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Abstract 

 

This work comprises an investigation of airflow and transport in the human upper 

airways, which not only perform essential air conditioning physiological functions (heat 

and water exchange and primary filtration) but also house the olfactory receptors. The 

conflicting requirements posed by efficient air transit on the one hand and sampling for 

olfaction on the other renders the geometry of the upper airways complex.    

Knowledge of the geometry and flow conditions are primary requirements for 

understanding the physiological mechanics of the airways. This work describes the 

application of imaging and experimental measurement techniques to determine the 

variations in nasal airway geometry and the characteristics of nasal inspiratory flow. 

Whilst the results are relevant to a host of applications, the particular case of sinonasal 

ventilation well illustrates the interrelation between form, flow and function as well as 

motivating the development of improved techniques for clinical management. 

Specifically 3T MR imaging has been investigated as a means to define the anatomy in 

congested and decongested states. Results show very large changes in nasal airway 

calibre and moreover allow the variation in mucosal engorgement throughout the nasal 

cavity to be mapped. Highly time resolved hot wire measurements of inspiratory flow 

profiles revealed for the first time the rapid temporal development of inspiratory flow 

during normal  inspiration and dramatically so during sniffing. Variations in flow profile 

were recorded across a cohort of subjects for conditions of normal inspiration, sniffing 

and smelling.  

Sinonasal gas exchange is of particular interest given the common occurrence of sinus 

pathologies. Here short half-life Krypton imaging has been used to investigate gas 

exchange between the maxillary sinus and the nasal cavity. It has been shown that the 

technique can provide quantitative assessment of volume flow rate in a model, 

demonstrating the rapid venting associated with an accessory ostium.  
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Chapter 1  

Introduction  
 

1.1  Motivation for studying sinonasal airflow and transport 

 

The nose is the entrance to the airway and has multiple functions: it provides the first line of 

defence against infection, it is a sensory organ and perhaps most importantly a remarkably 

efficient air conditioner that protects the delicate alveolar environment. The nasal cavity is 

enclosed by four groups of air filled paranasal sinuses, which connect to the nasal airway 

(Figure 1.1). In contrast to the nose the function of the sinuses remains a mystery, many 

theories have been proposed but none are universally accepted. 

 

Figure 1.1 Anatomy of the nose and paranasal sinuses1. 
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The lung requires air to be warmed to near to 370C with 100% relative humidity. 

Inspiration through the nasal cavity conditions the ambient air to nearly alveolar requirements 

by the time it reaches the pharynx and is able to do this even in extremes of environment such 

as sub-Saharan Africa or the Antarctic1,2. This involves humidification, temperature 

modification, particle filtration, with olfaction and phonation as secondary functions.   

Whilst we appreciate the multiple and varied functions of the nose our knowledge of the 

fundamental physiology underlying them remains limited. In vivo measurements of the 

conditions within the sinonasal airway are hampered by its inaccessibility. The complex 

geometry, narrow calibre and sensitivity of the tissues preclude direct measurement, as the 

placement of even a small probe would not only be difficult, but would also obstruct the airflow 

it was intended to measure. Our knowledge of functional parameters is limited to point wise 

measures of local quantities (e.g., velocity, temperature, humidity) or global measurements (e.g., 

pressure drop) up- or down-stream of the sinonasal airway. Experimental and computational 

simulations have provided an insight into the interaction of nasal airflow with anatomical form, 

however, modelling relies on clinically derived data to enhance modelling capabilities.  

Regrettably there are limited detailed in vivo measurements available to provide a 

rigorous characterisation of nasal inspiration. To date the time-dependent evolution of the 

volume flow rate waveform during inspiration (which is important in understanding the 

disparate and complex functions of the respiratory airways) has largely been ignored, or for 

modelling studies, greatly simplified (e.g., assumed sinusoidal profile). However, for many 

applications these assumptions may be inappropriate and could provide misleading results. The 

transient dynamics of inspiration will strongly impact on the intended application e.g., temporal 

oscillations of the inspiration flow rate profile could dramatically increase mixing and hence 

enhance olfactory perception or further distribute patterns of drug deposition.  Determination 

of the characteristic features of the nasal profile is thus needed to improve physiological 

understanding and for applications requiring detailed knowledge of the transport properties of 

the flow.  

A small number of studies have investigated airflow in the same patient before and after 

surgery3,4. However, there has been little investigation of the normal intra-individual variations 

in nasal anatomy due to the nasal cycle. There is currently little available data to detail the 

anatomical changes during the nasal cycle or with decongestion. These changes could lead to 

alterations in the transport of inhaled substances and the processes of heat and water exchange 

at the nasal mucosal surface. 
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  In contrast to the nose the functions of the paranasal sinuses remain an enigma. In the 

1960’s Blanton and Biggs5 published a review entitled “Eighteen hundred years of controversy: 

The paranasal sinuses” in which they document years of speculation over the physiological 

function of the sinuses. Forty years later, in a recent review by Keir (2009) “Why do we have 

paranasal sinuses?”6, it would appear that little has improved in the understanding of sinus 

function. The Greek physician and philosopher Galen (130-201 AD) is credited with the original 

description of the paranasal sinuses7, however the first documented evidence is provided by the 

notebooks of Leonardo da Vinci where his illustrations 'View of the Skull' and 'Two views of the 

skull' (circa 1489) show sagittally and coronally sectioned human skulls with the frontal and 

maxillary sinuses exposed8 (see figures 1.2+1.3 pg 18). One of the earliest theories of sinus 

function was proposed by Da Vinci who postulated that the maxillary sinus ‘contains the humor 

which nourishes the teeth’9. Keir (2009)6 discusses the validity of each proposed function and 

theoretically or scientifically discounts all theories, except the hypothesis that the sinuses 

function to enhance immune and antimicrobial function. Whilst this may give a function to 

sinuses it does not necessarily explain why we have sinuses.  

Studies investigating comparative anatomy between species have been unable to 

elucidate sinus function as the presence, size and shape of paranasal sinuses appear to be 

randomly distributed between species10. Lund (1988), found no statistically significant 

differences in skull size or environment when comparing species in the same genus with and 

without sinuses11.   It is possible that the sinuses arose as an aid to facial growth and 

architecture12, or that they persist as residual remnants of an evolutionary structure 13 with an 

as yet unknown purpose, and in doing so have found an additional role as an adjunct to the 

nasal cavity.  Whilst we may never find a single function or purpose for the sinuses an increased 

understanding of the physiology may help to support or refute the numerous hypotheses. 

Rhinosinusitis is a common condition affecting 15% of the western population and is a 

major reason for medical consultation worldwide14-18. It is defined as inflammation of the 

mucosa lining the nasal cavity and paranasal sinuses resulting in two or more symptoms either: 

nasal blockage or discharge and pain or loss of smell19,20. Treatment for rhinosinusitis is 

estimated to cost more than $5.8 billion annually in the USA21 and it is ranked in the top ten 

most expensive conditions for US employers based on combined healthcare and productivity 

costs22. These huge costs make sinus disease a significant public health issue23-25. In addition to 

the financial costs studies have shown that chronic rhinosinusitis (CRS) significantly impacts 

quality of life, even in comparison to chronic debilitating diseases, with perceived bodily pain 

and impact on social functioning worse than for  angina pectoris, congestive heart failure, 
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chronic obstructive pulmonary disease, and chronic back pain26. CRS not only causes significant 

physical symptoms but also results in substantial functional and emotional impairment27.  

Despite the vast socioeconomic impact of sinusitis the causes are not well understood.  

Important factors in the pathogenesis of sinusitis are reduced sinus ventilation and impaired 

mucociliary transport.  

Improved sinus ventilation is often a goal of clinical interventions; however, the links 

among sinus geometry, ventilation, and clinical outcomes are still poorly understood. An 

improved insight into normal sinus function is critical to furthering our understanding of the 

pathophysiological processes that mediate sinus disease. 

Though this work is primarily motivated by a desire to better understand the complex 

sinonasal physiology, it also impacts on many other research areas including: planning and 

assessment of surgical interventions, the design of drug delivery devices, and toxicological 

research.    

 

1.2 Anatomy  

 

The nose and paranasal sinuses are complex three dimensional structures. The nose is 

subdivided into the external nose and nasal cavity for anatomical purposes. The visible external 

nose represents only a small portion of the nasal airways. The nasal cavity extends from the 

nostrils anteriorly to the posterior choanae (the opening between the nasal cavity and 

nasopharynx) and is divided sagittally by the nasal septum into asymmetrical (even in the 

decongested state) left and right passageways. The efficiency of healthy nasal function is 

strongly dependent on the nasal anatomy which controls and distributes airflow.  

The paranasal sinuses are air-filled pockets located within the bones of the face and 

around the nasal cavity. The sinuses are named after the bones in which they are located; 

maxillary (one sinus located in each cheek), ethmoid (approximately 6-12 small sinuses per 

side, located between the eyes), frontal (one sinus per side, located in the forehead) and 

sphenoid (one sinus per side, located behind the ethmoid sinuses, near the middle of the skull). 

