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Abstract

It is the main goal of this text to study certain aspects of time-frequency analysis on
the 2n + 1-dimensional Heisenberg group. More specifically, we will discuss how the
well-studied notions of modulation spaces and Weyl quantization can be extended from
the Euclidean space R™ to the Heisenberg group H,,.

For quite a long time already this group has served as a good test object to verify
which concepts and results from Euclidean (thus Abelian) analysis carry over to simple
instances of non-Abelian structures.

In the case of the Weyl quantization a reasonable answer for H,, was first proposed
by A.S.Dynin almost forty years ago, although it was studied in more detail only some
twenty years after that by G. B. Folland. We will review the foundations laid by Dynin
and Folland and present some new results about left-invariant differential operators and
the natural product of symbols, the Moyal product.

The special tool for our analysis is a 3-step nilpotent Lie group to which we will refer
as the Dynin-Folland group. As the name suggests it originates in the works of the
afore-mentioned authors. The group’s unitary irreducible representations are in fact the
key to both the Weyl quantization and modulation spaces on H,.

Our results on modulation space on the Heisenberg group are based on H. Feichtinger
and K. Grochenig’s coorbit theory and a more recent adaption of it by I. and D. Beltita,
which focuses on modulation spaces arising from nilpotent Lie groups. We will use a
blend of both approaches and discuss the modulation spaces induced by the Dynin-

Folland group, among them a type of modulation spaces on H,,.
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Introduction

This text is dedicated to the study of certain aspects of analysis, in particular time-
frequency analysis, on the 2n + 1-dimensional Heisenberg group H,,. More precisely, it
evolved from the endeavour to give a satisfying answer to the following question: is it
possible to define in a plausible way modulation spaces on a quite simple non-compact
non-Abelian Lie group like the Heisenberg group, say?

Since their introduction by H. Feichtinger [18] over thirty years ago modulation spaces
have become a widely used tool in time-frequency analysis, especially Gabor analysis,
and PDE theory. Although originally introduced as a family of Banach function spaces
on arbitrary locally compact Abelian groups, the bulk of applications of modulation
spaces seems to focus on R"”.

One way to think of the (now classical) modulation spaces MP?(R"™) is to say that
they measure the global time-frequency distribution of a signal f € .’ (R") in terms of
mixed LP%-norms on phase space, i.e., R?”. The most important tool of contemporary
time-frequency analysis is the so-called short-time Fourier transform, or STFT (cf. [19]),
whose point values on phase space represent simultaneously ”localized” portions of the
time-frequency spread of such f.

The convenient abundance and availability of diverse families of Banach function
spaces like LP-spaces, Sobolev spaces, Holder spaces, Besov spaces, etc., on R", bounded
subsets of it or even on manifolds has led to questions about localization and invariance
under coordinate transformations of the modulation spaces MP4(R™). Both operations
are of fundamental importance for the introduction of function spaces on manifolds.

A Dbrief look at the compact Abelian group T" reveals that already in this very special
case the corresponding modulation spaces MP4(T™) reduce to the Fourier Lebesgue
spaces .7 (4(Z"), and similarly one obtains (M1 &")(R") = (FLIn &) (R™). (CL[62],
e.g.) Moreover, it has turned out that the only C'-changes of variables on R™ which
leave modulation spaces invariant are in fact affine transformations (cf. [49, 62]).

This is, of course, bad news for their extension to manifolds in general, yet not nec-
essarily so bad if the manifold is non-compact and possesses a global chart like any

connected simply connected stratified (nilpotent) Lie group, for example. In such case
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Introduction

one is furthermore tempted to make use of the Fourier analytic methods at hand (group
Fourier transform, sub-Laplacian, heat kernel, etc.) to define modulation spaces in anal-
ogy to the Abelian case.

This particular approach to modulation spaces employed in the case of the stratified
group H,, met some fierce resistance in the very Abelian nature of the notion itself.
The concept of frequency shifts on non-Abelian groups is a priori not quite viable even
for groups like H,, whose algebraic dual is very well-studied and quite simple. In
Subsection 2.2.2 we show in detail which obstacles in the representation theory of H,
rendered this approach practically futile.

Another approach, which soon seemed more promising in terms of what could be
achieved formally, was based on the theory of coorbit spaces first introduced by Fe-
ichtinger and Grochenig [21]. The techniques in this more abstract approach are heavily
based on the theory of square-integrable unitary irreducible group representations. A
so-called coorbit space can be a subspace or otherwise related to the representation space
H,, in practice some L?-space, on which some locally compact group G acts via some
unitary group representation .

As the authors discovered, modulation spaces were only one family of Banach function
spaces out of many that could be defined in this elegant general framework. Others
include Besov spaces and Triebel-Lizorkin spaces on R™, Bergman spaces on the upper
half-plane, Bargmann-Fock spaces, Besov spaces on compact homogeneous spaces as well
as on stratified Lie groups, etc. (Cf.[20, 39, 35, 36, 37, 38, 34, 31, 7].) In the specific
case of MP4(R™), the representation involved is the Schédinger representation of the
Heisenberg group (modulo its centre), which acts on the space L?(R") by combined
time and frequency shifts.

The quest to find a locally compact group which acts on L?(H,,) via the natural H,,-
group translation and Euclidean frequency shifts, admittedly a somewhat contestable
compromise, led to the rediscovery of the Dynin-Folland group, a nilpotent Lie group
first introduced by A.A.Dynin [13] and some twenty years later studied from a much
broader perspective by G.B. Folland [29].

The group had originally been proposed as a means to define a Weyl calculus on the
Heisenberg group, in analogy to how H,, itself is employed to define the classical Weyl
quantization on R™. The Dynin-Folland group was thus conceived as some sort of a
Heisenberg group of the Heisenberg group (cf.[28] p.90). The approach to view it as
just one of a whole class of so-called meta-Heisenberg groups was much later proposed by
Folland in the elegant paper [29], which seems to have gained little attention yet. Therein

the author studies the Lie algebra and generic representations of meta-Heisenberg groups
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Introduction

of (fully non-Abelian) two-step nilpotent groups G as well as their automorphism groups,
and to some extent the Weyl calculus arising from them. In the special case of G = H,
one recovers the quantization proposed by Dynin. Moreover, a connection between
the H,-Weyl quantization and the Beal-Greiner calculus on Heisenberg manifolds is
established.

It is worthwhile mentioning at this point that there exists a strong connection between
this Weyl quantization and modulation spaces on H,, as this is already the case for their
R"™-counterparts. More precisely, this relation is established by the so-called ambiguity
function, a close relative of the STFT.

A considerably more abstract approach to modulation spaces induced by arbitrary
unitary irreducible representations (unirreps) of nilpotent Lie groups has been proposed
by Ingrid and Daniel Beltita [5, 6]. The techniques involved are a blend of abstract
coorbit theory and the use of a Weyl quantization for nilpotent Lie groups first introduced
by N.V.Pedersen [51]. Originally proposed as an intentionally transparent approach to
geometric quantization associated with the co-adjoint orbits of nilpotent Lie groups
(cf. [50]), Pedersen’s extended calculus Weyl-quantizes tempered distributions a priori
defined on the co-adjoint orbits. Fach class of orbits thus induces a different Weyl-
calculus defined via the corresponding unirreps. In the case of the Heisenberg group, it
turns out that the Weyl correspondence proposed by Dynin agrees with Pedersen’s, an
indicator of soundness as we understand it.

Beltita and Beltita now associate an ambiguity function to each orbit employing tools
from Pedersen’s calculus. The corresponding modulation spaces are then defined in
terms of the mixed LP4-behaviour of the ambiguity function of a vector, i.e., function or
distribution, f in the representation space (or more precisely its superspace, the dual of
the representation’s smooth vectors). The emerging calculations are carried out rather
on the Lie algebra than the Lie group itself, the latter being identified exclusively via
exponential coordinates. This fact undoubtedly contributes to the main strength of their
approach, its elegance, but it also excludes strong features of the original coorbit theory
based on groups.

Our approach to modulation spaces can be viewed a strong blend of both. The def-
initions essentially follow the Beltita-Pedersen versions, but instead of an exclusive use
of the ambiguity function we also employ a Heisenberg analogue of the STFT. This way
we can assure independence of the defining window function of the modulation spaces
induced by the Dynin-Folland group as well as many other nilpotent Lie groups which
are given as semi-direct products and which possess square-integrable unirreps.

Our approach via the Dynin-Folland group has furthermore led us to study certain

12



Introduction

properties of the Weyl calculus on H,, which to our knowledge had not yet been inves-

tigated. The results we obtained constitute the second main part of this essay.

The present thesis is structured as follows. Chapter 1 recalls some important notions
and concepts from Fourier analysis on locally compact groups, especially Abelian groups.

The latter are then employed to give a brief review of modulation spaces on Abelian
groups, particularly R™, in the first half of Chapter2. The latter half of Chapter2
provides a short discussion about the extent of applicability of two approaches we have
tested in search of an adequate framework for modulation spaces on H,,. In particular,
we will point out why the Dynin-Folland group based coorbit type approach seemed
promising early on.

Chapter 3 provides a detailed meta-Heisenberg type construction of the Dynin-Folland
Lie algebra and group, which right from the beginning indicates what the group’s generic
unirreps should look like. The construction is followed by a complete classification
of unirreps in terms of Kirillov’s orbit method. Chapter3 is concluded with a brief
discussion of its semi-direct product structure and the Plancherel formula for the group
Fourier transform.

We will finally present our results on modulation spaces on the Heisenberg group in
Chapter4. Apart from a case-by-case study based on the classification of the Dynin-
Folland unirreps, we will provide some general results for modulation spaces induced by
specific semi-direct product type nilpotent groups.

Chapter 5, which comprises the second half of our results, is motivated by the rela-
tion between modulation spaces and the Weyl calculus on the Heisenberg group. After
motivating Dynin’s Weyl quantization on H,,, we show that it in fact coincides with
Pedersen’s Weyl calculus for the Dynin-Folland group and its generic representation.

We then recall a few facts already present in Folland [29], although somewhat more ex-
plicitly. Moreover, we show that the left-invariant differential calculus on the Heisenberg
group is covered by the H,-Weyl correspondence, namely by quantizing precisely the
polynomials in the frequency variable. In particular, we prove that the H,-Weyl quanti-
zation coincides with the left symmetrization in the sense of Helgasson [43] (cf. Chapter
IT Section 4).

We continue to introduce Hérmander type symbol classes which respect the homo-
geneous nature of H,,. Although these quite natural and simple symbol classes were
already suggested by Dynin [13] and taken up in a slightly modified version by Folland
[29], the latter authors rather make use of the subclasses of polyhomogeneous symbols.
In our case we employ the full classes instead and show that the corresponding pseudod-

ifferential operators map the Schwartz space .¥(H,,) continuously into itself.
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Subsequently we define a Moyal product of symbols for which we provide a full asymp-
totic expansion. The latter, however, does not live up to the success of its Euclidean
counterpart. Interestingly, this is not so much indebted to the specific symbol classes as
to the occurrence of terms one misses on R” due to the less intricate nature of Euclidean
phase space. Nevertheless, we can recover a closed expression of the Moyal product in
the shape of an oscillatory integral. This approach finally allows us to show that the
product satisfies the usual mapping properties on our symbol classes, a fact which auto-
matically follows from the asymptotic series expansion in the case of polyhomogeneous
symbols.

We conclude Chapter 5 revisiting a link to the Beals-Greiner calculus on Heisenberg
manifolds [3] first established by Folland [29]. Incidentally we thereby discover another

connection with the theory of modulation spaces.
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1 Preliminaries

This chapter provides a brief introduction to the most basic notions and tools from
abstract harmonic analysis, which will appear frequently throughout this text. In Sec-
tion 1.2 we recall some facts about the Haar measure and representation theory on ar-
bitrary locally compact groups, while Section 1.3 focuses on the 2n + 1-dimensional
Heisenberg group H,. The most important aspects of the notation and conventions we

will use throughout this text are discussed in Section 1.1.

1.1 Notation and Conventions

Following Folland’s convention, shared by Feichtinger and Grochenig, of having 27 in the
exponent of the Fourier integral, we our standard definition for the Fourier transform
will be

76 = f f(w)e2m da

We use the same convention for Fourier series on the torus group T, which we associate

with the interval [0, 1] equipped with the group law of the circle group S*.

1.2 Some Elementary Ingredients for Harmonic Analysis on

Groups

Since the theory of classical modulation spaces uses Fourier transformation in one form
or another we will briefly introduce the required notions in the most general framework,
namely for locally compact groups G. A locally compact group is a locally compact
space G which moreover possesses a group structure such that group multiplication is
continuous from G x GG to G and such that group inversion is a homeomorphism on G. A
detailed account on abstract harmonic analysis can be found in the excellent monograph
Folland [30].

17



1 Preliminaries

1.2.1 Locally Compact Groups and Haar Measure

Locally compact groups posses (up to positive mulitplicative constants) uniquely deter-
mined left-invariant and right-invariant Borel measures, the so-called left and right Haar
measures, often denoted by A and p. For certain types of groups these two measures
coincide. These groups are referred to as unimodular groups. Examples of unimodular
groups are the Abelian groups, the compact groups and all nilpotent Lie groups (cf. [30],
Chapter 2). The latter types of groups in fact cover most of the groups that we will
deal with in practice. Whenever the left and right Haar measures differ the so-called
modular function Ag of G, a continuous group homomorphism from G into R, grants
the relation dp(r) = Ag(x~1)dA\(x). In case the of unimodular groups we thus have
Aqg = 1.

In general we will always adhere to the left Haar measure, frequently denoting it simply
by dx instead of dA. In the context of Abelian groups, where the left and right Haar
measures coincide, dp may occasionally denote the Haar measure on the corresponding
dual group C:‘, but we will always explicitly fix the notation before use. Note that
whenever we write LP(G), unless otherwise stated, we refer to the Lebesgue space defined

by the left Haar measure on G.

Remark 1.1. We should point out that our notation for group elements will vary be-
tween z,y,...€ Gand g,¢',h,... € G, depending on the context and the risk of confusion
with other notation, thus exhibiting a slight preference for the former one in the more
abstract context of arbitrary locally compact groups whereas the latter notation will be
more prevalent in the context of Lie groups. This notational ambiguity carries over to
the Haar measure, which is correspondingly denoted by dz,dg, .. ..

1.2.2 Unitary Irreducible Group Representations

In order to dispose of a Fourier transform on a locally compact group G, we need to

employ a class of functions which corresponds to the family of

e :R" — T g M0 (1.1)
with £ € R, in the case of R" and to

e : T - T:x s 2™k (1.2)

with k € Z™, in the case of T". Theses functions are the so-called irreducible unitary

group representations, or unirreps, which are defined as follows.
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1 Preliminaries

Definition 1.2. Let G be a locally compact group with identity element e, and let H be a
complex Hilbert space. A strongly continuous unitary representation (or simply unitary
representation) m of G on H is a map 7w : G — U(H), set of all unitary operators on H,

satisfying the following properties
(i) m(z122) = w(x1)7(22) for all x1,x9 € G,
(i) m(e) = In,
G H
(iit) v; —> 2 = 7(zj)u— m(z)u for allueH,

The space H is called the representation space of w. It is frequently denoted by H,. Such

a representation is furthermore said to be (topologically) irreducible if it satisfies

() m is non-trivial, i.e., m # x — Iy, : G — {Iy,} S U(H), and the only closed

subspaces of Hr invariant under w(G) are {0} and Hr itself.

Two unitary representations © : G — U(Hx) and p : G — U(H,) are said to be unitarily
equivalent if there exists a unitary map U : H, — Hx, called equivalence, such that
m(x) = Up(x)U* for all x in G.

Note that unitarity implies (7(z))* = (7(z))~! = w(z~!) for all x € G. Conditions
(7) and (77) tell us that = is a group homomorphism from G into U(H,). Condition
(7i1) expresses pointwise continuity of 7, i.e., continuity in the strong operator topology.
Finally, Condition (iv) states that there are no proper sub-representations of w. This
property is referred to as (topological) irreducibility of .

Now, it is easily checked that e¢, £ € R", and ey, k € Z™, satisfy Conditions (i)—(4i7). In
both cases their corresponding representation space H, is the one-dimensional Hilbert
space C. The proof of Condition (iv) is usually more involved, but there are several
general statements which classify irreducible representations for certain types of groups.
In the Abelian case, e.g., all unirreps are one-dimensional (cf.[30] Chapter 3 Corollary
3.6). Since they have to satisfy the group homomorphism properties, they must be of
the form (1.1) and (1.2) in the cases G = R™ and G = T™, respectively. For compact
groups one can prove that all unirreps must be finite-dimensional and every unitary
representation is given as a direct sum of unirreps (cf.[30] Chapter 5 Theorem 5.2).
In the case of the non-Abelian, non-compact Heisenberg group H,, we will see that
all relevant unirreps are infinite-dimensional time-frequency shift operators on L?(R™)
(cf. Subsection 1.3.3).
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1 Preliminaries

Example 1.3. The arguably most prototypical example of a unitary representation of

a locally compact group G is its left regular representation

L:G—UL*Q)),
L(x)(f) == Tuf =y — f(z™'y),

provided we use the left Haar measure. Its unitarity follows straight away from the
left-invariance of dx. If we work with the right Haar measure or a bi-invariant Haar

measure, we can define the right regular representation

R:G - U(L*Q)),
R(2)(f) ==Tof =y~ flya).

It is usually of interest to see how L (or R) can be decomposed into unirreps of G.

We will frequently speak about the set of all unirreps of a given group G . It makes

sense to define this set up to unitary equivalence.

Definition 1.4. Given a locally compact group G, we define its unitary dual G to be the
set of all equivalence classes (in the sense of Definition 1.2 (iv)) of irreducible unitary

representations of G.

In the case of an Abelian group G, the dual set G possesses a natural group structure
which makes it into a locally compact topological group with respect to the w*-topology
inherited from L*™(G), thus possessing a bi-invariant Haar measure (cf. [30] p.89). We

will refer to G as the dual group of G and its members will frequently be called characters.

1.2.3 The Group Fourier Transform

We want to conclude this section with the definition of the so-called group Fourier

transform (GFT). In analogy to the Fourier transform on R™ given by

~

f© =] fl@)e™Sde = | f(a)ee(—w)dw= | f(x)(ee())* dw =: f(ee), (1.3)
R R R™

we define the GFT of a given function f : G — C evaluated at a representation 7w
as the integral of f against 7*. Since 7 can be operator-valued, we will define this
integral pointwise as a Bochner integral (cf. [30] for a short introduction to vector-valued

integration as well as [12] for a detailed account) with respect to the Haar measure:
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1 Preliminaries

Definition 1.5. Let m be an irreducible unitary representation of the locally compact
group G on some Hilbert space Hy. For f € L'(G) we define its group Fourier transform

at w to be the map

~

f(m) : He — Hr,
u J f(@)m(z)*ude = J f@)n(z YHude. (1.4)
G G

~

Due to linearity and certain other properties of the Bochner integral the operator f(m)
is linear and bounded on H,, with Hf(w) H < |flp1(g)- As a function on L'(G) the map

f— f is also linear and it satisfies the convolution identity

— ~

(f = g)(m) = g(m) f(m), (1.5)

provided the (left) group convolution is defined by

(f * 9)(x) = L F@)gly™x)dy. (1.6)

One of the most important operations in the context of harmonic analysis on Abelian

groups is the modulation of a function.

Definition 1.6. Given a locally compact Abelian group G and a character & € G we

define modulation by & by

Mg : Lie(G) = Lige(G),
(M f) () == &(x) f (), (1.7)

that is as the multiplication by the character €.

In electrical engineering the terminology of frequency modulation refers to conveying
information via a carrier signal, say f : R? — C. Modulation is performed by shifting
the frequency of f, that is, by translating its frequency fto Tgf = f( — £). But this

in fact translates to a modulation of the signal f by £ since

—_

(e = [ e m@mepyaa = | 2 Ofdo = flg—¢) = Tef. (1)

More generally, this observation (involving the same one-line calculation) holds true for

any locally compact Abelian groups G as we have &(x) - n(z) = £ — n(z), r € G.
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Much more can be said about the GFT; we refer the interested reader to [30]. We will
also provide further information on special cases whenever it seems necessary.

Let us also note that will occasionally make use of the symbol . f or % for f .
Usually, this notation is reserved for the Plancherel-Fourier transform, which extends
the GFT restricted to L'(G) n L?(G) to a unitary transform on L?(G) (at least for all
types of G we will consider more closely). Whenever we abuse this notation, however,

it will be unambiguously clear from the context.

1.3 The Heisenberg Group

In this subsection we realize the Heisenberg group H,, following a recipe we could call
"How to construct a meta-Heisenberg group of ....” In our case, the Heisenberg group
is the meta-Heisenberg group of R™, and we explicitly mention this type of construction
at this early stage as it will play an important role throughout this text. The term
meta-Heisenberg group was first used in Folland [29] and employed for meta-Heisenberg
groups of 2-step nilpotent Lie groups. This, of course, includes the 1-step nilpotent Lie
group R", and we will point out shortly precisely what the name meta-Heisenberg group
refers to.

This subsection also comprises a construction of the Schrodinger representations, the
natural unirrep of H,, obtained via the meta-construction, and some explicit formulas for
the left- and right- invariant vector fields which will be needed later on. Furthermore,
we will have a look at the group Fourier transform and list some of its noteworthy

properties.

1.3.1 A Meta-Type Realization of H,

Let us define the operators @ and Pj, j,k = 1,...,n, acting on the Schwartz space
Z(R™) via

Qrf(z) = zpf(z), (1.9)
1 af
Pif(x) := %%j(@a (1.10)

where f € .7(R"™) and = € R™.
One checks easily that for any j, k =1,...,n,

Ojk
=1 1.11
2mi ( )

[PJaPk’] = [Qj)Qk] =0, [P]7Qk] =
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where I denotes the identity operator. Let use the convention that the Lie bracket for two
essentially adjoint operators A, B acting on . (R") is defined by 27 times the standard
commutator [A, B] := AB — BA.

Definition 1.7. Equalities(1.11) (times 27mi) are called the Canonical Commutation

Relations (CCR) or Heisenberg Commutation Relations.

Let us denote by (Qy, P;) the Lie algebra generated by the operators @y and P;. This
means that (Q, P;) is the smallest real Lie algebra of operators which contains the
operators Qi and Pj, j,k = 1,...,n, the Lie bracket being 27i times the commutator
bracket. The CCR show that

Qr, Pj) =RP®.. @RP, ®RQ:1 ® ... BRQ,, PRI

This Lie algebra has dimension 2n + 1 and is 2-step nilpotent. Moreover, (Qy, P;) is

isomorphic to the Heisenberg Lie algebra bh,, whose definition we now recall.

Definition 1.8. The Heisenberg Lie algebra b,, is the real Lie algebra with underlying

vector space R*" 1 endowed with the Lie bracket defined via

ikt P X = X X = pj,Xt]=[qu,Xt]=o} 112)

[ij’XQk] = 05k Xt,
where (Xp,, ..., Xp,, Xq1, .-, Xq,, Xt) denotes the standard basis of R27+1

Note that the Lie algebra isomorphism between (Qy, P;) and b, is
dp: by — (Qu, Py (1.13)
defined via
dp(Xg,) =2miQr, dp(Xp,) =2miP;, j,k=1,...,n, anddp(X;) =2mil.
The Lie algebra b, is nilpotent of step 2 and its centre is RX;. In standard coordinates

(P, q:t) == (P15 Pns Q15 - - -, Gns ),

and similarly for (p/,¢’,t’), its Lie bracket given by (1.12) becomes

[(p,q;1), (@, ¢, )] := (0,0,pq" — qp’) (1.14)

23



1 Preliminaries

if p¢’ abbreviates the standard inner product of p and ¢’ on R™.

Definition 1.9. The Heisenberg group H,, is the connected simply connected Lie group

corresponding to the Heisenberg Lie algebra b,,.

Hence H,, is a nilpotent Lie group of step 2 and its centre is exp(RX};). The group
law of H,, may be given by the Baker-Campbell-Hausdorff formula, which we now recall
for a general Lie group G and corresponding Lie algebras g (see, e.g., [10, p.11,12]). It

reads
1

_ 214[;/, [X,[X, Y]glglg +---)-  (1.15)

expa(X) Og expa(Y) = expg(X +Y + = [X Y]g +

- [Yv [X’ Y]g]g)

This formula always holds at least on a neighbourhood of the identity of G and in
fact whenever the series in the right hand side converges. If G is a connected simply
connected nilpotent Lie group, the exponential mapping exps : g — G is a bijection and
Formula (1.15) holds on g since the series on the right hand side is finite. For the case

g = b, it yields

expy, (X) On, expy, (Y) = expy,, (X +Y + - [X Y]) (1.16)

for all X,Y in b,,.
We now realize the Heisenberg group H,, using exponential coordinates. This means

that we identify an element of H,, with an element of R?"*! via
n
(p,q,t) = expy,, Z ;+ 4 Xy,) +1Xy)

Hence, using this identification, the centre of Hy, is {(0,0,¢) : t € R} and the group law

given in (1.16) becomes

1(pq’ —qp)). (1.17)

(¢ t) Om, (', ¢'s) = P+ a+ ¢t + + 5

Remark 1.10 (On the Meta-Heisenberg-Construction). This term coined by Folland
refers to the construction of a nilpotent Lie group H(G) of one step m + 1, given an
m-step nilpotent group G, such that the nilpotent structure of H(G) is essentially given
by the commutation relations of the left-invariant vector fields of G and multiplication

by each coordinate function.

24



1 Preliminaries

Remark 1.11 (On the Haar measure). Since the H,-Haar measure coincides with the
Lebesgue measure on R?"+1 we can make further use of the latter coordinates and write
the H,,-Haar measure as dpdgdt. It hence follows that L"(H,) =~ L"(R**!) for all
reRT.

It is furthermore worth mentioning that the identification H,, =~ R?"*! allows us to
define .7 (H,) = . (R*"*1).

1.3.2 Left-invariant Vector Fields

Let us recall that the left and right regular representations L and R (defined as in Exam-
ple 1.3) of a unimodular Lie group G on L?(G) are unitary and that their infinitesimal
representations yield the isomorphisms between the Lie algebra of G and the Lie algebra
of the smooth right- and left-invariant vector fields on G, respectively. More precisely,
the left-invariant vector field dR(X) corresponding to a vector X € g at a point g € G is
given by

d

dR(X)f(9) = —

| 7 (g expy, (TX)),

7=0

for any differentiable function f on G, whereas the right-invariant vector field dL(X)

corresponding to X is given by

d

AL(X)f(9) =

_Of (expg,, (—7X)g).

Short computations in the case of the Heisenberg group H,, yield the following ex-
pressions for the left and right-invariant vector fields corresponding to the basis vectors

Xp,;, Xg,, Xt for j,k =1,...n. For the left-invariant vector fields we adopt the notation

pj»
9, = (@m)URX,) = @ri)7 (£ - led).
Dy = (@) UAR(Xy) = @) (2 + imd), (1.18)
2 = (2mi)"YR(X,) = (2mi)71L,

while for the right-invariant vector fields we obtain

0 1 0 0 1 0 0
_dL(ij) = (6;0 + ZQj0t> ) _dL(qu) = <0qk - 2pké’t) , —dL(X:) = ot

J
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1.3.3 The Schrodinger Representation

Here we show that there is only one possible representation of the Heisenberg group H,
with infinitesimal representation dp defined in (1.13). This ‘natural’ representation p
will turn out to be the well known (canonical) Schrodinger representation of H,,.
We start with the following three observations. Firstly, from the group law, we have
(b.4.t) = (0.,0)(p.0,0)(0,0,¢ + 21)

= expy,, (1 Xq,) - - - expy,, (00 Xq,) exPu,, (P1Xp,) - - - exPu,, (PnXp,)
expy,, ((t + %)Xt)

Secondly, from the definition of an infinitesimal representation, we know that if dp is the

infinitesimal representation of p, then we must have for every X € h,,, and 7 € R
plexpy, (X)) = ™),

where the right hand side is understood as the 1-parameter group of operators with
generator dp(X). Therefore, if it can be constructed, the representation p will be char-

acterised by the 1-parameter groups with generators

0
dp(Xp,) = 2mi Pj = Fr dp(Xg,) =271 Qr = x(2mizy) and dp(Xy) = 2wl
J

Thirdly, it is well known that the operators 27mi P;, 2mi )}, and 27i1 are essential skew-

adjoint on .7 (R") and generate the 1-parameter unitary groups of operators on L?(R")

{edp(Tij ) }TeRa {edp(Tqu ) }TGR’ {edp(TXt) }TER?

given respectively by

eWPTXo) f(2) = flwr,.. T ),
edp(Tqu)f(CU) _ 627ri7xkf(l’),
WX f(@) = T f(a),

for f € L2(R"), z € R™.

From the three observations above, the unique candidate p for a representation of H,
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having infinitesimal representation dp must satisfy

p (expy, (i Xp,)) f(z) = e PiXe)) f(2) = fz1, ... 25 + ), ),
p (expm, (akXq,)) f(x) = e f(z) = 2T f(z),
p (expm, (tX0)) f(x) = ™50 f(a) = 27 f (),

for f € (R™) and = € R", and we must have

p(p, q,t) f(z) = e®@Xa)  edrlanXan) cdoPrXp,) _6dp(anpn)€dp((t+%)Xt)f(x)

_ 2miga (edmmxpl) . edp(pnxpuedp((t#;—q)xn) f(2)

= riar (WO (4 p)

_ €2m’qx62m'(t+%)f(x + p)’

that is,
p(p, ¢, t)f(x) = ™5 £z 4 p). (1.19)

Conversely, one checks easily that the expression p defined via (1.19) gives a unitary
representation of H,. In fact we recognize the so-called Schrodinger representation of
H,.

1.3.4 The Family of Schrodinger Representations

In this subsection we describe the complete family of Schrédinger representations pj,
A € R\{0}, of H,,.

We prefer to define a Lie algebra or a Lie group via a concrete description (the most
common realization or the most useful for a certain purpose) rather than as a class of
isomorphic objects given via a representative. Indeed, we have defined the Heisenberg
Lie algebra b,, via the CCR on the standard basis of R?"*! and we have considered a
concrete realization of the Heisenberg group H,,. However, it is interesting to define other
isomorphisms than dp. Indeed, let us consider the linear mapping dpy : b, — (Qk, Pj)

defined via
dpx(Xq,) = 2miAQk,  dpx(Xyp,) =2mi Py, j,k=1,...,n, and dpx(X;) = 2miAlL,

for a fixed A € R\{0}.

Proceeding as for p, the following property is easy to check:
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Lemma 1.12. For each A € R\{0}, the mapping dp) is a Lie algebra isomorphism from
bn onto (Qg, Pj). It is the infinitesimal representation of the unitary representation py
of H,, on L*(R") given by

pA(D, @, ) f () = T NFEH 39 £ 4y

for f e L*(R"), x € R™.
Naturally p = p1.

The representations py, A € R\{0}, given in Lemma 1.12 are also called Schrédinger
representations. A celebrated theorem of Stone and Von Neumann says that, up to
unitary equivalence, these are all the irreducible unitary representations of H,, that are

nontrivial at the centre:

Theorem 1.13 (Stone-von Neumann). For any A € R\{0}, the representation py of
H,, is unitary and irreducible. If \,\' € R\{0} with X\ & X then the representations py,
A € R\{0}, are inequivalent. Moreover, if w is an irreducible and unitary representation

of H,, such that 7(0,0,t) = 2™ for some X\ £ 0, then 7 is unitarily equivalent to py.

