-homogeneous norm.

Definition 5.25. The homogeneous norm | . |Hn
on the Heisenberg group Hn is defined

by

| . |Hn
: Hn Ñ r0,8q,

pp, q, tq “ X ÞÑ |X|Hn
:“

´

`

|p|2 ` |q|2
˘2
` t2

¯1{4
.

We will furthermore define the Hn-Japanese brackets by

ă X ą:“
`

1` |X|4Hn

˘1{4
.

Definition 5.26. The class of Hn-symbols of order m P R, denoted by SmpHnq, is

defined to be the set of all functions σ P C8pR2n`1ˆHnq for which for all multi-indices

α “ pαp, αq, αtq, β “ pβp, βq, βtq P pNY t0uq2n`1 there exists Cα,β ą 0 such that

sup
XPHn

ˇ

ˇ

ˇ

´

Dα
ΞDβ

Xσ
¯

pΞ, Xq
ˇ

ˇ

ˇ
ď Cα,β ă Ξ ąm´xαy (5.16)

if xαy :“ |αp| ` |αq| ` 2αt.

We set

S8pHnq :“
ď

mPR
SmpHnq and S´8pHnq :“

č

mPR
SmpHnq

and define OpπSmpHnq to be the space of Hn-Weyl quantized operators with symbols in

SmpHnq.

Remark 5.27. Note that the Ξ-derivative is indeed the Euclidean derivative in 2n` 1

dimensions, whereas the X-derivative is understood to be a higher order application of
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the standard left-invariant vector fields on Hn, defined as in Subsection 1.3.2.

Remark 5.28. As usual, the symbol classes SmpHnq are in fact Fréchet spaces if their

topology is defined by the semi-norms

}σ}rjs :“ max
|α|`|β|ďj

sup
Ξ,XPR4n`2

ˇ

ˇ

ˇ

´

Dα
ΞDβ

Xσ
¯

pΞ, Xq
ˇ

ˇ

ˇ
ă Ξ ą´m`xαy,

where j P NY t0u. Occasionally, we will also consider them as topological subspaces of

the Fréchet space C8pR4n`2q.

Examples 5.29. piq The left-invariant vector fields. For the standard left-invariant

vector fields on Hn we have

dRpXpj q P OpπS1pHnq, dRpXqkq P OpπS1pHnq, dRpXtq P OpπS2pHnq (5.17)

as we recall
2πi dRpXpj q “ Dpj “ Opπpξuj q,

2πi dRpXqkq “ Dqk “ Opπpξvj q,

2πi dRpXtq “ Dt “ Opπpξwq

,

/

.

/

-

(5.18)

from the quantization problem in Section 5.1. The orders given by (5.17) agree conve-

niently with the natural homogeneous degrees of the left-invariant vector fields. (Cf. [27]

p. 916)

piiq The sub-Laplacian. The sub-elliptic operator

∆Hn :“´
n
ÿ

j“1

´

` B

Bpj
´

1

2
qj
B

Bt

˘2
`
` B

Bqj
`

1

2
pj
B

Bt

˘2
¯

has the symbol σ∆Hn
pξu, ξvq “ ´p2πiq

2p|ξu|
2
` |ξv|

2
q, which is obviously a member of

S2pHnq. (We remark that the negative sign was chosen in accordance with works by

Folland, Stein et al. We can equally choose the positive sign more in the spirit of

Hörmander’s sums of squares, e.g.)

piiiq Differential operators. Any polynomial function in Ξ of finite degree is a member

of some SmpHnq. Hence by Theorem 5.22 all left-invariant differential operators on Hn

belong to OpπS8pHnq.

pivq Adjoint and transpose. Let us recall from by Proposition 5.16 that for given

σ P S
1

pHnq the symbols of the adjoint and transpose of Opπpσq are given by sσ and

σt :“ pΞ, Xq ÞÑ σp´Ξ, Xq. Hence, if σ belongs to some SmpHnq, so do sσ and σt.
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Remark 5.30 (Euclidean vs. Hn-symbol classes). For the usual Hörmander symbol

classes Sm1,0pR2n`1q we have neither SmpHnq Ď Sm1,0pR2n`1q nor SmpHnq Ě Sm1,0pR2n`1q:

the rate of decay in ξw in Condition (5.16) is weaker than usual for positive exponents

m, but weaker for negative ones. This leaves a possibility for the first inclusion for

positive m and for the second inclusion for negative m. But the growth in p and q of the

left-invariant derivatives Dp and Dq is not necessarily compensated by the behaviour in

X “ pp, q, tq of σ P Sm1,0pR2n`1q. This necessarily excludes either of the two inclusions.

The following Proposition guarantees that symbols in SmpHnq define continuous oper-

ators on S pHnq. Moreover, it assures us that convergent sequences of symbols quantize

convergent nets of operators.

Proposition 5.31. The following assertions hold true:

paq For any σ P SmpHnq, m P R, the operator Opπpσq is continuous from S pHnq into

itself.

Part pbq Let σk be a sequence of symbols in SmpHnq, m P R which satisfy the symbol es-

timates 5.16 uniformly in k and which converge to some σ in the topology of C8pR4n`2q.

Then σ P SmpHnq and Opπpσkqf
S pHnq
ÝÝÝÝÑ Opπpσqf for all f P S pHnq.

Proof. paq Let us recall from Equalities 5.8 and 5.10 that the Hn-Weyl-quantization of

some symbol σ P S pHnq can be expressed via the integral

`

Opπpσqf
˘

pXq “

ĳ

σ
`

Ξ, X ¨ p
1

2
Pq

˘

e´2πixΞ,Py fpX ¨Pq dP dΞ

“

ĳ

σ
`

Ξ,
1

2
pX ` Y q

˘

e2πixΞ,Y ´1¨Xy fpY q dY dΞ. (5.19)

In order to show that this iterated integral converges absolutely for σ P SmpHnq, we will

make use of the function

gpΞ, Xq :“

ż

σ
`

Ξ, X ¨ p
1

2
Pq

˘

e´2πixΞ,Py fpX ¨Pq dP

“

ż

σ
`

Ξ,
1

2
pX ` Y q

˘

e2πixΞ,Y ´1¨Xy fpY q dY,

applying the usual techniques of integration by parts, etc. To this aim we define the

operator

LP :“
1

4

´

|Du|
2
` |Dv|

2
¯2
`

1

2
D2
w, (5.20)
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for we which we observe the relation

p1`LPqe
´2πixΞ,Py “

`

1` |Ξ|Hn

˘4
e´2πixΞ,Py “ă Ξ ą4 e´2πixΞ,Py.

We then compute

gpΞ, Xq “

ż

p1`LPq
Ne´2πixΞ,Py

ă Ξ ą4N
σ
`

Ξ, X ¨ p
1

2
Pq

˘

fpX ¨Pq dP

“

ż

e2πixΞ,Y ´1¨Xy

ă Ξ ą4N
p1`LPq

N
´

σ
`

Ξ, X ¨ p
1

2
Pq

˘

fpX ¨Pq
¯

dP

“
ÿ

ăα`βąď4N

Cα,β

ż

e2πixΞ,Y ´1¨Xy

ă Ξ ą4N
Dα

Pσ
`

Ξ, X ¨ p
1

2
Pq

˘

Dβ
PfpX ¨Pq dP

“
ÿ

ăα`βąď4N

Cα,β

ż

e2πixΞ,Y ´1¨Xy

ă Ξ ą4N

1

2

`

Dα
Xσ

˘`

Ξ, X ¨ p
1

2
Pq

˘

pDβ
XfqpX ¨Pq dP,

which due to the definition of the symbols classes SmpHnq yields

|gpΞ, Xq| ď CN
ÿ

ăα`βąď4N

ż

ă Ξ ą´4N

ˇ

ˇ

ˇ

ˇ

`

Dα
Xσ

˘`

Ξ, X ¨ p
1

2
Pq

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
pDβ

PfqpX ¨Pq
ˇ

ˇ

ˇ
dP

ď C 1N ă Ξ ą´4N`m .

We thus conclude that gp . , Xq is a member of L1pR2n`1q uniformly in X if only N is

large enough. The estimate furthermore shows that
`

Opπpσqf
˘

pXq “
ş

gpΞ, Xq dΞ is

uniformly bounded in X P Hn.

In order to check that Opπpσqf is indeed Schwartz class, we will scrutinize the cases

XαOpπpσqf and Dβ
XOpπpσqf for each of the vector components pjX , qkX , tX , j, k “

1, . . . , n, of X “ ppX , qX , tXq. A simple induction argument can finally be employed to

obtain full generality.