The sinuses connect to the nose through openings called ostia28,29. 
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Figure 1.3 ‘View of a skull’ by Leonardo Da Vinci, 

circa 1489 

Figure 1.2 ‘Two views of the skull’ by Leonardo Da Vinci, 

circa 1489 
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1.2.1  Nasal Cavity 

 

The anatomy of the nasal cavity is the most important factor in determining the mechanics of 

nasal air flow30. It extends from the nostrils or nares anteriorly to the choanae posteriorly; it is 

divided into two by the nasal septum. Each side has a roof, floor, medial and lateral wall. The 

roof is narrow and formed of the body of the sphenoid and the cribiform plate of the ethmoid 

through which the delicate olfactory fibres pass more anteriorly. The floor is formed by the 

palatine process of the maxilla and the horizontal plate of the palatine bone. The medial wall is 

the nasal septum an osseocartilaginous partition separating the two sides. The lateral nasal wall 

(Figure 1.4) has three important structures, which are known as the superior, middle and 

inferior turbinates. Each turbinate is a rounded shelf like projection that extends the length of 

the nasal cavity. The area between each turbinate is referred to as a meatus. 

 

Figure 1.4 Schematic representation of the lateral nasal wall anatomy, viewed through the 

omitted septal wall31. 

The nasal vestibule is the most anterior part of the nasal cavity and is bounded 

internally by the region of the nasal valve. It is lined by stratified squamous, keratinized 

epithelium (skin), in contrast the remainder of the nasal cavity is lined by the respiratory 

epithelium. Inside the vestibule are short thick hairs (vibrissae), which aid in the filtration of 
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large particulate matter. The nasal valve region, formed by the junction of the upper lateral 

cartilages, the nasal septum and the inferior turbinate, is typically the narrowest point in the 

nasal cavity and accounts for up to 50% of total airway resistance in quiet breathing 

conditions2. Beyond the nasal valve the airways expand rapidly until the turbinates are reached. 

The inferior turbinate, which is the largest turbinate, occupies a significant proportion of 

the nasal cavity, it is responsible for the majority of humidification, heating, and filtering of air 

inhaled through the nose. It is made up of dense lamellar bone from the maxilla and is covered 

with erectile tissue.  The surface of the turbinate is covered with a pseudostratified columnar, 

ciliated respiratory epithelium; beneath this the submucosa contains numerous seromucinous 

glands and vascular channels containing cavernous sinusoids. Nasal airflow is regulated through 

volume changes in these sinusoids. These channels are under autonomic control and are the end 

targets for decongestant medications. Beneath the inferior turbinate is the inferior meatus into 

which the nasolacrimal duct drains. The middle turbinate is located above the inferior turbinate. 

The maxillary sinus, anterior ethmoids and the frontal sinus via the frontal recess open into the 

middle meatus.  The superior turbinate, the smallest turbinate, lies above the middle turbinate. 

The posterior ethmoid cells and sphenoid sinus drain into the superior meatus. The turbinates 

end at the posterior choanae and the two nasal cavities join to form the nasopharynx.  

The nasal anatomy is not fixed and may change dynamically in response to either 

vigorous respiration, stimulus or the nasal cycle.  The latter represents a reciprocating cycle of 

congestion and decongestion of alternate sides of the nose that has been recognized for over a 

century32, and although its exact function is unknown it has been suggested that it plays a role in 

respiratory defence33.  The autonomic nervous system affects changes in regional airway calibre 

through congestion and decongestion of the nasal venous sinusoids. Early studies reported a 

frequency of approximately 80% in the general population34,35. More recent work has shown 

that the nasal cycle is much less common, and may only occur in 21-39% of the population36,37. 

These fluctuations occur on a timescale orders of magnitude larger than the typical breathing 

cycle, although the period and extent of change shows considerable inter-subject variability37. 

Recent studies using acoustic rhinometry have demonstrated that the cycle is present in 

children as young as 3 years, and that it persists after cessation of nasal airflow. It may, 

however, be overridden or modulated by many environmental and pathological situations. 

 Variations in airway calibre can also be facilitated by the facial nerve, as an 

increase of tone in the dilator alae muscles results in nasal flaring and an increase in anterior 

nasal cross sectional area. However, increased negative pressure during forced inspiration can 

cause the nasal vestibule to collapse inwards and decrease the cross sectional area. 
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1.2.2  Embryology 

The nose develops in the fourth intrauterine week. Three facial prominences from the 1st 

pharyngeal arch develop on the ventral surface of the embryo, and paired thickenings forming 

the nasal placodes appear in the cranial ectoderm above the stomatodeum (primitive mouth).  

These nasal placodes invaginate to form nasal pits and then subsequently nasal sacs by the fifth 

week. In doing so ridges of tissue surrounding each pit form the medial and lateral nasal 

prominences which eventually form the columella, tip and alae of the nose.  The nasal sacs 

deepen and thin the bucconasal membrane until it ruptures to form the posterior choanae.  The 

nasal septum continues to form from contributions made by the frontonasal process and the 

forebrain capsule38. Diverticulae develop from the lateral nasal walls into the maxillary, 

ethmoid, frontal and sphenoid bones, forming the paranasal sinuses. The maxillary sinus is the 

first sinus to develop (seven to ten weeks) and is filled with fluid at birth11. It grows according 

to a biphasic pattern, in which the first phase occurs during years 0-3 and the second during 

years 6-1239. The ethmoid sinuses are a collection of fluid-filled cells at birth that grow and 

pneumatise until the age of 12. The sphenoid sinus reaches its full size by the late teenage years, 

it is variably pneumatised and may extend as far as the foramen magnum in some patients. The 

frontal sinus is formed by the upward movement of anterior ethmoid cells after the age of 2. 

Growth of this sinus increases at the age of 6 and continues until the late teenage years 40. 

 

1.2.3  External Nose  

The frame work of the nose consists of a bony upper third and cartilaginous lower third (Figure 

1.5). The upper third is made up of the nasal bones, the frontal process of the maxilla and nasal 

process of the frontal bones. The cartilaginous lower third comprises of the upper laterals, 

lower laterals and septal cartilages. The upper lateral cartilages are overlapped superiorly by 

the nasal bones, they fuse in the midline with the septum and inferiorly with the lower lateral 

cartilages. The lower lateral cartilages have a medial crus that forms the columella and a lateral 

crus that forms the nasal alae. Nasal flaring is controlled by two important muscles in the lower 

nose, the compressor naris and dilator naris. Both of these muscles are supplied by the buccal 

branch of the facial nerve. 
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1 - nasal bone 

2 - nasion (nasofrontal suture line) 

3 - internasal suture line 

4 - nasomaxillary suture line 

5 - ascending process of maxilla 

6 - rhinion (osseocartilaginous junction) 

7 - upper lateral cartilage 

8 - caudal edge of upper lateral cartilage 

9 - anterior septal angle 

10 - lower lateral cartilage - lateral crus 

   11 - medial crural footplate 

   12 - intermediate crus 

   13 - sesamoid cartilage 

    14 - pyriform aperture 

 

Figure 1.5 Nasal anatomy adapted from Revision Rhinoplasty41. 

 

1.2.4  Maxillary sinus 

The pyramid shaped maxillary sinus (or antrum of Highmore) is the largest of the paranasal 

sinuses, is situated in the body of the maxilla. The apex of the sinus extends into the zygomatic 

process of the maxilla and the lateral wall of the nose forms the base. The ostium for drainage is 

located high on the medial wall and opens into the middle meatus on the lateral wall of the nasal 

cavity (Figure 1.6). The position of the ostium prevents drainage of the maxillary sinus contents 

by gravity when the head is erect. The sinus is lined with mucoperiosteum, with cilia that beat 

toward the ostia, this mucociliary clearance is essential to expel mucus and pathogens from the 

sinus. The lack of gravity dependent drainage renders the maxillary sinus particularly 

susceptible to sinusitis. 

11 
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Figure 1.6 Coronal section through the maxillary sinus adapted from Hosemann W. (2000)42.  

 

Studies of sinus anatomy have been reported from 1880 onwards, although it has not 

been possible to get some of the original papers their results have been quoted in later papers 

and table 1.1 gives a summary of the values found for maxillary sinus volume, ostial diameter, 

ostial length and presence of accessory ostia.  Measurements of ostial size and the presence of 

accessory ostia are hampered by the inaccessibility and complex geometry of the sinuses and as 

a result many studies have been performed in cadavers. However, cadavers are subject to 

dehydration and shrinkage of the mucosa which could result in greater dimensions for sinus 

volume and ostial diameter. Higher proportions of accessory ostia are seen in cadaveric studies 

and this is likely to be because the fontanelles where the majority of accessory ostia are found 

are particularly sensitive to damage when drying out43. 

A relationship between rhinosinusitis and the presence of accessory ostia has been 

reported in the literature but the causal link is unclear.  It has been proposed that infections 

may damage the fontanelle membranes and create accessory ostia28,44 and that accessory ostia 

disrupt mucociliary clearance pathways and result in sinusitis45,46.  
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Table 1.1 Summary of the findings from anatomical studies of maxillary sinus and ostial dimensions47,48. 