For a proof, see, e.g., [28, ch 1 §5].
For example, the mapping gy of H,, defined via

- A
p)\(p7q7t) = p( ‘)“p¢\/ﬁqut)7

is a unitary representation of H,, on L?(R™) which is unitarily equivalent to py. This
can be chosen as another realization of the Schrédinger representation coinciding with
the character e2™ at the centre of H,,.

The Stone-von Neumann Theorem gives an almost complete classification of the H,,-
unirreps. In fact, we see that the only other unirreps which can appear are trivial at the
centre. Passing the centre through the quotient, those representations are now unirreps

of R?", hence characters of R?*". We thus have:

Theorem 1.14 (Classification of H,,-Unirreps). Every irreducible unitary representation
p of Hy on a Hilbert space H is unitarily equivalent to one and only one of the following

representations:
(i) px, A € R\{0}, acting on L*(R"),

(1) o(ap) : (p,q,t) — e2milar+ba) q he R™, acting on C.
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Historical Remark 1.15. One can argue that the Heisenberg group H,, arose in con-
nection with the early quantum mechanics. In fact, measurements of momentum and
position of a quantum particle are, up to a factor i, represented by operators on L?(R™)
given by (1.9) and (1.10) and thus satisfy the (CCR) given in (1.11). The parameter A
can then be viewed as the Planck constant, modulo normalisation. (For a presentation
of these ideas cf. [28] Section 1.1, e.g.)

1.3.5 Group Center and the Reduced Heisenberg Group

The group centre Z(H,,) and the commutator subgroup
H,° = {ghg 'h"' | g,h e H,}

both coincide with the set {(0,0,¢t) | ¢t € R}.

The periodicity in ¢ € R of the Schrodinger representation py can be very inconvenient
in the context of certain applications. As a result, the map py : H, — U(L*(R")) is
neither faithful, i.e., injective, nor square-integrable in the sense of Definition 2.20. It is

therefore useful to occasionally use the so-called reduced Heisenberg group
Hn,red = Hn/{(O, 0, k) | ke Z}

1.3.6 Group Fourier Transform and Plancherel Formula

There is indeed quite a bit that can be said about the GFT on H,. In order to keep
this subsection short, we very briefly collect the some important facts, in particular the
Plancherel theorem. The theorem will give an answer as to why the one-dimensional
representations o, ), a,b € R", are negligible for the GFT.

~ ~ ~

For the sake of convenience, let us denote by f(a,b) the GFT f(o(,s)) and by f(A)
the GFT ]? (pa) since up to unitary equivalence these are the only possible values for
1 (m),me H".

In fact there is not much to say about the case of m € [o(44)] € H" since the GFT
coincides with the Euclidean Fourier transform on R?".

The py-case in turn is quite different from Abelian Fourier transforms; all statements
are given for arbitrary A € R\{0}. For a function f in L'(H,) we have observed in

Subsection 1.2.3 that the operator f(A) bounded, but in fact much more can be said
about the GFT in the cases f € L'(H,) and f € L*(H,,).

Proposition 1.16. Let f € L'(H,) and let g € L>(H,). Then, g(\) is compact on
L2(R™) and f()\) is Hilbert-Schmidt on L2(R™). Moreover, the Hilbert-Schmidt norm of
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~

f(X) is given by
P s = N7 [ 1700, dadp (1.20)

Let us recall that the set of Hilbert-Schmidt operators on a Hilbert space H, also
know as the Schatten-von Neumann 2-class &o(H), can be turned into a Hilbert space
of operators if we equip it with the inner product (A, B) ¢ := Tr(B*A) for A, B €
HS(H). Hence, the GFT of an L?(H,,)-function f defines a Hilbert space-valued map
f:R\{0} - &3(L2(R™)) : A — f(A) with a certain decay behaviour in A as we observe
in Identity (1.20).

A closer look reveals that the function f is actually square-integrable over R\{0} in
the sense of strong Bochner integrals if we choose the right measure p. In that case its
L2-norm equals | f|| [2(H,)- This gives a very strong statement for the GFT, that is, a
Plancherel-type theorem:

Theorem 1.17 (Plancherel Theorem on H,,). Let the measure p on R\{0} be defined
by du(N) := |\[" dX\. Then, the group Fourier transform f — f restricted to L'(H,) n
L*(H,,) extends to a unitary isomorphism .F of L*(H,,) onto L*(R\{0}, &o(L?(R™)); p).

In particular, we have

1712200, = j 12 (DN s du()
R\{0}

for all f e L*(H,).

This in fact is a statement of existence for the Plancherel-measure on the unitary dual
H", which moreover states that the subset {loy] € H" | a,b € R™} is of vanishing
measure. That is, the only relevant representation for the H,-GFT are the Schrédinger
representations.

The measure p furthermore allows for an inversion formula for GF'T of nicely-behaved

functions such as the Schwartz functions, e.g.

~

Theorem 1.18. For all f € .#(H,), the inverse Fourier transform F 1 : Z(f) = f
f is given by the formula

~

fpat = [ 1 (Fomean) duoy (1.21)

R
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2 Modulation Spaces Revisited - A Review

and Incentive

2.1 A Review of the Original Concepts with a Focus on R"

The first part of this chapter is mainly dedicated to the review and comparison the two
different methods in the Abelian case, particularly in the case of R™. Each of them
is formulated in a specific context of representation theory of locally compact groups
and the theory of function spaces arising thereof. For each review we will briefly recall
the corresponding theoretical backgrounds, highlighting important notions, technicalities
and certain statements that we desire to transfer to Heisenberg group.

The second part of the chapter discusses the conclusions we draw from both approaches

in view of adapting them to the H,-setting.

2.1.1 Classical Modulation Spaces via Uniform Frequency Decompositions
and Wiener Amalgam Spaces on Locally Compact Abelian Groups

In 1983 H. G. Feichtinger introduced the concept of modulation spaces based upon a
notion of Banach spaces of distributions called Wiener-type spaces or more frequently
nowadays Wiener amalgam spaces (cf. Feichtinger [15]). The idea was to generalize a
recipe for creating (families of) function spaces in the spirit of a very specific space
introduced by N. Wiener in his study of Tauberian theorems in 1932 (cf. [72, 73]).

This space, now widely known as Wiener’s space, is a Banach space of locally bounded
measurable functions that are globally in I!(Z") in the following sense: if we denote by
@ the unit cube in R™, then a function f is said to be in W (R") if

Z esssup|f(x + k)| = H (HfXQJF’fHLOC(R"))k

kezn YEQ

< o0,

@) H(HfT_’“XQ”Lw(R”) 1Lz

ll
(2.1)

where x denotes the characteristic function of a subset of R"™ and T}, denotes the left
shift by y € R™.
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The idea behind these spaces is that local and global behaviours, respectively, of
functions and distributions are measured by two different spaces. A question that arises
immediately is how much amalgamated spaces depend on the way one localizes in the first
place. For that reason it is important to observe that on the one hand the amalgamated
norm in (2.1) can be viewed as localizing f over a cover of R", globally bounded in size,
consisting of compact neighborhoods around of members of a discrete subset of R™, in
our case the lattice Z™.

Alternatively, we could view it as localizing f by discrete translates indexed by some
set, in our case again Z", of one fixed function, usually referred to as window, which in our
case is given by the characteristic function of the translate of a compact neighborhood
of 0 in R™. Now, one can go one step further and ask what happens if we exchange
discrete shifts for continuous ones and replace the discrete ' (Z")-norm by the continuous
L'(R"™)-norm. Moreover, what happens if we take LP and L?-norms other than L* and
L'?

Such questions and others about the possibility to interpolate between the latter amal-
gamates seem to have inspired Feichtinger to introduce the concept of general Wiener
amalgam spaces as Banach spaces of functions and distributions over locally compact
Abelian groups that possess two equivalent descriptions: one where the norms involve
continuously shifted windows and another one where the shifts could be replaced by a
uniform decomposition of the underlying structure, i.e., the Abelian group.

Modulation spaces eventually arose essentially as the inverse Fourier image of Wiener
amalgam spaces over G. The idea behind this is the following: in analogy to Besov
spaces, e.g., where the description via modules of continuity could be expressed by
operations on the Fourier spectrum, modulation spaces decompose functions on a group
G into frequency localized pieces.

It is then checked whether these pieces, still being functions or distributions on G,
belong to certain Banach spaces over G like LP-spaces, e.g. This is the so-called local
behaviour of f. The global behaviour is checked in terms of L? or £9-summability over
the whole Fourier spectrum G. That is, modulation spaces are apparently amalgamated
spaces whose local components are Banach spaces over G and whose global components
are Banach space over G.

If we now Fourier transform the whole space, that is, all f on G with finite modulations
space norm, we obtain an amalgamated space over G whose local component has turned
into a Fourier-Lebesgue space whereas the global one is still the same.

Many properties about Wiener amalgam spaces, like dualities, interpolation proper-

ties, etc., thus translate one-to-one to the case of modulation spaces. Also, the equiv-
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alency between of continuous and discrete descriptions is given through the Wiener
amalgam perspective. It was apparently for that very reason that Feichtinger coined
the name modulation spaces: shifts T¢ applied to windows on the Fourier side are given
through modulations Mg, i.e., multiplying by characters £ € CA?, of the inverse Fourier
images of the windows on G. That is, we analyze function spaces through uniform
modulations.

Let us as a first step introduce Wiener amalgam spaces on an Abelian group G. Since
by Pontryagin’s duality there is no distinction between an abstract locally compact
Abelian group G and its dual group G we pick the latter as the more convenient choice
for the subsequent definition of modulation spaces on GG. The local components that we
will need to employ should include spaces like .Z LP(G) for 1 < p < o0, Co(G), etc.

It is therefore reasonable to describe a class of spaces which satisfy properties common
to those spaces. The first criterium is that they be in standard situation with respect to

some weighted Fourier algebra.

Definition 2.1. Let w be a strictly positive, locally bounded and measurable function on
G which satisfies 1 < w(zx), w(zy) < w(@)w(y) and w(z™') = w(z) for all z,y in G.
Then w is called a weight function on G. It will be called admissible if it furthermore

satisfies the so-called Beurling-Domar condition (or BD-condition)
o¢]
Dk log(w(ka)) < oo (2.2)
k=1

for all x in G. A function m is called w-moderate if it is strictly positive and continuous

on G, satisfying m(zy) < m(z)w(y).

We define the Beurling algebra Ll (G) to be the Banach convolution algebra ({f |
fwe LY(GQ)}, =) equipped with the norm | .|, @ = |-l and its corresponding

~

Fourier algebra to be the symmetric, pointwise multiplicative Banach algebra A, (G) :=
(71 f € LL(G)}, equipped with the norm [|1l,. &) = I/]1

~

We furthermore define A,,0(G) to be the semi-normed vector space given by the set

~ ~

Aw(G) N C(G) equipped with the natural inductive limit topology induced by the semi-
normed space Cy(G).

Note that throughout the text E’ stands for the topological dual of a given locally
convex vector space E, usually equipped with the weak topology unless otherwise stated.

(In case of double duals like L® the space usually carries the w*-topology.)

Definition 2.2. A Banach space (B, | | ) is said to be in standard situation with respect

to Aw(G) if
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(i) vao(@) — B — A;“O(@), where < stands for a continuous embedding,

(it) (B, | |lg) is a Banach module with respect to pointwise multiplication over Au(G),

i.e., [|hf]g < HhHAw(@) | fllg for all b in Ay (G) and all f in B,
(i11) (B,| ||g) s a Banach module with respect to convolution on G over a Beurling
algebra Lzlﬁ(é), where @ is an admissible weight on G (but not to be understood as

the Fourier transform of a weight w on G!).

~

The space A, o(G) obviously serves as a test function space in the case and its dual as
our standard distribution space. The second embedding in Condition (7) finally justifies
our recurrent reference to Banach spaces of distributions. We will furthermore speak of
distributions locally belonging to B: we denote by Bj,. all f in A;U,O(CAJ) such that hf
lies in B for all h in vao((’}\').

Definition 2.3. A Banach space (B, | | g) in standard situation is said to be

(i) left-invariant (or left translation-invariant) if all left translations T, are bounded

operators on B, i.c., Ty : B — B with |Ty| < Cy < 0 for all z in G,

(i1) right-invariant (or right translation-invariant) if the right translations f — TR f :=

f(.x) are bounded operators on B,
(iii) translation-invariant if it is both left and right-invariant.
We say the space is homogenous if it is
(i) isometrically translation-invariant, i.c., |Tyf| 5 = | flg for all y in G,
(ii) translation acts continuously on B, i.e., limy . |T,f — f| 5z = 0.

The spaces described so far fulfill the criteria usually required of local components
in Wiener amalgam spaces. Some typical examples for Banach spaces in the standard
situation are the spaces LP(G) and L5(G) for 1 < p < o0, Co(G), Aw(G) or FLP(G)
and .7 LL,(G), 1 < p < . The latter example will be our typical local component in the
description of modulation spaces as inverse Fourier images of Wiener amalgam spaces. In
case of G = R" even Besov-Lizorkin-Triebel spaces B, ,(R") and Triebel spaces F};  (R")
(for a definition cf. Triebel [69]), among them the Sobolev spaces W#P(R"), satisfy all
these criteria.

Thus, let us finally define Wiener amalgam spaces and provide a few statements. The

first definition given here will be the continuous version of Wiener amalgam spaces.
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Definition 2.4. Let (B, | |z) be a homogenous Banach space in standard situation with

respect to Aw(@) and let 1 < g < 0. Let moreover v be a w-moderate function on G.

~

We then define the Wiener amalgam space W (B, L{)(G) the space of all f in By such

~

that for any arbitrary, but fixed non-zero window h in A, o(G) their control functions
FW G - C: e |Teh fl
lies in L1(G), i.e.,

Ay 1= HF(h)‘ < 0. (2.3)

1l 5,00 =

LY(G)

As insinuated in the formulation of Definition 2.4, the particular choice of window does
not matter. Norms with two different windows hy and hgy are equivalent, thus define the
same space.

The equivalent discrete definition involves as mentioned above certain partitions of
the underlying space, or to be more precise, nicely behaved partitions of unity. The
constituents of these partitions will have to be members of A, (G) for the definitions
to prove equivalent. Their support will be uniformly bounded and ”centered” around
discretely distributed points ; in @, which makes it plausible for a continuously shifted
fixed window to induce the same action. Also, for the partition to be globally uniform,

the number of supports that intersect should be locally finite and globally bounded.

Definition 2.5. Let us call a family ¥ := (1)) je; a bounded uniform partition of
unity in Aw(@) of size @ if there exists some non-empty relatively compact set @ cG

and a family = = (&) es such that
(i) Xjes i =1,
(ii) supje; Vil 4, @) = Cwo < 0,
(iii) supp(¥;) € &;Q for all j € J.,
(iv) supje; ) # k| £Q 0 &Q # @} =: Cy 1 < 0.

In this case we will say the family E = (&;)jer is @-dense and relatively separated refer-

ring to UjEJ @-@ = G and Condition (vi), respectively, or simply well-spread.

Proposition 2.6. Given a BUPU U of size Q in Aw(é), the space W(B,Lg)(@) is
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defined to be the set of all distributions [ in Bj.. of finite discrete amalgamated norm

1/q
1f 1 W@, B, )] := (2 ||¢jf||q3v<sj>q> — 1315 0(€)) jos (2.4)

jed

@’

As in the case of Definition 2.4, where the particular choice of window did not alter the
space, different BUPU’s give equivalent norms, hence define the same Wiener amalgam
spaces. It is thus a matter of convenience, and in fact very often determined by appli-
cations, to choose between either description; the same applies to the concrete choice of
window and BUPU, respectively. The proofs of all these equivalences can be found in
Feichtinger [15].

Many useful and desired properties of modulation spaces are in fact inherited from
Wiener amalgam spaces since modulation spaces on locally compact Abelian groups can
be viewed as Fourier transforms of Wiener amalgam spaces on their dual groups. The
local components B of modulation spaces have to satisfy a few more properties since

they need to fulfill certain requirements of function spaces on both G and G.

Definition 2.7. Let G be a locally compact Abelian group. A Banach space (B,| |p)
is called a BF-space on G if it is continuously embedded into the semi-normed space
L (G).

loc

A BF-space B is said to be

(i) solid if g € L} (GQ), f € B and |g(x)| < |f(x)| locally almost everywhere (l.a.e.)

loc

implies g € B and |g|p < [ f];

(it) rearrangement-invariant if |{z | |g(x)| = a}| = [{z | |f(z)| = a}| for all « > 0 im-

plies |lglg = 11 5-

Finally, a solid BF-space will be referred to as a Banach function space.

Note that rearrangement-invariant BF-spaces are solid and isometrically translation-
invariant. If B contains C.(G) as a dense subspace, the translations are also continuous
on B, which renders B homogeneous.

Our most prominent examples for B will be weighted and unweighted LP-spaces and
other weighted versions of BF-spaces such as By, := {f | fm € B} for a given solid,
translation-invariant BF-space (B, || | 5) and a w-moderate m. The space B, is naturally
equipped with the norm | ||z :=||.m| 3. The translation operators T, are then bounded
on By, with |T| < w(y) for all y in G. If C.(G) is dense in B, then it is also dense in
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B, and translation is a continuous operation on B,,. Moreover, it turns out that B,, is

a Banach convolution module over the Beurling algebra L} (G), i.e.,

|f = blg,, < fls, - 1Al )

holds for all f in B, and all h in L. (G). Finally, we will call a BF-space admissible if
it is of the form B, as just described.
We can now give the definition of what is nowadays often referred to as classical

modulation spaces.

Definition 2.8. Let G be a locally compact Abelian group G and let w and © be ad-
missible weight functions in the sense of Definition 2.1 on G and @, respectively. Given
an admissible BF-space (B, | | z) and a W-moderate function v on G, we define for any

1 < g < w0 and any arbitrary, but fired non-zero window

pe AKX = {fe LL(G) | supp(f) € G} = {f | [ € Awo(G)},

with ¥ = Fp, the modulation space M(B,L})(G) to be the set of all distributions f
in (AK) such that f = Mk belongs to B for all & in G and € — |f M¢k| 5 belongs to
LY(G), i.e.,

1/q
Wl = ( [ 1+ Meslyu(@1de) = e = 127 Te0 - F g ey <
(2.5)

for1 < q < o0 and

1£1ar(8,0)) 7= 590 (If * Megl g v(€)) = [€ = (177 (T - Z )| gl o e < 0 (26)
EeG

for q = 0, respectively.

The independence of the particular choice of window follows from the general fact
for Wiener amalgam spaces, i.c., from .Z(M(B, L1)(G)) = W(ZB,L%)(G). Also, the

equivalent discrete description comes for free via Proposition 2.6.

Corollary 2.9. Let V := (v)j)jes be a bounded uniform partition of unity in Aw(é) of
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size @ A distribution f in AE is a member of M(B, L{)(G) if and only if

l/q
F1M@ B = (2 I+ %HQBU(&)Q> — (17 W Z 0] ()) 1,
jedJ

“
2.7)
for 1< q< o0 and
I 130@. 5.6 = sp 15 + 4l 06) = [ (177w Z ] 0160) ., <
(2.8)

for q = o, respectively, where p; := F ~11p; for all j in J.

Depending on the norm we use, that is, either (2.5) or (2.7), we will occasionally
distinguish nominally between M (B, L%)(G) and M(Q, B, £3), respectively.
Some important results for modulation spaces are collected in form of the following

theorem.

Theorem 2.10. For an admissible BF-space (B, | | z), W-moderate functions v,v1,vs

on G and a w-moderate function m on G the following assertions hold true.

(i) The modulation spaces M (B, L)(G), 1 < q < w0, are Banach spaces with respect
to the norms (2.5) and (2.4), satisfying

A (G) = M(B, LE)(G) — (Ay)'(G)

(i) The spaces M (B, L})(G) depend neither on the particular choice of window k € ALK
or BUPU ¥ nor on the particular choice of weights w and w. (That is, it only
matters that w and W satisfy the (BD)-condition (2.2).)

(i4i) The fact that C.(G) is dense in B implies that AKX is dense in M (B, L{)(G) for
1 < g < o0 and thus continuity of translation on M (B, L{)(G).

(iii) For 1 < q < oo the dual space of M(B,Li)(G) can be identified with
M(B',LY,)(G).

(iv) For any K € G the norms || g and | |a(p 19y ) are equivalent on {f € B |
supp(f) = K}
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(v) For 1 < pi1,q1 <0, 1 < pa,g2 <00 and 0 € (0,1) we have the interpolation space

identity
(M(LR LI)(G), M(LE2,, LE)(G)),, = M(LE,, L)(G),
where
1 1-6 0 1 1-6 0
L1001 120, 0 e e

p o P2 g @ 7

(vi) For 1 <p; <py <0, 1 <q1 <q <00 and vy < ve we have

M(Lpl

my?

LENG) — ML

mo?

LENG).

(vii) For m = 1¢, and v = 15 we have M(L3, L3)(G) = M(L?, L*)(G) = L*(G).

(viii) The Segal algebra So(G) := M(L', LY)(G), nowadays usually referred to as the

Feichtinger algebra, is invariant under the GFT:
F(50(G)) = So(G).

In case G = R" =~ R" = G the functions w, :  — (1+]2[*)%2 = @ : € — (1+€]%)%/2,
with s € R, are a particularly common choice for admissible weights and moderate
functions, respectively. In this case it turns out that we can replace AZ (G) and Ay o (@),
respectively, by the Schwartz space . (R") = .7 (@)

If one chooses to use exponential weights, one leaves the realm of tempered distribu-
tions and has to use ultra-distributions instead (cf.[], e.g.).

Also, in the Euclidean case the focus mostly lies on spaces of the form M (L%, , L1,)(R"™),
where L] stands for L, or Lgs, respectively. Thus for classical modulation spaces on

G = R" one usually gives the following slightly altered definition:

Definition 2.11. Let 1 < p,q < o0, s € R and let ¢ be an arbitrary, but fived non-zero
member of . (R™). Then we define the modulation space

MPAR™) := {f € & (R") | f x M¢ € LP(R™) for all £ € R™,
& | f % Me| pgny € LE(R™)}

and its corresponding norm is defined in analogy to (2.5) and (2.6).

For these spaces the following theorem lists some of the most important properties.
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Theorem 2.12. (i) For any 1 < q < o the spaces MY (R™) does not depend on the
particular choice of window and coincides with M (LP, L1)(R™). Moreover, all the

norms defining either space are equivalent.

(ii) For 1< q < o and s € R the Schwartz space ./ (R™) is dense in ML (R™) and we

have the continuous embeddings
Z(R") <> MPYR") — & (R").
The dual space of MY (R™) is given by Mfls’q/ (R™).

(iii) The spaces MP*(R™) coincide with the Sobolev spaces Hy(R™).

(iv) The identification R™ ~ R» yields invariance under the Fourier transform of the
Feichtinger algebra So(R™) = My (R™), i.e., .Z (So(R™)) = So(R™).

In the following we will prove two important properties explicitly for the Euclidean
case: first we will prove the recurring statement that modulation spaces are independent
of the particular choice of BUPU. To this end, we will construct one model BUPU that
can henceforth be used as a convenient toy example and show equivalence with any other
arbitrary, but fixed abstract BUPU.

Our second proof concerns the very useful embedding property in Theorem 2.10 (vi).
For the sake of simplicity and clarity we will give both proofs for the unweighted case
MPA(R"™) = MPY(R™).

Before we start, let us briefly define a class of band-limited LP-spaces. The construction
of our model BUPU essentially involves choosing a nice compactly supported function
p: R" > C and translating it across I@?‘, followed by normalization.

Thus let p € Y(@), taking values in [0, 1], with p(¢) = 1 for 0 < || < 4/n/2 and
p(&) = 0 for |¢] = v/2n. For such p we set py, := Typ = p(—k) for k € Z". This almost

yields the desired partition except for normalization: for k € Z™ let

1
OF 1= P (Z Pk) : (2.9)

kezm

Normalization is perfectly possible since by construction each supp(px) intersects only
finitely many other supp(p;), [ € Z", and the number of intersections is globally constant.
Denoting by @k the closed unit cube with centre k € Z", we observe that the following
properties hold for all k € Z™:

(1) Xpezn ok = 1.
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(ii) #lop € LL(R™) and there exist Cyg < oo such that HUkHA(Rn) =
Hff‘lakHLl(Rn) < Oy < oo for all ke Z".

(iii) supp(ox) < B(k,+/2n) for all k € Z".
(iv) supgey #{l € Z" | supp(ox) N supp(o;) # & =: Cx;1 < 0.

Thus, by Definition 2.5 the family ¥ := (oj)kez» is @ BUPU. For the sake of a brief
notation let us define for a given BUPU W = (13, )rezn with o5, = . ~ 14} the frequency

localization operator

OF . (R") - & (R"),
o T N Ff) = fron

For a given tempered distribution f, its uniform frequency decomposition with respect
to W is thus given by {{J} f}rez». (This notation is inspired by [2, 63].)

Proposition 2.13. Any BUPU’s ¥ = {1 }iczn in A(R™) a is equivalent to the BUPU
Y = (o) kezn with o defined as in (2.9) in the sense that they define equivalent norms
on MPYR™) for all 1 < p,q < . In particular, this implies that all BUPU’s are

equivalent and define the same modulation spaces.

Proof. Given a BUPU U = {9;};czn let us denote by

A3, U, k) :={l e Z" | supp(ok) N supp(Yr+1) # T}

Due to Condition (i7) in Definition 2.5 (applied applied to both ¥ and X) the cardinality
of A(X, U, k) is globally bounded and of finite order. Thus, let us set supy, |A(X, U, k)| =:

Cs,w. We note that ZZEA(E’\I%) Yr1(§) = 1 for all £ € supp(oy). Applying Young’s
inequality and Condition (i7) again, this implies that

BE ey < 20 17 o g = 2 10T g

IeA(S,T,k) leA(S,T,k)
S 2 HUkHA(Rn) HDIEJ+ZJCHL17(Rn) < Cso Z HDEHJCHLP(RH) )
IeA(S,T,k) IeA(S,T k)

(2.10)

Hence, summing up and estimating the maximal number of k+I-summands for each
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k-term by Cx, g, we obtain

ST gy < Cow - Co-C - S T o™

keZm kezn

where C' is the constant from the p-norm equivalence on R”. Our arguments’ symmetry
in ¥ and ¥ finally yields the result. O

The embeddings

MYYR™) ... MPPIY(RY) € MP2R(R™) C ... € M™®(R").

forl <p; <py<wandl < ¢q; < g2 < o0is based upon two facts: The ¢; - go-embedding
is due to the analogous inclusion relation for the spaces (% and [92, 1 < g1 < g2 < ®©

The p; - pa-embedding follows from the fact that
LHMRM) ... c IR c LR ... LER"),
where for a compact set 2 € R" we define
L (R™) := {f € & (R") | supp(f) € @ |flogan) < 0}-

Let furthermore .%o (R") := {f € #(R") | supp(f) < Q}.

Proposition 2.14. For all 1 < p < q < o there exists a positive constant Cp 4 such

that Lg(R™) < L§,(R™) with HfHLq r) < Cpg [ fll oo @n)-

Proof. Let f € LY(R™) and R > 0 such that Q < B(&, R) for some & € R". Let
furthermore ¢ € S5 o) (R™). We then have

f=F ) gy F) = f 0

in the distributional sense, which coincides with standard convolution for f e LP(R"™).

By Young’s inequality for r = oo, we furthermore have

[ £l @ny < 19l Lo @y - 1 F )o@y 2= oo 1l Lo (gemy - (2.11)

Hence, we have proved the statement for ¢ = 0c0. Now, let 1 < p < ¢ < 00. Supposing,
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without loss of generality, that f € Lg(R"™), it follows that

B g |/ 1/q
Wlaagery = ([ 1r@P 1@ as) " < essswplp@ 7 ([ 156 a)

TeR™
1 1 1
= Iy I ey < Cocl I FI e LIy o= Copg | Fll o ny -

Here we have used (2.11) for the second inequality. This completes the proof. O

We conclude this subsubsection with an application of modulation spaces techniques
to a problem from PDE theory; the following argument is due to [2]: by replacing
LP(R™)-spaces by the modulation spaces MP4(R™), one significantly improves certain a
priori estimates for the Schrodinger semi-group t — S(t) := € on R™ x [0,0). The

basic LP-LP -estimates

1S@®) Fllzo@ny < H" Y220 f] o ey (2.12)

with 2 < p < 00, are important to solve Cauchy problems for the non-linear Scrhédinger
equation. In order to control the singularity in ¢ = 0 on the right-hand side of (2.12),
one generally has to impose the restrictive condition n(1/p’ — 1/p) < 1. Yet, one can
readily remove the singularity if one combines Estimate2.12 with the following one:
let ¥ := (0k)kezn and {D%}keZn be defined as above. Reasoning along the lines of
Estimate (2.10), we obtain

SO oy < D, | F orornie 1 T

IEA(S.5 ) Lr (&)
o2
<G ). HUke ety 7 f Lo
IeA(S,3,k) (R™)
<c Yy, | ”’““Hm(@) ok Zf o 0y
IeA(,3,k)

<CiCss -1 |ow T fll gy < C2C10s. [T ] 1 )
that is,
HDES(t)fHLp(Rn) < HDEJCHLp(Rn) , and thus HS( )fHMPq (R?) ~ HfHMPq (R™) > (2'13)

for all 1 < g < o0. Here we have used the Hausdorff-Young inequality in the second and

the last estimate and the fact that HgHL,,/(Rn Hg||Lq gy for all 1 <p < ¢ < oo and all
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compactly supported functions g on R"™. Combining the estimates (2.12) and 2.13 gives
IS@ Fagnary < @+ 1D V22 ]y

2.1.2 The Short Time Fourier Transform and Modulation Spaces as Coorbit
Spaces

A quite different perspective at modulation spaces is offered by the observation that the
convolution operators (respectively Fourier multipliers) from (2.5) can be rewritten the

following way for G = R": if we denote @(z) := ®(—x), we observe

(f * Mep)(z) = f( )Tz — y) dy (2.14)
= eQm5 @Sy — a) dy
= e?mint <f, M Tac90>L2(Rn) (2.15)

=: g2miat Vo f(x,§) (2.16)

for all f in .(R™), say. Since the modulation e2™*¢ is not noticed in | ||z and @ is also
a member of .(R™) we can rewrite Definition 2.11 in terms of the LP-LI-integrability of
the coeflicients Vj f(z,§).

Definition 2.15. Let ¢ be a function in the Schwartz space #(R™). We define the
short-time Fourier transform (STFT) with respect to the window ¢ by

Vo S (R") > Z(R™M),
f— <(:L‘,§) > g 2miTg (f * Mf&)@)) = (f, M, Ta:(P>y’(Rn)7 (2.17)
where , >Y'(R”) denotes the conjugate linear .7 (R™)-(R™) duality.

The classical modulation spaces ML"?(R™) can thus equivalently be defined in terms
of the STFT and its mixed LP-9-integrability over R™ x Rn ~ R2",

Definition 2.16. Let 1 < p,q < 0, s € R, and let ¢ be an arbitrary, but fixred non-zero
member of &/ (R™). Then we define the modulation space ML (R™) to be the space of all
distributions f in & (R™) such that

q/p 1/q
sy = (JRA (J nl%f(sm&)l”m) vs@ng) <o (218
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for 1 < p,q < oo, with the standard modifications otherwise.

The operators involved in Identity (2.17) are so-called time-frequency shifts since they
combine translations in both the ”time-variable” x and the ”frequency-variable” £. It
is therefore not by chance that the application of modulation space techniques to signal
processing, etc. is considered to be an integral part of the field called ”time-frequency
analysis”.

