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Abstract

In many applications it is desirable to infer coarse-grained models from observational data.
The observed process often corresponds only to a few selected degrees of freedom of a high-
dimensional dynamical system with multiple time scales. In this work we consider the inference
problem of identifying an appropriate coarse-grained model from a single time series of a mul-
tiscale system. It is known that estimators such as the maximum likelihood estimator or the
quadratic variation of the path estimator can be strongly biased in this setting. Here we present
a novel parametric inference methodology for problems with linear parameter dependency that
does not suffer from this drawback. Furthermore, we demonstrate through a wide spectrum of
examples that our methodology can be used to derive appropriate coarse-grained models from
time series of partial observations of a multiscale system in an effective and systematic fashion.

Keywords: parametric inference, stochastic differential equations, multiscale diffusion, chaotic
dynamics, homogenization, coarse-graining

1. Introduction

Many natural phenomena and technological applications are characterized by the presence of
processes occurring across different length and/or time scales. Examples range from biological
systems [1] and problems in atmosphere and ocean sciences [2, 3] to molecular dynamics [4],
materials science [5] and fluid and solid mechanics [6, 7, 8], to name but a few. Studying the
full dynamics of such systems is often a very intricate task due to the complex structure of
the systems which also hampers the ability to obtain governing equations from first principles.
However, it is often possible to exploit, e.g., scale separation in order to obtain a reduced (low-
dimensional) model for a few selected degrees of freedom. The coefficients and/or parameters
in the reduced model must be derived from the full dynamics through an appropriate coarse-
graining procedure; see, e.g. [9, 10, 11] for recent works on various coarse-graining methods. As
mentioned above, it is often not possible to obtain such a coarse-grained equation in explicit form
and one must necessarily resort to observations [12, 13]. It is thus desirable to appropriately fit a
reduced stochastic coarse-grained model to the observations of the underlying complex process.

The general problem of obtaining a reduced coarse-grained model from the full system can
be formulated as follows. Let the underlying system be given in terms of a dynamical system
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Z which evolves, symbolically written, according to the dynamics

dZ

dt
= F (Z) , (1)

where the state space Z of Z is high (or even infinite) dimensional and F is a nonlinear function.
For instance, the semilinear partial differential equation of the type ut = Au+ψ(u,∇u,∇2u, . . . )
with periodic boundary conditions in an extended domain, often appearing in pattern formation
dynamics of spatially extended systems, can be written as an infinite dimensional system of
ordinary differential equations (ODEs) in Fourier space in the form of (1) in which case F
depends on the operator A and the function ψ. As we are only interested in the evolution of a
few selected degrees of freedom, i.e. only some components of the full dynamics Z solving (1),
we assume that one can separate these resolved degrees of freedom (RDoF) in the dynamical
system from the unresolved degrees of freedom (UDoF). The choice of RDoF and UDoF is a part
of our modeling strategy. Standard examples include systems with well-separated time scales,
e.g. the decomposition between climate and weather degrees of freedom in atmosphere-ocean
science and the use of reaction coordinates in the study of chemical kinetics or in molecular
dynamics. For such systems, one decomposes the state space into subspaces X and Y that
contain the RDoF and UDoF, respectively:

Z = X ⊕ Y ,

with dim(X )� dim(Y) typically. We also introduce the projection operators onto these spaces
P : Z 7→ X and (I − P ) : Z 7→ Y , respectively. Let now X be the projection of Z onto the
space of X , i.e. X = PZ. Then we postulate the existence of a reduced coarse-grained stochastic
model describing the evolution of X alone. Here we assume that the stochastic model for X is
given via a stochastic differential equation (SDE):

dX = f(X) dt+
√
g(X) dWt , (2)

where W denotes a standard Brownian motion of dimension equal to dim(X ). Once the coarse-
grained model (2) is identified, it can be a used to study the dynamic characteristic features of the
full system (1). Indeed, its low-dimensionality and simplicity makes it particularly accessible for
both rigorous and computational treatment; see [14, 15, 16] for examples. For many practically
relevant cases however, and as we emphasized earlier, it is not possible to derive a coarse-grained
model (2) analytically, because of the complexity of the underlying full system or simply because
the full model (1) is not completely known. Consequently, the only way to obtain a coarse-
grained model in such a situation is to use observations, e.g. experimental and/or simulation
data, of the full dynamics projected onto the subspace X , i.e. onto of RDoF. That is, it is
desirable to identify the coarse-grained SDE model (2) in a data-driven fashion.

An important class of dynamical systems for which coarse-grained equations of the form
(2) are known to exist, is when the dynamical system (1) is given as system of SDEs with two
widely separated time scales. Such systems are a natural testbed for data-driven coarse-graining
techniques, as one has explicit information about the coarse-grained model. Specifically, let us
consider the following as a prototypical multiscale system

dXε =

(
1

ε
a0(X

ε, Y ε) + a1(X
ε, Y ε)

)
dt+ α0(X

ε, Y ε) dUt + α1(X
ε, Y ε) dVt , (3a)

dY ε =

(
1

ε2
b0(X

ε, Y ε) +
1

ε
b1(X

ε, Y ε)

)
dt+

1

ε
β(Xε, Y ε) dVt , (3b)

2



with ε� 1 controlling the time scale separation. That is, Xε denotes the degrees of freedom we
are interested in (i.e. the RDoF) and for which we would like to obtain a coarse-grained model
describing the evolution of Xε independent of Y ε as ε � 1. Mathematically, the derivation of
such coarse-grained models can be made rigorous in the limit of ε → 0 using averaging and
homogenization techniques; see e.g. [17] and the references therein for details. In particular, the
slow process Xε converges weakly in C([0, T ],Rd) to X solving an SDE of the form (2):

dX = f(X) dt+
√
g(X) dWt . (4)

The drift and diffusion coefficients (i.e. the functions f and g) can be formally derived using
standard results from homogenization theory. A data-driven coarse-graining strategy would
then be to use available observations of the multiscale system, specifically of Xε in (3), to
identify the coarse-grained model (4) by inferring the functions f and g.