Let us first have a look at multiplication by polynomials in X. A straight-forward

computation yields

pjXe
2πixΞ,Y ´1¨Xy “ Dξue

2πixΞ,Y ´1¨Xy ´ pjY e
2πixΞ,Y ´1¨Xy,

and an analogous relation for qkX , whereas for tX one obtains

tXe
2πixΞ,Y ´1¨Xy “

`

Dξw ` pjY `
1

2
ppY qX ´ qY pXq

˘

e2πixΞ,Y ´1¨Xy.
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In view of Integral 5.19, this implies that XαOpπpσqf translates into sums of Dβ
Ξpσq and

Y γf inside 5.19. Neither of these terms harms the rate of convergence; to the contrary,

Dβ
Ξpσq even improve the decay in Ξ. Thus by the same argument as above, the integrals

defining XαOpπpσqf are both bounded and absolutely convergent uniformly in X P Hn.

In the case of Dβ
XOpπpσqf , three simple calculations yield

DpjX
e2πixΞ,Y ´1¨Xy “ ξuje

2πixΞ,Y ´1¨Xy,

DqjX
e2πixΞ,Y ´1¨Xy “ ξvje

2πixΞ,Y ´1¨Xy,

Dte
2πixΞ,Y ´1¨Xy “ ξwe

2πixΞ,Y ´1¨Xy.

,

/

/

.

/

/

-

Hence the absolute convergence of Integral 5.19, allows us to compute

`

DpjX
Opπpσqf

˘

pXq “

ĳ

ξujσ
`

Ξ,
1

2
pX ` Y q

˘

e2πixΞ,Y ´1¨Xy fpY q dY dΞ

`

ĳ

`

DpjX
σ
˘`

Ξ,
1

2
pX ` Y q

˘

e2πixΞ,Y ´1¨Xy fpY q dY dΞ,

and similar expressions for DqkXOpπpσqf and DtXOpπpσqf . By the same arguments

as above, the corresponding oscillatory integrals involved are absolutely convergent and

bounded uniformly in X. Thus we have shown that Opπpσqf is indeed Schwartz on Hn.

This proves part paq.

pbq essentially follows from an application of the latter arguments to show that the

limit in k in the C8-topology interchanges with the oscillatory integrals. That σ must

be a member of SmpHnq follows from the uniformity in k of the symbol estimates 5.16.

This concludes our proof.

5.6 The Heisenberg-Moyal Product

As we are naturally interested in the composition of two Hn-Weyl quantized operators,

we would like to know whether a composite operator can be assigned a symbol by the

Hn-Weyl calculus. If we suppose that, say, σ1pD ,X q and σ2pD ,X q map S pHnq into

itself, then their composition does so and is the Hn-Weyl quantization of a uniquely

determined symbol in S pR4n`2q due to Proposition 5.6. That is, if the latter symbol is

denoted by σ1 f σ1, we have

σ1pD ,X qσ2pD ,X q “ pσ1 f σ2qpD ,X q. (5.21)
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We will call σ1 f σ2 the Heisenberg-Moyal or twisted product of σ1 and σ1 or for the

sake of abbreviation throughout this text also f-product.

It turns out that just like in the Euclidean case the symbol σ1fσ2 is given by a specific

convolution type product of the symbols σ1 and σ1, which, at least formally, bear some

similarity with the standard R2n`1-Moyal product, i.e., the 7-product of two R2n`1-

Weyl-quantized pseudo-differential operators, yet obviously reflects the Heisenberg group

structure.

Given existence, uniqueness and continuity of the f-product as a map from

S pR4n`2q ˆS pR4n`2q to S pR4n`2q, we will compute an explicit formula for this case

and show that it extends as a continuous map from Sm1pHnqˆS
m2pHnq to Sm1`m2pHnq.

5.6.1 An Asymptotic Expansion

Before we derive an integral formula that will help us to prove the latter mapping

properties, we will attempt a formal derivation of an asymptotic expansion for σ1 f

σ2. For the sake of convenience through convergent integrals, let us again suppose

that σ1, σ2 P S pR4n`2q. We commence our calculations by writing out Formula (5.21)

explicitly:

σ1pD ,X qσ2pD ,X qf “

ĳ

σ̂1pP̃, Q̃qπpP̃, Q̃q
ĳ

σ̂2pP 1,Q1qπpP 1,Q1qf

dP 1 dQ1 dP̃ dQ̃

“

żżżż

σ̂1pP̃, Q̃q σ̂2pP 1,Q1q

π
`

pP̃, Q̃, 0q dH2,n pP 1,Q1, 0q
˘

fdP 1 dQ1 dP̃ dQ̃

“

ĳ

{pσ1 f σ2qpP,QqπpP,Q, 0qf dP dQ.

For the last identity to make sense we require two necessary and sufficient conditions,

the first of which can be expressed as the existence of some uniquely determined element
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s “ S “ SpP̃, Q̃,P 1,Q1q P R such that

pP̃, Q̃, 0q dH2,n pP 1,Q1, 0q “ pũ` u1, ṽ ` v1, w̃ ` w1 `
1

2
pũv1 ´ ṽu1q,

x̃` x1 `
1

4
pṽz1 ´ z̃v1q, ỹ ` y1 ´

1

4
pũz1 ´ z̃u1q, z̃ ` z1,

1

2
pũx1 ´ x̃u1q `

1

2
pṽy1 ´ ỹv1q `

1

2
pw̃z1 ´ z̃w1q

`
1

8
z1pũv1 ´ ṽu1q ´

1

8
z̃pũv1 ´ ṽu1qq

“ pu, v, w, x, y, z, sq “ pP,Q,Sq.

Here we see that P and Q relate to P̃ and Q̃ via a Haar measure-preserving, and thus

Lebesgue measure-preserving change of variables, with the central variable S carrying

some additional information about the f-product. But existence and uniqueness of such

an element pP,Q,Sq simply follows from the relation

pP̃, Q̃, 0q “ pP,Q,Sq dH2,n pP 1,Q1, 0q´1.

The second condition now states the Fourier transform of the symbol must be given by

{paf bqpP,Qq “
ĳ

âpP̃, Q̃q b̂pP 1,Q1qπp0, 0,Sq dP 1 dQ1. (5.22)

Employing the measure-preserving change of variables

ũ “ u´ u1,

ṽ “ v ´ v1,

w̃ “ w ´ w1 ´
1

2

`

pu´ u1qv1 ´ pv ´ v1qu1
˘

“ w ´ w1 ´
1

2

`

uv1 ´ vu1
˘

,

x̃ “ x´ x1 ´
1

4

`

pv ´ v1qz1 ´ pz ´ z1qv1
˘

“ x´ x1 ´
1

4
pvz1 ´ zv1q,

ỹ “ y ´ y1 `
1

4

`

pu´ u1qz1 ´ zpu´ u1q
˘

“ y ´ y1 `
1

4

`

uz1 ´ zu1
˘

,

z̃ “ z ´ z1,
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with

S “ s “ 1{2 pũx1 ´ x̃u1q ` 1{2 pṽy1 ´ ỹv1q ` 1{2 pw̃z1 ´ z̃w1q ` 1{8 z1pũv1 ´ ṽu1q

´ 1{8 z̃pũv1 ´ ṽu1q

“
1

2

`

ux1 ´ xu1
˘

`
1

2

`

vy1 ´ yv1
˘

`
1

2

`

wz1 ´ zw1
˘

`
1

4
z1
`

uv1 ´ vu1
˘

´
1

8
z
`

uv1 ´ vu1
˘

,

we can rewrite Formula (5.22) equivalently as

{pσ1 f σ2qpP,Qq “
ż

¨ ¨ ¨

ż

σ̂1

`

u´ u1, v ´ v1, w ´ w1 ´
1

2

`

uv1 ´ vu1
˘

,

x´ x1 ´
1

4

`

vz1 ´ zv1
˘

, y ´ y1 `
1

4

`

uz1 ´ zu1
˘

, z ´ z1
˘

ˆ σ̂2pu
1, v1, w1, x1, y1, z1q (5.23)

ˆ e2πip 12 pux
1´xu1q` 1

2
pvy1´yv1q` 1

2
pwz1´zw1qq

ˆ e2πip 14 z
1puv1´vu1q´ 1

8
zpuv1´vu1qq du1 dv1 dw1 dx1 dy1 dz1. (5.24)

To obtain a neat formula and the above-mentioned asymptotic expansion, we need to

write Formula (5.24) as an R2p2n`1q-convolution product of σ̂1 and σ̂2 twisted by some

exponential factor. To this end, we rearrange the terms and express the disturbing

translations of â as exponentials in Dt, Dx, Dy. This yields

{pσ1 f σ2qpu, v, w, x, y, zq “

ż

¨ ¨ ¨

ż

eπippux
1´xu1q`pvy1´yv1q`pwz1´zw1q` 1

2
z1puv1´vu1qq

ˆ e´
1
4
πizpuv1´vu1q σ̂1pu

1, v1, w1, x1, y1, z1q

ˆ e2πip´ 1
2
puv1´vu1qDw´

1
4
pvz1´zv1qDx`

1
4
puz1´zu1qDyq

σ̂2

`

u´ u1, v ´ v1, w ´ w1, x´ x1, y ´ y1, z ´ z1
˘

du1 dv1 dw1 dx1 dy1 dz1.