 Author Year Cadaveric, 
healthy or  

pathological 

No. studied Sinus Vol 
(ml) 

Ostium diam 
(mm) 

Ostium length 
(mm) 

Accessory ostia 
present (%) 

Cited by 

Neivert - Cadaver  -  - 25 Van Alyea (1936)
49

 

Zuckerkandl 1882-
3 

Cadaver   2-19 7-11 10 Rantanen (1974)
50

; Lang (1989)
28

 

Oppikofer 1906 Cadaver   2-17 - 11 Myerson (1932)
51,52

; Rantanen 
(1974)

50
 

Skillern 1913 Cadaver   2-17 - - Simon 1939
53

 

Schaeffer
7
 1920 Cadaver   1-22 - 44 Simon (1939)

54
; Rantanen (1974)

50
 

Myerson
51,52

 1932 Cadaver 170  1-13 - 31  

Van Alyea
49

 1936 Cadaver 163    23  

Simon
53

 1939 Cadaver 102   1-15 Av 5.55 20  

Flottes et al
55

  1960 Cadaver  10    Aust and Drettner (1974)
56

 

Wagemann 1964 Cadaver  2-30 av 
15 

- - - Aust and Drettner (1974)
57

 

Aust
57

 1974 Cadaver  9-23 0.4-5+ (6) -  

May
58

 1990 Cadaver and 
Sinus surgery 
patients 

10 cadaver 

100 sinus 
surgery  

- - - 10  

Earwaker
59

 1993 CT scans of 
FESS referrals 

800 - - - 14  

Jog et al
60

 2003 Healthy and 
rhinology 
patients 

113 healthy 

91 patients 

- - - 2 (healthy) 

8 (Rhinol Pts) 
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1.3 Physiology  

At rest, humans and other primates respire mainly through the nose even though the tortuous 

anatomy imposes a significantly higher resistance than mouth breathing. This resistance, which 

accounts for between half and two thirds of total airway resistance, facilitates temperature 

regulation and humidification by slowing down air flow and increasing the time spent in contact 

with the highly vascularised nasal mucosa. At a normal respiratory rate of 12-15 breaths per 

minute with a tidal volume of 500ml we respire about 10,000L per day2,61, resulting in a typical 

inspiratory flow rate of 250ml.s-1 distributed between the two nasal cavities. At increased 

respiratory rates, for example during exercise, humans revert to mouth breathing as partial 

collapse of the nasal airway increases the work of the lungs62. 

There is growing evidence to support the concept that the respiratory tract functions as 

an integrated unit “the unified airway”. Hence, changes in the physiology of the nose and 

paranasal sinuses can and will affect the lower airways and vice versa63. Support for this 

relationship can be found in epidemiological studies, in shared pathophysiological mechanisms, 

and in observed interactive treatment effects. Rhinosinusitis and asthma have common 

inflammatory mechanisms and often coexist in the same patients64. Treating rhinosinusitis and 

other upper respiratory tract disorders, has been shown to improve asthmatic control and 

reduce the need for asthma medications65,66. 

 

1.3.1  Nasal Airway 

 

The nasal airway is a remarkably complex biological conduit that plays a key role in the 

filtration, warming and humidification of inspired air. It also provides the first line in 

respiratory defence, is an important chemosensor and acts as a phonation chamber.  

 

1.3.1.1 Nasal Function 

 

Air conditioning 

The nose is an exceptionally efficient air conditioner, the mucosa with its rich blood supply 

heats and humidifies ambient air to near core conditions over a remarkably short distance67,68,69 

and irrespective of environmental extremes1. The relationship between humidity and 

temperature in the ambient air and core air is dynamic over a breath cycle and varies according 
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to the respiratory rate and force, whether nasal or mouth breathing is predominant or if there is 

underlying respiratory pathology70.  A healthy adult requires 350kcal and 400ml of water per 

day to condition air at average environmental conditions (22oC and a relative humidity of 50%). 

Water conservation during expiration recovers about a third of that used up in inspiration71-73. 

The air conditioning capacity of the nasal cavity is facilitated by its high surface area to volume 

ratio, and is sensitive to the nasal inspiratory flow profile74 . 

Filtration 

The nose provides the only means through which warm, humidified and filtered air can reach 

the lower respiratory tract. It is an efficient filter for particulate matter, and it also serves to 

provide the first line in respiratory immune defence by bringing trapped particles in contact 

with the Immunoglobulin A (IgA) rich nasal mucous. The nose removes all particulate matter 

>5µm and around 50% of material of 2-4 µm2. There are four elements to nasal filtration these 

include: impingement, electrostatic charge, vibrissae and mucociliary blanket. Impingement is 

the process whereby particles suspended in a gas are deposited on walls downstream from a 

bend.  As a result of impingement between 85-90% of particulate matter > 5 µm are deposited 

on the nasal cavity walls. The positive electrostatic charge of the mucociliary blanket attracts 

and traps negatively charged matter. The vibrissae within the nasal vestibule trap larger 

particles and are a sensitive stimulus for the sneeze reflex. Finally the mucociliary blanket 

transports entrapped matter towards the nasopharynx with a clearance within 15 minutes72. 

The mucus layer is biphasic with a serous, sol layer in which the cilia beat and a superficial gel 

layer. The viscosity of this upper mucous layer means that the tips of the cilia catch in the layer 

and propel it along the nasal cavity75. Mucociliary clearance can be disrupted by pathogens, 

inflammatory processes, exposure to toxins, cystic fibrosis and primary ciliary dysfunction (e.g. 

Kartagener’s syndrome)76. 

The filtration capacity of the nose can be exploited in metered dose drug delivery, as yet 

an underutilised administration route. The nose has a large mucosal surface area for deposition 

and the highly-vascularised mucosa allows for rapid absorption and hence rapid onset of action.  

It is a non-invasive method of drug delivery making it possible for self-administration with its 

improved convenience and compliance. Other advantages are that it avoids the first-pass 

metabolism of the gastrointestinal tract and it can offer pharmacokinetic profiles similar to 

intravenous drug delivery with bioavailability approaching 100%77. However to date there have 

been difficulties with repeatability of dosage for nasal drug delivery.  Model studies could 

identify delivery modes and particle size to optimise targeted deposition. 
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Olfaction 

 

The olfactory apparatus enables humans to sense the external environment for either beneficial 

or defence purposes78. Olfactory neuroepithelum, which covers an area approximately the size 

of a postage stamp on the dorsal aspect of the nasal roof, contains several million olfactory 

neurons and is unique in central nervous system as it is the only part in direct contact with the 

external environment79. Inspired volatile compounds (odorants) stimulate this region resulting 

in the perception of smell. Humans can detect approximately 10,000 odours and the sense of 

smell also affects the ability to taste. 

 

Phonation 

 

The sinonasal airway also acts a resonance chamber for voice production80 affecting the pitch 

and timbre of the voice. This is most obvious in the production of vowels and soft consonants 

where the sinonasal airway  acts as an escape valve81,82. 

 

1.3.1.2 Nasal airflow  

 

Many of our current concepts of nasal airflow characteristics are based upon experiments 

involving relatively a small number of nasal cavities. 

 

Nasal airflow 

A flow can be laminar, turbulent or transitional in nature. This classification is succinctly 

demonstrated by the experiment conducted by Osborne Reynolds (1842 - 1912)83.  A dye was 

injected into a flow through a glass tube in order to observe the nature of the flow (Figure 1.7). 

At low flow rates the flow seemed to follow a straight line path (with only a slight blurring due 

to dye diffusion). As the flow rate was increased the dye fluctuated and intermittent bursts were 

observed. As the flow speed is further increased the dye is blurred and fills the entire pipe.  
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Figure 1.7 Reynolds experiment83. 

 

Laminar flow occurs when the flow of fluid through a straight pipe follows a predictable 

manner. The motion of the particles of fluid is very orderly with all particles moving in straight 

lines parallel to the pipe walls. Fluid adjacent to the walls of the pipe is nearly still, whereas in 

the central lumen flows more rapidly. In a Newtonian fluid, viscosity is assumed to be constant; 

fortunately for airflow this is a suitable assumption whereas for blood flow, it may not be 

appropriate.  Laminar flow of a Newtonian fluid in a pipe of circular cross-section obeys 

Poiseuille’s law. 

 

  
     

   
 

Equation 1.1 

Where: 

Q is flow 

P is pressure drop along tube 

r is radius 

μ is dynamic viscosity of the fluid 

L is length of the tube.  

 

When flow enters a pipe, the velocity distribution at first is approximately constant 

across the cross-section, requiring a certain distance before the equilibrium velocity profile 

becomes established. This is known as the entry length; it is relevant for the hot wire 

measurements as described in materials and methods in Chapter 5.  
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Figure 1.8 Developing flow in a pipe84.  

 

Turbulent flow is characterized by chaotic and random property changes. This includes 

rapid variation of pressure and velocity in space and time. It is dominated by inertial forces 

which produce chaotic eddies, vortices and other flow instabilities. 

From his experiments in 1883, Reynolds went on to introduce the concept of a Reynolds 

number (Re). This is a dimensionless number that indicates the ratio of inertial forces to viscous 

forces in a fluid. Laminar flow occurs at low Reynolds numbers, where viscous forces are 

dominant, and is characterised by smooth, constant fluid motion; turbulent flow occurs at high 

Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, 

vortices and other flow instabilities. For pipe flow, a Reynolds number above about 4000 

indicates that the flow is likely to be turbulent, while a Reynolds number below 2100 indicates 

laminar flow. The region in between (2100 < Re < 4000) is called the transition region85,86. 