Often it is possible to justify proposing a coarse-grained equation with a particular structure
based on theoretical arguments or previous experience with similar systems. In these cases the
inference problem for f and g in Eq. (4) reduces to estimating unknown parameters in the SDE.
There is a vast and rich literature on the parametric inference problem for SDEs; see [18, 19, 20]
for instance. For a data-driven coarse-graining approach for Eq. (4) based on observations
from Eq. (3) it turns out, however, that commonly used estimators can be biased due to small
scale effects in the observations. In fact, estimators, such as the maximum likelihood estimator
and the quadratic variation of the path estimator, are highly sensitive to the scale separation.
While these estimators do converge (as ε → 0) to the parameters in the coarse-grained model
on the shorter advective time scale, they become biased on the longer diffusive time scale
[12, 21]. The systematic bias due to multiscale effects on the diffusive time scale can be reduced
by subsampling the data at an appropriate rate. However, the idea of subsampling does not
necessarily lead to an efficient algorithm that can be used by practitioners, because the optimal
sampling rate is known only for very simple systems (see e.g. [22, 23, 24]) and since, furthermore,
subsampling the data increases the variance of the estimator. A satisfactory algorithm for fitting
a coarse-grained SDE to data based on the idea of subsampling at the optimal rate combined
with an appropriate variance reduction step has been developed only for some simple systems
used in econometrics [22]. To our knowledge such a methodology has not been developed and
implemented for problems arising in the natural sciences, such as in molecular dynamics or
in statistical physics for example. In addition to the problem of typically not knowing the
optimal subsampling rate, the numerical experiments in [12] moreover indicate that the optimal
subsampling rate can vary between parameters in the same coarse-grained model. Related work
that investigates the problem of parametric inference combined with subsampling techniques in
various settings can be found e.g. in [25, 26, 27, 28], while parametric inference for multiscale
problems with vanishing noise is, e.g., also [29]. Similar consistency questions arise also in fields
other than parametric inference, including problems in stochastic filtering and stochastic control
for SDEs with multiple scales [30, 31].

Related data-driven approaches have also been studied in the context of numerical methods
for SDEs with multiple time scales, i.e. for systems of the form (3). We mention in particular
the heterogeneous multiscale method [32, 33], which is based on the idea of evolving the solution
of the reduced coarse-grained equation, when the coefficients in the coarse-grained equation are
being evaluated “on the fly” by running short runs of the underlying fast dynamics. Similar ideas
have been proposed in the framework of the equation-free methodology introduced by Kevrekidis
and collaborators (see e.g. [34, 35, 36, 37]), where a coarse-grained model is evolved using
appropriately initialized simulation on short time scales of the full multiscale system without
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knowing the coarse-grained equation in closed form, making this methodology in principle also
applicable for more general problems, such as kinetic equations. As such, these techniques can
be viewed as a hybrid between numerical analysis and statistical inference.

To accurately infer coarse-grained models from observations of a multiscale system, one
has to resort to alternative estimation methodologies, which are robust with respect to the
multiscale effects of the dynamics. The present study is motivated by a recently introduced
estimation methodology which demonstrated how to bypass the need to subsample data [13].
In the form as proposed in [13] this methodology is, however, only applicable for observations
where an ensemble of short trajectories for multiple initial conditions is available; a design
common in many computer-based simulations. In most real world experiments, such as in
molecular dynamics simulations one typically has access only to a single long time series. The
goal of the present work is therefore to generalize and appropriately extend the methodology
developed in [13], so that it can be used for an observation design where only one long time
series is available. Furthermore, we demonstrate by means of numerical experiments that the
proposed inference methodology works well for various quite general dynamical systems of the
form (1), for which a coarse-grained model of the form (2) is known to exist.

The rest of the paper is organized as follows. In Section 2 we follow the general procedure
of [13] and present the necessary generalizations and extensions required for the case of the
observational design of a single time series. Specifically, we will focus on problems where both
the drift function f and the diffusion coefficient g depend linearly on an unknown parameter
vector. This setting covers, for example, the cases where f and g can be expressed as an
appropriate series (e.g. Taylor of Fourier) of known functions. Moreover, we believe that the
ideas developed in this work for the case of linear parameter dependency can also be instrumental
for the nonlinear case. To demonstrate the effectiveness of the developed methodology we apply
it to a number of selected examples, which we discuss in Section 3. Specifically, we use the
estimation methodology to identify coarse-grained models for Brownian motion in a two-scale
potential (i.e. a stochastic multiscale systems), for a deterministic system exhibiting chaos, for
a Kac–Zwanzig model, and for a deterministic model for Brownian motion. Finally, Section 4
offers a summary and discussion of our results.

2. Estimators for coarse-grained models

We outline here a general methodology that can be used to estimate parameters in SDEs
based on a single trajectory of discrete time observations. For the sake of clarity, we first
outline the derivation of the estimator for the case where no multiscale effects are present.
To this end we derive an estimating equation in a continuous time setting, which will relate
the unknown parameters to statistical properties of the solution to the SDE and discuss how
to obtain parametric estimators from it. To obtain a functional relation between unknown
parameters and statistical properties of the model, in Section 2.1 we follow the methodology
outlined in [13] and generalize it appropriately. Most of the examples we are interested in
are such that the coarse-grained model is one-dimensional, see Section 3, i.e. we focus on the
case of a scalar diffusion process. It is, however, worthwhile to remark that the our derivation
can be readily extended to the multidimensional case. Moreover, we discuss modifications and
discretizations to the continuous time estimating equation to account for observations which
are available in the from of a time series before discussing the coarse-graining scenario.
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2.1. Estimating equation
Consider the scalar-valued Itô SDE

dX = f(X) dt+
√
g(X) dWt , X(0) = ξ , (5)

on some finite time interval [0, T ], T > 0, withW denoting a standard one-dimensional Brownian
motion. We assume that both the drift function f and the diffusion function g are such that
Eq. (5) has a unique strong solution on [0, T ]; details are given in [38, 39]. Let us denote by
Xξ(t) the solution of Eq. (5) at time t started in ξ at time zero, i.e. Xξ(0) = ξ. Moreover, denote
by L the generator associated with (5), i.e. L := f d

dx
+ 1

2
g d2

dx2
. Then, Itô’s formula together with

the martingale property of the stochastic integral implies that

E
(
φ
(
Xξ(t)

))
− φ(ξ) =

∫ t

0

E
(

(Lφ)
(
Xξ(s)

))
ds , (6)

for any φ ∈ C2(R) and deterministic initial condition ξ. For the sake of completeness, we remark
that other commonly used notations for E

(
φ
(
Xξ(t)

))
are E

(
φ
(
X(t)

)∣∣X(0) = ξ
)
or Eξ

(
φ
(
X(t)

))
,

and that Eq. (6) is also known as Dynkin’s formula [39, Ch. 7.4].
In this work we follow a semiparametric approach for the parametrization of Eq. (5). That is,

we assume that both f and g depend on an unknown parameter vector θ ≡ (θ1, . . . , θn)T ∈ Rn,
n ∈ N, which we wish to determine from observations. Specifically, we consider

f(x) ≡ f(x; θ) :=
n∑
j=1

θjfj(x) and g(x) ≡ g(x; θ) :=
n∑
j=1

θjgj(x) , (7)

with some known functions fj and gj, 1 ≤ j ≤ n. That is, both f and g can depend on the same
parameter. If this not the case however, one can think of the first k, say, components of the
vector θ parametrizing the drift function f while the remaining n− k components the diffusion
function g, and setting fj = 0 for k < j ≤ n as well as gj = 0 for 1 ≤ j ≤ k. For the numerical
examples in Section 3 we will have that f and g are polynomials of some degree, so that fj and
gj will be appropriate monomials, respectively. After substituting (7) into (6) and rearranging
terms, we arrive at