If we now formally invert the Fourier transform of this expression, we obtain an asymp-

totic power series of derivatives in ξu, ξv, ξw, χx, χy, χz and ξ1u, ξ
1
v, ξ

1
w, χ

1
x, χ

1
y, χ

1
z of prod-
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ucts of σ1, σ2 and monomials in ξw, χx, χy:

pσ1fσ2qpξu, ξv, ξw, χx, χy, χzq

„

˜

e
πi
´

DξuDχ1x
´DχxDξ1u

¯

e
πi
´

DξvDχ1y
´DχyDξ1v

¯

e
πi
´

DξwDχ1z
´DχzDξ1w

¯

e
πi
2
Dχ1z

´

DξuDξ1v
´DξvDξ1u

¯

e
´πi

4
Dχz

´

DξuDξ1v
´DξvDξ1u

¯

e
πiξw

´

DξuDξ1v
´DξvDξ1u

¯

e
πi
2
χx

´

DξvDχ1z
´DχzDξ1v

¯

e
´πi

2
χy

´

DξuDχ1z
´DχzDξ1u

¯

σ1pξu, ξv, ξw, χx, χy, χzqσ2pξ
1
u, ξ

1
v, ξ

1
w, χ

1
x, χ

1
y, χ

1
zq

¸ˇ

ˇ

ˇ

ˇ

ˇ

pΞ,X q“pΞ1,X 1q

“

˜

8
ÿ

j1“0

pπiqj1

j1!

`

DξuDχ1x ´DχxDξ1u

˘j1
8
ÿ

j2“0

pπiqj2

j2!

´

DξvDχ1y ´DχyDξ1v

¯j2

8
ÿ

j3“0

pπiqj3

j3!

`

DξwDχ1z ´DχzDξ1w

˘j3
8
ÿ

j4“0

pπiqj4

2j4j4!
Dj4
χ1z

`

DξuDξ1v ´DξvDξ1u

˘j4

8
ÿ

j5“0

p´πiqj5

4j5j5!
Dj5
χz

`

DξuDξ1v ´DξvDξ1u

˘j5
8
ÿ

j6“0

pπiqj6

j6!
ξj6w

`

DξuDξ1v ´DξvDξ1u

˘j6

8
ÿ

j7“0

pπiqj7

2j7j7!
χj7x

`

DξvDχ1z ´DχzDξ1v

˘j7
8
ÿ

j8“0

p´πiqj8

2j8j8!
χj8y

`

DξuDχ1z ´DχzDξ1u

˘j8

σ1pξu, ξv, ξw, χx, χy, χzqσ2pξ
1
u, ξ

1
v, ξ

1
w, χ

1
x, χ

1
y, χ

1
zq

¸ˇ

ˇ

ˇ

ˇ

ˇ

pΞ,X q“pΞ1,X 1q

. (5.25)

Remark 5.32 (Preservation of Algebraic Structure). As the f-product preserves the

H2,n-group structure, it also preserves all the commutator brackets that define h2,n, and

in particular the Heisenberg commutation relations

rDxj , Xls “ p2πiq
´1δj,l IL2pRnq ô rLpj , Lqls “ δj,l Lt

ô rDpj ,Dqls “ p2πiq
´1δj,l Dt.

But let us prove this last equation directly from the composition formula. We recall that

Opπpξuj q “ Duj , Opπpξvlq “ Dql .
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For the composition of the symbols ξuj and ξul we compute

ξuj f ξvl “
`

ξu ξ
1
v ` πi ξw

`

Dξu Dξ1v ξuj ξ
1
vl
´Dξv Dξ1u ξuj ξ

1
vl

˘

` 0
˘

ˇ

ˇ

ˇ

Ξ“H

“
`

ξuj ξ
1
vl
` πi ξw

`

p2πiq´2δj,l ´ 0
˘˘

ˇ

ˇ

ˇ

pΞ,X q“pΞ1,X 1q

“ ξuj ξvl ` δj,l
πi

p2πiq2
ξw,

and analogously

ξvl f ξuj “ ξuj ξvl ´ δj,l
πi

p2πiq2
ξw.

Hence, we recover

rDpj ,Dqls “ Opπpξuj qOpπpξvlq ´OpπpξvlqOpπpξuj q

“ Opπpξuj f ξvlq ´Opπpξvl f ξuj q

“ p2πiq´1δj,l Opπpξwq

“ p2πiq´1δj,l Dt.

Remark 5.33 (Clash with Symbol Classes). It is a priori not clear how the appearance

of DX and DX 1 instead of DX and DX 1 in Formula 5.25 affects the symbol estimates

(5.16) for σ1 f σ2, although the terms

χj7x
`

DξvDχ1z ´DχzDξ1v

˘j7
pΞ,X q“pΞ1,X 1q and χj8y

`

DξuDχ1z ´DχzDξ1u

˘j8
pΞ,X q“pΞ1,X 1q

may account for some of these differences.

But the structure of Formula 5.25 itself poses a problem for a useful asymptotic ex-

pansion due to the third-last term

ξj6w
`

DξuDξ1v ´DξvDξ1u

˘j6
pΞ,X q“pΞ1,X 1q

which neither decreases nor increases the order of σ1 f σ2 by Defintion 5.26.

So, while this quantization via H2,n respects the Hn-structure and homogeneity, it

creates a severe problem for formal asymptotic expansions.
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5.6.2 An Oscillatory Integral Representation

Since asymptotic expansion does not provide the adequate tool to study the Hn-Moyal

product for the symbol classes SmpHnq, we may try to find more clarity through an

integral formula for it. In order to express the Hn-Moyal product in such manner, we will

employ the integral formula of the Euclidean Moyal product, usually denoted by τ17τ2,

i.e., the product of symbols for the standard Weyl quantization on the phase space R4n`2.

By Theorem 5.6, we know that any pseudo-differential operator A acting continuously

on S pR4n`2q can be expressed both as the R2n`1-Weyl quantization of some symbol

τ and as the Hn-Weyl quantization of some symbol σ, i.e., τpD,Xq “ A “ σpD ,X q.

In the following we will make use of the fact that a modification of σ, say σM , can

be R2n`1-Weyl quantized to yield the same operator. We cast this relation into the

following definition.

Definition 5.34. Let two symbols τ, σ P S
1

pR4n`2q be such that τpD,Xq “ σpD ,X q.

We then denote τ also by σM and call it the modified symbol associated to σ.

The following statement provides a handy formula for well behaved symbols to start

with. Its proof will thus not be compromised by the concern over convergence and inter-

changeability of occurring integrals. Using this formula, we will subsequently show that

the Hn-Moyal product in fact extends to a continuous map from Sm1pHnq ˆ Sm2pHnq

to Sm1`m2pHnq.

But let us first recall the definition of the Euclidean Moyal product for operators

acting on (some subspace of) L2pR2n`1q. (See for example Folland [28] p. 103.)

Definition 5.35. For two symbols τ1, τ2 : R4n`2 ÞÑ C the (Euclidean) Moyal product is

formally defined by

`

τ17τ2

˘

pΞ, Xq “ 42n`1

ĳ

τ1pΨ, Uqτ2pΦ, V qe
4πi

`

xΞ´Φ,X´Uy´xΞ´Ψ,X´V y
˘

dΦ dU dΨ dV (5.26)

“ 42n`1

ĳ

τ1pΨ, Uqτ2pΦ, V qe
´4πiω

`

pΞ´Ψ,X´Uq,pΞ´Φ,X´V q
˘

dΦ dU dΨ dV, (5.27)

where ω denotes the standard symplectic form on R4n`2.