An important yet quite immediate observation is that the STET involves the action of
the Schrodinger representation of Hy,: for A = 1 and (p, q,t) = (—=x,&,0) Identity (1.19)

gives

(p(—2,€,0)9)(y) = e ™2 (3 — y) = e ™ (M Top) (y),

and thus

wa(ilf, f) = e—7ri:c§<f7 p(_xa §7 0)90>5ﬁ' (R™)

for all tempered distributions f. The STFT can hence be viewed as the matrix coef-
ficients of p with respect to f and ¢, and Condition (2.18) is a statement about the
mixed LP - L9-integrability of these coefficients over R?”, and, due to compactness of T,
essentially over the reduced Heisenberg group H,, ;4. More precisely, we know that any
integrable function F' : H;, ;.. = R" x R" x T — C can be expanded into a Fourier series

in the central variable t € T:

F(p,q,t) = Y Fi(p,q) ™.
keZ

But integrating over T, only 13',1, the Fourier coefficient of order —1, remains; so F' can
be identified with a function of (p, q) € R?".

In the same spirit we can identify LP4(H,, ;cq) with LP4(R*"), and the STFT ought to
be viewed as an operation that transforms a given distribution into matrix coefficients of
a group representation, p that is, which in turns acts on some test function space dense
in L2(R"), and via duality on its dual space, i.e., some distribution space.

One can therefore recast Defintions 2.15 and 2.16 in the following way with a slightly

more general class of moderate functions m.

Definition 2.17. Let p = p;1 be the Schréodinger representation of the reduced Heisenberg

group H,, .cq acting L*(R™), and let ¢ be an arbitrary, but fizred non-zero member of
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S (R™). We define the so-called ambiguity function with respect to the window ¢ by

A, SR") - L (Hy rea),

Fo (0,08 = 00,4 08) 1)) - (2.19)

For an admissible weight w on Hy, yeq, a w-moderate function m and 1 < p,q < o0 we

define the modulation spaces
MEAR?) := {f € & (R™) | ||VLf | L5 (Hy pea)|| < o0}

Remark 2.18. For m(z,&) = v(s) we recover the classical spaces from Defintion 2.16.

The name

According to [19], another family of function spaces described in terms of a coefficient
transform, the Besov-Lizorkin-Triebel spaces BY?(R™), seems to have been an additional
inspiration for Feichtinger and Grochenig’s novel generalized framework [21, 22].

In the latter case another equivalent description for the spaces BY?(R™) was found,

involving LP-2-integrability of the coefficient transform
Wof(a,b) = a2 [ f(2)plaT(z— b)) da, (2.20)
]Rn

defined for complex-valued functions f and ¢ on R, a € R* and b € R™. This transform
is usually referred to as the (continuous) wavelet transform (WT) on R"™. (Cf.[40],
Chapter 10, e.g.)

As in the case of the ambiguity function A, in Definition 2.17, Identity (2.20) actually
involves a representation of a locally compact group, the so-called ax + b-group or affine

group. It is given as the semi-direct product
A" :=R" x R", (a,b)-(a,V):= (ad,ab +b)

) da. Tts unitary dual An splits up into two classes: the

with left Haar measure dba(
one-dimensional representations my(a,b) = a** and an infinite-dimensional representa-

tion

7 A" - U(L*R")),

(m(a,0)f)(x) := \/gnf(al(l’ —0)) = (DaT f)(). (2.21)
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This representation obviously acts via a combination of translation by b and dilation by
a.

It is therefore not surprising that 7 is the representation associated to the natural
action of A™ on R™ (in the sense that x — a~'(x — b) is just the inverse function of
x — azx + b). We conclude that the continuous wavelet transform (2.20) is another
instance of coefficient transform arising from a group representation.

Supposing we have made the right choice of test function space, namely .7 (R"),
the space of Schwartz functions with all moments vanishing, we can characterize the

Besov-Lizorkin-Triebel space BY'?(R™) as follows:

Theorem 2.19. Let ./, (R"™) be the space of Schwartz functions with all moments vanish-
ing and let S3(R™) be its dual, the space of tempered distributions modulo polynomials.
Furthermore, let ¢ be an arbitrary, but fived non-zero member of S (R™). For any

1 < p,q < 0 the Besov-Lizorkin-Triebel space BYY(R™) coincides with the space

(f € AR | (a.0) = (Fm(@,0)p) gy = Wof € LV, (A™)),

where the LEY(A™)-norm is defined by

ap ,da
Pligaan = | (f |fa@dr ‘”’) e

According to Feichtinger’s own accounts (cf. [18, 19], e.g.), it seems that the similar-

1/q

ities in the descriptions of Besov-Lizorkin-Triebel spaces and modulation spaces on R"
insinuated that there might be a more general theory in the background. Iindeed, a few
years later an abstract unifying approach was presented in Feichtinger and Grochenig’s
seminal paper [20].

Not only did it describe so-called coorbit spaces (including Besov and Besov-Lizorkin-
Triebel spaces, modulation spaces, certain Bergmann spaces, etc.) in terms of generalized
"wavelet transforms”, it but also provided generalized atomic decompositions. More
precisely, this implies that for such a space of functions or distributions each of its
members could be represented as a sum of ”simple functions”, called atoms. Atomic
decompositions in turn would facilitate the study of properties like duality, interpolation,
embeddings, operator theory on these spaces, etc.

Thus let us briefly introduce the most important notions and results of coorbit theory.
We refer the interested reader to [20, 21, 22, 39, 23] for the original work by Feichtinger
and Grochenig and to[52, 58, 53, 54, 56, 57, 55, 9, 8, 31, 47] for recent generalizations

and extensions of the coorbit framework.
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An essential prerequisite for the theory of coorbit spaces is integrability (or the
somewhat weaker square-integrability) of the involved unirreps 7. In their early pa-
pers [20, 21, 22] Feichtinger and Grochenig still highlight the use of integrable unirreps
but eventually relax the condition to square-integrability in [39, 23] since they have to
impose a further, independent integrability condition on the analyzing vectors (windows).

Some more recent accounts on coorbit theory (cf.[8, 9], e.g.) completely drop square-
integrable unirreps in favor of (possibly reducible) cyclic representations on Fréchet
spaces S that satisfy a reproducing kernel identity and some continuity conditions. In
the cases of H,, and the ax + b-group A", e.g., the corresponding Fréchet spaces can
be identified with the spaces of admissible windows, the Schwartz space .’(R™) and its
proper Fréchet subspace .7j(R"), respectively, and one can reinterpret this approach in
the context of so-called Gelfand triples. In[31] H. Fiithr and A.Mayeli make use of this
approach in order to characterize Besov spaces on stratified Lie groups such as, e.g., the
Heisenberg group.

Yet other approaches completely circumvent the use of representation theory and for-
mulate a generalized coorbit theory in terms of continuous Banach frames [52, 58, 53, 54,
56, 57, 55]. The importance of Banach frames is also emphasized in Gréchenig’s mono-
graph [40] on time-frequency analysis in Euclidean space, where an equivalent description
of modulation spaces is given in terms of discrete frames.

In this subsection we will focus on Feichtinger and Grochenig’s approach and recall

some important definitions and results for the case of square-integrable unirreps.

Definition 2.20. Let ¢ be a locally compact group with left Haar measure dx and let 7
be a unitary representation of 4 on the Hilbert space H,. We say w is square-integrable

if there exists a non-zero uw € H, such that

f |<u,7r(m)u>Hw|2 dr < o0,
@

respectively. We call such vectors u square-integrable.

It turns out that for a square-integrable unirrep 7 there exists a positive, self-adjoint

(thus densely defined) operator A on H, such that the orthogonality relation

ﬁp (o, (@) u1)g (vo, T(T)ug)y dr = (Aug, Autyy (v1,v2)y (2.22)

holds for all vy, vs in H, and all uy, ug in D(A). In the spirit of the identities (2.19) and

(2.20) one defines the corresponding coefficient transform (CT) (also voice transform
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(VT), generalized wavelet transform (GWT) or simply wavelet transform (WT)) by

Vi : He — L2(9),
x> (v (o, m(z)uy,, ). (2.23)

We observe that Identity (2.22) now implies
Vul’Ul * VUQ/UZ = <AU1, A02>Hﬂ, Vugvla

for all vy, us in H, and all uy,vs, with the group convolution on 4 defined as in Iden-
tity (1.6). Thus, for u := u; = uz = vg with |Au, = 1, we obtain the reproducing
identity

Vv = Vyu = Vyou
for all v in ‘H,. We can furthermore rewrite the orthogonality relation as

<Vu1 V1, Vu2 v2>L2(,‘§) = <AUQ, AUJ1>H7T <'U1, U2>H7r .

Moreover, we notice that the CT V,, intertwines the representation 7 and the left regular
representation L of &. More precisely, Vy, : Hx — L*(¥) : v — V,v is isometric and

satisfies
Vu(m(z)v) = L(z)(Vy)) = Ty Vyv

for all v in H, and all x in G.

The definition of coorbit spaces we will give is the original one, which presumes the
existence of a aquare-integrable u in H..

To begin with, let us assume that Y is a translation-invariant Banach function space
over 4 (Definitions 2.2 and 2.7 carry over to the not necessarily Abelian case without

any changes). For the weight
w(z) = max{| Ty, [Tor |, [T | T | - Az} < oo
we define the set of analyzing vectors

Ay = {ueHy | Vyue LL(9)}.
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Assuming that %, is not empty, irreducibility of 7 implies that it is a dense linear
subspace of H,. Given an arbitrary, but fixed non-zero member u of o7, we furthermore

define the test function space
A= {veH | Vyve Ly (D)},

which we equip it with the norm [[v] 1 := [Viv[1(4),. The space L | | 1) is a
m-invariant Banach space, dense in (Hn, | [5,_), on which 7|1 is strongly continuous.
Moreover, it turns out that f%”u} does not depend on the particular choice of u in %, and
that for each such vector the set {m(z)u | x € ¥} is total in (£, | | 1) (Note that for
an isometrically translation-invariant BF-space Y, i.e., if w = 1, S} is just the set of
integrable vectors.)

If ()" denotes the conjugate dual space of 7!, called the reservoir, we finally define

the coorbit space
Cofa(Y) = {p e (#,) | Vupe Y}.

Not surprisingly, it turns out that for modulation spaces and Besov spaces as de-

fined/characterized in Definition 2.17 and Theorem 2.19, respectively, we have

MEA(R) = Cof (LB (Hypea)  and  BPIR™) = Cofg(LVS . (A™)).

This is due to the following observation: The windows ¢ in (R") and % (R"), re-
spectively, are analyzing vectors in the sense of their membership in «%,. Now this

implies

S(R") € oy, = AL = MPYRY) < (D) < 7 (RY)
and

SR") € o, < A, < BYI(R") € (4,) € S (R),

but as we will see in what follows (J#}) is the biggest of all modulation spaces. Thus,
the spaces .7 (R") and .#y(R") on the one hand and #! on the other define the same
coorbit spaces. Knowing this, it follows immediately that in the case of modulation
spaces we have 2 = My (R™).

Let us extend the notation 7 to both its restriction to /! and its extension to (JZ})’

by conjugate-linear duality. The following theorem now gives a list of important prop-
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erties of Co%(Y) and V,,.

Theorem 2.21. Let Y be a translation-invariant BF-space over ¢ and let u be an

arbitrary, but fixed non-zero element of <,,. We then have

(i)

(i)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

The space Cof:(Y) is a m-invariant Banach space which is continuously embedded

into (L)

The definition of Copn(Y) is independent of the particular choice of analyzing

vector, i.e., different vectors define equivalent norms and thus the same space.

The definition is furthermore independent of the reservoir (L) in the sense that
if w' is another weight with w(x) < Cw'(x) for some positive constant C and all

x in G with oy # {0}, then Colhe(Y) = Colhr (V).

The coefficient transform V,, : Cotn(Y) — Y intertwines m and the left regular

representation, i.e., left translation.
If left translation is continuous on'Y, then m acts continuously on Co%qn(Y).

The map V,, : Copq(Y) — Y restricts to an isometric isomorphism from Copq(Y)
onto the closed subspace Y, :=Y «Vyu of Y, whereas the map F — F =V u defines

a bounded projection from'Y onto Y.

The inverse operator to the isomorphism V,, : Cotn(Y) — Y, is given by its adjoint
Vi F -, Fz)m*(z)udz.

FEvery function F in Y, is continuous, it belongs to L‘{O/w(ff) and the evaluation

map F — F(x) coincides with the map

(iz) Copa(Ly),(9)) = ()"

(x) Colba(LA(¥)) = Hs.

We notice that for a homogenous space like L”9(H,, y¢q), €.8., the weight w is simply 1.
Also note that although we have .7 (R") € J#] in the case of the Heisenberg group H,,,

we never explicitly make us of it and rather work with a smaller space of test functions

and a bigger reservoir. The same holds true for the ax + b-group. That is, although the

representations involved in each case are square-integrable they seem to have inspired

the more general definition in [8, 9.
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Finally, we would like to discuss the above-mentioned atomic decomposition of the
spaces Cof(Y'). The coorbit approach makes use of BUPU’s and related decompositions
on the space Y, which in the case of Co%(Y) = M54 (R™) means discretization not only
takes place on the frequency space G = R™ as described in Subsection 2.1.1 but on the
whole group ¢4 = H,, ,.q which acts on H, = L?(R™). (Because H,  cq = R?™ x T, in
practice this means on R?".) To be more precise, the discretization will be applied to
the projector F' — F % Vyu : Y — Y,. In the case of the (reduced) Heisenberg group
this will yield discretized time-frequency shifts and hence an equivalent description of
MEY(R™) as an £h%-space on a suitable lattice. (The latter will often be Z" in view of
H,, eq = R*™ x T and Lemma 2.24 (4ii) below.)

Note that even in the more general case of modulation spaces MY (G) on Abelian
groups G the coorbit approach is possible and yields a description equivalent to Fe-
ichtinger’s original one for B = L%,. At the end of this subsection we will briefly sketch

the reasoning.

Remark 2.22 (On BUPU’s). In the following we will make use of BUPU’s ¥ of size W
and well-spread sets X on 4. To this end, note that Definition 2.5 carries over almost
literally literally to the setting of an arbitrary locally compact group ¢ with the only
difference that our multiplicative algebra (Cy(¥), | ||,) is not necessarily the Fourier
algebra of a pre-dual group J#. Let us furthermore denote by yw the characteristic
function of a set measurable set .

Let us furhermore point out that for any locally compact group ¥ it is possible to

construct arbitrarily fine BUPU’s, i.e., BUPU’s of size W for any given W. (Cf.[16],
e.g.)

Definition 2.23. Given a discrete family X = (x;)jes in 9, a non-empty relatively
compact set W < ¢ and a translation-invariant Banach function space (Y, |y) we

define the associate discrete BK-space

Ya(X) = {A [ A = (Aj)jess ), AjXayw € Y,
jedJ

equipped with the natural norm [Aly, := sze‘] )\jX;EjWH}/.

It turns out that for a well-spread family X (cf. Definition 2.5) Y;(X) is independent
of the particular choice of W in the sense that different sets W yield equivalent norms

on Yy(X). The following lemma collects some basic properties of BK-spaces.
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Lemma 2.24. Given two discrete families X = (vj)jes and X' = (2%)jey in 9, a
non-empty relatively compact set W < 4 and two translation-invariant Banach function

spaces (Y, | |y) and (Z,| | ,), the following statements hold true:

(i) If the functions of compact support are dense in Y then the set finite sequences

forms a dense subspace in Yy.
(ii) For w(z) = ||Tx| and w(i) := w(z;) we have £, S Yy Sy

(111) If both X and X' are well-spread we have Yyg(X) S Z4(X) if and only if Yq(X') <

Zq4(X"), which allows us to simply write Yy from now on.

(i) If for well-spread X and X' over the same index set J there exists a compact
set Q € 9 such that x;lm; € Q for all j € J, then Yy(X) = Yy(X') and the
corresponding norms are equivalent.

(v) Given a weighted Lebesgue space Lh,(9), the associated BK-space over X is given
by €5, with m(j) := m(x;) for j € J. The same is true for general rearrangement-

invariant Banach function spaces over 4.

(v) For a well-spread family X and any finite partition J°, of the index set J the

projections

PT : Yd i Yd,
A Ar = (X)) je,

define an partition of unity on Yy and >,° szeJr AjXIjWHY defines an equivalent

norm on Yy.

As a matter of fact we could have introduced BK-spaces already in Subsection 2.1.1
in order to define Wiener Amalgam spaces W (B,Y) and their discrete counterparts
W(B,Yy), as Feichtinger introduced them this in [15]. Yet there were two reasons not
to do so: Historically, Feichtinger introduced the classical modulation spaces in [18] only
with Y = Lg(@) The second and probably more important reason is conceptual lucidity.

For the sake of completeness we include the following statement.

Proposition 2.25. For two left-invariant Banach function spaces B and Y over 4
we have f e W(B,Y) if and only if (|¢jfllg)jes € Ya for some BUPU ¥V and
H(Hd)ijB)jeJHYd defines an equivalent norm.

Moreover, we have W (B,Y1) € W(B,Y2) if and only if Y14 S Yaq holds for the

corresponding sequence spaces.
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In order to discretize the convolutive projector

T:Y >,

F—FxVyu= J F(y)Vuu(y_1 ) dy,
%

given as a Bochner integral in Y, we need to introduce a restricted class of analyzing

vectors, the so-called better vectors
By = {u € Hy | Vyue WE(Cy, LL)(9)}.

The superscript R here indicates that the control function in Definition 2.4 is defined
in terms of the right translation T instead of the left translation 7. For an arbi-
trary function V' in W%(Cp, LL)(¥) and a given BUPU ¥ we define the approximating

operator

Ty:Y > YV,
F o 3 i), @) TV

jedJ
As we will refine the BUPU’s ¥ in size, i.e., W running a basis of neighborhoods of
e € ¢4, the operators Ty approximate T not only in the strong operator topology, as one

would expect in view of Bochner integration theory, but even in the norm topology:

Proposition 2.26. Let Y be a translation-invariant Banach function space over 4 and
let V.e WR(Co,LL)(4). Then Ty maps Y into Y =V for all BUPU’s ¥ on 9 and
any net (Ty)y running through a system of W-BUPU’s is uniformly bounded by C -
IVlwrcy, L)), C being independent of V' and {¥}, and converges to T' in the operator

norm.
We can now state the following fundamental theorem about atomic decompositions.

Theorem 2.27. Let Y be a translation-invariant Banach function space over 4. For
any u € By, there exist positive constants C and C' and a neighborhood W of e € 4 such
that for any W-dense and relatively separated family X <€ 4 the following holds true:

(i) There exists a bounded linear operator

A: Cola(Y) — Ya(X),
A(v) := A(v) == (Nj(v))jer,
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called analysis operator, satisfying [A(v)|y,x) < CHUHCO%G(Y), such that every
v e Cot(Y) can be represented as

v = Z Aj(v)m(x;)u.

jedJ

(i) Conversely, assuming that X € & is W-dense and relatively separated there exists

a bounded linear operator

S Yy(X) = Cohr(Y),
S(A) == v(A) == > Xi(v)m(a;)u,

jedJ
called synthesis operator that satisfies HU<A)HCO}’5G(Y) < CA]ly,x)-

In both cases we have convergence in the Cot(Y')-norm if the finite sequences are dense

in Yy, and in the w*-sense of (HL), otherwise.

Sufficient conditions for Theorem 2.27 to hold, say, in the case of Col(Y) = ME4(R™)
are usually expressed in terms of the analyzing window uw = ¢ belonging to certain
modulation spaces (in the spirit of u € %, in Theorem 2.27) and explicit descriptions of
X as a lattice aZ™ x SZ"™ < R™ x R"™.

Let us give the following example:

Theorem 2.28. Let 1 < p,g< 0, a,8>0,0#pe€ Myt and let m be any v-moderate
weight function. Let us furthermore denote by {, ) the conjugate-linear dual pairing

(, >M,}’1,Mf‘/’;f° and let us write m(k,l) :== m(al, Bl). Then the analysis operator

Ay - MPA(R™) — (29,
[ (<f7 TakMﬁl§0>)k’leZn

and the synthesis operator

Syt P9 — MPIR),

¢ = (Ck1)kjezn — Z ckaTorMprp (2.24)
kleZn

are bounded, and

[4g] < C0,0,8) [Vl gamy and Sl < C'(v, 0, 8) [V 1 gamy
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the constants being positive and independent of p,q, m.
For p,q < o the sum in Identity(2.24) converges unconditionally in the ME*(R™)-

00,00

norm, and in the w*-topology of Ml/v (R™) otherwise.

A proof for Theorem 2.28 can be found in Grochenig [40]. (Cf. Theorems 12.2.3 and
12.2.4)

The atomic description of modulation spaces has immediate consequences such as a
quick proof for the embeddings

MY R™) = ... MPL?(RY) € MEZ#(R™) < ... € M) (R")

for 1 < p; < ps <, 1 <q <q <o and v-moderate m; < Cmy due to the easily
checked statement
T < e B (2P < B B(Z7) < .. e 472,
2.1.3 Abstract Heisenberg Groups and Coorbit Spaces on Locally Compact
Abelian Groups

As we will see in the following, one can define a STFT, and thus modulation spaces,
for an arbitrary locally compact Abelian group G, making use of a Heisenberg group
construction for G. A calculation identical to (2.16) then implies that also in this more
general case Feichtinger’s original approach coincides with the coorbit approach.

Thus, given an arbitrary locally compact Abelian group G, we can define a locally
compact non-Abelian group arising from G that in the case of G = R™ corresponds
to the reduced version of the so-called polarized Heisenberg group. (The latter is just
another realization of (CCR) in the sense that instead of using exponential coordinates,
i.e., canonical coordinates of the first kind, ones uses canonical coordinates of the second
kind. Cf.[28, p.19].)

We will refer to this group as the Heisenberg group H(G) of G. More precisely, it is
given by the set G x GxT equipped with the product topology and the following group

law:
(x,f,z) ’ (x,’flv Z,) = (CL‘l‘/,ff,, Zzlgl(x))'

By an argument analogous to the one in the Euclidean case, H(G) possesses a family
of irreducible unitary representations 7;,j € No, on L?*(G) which exhaust all irreducible

unitary representations that are non-trivial on the centre (cf.the Section ”Postscripts”
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at the end of Chapter 1 in [28]). For f € L?(G) the representation ; is given by

(mj(z,&,2) f)(y) = 27 E(y) fzy).

Again we can define a STFT making use of 71: For ¢ € AK(G) we define the STFT
by

Vof(z,€) : GxG - C,

Vo f(2,6) = {f,m(a™ 6 1)9) 0 ) = L F@E(y)p(zty) dy. (2.25)

And again we can perform exactly the same calculation as above in order to rewrite the

STFET as a convolution operator:

wﬂ%a=s@1yLﬂwa@£y>¢@lmd —E(2) (f *£3) (2).

As in the Euclidean case we can disregard T whenever we integrate over H(G) and hence
identify LDY(H(G)) with LYY (G x @) Also note that the semi-normed space AZ(G) is
a dense subspace of the representation space H, = L?(G) as well as a linear subspace
of the space of analyzing vector <7, := {u € H, | Vyu e LL (G x @)}, which we infer as
follows: For ¢ € AK(G) the functions Meyp and ¢ * M are also members of AK(G).

Moreover, the map
£ L | * Mep| dx

is continuous and compactly supported since modulation acts continuously on AX(Q)
and ¢ * M¢p = 0 whenever supp(@) nsupp(7¢p) = J, which is the case for all £ outside

a compact neighborhood of e. We conclude that

|| et dzwieyag = [ 1o+ el dowie) g < o
GJG G JG
that is, ¢ € o7,. As in the Euclidean case we have

ARG € o, € A < MPAR™) € (1) < (AEY.

w
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It thus follows that for all 1 < p,q < o©

Co?,(IPUG x G)) = {f € () | Vo € LPI(G x G)}
= {fe (ALY | Vppe LbI(G x G)} = M(LP, LI)(G),

that is, Feichtinger’s original modulation spaces M (LP, L{)(G) coincide with the coorbit
spaces Coli (LYY (H(G))).

2.2 Approaches to Modulation Spaces on the Heisenberg
Group

2.2.1 Motivation

The definition of modulation spaces on the Heiseberg group is motivated by various ap-
plications in the Fuclidean case that we aim to study in a similar way for the Heisenberg
group. One particularly important aspect is the strong and fruitful relation between
modulation spaces and pseudodifferential operators.

The definition of pseudodifferential operators on H,, follows completely different paths
depending whether one is interested in a Kohn-Nirenberg-type or a Weyl-type quanti-
zation. Different approaches to the Kohn-Nirenberg quantization have been studied by
various authors, in particular Taylor [68], and Fischer and Ruzhansky [24, 26, 25].

In resemblance to the Euclidean calculus, the main idea is, roughly speaking, to ex-
press the symbol ok of an operator K as an operator-valued function (z,7) — o (z,7) :
H, x H" — L* (ﬁ") This obviously involves the GFT and could potentially relate to
an application of frequency localization techniques in the spirit of Feichtinger’s classi-
cal modulation spaces. A particularly interesting problem arises with the definition of
Schrodinger evolution groups on H,, defined in terms of the sub-Laplacian Ay, .

The pursuit of a Weyl quantization on the Heisenberg group leads to a completely
different underlying structure, one we could call ”the Heisenberg group of the Heisenberg
group.” (In fact, cf.[28, p.90].) As we will indeed see in Chapter 4 one can employ the
STFT arising from this new group in order to investigate the role of modulation spaces

on H,,.

2.2.2 The Uniform Frequency Decomposition Approach

Note that throughout this subsection G stands for a locally compact Abelian group.

The approach to modulation spaces on the Heisenberg group H,, via uniform frequency
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decompositions is quite different from the Abelian case. If we simply tried to imitate the
action of a convolution operator like f — f % M¢p in order to achieve frequency-shifts
and frequency-localization, we would very quickly realize that the natural substitute for
modulations M¢ on Abelian groups, namely multiplication by a Schrédinger representa-
tion py, does not yield a translation on H". Indeed, what we get is the following: let,
for the sake of simplicity, f be in L'(H,) n L?(H,) and let ¢ be in .(H,,). Then for

A # 0 we compute

(f * pa@)g) = L F(W)oa(h~g)(h~1g) dh = fH FW)pa(h )3 (g™ B dh - pag)

= |, TWAAITLZ(0) dh pa(9) = FT,3(N) palg).
Hence, we observe that the convolution with a ”modulated window” is already an Ga-
valued function (since py is unitary it does not alter the Gy-norm) but not complex-
valued as f * Mg, in which case one can still apply the GFT to get a translation on the
unitary dual in the sense of Identity (1.8).

Apart from the problem of dimensionality, we struggle with the lack of structure on
the unitary dual. The unitary dual G of any Abelian group G also possesses an Abelian
group structure, given by the pointwise product of two characters. (In fact, it is even a
locally compact (Abelian) group. Cf.[30] Section4.3, e.g.) Also, all the characters have
the same representation space, that is, H = C. Although by the Stone-von Neumann
theorem any infinite-dimensional unirrep is unitarily equivalent to some py, there is no
group structure on ﬁ”, while there is one on every G.

Nevertheless we can explicitly calculate the pointwise product of two Schrodinger
representations to see what it gives: let f € L?(R") and let (p,q,t) € H,. For A\j, Ay €
R\{0} we compute

(2o (P, @ t)a, (p, @, 8) f) () = 2Tt F2miaetmidep g 2midats2mialet Aep) T midera f (5 4 A p)

_ 627ri()\1+)\2)t-&-27riq:n-i—7ri()\1+>\2)p~qf(:C + ()\1 + )\2)10) . 627Tiqa:+27ri>\2q-p

= (Main (0, ¢, 1) ) () - ¥TiarT2midaee,

A repetition of this argument shows that for Aj, Mg, ..., Ay € R\{0} we have

(7T)\1 (p7 q, t)ﬂ-)@ (p7 q, t) NI (p7 q, t)f)(fL’)

— etkgatikAigpti(k—1)A2g-p+...+idg—14-p (Tar+..+2:.0) (@)
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We notice two things: neither is the pointwise product a group product nor is it

commutative. This is not surprising. An outcome like, say

AL " Thg = 7T)\1+)\2+7‘()\1,)\2)

with some error term (A1, A2) € R\{0}, would in fact imply commutativity of the prod-
uct since H" is parameterized by R\{0} and the indices would still have to satisfy a
group homorphism property. But by the Pontryagin duality theorem this would imply
commutativity of H,,, thus a contradiction.

We conclude that it does not make sense to aim at frequency shifts for functions
f :H, — C by convolving them with modulated windows. This is admittedly bad news
for the STFT in the sense of Identity (2.25).

It is worthwhile remarking at this point that it is generally difficult to get useful
operations on H,, defined by manipulations on H". Tt is also remarkable that H,, does
not seem to admit any concise and illustrative description of the image of .#(H,,) under
the GFT (cf. D. Geller [33]).

Our observations thus imply that the frequency decompositions are not performed by
a priori well-know operations on H,; it rather seems one would have to perform the
decompositions directly on H". To be more precise, it is not sufficient to decompose
1. but rather the ” ﬁ”—unity” Ign = A — 1L, where I, stands for the identity operator
on H,, =~ L*(R"). A Fourier multiplier defined exclusively in terms of A € R\{0} would
yield a convolution operator whose distributional kernel behaves like a Dirac delta in
p = g = 0. The Fourier transform would essentially be performed in the central variable
t.

Yet, it is an interesting observation that, disregarding the operator’s singularity for a
moment, modulation space-like semi-norms defined by continuous and discrete spectral
shifts in \ € H" are formally equivalent if one only accepts a priori-weighted ¢9-spaces
as the global component of discrete modulation spaces. The weight factors |j|",j € Z,
in that case are due to the factor |A|" in the Plancherel measure on H".

It is also still not completely clear how to perform a clever frequency decomposition of
I, but one might guess that joint spectral multipliers m of the sub-Laplacian Ag,, and
the central derivative D; might do the job. The latter spectrum, called the Heisenberg
fan, consists of the pairs (X, || (2 |k| + n)) with X € R\{0} and a multi-index k € N".

Joint work by F.Ricci et al[60, 61, 59] has shown that the convolution kernel of
m(L, D) is a Schwartz function if and only if m is the restriction to the Heisenberg

fan of some Schwartz function on R%. A discrete decomposition of I. can then be
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performed be finding a useful BUPU-like decomposition of unity on RZ.
It still remains an open question how much the modulation spaces defined this way
would differ from homogeneous Besov spaces on H,, since the latter can also be charac-

terized by a similar, namely dyadic, spectral decomposition. (Cf.[32, 31].)

2.2.3 The Coorbit Approach

A coorbit-type approach for modulation spaces on H,, is discussed in Chapter4. Al-
though originally inspired by Feichtinger and Grochenig’s paper [21], the present author
and his collaborators decided to start the description in terms of an adapted frame-
work due to Daniel and Ingrid Beltita [5, 6], only to resort to the original approach for
technical as well as conceptual reasons.

The representation theory involved is discussed very explicitly in Chapter 3. We should
point out that there is also a strong link between these modulation spaces and Weyl-
quantized operators H,, as this is already the case on R™. We refer the interested reader

to Chapter 5, in particular Subsection 5.2.2.
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3 The Dynin-Folland Group and its
Representation Theory

In [13], A.S. Dynin was apparently first to consider the Lie algebra generated by (left- or
right-) invariant vector fields on the Heisenberg group H,, and multiplication by the 2n+1
coordinate functions (multiplied by 2i). This Lie algebra of operators of L?(H,,) is in
fact finite dimensional, moreover it turns out to be nilpotent of step 3. Viewing it as an
abstract nilpotent Lie algebra, the corresponding (connected simply connected) nilpotent
Lie group, denoted here by Ha,, acts naturally on L?(H,). This Schrédinger-type
representation of Hy, on L?(H,) is the main ingredient in the subsequent Weyl-type
quantization on H,, developed by Dynin. As Dynin was motivated by this quantization,
his account on the group Hj, and its Schrédinger-type representation was not very
explicit.