E
(
φ
(
Xξ(t)

))
− φ(ξ) =

n∑
j=1

θj

∫ t

0

E
(

(Ljφ)
(
Xξ(s)

))
ds , (8)

with Lj := fj
d
dx

+ 1
2
gj

d2

dx2
. To write this estimating equation (8) in a more compact manner, we

define the following component functions for any fixed time t ∈ [0, T ] and any fixed function φ,

bc(ξ) := E
(
φ
(
Xξ(t)

))
− φ(ξ) ∈ R and ac(ξ) :=

(∫ t

0

E
(

(Ljφ)
(
Xξ(s)

))
ds
)
1≤j≤n

∈ Rn ,

which highlight the dependency on ξ. Using these definitions, Eq. (8) reduces to

ac(ξ)
T θ = bc(ξ) , (9)

which is underdetermined for n > 1. To make this identity useful nonetheless, we exploit the fact
that Eq. (9) is valid for any ξ; a technique that has already been used successfully in [13]. We
now introduce the concept of trial points : as we work in an observation framework where only
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one time series is available, we denote by ξ the trial point instead of initial condition to avoid
confusion with the initial condition of the time series; see also Section 2.2.1. By considering a
finite sequence of trial points (ξi)1≤i≤m, we can assemble a system of linear equations, solved by
the parameter vector θ:

Aθ = b , (10)

where A :=
(
ac(ξi)

T
)
1≤i≤m ∈ Rm×n and right-hand side b :=

(
bc(ξi)

)
1≤i≤m ∈ Rm. Since this

linear system does not have a unique solution in general, we define the estimator of θ based on
A and b as the least squares solution of Aθ = b with minimum norm:

θ̂ := arg min
x∈S

‖x‖22 , S :=
{
x ∈ Rn : ‖Ax− b‖22 = min

}
. (11)

At this point, we can still exploit the degree of freedom for choosing φ in Eq. (8) freely. Motivated
by [13] where approximations of the first and second moment provided very accurate estimates
of θ, we use φ(x) := x + x2 throughout this work. In fact, the two-step estimation approach
for θ presented in the aforementioned work can be recovered as a special case of the procedure
outlined here. Indeed, using φ(x) = x causes Eq. (8) to degenerate to an equation not containing
any parameters characterizing the diffusion function g. This then yields an estimator for the
drift parameters only. After this first step, we substitute the obtained estimators into the
parametrization of f . Repeating then the same steps with the function φ(x) = x2 gives an
estimator of the remaining parameters determining g and the two-step scheme is completed.
Finally, we mention that other choices for the function φ may work as well to construct the
estimator (11). In view of the preceding discussion it is clear however, that φ cannot be chosen
arbitrarily as it has to be such that Eq. (8) still depends on all unknown parameters that we
want to estimate. The used function φ(x) = x + x2 thus appears to be the obvious candidate
for various problems, while other choices of φ may be problem dependent. A more systematic
study of how to choose φ in the context of the rigorous convergence analysis will be presented
in [40].

2.2. Modifications due to discrete time observations
Recall that we seek to determine an approximation of the parameter vector θ in Eq. (5)

with parametrization (7), based on a trajectory of discrete time observations. That is, we have
access to N data XN :=

(
X(tk)

)
1≤k≤N with tk = (k − 1)h, where h = T/(N − 1). A constant

sampling rate h is assumed here merely for simplicity and the proposed methodology can be
readily extended to the case of non-constant sampling rates. To apply the methodology outlined
above, we have to carry out two essential modifications to the purely continuous framework (8).
Firstly, we have to estimate the conditional expectations of the form E

(
ϕ
(
Xξ(τ)

))
based on

XN . Secondly, we have to replace the temporal integrals with discrete versions. A detailed
algorithmic description of the estimation procedure for discrete time observations based on
these modifications is presented in Section 2.2.3.

2.2.1. Estimating the conditional expectation
Throughout the estimation procedure, we have to approximate conditional expectations of

the form E
(
ϕ
(
Xξ(τ)

))
for multiple values of the trial point ξ. The available time series XN

provides, however, only one initial condition which we cannot influence nor manipulate; thus the
necessity to distinguish between trial point and initial condition. A way out of this predicament
is possible when the time series (i.e. the discrete time process) is stationary and sufficiently
mixing so that

Cov
(
X(t), X(t+ kh)

)
≤ Cρk ,
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for some finite C > 0 and ρ ∈ [0, 1[, which we will assume from now on; see e.g. [41, 42] for
further details in the inference context and refer to e.g. [43, 44] and the references therein for
a discussion of sufficient conditions on the drift function and the diffusion coefficient in SDE
model (5). Related conditions on the covariance as a function of the lag k have also been used
in other works on parametric inference for diffusion processes; see [24] for instance. Intuition in
this case then suggests to sequentially search the time series XN for the value of the trial point
ξ and then to approximate the expectation by averaging over the events ϕ(X) at τ time units
after the occurrences of ξ in XN . A technique which makes this approximation idea precise is
the class of so-called local polynomial kernel regression estimators [42]. Recall that the sampling
time of the time series XN is h. For a shift by τ > 0 time units to be well-defined, we require
that τ = lh, for some l ∈ {1, 2, . . . , N − 1} and for such a τ we set Nτ = N − τ/h ∈ N. Then
the simplest regression estimator (locally constant) yields the approximation

E
(
ϕ
(
Xξ(τ)

))∣∣∣
τ=lh
≈

∑Nτ
k=1 ϕ

(
X(tk+l)

)
K
(
X(tk)−ξ
κNτ

)
∑Nτ

k=1K
(
X(tk)−ξ
κNτ

) , (12)

which is also known as the Nadaraya–Watson estimator [45, 46]. Here K is an appropriately
chosen kernel, and 0 < κNτ denotes the bandwidth which decays to zero as Nτ → 0 at a rate
depending on the sense of convergence in Eq. (12); details are given in [41]. Throughout this
study we select the Gaussian kernel K(x) := exp (−x2/2)/

√
2π for convenience, but we remark

that other choices are possible.
Upon defining wNτ ,k(ξ) := K

(
(X(tk)− ξ)/κNτ

)
/
∑Nτ

k=1K
(
(X(tk)− ξ)/κNτ

)
, one can rewrite

the regression estimator, i.e. the right-hand side in Eq. (12), as
∑Nτ

k=1wNτ ,i(ξ)ϕ
(
X(tk+l)

)
. That

is, the regression estimator is given as a weighted average with non-identical weights wNτ ,k(ξ).
Let us finally note that if the trial point ξ is such that the denominator of the regression
estimator in Eq. (12) is zero (roughly speaking this happens if ξ is not in the support of the
stationary density of XN), then we set wNτ ,k(ξ) = 1/Nτ instead for well-posedness (see also
Sect. 2.2.3 below). However, one should ensure that this event is avoided by selecting the trial
points appropriately, otherwise the estimator’s approximation accuracy would deteriorate due
to incorporating unfeasible information. As the regression estimator in Eq. (12) essentially
averages over the events ϕ

(
X(tk+l)

)
for which X(tk) ≈ ξ, one should moreover try to ensure

that the trial point ξ is located in a region where most of the observations are located in order
to average over a sufficiently large sample; see Section 3 for a detailed description of how to
chose the trial points in practice.