For flow in a pipe, the Reynolds number is defined as 

 

Re   
     

 
  

    

 
 

   

  
 

 Equation 1.2 

Where: 

   is the hydraulic diameter of the pipe 

  is the volumetric flow rate (m3/s) 

  is the cross-sectional area (m2) 

  is the mean velocity 

  is the dynamic viscosity of the fluid  

  is the kinematic viscosity (kg/(m·s) 

  is the density of the fluid (kg/m3) 
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Experimental evidence indicates that nasal airflow at rest is predominantly laminar in 

the strict physical sense87-91, however it is always complex as the flow does not follow a straight 

pathway through the nasal cavity.   In contrast to turbulent flow it does not have random 

fluctuating velocities across a broad range of spatial frequencies. A flow may be unsteady, and 

display eddying flow paths but unless it possessed a broad range of random fluctuations it 

would be classified as laminar.  

 

 

Figure 1.9 High speed dye visualisation experiments reveal nasal airflow pathways. Courtesy of 

Dr D Taylor90. 

 

The nasal inspiratory pathway follows an arc through the nasal cavity. Air enters 

through the external naris and accelerates through the nasal valve as a high velocity jet which 

then impacts on the middle turbinate. The main flow of air is through the middle meatus 

towards the posterior end of the inferior turbinate and into the post nasal space. Behind the 

nasal valve the passage area expands sharply and flow separation occurs, here regions of slow 

recirculation develop. It is important to note that these instabilities are not random, but are 

periodic in keeping with the disturbances in a flow, which though unsteady is predominantly 

laminar at least to the nasal choanae. Low flow rates have been observed in the region of the 

olfactory cleft which would allow prolonged exposure of air to the olfactory mucosa90,91. 
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Figure 1.10  Dye visualization depicting flow irregularity and middle turbinate impact92. 

 

The dye visualisation experiments above (performed by Dr D Taylor92), depict onset of 

unsteadiness of inspiratory flow and impact on the middle turbinate in three optically clear 

silicone models. Creation and validation of the twice life-scale replica models and procedures 

for dye visualization are described by Doorly et al. (2008)92. Flow rates correspond to the 

equivalent values for a real nose. Airflow at quiet inspiratory flow rates is predominantly 

laminar, though small-scale instabilities may profoundly enhance mixing (as visualised by dye 

dispersion).  

(A) (i)–(iii) Relatively stable flow 150 ml/s. The large passageway calibre reduces velocity, 

delaying the appearance of instability until the filaments reach the upper parts of the airway; 

this is shown using two sequential magnified views of the inspiratory jet. 

 (B) (i)–(iii) The instability of flow at 170 ml/s. Though the dye filaments appear dispersed and 

well mixed, flow is not truly turbulent. The magnified sequential images (ii), (iii) indicate 

dramatic effects on mixing and dispersion due to minor fluctuations of the inspiratory jet where 

it impacts on the middle meatus.  

(c) (i), (ii) Filaments as they pass through the model  at 150 ml/s. Shear-layer instability at the 

edge of the inspiratory jet is shown by successive roll-up of the dye in this region, with a detail 

of this region magnified in (ii). There is enhanced dispersion of dye in the anterior cavity due to 

the jet boundary instability and the variation in the orientation of flow approaching the middle 

turbinate. Note the relatively undisturbed trajectory of the major portion of flow until near the 

middle turbinate where filaments can be seen to oscillate as they pass through the region 

containing the olfactory receptors, and as they encroach on the middle turbinate. 
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1. 4 Aims of Current Work and outline of the thesis 

 

It can be seen from background above that the geometry of the sinonasal airway is complex, and 

the manner in which it controls the airflow to accomplish its conflicting physiological functions 

is not fully understood. A detailed knowledge of both the geometry and flow conditions is key to 

improving our understanding the physiological mechanics of the upper airways.  

To date cadaveric studies, CT and MRI scans have been used to detail the nasal geometry. 

Cadavers offer an opportunity to examine the nasal anatomy in fine detail however cannot be 

used to investigate in vivo changes in the nasal mucosa. Each nasal cavity differs not only in size 

and shape but is also temporally variable, and the size of the airway is probably significantly 

smaller than those of human cadavers. This is in part due to the absence of blood engorging the 

venous sinusoids of the nasal turbinates and part due to tissue shrinkage as a result of fixation 

increasing the size of the nasal airways beyond the normal physiological range. In vivo 

measurements are hampered by the complex geometry, narrow calibre and sensitivity of the 

tissues. 

CT has been shown to be an excellent modality for demonstrating bony architecture within the 

nose and paranasal sinuses however MRI is the preferred modality for demonstrating mucosal 

changes as it images the air mucosal interface directly. Studies looking at the changes in the 

nasal airway morphology with MRI are few93-97 and have used early MRI scanners which had 

poor resolution. 3T MRI offers the opportunity to determine in vivo changes in the nasal mucosa 

in far greater detail than previously studied. Changes seen with congestion and decongestion 

will affect how airflow is distributed throughout the nose and hence impact on the processes of 

heat and water exchange as well as the deposition of aerosols. The aim of this study was to 

determine the dimensions of human nasal airways in vivo using 3T MRI, a technique that images 

the air mucosa interface directly, and to compare the quantitative measurements of airway 

cross-sectional areas and perimeters to those that have previously been published. This 

comparison provides an indication of the realism of the physical and computational models that 

have been used previously for studies of nasal air flow mechanics. No previous work using 3T 

MRI scanning to determine changes in the nasal airway mucosa with decongestion is known.  

In addition to a detailed knowledge of in vivo variations in the nasal anatomy, a rigorous 

characterisation of nasal airflow profiles is required to improve our understanding of the 

normal physiological functions of the nose. Accumulative processes such as air conditioning, 

olfactory sensation, drug delivery, and toxicology are highly sensitive to the characteristics of 

the assumed inspiratory profile used, for simplicity most studies to date98,99 have assumed 
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constant volumetric inspiration. However recent experiments in nasal replica models and 

computational predictions indicate that rapid flow initiation can destabilise flow patterns89-91. 

This can lead to an alteration from laminar to transitional flow with consequential alterations to 

the transport of inhaled substances and the processes of heat and water exchange at the nasal 

mucosal surface. This study aims to investigate and characterise the variation in the temporal 

profiles of nasal inspiration within a cohort of healthy subjects. Furthermore, both the effect of 

nasal decongestion and mode of inspiration (inspiration at rest, smelling and sniffing), are also 

considered for all subjects. The experimental modalities will enable bilateral volume flow rates 

to be captured simultaneously in high temporal detail (5000 Hz using hot-wire anemometry), 

which will be complemented by measures acquired using clinically available tools. 

Whilst an increased understanding of the in vivo nasal geometry and inspiratory flow patterns 

are relevant to a host of applications in this study we look at the specific example of sinonasal 

ventilation to illustrate the relationship between form, flow and function. Sinus ventilation is 

often associated with sinusitis, a common condition causing significant pain and reduced quality 

of life. Clinical implications of the diverse anatomy of ostia connecting sinus to nose and the 

efficacy of surgical intervention in chronic sinusitis are poorly understood. Although this work 

focuses on sinus ventilation it should be noted that is only one factor in the pathogenesis of a 

multifactorial disease. Mucociliary transport plays a significant role in sinus health as illustrated 

by the chronic sinusitis Kartageners patients (who have immotile cilia) suffer100. This study 

aims to measure sinus ventilation and explore variables in physical and mathematical models. ɣ-

scintigraphy will be used to investigate gas exchange between the maxillary sinus and the nasal 

cavity using short half-life Krypton 81M. It has been shown that the technique can provide 

quantitative assessment of volume flow rate in the lower respiratory tract but has not 

previously been applied to sinus ventilation. It is hoped that an increased understanding of the 

relationship between geometry, ventilation and clinical outcome will improve our 

understanding of the pathological process that leads to rhinosinusitis help to direct future 

interventions in the treatment of rhinosinusitis.  
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Chapter 2  

Background to sinonasal air flow and 

assessment 
 

2.1 Nasal Airway Assessment 

 

2.1.1 Clinical 

 

Accurate diagnosis of nasal pathologies begins with a thorough clinical history, concentrating on 

symptoms such as obstruction, rhinorrhoea, post nasal drip, sneezing, nasal itching, facial pain, 

epistaxis and anosmia.  It is important to establish the frequency, duration, temporal 

relationship, and precipitating factors of the symptoms. The impact of the symptoms on the 

patient’s quality of life should be recorded. A social history, including use of cigarettes, alcohol 

and drugs (prescription, over-the-counter and recreational), as well as details of occupation and 

hobbies may provide important diagnostic information. Finally, the past medical history should 

include the history of trauma, surgery (including aesthetic procedures), asthma, pregnancy, oral 

contraceptive pills, hormone replacement therapy and thyroid diseases. 

A full examination of the head and neck follows the history. Inspection may reveal 

midface deformities associated with chronic mouth breathing, the allergic salute of allergic 

rhinitis, tip ptosis, alar collapse or facial nerve palsy. A depressed bridge may indicate previous 
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surgery, Wegeners or cocaine misuse, a widened bridge is suggestive of polyps whereas an 

overly narrow nasal bridge may be the result of previous osteotomies. A crude assessment of 

nasal airflow can be made by looking at metal spatula misting. Relief of airflow obstruction with 

Cottle’s manoeuvre may indicate a problem in the valve region.  Anterior rhinoscopy with a 

thudicum’s speculum may reveal septal deviations, rhinitic mucosa or gross polyposis. It is 

important not to forget an ear examination as a middle ear effusion may indicate a 

nasopharyngeal mass, inflammation or adenoidal hypertrophy 

  Nasal endoscopy should be performed both pre and post decongestant to assess the 

septum, turbinates, meati and internal valve.  It is important to rule out tumours and recognise 

inflammatory diseases. The history and examination will direct further investigations.   