G.B. Folland mentiones the paper [13] by Dynin in a miscellaneous remark in his
monograph [28, p.90], saying that the group Hs ,, might be called ”the Heisenberg group
of the Heisenberg group.” Almost twenty years later, in [29], Folland provides a more
rigorous account on such Heisenberg constructions and explores the structure of ”meta-
Heisenberg groups” of 2-step groups. There he also discusses how Dynin’s quantization
extends to an arbitrary meta-Heisenberg group and how it relates to other symbolic
calculi (namely the classical Weyl and Kohn-Nirenberg correspondences in the Euclidean

setting as well as the Beals-Greiner calculus on Heisenberg manifolds introduced in [3]).

Since Folland’s account is quite general, this chapter aims at giving some more explicit
formulas for Hy ,, and its unitary irreducible representations (unirreps). Paying tribute
to both its first introduction by Dynin and its more precise description by Folland, we
will call Ha ,, the Dynin-Folland group.

In Sections 3.1 and 3.2 we will construct the Lie algebra and group mentioned at the
beginning of this introduction. Section 3.3 introduces some useful notation which will
facilitate to express the group law and many formulas.

We will then give explicit formulas for the Schrédinger-type representations of Hy

in Section 3.4. In Section 3.5 we cross-check our results and complete the set of unirreps
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(up to unitary equivalence) by classifying the co-adjoint orbits of Hy ,, and constructing
the corresponding representations.

We then briefly describe the semi-direct product structure of Hy,, in Section 3.6, and
conclude the chapter with Section 3.7, where we discuss the Plancherel formula on the

group Ho .

3.1 The Lie Algebra §,, >

In this subsection we study the Lie algebra generated by the left-invariant vector fields
Dp;s Dy» Py on Hy, (cf. Subsection 1.3.2), j,k = 1,...,n, and the multiplications by

coordinate functions:

%Jf(paQat) = pjf(paqat)a
Lo, [ 0a,t) = qif(p,q.t), (3.1)
Zif (p,q,t) = tf(p,q.t),

where j = 1,...n and f € .¥/(H,). To this end, we compute all possible commutators
between these operators, up to skew-symmetry. The symbol I will denote the identity
operator on L?(H,,). As in Section 1.3 we define the Lie bracket for two essentially self-
adjoint operators A, B acting on .(R") is defined by 27 times the standard commutator
[A,B] := AB — BA.

The commutator brackets between the 2., Z,;, and 23, are zero since scalar multi-

plication operators commute:
[%j"%;lk] = [‘%/P]?‘%] = [‘%kv %] =0.

The commutator brackets between the left invariant vector fields %, %, , %, for

j,ke{l,...,n}, can be computed directly using their expressions given in (1.18):
(27Ti)2 ['@pw ‘@%] = [6])3' - %%atv an + %pkat] = [apjv %pkat] + [_%qjat’ an]
= %@7,@ + %519,]‘61‘/ = 0jk O = 2mid; 1 Yy,
(27Ti)2 [.@pj, @t] = [apj - %q‘]ﬁta at] = 07
(27Ti)2 [.@qj, @t] = [8% + %pjé’t, é’t] = 0.

Naturally we obtain that these operators satisfy also the CCR since the space of
left-invariant vector fields on H,, form a Lie algebra of operators isomorphic to b, see
Section 1.3.2. Let us compute the commutator brackets between the left-invariant vector

fields and the coordinate operators, first the commutators with &, :
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2mi) [Py, 2] = [0p; — 54000k] = [Opoe] = Ol
(27”)[9131'7‘%/%] = [apj_%qjat’qk] =0,
@27i) [ Doy, 2] = [0y, —300t] = [—30001] = —5¢5 = —324,

then with @qj :

(2mi) [‘@%” ‘%k] = [an + %pjat,pk] = 0,
(27”) [gqj7 ‘%/;]k] = [aqj + %pjat’ Qk] = [aQw q’f] = 5j»k L
2mi) [Py, 21 = [0g; + 3pi00t] = [5pj0nt]l =3P = 5%p;

and eventually with Z;:

2mi) [Ze, Zp] = [0upe] = 0,
(27Ti) [@t, ‘%Ik] = [atv Qk] = 0,
(2mi) [Ze, 2] = [0 1]

I
=

We have obtained that the linear space generated by the first order Lie brackets
between the operators %), Z,,, Z: and Z,., Xy, 2t is

RZ, ®RIORZ, ®...®RZ, ®RZ, ®...®RZ,,.

The whole lot of commutators tells us that very few second order commutators remain.
More precisely, the Lie brackets of Z;, 2, or Z; with any .@pj,,.@qj,,.@t and %j,,
Zq» 2t can only vanish or be equal to I, and the operator I clearly commutes with
all operators, hence does not create any new structure. Therefore, the second order
commutator brackets are all proportional to I and all third order commutators must be

zero. We have obtained:

Lemma 3.1. The real Lie algebra of operators gemerated by the left-invariant vector

fields and the coordinate functions multiplied by i is

(Dpss Doy Dy Zss s 22> = RTp, & ... ®RT,, ®RT, & ... ®RY,, ®RY,
®RZ,, ®... ®RZ, ®RZ2,, ®...®RZ,, ®RIL

In other words, the identity operator 1 is the only newly generated element. Furthermore

this Lie algebra is of topological dimension 2(2n + 1) + 1 and 3-step nilpotent.

We now define the ”abstract” Lie algebra that will naturally be isomorphic to
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<‘@p]‘7 gqj'v ‘@ta ‘Q//p]‘a Z,

s 2. First we index the standard basis of R22n+D+1 a5

(Xurs oo X Xops oo s Xy Xy Xayy oo, Xa s Xty -5 Xy Xz, X)),
Then we consider the linear isomorphism
dr : RV (D Do Dy, By Pger Tt (3.2)

defined via

dr(Xy;) =211 Dy, dn(Xy,) =210 Dy, dn(Xy) = 2mi D,
dm(Xy,) =211 Zp,, dn(Xy,) = 2mi Zy;,

J J
dr(X,) =2mi 2, dn(Xs) = 2mil.

Definition 3.2. We denote by b, 2 the real Lie algebra with underlying linear space

R2Cn+D+L and Lie bracket [-, -] defined so that dm is a Lie algebra morphism.

hn,Q

This means that the vectors in the standard basis of R2(Z"+1)+1 gatisfy the following

commutator relations \

[(Xuj Xoglono = 0k Xw

[Xuj-ank]hn2 djk Xs

(X, Xelooo = —3Xy | (3.3)
[Xo;, Xyilpoo = ik X |
[X’vj7XZ]hn,2 = %Xxj

[Xw’XZ]hng = X, ),

In (3.3), we have only listed the non-vanishing Lie brackets of b 5, up to anti-symmetry.

Our choice of notation b, o for the Lie algebra reflects the fact that we just have
applied a further type of Heisenberg construction to h,. We will refer to h,2 as the
Dynin-Folland Lie algebra in recognition of Dynin’s and Folland’s works [13, 14] and
[29], respectively.

The following properties are straightforward:
Proposition 3.3. (i) The Lie algebra b, 2 is nilpotent of step 3, with centre RXj.

(i1) The mapping dr is a morphism from the Heisenberg Lie algebra b, 2 onto

<gp]‘7 9@7 gty %j? %k, %>

(11i) The subalgebra RZ, @. . BRZ,, ®RY; is isomorphic to the Heisenberg Lie algebra
bn, and so is the subalgebra RX,,, ®.. ®RX, ®RX,,. Furthermore, the restriction
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of dr to the subalgebra RX,,, ®...®RX,, ®RX,, coincides with the infinitesimal
right regular representation of H,, on L*(R™).

(tv) The subalgebra RZ, @ ... ® RZ,, ® RZ; is abelian and so is the subalgebra
RX,, @...®8RX,, ®RX,.

3.2 The Lie Group H,,,

Here we describe the connected simply connected 3-step nilpotent Lie group that we
obtain by exponentiating the Dynin-Folland Lie algebra b, 2. We denote this group by
Hy .

As in the case of the Heisenberg group (cf. Subsection 1.3.1) we can again make use of
the Baker-Campbell-Hausdorff formula recalled in (1.15). Since the Dynin-Folland Lie

algebra is of step 3, we obtain the group law

eXpHQ,n (X) ®H2,n eXpHQ,n (X/) = eXpHQ,n (Z)7

with

1 1
Zi= X + X4 X X g, + [ = X0, 16X T, s (3.4)

Let us compute Z more explicitly. We write

n
= Z wi X, + 0;Xy;) + WXy + Z 2 Xo, + Y Xy,) + 22X, + X,

and similarly for X’. As in the Heisenberg case, we abbreviate for instance sums like

Z?Zl u; Xy, by the dot-product-like notation uX,. Consequently we have
X =uXy, +v Xy +wXy + 22X, +yXy + 22X, + s X,

Lemma 3.4. With the notation above, the expression of Z given in (3.4) becomes

r
Z = (u+u)Xu+ (v+20)X, + (w +u + W)Xw
1 1
+ (;U~|—a:'—|— Z(z’v—zv’))Xz + <y+y 4( u— zu ))Xy—I— (z+2)X,
+ (s+s’+ um/2m/ +vy,2yv i ;w - Z;Z,(uv'—vu'))Xs.
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Proof. Employing the commutation relations (3.3) we compute
/ / / ]' / / 1 / /
[X, X']p,. = (w0’ —vu') Xy — 5(2 u—zu') X, + i(z v—z2v") X,

+ (ur’ —zu’ + vy — ' + wd — 2w X, (3.5)

for the first order commutator, and for the second commutator:
[(X - Xl)’ [X7 X,]bn,Q]bn,Q
1 1
=—(z—2")(w —vu') X5 — (v — v')i(z’u —2u") X5 + (u — u')i(z'v — 20") X,

that is, the vector c¢X; with
z(W(v—=2") =V (u—u)) + 2 (—u(v =) +v(u—u))

2

z(u'v —v'u) + 2 (uv” — i)
2

c=—(z—2")(uw —vu) +

= —(2 -2 (w —vu) +

3 !/ / /
= —i(z — 2" (wv" — vu').

Collecting the commutators of order 0,1 and 2 computed above and inserting them into

Formula (3.4), we obtain the expression for Z stated above. O

As in the case of the Heisenberg group, we identify an element of the group with an

element of the underlying vector space R22?+D+1 of the Lie algebra:
(u,v,w,x,y,z,8) = expy, ,, (uXu + Xy +wXy + 2 X, +yXy +2X, + sXS).

Proposition 3.5. With the convention explained above, the centre of the Ha, 1is
expy,  (RXs) = {(0,0,0,0,0,0,s) : s € R}, and the group law becomes

/ / / / / / /
(u7v7w7$7y7278)®H2,n (u7v7w7x’y7z7s>
, , , uwv' — o
=s\lut+u ,v+v , wtw —I-#,
/ 1 / / / 1 / / /
T+ +Z(zv—zv) , Yty —Z(zu—zu), z+ 2,
ur' —xu vy —yv' wZ — 2 -2

’ . I
s+s + 5 + 5 + 5 3 (uv vu)) (3.6)

Furthermore, the subgroup {(u,v,w,0,0,0,0) : u,v € R", w € R} is isomorphic to the

Heisenberg group H,,.
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3.3 An Extended Notation - Ambiguities and Usefulness

In this Section, we introduce new notation to be able to perform computations in a
concise manner. Unfortunately, this will mean on the one hand identifying many different
objects and on the other hand having several ways for describing one and the same
operation. Yet, the nature of our situation requires it.

Having identified the groups H,, and Hy, with the underlying vector space (via ex-
ponential coordinates), many computations involve the variables p, q, t, u, v, w, z, y,
z, s, which may refer to elements or the components of elements of the Lie algebras R"”,
b, b2k as well as elements or components of elements of the Lie groups R", H,,, Hy ,.
Certain specific calculations moreover involve sub-indices j, k,l,... = 1,...,n of the lat-
ter, that is, the scalar variables p;, qx,t,u;, . ... Yet other formulas become not only less
cumbersome but more lucid if we also introduce capital letters to denote members of
H, =~ b, = R?"*! and calligraphic capital letters for either H,,-valued or scalar-valued
components of the 2 (2n + 1) 4+ 1-dimensional elements of b, » = Hy .

Let the standard variables that define the elements of the Heisenberg group H,, =

b, = R?"*! once and for all be fixed to be

X = (p7 q,t) = (pl,.. . 7pn7QI7--~7Qnat)7 (37)

and let the standard variables defining the elements of the Dynin-Folland group Hs,, =
b2 = RZ2Cn+1)+1 be denoted by

(P, Q,S) := ((u,v,w), (x,y, 2), s) (3.8)

= ((Uly ey Uy U1y e ey Uy W),y (T, ooy Ty Yy v oy Yny 2)5 S)-

This purely notational identification of elements belonging to Lie groups, Lie algebras
and Euclidean vector spaces will prove very useful in many instances. The H,, and Hp ;-
group laws, for example, can be expressed in a very convenient way. Let expressions like
p'q or wv’, e.g., again denote the standard R™-inner products of the vectors p’,q and

u,v’, respectively, whereas R?"*!inner products will be denoted by

(o)) =C Dgon.

Moreover, let us introduce the ‘big dot-product’

X-X":=(p,qt) (.qd.t)
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for elements in b, =~ H,, =~ R?"*! as an abbreviation of the H,-product (1.17), and let

us agree that for all such vectors we can employ the b,,-Lie bracket notation
[X, X'] == [X, X]y, := (0,0,pq" — qp).
We can then rewrite the H,-group law as

1
XOu, X" = (pat)ou, @,d.t)=pP+r.q+d,t+t + 5 (g = qar’))

= X X' =X+X+2[XX]. (3.9)

1
2

Let us turn our attention to the group law of Hy,. The beginning of Formula (3.6)
can be rewritten as

1
<u—|—u/,v+v',w—|—w'—|—2(uv'—vu')> =P P,

if P = (u,v,w) and similarly for P’. For the rest of the formula we need to introduce
the operation
adgy, (X)(X') = (¢'q, —t'p,0), (3.10)

if X = (p,q,t) as in (3.7) and similarly for X’

Remark 3.6. As the notation suggests, the operation adjj_is the co-adjoint represen-
tation, where b, and its dual have been identified with R?"*!. Indeed, the adjoint
representation of 0, is the Lie algebra morphism adg, from b, to its algebra of auto-
morphisms defined by adg, (X)(Y) = [X,Y]. This representation of b, on itself yields
a dual representation of h,, on its dual, called dual of the adjoint representation, or

co-adjoint representation, denoted here by adj; . It is defined via

adjy, (X)(¢) = —¢ o adg,, (X),

for X in bh,, and ¢ a real linear form on h,. It is an easy exercise left to the reader to
check that when b,, and its dual of b, are identified with R?"*! via the standard basis

and its dual respectively, one finds (3.10).

With (3.10) and P, Q as in (3.8) and similarly for P/, @', we have

(2'v, —2'u,0) = adfy, (P)(Q) and (20, —24/,0) = adyy, (P"H(Q),
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and we can now express the next set of coordinates in Formula (3.6):

1 1
<x—|—x’—|— Z(z/v—zv’) L y+y — 4(z’u—zu/),z+z’)

1
= Q+ Q'+ 7 (adfy, (P)(Q) — adfy, (P)(Q)) -
For the last coordinate in Formula (3.6), we observe that

oot ’LL$/2$U’ N vy’QyU’ N wz’2zw’ B Zgz/(uv/—vu/)
<(u7 v, w)? (‘Tlv y,7 Z,)> — <($, Y Z)? (u/7 U’, w,>>
2

1
- g <(.ZU - 33',, Y= y/7 = Z,)v (07071“/ - U'LL/)>

=S+8+ %(<P, Q' —-(Q,P")) - %<Q -9 [P, P]).

=s+s+

Hence we have found the following expression for the group law of Hy ,:

Lemma 3.7. With the convention explained above, the product of two elements (P, Q,S)
and (P',Q',8") in Ha,, = oy, is

(P.Q.8) 0w, (P, Q.8
= (PP, Q4 Q'+ J(adfy, (P)(Q) — adfy, (P)(Q)) |
§+8 +5((P.QY~(QP)) - (2~ . [P, P]), (3.11)
whereas their Lie bracket is given by

[(P’ Q, 8)7 (Pla Q,’ S/)]hQ,n

= (1P Pl 3 (s, (P)(Q) — ady, (P)(Q)). (P, @) — (Q.P").

2
(3.12)

Proof. The second claim follows from the above discussion and a direct comparison with
Formula (3.5). O

The following technical identities will be needed later. They are best expressed and

proved using the notation explained above.
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Lemma 3.8. 1. Any element (P, Q,S) in Ha,, can be written as
1 1
(737 Qv S) = <O> Q-+ Z ad?—ln (P)(Q)> O) ®H2,n (P7 0, O) ®H2,n <O> 0, S+ 5 <Q7 P>)> .

2. For any X, X1, Xs € R27+1 the following scalar products coincide:
(adfy, (X)(X1), X2) = (X1, [ X2, X]).
3. For any X € R and (P, Q,S) € Ha,,, we have
(X,0,0) On,,, (P,Q,8) =(0,2,S§") On,,, (X+P,0,0)
for some Q' € R+ and S’ e R given by
y 1
S =S+ Q’X'(ip) .

Proof of Lemma 3.8. Part (2) could be proved using the definition of the co-adjoint ex-

plained in Remark 3.6 but we show it here by direct calculations using (3.10):

(adfy, (X)(X1), X2) = {(t1g, —t1p, 0, (p2, g2, t2)) = t1qp2 — t1pgo.

Let us prove Part (1). Firstly we notice that adi"{n2 = 0 since H,, is of step 2 or by

direct calculations using (3.10):
adiy,2(X)(X') = adjy, (X)(¥'g, ~'p,0) = 0.

Secondly, we have
(adfy, (X)(X),X)=0

as a consequence of Part (2). Now we apply the newly found expression for the group
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law in (3.11) to

- (PO § 0, (PNQ) - adiy, (P) (@ + | ads, (P)(Q) ).

- % <Q + iad}'ﬁln(P)(Q),P>>
= (P, Q ~ 1o (adlfy, (P) (s, (P)(Q)), 3 (Q.P) — ¢ (adlfy (P)(Q), P))
- (P.0.—5(Q.P).

having applied for the last line of the computations the two observations above. Since
the centre of H,, o is {(0,0,S) : S € R}, Part (1) is proved.
Let us prove Part (3). Using the group law expressed in (3.11) and the decomposition

given in Part (1), we have

(X7 0, 0) ®H2,n (P7 Q, S)
- (X0 Jadiy (X)(Q), 5+ 5 (X @+ g@.[X.PD)

= (0, Ql7 0) OH,,, (X -P,0,0) OH,,, (0,0, S/)v

for some Q' € R?"*! whose expression we do not need to compute, and for the centre

component
, 1 1 1 1,
Let us use Part (2) for the last term:
(@ Jadiy (X)(Q).X-P) = (Q.X-P)+ { Cadiy (X)(Q).X - P)
= QXP) QIX-PX]).  (313)

Now since X + P = X + P + 3[X,P] (see (3.9)) and the iterated bracket is zero, (3.13)
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becomes
<Q,X+7D+ ;[X,P]> + i<Q, [X+73+ ;[X,P],X]>
_ <Q,X i P ;[X,P]> + Q[P XD = <Q,X+7>+ i[X,P]>.

Therefore, we have for S’

1 1 1 1
S = S+ @D+ (X +P+ X))
1 1
= S+<Q,X+ 2P+4[X,P]>.
This concludes the proof of Part (3). O

3.4 The Schrodinger-type representations of H; ),

In this Section, we show that the isomorphism dr defined in (3.2) can be viewed as the in-
finitesimal representation of a Schrodinger-type representation 7 of o ,. We will present
the argument for the whole family 7y, A € R\{0}, of Schrédinger-type representations
which contains 7 = .

We begin by defining for each A € R\{0} the linear mapping
dﬂ-)\ : R2(2n+1)+1 - <9pj7 -@q]'a 91‘/7 %j? ‘A@//;]jy %>7
via

dra(Xuy;) = 218 Dy,  dma(Xy,) =271 Dy, dma(Xy) = 270 Dy,

dmy(Xy,;) = 2miAZy,, dma(Xy,) = 2mi\ 2y, (3.14)
dry(X;) = 2miN 21,  dma(Xs) = 2miAL

With all our conventions (see Section 3.3) we can also write
dmy(u,v,w, x,y,z,8) = 2mi (u.@p +v%g + wD + Ao 2y + A\yLy + A2 + )\SI).

The main property of this subsection is:

Proposition 3.9. 1. For any A € R\{0}, the linear mapping dmy is a Lie algebra

isomorphism between b, 2 and <9pj, Da;» Des Xp;r X 2.

Ppj»
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2. dm = dm.

3. Let A € R\{0}. The representation dry is the infinitesimal representation of the

unitary representation my of Ha,, acting on L?*(H,,) given by
(TA(P. Q. 8)F)(X) = @™ NEHRXGPY) f(x - p), (3.15)

for (P,Q,8) € Ha,,, X € H,, and f € L*(H,,).
4. If X £ XN in R\{0}, the representations wy and wy are inequivalent.

Proof. Parts 1 and 2 are easy to check.
For Part 3, one can check by direct computations that Formula (3.15) defines a unitary
representation my of Hy, and that its infinitesimal representation coincides with drmy.

2miAS on the centre of the group

Clearly each ) coincides with the characters S — e
H,,. Hence, two representations 7y and my corresponding to different A 4 X\ are

inequivalent, and Part 4 is proved. ]

Let us explain how Formula (3.15) appears by showing that the unique candidate for
the representation my of H, 2 on L?(H,) =~ L*(R*"*1) that admits dr, as infinitesimal
representation is given by (3.15).

As in Proposition 3.3 (iii) (see also Section 1.3.2), we see that the restriction of dmy to
the subalgebra RX,, ®@... ®RX,,, ®RX,, coincides with the infinitesimal right regular
representation of H,, on L?(R"). Therefore, the restriction of 7y to {(P,0,0) : P €

R27+1} must be given by the right regular representation of H,,:
(mA(P,0,0)f)(X) = f(X - P). (3.16)

This could also be proved with a simple argument about unitary one-parameter groups
in the spirit of Stone’s Theorem. The same argument also yields that such 7, must

satisfy

(12(0,0,0)f)(X) = &N f(X), (3.17)
(72(0,0,8)f)(X) = €™ f(X). (3.18)

Using (3.16), (3.17) and (3.18), together with the group law and, more precisely, Part
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(1) of Lemma 3.8, we must have

(MU’QSVM>
(12(0,Q + adHn (PY(Q),0)mr(P, 0,0)72(0,0,S + %<Q,P>) £)(X)

_ 62m<Q+§ad;‘;n(7’)(Q X (xA(P, 0,0)m (o 0,8 + 1<Q,7>>)f)(X)

= 2N adh, (DY) (7, (0,0,5 + <Q P)I)(X - P)
_ 2miX(Q+ 7 adfy (P)(Q),X) 2mix s+2<Q,7>>) f(X-P).

By Lemma 3.8 Part (2), we have

<ad;<-1n(P)(Q)7X> = <Q7 [Xa P]>7

thus

<Q+1maﬂ»@xx>+1«zm—<gxw+NQ&&PD+}@J&

<QX+ P IX, 73> <QX >

with the convention that the dot product denotes the Heisenberg group law
(cf. Section 3.3). Therefore, we have obtained that the unique candidate for 7y is given by
(3.15). Conversely, one checks easily that Formula (3.15) defines a unitary representation
of H2’n.

Remark 3.10. In exponential coordinates (u,v,w,zx,y,z,s) the representation m is

given by

(7T>\ (U, v, w,x,Y, %, S)f) (pa q, t) = 627Ti>\ (<($,y,2)t,(p,q,t)t>+%<($,y,Z)t,(u,U,W)t>+i2 (pv—uq)+s)

1
Xf(p+u,q+v,t+w+f

S (v — ).

In the next section we list all the unirreps of Hs ,, up to unitary equivalence using the

orbit method. Since m) will be among these, this will show its irreducibility.
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3.5 The Unitary Irreducible Representations of the
Dynin-Folland Group - A Classification via the Orbit
Method

In this subsection we will classify the unitary irreducible representations of the Dynin-
Folland group employing Kirillov’s orbit method. We refer to, e.g., [10] for a description
of this method. We will first give a description of the co-adjoint orbits of Hy,. Sub-
sequently, we will construct the corresponding unirreps. Finally, for each orbit we will

have a look at the corresponding jump sets.

3.5.1 The Co-adjoint Orbits

In order to classify the Hy ,-co-adjoint orbits, we first we give an explicit formula for
the co-adjoint representation K of Hy, on the dual b3, of its Lie algebra by, 2. Recall
that K is given by

(K(g)F,X)={(F,Ad(g ") X), (3.19)

if '€ by, 9, g€ Hyy and X € by, 5. We denote by

(Xy

uyp?”

* %
L XELX

V17

X LXE XL XE XYL XXX,

x1) Yy1?
the dual standard basis of R2(2n+1)+1,
Lemma 3.11. For any X € by, and F € by, 5 written as

F = fuXy + foXy + fuXy + fo Xy + [, X + X0+ £ X7,
X =uX, +vXy +wXy + X, +yXy + 22X, + s X,

we have

K(eXpHQ,n (X))F = (fu + fw/U - %fy + fsx + ZfSZ’U)X:

+(fv — fuwu + %fl’ + fsy — zfszu)X:
+(fw+st)X:; +(f$_f8u)X: + (fy_fsv))(;/k
+(fz_M fyU

5 +7~ W) XF 4 f X7

Proof. We apply (3.19) to g = expgy,  (X). We notice that due to nilpotency of Hy p,
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we have

Ad(g™") X' = Ad(expg, , (X)) X' = Ad(expy,, (- X)) X' = e2d(=X) x

1
=X —-[X, X'+ 3 [X,[X, X"]].
For X as in the statement and a similar expression for X', we compute

Ad(expy, , (X)) (X')
1 1
= (u’,v’,w’ —w' +ou, 7+ i(zv' —2'v),y + i(z’u — ), 2,
3
s —ux’ + 2u — vy + oy’ —wd + 2w’ — 1 z(w' — vu)),
and hence
(K (expy, , (X)F,X')
= fuu' + fo' + fo(w — w4+ vu)
1 1
+ fo (:U' + 5(21}’ — z/v)) + fy (y/ + §(Z'u - zu’)) + f.2

3
+ fs (s' —ux’ +au' — vy +yv’ — w2 + 20— 1 z(uv' — Uu’)) .

A reorganisation of the terms gives the stated equality. O

We can now describe the co-adjoint orbits of Hs, by giving their representatives.
Given our convention, we may write R"X, for RX, @ ... ® RX,, and similarly for
R"X,, R"X,, R"X, etc.

Proposition 3.12. Any co-adjoint orbit of Ha,, has exactly one representative among

the following elements of by, 5:
(Case (1)) fsXZ¥ if fs £0,
(Case (2)) fuXy + fo X5 + f, Xy + f2 X7 with fs =0 but f, + 0,

(Case (3)) fuXy + fuXy + fo X5 + fyX; with the equality fufy, = fufz between the scalar
products, and vanishing of the coordinates fs = f, = f, = 0 but the non-vanishing
of the R?"-vector (fz, f,) *+ 0,

(Case (4)) qu:: + va: + sz: with fs = fw = O; fa: = fy = 0.
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All the co-adjoint orbits are affine subspaces of by, 5. More precisely, in Case (1), the
orbit of fs X7 is the affine hyperplane passing through f; X7 given by

K(Hs,)(fX2) = fX OR" X} OR"X} @RX) OR"X, DR"X ORXZ.  (3.20)

The orbits K(Ha ) (fs XZ), fs € R\{0}, are the generic co-adjoint orbits. They form an
open dense subset of b;n.

In Case (2), the orbits are 2n-dimensional affine subspaces:

K(Hop)(foXoy + fo X5 + fy Xy + [2X7)

Ja0 ht e G e rny. (3.21)

= fuXy + [ X5 + [ X, + LXD +{0X) +aXy — of
w

In Case (3), the orbits are 2-dimensional affine subspaces:

K(H2,n)(qu; + va: + fo; + fyX;)
= fuXy + X0 + fo X5 + [ Xy + R(—f, X5 + fo X)) + RXT. (3.22)

In Case (4), the orbits are singletons.

Proof. Case (1) Let F' € b} 5\{0} be such that its component fs is not zero. Then we
choose X as in Lemma3.11 with z,u,v such that the coordinates of K(expgy, X)(F)

3 * * * 3
in Xy, X7 and X/ are zero, that is,

Jw + fsz =0, fr_fsu:fy_fsvzoa

then w, z, y such that the coordinates in X}, X* and X' are zero, that is,

_@_A'_M_ Sw:O’

f: =5 5

and
z 3 z 3
0= fu + fwv - §fy + fsx + zfszv = fv - fwu + §fx + fsy - Zfszu'

We have obtained K (exp(X))F = fsX7. Therefore, the orbit K(Hjy,,)F describes the
2(2n + 1)-dimensional hyperplane at height fs parallel to the subspace b, 2" /RXZ.
Case (2). We assume f; = 0 but f,, & 0, so that we have

K(epoQ’"(X))F = (fu + fuwv — %zfy)X{f + (fv — fuwu + %zfx)X:

1 1
+wazT) + sz: + fngj + (fz - 5 fzv + §fyu)X:
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We choose u and v such that the coordinates in X} and X' vanish, that is,

1 1 1
v = E(—]@—i— §zfy) and u = T

Then the X}-coordinate of K (expgy, (X))F becomes

1
(fo + §Zfz)

1

1 1
fz - 5fmv + ifyu = fz + m(fuf:z: + fvfy)a

independently of the other entries w,x,y, z,s of X. Therefore, F' := f, X} + f. XF +
[y Xy + [LXF with fL = f, + ﬁ(fufz + fufy) is in the same orbit as F' and F” is the
only element of the orbit with zero coordinates in X} and X*. We choose F’ as the
representative of the co-adjoint orbit that contains F'. Similar computations as above,

together with setting o = f,v — 5f, € R" and @ = —f,u + 3 f, € R", yield

~ ~ - +
K (expm, , (X)F" = F'+0X] +aX] + MX
- F’+@X§+ﬂX§_MX:_

2fuw

This yields the description of the F’-orbit.
Case (3). We assume f; =0 = f,,. Then

K (expu,, O)F = (fu=5£,) X3+ (fo+ 5 50) X}
1

2
1
+fa X5 + fngj + (fz fov + §fyu)X:

2
We also assume (fy, fy) £ 0. Then we can choose v or u such that the X¥-coordinate

vanishes, and we also choose z such that the following scalar product in R?" vanishes:

<(fu7fv) + %(_fyyfa:); (_fy7fa;)>R2n =0.

This means that, in this case, F' and F' := f, X + fy X5 + fo X3 + f, X with (f,, f}) L
(—fy, fz) in R?™ are in the same orbit. Furthermore F’ is the only element of this
orbit with (f;, f;,) L (=fy, fz). Similar computations as above, with Z = £ € R and

—% fzv + %fyu e R, give

a

K(epoQ’n(X))F’ = F' —Zf, X} + 2f X} +aX].