2.2.2. Temporal integrals
The integrands of the temporal integrals in Eq. (8) are precisely the conditional expectations

discussed above. Let u(τ) := E
(
ϕ
(
Xξ(τ)

))
be such an expectation for a fixed trial point ξ and

function ϕ. To replace the temporal integral of u over [0, t] by a discrete version in (8), we use
the composite trapezoidal rule with nh equally spaced (nh = t/h) subdivisions:∫ t

0

u(s) ds ≈ h

2

(
u(0) + u(t) + 2

nh−1∑
l=1

u(lh)

)
. (13)

The choice of an equally spaced subdivision of [0, t] where the division length coincides with the
sampling rate h of the available time series XN is made for reasons of a consistent discretization.
In fact, it ensures that the time points τ , say, at which the integrand u is evaluated, is an integer
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Algorithm 1 Algorithmic description of the introduced estimation procedure.
Require: 0 < t such that t/h ∈ N, 0 < h, Ξ ∈ Rm, and XN ∈ RN

1: l← t
h

2: for i = 1 to m do
3: ξ ← Ξi

4: for j = 1 to n do
5: uj,0 ← fj(ξ)(1 + 2ξ) + gj(ξ)
6: end for
7: for k = 1 to l do
8: X ← XN(1 : N − k)
9: Y ← XN(1 + k : N)

10: for j = 1 to n do
11: uj,k ← nwe

(
X, fj(Y )(1 + 2Y ) + gj(Y ), ξ

)
12: end for
13: end for
14: X ← XN(1 : N − l)
15: Y ← XN(1 + l : N)
16: bi ← nwe

(
X, Y + Y 2, ξ

)
− (ξ + ξ2)

17: for j = 1 to n do
18: Ai,j ← h

2

(
uj,0 + uj,l + 2

∑l−1
k=1 uj,k

)
19: end for
20: end for
21: θ ← A+b
22: return θ

multiple of h, so that the shifts by τ time units in the regression estimator (12) are well-defined.
Other (possibly non-equally spaced) time discretizations, which are consistent in the sense that
each trapezoidal node is an integer multiple of h, are of course possible. Finally, we mention
that the use of trapezoidal rule (13) is motivated by the fact that the integrands u are replaced
by the regression estimators (12) in practice, for which we cannot expect to provide sufficient
smoothness. Under these conditions the trapezoidal rule is advantageous over higher order
methods since higher order derivatives, as used in classical Taylor expansion based arguments,
are not continuous [47].

2.2.3. An algorithmic description for discrete time observations
To illustrate how the combination of these approximations can be used to apply the developed

methodology to discrete time observations, we present a detailed pseudocode in Algorithm 1.
Here we assume that a parametrization for both drift function and diffusion function has been
fixed by choosing fj and gj in Eq. (7), for 1 ≤ j ≤ n. The input arguments of Algorithm 1
are the time series XN of N discrete time observations corresponding to a constant sampling
rate h, the m trial points Ξ, and the time t controlling the temporal integration in (8), which is
assumed to be an integer multiple of h (cf. Section 2.2.1). We note that we use the colon notation
[48, Ch. 1.1.8] in lines 8, 9 and 14, 15 to select several components of a vector at once, so that
we can suppress additional iteration details. Similarly, the application of a function defined
on R to a vector (such as in lines 11 and 16) is understood componentwise. We emphasize
that the statement θ ← A+b in line 21 is merely meant as a formal notation for computing
the least squares solution of Aθ = b with minimum norm. In fact, in this work we use a

8



Algorithm 2 Pseudocode of the nwe procedure used in Algorithm 1 to approximate conditional
expectations via the Nadaraya–Watson estimator.
Require: X, Y ∈ RM and ξ ∈ R
1: κ← arg minδ>0

(
1

δM2
√
2

∑M
i,j=1K

(Xi−Xj
δ
√
2

)
− 2

M(M−1)
∑M

i=1

∑
i 6=jK

(Xi−Xj
δ

))
2: if

∑M
i=1K

(
Xi−ξ
κ

)
= 0 then

3: u← 1
M

∑M
i=1 Yi

4: else

5: u←
∑M
i=1 YiK

(
Xi−ξ
κ

)
∑M
i=1K

(
Xi−ξ
κ

)
6: end if
7: return u

QR factorization with column pivoting to solve the least squares problem but other choices
are possible, typically depending on the rank of A; see, e.g., [48, Ch. 5]. Furthermore, the
procedure nwe (called in lines 11 and 16) implements the Nadaraya–Watson estimator (12) for
the approximation of conditional expectations and its detailed pseudocode is given in Algorithm
2. Its input arguments are two lists X, Y of the same length as well as the trial point ξ and
the algorithm returns an approximation of E(Y |X = ξ). In the pseudocode presented here,
we use the least squares cross validation for a data-driven bandwidth selection (line 1). We
mention, however, that this selection technique is used here merely for the sake of a compact
notation and several other methods can be used alternatively [49, Ch. 8.5]. For the numerical
examples discussed in Section 3 we tried different bandwidth selection methods (not shown) but
did not observe any significant differences. We also note that there exist efficient computational
strategies to evaluate the term in brackets in line 1 of Algorithm 2 via fast Fourier transform
related approaches.

2.3. Estimators for coarse-grained models of multiscale systems
A central goal of this study is to identify a coarse-grained model based on observations of a

multiscale system. Specifically, we consider the prototypical multiscale system (3), i.e.

dXε =

(
1

ε
a0(X

ε, Y ε) + a1(X
ε, Y ε)

)
dt+ α0(X

ε, Y ε) dUt + α1(X
ε, Y ε) dVt , (14a)

dY ε =

(
1

ε2
b0(X

ε, Y ε) +
1

ε
b1(X

ε, Y ε)

)
dt+

1

ε
β(Xε, Y ε) dVt , (14b)

equipped with appropriate initial conditions on the time interval [0, T ], where U and V denote
independent Brownian motions, and ε > 0 is a small parameter controlling the scale separation.
Here we assume that 1 = dim (X ), while dim (Y) is arbitrary, so that the coarse-grained model

dX = f(X) dt+
√
g(X) dWt , (15)

is also one-dimensional; W is a standard one-dimensional Brownian motion. In fact, using
results from homogenization theory one can rigorously show that the process Xε solving (14a)
converges weakly in C([0, T ],R) to the process X solving (15) as ε→ 0, provided that the fast
process Y ε is ergodic and the centering condition is satisfied; see, e.g., [17] and the references
therein.