 

2.1.2 Radiologic evaluation 

 

Both CT and MRI can be useful to document polyps, tumours and chronic rhinosinusitis. 

Contrast-enhanced CT scan is the current radiologic standard for the evaluation of the sinonasal 

airway. 

CT scans are usually indicated after failure of maximal medical therapy for chronic 

rhinosinusitis, before surgical planning and in exclusion of possible neoplasms. A coronal CT 

scan of the sinus correlates best with the surgical approach, permitting visualization of the 

ostiomeatal complex and sinus cavities.  Surrounding structures such as the orbit, cribriform 

plate and dental pathologies are visualized well. The main disadvantage of CT scanning is the 

associated radiation dose and therefore most centres now offer limited sinus CT scans which 

have reduced radiation doses and spare the ocular lens and thyroid gland101-103. It is important 

to note that a significant degree of incidental change can be found on CT in around a third of 

‘normal’ adults and 45% of children probably related to recent viral upper respiratory tract 

infections. 

MRI is generally reserved only for complex cases. Soft tissue contrast is better with MRI. 

Neoplasms, orbital and intracranial complications as well fungal sinusitis can be better 

evaluated104. The advantage of MRI scanning is that there is no associated radiation dose. 

However traditionally the MRI scans of the nose and sinuses have only been able to take very 

thick slices and had long acquisition times and hence suffered from movement artefact during 
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the scan.  The introduction of 3T MRI scanners into clinical practice has increased the resolution 

of scans obtained and reduced the acquisition time. 

 

2.2 Nasal airway tests 

 

Measures of nasal obstruction can be either subjective or objective. The difficulty in interpreting 

objective measures is that they do not always correlate well with the patient’s symptoms105. A 

comparison of methods of evaluation of nasal assessment is given in table 2.1 pg 42. 

 

2.2.1 Objective evaluation 

Peak Nasal Inspiratory Flow 

PNIF is a cheap, quick and easy to perform method for assessing nasal patency which is 

reproducible106-109 and sensitive110,111. It has a good correlation with total nasal resistance 

measured by active anterior rhinomanometry43,112,107 and statistically significant associations 

with nasal cavity dimensions recorded by acoustic rhinometry113. PNIF has been used in the 

evaluation of medical therapy for rhinitis114, to assess the efficacy of intranasal corticosteroids 

for nasal polyposis115,116 and to show improvements after surgery117. PNIF has also been used to 

determine the reaction threshold or cut off value to determine the endpoint in nasal challenge 

testing. Limitations with this technique are that it is not sensitive to small changes in nasal 

patency118,119. It requires patient cooperation and respiratory co-morbidities as well as alar 

collapse can influence measurements. PNIF in contrast to acoustic rhinometry provides no 

information on the structure of the nose or location of the obstruction. 

 

Peak nasal inspiratory flow in L/min 

<50  severe nasal obstruction 

50-80  moderate nasal obstruction 

80-120 mild nasal obstruction 

>120 no obstruction 
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Acoustic Rhinometry 

 

Acoustic rhinometry (AR) is a validated technique for assessing the cross-sectional area of the 

nose and the volume of the nasal cavity by analysis of incident reflected sound waves120-122. This 

technique is useful for estimating the location of nasal obstruction and documenting changes in 

nasal patency caused by medications or surgical interventions123,124. However, a number of 

assumptions are made about the characteristics of the nasal cavity in order to process acoustic 

rhinometry results; 

1. The walls are rigid and exhibit no radial motion, i.e. compliance 

2. There is no loss of sound energy as it propagates down the tube 

3. Branching within the nasal cavity is symmetrical 

4. The acoustic waves propagate in one direction. 

 

All of these assumptions are flawed within the nasal cavity and could potentially lead to 

inaccuracies in the results. Also early validation studies comparing acoustic rhinometry results 

with CT and MRI used coronal cross sectional areas from imaging to compare to the acoustic 

cross sectional areas95,125,126 however coronal imaging is not representative of the curved path 

of the acoustic pulse. Terheyden et al. (2005)122 used CAD software to create a more realistic 

acoustic path and determine the perpendicular cross sectional areas from this path. They found 

a good correlation between AR and CT in the anterior nasal cavity but by the mid turbinate 

region there was a consistent overestimation of area with AR. More recently Tarhan et al. 

(2005)121 performed a comprehensive study that compared AR data to CT data to evaluate the 

accuracy of AR measurements in estimating nasal passage area and to assess its ability of 

quantifying paranasal sinus volume and ostium size in humans. In the anterior nasal cavity, 

there was good agreement between the cross-sectional areas determined by AR and CT. 

However, posterior to the sinus ostia, AR overestimated cross-sectional area. This effect was 

independent of sinus volume. Therefore, the diagnostic value of this method is limited to the 

anterior nasal cavity as beyond the sinus ostia it becomes unreliable121. 

The advantages of AR are that it is minimally invasive, quick to perform, and requires 

little patient cooperation. There are published standards for age, race, ethnicity and sex for the 

use of AR127,128. In 2005 and 2010, the European Rhinology Society’s Standardisation Committee 

on Objective Assessment of the Nasal Airway published a consensus report with comprehensive 

recommendations regarding the use of AR and rhinomanometry129,130. 
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Rhinomanometry 

Rhinomanometry measures nasal airway resistance by making quantitative measurements of 

nasal airflow and pressure. Although the nose is not a simple tube, nasal airflow follows the 

laws of fluid dynamics, with flow rate depending on the pressure gradient and being inversely 

dependent on nasal resistance.  For a pipe of fixed radius, the relation between pressure loss 

and flow can be expressed either in terms of a simple proportionality (for laminar flow) or a 

power law (for turbulent flow).  In such cases the resistance has a simple form. However the 

relation between flow and pressure loss is not as simple where flow separation occurs. Flow 

separation results in additional losses associated with the mixing of fluid momentum. For 

example, where the nasal valve creates a pronounced inspiratory jet that enters the nasal cavity, 

there is a loss associated with the jet dispersal by mixing. It is thus important to recognise that 

nasal resistance cannot be assumed to be simply proportional to flow rate. 

In terms of mechanics, the pressure differential in the nose is created by respiratory effort 

altering the post nasal space pressure relative to the ambient pressure130. In rhinomanometry, 

measurements are made via two pressure transducers and a pneumotachograph and nasal 

resistance is calculated by the equation: 

   
  

 
 

Equation 2.1 

where;  

  = nasal resistance (Pa/cm3/s) 

   = transnasal pressure 

  = nasal airflow (cm3/s). 

 

However this equation does not take account of airflow characteristics (laminar v turbulent) 

and therefore may not be completely representative of in vivo resistance131. The calculations are 

further complicated by the relationship between pressure and flow. This follows a curvilinear 

pattern and therefore the resistance can’t simply be read by the slope of the graph. As a result 

the European committee for standardisation of rhinomanometry have set criteria for 

performing rhinomanometry in order to allow comparison of results and the setting of normal 

ranges129,132. 
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Different techniques for rhinomanometry complicate matters further. Rhinomanometry 

can be performed actively (during normal respiration) or passively (using a standard flow rate 

generated by a pump), and by either anterior (at the nostril) or posterior (at the nasopharynx) 

approaches. Active anterior rhinomanometry is the most commonly used, being the most 

physiological. Pressure is recorded in one sealed nostril while flow is recorded in the other open 

nostril. The results are presented graphically as a sigmoid shaped curve, each nostril is 

measured 5 times and the mean value is used. The resistance at a fixed pressure of 150Pa is 

expressed in SI units. 

 

Figure 2.1 Four phases rhinomanometry: assessment of the flow at 150 Pa in order to determine 

the resistance129. For the four phases rhinomanometry, resistance is determined for phase 1 

(ascending inspiratory phase) and phase 4 (descending expiratory phase) of the four loop 

rhinomanometry by using the “highest possible flow” at a pressure of 150 Pa (the ascending 

inspiratory and the descending expiratory curve parts are much more consistent and 

reproducible129). 

There are several disadvantages of rhinomanometry. The machine must be calibrated with each 

use and calibration varies with temperature and humidity. The placement of the probes/masks 

requires patient cooperation and is often uncomfortable. It is also relatively time consuming 

and the reproducibility of results can vary by 20-25%. It cannot be used when the nose is 

completely blocked or if there is a septal perforation and does not assess the site of an 

obstruction. Despite these drawbacks, rhinomanometry is still used and standards for reading 

rhinomanometry are readily available129,130. 
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2.2.2 Subjective measures 

 

Along with objective measurements, it is important to assess the patients’ perception of nasal 

symptoms. Visual analogue scales and psychometrically validated surveys are useful tools for 

evaluating patients’ perception.  

 

Visual Analogue Scores (VAS) 

For evaluating patients’ subjective experience of nasal obstruction VAS are commonly used, 

however, they often show inconsistent correspondence to other objective measures. However, 

they are inexpensive and quick to perform. In rhinosinusitis the severity of the disease can be 

divided into mild, moderate and severe based on visual analogue score (VAS) (0-10cm) 

Mild= VAS 0-3 

Moderate=VAS>3-7 

Severe= VAS>7-10 

To evaluate the total severity the patient is asked to indicate on VAS the answer to 

the question: 

HOW TROUBLESOME ARE YOUR SYMPTOMS OF RHINOSINUSITIS? 