Proposition 5.36. For any two symbols σ1, σ2 P S pR4n`2q their Hn-Moyal product is
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given by

`

σ1 f σ2

˘

pΞ, Xq “ 42n`1

żżżż

σ1pΨ, Uqσ2pΦ, V qe
4πi

`

xΞ´Φ,U´1¨Xy´xΞ´Ψ,V ´1¨Xy
˘

ˆ e2πixΨ`Φ,rU´1¨X,V ´1¨Xsy dΦ dU dΨ dV. (5.28)

Proof. To begin with, let us recall that for the pseudo-differential operator defined by σ

or σM , respectively, there exists exactly one integral kernel K P S pR4n`2q such that

pσM pD,XqfqpXq “ pσpD ,X qfqpXq “

ż

KpX,X 1qfpX 1q dX 1

for all f P S pR2n`1q and all X P R2n`1. The symbols τ and σ in turn can be expressed

in terms of K and vice versa:

σM pΞ, Xq “

ż

e2πixΞ,Y yKpX `
1

2
Y,X ´

1

2
Y q dY,

σpΞ, Xq “

ż

e2πixΞ,Y yKpX ¨ p
1

2
Y q, X ¨ p´

1

2
Y qq dY,

whereas

KpX,Y q “

ż

e2πixΞ,X´Y yσM pΞ,
1

2
pX ` Y qq dY

“

ż

e2πixΞ,Y ´1¨XyσpΞ,
1

2
pX ` Y qq dY.

Making use of these formulas, we can express τ in terms of σ and vice versa with the

help of the following four observations.

First, we compute

pX ´
1

2
Y q´1 ¨ pX `

1

2
Y q “ p´X `

1

2
Y q ¨ pX `

1

2
Y q

“ ´X `
1

2
Y `X `

1

2
Y `

1

4
rY,Xs ´

1

4
r´Y,Xs

“ Y `
1

2
rY,Xs.

Second, if we define Y 1 :“ Y ` 1
2 rY,Xs, we equivalently have Y “ Y 1´ 1

2 rY,Xs “ Y 1´
1
2 rY

1, Xs since rY 1, Xs “ rY ` 1
2 rY,Xs, Xs “ rY,Xs. We also know that Y 1 “ Y ¨X´X,

from which we conclude that dY 1 “ dY . (Recall that the R2n`1-Lebesgue measure

dY coincides with the Hn-Haar measure. It is therefore bi-invariant under both group

actions.)
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Third, if X “ ppX , qX , tXq and Y 1 “ ppY 1 , qY 1 , tY 1q, then

B

Ξ, Y 1 ´
1

2
rY 1, Xs

F

“

´

ξu ´
1

2
ξwqX

¯

pY 1 `
´

ξv `
1

2
ξwpX

¯

qY 1 ` ξwtY 1

“

B

Ξ´
1

2
ad˚Hn

pXqpΞq, Y 1
F

,

and similarly,

B

Ξ, Y `
1

2
rY,Xs

F

“

B

Ξ`
1

2
ad˚Hn

pXqpΞq, Y

F

.

Fourth, for Ξ1 :“ Ξ´ 1
2 ad˚Hn

pXqpΞq we observe that

Ξ “ Ξ1 `
1

2
ad˚Hn

pXqpΞq “ Ξ1 `
1

2
ad˚Hn

pXqpΞ1q, (5.29)

as ad˚Hn
pXq2 “ 0 for any X P hn – R2n`1. This yields

ad˚Hn
pXqpΞ1q “ ad˚Hn

pXqpΞq ´
1

2

`

ad˚Hn
pXq

˘2
pΞ1q “ ad˚Hn

pXqpΞq.

It is furthermore easily seen that the change of variables Ξ ÞÑ Ξ1 is measure-preserving.

We now combine the above formulas for σ, σM and K and the first two observations

to give an explicit description of σM in terms of σ. Thus we compute

σM pΞ, Xq “

ż

e2πixΞ,Y yKpX `
1

2
Y,X ´

1

2
Y q dY

“

ĳ

e2πixΞ,Y y

ż

e2πixΘ,pX´ 1
2
Y q´1¨pX` 1

2
Y qy

ˆ σpΘ,
1

2

`

X `
1

2
Y `X ´

1

2
Y
˘

q dΘ dY

“

ĳ

e´2πi
`

xΞ,Y y`xΘ,Y` 1
2
rY,Xsy

˘

σpΘ, Xq dΘ dY

“

ż

e´2πixΞ,Y y
´

F´1
1 σ

¯

pY `
1

2
rY,Xs, Xq dY

“

ż

e´2πixΞ,Y 1` 1
2
rY 1,Xsy

´

F´1
1 σ

¯

pY 1, Xq dY

“ σpΞ`
1

2
ad˚Hn

pXqpΞq, Xq. (5.30)
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Our fourth observation additionally yields

σM pΞ´
1

2
ad˚Hn

pXqpΞq, Xq “ σpΞ, Xq, (5.31)

Formula (5.28) now follows from a calculation in which we rewrite the f-product as a

modified 7-product of ”anti”-modified symbols as in Formula (5.31). Thus, employing

Formulas (5.30), (5.31) and our fourth observation we obtain

`

σ1 f σ2

˘

pΞ, Xq “
`

σ1M 7σ2M

˘

pΞ´
1

2
ad˚Hn

pXqpΞqq

“ 42n`1

żżżż

σ1M pΨ, Uqσ2M pΦ, V q

ˆ e4πixΞ` 1
2

ad˚Hn
pXqpΞq´Φ,X´Uye´4πixΞ` 1

2
ad˚Hn

pXqpΞq´Ψ,X´V y (5.32)

dΦ dU dΦ dV

“ 42n`1

żżżż

σ1pΨ´
1

2
ad˚Hn

pUqpΨq, Uq

ˆ σ2pΦ´
1

2
ad˚Hn

pV qpΦq, V qe4πixΞ` 1
2

ad˚Hn
pXqpΞq´Φ,X´Uy

e´4πixΞ` 1
2

ad˚Hn
pXqpΞq´Ψ,X´V y dΦ dU dΦ dV

“ 42n`1

żżżż

σ1pΨ, Uqσ2pΦ, V q

ˆ e4πixΞ` 1
2

ad˚Hn
pXqpΞq´Φ´ 1

2
ad˚Hn

pV qpΦq,X´Uy (5.33)

ˆ e´4πixΞ` 1
2

ad˚Hn
pXqpΞq´Ψ´ 1

2
ad˚Hn

pUqpΨq,X´V ydΦ dU dΦ dV. (5.34)

A few more auxiliary results will eventually yield Formula (5.28). To this end, we first

notice that

rU´1 ¨X,V ´1 ¨Xs “ r´U `X ´
1

2
rU,Xs,´V `X ´

1

2
rV,Xss

“ rU, V s ´ rU,Xs ` rV,Xs.

With this at hand, we scrutinize the exponent in Equality (5.33) and find that

B

Ξ`
1

2
ad˚Hn

pXqpΞq ´ Φ´
1

2
ad˚Hn

pV qpΦq, X ´ U

F

(5.35)

“

B

Ξ, X ´ U `
1

2
rX ´ U,Xs

F

´

B

Φ, X ´ U `
1

2
rX ´ U, V s

F

.
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We furthermore observe that

X ´ U `
1

2
rX ´ U,Xs “ X ´ U `

1

2
r´U,Xs “ p´Uq ¨X “ U´1 ¨X

and that

X ´ U `
1

2
rX ´ U, V s “ X ´ U `

1

2
rX ´ U,U ` pV ´ Uqs

“ ´U `X `
1

2
rX ´ U,Xs `

1

2
rX ´ U, V ´ U s

“ ´U `X `
1

2
r´X,U s ´

1

2

`

rU, V s ´ rU,Xs ` rV,Xs
˘

“ U´1 ¨X ´
1

2
rU´1 ¨X,V ´1 ¨Xs.

Hence, the exponent (5.35) equals

@

Ξ, U´1 ¨X
D

´
@

Φ, U´1 ¨X
D

`
1

2

@

Φ, rU´1 ¨X,V ´1 ¨Xs
D

“
@

Ξ´ Φ, U´1 ¨X
D

`
1

2

@

Φ, rU´1 ¨X,V ´1 ¨Xs
D

.

Analogously we obtain for the other exponent in Equality (5.34) that

B

Ξ`
1

2
ad˚Hn

pXqpΞq ´Ψ´
1

2
ad˚Hn

pUqpΨq, X ´ V

F

“
@

Ξ´Ψ, V ´1 ¨X
D

´
1

2

@

Ψ, rU´1 ¨X,V ´1 ¨Xs
D

.

If we employ these simplifications, we finally obtain Formula (5.28).