Our data-driven coarse-graining strategy is to use the available observations of Xε solv-
ing (14a) with ε > 0 and estimate both f and g in (15) using exactly the same estimation

9



methodology as presented in Section 2.1. We emphasize that we are facing a problem of model
misspecification now: fitting model (15) to observation from (14a) which is not consistent with
model (15). Parametric inference for misspecified models in the absence of multiscale effects
has been studied, e.g. in [19, Ch. 2.6]. Here we expect that in the limit of infinite scale separa-
tion ε → 0, the error due to the model misspecification vanishes [40]. Finally, our motivation
to resort to the estimation methodology of Section 2.1 also for this setting stems from recent
results in [13], where, as described in Section 1, a related scheme demonstrated to be able to
accurately estimate the coarse-grained model from observations of the multiscale system. This
favorable property agrees with our intuition that the estimated model should be close to the
coarse-grained model if the model misspecification is small, i.e. if ε � 1. In fact, in view of
the theoretical results presented in [40], it is expected that, in the absence of all other error
contributions such as the finite sample size, the estimators converge in a probabilistic sense (in
fact, the convergence is almost surely) to the parameters in the coarse-grained model in the
limit ε→ 0.

Specifically, in this multiscale setting we have access to N discrete time observations of
Eq. (14a), that is Xε

N :=
(
Xε(tk)

)
1≤k≤N with tk = (k − 1)h, where h = T/(N − 1). Based

on the semiparametric parametrization (7) of the drift and the diffusion coefficients in the the
coarse-grained model (15), the multiscale time series Xε

N is used to assemble the corresponding
matrix Aε and right-hand side bε in Eq. (10). The estimated parameter vector of the coarse-
grained model based on the multiscale data Xε

N is then given by the least squares solution of
Aεθ = bε with minimum norm. We denote the estimated parameter vector by θ̂ε to emphasize the
dependency on the multiscale observations Xε

N . It is also worth mentioning that the estimation
procedure is solely derived from the coarse-grained model (15). That is, the procedure does
not incorporate any knowledge of the corresponding multiscale system (14). In addition, we
are not assuming knowledge of the scale separation parameter ε. In other words, one can view
the available time series Xε

N as obtained purely from a “black box” model, which is close to the
coarse-grained model (15) provided that ε� 1.

3. Numerical experiments

In this section we apply the proposed estimation procedure to several examples. We focus
here on the inference problem for coarse-grained models based on multiscale observations, for
which classical estimators are expected to fail. In Section 3.1 we first investigate a stochastic
multiscale system, namely Brownian motion in a two-scale potential. The remaining examples
are deterministic multiscale systems, for which we seek to identify a coarse-grained stochastic
model from a single time series. Specifically, we estimate parameters in the coarse-grained model
for a deterministic system exhibiting fast temporal chaos (Section 3.1), in a low-dimensional
approximation of a large Hamiltonian system (Section 3.3), and in an Ornstein–Uhlenbeck
process constructed in a purely deterministic setting (Section 3.4). To verify the accuracy of
the estimated parameters in the coarse-grained models, we compare the obtained estimates with
theoretically available ones. We will also address the question of selecting the time t controlling
the temporal integrals in (8), in order to uniquely define the estimation procedure of Section
2. To emphasize the dependency of the estimated parameter vector based on multiscale data
θ̂ε also on t, we use θ̂ε ≡ θ̂εt . To assemble the linear system (10) we use m = 54 trial point
for all examples. As mentioned above already, these points ξ are selected a-priori for each
example such that they cover most of the range of the time series Xε

N . One simple and ad
hoc way is to identify the region for ξ by defining aN := (1 − ν) min(Xε

N) + ν max(Xε
N) and

bN := ν min(Xε
N) + (1 − ν) max(Xε

N), for 0 < ν < 1/2. Furthermore, let η1, η2, . . . , ηm be

10



an independent and identically distributed sequence of random variables following a standard
normal distribution. Then we set lm := min1≤i≤m(ηi) as well as rm := max1≤i≤m(ηi) and select
the trial points by linearly mapping ηi to the region of interest [aN , bN ]:

ξi :=
aN − bN
lm − rm

ηi +
lmbN − rmaN
lm − rm

,

for 1 ≤ i ≤ m, which are then fixed throughout the numerical experiment. This rather naive
procedure worked well for the examples that follow where we used ν = 0.2, because the trial
points ξ are located in regions where most of the observations are, so that estimates of the
conditional expectations are expected to be accurate. We remark however, that other approaches
are possible as well. In fact, a more systematic way to construct the trial points is via a
resampling method, which exploits the shape of the empirical distribution function of Xε

N . In
this case let η1, η2, . . . , ηm be an independent and identically distributed sequence of random
variables following a uniform distribution on [0, 1]. Moreover, denote by Xε

1:N , X
ε
2:N , . . . , X

ε
N :N

the order statistic of Xε
N so that Xε

1:N < Xε
2:N < · · · < Xε

N :N . Then the trail points may be
constructed via

ξi := Xε
ki:N

, ki := min {k ∈ N : ηiN ≤ k} ,
for 1 ≤ i ≤ m. Although we did not observe significant differences between these two trial
point selection strategies for the examples considered here, the second systematic strategy may
be advantageous in more general cases as it is purely data-driven. Finally, we note that we
set the estimation procedure’s defining parameters m, T , and h in such a way that their error
contribution due to approximations are negligible compared to the scale separation ε. This is
done to focus solely on the estimator’s performance under the presence of multiscale effects in
the observations, a scenario where other estimation techniques fail to be consistent.

3.1. Brownian particle in a two-scale potential
Let us begin with an example borrowed from [12], which was originally used to investi-

gate the failure of classical parametric estimation techniques for multiscale diffusion processes.
Specifically, we consider

dXε = − d

dx
V

(
Xε,

Xε

ε

)
dt+

√
2σ dWt ,

which models the position of a Brownian particle moving in a two-scale potential V and being
affected by thermal noise. Here W denotes a standard one-dimensional Brownian motion. We
investigate the situation when the two-potential V is given by a large scale part Vα superimposed
with a periodically fluctuating part p: V (x, y) = Vα(x) + p(y). Under this assumption, the
multiscale SDE can be written as

dXε = −
(
V ′α(Xε) +

1

ε
p′
(
Xε

ε

))
dt+

√
2σ dWt . (16)

Notice that the SDE (16) can be rewritten as a fast/slow system of the form (14) by introducing
the auxiliary variable Y ε := Xε/ε.

We consider the case where the fluctuating part p is a smooth periodic function with period
L and the large scale part is a quadratic potential, i.e. Vα(x) = αx2/2. Then, as ε → 0, Xε

solving (16) converges weakly in C([0, T ],R) to the solution of the coarse-grained equation

dX = −AX dt+
√

2Σ dWt , (17)

11
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Figure 1: Relative error of the estimated parameter vector θ̂εt for (17) based on observations of
(16) with α = 2, σ = 1, and ε ∈ {0.1, 0.3, 0.5}.

where A = αL2/(Z+Z−) and Σ = σL2/(Z+Z−), with Z± =
∫ L
0
e±p(y)/σ dy; see [12] for details.