 

10cm   

Not troublesome       Worst imaginable  

 

A  VAS>5 is considered to affect quality of life. 

 

Patient recorded outcome measures (PROMS) 

Psychometrically validated symptom questionnaires for sinonasal symptoms offer statistically 

validated measures for the assessment of general health and disease specific conditions. 
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The most frequently utilised psychometrically validated questionnaires include the 22-

question sinonasal outcome test (SNOT-22)133,134, the rhinitis quality of life questionnaire 

(RQLQ)135, and the rhinosinusitis disability index (RSDI)136. The SNOT and RQLQ are the most 

commonly cited validated psychometric surveys. 

 

 

Other tests 

The saccharin test evaluates ciliary function by measuring the time it takes for a drop of 

saccharin to be tasted in the back of the throat when applied to the anterior tip of the inferior 

turbinate. A transport time of between seven and fifteen minutes is considered normal and a 

time over thirty minutes is suggestive of a disruption of ciliary transport. 

Multiple tests of olfaction are available, but the University of Pennsylvania Smell 

Identification Test (UPSIT) is used most commonly. The UPSIT is a 40-item scratch-and-sniff 

test and is highly validated by age and sex137-140. 

Recent research into exhaled nitric oxide suggests that in the future, these 

measurements may prove valuable as non-invasive objective tools for the assessment and 

management of normal nasal physiology and sinonasal disorders141-143. 
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Table 2.1 Comparison of methods of evaluation of nasal assessment 144   

  

Method of evaluation Measures Advantage Disadvantage 

Visual analog scale (VAS) Patient perception • Inexpensive 
• Variable correlation with objective 
measures 

Validated questionnaires 
Patients perception of quality of 
life 

• Statistically valid  
• Can be used to assess outcome  
• Assess importance to patients 

• Limited number of validated questionnaires 
available 

Video endoscopic photo-
documentation 

• Anatomy  
• Colour  
• Secretions 

• Provides colour image of internal anatomy  
• Can be recorded for later evaluation 

• Colour may vary  
• Non-standardized reading scale 

Nasal peak flow Inspired air flow 
• Quick  
• Inexpensive  
• Reliable results 

• Requires patient cooperation  
• “Snapshot” measurement 

Acoustic rhinometry Reflected sound waves 

• Quick  
• Localizes area of blockage  
• Painless  
• Non-invasive  
• Requires no subject cooperation 

• Availability of equipment 

Rhinomanometry Pressure/flow • Gives functional result of blockage 

• Machine must be calibrated with each use  
• Calibration varies with temperature and 
humidity  
• Probes/marks require patient cooperation 
and are often uncomfortable 
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2.3  Maxillary Sinus 

 

2.3.1 Sinus function 

Throughout history, conjecture on sinus function has provided numerous and diverse 

hypotheses and whilst many have now been scientifically discredited, there remains no 

predominant accepted theory. Table (2.2) lists the numerous hypotheses of sinus function over 

the years. 

The recent discovery of high NO concentrations in the maxillary sinuses145, has triggered 

speculation that the sinuses play a role in the immune defence of the nasal cavity, and lower 

respiratory tract. NO has been shown to act as an anti-microbial agent146, a neurotransmitter, a 

bronchodilator147 and a regulator of mucociliary function148,149. Altered concentrations of NO in 

the nose and sinuses have been linked to the pathogenesis of chronic rhinosinusitis141,142,150. It 

has been proposed that the sinuses are responsible for producing NO for the nose. However the 

nasal mucosa also produces NO and transport estimates based on measured NO concentrations 

and modelling suggest that it would not be possible for enough NO to leave the sinuses to 

explain the nasal NO levels during normal breathing151. Although the sinuses cannot supply the 

entire nasal NO, the high sinus NO concentrations may be important in maintaining a sterile 

environment in the sinuses and preventing sinus infections. Frequently, in sinus surgery the 

natural sinus ostium is widened to improve sinus ventilation, however this is likely to impact on 

the sinus NO concentration. In this thesis the effect of changing ostial size on sinonasal 

transport is investigated. (Chapter 6, Section 6.2.1 page 113)  
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Table 2.2 Historical overview of the proposed functions of the paranasal sinuses. Adapted from 

Marquez (2008)10. 

 

 Proposed function of paranasal sinuses Studies 

Non-functional role 

Exists as evolutionary remains of useless air 

spaces 

Ingersoll,(1906)
152

,(1922)
153

; Negus,(1957)
154

,(1958)
155

; Takahashi,(1983)
156

; 

Lund,(1988)
11

 

Physiological role 

Contain nourishment for teeth Da Vinci; (circ 1489)
157

 

Increase olfactory mucosa surface area Braune and Clasen, (1877)
158

  

Provides even distribution of inspired air, which 

aids in olfaction 
Strickland,(1932)

159
 

An adjunct in air conditioning of inspired air 
O'Malley,(1924)

160
; Eckert-Mobius,(1933)

161
; Sato,(1938)

162
; 

Proetz,(1922)
163

,(1938)
164

,(1941)
165

; Gannon et al.(1997)
166

 

Imparting resonance to the voice 

Cleland,(1862)
167

; Bignon,(1889)
168

; Zuckerkandl,(1892)
169

; 

Dieulafé,(1906)
170

; Hartz,(1909)
171

; O'Malley,(1924)
160

; Eckert-

Mobius,(1933)
161

; Wegner,(1958)
172

; Dyce et al.(1987); Leakey and 

Walker,(1997)
173

. 

Regulating intranasal pressure Coffin,(1905)
174

; Neumayer,(1901)
175

, Suarez,(1952)
176

; Del Cañizo,(1959)
177

  

Reservoirs for mucus secretions Alger,(1943)
178

 

Assist in flotation at some point in time aquatic 

evolution 
Bignon,(1889)

168
; Proetz,(1953)

12
; Wegner,(1958)

172
; Rhys Evans,(1992)

13
 

Nasal cavity immune defence and production of  

nitric oxide gas 
Lundberg et al.(1994)

179
 

Structural role 

Reduce cranial weight 
Galen (circ. 130 AD)

5
; Cleland,(1862)

167
; Onodi,(1908)

180
; 

Nemours,(1931)
181

; Shea,(1936)
182

;  

Assist in facial growth and architecture 
Eckley,(1904)

183
; Dieulafé,(1906)

170
; Blaney,(1986)

184
;(1990)

185
; Davis et 

al.(1996)
186

 

Part of normal skull pneumatisation Witmer,(1995)
187

,(1995)
188

,(1997)
189

 

Protection for the brain and sensory organs Rui et al.(1960)
190

; Davis et al.(1996)
186

, Kelman, (2009)
191

 

Provide thermal insulation for CNS and sense 

organs 
Bignon,(1889)

168
; Bremer,(1940)

192
; Proetz,(1953)

12
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2.3.2  Sinonasal airflow 

 

Pressure Measurements 

Early work on sinonasal pressure measurements by Braune and Clasen (1877)158 and 

Proetz (1932)193 showing that the pressure changes in the sinus exactly follow those in the nose 

still holds true today.  Later experiments by Drettner (1965)194, Rantanen (1974)50 and Bachert 

(1986)195 confirm these results, therefore, since the pressure in the sinus follows that in the 

nasal cavity, sinus ventilation cannot be driven by pressure differences as suggested by 

Tornberg et al. (2002)196. There is no published evidence to show differences between sinus and 

nasal pressure with open ostia.  

The pressure in the nose varies with the breathing cycle, this variation has been 

calculated as around ±10 mmH2O (100 Pa). The sinus follows these pressure changes and 

expands and contracts according to Boyles law leading to a very small movement of air. Proetz 

(1932)193 calculated this to be 1/1026 of the sinus volume and Svanholm et al. (1981)197 

quantified it as 20μl for a 15ml sinus. A typical ostium with a 3mm diameter and 6mm length 

has a volume of around 42 μl so the air movement as a result of this mechanism would be the 

equivalent of dead space ventilation in the respiratory tract. 

Velocity Measurements 

The inaccessibility of the maxillary sinus has limited direct measurement of velocities within the 

sinus, as the placement of even a small probe would not only be difficult, but would also result 

in perturbations of the flow. The most detailed experimental results of maxillary sinus velocities 

are provided by Musebeck and Rosenberg (1978)198,199 who used a small hot-film anemometer 

inserted into the sinus via puncture of the canine fossa to measure velocities. Velocities in the 

region of the maxillary sinus ostium were found to be 40-50 times less than those in the nasal 

cavity, and the velocities reduced further with increasing distance from the ostium. 

Assessment of Ventilation 

Sinus ventilation has previously been investigated both in vivo and in vitro.  Early experiments 

were carried out by Aust and Drettner56 who investigated the recovery of oxygen concentration 

in sinuses where air had been replaced by pure nitrogen.  They found that the rate of return of 

oxygen into the sinus is inversely related to sinus volume and ostium length but varies 

proportionally with the cross-sectional area of the ostium, as would be expected for diffusive 
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transport. They found the typical time taken to restore a normal concentration of oxygen in a 

healthy maxillary sinus to be around 5 minutes. Two isotopes of xenon have also been used in 

conjunction with imaging: xenon-133 is a β and γ emitter which can be detected by Single 

Photon Emission Computed Tomography (SPECT) cameras, used for example by Zippel et al. 