Remark 5.37 (On the Relation Moyal Product-Symplectic Form). A reasonable and

justified question at this point is whether the Hn-Moyal product f bears the same

relation with the symplectic form Ω “ Ω1 on the generic orbit O1 – R4n`2, i.e., the

orbit Oλ for λ “ 1, as the R2n`1-Moyal product 7 does with ω via Equality (5.27). A

short answer to this question is: not quite. If one bears in mind that for λ P Rzt0u the

map

φλ : R4n`2 Ñ Oλ Ď h˚2,n – R4n`3,

pΞ, Xq ÞÑ pΞ´
1

2
ad˚Hn

pXqpΞq,
1

λ
X, λq

is a symplectomorphism that maps ω to Ωλ (cf. Folland [29] p. 19), then it is easy to see
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that via the identification of Oλ – TpΞ,XqOλ – R4n`2 we obtain

ΩλpΞ, Xq
`

pΨ, Uq, pΦ, V q
˘

“
1

λ

´

xΨ, V y ´ xΦ, Uy
¯

`
1

2λ2

´

xΦ, rX,U sy ´ xΨ, rX,V sy ` xΞ, rU, V sy
¯

.

Moreover, as one readily observes, we have φ˚1σM “ σ.

For λ “ 1, an expansion of the Hn-group products in the exponent of (5.28), abbre-

viated by 4πiEpΞ, X,Ψ, U,Φ, V q, now yields

EpΞ, X,Ψ, U,Φ, V q “ ´ΩpΞ, Xq
`

pΞ´Ψ, X ´ Uq, pΞ´ Φ, X ´ V q
˘

´
1

2
xΞ´ pΨ` Φq, rX ´ U,X ´ V sy ,

which is not quite as nice as Formula (5.27).

In the following we will prove that the Hn-Moyal product f extends to a continuous

map from Sm1pHnqˆS
m1pHnq to Sm1`m2pHnq. The proof by and large follows Folland’s

proof for the analogous statement for 7 in the Euclidean case (cf. [28] Theorem 2.47).

We will even adopt some notation Folland has introduced for a similar adaption of a

Euclidean statement to a meta-Heisenberg case (cf. Folland [29] Proposition 5). Although

Folland has already outlined there many of the ideas and changes that recur in our proof,

we will still give a complete proof with all required details for the sake of a convenient

reading.

As in Folland’s proof for the Euclidean case, the proof is divided into three main

steps to which we will add a preliminary section, where we introduce some notation and

provide a few observations that will be used throughout the proof. Drawing this analogy

between the Euclidean and the Heisenberg cases, the gist of the proof is again to sneak

the right choice of differential operators into the oscillatory integral given by (5.28) to

render it absolutely convergent uniformly in Ξ, X, while providing the required bounds.

Theorem 5.38. The Heisenberg-Moyal product pσ1, σ2q ÞÑ σ1 f σ1 is continuous from

Sm1pHnq ˆ S
m2pHnq to Sm1`m2pHnq for all m1,m2 P R.

Proof. As mentioned above, the first section of the proof concerns preliminary observa-

tions and the introduction of necessary notation. So, let us first note that

E1pΞ,Φ, U,Xq :“
@

Ξ´ Φ, U´1 ¨X
D

“ pξu ` ϕuqppX ´ pU q ` pξv ´ ϕvqpqX ´ qU q

` pξw ´ ϕwqptX ´ tU ´
1

2
ppUqX ´ qUpXqq,
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and hence

pBpUE1qpΞ,Φ, U,Xq “ ´pξu ´ ϕuq ´
1

2
pξw ´ ϕwqqX

“ ´
`

pξu ´ ϕuq ´
1

2
pξw ´ ϕwqqX

˘

,

pBqUE1qpΞ,Φ, U,Xq “ ´
`

pξv ´ ϕvq ´
1

2
pξw ´ ϕwqpX

˘

,

pBtUE1qpΞ,Φ, U,Xq “ ´pξw ´ ϕwq.

Equivalently, we may express this system of linear equations as

´

´

pBpU , BqU , BtU qE1

¯

pΞ,Φ, U,Xq “ Ξ´ Φ`
1

2
ad˚Hn

pXqpΞ´ Φq,

whence

´

´

pBpU ´
1

2
qXBtU , BqU `

1

2
pXBtU , BtU qE1

¯

pΞ,Φ, U,Xq “ Ξ´ Φ

follows by (5.29). The occurring entries in the vector field are not quite the left-invariant

standard basis vector fields on Hn, but rather some entangled versions of the latter. We

therefore define

DpU ,X :“
1

2πi
pBpU ´

1

2
qXBtU q “ DpU `

1

2
pqU ´ qXqDtU ,

DqU ,X :“
1

2πi
pBqU `

1

2
pXBtU q “ DqU ´

1

2
ppU ´ pXqDtU , and

NU,X :“
1

16

´

|DpU ,X |
2
` |DqU ,X |

2˘2
`

1

4
D2
tU
.

Applying the latter operator to e4πiE1 , we obtain

NU,Xe
4πiE1pΞ,Φ,U,Xq “ |Ξ´ Φ|4Hn

e4πiE1pΞ,Φ,U,Xq,

and by changing some variable names also

NV,Xe
4πiE1pΞ,Ψ,V,Xq “ |Ξ´Ψ|4Hn

e4πiE1pΞ,Ψ,V,Xq.

In much the same spirit we (re)define

LΦ :“
1

16

´

|Dϕu |
2
` |Dϕv |

2
¯2
`

1

4
D2
ϕw ,

(cf. the operator LΦ defined as in 5.20, which differs from LΦ only by a normalizing
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factor) and we immediately obtain

LΦe
4πiE1pΞ,Φ,U,Xq “

ˇ

ˇU´1 ¨X
ˇ

ˇ

4

Hn
e4πiE1pΞ,Φ,U,Xq, and

LΨe
4πiE1pΞ,Ψ,V,Xq “

ˇ

ˇV ´1 ¨X
ˇ

ˇ

4

Hn
e4πiE1pΞ,Ψ,V,Xq.

For the sake of completeness, let us remark that

0 “ NU,Xe
4πiE1pΞ,Ψ,V,Xq “ LΦe

4πiE1pΞ,Ψ,V,Xq “ NV,Xe
4πiE1pΞ,Φ,U,Xq

“ LΨe
4πiE1pΞ,Φ,U,Xq.

What now remains to be looked at is the action of NU,X ,NV,X ,LΨ,LΦ on

E2pΨ,Φ, U, V,Xq :“
@

Ψ` Φ, rU´1 ¨X,V ´1 ¨Xs
D

and e2πiE2pΨ,Φ,U,V,Xq. To this end, let us compute E2 in terms of the coordinates

ψu, ψv, . . . , qX , tX . Since

rU´1 ¨X,V ´1 ¨Xs “
”

`

pX ´ pU , qX ´ qU , tX ´ tU ´
1

2
ppUqX ´ qUpXq

˘

,

`

pX ´ pV , qX ´ qV , tX ´ tV ´
1

2
ppV qX ´ qV pXq

˘

ı

“
`

0, 0, ppX ´ pU qpqX ´ qV q ´ pqX ´ qU qppX ´ pV q
˘

,

we obtain

LΦe
2πiE2pΨ,Φ,U,V,Xq “ LΦe

2πi

´

pψw`ϕwq
`

ppX´pU qpqX´qV q´pqX´qU qppX´pV q
˘

¯

“
1

4

`

ppX ´ pU qpqX ´ qV q ´ pqX ´ qU qppX ´ pV q
˘2

“
1

4

ˇ

ˇrU´1 ¨X,V ´1 ¨Xs
ˇ

ˇ

2

“ LΨe
2πiE2pΨ,Φ,U,V,Xq.

To determine the action of NU,X and NV,X , we observe that for j P 1, . . . , n

D2
pjU

e2πiE2pΨ,Φ,U,V,Xq “ pψw ` ϕwq
2pqjX ´ qjV q

2e2πiE2pΨ,Φ,U,V,Xq,

D2
qjU

e2πiE2pΨ,Φ,U,V,Xq “ pψw ` ϕwq
2ppjX ´ pjV q

2e2πiE2pΨ,Φ,U,V,Xq,

DtU e
2πiE2pΨ,Φ,U,V,Xq “ 0.
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Hence, we have

NU,Xe
2πiE2pΨ,Φ,U,V,Xq “

1

16
pψw ` ϕwq

4
´

|pX ´ pV |
2
` |qX ´ qV |

2
¯2

and the analogous result for NV,X .