We set the fluctuating part to be p(y) = cos (y). Then the constants Z± can be easily computed
so that A = α/I0(σ

−1)
2 and Σ = σ/I0(σ

−1)
2, where I0 denotes the modified Bessel function of

first kind. We note that both parameters in (17) depend non-trivially on σ.
To estimate the n = 2 parameters in (17), we choose the functions in the drift and diffusion

parametrization (7) as f1(x) = x, f2(x) = 0 = g1(x), and g2(x) = 2, with true parameter vector
θ = (−A,Σ)T . The estimate of θ is then based on a time series on [0, 1000] of the multiscale
system (16) with α = 2, σ = 1 for each ε ∈ {0.1, 0.3, 0.5}. The time series were obtained by
numerically integrating (16) via the Euler–Maruyama method with step size h = 0.001 and
initial condition Xε(0) = 0. Fig. 1 shows the relative error of the estimated parameter vector θ̂εt
as a function of t, for each value of ε respectively. For all three of them one observes that while
very small values of t result in a large relative error, increasing t reduces the error significantly.
In fact, for t = 1 and ε = 0.1 we find a relative error of 10% and for even larger values of t
the relative error drops further significantly below 5%. For t ≥ 3 (not shown here) the relative
error starts fluctuating around 4% due to discretization errors but remains of the same order
as the scale separation parameter ε, which is in agreement with the results presented in [40].
Consequently, it is possible to obtain very accurate estimates of the parameters in the coarse-
grained model (17) based on observations of the multiscale system (16), once t is sufficiently
large. In fact, by comparing the resulting relative errors for different values of ε, Fig. 1 suggests
to choose t of O(1) for a relative error of O(ε).

We proceed by numerically studying the bias and the variance of the estimation procedure
for a fixed time t as functions of the length of the time interval T . To this end we use M
independent Brownian motions in Eq. (16) to generate an ensemble of independent trajectories
Xε

1 , X
ε
2 , . . . , X

ε
M , each on the time interval [0, T ]. Applying the estimation procedure to every

such time series Xε
k yields an estimated value, which we denote by θ̂t(Xε

k, T ) to emphasize the
dependency on the k-th time series and on the final time T . Using these estimated values we
approximate expectations by ensemble averages to define the bias and variance. Specifically, let
ET
M(θ̂εt ) := 1

M

∑M
k=1 θ̂t(X

ε
k, T ) be the average of these estimated values. Then we use

bias(θ̂εt , T ) :=
∥∥ET

M(θ̂εt )− θ
∥∥
2
≈
∥∥E(θ̂t(Xε, T )

)
− θ
∥∥
2
,
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Figure 2: Bias and variance of the estimation procedure as functions of T for t ∈ {0.05, 0.5}
and ε = 0.1. Expectations were approximated as described in the text.

to quantify the (absolute) bias and as a measure of the variance we use

Var(θ̂εt , T ) :=
1

M − 1

n∑
i=1

M∑
k=1

(
ei ·
(
θ̂t(X

ε
k, T )− ET

M(θ̂εt )
))2
≈

n∑
i=1

Var
(
ei · θ̂t(Xε, T )

)
,

with ei, 1 ≤ i ≤ n, denoting the canonical basis vectors of Rn. In other words Var(θ̂εt , T )
is simply an approximation of the trace of the covariance matrix. Fig. 2 shows the behavior
the estimation procedure’s bias and variance as functions of T using M = 100 independent
Brownian motions for t ∈ {0.05, 0.5} and ε = 0.1. One observes that the variance Var(θ̂εt , T )
(Fig. 2(B)) decreases to zero as T increases, with slightly different rates for the different values of
t. Conversely, the bias bias(θ̂εt , T ) (Fig. 2(A)) starts to decrease by increasing T for both values
of t, however, after some value of T , the bias approaches a limiting value of approximately 0.15
for t = 0.05 and fluctuates around 0.04 for t = 0.5. This fluctuation persists even for T > 1000
(not shown here) and are mainly due to the error induced by approximating an expectation
via an ensemble average of size M = 100, which becomes visible in this logarithmic scaling.
The fact that the bias approaches a non-zero limiting value is not surprising (and in fact in
agreement with the theoretical results), as one expects that the estimated value approaches
the true value θ, as T → ∞, plus an O(ε) error due to the multiscale effects in the data Xε.
Furthermore, we note that both values of t correspond to estimated values in Fig. 1 which have
a considerable relative error, where the relative error for t = 0.5 is significantly smaller that the
one for t = 0.05, hence explaining the different limiting values in Fig.2(A) as the constant of
the O(ε) error is t dependent.
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3.2. Fast deterministic chaos
We consider an ODE driven by the time rescaled Lorenz equations:

dXε

dt
= α

(
Xε − (Xε)3

)
+
λ

ε
Y ε
2 , (18a)

dY ε
1

dt
=

10

ε2
(Y ε

2 − Y ε
1 ) , (18b)

dY ε
2

dt
=

1

ε2
(28Y ε

1 − Y ε
2 − Y ε

1 Y
ε
3 ) , (18c)

dY ε
3

dt
=

1

ε2

(
Y ε
1 Y

ε
2 −

8

3
Y ε
3

)
. (18d)

Equations of this form have been used as a deterministic climate toy model, see [50] for instance.
Our aim is to obtain a stochastic coarse-grained model from observations of (18). It is known
that, as ε → 0, the slow component Xε of Eq. (18) converges weakly in C([0, T ],R) to the
solution of the homogenized equation [51]

dX = A
(
X −X3

)
dt+

√
σ dWt . (19)

In Eq. (19) the true parameter values are A = α and the diffusion coefficient σ is given in terms
of the Green–Kubo formula [17]

σ = 2λ2
∫ ∞
0

lim
T→∞

1

T

∫ T

0

Y ε=1
2 (s)Y ε=1

2 (s+ t) ds dt . (20)

Obtaining a value for σ directly from Eq. (20) is computationally challenging so that the para-
metric estimation problem of σ from observations of Eq. (18a) arises naturally for this model,
even without the connection to data-driven coarse-graining methodologies.