(1979)200, and Paulsson et al.201-203 while xenon-129 is radiodense rather than radioactive and 

has been used with Computational Tomography (CT) imaging, for example by Marcucci et al. 

(2001)204,205. The disadvantages with Xe are that it is lipophilic and a powerful general 

anaesthetic which cannot be used in high concentrations or for long exposures, as it leads to 

side-effects such as dizziness and nausea for experimental subjects. Hence experiments have 

often had problems with non-invasively introducing sufficient quantities of the tracer gas into 

the sinuses for clear images and quantitative results. Experimental results from Marcucci et al. 

(2001)204 found similar exchange times to the earlier Aust (1974)56  studies. Hyperpolarised 

helium (He) gas has been developed as a contrast agent for Magnetic Resonance Imaging (MRI) 

and has been used to study sinus ventilation206,207. 3He causes far fewer side-effects than Xe and 

using hyperpolarised He with MRI does not expose subjects to radiation, however the 

production, transport and storage of pure and hyperpolarised 3He are complex and extremely 

expensive so this method seems unlikely to come into widespread use either for research or for 

clinical purposes. Recently Möller et al.208-212 have used 81mKr to image human sinuses and 

investigate the effects of pulsating airflow but did not quantify the ventilation of the sinuses 

under normal breathing conditions.  Early pilot studies by our group suggested that it would be 

possible to quantify sinus ventilation using 81mKr213. 

 81mKr is a γ emitter with a half-life of 13s which is currently used clinically in 

ventilation-perfusion imaging of the lungs214. The short half-life means that little time is needed 

for the counts in the model to reduce to background between experimental runs and minimal 

radiation protection is required. In contrast to xenon, which is lipophilic and anaesthetic and 

can cause complications for both in vitro and in vivo investigations, krypton is chemically inert 

and does not interact with the materials of a physical model or with biological tissues.  

Technetium aerosols are also commonly used as a contrast agent for respiratory imaging but 

are less appropriate for physiological transport measurements as aerosols follow different 

transport processes to gases. 

Until recently little experimental work had been published on the effects of accessory 

ostia on sinus ventilation. The work of Proetz (1953)12 has frequently been taken out of context 

when saying an accessory ostium would not influence exchange times. His conclusion is based 

upon a thought experiment in which suction was applied to the nostril while the nasopharynx 

was closed, however this is not representative of the normal physiological state. 
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More recent work has confirmed that the addition of a second or accessory ostium to the 

maxillary sinus does result in a net flow in the sinus and thus speeds up exchange 

processes151,215 by several orders of magnitude. This concept may have implications for the way 

endoscopic sinus surgery is performed, as enlarging the existing ostium (middle meatal 

antrostomy) and/or creating a second ostium (inferior meatal antrostomy) will affect sinonasal 

exchange processes in different ways. 

 

2.4  Pathophysiology of Rhinosinusitis 

   

The ostiomeatal complex plays a fundamental role in the pathogenesis of rhinosinusitis, 

as it is the functional unit that comprises maxillary sinus ostia, anterior ethmoid cells and their 

ostia, ethmoid infundibulum, hiatus semilunaris and middle meatus. The key element in the 

prevention of rhinosinusitis is the maintenance of ostial patency. The ostial patency will affect 

both the composition and secretion of mucus, and an open ostium allows mucociliary clearance 

to remove debris and bacteria from within the sinus19,216.  

 

Figure 2.2 Coronal section through the maxillary sinus illustrating the osteomeatal complex 
adapted from Hosemann (2000)42.  

 

Problems occur if the orifice is too small for the amount of mucus, if mucus production is 

increased, for instance during an upper respiratory tract infection (URTI), or if ciliary function is 

impaired. Stasis of secretions follows and bacterial export ceases, causing or exacerbating 

inflammation of the mucosa whilst aeration of the mucosa is decreased, causing even more 
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ciliary dysfunction. This vicious cycle can be difficult to break, and if the condition persists, it 

can result in chronic rhinosinusitis. Chronic rhinosinusitis (CRS) is defined as symptoms 

persisting for more than 12 weeks. 

The diagnosis of sinus disease is typically made by clinical history and examination in 

conjunction with nasoendoscopy and CT imaging. Treatments range from pharmacological 

interventions, with steroids and decongestants, to both short and long term antibiotic therapy, 

to functional endoscopic sinus surgery when medical therapy fails. Currently we are unable to 

objectively assess the efficacy of pharmacological or surgical treatment and rely on patient 

recorded outcome measures. Some patients with profound clinical disability have apparently 

normal CT scans and conversely some patients with significantly abnormal CT scans are 

symptom free. It is thought that patients with recurrent rhinosinusitis have poor gas exchange 

in one or more of their sinuses. Also patients who do not improve after medical or surgical 

therapy may have too much or too little sinus ventilation204. There are no quantitative non-

invasive methods for assessing the ventilatory function of the paranasal sinuses in clinical use. 

Development and validation of a technique to assess dynamic sinus ventilation would be of 

great clinical and research significance. 

Surgical interventions for CRS aim to improve sinus ventilation, however the 

mechanisms involved require further clarification. An increased understanding of the 

relationship between sinus geometry, ventilation and clinical outcome will help to direct future 

interventions. Smith et al. showed that Endoscopic Sinus Surgery (ESS) significantly improves 

the quality of life in patients with CRS217, however with revision rates approaching 20% within 

5 years of the initial procedure218 there remains an opportunity for improvement in the 

treatment of CRS. 

 

Figure 2.3 Diagram of sinus anatomy pre and post endoscopic sinus surgery adapted from 

Hosemann (2000)42.    
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Chapter 3   

Research Methodologies  
 

3.1  Introduction 

 

A number of varied techniques from different fields, including: 3T MRI and image processing 

(radiology); hot-wire anemometry (aeronautics); acoustic rhinometry (ENT surgery) and γ-

scintigraphy (nuclear medicine), have been employed to systematically investigate the mucosal 

changes in the nasal geometry, the time dependent profile of nasal inspiration and sinonasal 

transport mechanisms.  This chapter details and discusses each of the techniques. As with any 

experimental investigation, attention was paid to reducing experimental errors and hence 

increasing the reliability of the results by examining repeatability, variability and extended 

calibration where possible. 

3.1.1 Ethical approval 

This thesis comprises three main studies;  

1. Definition of the nasal anatomy and congestion/decongestion patterns 

2. Nasal inspiratory air flow profiles 

3. Sinus ventilation 

Since the first two studies involve procedures on healthy volunteers, ethical approval was 

therefore obtained from the Outer North East London Research Ethics Committee (REC 

reference: 06/Q0602/18). The studies were conducted in accordance with the International 
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Conference of Harmonization’s Guidelines for Good Clinical Practice and the World Medical 

Association’s Declaration of Helsinki.  

 

3.2 Common Assessment Tools 

 

Common assessment tools have been employed for the first two studies described 

(congestion/decongestion, inspiratory airflow profiles) in which healthy volunteers were 

involved. The subjects were screened to ensure they had no nasal complaints and no obvious 

rhinoscopic abnormalities. Tobacco, alcohol, coffee, drugs, physical activities, changes of 

temperature and food or beverages were avoided during the study. All subjects were 

acclimatised in a resting position in the laboratory for approximately 30 minutes prior to each 

study. 

 

3.2.1 Sino-Nasal Outcome Test and visual analogue scores 

All subjects completed a Sino-Nasal Outcome Test (SNOT-22) questionnaire to ensure they had 

no significant nasal symptoms. The SNOT-22 is a rhinosinusitis specific assessment tool based 

on the previous SNOT-20 but with the addition of 2 questions relating to nasal blockage and loss 

of olfactory sensitivity (see appendix). Gillet et al. (2009) have investigated SNOT scores in the 

normal population i.e. without sinonasal disease and found that a SNOT 22 score of 7 could be 

used a guide for "normal", and that care should be taken when suggesting treatment on patients 

with a score below this level219. Therefore our inclusion criteria included a SNOT score of 7 or 

less. The degree of nasal obstruction of each volunteer was also recorded with Visual Analogue 

Scores (VAS) using a line (0-10cm) with 0 representing no obstruction to 10 complete 

obstruction.  

 

3.2.2  Peak Nasal Inspiratory Flow 

Peak Nasal Inspiratory Flow (PNIF) measurements were taken using a Nasal Inspiratory flow 

meter (In-Check, Clement Clarke International, Essex, UK). The meter has a nozzle connected to 

a cushioned face mask (figure 3.1). This mask covers the nose and the soft cushion prevents any 

distortion of the nasal contours which compromise the readings. The subject is asked to empty 
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their lungs and hold their breath. The meter is then applied around the nose applying adequate 

pressure to obtain an airtight seal but not distort the nasal contours. The subject is asked to sniff 

air maximally through the nose without opening their mouth. Three satisfactory maximal nasal 

inspirations were obtained with the patient in an upright position and the highest value was 

taken for subsequent analysis in accordance with clinical guidelines. The unit of measurement is 

litres/minute (L/min). 