This yields the description of the F’-orbit.
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If fo = fy =0, then F = f, X+ f, X + f.X} = K(epoM (X))F for any X € b, 2.
This corresponds to Case (4). This concludes the proof of Proposition 3.12. O

Corollary 3.13. If we denote by F1, ..., Fy the representatives of the co-adjoint orbits
given by Cases (1) - (4), then the corresponding stabilizer subgroups of Ha ,,, denoted by
Stab(Fj), j =1,...,4, are given by:

(Case (1)) Stab(F1) = expy, , (RX;),

(Case (2)) Stab(Fy) = expy, , (RX, ®R"X, ®R"X, ®RX. ®RX,),
(Case (3)) Stab(F3) = {(u,v,w,x,y,2,5) € Hap | 2 =0, frv = fyu},
(Case (4)) Stab(Fy) = Ha,.

Proof. Cases (1) and (4) are straight-forward in view of Lemma3.11. To prove Case (2),

we find that the necessary and sufficient condition

K(eXpHM(X))Fg = (fu + fuwv — %zfy)X{f + (fv — fuwu + %zfx)X{f
b LuXE b FXE 4 XS (Fe g fev 5 fyu) X

= wa:;; + facX;:k + fy)(g;i< + sz:
= F27

is equivalent to

(fu+ fuwv — %zfy) = (fo — fuu+ %zfx) = (—% fav + %fyu) = 0. (3.23)

It is now easily seen that the largest subgroup satisfying (3.23) is the one asserted above.

In order to determine Stab(F3), we observe that

K (expr, , (0)Fs = (fu = SF,) X5 + (fo+ 5 F2) X2
+ X5+ Xy + (—%fxv + %fyu)X;‘

= fuXy + [ X0 + [ X5 + [ Xy
— F3

holds if and only if z = 0 and f,v = fyu. This concludes the proof. O
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3.5.2 The Unirreps

To begin with, let us show that the representations corresponding to the orbits of Case

(1) via the orbit method coincide with the representations 7y constructed in Section 3.4:

Proposition 3.14. Let f; = A € R\{0}. The representation mwy as defined by Equal-
ity (3.15) is unitarily equivalent to the unirrep corresponding to the linear form AXZF,

and the (mazimal polarising AX¥-subordinated) subalgebra
[:=R"X, ®R"X, ®RX, ® RXj,.

Proof. One checks easily that the subspace [ of b3 ;, is a maximal subalgebra subordinated

to F:= AX} and that its corresponding subgroup is
L = expy, () = {(0,2,5): Q€ R?"1 S e R}.

Let pr1 be the character of the subgroup L with infinitesimal character ¢F'. It is given
for any X = 2 X, +yX, + 2X, + sX, el by

prL(expy, (X)) = X = g2mides,
and also for any (0, Q,S) € L by
prL(0,9,S) = e2MIAS (3.24)

In order to define the representation induced by prr, we consider %, the space of

continuous functions ¢ : Hy ,, — C that satisfy

¢l On,, 9) = prL(l) p(g), forall LeL, ge Hyy, (3.25)

and whose support modulo L is compact. Let ind(pRL)EZ" be the representation in-

duced by pry, on the group Hy,, that acts on .%y. It may be realized as

. H, ,,
((md(prL)i™" (9))9) (1) = 9(91 Onsy, 9), 9,01 € Ho, 0 € Fo.

By Proposition 3.5, the subset {(X,0,0) : X € R**1} of H,, 5 is a subgroup of Hy,,
which is isomorphic to the Heisenberg group H,,. Here, we allow ourselves to identify

this subgroup with H,,. Let U denote the restriction map from Hj , to H,, that is,

U(p)(X) = ¢(X,0,0).
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for any scalar function ¢ : Hy, — C. Clearly, if ¢ € %, then Uy is in C.(H,,), the
space of continuous functions with compact support on H,,. In fact, a function ¢ € %
is completely determined by its restriction to H,, since the Lie algebra of H,, within b, o
complements [. With this observation it is easy to check that U is a linear isomorphism
from % to C.(H,,). Since C.(H,,) is dense in the Hilbert space L?(H,,), the proof will be
complete once we have shown that the induced representation ind(pRL)iIQ’" intertwined

with U coincides with the representation 7 acting on C.(H,,), that is,

VgeHyu, Voo Fo U |ind(pro)p " (9)(0)] = m()(Up).  (3.26)

Let us prove (3.26). We fix a function ¢ € #j. By Lemma 3.8 Part (3), we have for
g=(P,Q,8) and g1 = (X,0,0) € H,

((ind(pF,L)ihm (g))(p> (X7 07 O) =@ ((X7 07 0) @Hz,n (P, Q; S))
=@ (E @Hz,n (X - P,0, 0))

(= (0, Q.5+ <Q,X : (;P)>> L.

for some Q' € R?"*1. Since ¢ is in %, it satisfies (3.25) and we have

with

¢ ({OH,, (X-P,0,0)) = ppL)e(X-P,0,0)
62ﬂi>\(8+<Q7X.(%P)>)§O(X . P, 07 O)

by (3.24). We recognise mx(¢g)f(X) with f = Uy due to (3.15). Therefore, Formula
(3.26) is proved, and the proof is complete. O

Let us now give concrete realizations in L?(R™) and L?(R) of the unirreps associated
with the co-adjoint orbits of Cases (2) and (3) in Proposition 3.12:

Proposition 3.15. e (Case (2)) Let Iy 1= f, X3, + fo X7 + f, X + [ X € b, 5 with
fs =0 but fy, + 0. A mazimal (polarising) subalgebra subordinated to F is

[y = RnXU@IR{Xw@RnXZ@R"Xy@{;foquzXz : zeR}@RXS.
w

The associated unirrep of Ha n, may be realized as the representation my, ¢ r 1.y acting
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unitarily on L*(R") via

(R uforfofy@0) (@) = (i +u— % )eRmiwha e oty 2 )

exp m’<222 +u— ifi, fwv — ;fy>Rn
for g = (u,v,w,z,y,2,8) € Hypp, ¥ € L2(R"), and @ € R™.

o (Case (3)) Let I3 := fu X + fuXy + foXi + X € by o with fufy = fof: and
fs = fw = f- =0 but (fz, fy) £ 0. A mazimal (polarising) subalgebra subordinated to
Fs is

3:=R"X, ®R"X, RX,, DR"X, PR"X, ® RX;,.

The associated unirrep of Hay, may be realized as the representation my, ¢, r. 1) acting
unitarily on L*(R) via
(W(fu,fv,fx,fy)(g)d’) (3) = v(E+ Z)e2m(fuu+fuv+fxw+fyy)

93
z; z(_fmv + fyu))a

exp i (

for g = (u,v,w,z,y,2,8) € Hypp, ¥ € L*(R), and Z € R.

Proof. In both cases, we proceed as in the proof of Proposition 3.14.

For Case (2), we have the following identity with ¢ = (u,v,w,z,y, z,s) € Ha,,

- - UV z .
(@,0,...,0) OH,,, 9 = <u+u,v,w+ ?,x,y—zu,z,sl)

1 1
= (ivfxav,w + 51}(2’& +u— ifx),x,y — 12(212 +u— ifx)vza‘S?)
~ z
®H2,n (U+U— Efq;,(),. ..,O),

for some s; and sy we do not need to compute. This yields that the unirrep of Ho
associated with Fy and [y may be realized as the unitary representation s, r. 7 r.)

acting on L?(R") via

(7T(fw7fz’fy7fz)(g)1/)) (0) =v(t+u— %fm) exp 2772'((10 + %v(2ﬂ +u— %fz))fw)
exp 271 (xfm + (y — iz(Qﬁ +u— ifm))fy + fz,z),

for g = (u,v,w,z,y,2,8) € Hyp, ¥ € L2(R"), and @ € R™.
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For Case (3), we have for some 1, s2 € R,

- z z ~
exp(2X;) OH,, 9 = (u,v,w,z — Zv,y + Zu,z + z,81)

1 1
= (u,’u,w,x — 1(22 + 2)v,y + 1(22 + 2)u, 0, 82> OH,,, €XPH, , (Z+2)X.).

This yields that the unirrep of Hy, associated with F3 and [3 may be realized as the

unitary representation 7, acting on L?(R) via

(7T(fu7fv7fz7fy)(g)'¢) (2) = (2 + z) exp 27i (fuu + fov + fo(x — 3(22 + 2)v)

1.
+Fyly+ 25+ 2))),
for g = (u,v,w,z,y,2,5) € Hap, 1 € L*(R), and Z € R. O

By Kirillov’s orbit method [45, 10], Propositions 3.12, 3.14, and 3.15 imply the follow-
ing classification of the unitary dual of the Dynin-Folland group:

Theorem 3.16. Any unitary irreducible representation of the Dynin-Folland group Hs

is unitarily equivalent to exactly one of the following representations:
e m for A € R\{0}, acting on L*>(H,), defined in Proposition 3.9,

© T (fuforfurfs) for any fu, fy € R", f. € R and f,, € R\{0}, acting on LQ(]R"), defined
in Proposition 3.1,

& T(fufoforf) JOT aNY fu, fo, fuy fy € R™ with fufy = fufs but (fz, fy) + 0, acting on
L?(R), defined in Proposition 3.15,

e the characters my, ¢, ¢, given by

Tt forfs - (uy...,s) e Hyp —> 627Ti(ufu+va+zfz),

for any fu, fo € R" and f, € R.

3.5.3 Jump Sets

For the sake of usefulness at some later stage we will describe each orbit’s set of jump
indices. For a detailed account on jump indices we refer the reader to [10] Section 3.1.
Our use of jump sets and related notions below essentially follows Pedersen’s exposition
in [51].
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To start with, let us recall that for any n-dimensional nilpotent Lie group G there

exists a sequence of ideals g; < g, dim(g;) = 7, j = 1,...,n, with
{0}cgc...Cgn =y, (3.27)

dim(g;j/gj-1) = 1 and [g,9;] S gj-1, 5 = 1,...,n.

For every such flag of ideals in fact there exists a basis {Xj}?:1 for g such that
X; € gj/gj—1 for all j = 1,...,n. Such a basis is often referred to as a Jordan-Holder
basis. (Cf.[10] Theorems 1.1.9 and 1.1.13.)

Let us recall that for a fixed Jordan-Hélder basis {X };?:1, an arbitrary but fixed co-
adjoint orbit © and some representative Fn the jump set ep consists of those indices

Jis---»J24 € {1,...,n} which satisfy g; & g;—1 + stab(Fp).

Proposition 3.17. Let O1,...,04 denote the co-adjoint orbits of the Dynin-Folland
group (for arbitrary, but fixed constants in each case), classified in Proposition 3.12.

Then the corresponding jump sets for each orbit are the following:
(Case (1)) €0, = {1, s Tn, YLy ey Yny 2, Wy ULy« oy Upy V1, -+, Unt,
(Case (2)) eo, = {u1,...,Un,v1,...,0n},

Case (8)) ep, = {z,u;} or ep, = {z,v}, for some j or some k in {1,...,n}, where the
3 J 3
second index is determined by the vector (fy, fz) = (fyrs- -+, fu,) # 0 € R?",

(Case (4)) eo, = &

Proof. In the case of G = Hy, it is easily checked that the basis
Bi={Xs, X1y o, Xy Xypy oo s Xy Xy Xuos Xy oo, Xy Xogy -, Xop b (3.28)

form in fact a Jordan-Holder basis.

Cases (1), (2) and (4) follow immediately from Corollary 3.13.

Case (3) also uses Corollary 3.13 and the specific order in which we nest the Jordan-
Hoéoder flag (3.27). The order is determined up to permutations in the z-, y-, u- and
v-variables. If we fix the order of g; to match the order of vectors X; as in (3.28), then
the first non-vanishing summand f;;v; or fy, ug on the right-hand-side of the equation
fzv — fyu = 0 determines second variable of ep,. The fact that z € ep, anyway follows

from the condition z = 0. O

85



3 The Dynin-Folland Group and its Representation Theory

3.6 The Semi-direct Product Structure

Let us briefly discuss why the Dynin-Folland group is actually given as a semi-direct
product R?"*+2 x, H,,. For this purpose we recall that given two simply connected
nilpotent Lie groups H and N, and a map 7 : h — Der(n), there exists a simply
connected nilpotent Lie group G and a map « : H — Aut(N) such that G = N x, H
with Lie algebra g = n®,5 h and such that da = 7, where a(h) := d(a(h)(.)) € Aut(n).
We recall that in this case the Lie bracket on g is given by

(X, Ya), (X5, YD), = [ X, X, + da(X)(Y) = da(X)(Y) + [Ya, Y71, (3.29)

(For details see A. Knapp [46] Theorem 1.125.) As we seek to write Hy ,, = R2"+2 % ,H,,
we first recall that by Lemma 3.7 Formula (3.12) we have

[(P, Q, 8)7 (P/7Q/7 Sl)]bz,n
1 %
= (1P Pl 5 (adtis, (P)(Q) — adiy, (P)(Q)). (P, @) = (Q. "))
(3.30)
= (P,9,S).
Bearing [ ., . |gzn+2 = 0 in mind, we immediately recognize that the components Q and

S represent the two da-terms in Equality (3.29). In view of Equality (3.10), we may

hence conclude that

0 0 v 0
Ul .
2Un
Up, Luy
THy, :P=|v |— . : ;
1
0 —Qun
Un
w 0o --- o0 0
U o Up V1 vt Up w 0

indeed defines a linear map from b,, into Der(R?"*2), for wich the associated map QH,,
defines a semi-direct product R2"+2 Xy,  Hp with Lie bracket given by (3.30).
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3.7 Group Fourier Transform and Plancherel formula

In this subsection we study the group Fourier transform on Hy,,. In particular we obtain
the Plancherel formula for the Folland-Dynin group.
The group Fourier transform of an integrable function f € Ll(Hzm) is defined via the

integral (convergent in norm)

for any unirrep 7 of Ha,,.
For the Schrédinger-type representations 7y, defined in Proposition 3.15, one can de-

scribe the corresponding group Fourier transform as follows:

Theorem 3.18. (i) Let f € L'(Hay,,), and let A € R\{0} be fized. Then the operator
f(m\) acts on L?>(H,,), with integral kernel given by the locally integrable distribu-
tion K{ defined via

KY) = jj FYL X, Q,8) e 27iAS (~miNQXHY) 10 g5

R2n+2

(ii) Furthermore, if f € L'(Ha,,) N L?(Ha,,), then the operator f(m\) is in the Hilbert-
Schmidt class with Hilbert-Schmidt norm

1Frl3s = j KL (X, Y)[2dx dY

n XIHn

= ’)\|_(2n+1) |‘§5—>)\f|‘L2(R2(2n+1)) (331)

where Fs_[ denotes the Fourier transform of f with respect to the central vari-
able, that is,
(Fsrf) (X,Y) := J f(X,Y,8) e 2mAS 4s.
R

Consequently,

j F(g)dg = f 1P s AP LA, (3.32)
H>, R\{0}
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Proof. Let us prove Part (i). Let ¢ € .(H,,). We then have

~

(F(m)e)(X) = fH f(P,Q,8) (mA(P, Q,8)*¢)(X) dP dQdS
= JH f(P,Q,8) (mA(—P,—Q,—8)¢)(X)dP dQdS

— [ £(P.Q.§) IS RN y(x o) apag s,
H2,n

We now apply the change of variables P — Y := X - P~1. We observe that dY = dP,
and, using P =Y '+ X = —(X~1.Y), that

X- (—%P) - X- (% (X1 V) =X + %(X‘l YY)+ %[X,X‘l Y]
=X+ %(—X +Y — %[X,Y]) + i(—[X,X] +[X,Y] - %[X, [X,Y]])
=—(X+Y)

Therefore, we obtain
(F(m)e)(X) = ; E{(X,Y)p(Y)dY,

with K { as in the statement above. We observe that K /J\C is the composition of the
Euclidean Fourier transform in the Q-variable of #s_,\f composed with the smooth
diffeomorphism X — Y1+ X = X’ and then Y — (Y -X'+Y) = Y. Since f
is integrable, the kernel K { (X,Y) makes sense as a locally integrable distribution on
H,, x H,, by the properties of the Euclidean Fourier transform.

In order to prove Part (ii), let us compute the L?-norm of the kernel K /{ . First we

apply the change of variables X’ = Y~!. X, which has Jacobian determinant 1, and
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then Y’ = (Y - X’ +Y), which has Jacobian determinant |\*"™", to obtain

f |K{(X,Y)|?dX dY
H, xH,

-l

R2(2n+1)

e ]

R2(2n+1)

2
dX'dy

f Fsnf(X', Q)e TN -X'+Y) g0
RQTL‘FI

2
R2n+1

— [ J J | Fsnf(X', Q) dX'do,

R2(2n+1)

having used the properties of the Euclidean Fourier transform on R?"*!. (Here we use
our standard convention .Z (f)(¢) := { f(x)e 2™ dz.) Clearly, the L?>norm of K { is
finite since f € L'(Ha,,) n L?(Ha,,). Equivalently, the operator F (my) is Hilbert-Schmidt
with operator norm given by the L?-norm of K f\c Thus (3.31) is proved.

|2n+1

Now we integrate (3.31) against |\ and use the property of the Euclidean Fourier

transform to obtain (3.32). This concludes the proof. O]

Formula (3.32) is the Plancherel formula. It implies that the definition of the group
Fourier transform may be extended unitarily from L'(G) n L?(G) to L?(G).

The Plancherel formula can be also deduced from the orbit method, cf [10, Theorem
4.3.9]. As expected our expression for the Plancherel formula involves only the repre-
sentations of Schrodinger-type 7y since these representations correspond to the generic

orbits, see Proposition 3.12, Case (1).
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Group

In this Chapter we will finally discuss one possible answer to the question about mod-
ulation spaces on the Heisenberg group. Our approach is a blend of Feichtinger and
Grochenig’s original coorbit approach and Daniel and Ingrid Beltita’s adapted frame-
work for nilpotent Lie groups. The latter is strongly based on useful techniques developed
in Pedersen [50, 51].

After a brief review of some basic ideas of the Pedersen-Beltita setting in Section 4.1
and some preliminary results on semi-direct product nilpotent Lie groups in Section 4.2,
we will study the modulation spaces that arise from the four types of Hs ,-unirreps
classified by Theorem 3.16. We will proceed case-by-case following the theorem.

For the sake of convenience, we will use a simplified notation for the co-adjoint orbits
of Hy ,, and the corresponding unirreps throughout this chapter: orbits will be denoted
by O; and unirreps by 7;, where j = 1,...,4 according to the four cases of co-adjoint
orbits (cf. Proposition 3.12). Note that we have to assume arbitrary but fixed constants
fus fos fws fos fys 2, fs for each case as the particular choice of constants determines the
individual orbit in each class.

Let us point out that many classical accounts on modulation spaces make use of
the reduced Heisenberg group H,, ;¢4 in order to operate within the classical coorbit
framework. (Cf.[20, 17, 40], e.g.) In contrast to this practice, we make no use of any
reduced versions of the Dynin-Folland group, but instead employ the quotient group
H, /P, where P stands for the projective kernel of the involved unirrep.

Let us furthermore remark that we denote our modulation spaces by Mg *(7), where
varphi denotes the analyzing window and 7 the specific unirrep which gives rise to
Mg®(m); the exponents r and s were chosen for the trivial reason that p and ¢ are

already in use to denote elements (p, q,t) € H,,.
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4 Modulation Spaces of the Dynin-Folland Group

4.1 Modulation Spaces induced by Unirreps of Nilpotent Lie

Groups

In this section we want to give a brief review of Daniel and Ingrid Beltita’s approach to
modulation spaces induced by unitary irreducible representations of nilpotent Lie groups.
It is strongly based on the Weyl-Pedersen calculus introduced in [50, 51] since their
papers [5, 6] analyze mapping properties between modulation spaces of Weyl-quantized
operators with modulation space-valued symbols.

In particular, it focuses on the relation between conjoint orbits and certain subspaces
of the Lie algebra g isomorphic to them as it allows to use the corresponding unirreps
m without having to take care of their projective kernels, i.e., the subgroups of G on
which the unirreps reduce to periodic exponential multiples of the identity. In other
words, it permits the use of unirreps which are not necessarily square-integrable over the
whole of G as required in the original coorbit approach by Feichtinger and Grochenig.
(Cf.[20, 21, 22].) Thus the notions employed in [5, 6] are rather based on subalgebras of
g than on the whole group G or subgroups of it.

Since in our case we are mainly interested in a specific instance of modulation spaces,
namely those induced by the Dynin-Folland group H,, 2, and whether these happen to
be independent of a special parameter in the definition, the so-called analyzing window
vector, we will employ equivalent but slightly altered definitions and notions more in the
spirit of the original coorbit. Our techniques rely on the fact that the projective kernel
Lie subalgebras of Hy ,, are actually ideals, hence giving rise to normal subgroups of G.
It is for this reason and due to some technical issues that we resort to work with groups
as in [21], e.g.

Yet as it is a priori not clear which conditions allow for this approach, we will start
with the Beltita-framework, adapting it to our case as we progress.

We start with a connected, simply connected nilpotent Lie group G of dimension
n and an arbitrary unitary irreducible representation 7 : G — % (H,) corresponding
to a uniquely determined co-adjoint orbit O < g*. Let us recall that each orbit is a
symplectic manifold equipped with a canonical Ad*(G)-invariant measure, here denoted
by Bo. Note that Bp is uniquely determined up to a positive multiplicative constant,
which is usually chosen to suit certain formulas.

An object of particular importance is the following subspace g. < g, to which we will

refer as the predual of O: let us recall that for an arbitrary but fixed representative
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4 Modulation Spaces of the Dynin-Folland Group

Fo e g* of O, i.e., Ad§(G)Fo = O its stabilizer group is defined by
Stab(Fo) := {g € G | AdG(9)Fo = Fo}.

Stab(F») is obviously a subgroup of G and G can be viewed as a fibre bundle over the
base O =~ G/ Stab(Fp). Let us denote the Lie algebra of Stab(Fp) by stab(Fop).

Definition 4.1. Let G be nilpotent Lie group. Let O be one of its co-adjoint orbits and
2d := dim(O). Given any Jordan-Hélder sequence

F:{0}=90S g1 S Sgn=0,

i.e., dim(g;) = j and [g,9;] < gj—1, let {X;};, with X; € gj/gj—1, be a basis of g, thus a
so-called Jordan-Hélder basis for g. For any such basis {X;}; we then define the set of
Jump indices, or simply jump set, of O by

e=eop ={1<ji<...<jog<n|gj<$gj_1+stab(Fp)}
={l<j1<...<joa<n|X;¢gj1+stab(Fp)}.

Then predual of O is g, is defined to be the linear span of {X;, | ji € €}.

Remark 4.2. Although the notion of jump indices is frequently used in representation

theory the name predual seems to go back to [4].

We immediately notice that by the definition of Stab(Fp) the Lie algebra g is given
as the direct sum g = g. @ stab(Fp).
Given an orbit O, a representative F» and the corresponding jump set e = ep, a

useful result by Pedersen yields that the map
¢p:0->R¥: Fs ((F,Xj,),....(F, X)) (4.1)

defines a global chart of the manifold O which pushes o forward to the 2d-dimensional
Lebesgue measure (modulo some positive multiplicative constant). That is, if we ele-
gantly ignore the isomorphism R?¢ =~ g, ¢ yields in fact a global diffeomorphism between
O and g.. It worthwhile mentioning that this chart is in fact polynomial. (Cf. [50] Sub-
section 1.6 p. 521.)

Let us mention that we will frequently work with both G and g; our preferred coor-
dinate system on G will be the so-called exponential coordinates, also called canonical

coordinates of the first kind: given a basis Xi,..., X, of g the associated coordinates
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4 Modulation Spaces of the Dynin-Folland Group

on G are defined by

n
exp:R"=g— G:(t1,...,tn) — eXva<Z tjacj).
j=1

Modulation spaces now enter the arena via the so-called ambiguity function. In order
to define the latter appropriately, we have to make use of the space of smooth vectors of

7, which we denote by H>. (For further details confer the Appendix of [10], in particular
Section A.1 p.226.)

Definition 4.3. Let G be a connected, simply connected nilpotent Lie group and let ™ be
a unitary irreducible representation of G on Hy corresponding to some co-adjoint orbit
O. Furthermore, let g. be the predual of O. Then for any f € (HF) and any ¢ € HF

we define the ambiguity function of f with respect to the window vector ¢ by

ATf:ig.—C,
X = <f> 7T(€Xp X)<10>(’H$)/7

where (., . )y denotes the sesqui-linear (H)'-H-duality that coincides with the

H-inner product in case f € Hy.

Definition 4.4 (Modulation Spaces Ascending from Co-adjoint Orbits). Let G and 7
be as in Definition 4.3. Let furthermore ge = ge1 @® gen be a direct sum decomposition of
ge and let p € HP\{0}. Forr, s € [1,00] we then define the modulation space My*(m) for
the unitary irreducible representation m : G — U(H,) with respect to the decomposition

Ge = ge1 D Geo and the analyzing window ¢ to be the space of all f € (HF)" such that

L7 (ge1®ges) ( J

Jeo

r s/r 1/s
[ N aazs ey = | A ] (J | AT f (X1, Xa))| Xm) dX2) (4.2)
deq

1s finite, with the obvious changes whenever some r,s = 0.

Remark 4.5. [On the Direct Sum Decomposition| Let us emphasize that the number
of precisely two summands in the direct sum decomposition is arbitrary and can be
extended to any number up to the topological dimension of g.. An important reason
for this specific choice is the endeavour to define spaces with properties similar to those
displayed by the classical modulation spaces M"™*(R").

For our specific case of modulation spaces arising from the unirreps of the Dynin-

Folland group Hj ,, we will decompose the preduals according to the action of its corre-
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4 Modulation Spaces of the Dynin-Folland Group

sponding unirreps on smooth vectors, that is, by either translating them or modulating

them. (Cf. Theorem 3.16 for an explicit description of the Hj ,,-unirreps.)

4.2 Semi-direct Products and Square-Integrability

A crucial property found in many instances of modulation spaces is their independence of
the analyzing window ¢. In the general framework of coorbit spaces this is guaranteed for
square-integrable unirreps provided the mixed-norm space L™*(G) is a Banach module
over L'(G). (Cf.[21], Section 4 and in particular Theorem 4.2 (ii) as well as p.311.) For
a clarification of the notion of square-integrability we refer to Corwin and Greenleef [10]
p. 170 and More and Wolf [48]).

In the case of nilpotent Lie groups square-integrability of a unirrep (in the sense of
Moore and Wolf) is given precisely when the corresponding co-adjoint orbit is flat. But
a closer look at the orbits of the Dynin-Folland group immediately reveals that they are
indeed all flat. So, independence of the analyzing window should in principle, as we may
hope, be given for the modulation spaces described in the following subsection. In order
to prove this rigorously, however, we will have to show that our mixed-norm spaces
L™*(G) allow for an adopted version of Young’s inequality, thus the Banach module
property. Whether or not this property is given strongly depends on the decomposition
e = Oe1 D geo and, a fortiori, on the structure of the group G itself.

Let us point out that we will make no further reference to Banach modules nor will we
refer to any abstract results from coorbit theory, even though the principal idea behind
the proof is an adaption of the abstract coorbit approach. Instead we will prove Young’s
inequality under certain conditions on the group and use it to provide the crucial estimate
to prove independence of the window. Although the core argument itself is classical and
well-known, we will write it out for the sake of a better reading.

Certain technicalities in our proof were originally inspired by Beltita and Beltita’s
approach in [5] (cf. particularly Theorem 3.3), yet had to be adopted to more relaxed
conditions in order to cover all possible instances of modulation spaces arising from the
Dynin-Folland group Hs,. To meet our target, we will focus on groups G given as the

semi-direct product G = N x H of two nilpotent groups H and N.
Remark 4.6. Without loss of generality, let us work with the realization G = NH,

writing elements of G as products nh, with n € N, h € H. This realization of G as a
product is in fact a very natural one if we keep in mind that N is a normal subgroup of
G, thus rendering H isomorphic to G/N.

Employing this realization, we can give the following definitions.
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4 Modulation Spaces of the Dynin-Folland Group

Definition 4.7. Let G be a connected simply connected nilpotent Lie group given as the
semi-direct product G = N xo H of the Lie groups H and N. For any r,s € [1,00] we
define the mized-norm space L™*(G) as the set of all f € . (G) such that

ey = fN< JH st ) an)"" < o

with the usual modifications for r = o0 and s = 0.

A concept well-known from the theory of modulation spaces on R" is the so-called
short-time Fourier transform (STFT). In a nutshell, it can be viewed as the family of

pointwise matrix coefficients of the combined time-frequency shifts

(p,q) — €™ T, = p(0,4,0)p(p,0,0) = p((0,¢,0)(p,0,0)),

where p again denotes the Schrodinger representation of A = 1. But let us give the more
general definition of STF'T for generic unirreps 7 of nilpotent semi-direct product groups

right away.

Definition 4.8. Let G be as in Definition 4.7 and let 7w be an irreducible unitary repre-
sentation of G on Hr. Then the short-time Fourier transform of f € (HX)" with respect
to the window ¢ € H\{0} is defined by

Vo f:G—C,
nh — (f, W(nh)cp>(H$),,

where (., . )y denotes the sesqui-linear (H')'-H-duality that coincides with the

Hr-inner product in case f € Hy.

Its intimate relation with the ambiguity function A7 f will become clear in the proof
of Theorem4.11. The following two auxiliary results set the stage for the actual proof

of independence.

Proposition 4.9. Let G be a connected, simply connected nilpotent Lie group and let ™
be a unitary irreducible representation of G on H, which is square-integrable modulo the
projective kernel P, that is, for the subgroup P := {zx € G | m(x) € Cldy,} there exist
1,9 € Hy such that

[ [ m@umn P di <o
a/p
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In this case P is a normal subgroup of G and we can realize the quotient G/P as G, :=

xpg(ge)-

Proof. The first statement is proved by simply combining Theorems 3.2.3 and 4.5.2 in
[10] (see pages 99 and 171, respectively). The latter says that for a nilpotent Lie group G
square-integrability modulo the projective kernel P of a unirrep 7o is equivalent to the
”flat-orbit” condition, that is, that O is an affine subspace of g*. The former theorem
in turn says for nilpotent G and a co-adjoint orbit O with representative Fp we have:
the flat-orbit condition < stab(Fp) = p < stab(Fp) is an ideal of g. O

Lemma 4.10. Let G be a connected simply connected nilpotent Lie group given as the
semi-direct product G = N x, H of the nilpotent Lie groups H and N. Then the group
convolution on G maps continuously from L™*(G) x LY(G) into L"™*(G). In particular,

Young’s inequality holds true for the mized-norm space L™*(QG).

The proof is similar to the classical one for LP-spaces and makes use of the fact that

dn is invariant under the action of H.

Proof. Let us recall that we can identify N and H in G = N xo H = NH with (N,ep)
and (ey, H), respectively, writing (n1, h1)(ng, he) = (a(h;l)(nl)ng, hlhg). An easy cal-
culation now implies that conj(emh)((n, er)) = (en, h)(n,en)(en, h) = (a(h™1)(n),en),
i.e., that H acts on N essentially via conjugation. But conj is measure-preserving on
unimodular groups, hence in particular on nilpotent Lie groups.

It is therefore easy to see that for the right regular representation R of G on the
Banach space L™*(G) each operator R(g), g € G, is an isometry on L™*(G). For f €
L™ (@G), ¢ € LY(G), we can now regard the integral

fro= f f(.9)elg " )dg = J ©(g " R(g)fdg
G G

as an L"*(G)-valued Bochner integral which converges since ¢ is intregable and
|R(9) sy = Ifllprs@@ < 0. But a standard estimate for convergent Bochner
integrals then yields

J ©(g " R(g)fdg
G

< j (g™ B9 Fl ey 49 = €] 1y L e
LT,S(G) G

Hence, we have shown || f # ¢ 1r.«() < [l 11 () [fl| £rs (> which concludes the proof. [

We can finally state our main observation. One of its interesting features is an alter-

native definition for modulation spaces in terms of the STFT.
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Theorem 4.11. Let G be a connected simply connected nilpotent Lie group and let w
be a unitary irreducible representation of G on Hn which is square-integrable modulo the
projective kernel P. Furthermore, let G. := expg(ge), indentified with G/P, be given
as the semi-direct product Geg X Gey of the nilpotent Lie groups Gei; and Ges, and let
r,s € [1,00].