To estimate both the drift coefficient A and the diffusion coefficient σ (i.e. n = 2) in Eq. (19),
a self-evident choice for the functions in Eq. (7) is f1(x) = x − x3, f2(x) = 0 = g1(x), and
g2(x) = 1, where the true parameter vector is θ = (A, σ)T . To generate the time series we
numerically integrate the multiscale system of ODEs (18) with α = 1/3, λ = 2/45, and ε = 0.1
on [0, 5000] with initial conditions Xε(0) = 1, Y ε(0) = (1, 1, 1)T . For these parameter choices
(mainly the value of ε) the ODE system (18) is only marginally stiff and we thus solve it using
a fourth order Runge–Kutta scheme with step size h = 0.001. Since there is no exact value for
σ in Eq. (19) available, we cannot compute the relative error of the estimated parameter vector
θ̂εt . Instead Fig. 3 illustrates both estimated values Â and σ̂ as functions of t directly. One finds
that the estimated drift parameter Â is strongly biased for very small values of t. Increasing
t reduces the bias significantly and the estimated value approaches the true value (dashed
line), only with minor fluctuations. In fact, the relative error is smaller than 6% for t ≥ 0.5.
The estimated diffusion coefficient σ̂ shows qualitatively the same behavior. Specifically, by
increasing t the estimated value seems to approach a limiting value. In fact, averaging over
the obtained estimated values for t ≥ 0.5 (i.e. the region for which Â is accurate), one finds
σ̂ ≈ 0.113 with minor fluctuations (standard deviation ≈ 0.002). This value of σ̂ is in very good
agreement with those reported in the literature [52, 13], albeit marginally smaller. In fact, the
relative error between the obtained value here and the value reported in [13] is around 6%.

3.3. Large Hamiltonian systems: The Kac–Zwanzig model
Here we apply our methodology to the variant of the Kac–Zwanzig model studied in [53].

Specifically, we consider the case where one distinguished particle, with coordinate QM and
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Figure 3: Parameter estimates Â (+) and σ̂ (×) for (19) based on observations Xε of (18) with
α = 1/3, λ = 2/45, and ε = 10−1.

momentum PM , moves in an one-dimensional potential V and interacts with M ∈ N heat bath
particles. Let the heat bath particles be described by coordinates q ≡ (q1, . . . , qM)T ∈ RM and
momenta p ≡ (p1, . . . , pM)T ∈ RM . Then we consider the Hamiltonian

H(PM , QM , p, q) :=
1

2
PM

2 + V (QM) +
1

2

M∑
j=1

pj
2

mj

+
1

2

M∑
j=1

kj(qj −QM)2 .

That is, the j-th heat bath particle with mass mj acts on the distinguished particle as a linear
spring with stiffness constant kj. The interaction with the bath is governed by the following
2(M + 1)-dimensional system of ODEs

dQM

dt
= PM ,

dPM
dt

=
M∑
j=1

kj(qj −QM)− V ′(QM) , (21a)

dqj
dt

=
pj
mj

,
dpj
dt

= −kj(qj −QM) , j = 1, . . . ,M . (21b)

The initial condition for this system are QM(0) = Q0, PM(0) = P0, qj(0) = qj,0, and pj(0) = pj,0.
We assume that the initial conditions for the heat bath particles are in equilibrium. That is,
we assume that the 2M -dimensional vector of initial conditions for the particles in the heat
bath (positions and momenta) is randomly distributed according to a Gibbs distribution with
density proportional to exp(−βH), conditioned on (Q0, P0). Here β > 0 denotes the inverse
temperature. Under these conditions it is possible to derive a coarse-grained model for the
distinguished particle; see e.g. [53, 54] and the references therein for details.

The precise form of the coarse-grained model depends mainly on the chosen values for
the spring constants kj and the particles’ mass mj, 1 ≤ j ≤ M . Here we borrow Example
7.3 from [52]. Let α ∈ (0, 1) and define ωj = Mαηj, where (ηj)1≤j≤M is an identically and
independently distributed sequence of random variables with η1 ∼ U(0, 1). Moreover, we set
kj = 2αMα/

(
π(α2 + ωj

2)M
)
and mj = kj/ωj

2. Then, as M →∞, the process QM solving the
full model (21) converges weakly in C2([0, T ];R) to the process Q which is the solution of the
stochastic integro-differential equation

Q̈(t) + V ′
(
Q(t)

)
+

∫ t

0

e−α|t−s|Q̇(s) ds = Z(t) ,
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where Z denotes the Ornstein–Uhlenbeck process solving dZ = −αZ dt +
√

2α/β dW . By
introducing an auxiliary variable, it is possible to convert the integro-differential equation with
nonlocal memory into a Markov process. Specifically, the limiting process Q is equivalently
given as the solution of the augmented system of SDEs

dQ

dt
= P , (22a)

dP

dt
= S − V ′(Q) , (22b)

dS = (µS − P ) dt+
√

2σ dW , (22c)

where the auxiliary variable S embodies the memory effects due to the heat bath interactions.
Consequently, the coarse-grained model associated to the 2(M + 1)-dimensional Hamiltonian
system (21) is given in form of a 3-dimensional stochastic system. The limiting parameters in
the coarse-grained model (22) are given by µ = −α and σ = α/β, where we recall that β is the
inverse temperature.

The goal now is to estimate µ and σ in (22c) from observations in form of a single time
series of (QM , PM). Although the coarse-grained model (22) is three-dimensional, we can use
a slightly modified procedure of the one derived in Section 2 for one-dimensional models, since
we are concerned with identifying parameters in only one of the equations in (22), namely in
(22c). Using Itô’s formula for (22) with the function φ(s) = s + s2, which only depends on s,
we find

E
(
φ
(
Sξ(t)

))
− φ(ξ) +

∫ t

0

E
(
PP0(τ)φ′

(
Sξ(τ)

))
dτ =

∫ t

0

E
(

(L0φ)
(
Sξ(τ)

))
dτ ,

with (L0ϕ)(s) := µs d
ds
ϕ(s) +σ d2

ds2
ϕ(s). This is an estimating equation like (8) and we thus only

have to modify the definition of the term bc in (9) to account for the dependency of (22c) on
the process P (the integral term on the left-hand side above). The rest of the procedure follows
as in Section 2. In fact, we select the functions in parametrization (7) with n = 2 as f1(x) = x,
f2(x) = 0 = g1(x), and g2(x) = 2, where the true parameter vector is θ = (µ, σ)T .

It is important to stress that we wish to estimate µ and σ in (22c), but that we do not observe
the process S directly: unlike for Q and P where we observe QM and PM which converge to Q
and P , respectively, we do not have access to such a process for S. We only have observations of
(QM , PM) from the full Hamiltonian system (21) with sampling time h. In the absence of model
misspecification (i.e., when observing Q,P directly and not just QM , PM instead), this problem
is typically associated to hidden Markov model techniques as S is unobserved (i.e. hidden); see
e.g. [55]. Here we consider a simple approximation to reconstruct the unobserved process S,
which we will need in the estimation procedure. To this end we use the observations we have
in (22b) with a first order finite difference approximation:

SM(t) :=
PM(t+ h)− PM(t)

h
+ V ′

(
QM(t)

)
.

We remark that, in principle, we can apply our methodology even if only QM is observed but
not PM . In that case one has to use both Eq. (22a) and Eq. (22b) with finite difference approx-
imations to obtain suitable approximations of P and S. These finite difference approximation
ideas have also been used in [54] within a customized maximum likelihood framework for the
Kac–Zwanzig model. However, in their study the authors had to chose h sufficiently large as
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Figure 4: Relative error of the estimated parameter vector θ̂εt for (22c) based on observations
(QM , PM) of (21) with α = 1/22, β = 1, and M ≡ ε−1 = 5000.

otherwise the parameter estimation performed poorly due to the presence of multiscale effects.
Here we are not restricted by the multiscale structure of the problem.