Let us finally start with the actual proof. To prove continuity of f we need to show

that for every j P NY t0u there exists kpjq P NY t0u and a constant Cj ą 0 such that

}σ1 f σ2}rjs ď Cj }σ1}rkpjqs }σ2}rkpjqs . (5.36)

Yet, as the following calculation will show, we only have to consider derivatives in Ξ

since the left Hn-translations THn
X 1 , and hence their generators Dej , j “ 1, . . . , 2n ` 1,

commute with σ1 f σ2. Thus, let Ξ1, X 1 P R2n`1, and let TR2n`1

Ξ1 denote the Euclidean

translation by Ξ1 in the variable Ξ. We then compute

`

TR2n`1

Ξ1 THn
X 1 σ1 f σ2

˘

pΞ, Xq “ pσ1 f σ2qpΞ´ Ξ1, X 1
´1 ¨Xq

“ 42n`1

żżżż

σ1pΨ, Uqσ2pΦ, V qe
4πixΞ´Ξ1´Φ,U´1¨X 1´1¨Xy

ˆ e´4πixΞ´Ξ1´Ψ,V ´1¨X 1´1¨Xye2πixΨ`Φ,rU´1¨X 1´1¨X,V ´1¨X 1´1¨Xsy dΨ dU dΦ dV

“ 42n`1

żżżż

σ1pΨ, Uqσ2pΦ, V qe
4πixΞ´pΦ`Ξ1q,pX 1¨Uq´1¨Xy

ˆ e´4πixΞ´pΨ`Ξ1q,pX 1¨V q´1¨Xye2πixΨ`Φ,rpX 1¨Uq´1¨X,pX 1¨V q´1¨Xsy dΨ dU dΦ dV,

which after a measure-preserving change of variables equals

42n`1

żżżż

σ1pΨ´ Ξ1, X 1
´1 ¨Uqσ2pΦ´ Ξ1, X 1

´1 ¨V qe4πixΞ´Φ,U´1Xy

ˆ e´4πixΞ´Ψ,V ´1¨Xye2πixΨ`Φ´2Ξ1,rU´1¨X,V ´1¨Xsy dΨ dU dΦ dV.

Hence f commutes with THn
X 1 , but not quite with TR2n`1

Ξ1 , thus with the derivatives Dβ
X ,

but not with Dα
Ξ for xαy, xβy ą 0. For each step of the proof we will therefore mainly

prove the case xαy “ xβy “ 0 and eventually indicate the slight changes required to cover

the case xαy ą 0. To this end, it is useful to note that

pDα
Ξσ1 f σ2qpΞ, Xq “

¡

`

U´1 ¨X ` V ´1 ¨X
˘α

ˆ IntegrandpΞ, X,Ψ, U,Φ, V q dΦ dU dΨ dV (5.37)

if IntegrandpΞ, X,Ψ, U,Φ, V q denotes the untouched integrand from (5.28).

140



5 Weyl-Quantized Operators on the Heisenberg Group

Step 1q

Here we show the result, i.e., the required semi-norm estimates, for the special case that

σ1, σ1 P S pR4n`2q. Let us pick some φ P C8c pR2n`1, r0, 1sq such that φpΘq “ 1 for all

|Θ|Hn
ď 1 and φpΘq “ 0 for all |Θ|Hn

ě 2. For an arbitrary but fixed Ξ P R2n`1 we

then define

φΞpΘq :“ φ
`

δăΞą´1pΞ´Θq
˘

,

so that, φ “ 1, whenever |Ξ´Θ|Hn
ďă Ξ ą, and φ “ 0, whenever |Ξ´Θ|Hn

ě 2 ă Ξ ą.

Similarly we define

φ̃XpZq :“ φ
`

δăXą´1pZ´1 ¨Xq
˘

.

As one can easily check, φΞ, φ̃X P S
0pHnq uniformly in Ξ and X, respectively, and for

κ1pΨ, U,Φ, V q :“ σ1pΨ, Uqσ2pΦ, V qφΞpΨqφ̃XpUqφΞpΦqφ̃XpV q,

κ2pΨ, U,Φ, V q :“ σ1pΨ, Uqσ2pΦ, V qp1´ φΞpΨqφ̃XpUqφΞpΦqφ̃XpV qq,

we have κ1, κ2 P S
m1`m2pHnq with

rκ1srjs ď cjrσ1srjsrσ2srjs and rκ2srjs ď cjrσ1srjsrσ2srjs,

uniformly in Ξ and X. In order to prove the required continuity estimates for σ1fσ2, we

will split up the integral into two parts and prove the estimates for the two summands

corresponding to κ1 and κ2, respectively.

As above, let us denote by 4πiEpΞ, X,Ψ, U,Φ, V q or, if there is no danger of confusion,

simply 4πiE, the exponent in Formula (5.28). Moreover, let us set

F pU,X, V q :“
ˇ

ˇU´1 ¨X
ˇ

ˇ

4

Hn
`

1

4

ˇ

ˇrU´1 ¨X,V ´1 ¨Xs
ˇ

ˇ

2
,

for which the order of U and V will be crucial in the following estimates. For the first
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integral we then observe that an integration by parts yields

żżżż

κ1pΨ, U,Φ, V qe
4πiE dΨ dU dΦ dV

“

żżżż

κ1pΨ, U,Φ, V q

`

1` ă Ξ ą4N LNΨ
˘`

1` ă Ξ ą4N LNΦ
˘

e4πiE

`

1` ă Ξ ą4N F pU,X, V qN
˘`

1` ă Ξ ą4N F pV,X,UqN
˘

dΨ dU dΦ dV

“

żżżż

e4πiE

`

1` ă Ξ ą4N F pU,X, V qN
˘`

1` ă Ξ ą4N F pV,X,UqN
˘

ˆ

”

`

1` ă Ξ ą4N LNΨ
˘`

1` ă Ξ ą4N LNΦ
˘

κ1

ı

pΨ, U,Φ, V q dΨ dU dΦ dV,

for which the latter integral is dominated by

C ă Ξ ąm1ă Ξ ąm2 ˆ
żżżż

maxt|Ξ´Ψ|Hn ,|Ξ´Φ|Hnuď2ăΞą,

maxt|U´1¨X|Hn ,|V
´1¨X|Hnuď2ăXą

dΨ dU dΦ dV
`

1` ă Ξ ą4N F pU,X, V qN
˘`

1` ă Ξ ą4N F pV,X,UqN
˘ .

The replacement of the factors ă Ψ ąm1ă Φ ąm2 by ă Ξ ąm1ă Ξ ąm2 is due their

comparability on the compact set characterized by

maxt|Ξ´Ψ|Hn
, |Ξ´ Φ|Hn

u ď 2 ă Ξ ą .

We also observe that the integral can be bounded from above by

C 1
żżżż

dΨ dU dΦ dV
`

1` ă Ψ ą4N
˘`

1` ă Φ ą4N
˘`

1` F pU,X, V qN
˘`

1` F pV,X,UqN
˘ ă 8,

provided N ą 2n`1
2 . Let us furthermore note that the constant C can be a very generous

bound in principle and will always encompass the according semi-norms of σ1, σ2. By

taking ă Ξ ąm1ă Ξ ąm2 to the other side and combining the appropriate constants, we

hence conclude that rκ1srjs ď Cjrσ1sr4Nsrσ2sr4Ns.

We now focus on the second integral. Let

GpU, V,Xq :“
`

|pX ´ pU |
2
` |qX ´ qU |

2˘2
`
`

|pX ´ pV |
2
` |qX ´ qV |

2˘2
,

for which the order of U and V is irrelevant. Again we employ integration by parts and
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compute

żżżż

κ2pΨ, U,Φ, V qe
4πiE dΨ dU dΦ dV

“

żżżż

|Ξ´Ψ|4Hn`|Ξ´Φ|4Hně16ăΞą4,

|U´1¨X|
4

Hn
`|V ´1¨X|

4

Hn
ě16ăXą4

e4πiE

´

|Ξ´Ψ|Hn

4
` |Ξ´ Φ|Hn

4
` 1

16pψ ` ϕq
4GpU, V,Xq

¯N

`

NU,X `NV,X

˘N

«

´

`

1` LNΨ
˘`

1` LNΦ
˘

κ2

¯

pΨ, U,Φ, V q
`

1` F pU,X, V qN
˘´1

`

1` F pV,X,UqN
˘´1

ff

dΨ dU dΦ dV.