If V| denotes the STFT defined on Ge, we then have

Ve f

L'rs ||A7erLrs (43)

(ge1@Pges)

for all f € My®(w). Thus the map [ HV f Lrs(Ge) defines an equivalent norm
on My*(m), by an abuse of notation still denoted by | . HM:;’S(W)' Thus MZ*(r) is the
coorbit (in the sense of Feichtinger and Grichenig) of L™*(G.) under the representation

m:Ge > UHr).

Moreover, My®(w) does not depend on the particular choice of window ¢, and any two

norms defined with respect to different windows p1,p2 € (HX)\{0} are equivalent.

Proof. In order to prove the first part of the statement, we make use of the identification
of elements g1 € G¢; with elements (en, g1) € Ge and the analogous one for go € Ges.
Furthermore, we know that for each g1 € G there exists an X, € ge; such that
expg, (Xg,) = g1, with an analogous statement for gz € Ges.

This allows us to identify gog1 with both (g2, ec.,)(ec.,,91) = (a(g; )(g2), 1) and
expg, (Xg,) expg, (X, ), whereas we may identify expg, (Xg, + Xg,) with (g2, g1) by the
use of standard exponential coordinates. But since dgs is Gq-invariant, we hence com-

pute

|VE )

(fsm(9291) %) (a0 " dgy /Sd92 W
Je.. (0. )

= (o,
qg(fa <F (092,909 dgl>r/sd92>1/s
= (J,,.(

(

L’I‘S

Le J ‘<f’ (92, 9@ ) ey dgl) /sdg2)l/s

(L o) as)

= HA”f

<f7 T(eXPgqg, (Xgl + Xg2 )SD>(HOO

el

L™5(ge1@ges)

This proves the first part of our theorem.
Given the first part of the theorem, its second part is a standard result of coorbit theory

for square-integrable group representations (cf. [21] Theorem 4.2). A condensed version
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of the argument is the following: recalling that for any @1, o € H,y square-integrability

of 7|, yields the reproducing identity

1

o2 = ———
(p1,92)%. Ja.

(2, m(9)P1) 3y (9) 1 dy,

a straight-forward computation furthermore shows that

1

4 e —
ead {p1, P20

(Va S 0. VEe):
But since for 1, p2 € HY we have AT 1 € 7 (ge) (cf. [5] Corollary 2.9 (3)), equivalently
we have VI o1 € (G.) = L'(G.) = L"'(Ge). We can now apply Young’s inequality to

2

estimate
rs L ——mm—— 1 1,1 s .
Wlaszs < 7 il o
Since the order of ¢; and @2 was arbitrary, | . | M () 18 equivalent to | . || MES () and our
proof is complete. O

Let us conclude this subsection with a technical lemma we will need in the following.

Lemma 4.12. Let G be a connected simply connected nilpotent Lie group given as the
semi-direct product G = N x, H of the nilpotent Lie groups H and N and let m be a
unitary irreducible representation of G which is square-integrable modulo the projective
kernel P. Furthermore, let ge = ge, @ ge, be a direct sum decomposition of the predual
ge of Or such that ge, = H N ge and ge, = N N ge.

Then the semi-direct product G = N X, H factorizes through P, i.e., if Pg =
exprr(ge;) and Py := expy(ge,), then a induces a map B such that Ge = N/Pyn xg
H/Py.

Proof. To start with, we recall that we can identify G, with G/P since O, is flat
(cf. Proposition 4.9). Let us also point out that g., and g., are ideals in h and n, respec-
tively. Equivalently, Py and Py are normal subgroups in H and N, respectively. For the
quotients groups H /Py and N /Py one can easily verify that a(Pg)(N) € Py and that
a(h)(Pn) € Py for every h € H. Hence, the homomorphism « : H — Aut(N) induces
a homomorphism  : H/Py — Aut(N/Py) such that G. = H/Py xg N/Py. O
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4.3 Case (1) - Modulation Spaces on H,

Let us recall that by Proposition3.17 the jump set in Case (1) was given by ep, =
{1, ., Tny Y1y o Yn, 2, W UL, o Up, V1, ..., Uy} =: €, hence the predual of O; is given
by

Bn2, = R"X, ®R"X, ®RX,, DR"X, DR" X, DRX..
The direct sum decomposition we employ is

bone = h2np @ h2ng
= (R"X, ®R"X, DRX,) @ (R"X, DR"X, DRX.)

as it meets the above-mentioned meta-criterium of splitting the representation’s action

into right H,,-translations in P and modulations in Q. (See Remark4.5.)

Proposition 4.13. The modulation spaces My (my) are independent of the particular

choice of analyzing window .

Proof. In order to prove independence of ¢, let us recall from Subsection 3.6 that the
Dynin-Folland group can be written as a semi-direct product R?"*2 x, H,,. Let us
furthermore recall from Proposition3.12 and Corollary 3.13 that the co-adjoint orbit
corresponding to my is flat and that the projective kernel P coincides with the centre
of Hy,, since P = Stab(F}) = expy, , (RX;). Hence, the conditions of Lemma4.12 are
obviously satisfied for the direct sum decomposition bz, = h2np D ba2n o We can thus
employ Theorem4.11 to conclude that the modulation spaces My*(m)) are independent

of the particular choice of window . O

Conjecture 4.14. The modulation spaces M™*(my) are genuinely different from any

classical modulation space M™3(R?*"*1) for all r,s € [0, 0).

Although there are strong hints in this direction, there remains to be given a rigorous

proof.

Remark 4.15. It also remains unclear which global diffeomorphisms of the underlying
space R?"*1 leave the spaces M™*(ry) invariant. In the classical case, i.e., for M"™*(R"),
the only admissible diffeomorphisms are affine transformations. But this alone would
already exclude the use of many coordinates charts ¢ : b, — H, different from the

exponential map.
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Such an answer would probably pose the unpleasant question of how much use such
spaces can be if they do not admit different (coordinate) realizations of the underlying

group H,.

Proposition 4.16. The following properties hold true for the modulation spaces
M™% (7y):

(i) For 1 <r; <rg <o, 1<s; <s2 <00 we have

Ml’l(ﬂ')\) c M (71')\) - Mrz’sz(ﬂ',\) - MOO’OO(TI')\).

(i) Let ', s" be the conjugate indices of r,s € [1,0]. Then (M"s(w)\))/ = M™% (my).

Proof. By the reasoning in the proof of Theorem 4.13, we may consider 7 as a square-
integrable representation of the group Hy,, = Hj ,, /P, where P denoted the projective
kernel of m. Square-integrability then yields M™*(my) n M**(wy) = M"*(my) by
Feichtinger and Grochenig [21] Corollary 4.4. Hence, the first claim is due to the general
fact (Lpg N Lp'g)(RY2) € (LG n Lp'g) (R™2).

The second claim is owed to Theorem 4.9 of the same paper and the fact that the

Banach dual (L;’fg(R‘ln”))/ and the Kéthe dual (Lip°o(R**2))® both coincide with
LZZZ<R4n+2) ]

Remark 4.17 (Atomic Decompositions). The existence of arbitrarily fine BUPU’s for
any locally compact group (cf. Remark2.22), thus specifically for Hs,, automatically
implies the existence of atomic decompositions in M"™%(mwy). A concrete example of a
well-spread family of points in Hj , has yet to be given, though.

The existence of smooth BUPU’s (although not under this name) for homogeneous

groups, like Hy ,,, is shown in [] in the subsection on the Calderén-Vaillancourt Theorem.

4.4 Case (2) - A Quasi-Classical Case in n dimensions

As in Case (1) we start with the the predual of Os: since the corresponding jump set is

given ep, = {u1,...,Un,v1,...,0,}, we obtain
b2n, = R"Xy @ R"X,,. (4.4)

But as the following shows this already reduces this case to the classical modulation

spaces on R™.
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Proposition 4.18. Letr,s € [1,0]. Then My (m2) is isomorphic to MT’S(pH]§:), that is,
the modulation spaces on R™ induced by the Schodinger representation of parameter f,.
In the special case of fi, = 1, My (m2) even coincides with the classical space M"™*(R™).

In any case, the definition of My®(m2) is independent of the particular choice of ana-

lyzing vector .

Proof. To start with, let us recall that if we set g := (u,v,w,x,y,2,s) € Ha,, mp was

given by

71 Y o ; i 2U — 5 zsJw —-Z
(ma(g)¥) (@) = Y(a +u — 5 fa) 2mi(fwwt fox+ fyy+f22) em< Utu— 55— fo, fuwv ny>Rn‘
w

Hence, restricting ma to Ge = expy, , (h2n,) (realized as the quotient group Hy,,/P) we
immediately observe that it coincides with the Schrodinger representation py, restricted
to R?ﬁ,. This proves the first two assertions.

Our third claim follows from the observation that G, decomposes as the direct product
Hy,,, = eXPH, (R"X,) x eXPH, , (R"X,) since [R"X,,R"X,] = RX,, € p. Since
this is a special instance of semi-direct product (with a@ = id : H — Aut(N)), we can

apply Theorem4.11 to Hyp, . This concludes our proof. O

4.5 Case (3) - A Quasi-Classical Case in 1 dimension

Let us first recall that for the orbit O3 the jump set is given by either ep, = {z,u;} or
eo, = {z, v}, for some j or some k in {1,...,n}, depending on the vector (f,, f,) € R*".
(For more details see Proposition 3.17.)

This implies that the predual of Oy is given by either
b?,ne =RX,® RXu] or h2,n6 =RX.® RXvk

for some j or some k in {1,...,n}. Without loss of generality, let us focus on the second

case, for which we obtain the following.

Proposition 4.19. Letr,s € [1,00]. Then Mg*(rs) is isomorphic to M™*(p_y, »), that
is, the modulation spaces on R induced by the Schédinger representation of parameter
—fz,./2. In the special case of —fz, /2 = 1, My*(m3) coincides with the classical space
M"™(R).

In any case, the definition of My”®(ms) is independent of the particular choice of ana-

lyzing vector .
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Proof. The proof is similar to the proof of Proposition4.18. For ¢ := (u,v,w,z,y,2,s) €

H, ,, we have

224+ 2
2

(m3(9)) (2) = (5 + 2) Priau oozt ) exp i (= fav + fyu)).

Hence the restriction to Ge = expgy,  (b2s,) of m3 coincides with the representation

2

%, Oince the factor ?mifur vk s of modulus 1 and hence

e2mifurVk p For )2 restricted to R
plays no role in the modulation space norm (4.2), the rest of the proof reduces to a

2-dimensional special case of the proof of Proposition 4.18. O

4.6 Case (4) - The Trivial Case

Since the corresponding orbits are singletons, the whole group stabilises each of them,
ie., ban, = {0}. Recall that the functional dimension (being half the dimension of the
orbits) equals zero and hence equivalenty the corresponding representation spaces Hy,
are isomorphic to C. As the flat-orbit condition is trivially satisfied, all modulation

spaces My °(my) are all isomorphic to C.
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5 Weyl-Quantized Operators on the
Heisenberg Group

This Chapter is mainly concerned with properties of the Weyl calculus on the Heisenberg
group first proposed by Dynin [13]. Seemingly little known to the scientific community,
Dynin’s rather brief account was picked up and studied more extensively by Folland [29]
almost two decades later. Dynin’s Weyl quantization is defined in terms of the generic
unitary irreducible representation of a 3-step nilpotent group which relates to the Heisen-
berg group the same way the Heisenberg group H,, relates to R™. This relation can be
realized by constructing the big group’s Lie algebra as the set of commutator relations
of left-invariant vector fields and multiplication by coordinates. Briefly sketched by
Dynin, Folland gives a full account on the construction while extending it to all (fully
non-Abelian) 2-step nilpotent Lie groups G; he refers to the groups thus obtained as
meta-Heisenberg groups H(G). In the special case of G = H,,, we will refer to H(H,,)
as the Dynin-Folland group, denoting it by Ha ,,.

As Folland’s account aims at proving the usefulness of meta-Heisenberg groups in
general rather than studying the induced operator calculus in every detail, the author
restricts himself to establishing some important basics, in particular formulas as well
as a link to other existing results such as Beals and Greiner’s calculus on Heisenberg
manifolds [3].

Another yet more abstract approach to Weyl quantization via the unirreps of nilpo-
tent Lie groups is found in Pedersen [50, 51]. The author of the present text and his
collaborators became aware of Pedersen’s work while studying the co-adjoint orbits and
unirreps of Hy ,, in their attempt at making sense of modulation spaces on H,,. In a very
general framework, Pedersen establishes an elegant and remarkably explicit approach to
geometric quantization of the co-adjoint orbits of nilpotent Lie groups, which in its ex-
tended setting provides strong results for the Weyl quantization of symbols that are
Schwartz class or tempered distributions.

For the special case of the Lie group being H,,, Pedersen recovers the classical Weyl

quantization on R"; for Hy ,, Pedersen’s Weyl corresponde in fact coincides with Dynin’s,
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5 Weyl-Quantized Operators on the Heisenberg Group

although it appears that so far the connection between the two approaches has not been
mentioned in the literature. Despite being elegant, Pedersen’s account is focused on
representation theory and abstains from any applications to PDE theory.

It is thus the purpose of our account to investigate a little further some YDO-related
questions. Sections5.1 - 5.3 motivate the quantization from a pseudodifferential point
of view and present a few basic results, most of which are already present in [29]. In
particular, Section5.2 provides some useful ways to rewrite the quantization, which
makes it easily applicable in ignorance of any representation theoretic background.

In Section 5.4 we give a brief account on left-invariant operators, especially differential
operators, from a rather Lie group theoretic point of view, while Section 5.5 returns
to the DO perspective, introducing a type of global non-isotropic Hérmander symbol
classes first suggested by Dynin (and in a localized version used by Beals and Greiner).
We justify the definition by showing that their elements quantize continuous operators
on the Schwartz space .7 (H,,).

Section 5.6 is focussed on the natural Moyal product of symbols, i.e., the product of
symbols which quantizes the product of two ¥DO’s. We derive a formal asymptotic
expansion for it and discuss its limited use for the non-isotropic symbol classes we con-
sider. Another representation of the Moyal is given in form of an oscillatory integral,
which we employ to show the expected mapping properties between symbol classes.

Finally, we revisit the link with Beals and Greiner’s calculus on Heisenberg mani-
folds first established in [29]. Following Folland’s example, we discuss the special case
when the Heisenberg manifold is given by H,, x R?"*1  the phase space of the H,,-Weyl

quantization, and compare some of Beals and Greiner’s results with ours.

5.1 The Quantization Problem for the Heisenberg Group

Our approach to pseudodifferential operators on H,, is motivated by Hermann Weyl’s
quantization procedure on R", which can be expressed as follows: How can one associate
an operator S on L*(R") (or some dense subspace of it) to a given function o defined

on the classical phase space T*R"™ ~ R?" such that the coordinate projections
E= (&, . op)— & and x = (&, ., 8,20, Ty) > T,
j,ke{l,...,n}, correspond to the self-adjoint operators
N1 O
Dy, = (27mi)" 5— and Xp = f+ a1 f,
oz

J
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5 Weyl-Quantized Operators on the Heisenberg Group

respectively? Weyl’s quantization correspondence suggests

o(D,X):= ff ( ff o(&, x) e 2miPEran) e d:z) 2 irD+aX) gy, dg. (5.1)

R2n R2n

(Cf. Weyl [70] p.27 and p. 33 for the original German version as well as [71] p. 274 and
p. 280 for an English translation.)

2mi(pD+4X) 6 be an instance of the Schrodinger

As we recognize the unitary operators e
representation p = pi, introduced in Sections 1.3.3 and 1.3.4, we can equally rewrite

Weyl’s correspondence (5.1) as

Op’(0) :=0(D,X) = H a(p,q)p(p, q,0) dpdq.
RQ’IL

Let us note that if we do not want to make use of representation theory at all, but rather
study the convergence of the defining integral in dependence of o, e.g., we can easily

arrive at another useful representation:

(@D X)) = [ olé. 5 + 1) 0 1) de dy. (52)

With this at hand, it is now easily seen that the Weyl correspondence indeed solves the
above quantization problem.

Examples of other quantizations which satisfy the above criterium are the Kohn-
Nirenberg quantization, any extrapolated quantization between the Kohn-Nirenberg and
Weyl quantizations or beyond (cf. Shubin’s 7-calculus, [67] Subsection 23.3), the Born-
Jordan quantization (cf.[11]), etc. We shall say no more about these in the following.

On non-Abelian Lie groups G like H,, it is a priori not clear what the according phase
space should look like and how one should quantize. One thing we know for sure is that
the differential operators D, should be replaced by the standard left (or right) invariant
vector fields, i.e., the ones whose left (or right) trivialization at e x T, G coincides with the
standard basis of the Lie algebra g. Let us, without loss of generality, focus on the left-
invariant vector fields. Moreover, the quantization correspondence should incorporate
multipliers in the group variable g.

A very satisfying answer to the quantization problem on compact groups is given by
Ruzhansky and Turunen [64, 65, 66]. Their approach makes use of the groups’ representa-
tion theory and defines a Kohn-Nirenberg-type quantization in terms of the natural group

Fourier transform. More precisely, the quantization employs representation-valued, i.e.,
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5 Weyl-Quantized Operators on the Heisenberg Group

matrix-valued symbols, which are defined on G x G. An approach of similar build has
been successfully applied to graded Lie groups G such as the Heisenberg group by Fischer
and Ruzhansky [24, 26, 25].

Another quite different approach, the one we will study, is to employ a Heisenberg-type
structure based upon the group G and to find an adequate unitary representation of that
structure that eventually quantizes YDO’s. For G = H,, the required meta structure is
precisely the Dynin-Folland group Hj ,, which we introduced in Chapter 3.

Since in our case we have to quantize the 2n + 1 left-invariant vector fields defined in
Subsection 1.3.2 as well as multiplication by the 2n + 1 coordinates of H,,, we postulate

that our phase space is isomorphic to R4"+2,

Definition 5.1. Let us define the H,-phase space to be the Euclidean space R¥*2

whose elements we denote by

(E7X) = (guvgvafw,XzaXy’Xz)
= (gula---a‘fumfvu-"afvnvgwaXxlv---aXmeyla--wanaXz)'

We can now rephrase the quantization problem on H,, as the following task:
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5 Weyl-Quantized Operators on the Heisenberg Group

How can we associate an operator S on L2(H,,) (or some dense subspace of it) to a given
function o on the H,-phase space R**2 such that the following correspondences are

included:

Su; > D Eo > Dy Ew v D, (5.3)

Xag ‘%’l: Xym %m? Xz v 2, (5.4)

for j,k,l,m =1,...,n, where the above operators are defined as in (1.18) and (3.1).
An answer, namely the one we shall study more closely throughout this chapter, is

given by what we call the H,-Weyl quantization.

5.2 The H,-Weyl-Quantization

In this section we first revisit the Weyl quantization on H,, proposed by Dynin [13].
After giving the original definition, we review some more useful representations of the
operator-valued integral defining it. Most of the useful formulas can in fact already be
found in Folland’s discussion of Dynin’s results (cf. [29] Section4).

At the end of the section we discuss why Dynin’s Weyl quantization coincides with
Pedersen’s in this specific case. As we will see this is not mere coincidence but rather a
reflection of the fact that Weyl quantizations are an instance of geometric quantization.
In order not to have to verbally distinguish between the two quantizations, we will from
now only refer to the H,,-Weyl quantization.

The proof that this quantization in fact solves the quantization problem posed in

Section 5.1 is given in Section 5.3.

Notation 5.2. Just as for the Euclidean Weyl quantization we will have to consider
symbols o defined H,,-phase space R**2 as well their Euclidean Fourier transforms
6. For reasons that will be obvious in a moment, we will impose that the symbols

o : R¥™*+2 _, C be functions of the variables

(E,X) = (§u7§m§w7Xx7Xy7Xz)
= (fuu e 7§Un?€’l)17 e 7£’Un?§w7X3?17 e 7X$n7Xy17 e 7Xyn7XZ)7
(B, &) = (&0 o Supr Xio» Xy X2)
= (

!/ !/ !/ !/ / / / / / /
£u17'-~7§un7€v17'~-7£vn7§w7Xx17'-~7X:cn7Xy17--~7Xyn7Xz)
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5 Weyl-Quantized Operators on the Heisenberg Group

or

1= (§us vy &w, PX 5 Gx 5 Ex)

= (Cuys oy &unr Evrr e oy Cuns Ewy PLXs -+ - s Pnxs G1xs -+ -y An x> LX)
) = (§us &vs &ws Py, Gy s )

= (Cuys s &uns Evrr e o 2 &y Ewr P1y s - s Py s Qys - - 5 Gy ty),

(E X)
Y

—_
—
—

whereas their Fourier transforms & : R4¥*t2 — C shall be functions of

(P’ Q) = (’LL,U,’LU,ZE,y, Z)
= (ula'”7un7v17"'avnataajly'"amnayla"'aynvz)a
(Plz Q,) = (ulvv )w,al‘/7y 72/)
_ / / / / ! / / / / /
= (U ey Uy, Uy e ey Uy B Ty e o s Ty Yl e o s Uns 2 )

The strange convention of using both X' (to be read as an uppercase x) and X is chosen
for the merit of reflecting the phase space character of Ré}; 2 on the one hand and offering
the possibility of keeping the standard functional variable X = (p,¢,t) on H,, on the
other hand.

5.2.1 Dynin’s Weyl Quantization

In the following f will denote a unspecified complex valued function of X € H,,.

Definition 5.3. Let 7 denote the generic representation (of A = 1) of the Dynin-Folland
group Ha,, defined by Proposition 3.9 To a given symbol o : R""2 — C we formally
define the corresponding H, - Weyl-quantized pseudodifferential operator on L?(H,)

(2, %) = H &(P, Q) 2 (PIHQL)) 4P dQ

R4n+2

_ H 5(P, Q) 7(P, Q,0) dP dQ. (5.5)

RAn+2
For the sake of a convenient reading, we will denote o(2,Z") also by Op™ (o).

Remark 5.4. The notation (P, Q) ~— e2™(P70+Q20) i explicitly used in [13] for

108



5 Weyl-Quantized Operators on the Heisenberg Group

the representation we usually denote by m = m; (for A = 1). We recall that 7 is indeed
generated by the left H,-translations e2™“P?> and the Euclidean modulations e2<2-%).
(Cf. Section 3.4.)

In Dynin [13] Identity (5.5) is a priori understood in terms of Anderson’s Weyl func-

tional calculus for non-commuting self-anoint operators (cf. [1]).

The integral defining Identity (5.5) can in fact be viewed as an ordinary Bochner
integral (converging in the strong operator topology) provided that & € L!(R*"+2). By

applying the operator to a function f € .(H,) we can rewrite the integrals and obtain

(0(2, 2) )(X) = f 5(P, Q) KQX-GP) f(X - P) dP dQ

Jfff o~ 2TiE,P) ,—2mi(X,Q) 2mi{(Q,X-(4P))

F(X +P)d=dX dP dQ
_ f f f o(Z, X) e MEP) 5 (X — X - (%79)) F(X-P) (5.6)

d=dX dP (5.7)
= UJ(E,X . (%73)) e 2MEP) f(X - P)dEdP (5.8)
- ﬂo(E,X : 1(X*l Y)) e 2 EXTNY) f(y) a2 dY (5.9)
” X +Y)) 2EY X f(Y) dEdY (5.10)
f f X +Y)) 2 EXY XY £y g2 dY. (5.11)

Here we have used the Euclidean Fourier Inversion Theorem in line (5.7), and in line
(5.9) the fact that X - 3(X'+Y) = (X +Y). Let us keep in mind that X! = —X
for all X € H,, due to its nilpotent structure. The change of variables applied in line
(5.8) does not affect the measure since on R?"*! ~ H,, the Lebesgue measure coincides
with the H,-Haar measure, which in turn is invariant under group multiplication and

inversion.

Remark 5.5. For the case we wish to completely forget about the H,,-group structure,
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5 Weyl-Quantized Operators on the Heisenberg Group

we can rewrite Integral (5.11) in terms of Notation 5.2:

(02, Z)f)(px,ax,tx) = JJ 0<§u,§v,§wé(px +pY)a%(QX+QY)7%(tX+tY))

R4n+2

« 627Ti<(5u Lorkw)t,(Px —Py ax —qy tx —ty)t) e~ TiPxay —axpy)

x f(py,qy,ty) d&, d&, d&y dpy dgy dty . (5.12)

We notice that Integral (5.12) is very similar to the 2n + 1-dimensional version of its
Euclidean counterpart (5.2), which defines the Weyl quantization on R™. The main
difference lies in the additional factor e ™{Pxay —axPy): a5 we will see in Section 5.6, it
yields a quite different Moyal product structure on the H,-phase space in comparison
with its R¥"*2 equipped with the standard Moyal product. (Cf. Definition 5.35.)

To complete what has been said, let us observe that the H,-Weyl-quantized operator

0(2,2Z") can be expressed as an integral operator with kernel

1 e
K (X,Y) = f U(E,§(X+Y))62m<“’y "X 4=

R2n+1

~ (F10) (Y X (X 4 ).

Thus the kernel is obtained from the symbol o by applying a partial Fourier transform

in the first variable, followed by the measure-preserving change of variables

T R RV (X,Y) - (V!X %(X +Y)).
Since .#; and the pullback T* are isomorphisms on .#(R*'*2) and a fortiori on
S (R¥+2) as well as unitary isomorphisms on L?(R*"*2), the integral kernel K, is
a member of .7 (R*"*+2) or L?(R*"*2) precisely when o belongs to the respective spaces.
But the Schwarz kernel theorem classifies the continuous linear operators from .7 (R?"+1)
into .7 (R#"*1) as those that possess an .# (R¥"*2)-kernel. Another classical statement
classifies the Hilbert-Schmidt operators on L?(R?*"*1) as those that possess an integral

kernel in L?(R%"*+2). This can be summarized by the following statement.

Proposition 5.6. The H,,- Weyl quantization defined for symbols
o € FLYR¥*2) extends uniquely to a quantization calculus for tempered distributions
and square-integrable functions:

(i) A linear operator from . (H,) to . (H,) is continuous if and only if it is given
as the H,-Weyl quantization of a symbol in ¥ (R"+2),
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(ii) A bounded linear operator on L?(H,) is Hilbert-Schmidt if and only if it is given
as the H,-Weyl quantization of a symbol in L*(R*"+2).

5.2.2 Pedersen’s Weyl Quantization

We conclude the section with a brief account on the link between Dynin’s and Pedersen’s
Weyl quantizations. To do so, we will recall a few important aspects of Pedersen’s
machinery.

As usual, let GG be a nilpotent Lie group and O one of its co-adjoint orbits, which cor-
responds uniquely to a unirrep 7 : G — U(H ). Let furthermore, Fin be a representative
of O, and let the set of jump indices e = ep, the predual g. and the global chart ¢ be
as in Defintion 4.1 and Identity (4.1), respectively.

The Schwartz space .(0) is well-defined: the orbit is equipped with a smooth struc-
ture via the identification O = G/Stab(Fp), and also the polynomial structure defined
on G/ Stab(Fp) carries over to O. (Cf.[51] Subsection4.1 p.31 and [50] Subsection 1.6
p.521.)

If B» denotes the canonical measure on O, one can now define a Fourier transform on

Z(0) by

5(X) = Ja(F)e_2”i<F’X> dfo(F) (5.13)
@]
for 0 € (0O) and X € g.. Here (., .) denotes the standard g*-g-duality.

It turns out that the map o — 7|y, defines a topological isomorphism from .7 (O)
onto . (ge), which satisfies the identity

f 5(X)7F(X)dX = Co J o(F)7(F) dfo
Je O

for all o,7 € #(O). The constant Cp only depends on the particular orbit O. In fact,
Cy' equals the absolute value of the Pfaffian of the symplectic form of O. (Cf.[51]
Subsection 4.1 p.31 as well as p.10.) In the case of the non-degenerate orbits of H,,
Co, is given by |A\|7", whereas for the generic orbits of Hy,, it equals |)\|_2"_1.

With this at hand, we can now give Pedersen’s definition of Weyl quantization.

Definition 5.7. Let 0 € ./ (0). The Weyl-Pedersen quantization of o is then defined
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to be the operator

Op%(o) :=Co J&(X)ﬂ'(exp(X)) dX, (5.14)

ge

which is bounded linear on the representation space Hy.

Remark 5.8. Like the integral in Defintion 5.3 Integral (5.14) can be viewed as Bochner
integral converging in the strong operator topology on B(H), the space of bounded
linear operators on H,. The fact that Op™ (o) is bounded is due to & € L'(g.) and a

standard estimate for Bochner integrals converging in the strong operator topology.
We now easily conclude the following:

Proposition 5.9. The Weyl quantization on the Heisenberg group defined by Dynin [13]
coincides with the Weyl quantization defined by Pedersen [51] for the special case when G
is the Dynin-Folland group Hs ,, and the unirrep employed is the generic representation
m = w1 defined in Section 3.4.

Proof. We recall from Proposition 3.12 that for the generic unirrep m;, A # 0, the corre-

sponding co-adjoint orbit O, is given by
Or, =X XOR"X; ®R"X; ®RX;, DR"X, ® ]R”X;‘ ORX].
Moreover, we recall from Section 4.3 that the corresponding predual is

B2ne = b2np @ h2ng
= (R"X, ®R"X, ®RX,) @ (R"X, ®DR"X, ®RX.).

It follows that for any A # 0, the Fourier transform defined by (5.13) coincides with the
standard Euclidean Fourier transform restricted to .(R***2) times Co, = |A|7>""'.

Hence, for A = 1 this immediately implies that o(Z, Z") = Op™ (o) = Op}p (0). O

From now on we will make no further distinction between the two quantizations and

drop the subindex P in Opp.

Remark 5.10. As we have mentioned in the introduction to this chapter Pedersen’s
calculus for H,, agrees with the classical Weyl quantization. For a comparison between
(5.14) for generic py and Op”* (o) = o(AD, X) we refer to [28, p. 109].

112



5 Weyl-Quantized Operators on the Heisenberg Group

Pedersen’s account [51] indeed features some very interesting properties of the quan-
tization Op”, some of which we will list here. (The list is essentially the same as the one
given by [51] Theorem4.1.4.)

Let us denote by &1(H,) the the Schatten-von Neumann 1-class, or trace class, of
operators acting on H, and by Ga(H,) the Schatten-von Neumann 2-class, or Hilbert-
Schmidt class, on H,. The inner product on &3(H,) will be denoted by (., .)yg-

Furthermore, let u (gc) denote the universal enveloping algebra of the complexification
of g. We then have

Theorem 5.11. For the Weyl correspondence Op™ defined by (5.13) the following prop-
erties hold true for all o,7 € S (0):

(i) Op™ (o) € &1(Hr) N Sa(Hy) and Tr (Op™ (o)) = (SQU(F) dBo(F),
(i) (Op™ (), Op™ (7)) g = Tr (Op™(7)*Op™(0)) = (SQO’(F)f(F) dBo(F),
(iti) Op™(o)* = Op™ (7).

(w) By duality Op™ extends to .7 (O) and the image under Op™ of the polynomial
functions on O, Z(0), coincides with dr(u(gc)).