For the numerical example we consider the case where the distinguished particle moves in a
quartic potential, i.e. V (x) = −x2/2 + x4/4. Moreover, we use M = 5000 heat bath particles
and set α = 1/2 and β = 1. To obtain a time series for (QM , PM) of the full Hamiltonian
system (21) on [0, 1000], we approximate it via a semi-implicit Euler scheme with time step
h = 10−3 started at Q0 = 1, P0 = 0. Fig. 4 depicts the relative error of the estimated parameter
vector θ̂εt as a function of t, with the understanding that ε ≡ M−1. Similar to the previous
examples, one also observes here that it is possible to obtain accurate estimates once the value
of t is sufficiently large. The relative error fluctuates closely around 6% for t ≥ 0.2 and can be
reduced even further by increasing M (not shown). To asses the obtained accuracy of 6%, we
mention that in [54], as noted above, a specifically customized maximum likelihood method has
been used to estimate parameters in a related problem and the authors report relative errors of
5–15%.

3.4. Deterministic Brownian motion
In [56] an Ornstein–Uhlenbeck process is constructed within a completely deterministic

framework as an appropriate limit process of a chaotic dynamical system. Specifically, con-
sider the position Xε and the velocity V ε of the dynamical system

dXε

dt
= V ε , (23a)

dV ε

dt
= −γV ε + ηε , (23b)

with a deterministic perturbation ηε ≡ ηε(t) in the velocity variable. Here we use

ηε(t) =
√
ε

∞∑
l=0

ζ(tl)δ(t− tl) , (24)

so that the derivative of the velocity variable V ε experiences small “kicks” at times t0, t1, . . . ,
where tl = lε. Here ζ is a discrete time dynamical system of the form ζ(tl+1) = Φ(ζ(tl)) and
the function Φ is chosen such that the dynamical system ζ exhibits a strongly chaotic behavior.
In our numerical example we used Φ(y) := cos (3 arccos(y)). Based on this dynamical system ζ
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Figure 5: Relative error of the estimated parameter vector θ̂εt for (25b) based on observations
Xε of (23) with γ = 1 and ε = 0.1.

the perturbation ηε in Eq. (24) is fixed and it follows from the results in [56] that the solution
(Xε, V ε) of the chaotic deterministic system (23) converges weakly in C([0, T ],R), as ε→ 0, to
an Ornstein–Uhlenbeck process (X, V ), which solves

dX = V dt , (25a)
dV = −γV dt+

√
σ dWt , (25b)

where the diffusion coefficient is σ = 1/2.
We now aim for estimating both γ and σ in (25b) based only on one long trajectory of

observations of the position variable Xε solving (23a). That is, we do not observe V ε solving
(23b) directly. Instead we will, as in Section 3.3, compute an approximation Ṽ ε based on a finite
difference approximation in (25a) first, i.e. we set Ṽ ε(tl) := (Xε(tl+1)−Xε(tl))/ε, recalling that
tl+1 − tl = ε. Based on this approximate trajectory we can then directly apply the procedure
introduced in Section 2 to estimate both γ and σ in (25b), since the velocity SDE is independent
of the position. Therefore (n = 2) and we select the functions f1(x) = x, f2(x) = 0 = g1(x),
and g2(x) = 1 in (7), corresponding to the true parameter vector θ = (−γ, σ)T . A time series of
Xε on [0, 1000] with sampling rate h = 0.01 is obtained by solving the perturbed system (23)
with Xε(0) = −0.15, V ε(0) = −0.53, γ = 1 and ε = 0.1. Fig. 5 shows the relative error of the
estimated parameter vector θ̂εt as a function of t. Increasing t yields very accurate estimates
with the relative error fluctuating around 5% for t ≥ 0.5.

4. Conclusion

In this paper we have introduced a novel numerical/statistical procedure which allows us to
estimate parameters in coarse-grained models based on partial observations of a corresponding
multiscale system. For such systems commonly used estimators, such as the maximum likeli-
hood estimator, are known to be biased. Our approach is based on our previous study in [13]
where it was assumed that an ensemble of short trajectories for multiple initial conditions is
available. Here we generalize and appropriately extend the work presented in [13] to the prac-
tically relevant setting where only one (long) time series is available. In fact, the examples
presented demonstrate that the developed inference method yields accurate approximations of
the parameters in coarse-grained models based on a time series of the “slow” component of a
multiscale system. The examples range from coarse-grained models where the associated mul-
tiscale system is stochastic to coarse-grained models for fully deterministic multiscale systems.
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We believe that this selection of examples highlights the broad occurrence of data-driven coarse-
graining problems and thus the necessity for appropriate inference techniques which are robust
against multiscale effects in the observation, as the one introduced here.

The illustrated robustness of an inference technique against multiscale effects (i.e. against
perturbations that are small the weak sense) appears to be novel but also has important im-
plications in practice. Specifically, it significantly widens the range of applications to problems
where the observed process is not necessarily a diffusion process. For instance, it covers the case
of non-Markovian processes that can be approximated by a Markov process in an augmented
state space (see, e.g., [57, Ch. 8.2]) and the concept of diffusion approximation (see, e.g., [58,
Ch. 7]), both allowing for non-negligible deviations of the observation process from the assumed
SDE model.

The focus of our study was on demonstrating that the introduced methodology can accu-
rately infer parameters in coarse-grained models from a time series, either stochastic or chaotic,
of a multiscale system. Clearly there are still many challenges that remain to be addressed. One
of them is the rigorous analysis of the algorithm to understand its asymptotic properties, but
also to explore its limitations. Some first results concerning the convergence properties of the
methodology have already been obtained and will be presented in [40]. A closely related and
important avenue of future efforts is the study of the asymptotic distribution of the estimators,
which in turn can be used to guide the construction of asymptotic confidence intervals for the
estimated values. Another interesting topic, which is relevant in many applications, is the study
of additional observation error. That is, one only observes a contaminated version X̃ε of Xε:

X̃ε(tk) = Xε(tk) + η(tk) ,

for any k ≥ 0, where η denotes the observation error. To allow for this additional contami-
nation, our methodology would have to be combined with appropriate filtering techniques, a
very appealing prospect. The first results on combining filtering ideas with parametric inference
techniques have been studied in [25] for a particular multiscale problem. See also [59] for more
recent work on combining the MLE with filtering techniques for a class of multiscale problems.
But also conceptually different approaches to the problem of data-driven coarse-graining appear
worthwhile investigating. As, for example, most work on data-driven coarse-graining is based on
a frequentist inference approach, investigating similar questions in a Bayesian approach poses
a natural and interesting perspective as well; see [60] for related work in the context of inverse
problems with a multiscale structure. We shall examine these and related questions in future
studies.
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