Provided 4N ą 2n ` 2, the homogeneous dimension of Hn, the latter integral is domi-

nated by

C

ĳ

|Ξ´Ψ|4Hn`|Ξ´Φ|4Hně16ăΞą4

ă Ψ ąm1´4Nă Φ ąm2´4N

´

|Ξ´Ψ|Hn

4
` |Ξ´ Φ|Hn

4
` 1

16pψ ` ϕq
4
¯N

dΨ dΦ (5.38)

for the following reasons: First, the compact region KΞ
φ outside which pΨ,Φq ÞÑ

φΞpΨqφΞpΦq vanishes is given by KΞ
φ “ tpΨ,Φq P R4n`2 | maxt|Ξ´Ψ|Hn

, |Ξ´ Φ|Hn
u ď

2 ă Ξ ąu. Hence tpΨ,Φq P R4n`2 | |Ξ´Ψ|4Hn
` |Ξ´ Φ|4Hn

ě 16 ă Ξ ą4u Ě pKΞ
φ q

c

and the domain of integration is fine. Second, if we use the analogous notation KX
φ for

the pU, V q-integral, then pU, V q ÞÑ GpU, V,Xq is bounded from below on pKX
φ q

c and can

therefore be disregarded in the remaining integral (5.38).

For the latter we will split up the domain of integration into |Ψ|4Hn
`|Φ|4Hn

ě 44 ă Ξ ą4

and |Ψ|4Hn
`|Φ|4Hn

ď 44 ă Ξ ą4. For the first region we observe that (5.38) is dominated

by

C1 ă Ξ ą´4N ˆ

ĳ

|Ψ|4Hn`|Φ|
4
Hn
ě44ăΞą4

`

ă Ψ ą4 ` ă Φ ą4
˘

|m1|`|m2|
4

´2N
dΨ dΦ

ď C2 ă Ξ ą´4Nă Ξ ą|m1|`|m2|´2N

if only N is large enough. Without difficulty we can shift the factor ă Ξ ąm1`m2 to the

left-hand side and require the constant C2 to encompass the product rσ1sr4Nsrσ2sr4Ns.

The same can be expected of the constant in the second estimate for which the integral
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is dominated by

C3 ă Ξ ą´4N ˆ

ĳ

|Ψ|4Hn`|Φ|
4
Hn
ď44ăΞą4

|Ψ|m1´4N
Hn

|Φ|m2´4N
Hn

dΨ dΦ

ď C2 ă Ξ ą´4Nă Ξ ąm`m2´8N`4n`2 .

Hence we conclude that rκ2srjs ď Cjrσ1sr4Nsrσ2sr4Ns. This proves Step 1 for xαy “ 0.

Formula (5.37) shows that for xαy ą 0 we simply have to choose N accordingly larger

to retain our estimates.

Step 2q

This step is concerned with a pointwise estimate that will become important once we

stick our pieces together at the end of the proof. Let σ1, σ2 P S pR4n`2q and such that

σ1 is supported where |Ψ|Hn
` |U |Hn

ě K ą 0,

σ2 is supported where |Φ|Hn
` |V |Hn

ě K.

+

(5.39)

We show that for every a ą 0 there exist ja,M P N and Ca ą 0 such that

ˇ

ˇ

ˇ

`

Dα
ΞDβ

Xσ1 f σ2

˘

pΞ, Xq
ˇ

ˇ

ˇ
ď Carσ1srja`xαy`xβysrσ2srja`xαy`xβysK

´a (5.40)

for all |Ξ|Hn
` |X|Hn

ď K
M . Again because f commutes with THn

X we only have to

consider the xαy ą 0, xβy “ 0. And as above we will first treat the case xαy “ 0 and

eventually remark on the required changes in the proof.

To start with, we observe that

p1`NV,X ` LΨqe
4πiE

“ e4πiE
´

1`
`

|Ξ´Ψ|4Hn
`

1

16
pψ ` ϕq4

`

|pX ´ pU |
2
` |qX ´ qU |

2˘2˘N ˇ

ˇU´1 ¨X
ˇ

ˇ

4N

Hn

¯

:“ e4πiEF1pΞ, X,Ψ, Uq,

and furthermore that

F1pΞ, X,Ψ, Uq
´1 ď C

`

1` |Ξ´Ψ|4NHn
`
ˇ

ˇU´1 ¨X
ˇ

ˇ

4N

Hn

˘´1

for some C ą 0 if Conditions (5.39) are satisfied. An analogous estimate holds of course
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for Ψ, U . Hence,

pσ1 f σ2qpΞ, Xq “ 42n`1

żżżż

e4πiE p1`NN
V,X ` LNΨ qp1`NN

V,X ` LNΨ q
ˆ

σ1pΨ, Uqσ2pΦ, V q

F1pΞ, X,Ψ, UqF1pΞ, X,Φ, V q

˙

dΨ dU dΦ dV,

which is dominated by

Crσ1sr4Nsrσ2sr4Nsˆ
¡

|Ψ|Hn`|U |HněK,

|Φ|Hn`|V |HněK

ă Ψ ąm1´4Nă Φ ąm1´4N dΨ dU dΦ dV
`

1` |Ξ´ Φ|4NHn
` |V ´1 ¨X|4NHn

˘`

1` |Ξ´ Φ|4NHn
` |V ´1 ¨X|4NHn

˘
.

Now, since for |Ψ|Hn
` |U |Hn

ě K, |Φ|Hn
` |V |Hn

ě K there exists M P N such that for

ă Ξ ą ` ă X ąď K
M we have

|Ξ´Ψ|Hn
`
ˇ

ˇU´1 ¨X
ˇ

ˇ

Hn
ě

1

2

`

|Ψ|Hn
` |U |Hn

˘

,

|Ξ´ Φ|Hn
`
ˇ

ˇV ´1 ¨X
ˇ

ˇ

Hn
ě

1

2

`

|Φ|Hn
` |V |Hn

˘

,

the last integral is dominated by

C

¡

|Ψ|Hn`|U |HněK,

|Φ|Hn`|V |HněK

`

1` |Ψ|Hn
` |U |Hn

˘|m1|´8N`
1` |Φ|Hn

` |V |Hn

˘|m2|´8N
dΨ dU dΦ dV

ď CNK
|m1|`|m2|`16N`8n`4.

Choosing N appropriately large, we obtain Estimate (5.40).

In case xαy ą 0 we can again compensate for additional factors
`

U´1 ¨X `V ´1 ¨X
˘α

in the integral by choosing N large enough.

Step 3q

For σ1 P S
m1pHnq, σ2 P S

m2pHnq and φ as above, let us define

σ1,εpΨ, Uq :“ φpδεΨqφpδεUqσ1pΨ, Uq,

σ2,εpΨ, Uq :“ φpδεΦqφpδεV qσ2pΦ, V q.

Then σ1,ε Ñ σ1 and σ2,ε Ñ σ2 in the C8-topolgy as ε Ñ 0, and }σ1,ε}rjs ď

cj }σ1}rjs, }σ2,ε}rjs ď cj }σ2}rjs, for cj independent of ε, follows from an estimate
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similar to the reasoning at the beginning of Step 1). Step 1) hence implies that

for each j P N there exist kpjq P N and Cj ą 0, both independent of ε, such

that }σ1,ε f σ2,ε}rjs ď Cj }σ1}rkpjqs }σ2}rkpjqs. Furthermore, Step 2q yields the Cauchy

property in C8 for pσ1,ε f σ2,εqεą0. Hence pσ1,ε f σ2,εqε converges in C8 to some

symbol κ P Sm1`m2pHnq. On the other hand, by Proposition 5.31, σ1,εpD ,X q and

σ2,εpD ,X q converge strongly as operators on S pHnq to σ1pD ,X q and σ2pD ,X q, re-

spectively, and hence σ1,εpD ,X qσ2,εpD ,X q to the operator σ1pD ,X qσ2pD ,X q, while

pσ1,εfσ2,εqpD ,X q converges strongly to κpD ,X q. But by Proposition 5.6 piq the opera-

tors’ action on S pHnq uniquely determines their symbols, thus we must have σ1fσ2 “ κ.

This proves convergence and hence membership of σ1fσ2 “ κ in Sm1`m2pHnq. A stan-

dard application of the open mapping theorem for Fréchet spaces finally yields continuity

of f. This completes the proof.

5.7 The Link with the Beals-Greiner-Quantization

We conclude this chapter with a few remarks on the connection between the Hn-Weyl

quantization and the work of Beals and Greiner, which has been pointed out before

in Folland [29]. In their monograph [3] on pseudodifferential operators on Heisenberg

manifolds, i.e., manifolds M locally diffeomorphic to Hn ˆ Rd´2n, for fixed d P N but

variable dimension n, Beals and Greiner employ a modified version of Euclidean Kohn-

Nirenberg-quantization which is adapted to non-isotropic Heisenberg structure.