(v) Op™(1) =1I.
(vi) Op™(2mi{., X)) =dn(X) for all X € g,
(vii) Op™ (™)) = 1(exps (X)) for all X € g.

Remark 5.12. Theorem 5.11 (viii) implies, in particular, that Op%p = Op™ solves the
quantization problem for H,,, without assuming any prior knowledge about Dynin’s
quantization. (Cf.Identities (3.14).)

Remark 5.13. The strong link between Pedersen’s Weyl quantization and modulation

spaces as defined in the framework of [5, 6] is due to the relation

<Opﬂ-<0')f7 90>H7r = <&7 Agf>L2(ge)7 (515)

which holds true for all o € .7(0O) and f, ¢ € H,. Identity (5.46) is of particular interest
for operators Op” (o) whose symbols a members of some modulation space on G x G.
(Cf. [5] Corollary 2.25 p. 306, e.g.)

Let us point, however, that this link has been widely used in the context of modulation
spaces on R™, where the link exists for the classical Weyl quantization Op” induced by
H,,. (Cf.[40, 41, 44] as well as [42] Chapter 8.)
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5.3 A First Justification of Usefulness

In this section we finally show that the H,-Weyl quantization indeed solves the quan-
tization problem posed in Section5.1. More generally, we will see that a finite order
polynomial in either &,, &, or &, quantizes the corresponding polynomial of either %,
P, or Yy, respectively, and that a function of X quantizes multiplication by that function.

We provide elementary proofs for the formulas of adjoint and transposed operators
of any given o(2, Z"). Moreover, we show that for appropriately restricted symbols o,
Op™ (o) agrees with Op”(c), its Euclidean Weyl quantization acting on L2(R").

Let us first check that Op™ solves the quantization problem.

Proposition 5.14. Suppose that o, 7 € .7 (R*™*2) are such that the following two con-

ditions are satisfied:
(i) 0(Z,X) is a polynomial function of finite degree in either &,, &, or &, only.
(ii) 7(Z,X) = 7(X).

The H,,- Weyl quantization then yields:

(1) (2, %) defines the corresponding polynomial in either D,, Dy or Dy defined by

the spectral calculus for self-adjoint operators.
(ii) (1(2, 2))(X) = 7(X) f(X) for all f € 7 (Hy).

This tmplies, in particular, that the H,,- Weyl quantization solves the quantization prob-

lem for Heisenberg group posed in Section 5.1.

Proof. In order to prove Case (i) we can take advantage of the .#-.%’-duality and show
the result for o,7 € .Z(R**2) without loss of generality. We can now rewrite the

exponent in Equality (5.11) as

EY LX) = <E,X—Y—;[X,Y]>
= <(£ua£v,£w)t7 (px,ax,tx)" — (py,qv. ty)" — (0,0, %(pqu - CIXPY))t>

= (€upx + Euax + Eutx) — (v (6 + 5Euax) + v (6 — 5Eupx) + tvEu).
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Inserting some f € .(H,,) into Equality (5.11) yields

(()p Jf §u’ £y, §w 27 (§upx +Evqx +Huwtx) ff f Y. qy, tY)
X e 27r7'(pY(§u+ ngX)+QY(§v_§£pr)+tY€w de qu th
d&, d&, d&,,

- m 0 (€, Eu, Eup) €2 EPXFE A HEutX)

. 1 1
f(gu + §§wQX7 §v — §£pr’ gw) d&y d&y d&y.

An application of the measure-preserving change of variables

(fuagvafw) = (fu - %wavav + %gpr7§w)7

which leaves the exponent ({,px + &wqx + &wtx) unchanged, yields

O N = [[[ ot~ Fax &+ LEpribf6nnta)
x e2mi(€upx +§vqx +euwtx) d€, d&, dé,.

Since o is a polynomial of only one of the variables &,, &,, &, and w.l.o.g we can assume
it is &, we know that o (&, — £71“qx) is a polynomial in &, and &,. Hence via the inverse
Fourier transform it acts as joint Fourier multiplier in p and ¢, or equivalently as a joint
spectral multiplier of the self-adjoint operators D), = (2772')*181)]., j=1,...,n, and
Dy, = (2mi)~1é;, thus as the polynomial o in 7, = (D), — $¢D).

The proof of Case (i) is even shorter and only makes use of the fact .# (1) = dy. For

an arbitrary f € . (H,) we compute

(r(2,2)f H ) 27 i(QX-GP) £(X « P)dP dQ
- [#@ @ fx) a0
= 7(X) f(X).
This proves the proposition. O

Remark 5.15. The operators discussed by Proposition 5.14 (i) are clearly left-invariant
differential operators H,. So, two questions that immediately arise from this result

are: What are the operators that correspond to arbitrary polynomials in =7 And how
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exhaustive is this method of quantizing polynomials? In other words, do we obtain all

left-invariant differential operators this way? We will give a full answer in Subsection 5.4.

The H,,-Weyl quantization also allows us to readily obtain the adjoint and the trans-

posed operators:

Proposition 5.16. For all symbols o € .7 (R¥"*2) we have
(U(-@a %))* :5(*@7 %) and (U(*@v %))t:J(_-@> %)

Proof. Once again we argue by an formal derivation for o € . (R***2) and conclude the
result for distributional o by duality. To this end, let f,g € .(H,) and let (., .),
denote the .7-.#’-duality that extends the restriction to .(H,,) x.#(H,,) of the L?(H,,)-
inner product (., .2 (H,)" Due to Bochner integration theory we can repeatedly inter-

change integration and dual action to compute

U (D, 2N f,9) g = <f, JJ&(P, Q)n(P,Q,0)gdP dQ>y,
_ f (f,6(P,Q)7(P, Q.0)9),, AP dQ
_ f f <m f,7(P, 0, 0)g>yﬂ P dQ
:f (r(=P,=Q,0)5(—P, ~Q) f, g, dP dQ
_ <ﬂ3(75, O)n(P, 0,0)f dP dQ,g>yl
=2, 2)f:9)9

Under the same assumptions let (., .) ' (1, denote the standard .7 "(H,)-.¥ (H,,)-dual
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action. The second claim then follows from

(2, 2)'£.9) .
:ff(X)f 5(P, Q)X GP)y(X . P) dP dQdX
= ff(Y P H&(P, Q) 2NV P GP)) o(y) dP dQ dY
:JJ 5(P, Q) MOV (EP) f(y - (=P)) dP dQg(Y) dY
- f H §(—P, Q) XNV GP) p(y - P)dP dQ ¢(Y) dY
— (=2 2)£.9) a1,
This concludes the proof. O

The usefulness of this quantization has to pass another hurdle of some importance:
Since H,, forms a subgroup of Hs,, we would like to confirm that Op™ in some way or

another defines an extension of Op” on R", i.e., the standard Weyl quantization on R".

Proposition 5.17. Let o € .7 (R**2) be such that o(Ey, &y, Ews Xas Xys Xz) = 00(&us Xa)
for some o¢ € YI(R%). Then the H,,-Weyl quantization coincides with the Fuclidean

Weyl quantization if its action is restricted to Schwartz functions of p € R™.

Proof. By a standard duality argument it suffices to prove our claim for o € .7 (R%"+2).

It then follows from a straight-forward computation:

(02, 2)£(..0.0)) () = j | a2 50) 5w) 6) 5(2)
7(u, v, w,z,y,2,0)f(.,0,0))(p) dudv dw dz dy dz

X eQmZZp”f(p +u, v, w + %pv) du dv dw dx dy dz
= ff or(u, :B)e%i(x“%m)f(p +u,0,0) dudx
— [[/ ot (pta2,0) o) () s
— (00(Dps Xp) f s oyt ) (),

where f € .(H,,) was arbitrary. O
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Remark 5.18. The same result holds true for g being a function or distribution of

&vs Xy OF &w, Xz, Where the latter case yields the Weyl quantization on R.

5.4 Left-invariant Operators

A very natural question which needs to be answered affirmatively is whether the H,,-
Weyl quantization covers all left-invariant differential operators on H,,. Fortunately our
answer is positive: since any left-invariant differential operator T is continuous as an
operator T : .#(G) — . (@), its distributional kernel s € . (G) given by the Schwartz
kernel theorem is automatically a right convolution kernel due to left invariance on G,
ie,Tf = f=xforall fe.”(G). (Cf.[25] Subsection 2.5, e.g.)

Remark 5.19. So let us note that in fact we can quantize every left invariant contin-
uous operator from .#(H,) to .#' (H,) via Op™: For any symbol o(Z,X) = o(2) =
o(&u, €v,Ew) in .7 (H,) the operator Op™ (o) can be expressed as the H,-group con-
volution with the inverse Euclidean Fourier transform &. Indeed, for o € . (H,) we

compute
O ()1)(X) = [[ 5(P) (@) XD (x - P) aPdg
_ Ha(m F(X - P)dP dQ
f (PL- X) f(P)dP

= (f *m, 7)(X),

and a standard duality argument extends the last identity to . (H,). But since the
inverse Fourier transform is an isomorphism on both . (H,) and .# (H,,), the above
version of the Schwartz kernel theorem asserts our claim.

The symbol class . / (H,,) is, of course, very general and covers all sensible classes of
pseudodifferential operators, but the obtained set of operators is too big and thus often
not very useful. We will not elaborate much more on yI(Hn) but instead introduce

more convenient symbol classes in Section 5.5.

Having reassured ourselves that all left-invariant differential operators are covered
by the H,-Weyl quantization still leaves the question to what sort of symbols they
correspond. An educated guess, drawn in analogy to the Euclidean case, would be

precisely the polynomials in =.
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Our pursuit to check this will make use of the concept of symmetrization in the
sense of Helgason [43], e.g.: if we can show that Op” is equivariant under the action of
U(n) = U(C") on the variables (u,v) € R?*™ =~ C", we can easily conclude that Op”
coincides, modulo some powers of 27, with the so-called symmetrization A on H,,. The
latter is a linear bijection between the symmetric algebra S(bh,,) over b,, and the algebra
D(H,,) of left-invariant differential operators on H,, that is uniquely determined by the
following property: If X is a left-invariant vector field on H,, that is, X = dR(X) for
some X € b, (cf. Subsection 1.3.2), then A(X™) = X™ for all m € N. In other words,
the polynomials in &, &, &w, j,k = 1,...,n, do "quantize” (via A) all left-invariant
differential operators on H,,. (For details see [43], Chapter II Section 4 and in particular
Theorem 4.3.)

Remark 5.20. We recall that the symmetrization ) satisfies two other interesting prop-

erties:

(i) If Xq,..., Xop+1 forms a basis of b, and P € S(h,,), then

(/\(P)f)(g) = (P(apl, - ,5t)|(p’q7t):0f) (g €XDPH,, (p1X1 +...+ tX2n+1)>

for all f e .(H,) and all g € H,,.

(ii) If Y1,...,Y}, € by, then

1 - -
AV Y) = Vo) Yo,

oeSp

which gives an account for the origin of the name.

To prove equivariance for Op™, we need to agree on a few conventions: To start with,
let us consider (u,v) as a vector in C" whenever it seems convenient. By an abuse of
notation we will subsequently treat the R?"-inner product as the C"-inner product. Since
we will have to employ orthogonal transformations on R?" as well as symplectic matrices
(as autormorphisms of H,,), this convention is very useful in combination with the fact
that U(n) = O(2n,R) n Sp(2n,R). Following another convention (found in Folland
[28], e.g.), we will then write A(p,q,t) = AX for the H,-automorphism (p,q,t)! —
(A x I) - (p,q,t)t with A € Sp(2n,R), in particular for unitary A.

Thus, for any symbol o let us set o o A to be the symbol (£, X) — o(AZ, AX).

Lemma 5.21. For each U in U(n) there exists an operator U in U(L*(H,,)) such that

Op™ (o oU) = UOp™(0)U*
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for all symbols o in ¥ (Hy,) for which Op™ (o) is bounded on L*(H,,).

Proof. As usual we will prove the statement for Schwartz class o and extend it by duality.
Thus, considering the symplectic group Sp(2n,R) as a subgroup of Aut(H,,), we can use

the above conventions to write

(vQx-GurP) ) = (QU(x-GUP) ) = (QUX - (5P) ),

which holds true for all P, Q € H,,. If we now keep in mind that a unitary change of
variables in (u,v) is measure-preserving on Hy,, then (P, Q) := (UP,UQ) implies
(Op™ (g 0 U)f)(X)
- H&(UP, UQ) 2 {X-GP) £(X - P) dP dO
_ ffﬁ(ﬁ’ 3) 2 U O X-GUP)) ¢(x . [7*P) dP 4O
H (P, Q) ™(QUX-GP) (£ o U*)(UX - P) dP dO

— (0p™(0)(f 0 U")) (UX)
for any f € (H,), X € H,,. Finally, if for any U € U(n) we define U in U(L*(H,)) to
be the map f — foU, we have just proved our claim as U* = U* clearly holds true. [

With this in hand we can prove our claim.

Theorem 5.22. The H,,- Weyl quantization Op™ restricted to complex coefficient poly-
nomials in the frequency variables &, &y, &y agrees with the symmetrization A on the
Heisenberg group H,, (modulo powers of 2mi). In particular, it is precisely these polyno-

mials which quantize all left-invariant differential operators on H,.

Proof. To prove that Op™ coincides with the symmetrization for all elements of the
symmetric algebra S(h,,), we have to show that for every polynomial P in &,,&,, &, the
operator Op™(P) yields a symmetrized left-invariant differential operator on .(H,,).

More precisely, we will show that it agrees with the operator )\(15), where

P(Eus u:60) 1= P((2mi) ¢, (2m0) 60, (2m0) 160 ).

(Cf. Identities (1.18).) We proceed in three reductive steps.
First we restrict the problem to polynomials in &,, &, only since any operator given as

the quantization of a polynomial in &, only, i.e., a polynomial in X;, commutes with all
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other left-invariant operators on H,,. (For further clarification we refer to the asymptotic
expansion of the natural Moyal product arising from the H,,-Weyl quantization. Confer
Subsection 5.6.1 and in particular Formula 5.25. The Moyal product of two polynomials

P(&y,&) and Q(&yw), say, reduces to the simple pointwise product P(&,,&,)Q(&w)-)

Second, we notice that polynomials of the form 5355 =&l 5}2 can be expressed in

terms of sums of the polynomials (u&, + &)™ = (p1&u, + - .. + n&y,)™, with p,v e R”
and m < |a| + |B]. So, if we can show that for o(&,,&,) = (2mi)™ (u&u + v&,)™, m e N,
Op” (o) agrees with A((,ulXpl +...+ l/ann)m> on H,,, then we are done.

To start with, we observe that o ¢(£y, &) = 2mi(puéy + V&) is the symbol of the left-
invariant vector field X = (uX, + vX,). We furthermore know that there exists some
U € U(n) such that U*(u,v)! = (o, 0,...,0)! for some o € R. Let us assume, without
loss of generality, that & = 1. We now find that

%(UX © U)(‘Suagv) = < (5) U (zi:) > = <U* (5) > (ZZ) > =&uy = %O‘Xpl (fwgv)

and hence
(270 6u,)™ = 0y (6 &0) = (0% 0 U) (6w &))"
= (o)™ (U (6w, &) = (o)™ 0 U) (§u: &) = (00 U)(€us &0)-
Lemma 5.21 now implies the existence of an operator U € U(L?(H,)) such that
UOp™(a)U* = Op™(c o U) = (2mi)™ Op™(£') = f(;’f = AXp))-
Rewriting the above, we obtain
(2md)™ Op™((p€u + 1€)™) = Op™(0) = Op™ (9 5y 0 U™)
= U*0p" (0, )0 = U* X300 = (0°%,,0)"
= (0p"(0g, °U™)" = (0p™(05))" = X™ = A(X™)
for X = uX, + vX,. Since m € N was arbitrary this concludes the proof. O

Corollary 5.23. Part (i) of Proposition 5.1} now follows as a special case of Theo-
rem 5.22.

Remark 5.24 (On the Difference between Right and Left Invariance). If we had chosen

the representation 7y to be generated by Euclidean modulations and left H,,-translations,
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the quantization defined by Formula (5.5) would require 6(—P, —Q) instead of 6(P, Q)
and would yield right-invariant operators for symbols (2 — o(Z)) € . (H,,).

Let us note that due to the lack of difference between left and right-invariant vector
fields in the Euclidean setting, and hence between right and left translations, there is

but one Schrodinger representation p that can be used for the Weyl quantization.

5.5 Hormander-Type Symbol Classes and YDO'’s

In this Section we will have a look at symbols that belong to some type of non-isotropic
Heisenberg analogues of the classes ST}, (R27+1) for which the usual decay estimates are

given with respect to an H,,-homogeneous norm.
Definition 5.25. The homogeneous norm | . ‘Hn on the Heisenberg group H,, is defined
by

| . ’Hn : Hn - [07 OO)?

) 1/4
(,0,8) = X = Xy, = (b + 10+ #2) "

We will furthermore define the H,,-Japanese brackets by

<X>=(1+ |X]%In)1/4.

Definition 5.26. The class of H,,-symbols of order m € R, denoted by S™(H,,), is
defined to be the set of all functions o € C*(R?*"*1 x H,,) for which for all multi-indices
a = (ap,ag,ar), B=(Bps By Br) € (N U {0})2" T there exists Co 3 > 0 such that

sup ‘(Dg.@f{a) (E,X)‘ < Cpp < S >M=@ (5.16)
XeH,

if (o) := |ay| + |ag| + 204.
We set

SP(H,) = | J S™(H,)  and  STP(H,) =[] S"(H,)

meR meR

and define Op™S™(H,,) to be the space of H,,-Weyl quantized operators with symbols in
S™(Hy,).

Remark 5.27. Note that the Z-derivative is indeed the Euclidean derivative in 2n + 1

dimensions, whereas the X-derivative is understood to be a higher order application of
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the standard left-invariant vector fields on H,,, defined as in Subsection 1.3.2.

Remark 5.28. As usual, the symbol classes S™(H,,) are in fact Fréchet spaces if their

topology is defined by the semi-norms

(D%@)ﬁf") (E’X)] < B>

lofpn = max sup
lo| +18I<5 =, X eRAn+2
where j € N U {0}. Occasionally, we will also consider them as topological subspaces of
the Fréchet space C®(R4"+2).

Examples 5.29. (i) The left-invariant vector fields. For the standard left-invariant

vector fields on H,, we have
dR(X,,) € Op™S'(H,), dR(X,)eOp™S'(H,), dR(X;)eOp"S*(H,) (5.17)

as we recall
2m’dR(ij) = D, = Op”(éuj),
2midR(Xy,) = P4 = Op™(&,), (5.18)
2ridR(Xy) = 2 = Op”™(&w)

from the quantization problem in Section5.1. The orders given by (5.17) agree conve-
niently with the natural homogeneous degrees of the left-invariant vector fields. (Cf.[27]
p.916)

(74) The sub-Laplacian. The sub-elliptic operator

— Oy2 (0 1 0y
B, = Z( », ant) +(6qj+2pjét)>

has the symbol oay (§u, &) = —(2m’)2(\§’u\2 + \&,\2), which is obviously a member of
S%(H,). (We remark that the negative sign was chosen in accordance with works by
Folland, Stein et al. We can equally choose the positive sign more in the spirit of
Hoérmander’s sums of squares, e.g.)

(7i7) Differential operators. Any polynomial function in Z of finite degree is a member
of some S™(H,,). Hence by Theorem 5.22 all left-invariant differential operators on H,,
belong to Op”™ S*(H,,).

(tv) Adjoint and transpose. Let us recall from by Proposition5.16 that for given
o € .7 (H,) the symbols of the adjoint and transpose of Op™ () are given by & and

ol := (2, X) = o(—E, X). Hence, if o belongs to some S™(H,,), so do  and o*.
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Remark 5.30 (Euclidean vs. H,-symbol classes). For the usual Hérmander symbol
classes ST (R*"*!) we have neither S™(H,) = ST (R*"*1) nor S™(H,) 2 ST (R*"*1):
the rate of decay in §,, in Condition (5.16) is weaker than usual for positive exponents
m, but weaker for negative ones. This leaves a possibility for the first inclusion for
positive m and for the second inclusion for negative m. But the growth in p and ¢ of the
left-invariant derivatives &, and %, is not necessarily compensated by the behaviour in

X = (p,q,t) of o € ST (R27+1) This necessarily excludes either of the two inclusions.

The following Proposition guarantees that symbols in S™(H,,) define continuous oper-
ators on . (H,,). Moreover, it assures us that convergent sequences of symbols quantize

convergent nets of operators.

Proposition 5.31. The following assertions hold true:

(a) For any o € S™(H,), m € R, the operator Op™ (o) is continuous from . (H,,) into
itself.

Part (b) Let oy, be a sequence of symbols in S™(H,,), m € R which satisfy the symbol es-

timates 5.16 uniformly in k and which converge to some o in the topology of C®(R*"+2).
Then o € S™(H,,) and Op™ (o) f 7 (Hx) Op™(o)f for all f € S (Hy).

Proof. (a) Let us recall from Equalities 5.8 and 5.10 that the H,-Weyl-quantization of

some symbol o € . (H,,) can be expressed via the integral

(Op™(0)£) (X) = ”a(z, X- (%P)) e"2TEP) (X P dP d=
- HU(E, %(X +7)) 2 EY T p(v) dy dE. (5.19)

In order to show that this iterated integral converges absolutely for o € S™(H,,), we will

make use of the function

g9(E,X) = JJ(E,X . (%’P)) e 2EP) f(X - P)dP

B f 7= 5 (X +) EmEY 0 f(v) gy,

applying the usual techniques of integration by parts, etc. To this aim we define the

operator

1 2 1
Lp = Z(|Duy2 +IDP) + 5D, (5.20)
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for we which we observe the relation

(1+ gp)e—%i@,m :(1 + |2l )46—27r7;<5777> —< = 4 2miEP)

We then compute

14 % N _—2mi(E,P) 1
(Eﬂ X) = J ( - P?— 64N E ‘\5
<= > 2

27r7,<_7Y X> .
) J<E>4(1 +2p)" (02X (5P) F(X - P) ) dP
627ri<E,Y*1.X> o .
i <a+ﬁz>1<4NCa’ﬂ f — o PBo(E X (5P)Dpf(X - P)dP
2mKEY XD 1 8
L Wz(%{")( X - (5P)(Zxf)(X - P)dP,
<a+B><4N

which due to the definition of the symbols classes S (H,,) yields

9EX)<Cn ) J< >—4N'@a o)(E “ SH(X - P)| dP
<a+p><4N
—4N+m_

<Cy<E>
We thus conclude that g(.,X) is a member of L!(R***1) uniformly in X if only N is
large enough. The estimate furthermore shows that (Op™(c)f)(X) = {g(E,X)d= is
uniformly bounded in X € H,,.

In order to check that Op™(o)f is indeed Schwartz class, we will scrutinize the cases
X*Op™(o)f and DéOp”(a)f for each of the vector components p;y,qrx.tx, j,k =
1,...,n, of X = (px,qx,tx). A simple induction argument can finally be employed to
obtain full generality.

Let us first have a look at multiplication by polynomials in X. A straight-forward
computation yields

p; @2 KEYTIX) _ p 2REYTIX) gy 2Wi(EY X

and an analogous relation for gix, whereas for {x one obtains

terM<E’Y_1'X> Z(wa +Pjy + 1 2”i<E:Y_1’X>,

2(pYCJX — qypx))e
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In view of Integral 5.19, this implies that X*Op™ (o) f translates into sums of Dg(a) and

Y7 f inside 5.19. Neither of these terms harms the rate of convergence; to the contrary,

Dg(a) even improve the decay in =. Thus by the same argument as above, the integrals

defining X“Op” (o) f are both bounded and absolutely convergent uniformly in X € H,,.
In the case of DgOp”(J) f, three simple calculations yield

ya— lE Y1

Dy, . 2mi(EY LX) Euse 2mi(EY X>

D, €2m'<5,y—1-x> _ 5 €2m<_, -1 X>
J

Dwﬁm(ay*x} — fye 2mi(2,y 1 X>.

Hence the absolute convergence of Integral 5.19, allows us to compute

(DPJXOp Jf 5ug X + Y)) 62Wi<E7Y71.X> f(Y) dY d=
f f O (X +Y)) 2EYTX f(v) Y dE,

and similar expressions for D p™(o)f and D, Op™(o)f. By the same arguments

as above, the corresponding oscillatory integrals involved are absolutely convergent and

QkXO

bounded uniformly in X. Thus we have shown that Op™ (o) f is indeed Schwartz on H,,.
This proves part (a).

(b) essentially follows from an application of the latter arguments to show that the
limit in k£ in the C*™-topology interchanges with the oscillatory integrals. That o must
be a member of S™(H,,) follows from the uniformity in k of the symbol estimates 5.16.

This concludes our proof. ]

5.6 The Heisenberg-Moyal Product

As we are naturally interested in the composition of two H,-Weyl quantized operators,
we would like to know whether a composite operator can be assigned a symbol by the
H,,-Weyl calculus. If we suppose that, say, 01(2, 2") and 02(2, Z") map . (H,,) into
itself, then their composition does so and is the H,-Weyl quantization of a uniquely
determined symbol in .7 (R*"*2) due to Proposition 5.6. That is, if the latter symbol is
denoted by o1 ® o1, we have

o1(2,2)02(2,Z) = (01 ®02)(Z, Z). (5.21)
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We will call o1 ® oo the Heisenberg-Moyal or twisted product of o1 and oy or for the
sake of abbreviation throughout this text also @-product.

It turns out that just like in the Euclidean case the symbol o1 ®os is given by a specific
convolution type product of the symbols o1 and o1, which, at least formally, bear some
similarity with the standard R?"*!-Moyal product, i.e., the #-product of two R?"+1-
Weyl-quantized pseudo-differential operators, yet obviously reflects the Heisenberg group
structure.

Given existence, uniqueness and continuity of the @-product as a map from
S (RAF2) x 7 (R"+2) to .7 (R4"*+2), we will compute an explicit formula for this case

and show that it extends as a continuous map from S™ (H,,) x S™2(H,,) to S™ ™2 (H,,).

5.6.1 An Asymptotic Expansion

Before we derive an integral formula that will help us to prove the latter mapping
properties, we will attempt a formal derivation of an asymptotic expansion for o1 &
09. For the sake of convenience through convergent integrals, let us again suppose
that o1, 09 € .Z(R**2). We commence our calculations by writing out Formula (5.21)

explicitly:

(D, ) 03(D, XV f — ”alpg JJ@P’ (P, Q)f
dP'dQ' dP dQ
[[[ #7070
7((P,9,0) Gn,,, (P',Q,0)) fdP'dQ dP dQ
_ H (01 ®2)(P, Q) n(P, Q,0)f dP dQ.

For the last identity to make sense we require two necessary and sufficient conditions,

the first of which can be expressed as the existence of some uniquely determined element

127



5 Weyl-Quantized Operators on the Heisenberg Group

s=8=38(P,Q,P', Q) eR such that

L 1
(P,Q,0)Own,,, (P,Q,0)= (a+u,o+v,0+w + 5(fw’ — ou),

1 1
:E+x'—|—Z(T)z/—év/),gj—k@/—Z(ﬂz’—%u’),ZJrz’,
r_., L, L,
i(uzz: —xu)+§(vy —yv)+§(wz —zw'")

1 1
+ gz’(iw’ —ou') — gé(ﬂv' —ou'))

= (u7v7w7377y7278) = (7)7 Q?‘S)

Here we see that P and Q relate to P and Q via a Haar measure-preserving, and thus

Lebesgue measure-preserving change of variables, with the central variable § carrying

some additional information about the @-product. But existence and uniqueness of such

an element (P, Q,S) simply follows from the relation

(75’ Q’ O) = (7)7 Qv S) ®H2,n (Plv le 0)71'

The second condition now states the Fourier transform of the symbol must be given by

(@®b)(P, Q) = Ha(ﬁ, ) b(P', Q') (0,0,S) dP' dQ'.

Employing the measure-preserving change of variables

U =u—1u,
v=v—1,
~ / 1 / / / !/ / 1 / !/
W=w-—w —5((u—u)v —(v=vW)=w-—w —§(uv — o),
1 1
:%z:v—x'—z((v—v')z'—(z—z/)v/) :m—x'—z(vz'—zv'),
1 1
sz—y'—kz((u—u')z'—z(u—u’))= —y'+1(uz'—zu’),
F=z—2,
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with

S=s=1/2(ux' —3u') +1/2(0y — gv') + 1/2 (w7’ — zw') + 1/8 2/ (w' — o)
—1/8 Z(uv — vu')

_1 I / 1 P 1 r / }/ P
—2(ux a:u)+2(vy yv)+2(wz zw)+4z (uv vu)
Sz (! — o),

we can rewrite Formula (5.22) equivalently as

(01®02 )(P, Q) f Jol v',wfw'f%(uv'fvu'),

1

r—x —Z(UZ —zv) y—y/+1(uz/—zu/),z—z/)

A R A A A A
x go(u' v, w' 2’y 2") (5.23)
% 627ri(%(uz’—xu’)-‘r%(vy’—yv')-i—%(wz’—zw’))

% 627ri(iz/(uv/_vu/)_éz(uu/_vu/)) du/ dUI d’lU/ Cl.%'/ dy/ dZ/. (524)

To obtain a neat formula and the above-mentioned asymptotic expansion, we need to
write Formula (5.24) as an R2?"*+D_convolution product of 61 and &9 twisted by some
exponential factor. To this end, we rearrange the terms and express the disturbing

translations of a as exponentials in Dy, D, D,. This yields

(0_1 ® 0_2)(,“7 VW, T, Y, 2 J f (ux —zu’ )+ (vy —yv')+ (w2’ —zw’)+ z "(uv'—vu ))

Lriz(uv’ —

xe 4 v Gy (0 w2y 2

% eZﬂi(f%(uv —vu )Dwfi(vz —2zv )Dz+1(uz 7zu’)Dy)

A / / / / / /
02(u—u,v—v,w—w,w—x,y—y,z—z)

du’ dv' dw' dx' dy) d7'.

If we now formally invert the Fourier transform of this expression, we obtain an asymp-

totic power series of derivatives in &u, £u, §ws Xas Xy» Xz and &, &, & Xy Xy X5 Of prod-
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ucts of o1, 02 and monomials in &y, Xa, Xy:

(01®O'2)(§u, &y &ws Xa Xy Xz)
N (em(DEu .~ Dxz D) m(ng =Dy Dey)
ewi(Dgw .~ Dx: D) 5Dy (Deu Dey,—De, Dey,)
e T Dx (Dsu D¢y —De, Dg;) o w (Dsu Dy =D, Dg;)

G%Xx (DSUDX'Z_DXZD.E{]) 6_%Xy <D§qu’z _DXdeL)

01 (&us Ev s Xas Xyg» Xz) 02(E0s € Es X Xy X/z)>

(2,X)=(2/,X")
(i)t j (m)] 2
_ U (De, Dy, — DXZD%)]l (D§ Dy, — Dy, Dg)’
OO(MVDD —D,.D OO(W)D“DD D¢ Dy )
BN (De,, )" RTIT (D¢, Dg, — De, Dey,)
7a=0

(—mi)7s

475 j5!

. o0
3 25 X0 (De.Dy, = Dy.Dg )" )

jg=0

01 (Eus Eus Ews Xa» Xy X=) 02(Eu Euy s Xos Xy xé))

MS

A ,L'JG ) .
7> (Dg,Dey, — De, Dy ) > (7; ). &l (Dg, Dg, — De, D, )
je=0 ’

(—mi)s
2]8] | Xy

.

ot

Il
o

s
M/‘\

<.
3
||

(5.25)

(E2)=(2.X")

Remark 5.32 (Preservation of Algebraic Structure). As the @-product preserves the
H> ,,-group structure, it also preserves all the commutator brackets that define b3 ,,, and

in particular the Heisenberg commutation relations

[D.,, Xi] = (2mi) "85, T2y < [Lp,, Lg] =06, Lt
< [ijv 9111] = (27”)_ 5j,l Y.

But let us prove this last equation directly from the composition formula. We recall that

(fu]) = u]a (fvl) =

130



5 Weyl-Quantized Operators on the Heisenberg Group

For the composition of the symbols &, and §,, we compute

bu; ® &y = (u &y, + ik (De, Dey €u; &, — De, D, €u; €,) +0) }

= (€u, &, + i &y ((2m0) 7265, —0)) ‘

T
" (2mi)

(B,X)=(=",X")

= éuj fvl + 5] 51117

and analogously

)
b

gﬂ)l ®§uj = gu]- fvl - 5j,l W

Hence, we recover

(Dps+ D]

Op” (§u;) OP" (§v,) — OP™ (&v) OP™ (€u;)
Op™ (§u; ® &u) — OP™ (&, ® &u;)

( 1651 0p™ (&)

( 51 %

211

)
271)

Remark 5.33 (Clash with Symbol Classes). It is a priori not clear how the appearance
of Dy and Dy instead of Dy and Dys in Formula5.25 affects the symbol estimates
(5.16) for o1 ® o9, although the terms
j J j J
X3 (De, Dy, — DXZDEL)(;,X)=(E/,X') and xy* (Dg, Dy, — DXZD&)(;X):(E/,X')
may account for some of these differences.
But the structure of Formula5.25 itself poses a problem for a useful asymptotic ex-
pansion due to the third-last term
i Je
3 (DﬁuDEL - D&;Dsa)(z,x):(af,)(')
which neither decreases nor increases the order of o1 ® o9 by Defintion 5.26.

So, while this quantization via Hs, respects the H,-structure and homogeneity, it

creates a severe problem for formal asymptotic expansions.
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5.6.2 An Oscillatory Integral Representation

Since asymptotic expansion does not provide the adequate tool to study the H,,-Moyal
product for the symbol classes S™(H,), we may try to find more clarity through an
integral formula for it. In order to express the H,-Moyal product in such manner, we will
employ the integral formula of the Fuclidean Moyal product, usually denoted by 11472,
i.e., the product of symbols for the standard Weyl quantization on the phase space R4 *2,
By Theorem 5.6, we know that any pseudo-differential operator A acting continuously
on . (R*"*2) can be expressed both as the R?"*1-Weyl quantization of some symbol
7 and as the H,,-Weyl quantization of some symbol o, ie., 7(D, X) = A = 0(2,Z).
In the following we will make use of the fact that a modification of o, say ops, can
be R?"*+1_Weyl quantized to yield the same operator. We cast this relation into the

following definition.

Definition 5.34. Let two symbols 7,0 € .7 (R*"*2) be such that 7(D,X) = 0(2,%).

We then denote T also by oy and call it the modified symbol associated to o.

The following statement provides a handy formula for well behaved symbols to start
with. Its proof will thus not be compromised by the concern over convergence and inter-
changeability of occurring integrals. Using this formula, we will subsequently show that
the H,-Moyal product in fact extends to a continuous map from S™ (H,) x S™2(H,,)
to S™1tm2(H,,).

But let us first recall the definition of the Euclidean Moyal product for operators
acting on (some subspace of) L%(R?"*1). (See for example Folland [28] p. 103.)

Definition 5.35. For two symbols 11,2 : RY"*2 s C the (Euclidean) Moyal product is
formally defined by

(i) (B, X) = 42041 ff (", U)Tz((l)7V)e4m‘(<57<I>,X7U>7<57\P,X7V>)

4 dU dV dV (5.26)
_ g2+l ff (U, U)ra(®, V)e—47riw((E—\I/,X—U),(E—CP,X—V))
4 dU dv dV, (5.27)

where w denotes the standard symplectic form on RA"+2,

Proposition 5.36. For any two symbols 01,09 € . (R¥"*+2) their H,,-Moyal product is
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given by

(01 ® 03) (5, X) = 427+1 Jfff o1 (T, U)o (P, V)e4m‘(<E~1>,U—1-X>7<57\I/,V—1.X>)

x 2miU+R U X VXD g4 g1 4 4V, (5.28)

Proof. To begin with, let us recall that for the pseudo-differential operator defined by o

or oy, respectively, there exists exactly one integral kernel K € .7 (R%"*2) such that
(03D XONX) = (0(2.2)PX) = [ KCELX) ) ax’

for all f € .#(R?"*1) and all X € R?"*!. The symbols 7 and ¢ in turn can be expressed
in terms of K and vice versa:
= 2mi(2,Y) 1 1
ou(E,X)=|e ’ K(X+§Y,X—§Y)dY,

o(Z2,X) = J62”i<E’Y>K(X . (%Y),X . (—EY)) dy,

whereas
e 1
K(X,Y) = f 2 EX 060 (E, S (X +Y))dy

_ f 2(EY LX) 0= %(x +Y))dY.

Making use of these formulas, we can express 7 in terms of ¢ and vice versa with the
help of the following four observations.

First, we compute

(X — %Y)_l (X + %Y) (=X + %Y) (X + %Y)

1 1 1 1
= —X+§Y+X+§Y+Z[Y,X]—Z[—Y,X]
1
=Y + -[Y, X].

2

Second, if we define Y’ := Y + 3[Y, X], we equivalently have Y = Y’ — %[Y, X]=Y'-
$[Y’, X] since [Y’, X] = [Y + £[Y, X], X] = [V, X]. We also know that Y/ =Y - X — X,
from which we conclude that dY’ = dY. (Recall that the R?"*!.Lebesgue measure
dY coincides with the H,-Haar measure. It is therefore bi-invariant under both group

actions.)
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Third, if X = (anQthX> and Y/ = (py/,qY/,ty/), then

(2= 51 X]) = (6 = p6aax v + (60 + j6us )av + Eaty

and similarly,

adfy (X)(2) = '+ - adfp (X)(Z), (5.29)
as adjy (X)? = 0 for any X € b, = R*"1. This yields

adf, (X)(2) = adfy, (X)(E) — 5 (adf, (X)) (&) = adfy, (X)(E).

It is furthermore easily seen that the change of variables = +— =’ is measure-preserving.
We now combine the above formulas for o, 0); and K and the first two observations

to give an explicit description of oy in terms of o. Thus we compute
o 1 1
om(E,X) = J62W2<;’Y>K(X + 5V, X = oY)dY
_ Jf P2TiEY) fezm<@,(x—;y)—l.(x+;y)>
1 1 1
x J(@’i(X + §Y + X - §Y))d®dY
_ JJ 6—2m’(<E,Y>+<@,Y+%[Y,X]>)0_(9’X) 10 dY
_ 72m'<E,Y>( -1 1
— e F; a>(Y+§[Y,X],X)dY
= JeWE»Y’%[Y”XD (7r'0) (v, x)ay

_ o=+ %adi“{n (X)(2), X). (5.30)

134



5 Weyl-Quantized Operators on the Heisenberg Group

Our fourth observation additionally yields
adfy, (X)(E), X) = 0(E, X), (5.31)

Formula (5.28) now follows from a calculation in which we rewrite the ®-product as a
modified #-product of ”anti”-modified symbols as in Formula (5.31). Thus, employing

Formulas (5.30), (5.31) and our fourth observation we obtain

(01 ©02) (2, X) = (o101k023r) (2 — 5 adfy, (X)()

= 420+l HﬂalM (U, U)o (P, V)

» €4m<_+2 adf (X)(E)—®,X— U>e—4m<5+%ad;n (X)(E)-v,X-V) (5.32)

d® dU d® dV

_42n+lﬂﬂalw—§adﬂ (U)(®), V)

X o9(P — §adH (V)(®),V)e Ami(E+4 adfy (X)(B)—2,X-U)

¢S5 adfy, COE—VX=V) 46 417 4 dV

_ g2l ﬂﬂgl(qfﬂ)ag(@,v)

y 647ri<5+% adfy (X)(E)—®—3adfy (V)(®),X-U) (5.33)

w e~ 4mi(E+5 adfy (X)(E)~V—gadfy (N().X-V) 14 17 dd dV. (5.34)

A few more auxiliary results will eventually yield Formula (5.28). To this end, we first

notice that

X, v 1. X]|=[-U+X - %[U,X],—V—irX — %[V,X]]
= [U’ V] - [U,X] + [V, X]

With this at hand, we scrutinize the exponent in Equality (5.33) and find that

<5 + % adfy (X)(2) - ® % adfy (V)(®), X U> (5.35)

1 1
= E,X_U+2[X-U,X]>—<<1>,X—U+Q[X—U,V]>-
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We furthermore observe that

1 1
XU+ [X-UX]=X-U+[-UX]=(-U)-X=U""-X

and that
X—U+%[X—U,V]=X—U+%[X—U,U+(V—U)]
=—U+X+%[X—U,X]+%[X—U,V—U]
= —U+X+%[—X,U] —%([U,V] —[U, X]+ [V, X])
=U 1 X~ %[U*l-X,V*1 - X].

Hence, the exponent (5.35) equals

U X)—(o U X)+ %<c1>, Ut-x,v'.X])

_ /= _ -1, 1 -1, -1,
=E-0,U - X)+ (@, [UT- X,V X]).

Analogously we obtain for the other exponent in Equality (5.34) that

<5 b5 adfy (X)(E) ~ ¥ — L adfy, (U)(W), X - v>
=E-v,Vv.X)- %<\11,[U*1-X,V*1-X]>.

If we employ these simplifications, we finally obtain Formula (5.28). O

Remark 5.37 (On the Relation Moyal Product-Symplectic Form). A reasonable and
justified question at this point is whether the H,-Moyal product & bears the same
relation with the symplectic form Q = ©; on the generic orbit 0; =~ R4*2 i.e., the
orbit Oy for A = 1, as the R?"*!1-Moyal product # does with w via Equality (5.27). A
short answer to this question is: not quite. If one bears in mind that for A € R\{0} the

map

is a symplectomorphism that maps w to 2, (cf. Folland [29] p. 19), then it is easy to see
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that via the identification of Oy = Tz x) Ox = R4"+2 we obtain

W(EX)(8,0),(@,V)) = 1 (W, 1) - @.0)

" Ti? <<¢>, [X,U]) — (¥, [X,V]) + (&, [U, V]>)-

Moreover, as one readily observes, we have ¢joy = 0.
For A = 1, an expansion of the H,-group products in the exponent of (5.28), abbre-
viated by 4miE (2, X, U, U, ®, V), now yields

EEZ X, ,U,®,V)= —Q(E,X)((E—\II,X—U),(E—CID,X—V))

_%<E—(\I/+<I>),[X—U,X—V]>,

which is not quite as nice as Formula (5.27).

In the following we will prove that the H,,-Moyal product ® extends to a continuous
map from S™ (H,) x S™!(H,,) to S™™™2(H,,). The proof by and large follows Folland’s
proof for the analogous statement for f in the Euclidean case (cf.[28] Theorem 2.47).
We will even adopt some notation Folland has introduced for a similar adaption of a
Euclidean statement to a meta-Heisenberg case (cf. Folland [29] Proposition 5). Although
Folland has already outlined there many of the ideas and changes that recur in our proof,
we will still give a complete proof with all required details for the sake of a convenient
reading.

As in Folland’s proof for the Euclidean case, the proof is divided into three main
steps to which we will add a preliminary section, where we introduce some notation and
provide a few observations that will be used throughout the proof. Drawing this analogy
between the Euclidean and the Heisenberg cases, the gist of the proof is again to sneak
the right choice of differential operators into the oscillatory integral given by (5.28) to

render it absolutely convergent uniformly in =, X, while providing the required bounds.

Theorem 5.38. The Heisenberg-Moyal product (o1,02) — 01 ® o1 is continuous from
S™(H,) x S™2(H,) to S™*™2(H,,) for all mi, ms € R.

Proof. As mentioned above, the first section of the proof concerns preliminary observa-

tions and the introduction of necessary notation. So, let us first note that

Ei1(2,@,U,X):=(E -0, U " X) = (& + vu)(px —pv) + (& — v0)(ax — @)

+ (§w — pu)(tx —tu — %(pU(IX - qupx)),
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and hence

(apUEl)(E’ P, U7X) = _(5u - (PU) - 1(fw - QOw)CIX

[N)
—_

((gu - Sou) - Q(gw - SDw)QX)a
((gv - ‘100) - 1(gw - @w)pX)7

(aQUEl)(E’(I)aU7X) == 9

(atUEl)(Ev Q,U, X) = _(éw - Qow)‘
Equivalently, we may express this system of linear equations as

1
~(@purs O 000 ) B ) (2, @,U, X) = = @ + - adiy, (X)(E - @),

whence
1 1 — .
- ((apU - §QXatU, aqU + §antU) atU)-EJl> (':‘) (P) U7 X) ==Z-0

follows by (5.29). The occurring entries in the vector field are not quite the left-invariant
standard basis vector fields on H,,, but rather some entangled versions of the latter. We

therefore define

1 1 1
‘@pr = %(5PU - iqxatU) = ng + i(CIU - QX)‘@th
1 1 1
Dy X 1= Tm(aqu + EantU) =D — §(pU —px)%4,, and

1 2 02, 1
N = 1 (120 1P + |20 x ) + 392,
Applying the latter operator to e*™F1 we obtain

AmiBy (2,0,U,X = 4 AmiB(E,0,U,X
Ny x e TFERUX) |2 gl MFERUX),

and by changing some variable names also

Ny e TEIEYV.X) _ = - \11\4 ATIEL(E,0,V,X)

) Hn

In much the same spirit we (re)define

1 2 N2, 1.
‘Cq) :E<|D‘Pu| +|DSOU|) +Z‘D4pw7

(cf. the operator Zp defined as in 5.20, which differs from Lg only by a normalizing
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factor) and we immediately obtain

; = _ 4 ; =
£©64W1E1(_,¢’,U,X) _ ‘U 1, X‘H e47rzE1(_,<I>,U,X)7 and
n

quezxniEl(E,\p,v,X) _ ‘Vfl . X]; ATEL(EW,V.X)
For the sake of completeness, let us remark that

0= '/\/’U’Xe47rzE1(:7\I/,V,X) — £q>€47r7,E1(:7\I/,V,X) _ NVXe47mE1(:,<I>,U7X)

)

— Lye!mEI(ERUX)

What now remains to be looked at is the action of Ny x, Ny x, Ly, Lo on

Ey(U,®@,U,V,X): =V + & [U - X,V X])

and e2miB2(¥,8,UV,X)

Y, Yoy -5 qx, tx. Since

To this end, let us compute Fs in terms of the coordinates

_ ~ 1
Ut-x,v1t-X]= [(px—pU,qx—QU,tx—tU—5(1)qu-(]pr)),

1
(px —pv,ax —qv.tx —ty — i(pVQX - QVPX))]

= (0,0, (px —pv)(ax — av) — (gx — @) (px —pv)),

we obtain

Loe2miBa(VOUVX) _ L'@e%i <(¢w+<{>w) ((PX —pu)(ax —qv)—(9x —qu)(px *pv)))

- i((px —po)ax — av) — (ax — av)(px — pv))’
v xp

— LBV BUVX)

To determine the action of Ny x and Ny x, we observe that for je1,...,n
2 2miEs(U,8,UV,X) _ 2 2 _2miBs(V,®,U,V,X

@ije miBs ) = (Q;Z)w + Sow) (QJX - QJ'V) e 2 )7
2 2miE(9,0,UV,X) _ 2 2 _2miBs(V,®,U,V,X

@que miBa( ) - (zpw + Sow) (ij _pjv) e 2 v )7

9y 2TEA(VRUVX) _
v )
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Hence, we have

. 1 2
NU7X€2mE2(\II,<I>,U,V,X) _ E(ww i sow)4(!px _ pv!2 +lgx — qv!Q)

and the analogous result for Ny x.
Let us finally start with the actual proof. To prove continuity of ® we need to show
that for every j € N U {0} there exists k(j) € N U {0} and a constant C; > 0 such that

lor ® o2 < Cjllotl g loalpec - (5.36)

Yet, as the following calculation will show, we only have to consider derivatives in =
since the left H,-translations T)P(I,”, and hence their generators Z.;, j = 1,...,2n + 1,
commute with o1 ® oo. Thus, let &/, X’ € R***! and let ngn“ denote the Euclidean

translation by =’ in the variable Z. We then compute

R2n+1

(T:, T)}(I/TLO'l@O'Q)(E,X) = (01 @Ug)(E—E/,X’_l.X)

— 42n+1 JJJJOI(W’U)U2((I)’V)€4M<EE’<I>,U—1.X’1.X>

x ¢ Am(EE UV TLXTHX) 2mi(U R U XX VIR XTNXD) gy g 4 dY

= fﬂf o1 (U, U)o2(P, V)e4m<5_(‘1’+5/)v(x/'U)71'X>

% 6—4m’<E—(‘1/+E’),(X’-V)*1-X>627rz'<‘l/+<b,[(X’-U)*1-X,(X’-V)*l-X]> AV dU dd dV,

which after a measure-preserving change of variables equals

4277,—',—1 J‘J‘J‘J‘ 0_1(\1, _ E/, lel . U)O'Q((b _ 517 X/*l . V)e47'ri<57¢’,U71X>

% €f4m'<Ef‘I/,V—1-X>e2m'<\ll+<bf25’,[U—1-X,V‘l-X]> AU dUT d® dV.

Hence ® commutes with T° )}(I,", but not quite with Tgﬂ%ﬂ, thus with the derivatives 9}8(,
but not with Dg for {a),(8) > 0. For each step of the proof we will therefore mainly
prove the case (@) = (f) = 0 and eventually indicate the slight changes required to cover

the case (&) > 0. To this end, it is useful to note that

(DEo1 ®02)(E,X) = jff(U—l X+ VLX)

x Integrand(Z, X, ¥, U, ®, V) d® dU d¥ dV (5.37)

if Integrand(Z, X, U, U, ®, V') denotes the untouched integrand from (5.28).
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Step 1)
Here we show the result, i.e., the required semi-norm estimates, for the special case that
01,01 € L (R¥*2). Let us pick some ¢ € CZ(R?"*+! [0, 1]) such that ¢(©) = 1 for all
O]y, < 1and ¢(0©) = 0 for all [O]g > 2. For an arbitrary but fixed = € R2+1 we
then define

so that, ¢ = 1, whenever |2 — Oy << Z >, and ¢ = 0, whenever [= - Ol >2 < = >.

Similarly we define

0x(2) = ¢(0<x>1(Z7" - X)).
As one can easily check, ¢=, ¢x € S°(H,,) uniformly in Z and X, respectively, and for

k(U U, @, V) :=01(V,U)os(

o2 )¢=(P)dx (U)g=(®)dx (V),
HQ(\I/, U, (I), V) = 0'1(\11, U)O‘Q(

PV
©,V)(1 - ¢=(¥)px (U)p=(2)dx (V)),
we have k1, ko € S™T2(H,,) with

[k1]p) < ¢ilon]plozlyy) and [k2]y) < ¢jlon]iploa]y,

uniformly in = and X. In order to prove the required continuity estimates for o1 ® o3, we
will split up the integral into two parts and prove the estimates for the two summands
corresponding to x1 and ko, respectively.

As above, let us denote by 4miE(Z, X, U, U, ®, V) or, if there is no danger of confusion,
simply 47iE, the exponent in Formula (5.28). Moreover, let us set

2

)

FUX,V):=|U"" -X]‘I*{n + % w'-x,v'.x]

for which the order of U and V will be crucial in the following estimates. For the first
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integral we then observe that an integration by parts yields

f ﬂfﬁl(xy, U, ®,V)e*™E qu dU d® dV

_ Hﬂ (0.0 ) (1+ < 2> £ (1+ < 2>V ) et
(1+ <2 F(U, X, V)N) (1+ <2 >N F(V,X,U)N)

d¥ dU d® dV

e47riE
- HJJ (1+ <E W F(U, X, V)N) (1+ < E >N F(V, X, U)N)
x [(1+ <E=W M) (14 <2 =W ﬁg)m](\p,U,qa,V) AU dU d dV,

for which the latter integral is dominated by
C<zZ>mazsm? i

AV dU d® dV
(1+ <E>W FU, X, V)V)(1+ < E>*N F(V,X,U)N)

max{|E—V|gy, |2y, }<2<E>,
—1 —1
max{|U -X|Hn,|V -X]Hn}<2<X>

>ml o« = »>m2 ig due their

(1]

The replacement of the factors < ¥ >"l< & >™2 by <

comparability on the compact set characterized by
max{|= -Vl ,[E-P[g } <2<E>.

We also observe that the integral can be bounded from above by

. dVU dU dd dV
¢ ﬂﬂ (1+ < U >4 (14 < & >N (1 + F(U, X, V)V) (1 + F(V,X,U)N) =%

provided N > Q”Q—H Let us furthermore note that the constant C' can be a very generous

bound in principle and will always encompass the according semi-norms of o1,05. By
taking < = >"l< = >™2 to the other side and combining the appropriate constants, we
hence conclude that [r1][;; < Cjlo1]anylo2]an-

We now focus on the second integral. Let

2 2
G(U,V,X) = (Ipx — pu|* + lax — av*)” + (Ipx —pv* + lax — av]?)”,

for which the order of U and V is irrelevant. Again we employ integration by parts and
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compute

ﬂﬂ ko (W, U, ®, V)e™E 4 dU d® dV

ffff e47rz'E
= N
(2= 9y, * + 12— @l * + 50 +)'GU V. X))

- 4 _ 4 _

\:7\11\Hn+\:7‘1>|Hn>16<:>4,

-1 4 -1 4 4
|U -X\Hn+\v -X|Hn>16<X>

(NMux +Nux)™ [((1 + L)1+ cg)@) (0, U,0,V)(1+ F(U, X, V)N) ™"

(1+F(V, X, U)N)_1] AV dU d® dV.

Provided 4N > 2n + 2, the homogeneous dimension of H,,, the latter integral is domi-

nated by

C

\; mi1—4N P mo—4N
ﬂ e =%~ S dUd®  (5.38)

— 4, = 4
B[l +|E—dlk >16<=>4 (’: — Uy, HE- e+ 30)4)

for the following reasons: First, the compact region Kg outside which (¥, ®) —
¢=(V)¢=(®) vanishes is given by K7 = {(¥,®) € R*"*? | max{|E — Uly ,[E— P } <
2 < E >}. Hence {(¥,®) e R"*2 | E— Ty +[E- Dl > 16 < = >4} 2 (K3)°
and the domain of integration is fine. Second, if we use the analogous notation K jf for
the (U, V)-integral, then (U, V) — G(U,V, X) is bounded from below on (Kq)f)c and can
therefore be disregarded in the remaining integral (5.38).

For the latter we will split up the domain of integration into |\IJ|‘ILLL + |<I>|il{n >4t <= >4
and \\I/ﬁln + ]<I>|;1{n < 4% < Z >, For the first region we observe that (5.38) is dominated
by

|m1|Z|m2\_2N

Cr < 2> x H (<¥ >+ <@ >4 T dP
W5y, +|®[5,, >4 <E>1
< CQ <= >74N< = >\m1\+|m2|72N
if only NV is large enough. Without difficulty we can shift the factor < Z >™1%"2 t¢o the
left-hand side and require the constant Cy to encompass the product [o1]sny[o2]an-

The same can be expected of the constant in the second estimate for which the integral
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is dominated by

Oy <= =1 « H W =N N 4 g
|\Il\‘1‘{n+\<b|%{n<44<5>4

—4N mymo—8N+4n+2

<(Cy<E> <Z=>

Hence we conclude that [s2];] < Cjlo1]ny[o2]jan)- This proves Step 1 for (a) = 0.
Formula (5.37) shows that for (a) > 0 we simply have to choose N accordingly larger
to retain our estimates.

Step 2)
This step is concerned with a pointwise estimate that will become important once we
stick our pieces together at the end of the proof. Let oy, 09 € .7(R**2) and such that

o1 is supported where |W +|U > K >0,
1 Vg, +Ulg, (5.30)
K.

02 is supported where |®[y + |[V]y >

We show that for every a > 0 there exist j,, M € N and C, > 0 such that

‘ (D27%01 ®02) (2. X )‘ < Calo1lpa iy reloeljorcarr ™ (5.40)

for all |E[g + [X|g, < % Again because ® commutes with T)I({” we only have to

consider the (a) > 0,{(8) = 0. And as above we will first treat the case (o) = 0 and
eventually remark on the required changes in the proof.

To start with, we observe that

(1 +N\/,X + ﬁq;)@zlm'E

. _ 1 2NN |, AN

= 647”E(1 + (2 - ‘I/\i[n + EW + ) (Ipx —pul® + lax — QU\Q) )Tt X‘Hn)
= ™ER (2, X,0,U),

and furthermore that

F(E,X,0,0) " <O+ E- Vi + U X[ )

for some C' > 0 if Conditions (5.39) are satisfied. An analogous estimate holds of course
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for W, U. Hence,

(01 ® 02)(E, —42"+1fm WE 1+ MYy + L)+ M + L)

o1(¥,U)o2(®,V)
d¥ dU d® dV,
(Fl(—'vXulan) (‘—'7X7q)7v) ’

which is dominated by

C[Ul][4N] [‘72][4N] X
f <O >m—4N o >IN q§ JU dd dV
A+ E-2 + V21 X[ )1 +]2—® +[V-1-X|i)

[y, +1Ulg, =K,
1P, +1V g, =K

Now, since for [W|yy +[Uly, = K, [®[g +|V|y, = K there exists M € N such that for

<E>+<X><%Wehave

ﬁ

Uy, +|U” ! X|H (|‘1’|H +|U’H)

(|(I>|Hn + Vg, ),

I\DM—‘[\DM—\

ﬁ

Ply, + [V Xy, =
the last integral is dominated by

C Hf (14, + Ul )™V (0 4 [, + (VI )™ Y 0 U a av

Vg, +|Ulg,, =K,
1@y, +1V g, =K

16N 4
< CNK|m1\+|m2|+ 6N+8n+4

Choosing N appropriately large, we obtain Estimate (5.40).

In case (@) > 0 we can again compensate for additional factors (U lex+vlex )a
in the integral by choosing N large enough.

Step 3)
For o1 € S™(H,,),02 € S™2(H,,) and ¢ as above, let us define

01:(P,U) :=
02.(V,U) :=

Then o1, — o1 and o2, — o092 in the C*-topolgy as ¢ — 0, and HO’LEHU] <

¢jllotll | ]S G lo2lljj), for ¢; independent of e, follows from an estimate
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similar to the reasoning at the beginning of Step 1). Step 1) hence implies that
for each j € N there exist k(j) € N and C; > 0, both independent of &, such
that o1 ® oa|
property in C® for (o1, ® 02¢)e>0. Hence (01, ® o2.). converges in C* to some
symbol k € S"™*™"2(H,). On the other hand, by Proposition5.31, 01.(2,2") and
02:(2,Z") converge strongly as operators on .’(H,,) to 01(Z, Z") and 02(Z, Z"), re-
spectively, and hence 01 (2, 2 )o2.(2, Z") to the operator 01(Z, Z )o2(2, Z"), while
(01:®02.)(Z, Z) converges strongly to x(Z, Z"). But by Proposition 5.6 (i) the opera-

tors’ action on . (H,,) uniquely determines their symbols, thus we must have o1 @02 = k.

b S C; HUIH[k(j)] ”‘72“[/1@(3')]' Furthermore, Step 2) yields the Cauchy

This proves convergence and hence membership of o1 ® oy = k in S™*™2(H,,). A stan-
dard application of the open mapping theorem for Fréchet spaces finally yields continuity
of ®. This completes the proof. O

5.7 The Link with the Beals-Greiner-Quantization

We conclude this chapter with a few remarks on the connection between the H,-Weyl
quantization and the work of Beals and Greiner, which has been pointed out before
in Folland [29]. In their monograph [3] on pseudodifferential operators on Heisenberg
manifolds, i.e., manifolds M locally diffeomorphic to H,, x R¢2", for fixed d € N but
variable dimension n, Beals and Greiner employ a modified version of Euclidean Kohn-

Nirenberg-quantization which is adapted to non-isotropic Heisenberg structure.

5.7.1 The Natural Semi-direct Product Approach

In case the Heisenberg manifold M coincides H,, x R?"*! their quantization of a symbol
o € (H, x R*1) is given by the 2n + 1-dimensional Euclidean Kohn-Nirenberg

quantization of

(RU)(E’7 X) = R(U)(&u &vs Ewy Xz Xy>» Xz)

= U(gu - %vagv + %Xuag’wa Xz Xy» Xz) (5-41)

adfp (X)(2), X).

_ 1
CEE

Let us point out that the symbols corresponding to the Euclidean Weyl quantization

bear precisely the inverse relation to their H,-Weyl analogues, that is, R(op) = o

(cf.Identity (5.31)). Bearing in mind that the Euclidean Kohn-Nirenberg quantization
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of a symbol 7 (applied to a function f) is given by

(Opkn (7)) (X) = f F(P, Q)™ X0 (2™PL) £) (X)) dP dQ (5.42)
= J?(P, Q) * X f(X + P)dP dQ
= jT(E, X) *™EX F(E) d=
= H 7(E,Y) 2™ EXY0 £(Y) dY dE,

we thus compute

= 1 - Ti(E, X — -
Ophao) = |[ o2~ 5 adiy, (X)(2),X) &N p(v) ay dz

- f f (2, X) 2ri(E s adfy, OE)X-Y) ¢y gy ¢= (5.43)
- f f (2, X) 2" EY XD (v gy d= (5.44)
- f f o(2, X) e 2 EXTNY) £y gy gE. (5.45)

In Equality (5.43) we have re-used the change of variables from Identities (5.30) and
(5.31), and Equality (5.45) makes use of the following short calculation, which essentially

reduces to the same argument, too:

<5 + 2 adfy, (X)(E), X - y> _ <(1 + 5 adfy, (X)) (2), X - y>

- <E, (I - %adH“)(X)(X - Y)>

= E,X—Y—;[X,X—Y]>
=(EY X

=-EX 1Y)

On the other hand, we may dare an educated guess based on the close relation between
the 2n + 1-dimensional Euclidean Kohn-Nirenberg quantization and the Beals-Greiner-

quantization, i.e., (5.41), suspecting that the latter expressed by Identity (5.42) but with
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the R?"*+1_gradient D replaced by its H,,-version 2. Indeed we compute

f 5(P, Q)e*™ QX (2miPL) £) (X)) dP dQ
_ f (P, Q) 2™QX) £(X . PYdP dQ
- J J J f 0 (2, X) e 2TUEP) 2miX,Q) 2mQX) £ (X . P) dE dX dP dQ
_ J J (2, X) e 2MEP) (X - P) d= dP
_ ”J(E, X) e 2HEXTIY) £y g2y

Thus, the Beals-Greiner-quantization can be expressed by

Oppa(o) = JG(P, Q) (0, Q,0)7(P,0,0) dP dQ

= JG(P, Q)7 ((0,Q,0) On,,, (P,0,0)) dP dQ,

that is, via integrating against m as a representation of Hj, = R2"+1 % H,, whose
elements are written as (0, Q,S) On,,, (P,0,0).

Remark 5.39. The representation
7: (P, Q) m(0,Q,0)n(P,0,0) = 27X 2P, D)

of the quotient group R*"*+! x H,, ~ Hs ., defined in Sections 4.2 and 4.3, is precisely

the one which establishes the relation

OpBa()fs o, = GV gy, y (5.46)

between the Beals-Greiner quantization on H, and the STFT V[ on H, defined by
Defintion 4.8.
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