5.7.1 The Natural Semi-direct Product Approach

In case the Heisenberg manifold M coincides HnˆR2n`1 their quantization of a symbol

σ P S pHn ˆ R2n`1q is given by the 2n ` 1-dimensional Euclidean Kohn-Nirenberg

quantization of

pRσqpΞ, Xq “Rpσqpξu, ξv, ξw, χx, χy, χzq

:“σpξu ´
ξw
2
χv, ξv `

ξw
2
χu, ξw, χx, χy, χzq (5.41)

“σpΞ´
1

2
ad˚Hn

pXqpΞq, Xq.

Let us point out that the symbols corresponding to the Euclidean Weyl quantization

bear precisely the inverse relation to their Hn-Weyl analogues, that is, RpσM q “ σ

(cf. Identity (5.31)). Bearing in mind that the Euclidean Kohn-Nirenberg quantization
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of a symbol τ (applied to a function f) is given by

`

OpπKN pτqf
˘

pXq “

ż

pτpP,Qqe2πixQ,Xy`e2πixP,Dyf
˘

pXq dP dQ (5.42)

“

ż

pτpP,Qq e2πixQ,XyfpX ` Pq dP dQ

“

ż

τpΞ, Xq e2πixΞ,Xy
pfpΞq dΞ

“

ĳ

τpΞ, Y q e2πixΞ,X´Y yfpY q dY dΞ,

we thus compute

OpπBGpσq “

ĳ

σpΞ´
1

2
ad˚Hn

pXqpΞq, Xq e2πixΞ,X´Y yfpY q dY dΞ

“

ĳ

σpΞ, Xq e2πixΞ` 1
2

ad˚Hn
pXqpΞq,X´Y yfpY q dY dΞ (5.43)

“

ĳ

σpΞ, Xq e2πixΞ,Y ´1¨XyfpY q dY dΞ (5.44)

“

ĳ

σpΞ, Xq e´2πixΞ,X´1¨Y yfpY q dY dΞ. (5.45)

In Equality (5.43) we have re-used the change of variables from Identities (5.30) and

(5.31), and Equality (5.45) makes use of the following short calculation, which essentially

reduces to the same argument, too:

B

Ξ`
1

2
ad˚Hn

pXqpΞq, X ´ Y

F

“

B

`

I `
1

2
ad˚Hn

pXq
˘

pΞq, X ´ Y

F

“

B

Ξ,
`

I ´
1

2
adHn

˘

pXqpX ´ Y q

F

“

B

Ξ, X ´ Y ´
1

2
rX,X ´ Y s

F

“
@

Ξ, Y ´1 ¨X
D

“ ´
@

Ξ, X´1 ¨Y
D

.

On the other hand, we may dare an educated guess based on the close relation between

the 2n` 1-dimensional Euclidean Kohn-Nirenberg quantization and the Beals-Greiner-

quantization, i.e., (5.41), suspecting that the latter expressed by Identity (5.42) but with
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the R2n`1-gradient D replaced by its Hn-version D . Indeed we compute

ż

pσpP,Qqe2πixQ,Xy`e2πixP,Dyf
˘

pXq dP dQ

“

ż

pτpP,Qq e2πixQ,XyfpX ¨Pq dP dQ

“

żżżż

σpΞ,X q e´2πixΞ,Pye´2πixX ,Qye2πixQ,XyfpX ¨Pq dΞ dX dP dQ

“

ĳ

σpΞ, Xq e´2πixΞ,PyfpX ¨Pq dΞ dP

“

ĳ

σpΞ, Xq e´2πixΞ,X´1¨Y yfpY q dΞ dY.

Thus, the Beals-Greiner-quantization can be expressed by

OpπBGpσq “

ż

pσpP,Qqπp0,Q, 0qπpP, 0, 0q dP dQ

“

ż

pσpP,Qqπ
`

p0,Q, 0q dH2,n pP, 0, 0q
˘

dP dQ,

that is, via integrating against π as a representation of H2,n – R2n`1 ¸ Hn whose

elements are written as p0,Q,Sq dH2,n pP, 0, 0q.

Remark 5.39. The representation

π̃ : pP,Qq ÞÑ πp0,Q, 0qπpP, 0, 0q “ e2πixQ,Xye2πixP,Dy

of the quotient group R2n`1 ¸Hn – H2,ne, defined in Sections 4.2 and 4.3, is precisely

the one which establishes the relation

xOpπBGpσqf, ϕyHπ
“

@

σ̂, V π
ϕ f

D

L2ph2,neq
, (5.46)

between the Beals-Greiner quantization on Hn and the STFT V π
ϕ on Hn defined by

Defintion 4.8.
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[4] I. Beltiţă and D. Beltiţă. Magnetic pseudo-differential Weyl calculus on nilpotent

Lie groups. Ann. Global Anal. Geom., 36(3):293–322, 2009.
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[9] J. G. Christensen and G. Ólafsson. Describing functions: atomic decompositions

versus frames. Appl. Comp. Harmon. Anal., 31(2):303–324, 2011.

[10] L. J. Corwin and F. P. Greenleaf. Representations of nilpotent Lie groups and their

applications. Part I, volume 18 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 1990. Basic theory and examples.

[11] M. A. de Gosson. Symplectic covariance properties for Shubin and Born-Jordan

pseudo-differential operators. Trans. Amer. Math. Soc., 365(6):3287–3307, 2013.

149



Bibliography

[12] J. Diestel and J. J. Uhl, jr. Vector Measures. American Mathematical Society, 1977.

[13] A. S. Dynin. Pseudodifferential operators on the Heisenberg group. Dokl. Akad.

Nauk SSSR, 225:1245–1248, 1975.

[14] A. S. Dynin. An algebra of pseudodifferential operators on the Heisenberg group:

symbolic calculus. Dokl. Akad. Nauk SSSR, 227:508–512, 1976.

[15] H. G. Feichtinger. Banach convolution algebras of wiener type. In Proc. Conf.

Functions, Series, Operators, Budapest, August 1980., volume 35 of Colloq. Math.

Soc. Janos Bolyai, pages 509–524. North Holland, Amsterdam, 1983.

[16] H. G. Feichtinger. Minimal Banach spaces and atomic representations. Publ. Math.

Debrecen, 34(3-4):231–240, 1987.

[17] H. G. Feichtinger. Atomic characterizations of modulation spaces through Gabor-

type representations. In Proc. Conf. Constructive Function Theory, volume 19 of

Rocky Mountain J. Math., pages 113–126. Gabor;NuHAG;Classical, 1989.

[18] H. G. Feichtinger. Modulation spaces of locally compact abelian groups. In

R. Radha, M. Krishna, and S. Thangavelu, editors, Proc. Internat. Conf. on

Wavelets and Applications, pages 1–56, Chennai, Januar 2002, 2003. NuHAG,

New Dehli Allied Publishers. http://www.univie.ac.at/nuhag-php/bibtex/

download.php?id=120.

[19] H. G. Feichtinger. Modulation Spaces: Looking Back and Ahead. Sampl. Theory

Signal Image Process., 5(2):109–140, 2006.
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[64] M. Ruzhansky and V. Turunen. On pseudo-differential operators on group SUp2q.

In New developments in pseudo-differential operators, volume 189 of Oper. Theory

Adv. Appl., pages 307–322. Birkhäuser, Basel, 2009.
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lag, Basel, 2010. Background analysis and advanced topics.

[66] M. Ruzhansky and V. Turunen. Quantization of pseudo-differential operators on

the torus. J. Fourier Anal. Appl., 16(6):943–982, 2010.

[67] M. A. Shubin. Pseudodifferential operators and spectral theory. Springer-Verlag,

Berlin, second edition, 2001. Translated from the 1978 Russian original by Stig I.

Andersson.

[68] M. E. Taylor. Noncommutative microlocal analysis I. Mem. Amer. Math. Soc.,

52(313):iv+182, 1984.

[69] H. Triebel. Theory of function spaces. Akademische Verlagsgesellschaft Geest u.

Portig K.-G., Leipzig, 1983.

[70] H. Weyl. Quantenmechanik und gruppentheorie. Zeitschrift für Physik, 46(1-2):1–

46, 1927.

[71] H. Weyl. The Theory of Groups and Quantum Mechanics. Dover Publishing Com-

pany, Inc, New York, 1950.

[72] N. Wiener. Tauberian theorems. Ann. of Math. (2), 33(1):1–100, 1932.

[73] N. Wiener. The fourier integral and certain of its applications. Cambridge University

Press, 1933.

154