 

Figure 3.1  Peak Nasal Inspiratory Flow220 

 

 

3.2.3  Acoustic Rhinometry 

The Acoustic Rhinometry (AR) measurements were obtained using an EccoVision Acoustic 

Rhinometer (Hood Laboratories, Pembroke, Massachusetts USA). Measurements were 

performed by a single trained operator in accordance with published protocols 128-130).  Inter-

reading variability was kept below 10%. The following measures were recorded in all cases: 

minimum cross-sectional area (MCA - in cm2) and nasal cavity volume (NCV - in cm3) between 0 

and 5.0 cm. (See appendix for the acoustic rhinometry protocol.) 
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Figure 3.2 Acoustic rhinometry  

 

 

Figure 3.3 Rhinogram; The lines represent the cross sectional area against distance through the 

nasal cavity, LB = left nostril pre decongestion, RB = right nostril pre decongestion, RA = right 

nostril post decongestion and LA = left nostril post decongestion. The greatest change in cross 

sectional area is seen in the region of the turbinates i.e. 3-7cm from the nares. (Data from results 

in Chapter 5) 
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3.3 Methods employed to assess Congestion/Decongestion 

Patterns 

 

This study investigated the effect of decongestion on nasal airway dimensions in normal 

subjects using high resolution 3T MRI scanning. High resolution 3T MRI scans are fast, non-

invasive and provide a detailed 3D geometry.  Acoustic rhinometry was used for comparison 

with the MRI data as it has previously been shown to correlate well with MRI.  

3.3.1  Experimental Overview  

Seven healthy volunteers (ages ranging from 21-44 years, mean 28) were selected for inclusion 

in this study.  The subjects were screened by an otolaryngologist to ensure they had no nasal 

complaints and no obvious rhinoscopic abnormalities. The exclusion criteria were; 

1. The presence of nasal disease (nasal polyps, rhinosinusitis, severe septal deviation, 

septal perforations etc.) or other clinically significant disease 

2. Medication 

3. Ingestion of any food or drink within the previous hour. 

4. Pregnancy 

5. Claustrophobia (MRI scanner environment is claustrophobic and noisy) 

6. Smokers 

7. Age <18 years 

8. Coryzal symptoms within the previous 2 weeks 

Informed consent was obtained from each participant. All volunteers completed a SNOT 22 

questionnaire and visual analogue score. Acoustic rhinometry and nasal peak inspiratory flow 

measurements were performed on all subjects by a single trained operator in accordance with 

published protocols. 

Each subject underwent 2 MRI scans one pre and one post decongestion.  Scans were 

performed on a 3 Tesla, MRI scanner (Discovery MR750, GE Medical Systems).  Each scan took 

less than 3 minutes and a series of 120 contiguous 1.2mm thick coronal sections was obtained.  

All subjects remained immobilised following the scan and were decongested with 

Xylometazoline.  Decongestion of the nasal mucosa was performed in a standardised manner as 

per Clements et al. consensus document 2005 129,130. Djupesland et al. found a one-step 

approach to be insufficient for decongestion221. Hence, three sprays of an α2 mimetic 
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(Xylometazoline) were sprayed into each nostril and repeated after 5 minutes with a single 

spray 222-225.  

A second MRI scan was taken after 25 minutes allowing time for the decongestant to 

take full effect and acoustic rhinometry and PNIF measures were repeated after the scan. The 

MRI scans were delineated using Amira (Visage Imaging) and the virtual airways were analysed 

using a computer aided design package. See appendix for the MRI protocol. 

 

3.3.2 MRI 

 

Although both magnetic resonance imaging (MRI) and computed tomography (CT) are used 

clinically to image the nasal cavity (see section 1.4 pg 30 and section 2.1.2 pg 33) MRI was 

selected for this study due to its superiority in visualising the soft tissue enabling better 

delineation of the changes in the mucosal thickness during the nasal cycle. Another advantage of 

MRI is that subjects can undergo repeat scanning without the associated risks of exposure to 

ionising radiation seen with CT. The previous disadvantage of using MRI for the segmentation 

work was the lengthy duration of the scan. As a consequence the scans often suffered from 

movement artefact if the subject moved or swallowed. Also only a limited number of thick slices 

were possible in one scan (20-30). This in turn leads to significant problems with loss of 

resolution, particularly in areas where the anatomical detail is intricate. The recent introduction 

of 3 tesla MRI scanners into clinical practice has significantly reduced the scanning time and 

increased the number of slices possible per scan hence dramatically improving the quality of 

any segmentation work based on MRI scans. Figure 3.4 below illustrates the difference in CT 

and MRI imaging. 
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Figure 3.4 Comparison of a coronal CT (a) and MRI (b) T2 image of a different patient, showing 

the same area.  

 

MRI utilises the fact that much of the body is comprised of water, and hence protons (H+ ions). 

When a person is inside an MRI scanner these protons become aligned with the direction of the 

magnetic field.  If the protons are then hit with a short, precisely tuned burst of radio waves, 

they will momentarily flip around.  Then, in the process of returning to their original 

orientation, they resound with a brief radio signal of their own.  The intensity of this emission 

reflects the number of protons in a particular region. 

Additional magnetic fields can be applied during the scan to determine the origin of the 

signal in 3D space. These fields are generated by passing electric currents through gradient 

coils, which vary the strength of the magnetic field depending on the position within the 

magnet. Since the frequency of the released radio signal is dependent on its origin in a 

predictable manner, the distribution of protons in the body can be mathematically recovered 

from the signal by the use of the inverse Fourier transform. In this study we have utilised head 

coils to improve the imaging of the choanae and post nasal space. 

Contrast between different tissues can be enhanced by exploiting different tissue 

variables, such as spin density, T1 and T2 relaxation times, and flow and spectral shifts. T1 is the 

longitudinal relaxation time. It indicates the time required to regain longitudinal magnetization 

following a radio frequency pulse. T2 is the "transverse" relaxation time. It is a measure of how 

long transverse magnetization would last in a perfectly uniform external magnetic field. T1 

images cause fat to appear bright, e.g. myelin in white matter. T2 weighted images cause water 

to appear bright like CSF and fat is dark. For this study we selected T2 weighted image for 

superiority at imaging tissue oedema and hence the engorgement of the nasal turbinates. 
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Following analysis of the images from a number of MRI sequences on one healthy 

volunteer a sequence known as a “Cube” sequence was selected for this study. Conventional MR 

imaging has typically provided discrete slices in one plane only. This requires repeating the 

acquisition for every additional plane or evaluating images without the benefit of data provided 

from different angles. However, the Cube sequence replaces several slice-by-slice, plane-after-

plane 2D acquisitions with a single 3D volume scan. The scan time is short hence minimising 

movement artefact and the high definition, high contrast images with a slice thickness of only 

1.2mm, permit detailed segmentation work. Therefore the Cube sequence provided the best 

sequence option for this study. Please see the appendix for the MRI settings. 

 

3.3.3 Image Segmentation 

 

Segmentation is the process of dividing image data into different domains or segments (e.g. 

anatomic structures or tissues). Each voxel is assigned a label describing the domain to which 

they belong, i.e. airway or tissue, and these labelled voxels function as building blocks so that 

the region of interest (ROI) can be extracted for 3D reconstruction (see figure 3.5). A 

segmentation process was used in preference to the volume rendering techniques which are 

frequently used for virtual endoscopies as detailed volumetric data was required to investigate 

the changes with decongestion. Segmentation leads to a 3D reconstruction model based on 

volume data, whereas the volume rendering process leads to the creation of simply an image, by 

using a threshold method combined with edge detection algorithms to form an isosurface (a 

surface of equal voxel value)226. The MRI scans were segmented in coronal-section using Amira 

4.1 (Mercury Computer Systems, Berlin), a specialist software package. 

The image segmentation was performed using a thresholding method. This method uses 

a threshold value to turn a gray-scale image into a binary image. The intricate architecture of 

the nasal passages precluded fully automatic segmentation procedures as the resolution of the 

image renders automatic identification of the boundaries difficult particularly in the fine nasal 

channels, where partial volume effects become significant. The partial volume effect is an 

artefact of the imaging process whereby only part of the imaging pixel overlaps the anatomy, 

and hence it has a reduced overall intensity. However, its neighbouring pixels may be fully 

overlapped and have a significantly higher intensity227. This is illustrated in the enlarged inset 

figure 3.5.   
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Figure 3.5 The partial volume effect. On the left a coronal CT scan of the nose and paranasal 

sinuses has been segmented. The magnification on the right highlights the partial volume effect 

with non-uniform shades of grey filling the nasal airway pixels blurring the boundary between 

tissue and air213. 

 

The problems in defining a boundary were addressed by adjusting the viewing window 

threshold to increase the visibility of thin bony structures, following them in consecutive slices, 

and by reviewing the ROI in different viewing planes (coronal, axial and sagittal), before a 

decision was made about manually assigning a pixel to the tissue or air-containing space. Since 

selection of a single threshold value could have a significant influence on the airway dimensions 

a segmentation threshold analysis was performed as described by48.  The segmentation 

threshold was defined as: 

                               (
               

 
) 

Equation 3.1 

where AI is the voxel intensity of the voxel in air space adjacent to the segmentation boundary 

and TI is the intensity value of the voxel opposite in the tissue domain.  The segmentation 

threshold for each stack of images was determined by taking 20 random samples in 20 random 

slices. The threshold for the nasal cavity was found to be very consistent (+/- 6%) however 

there was greater variation in the level around the olfactory cleft and middle meatus areas (+/- 

22%) which would be less affected by decongestion. Inter operator variability in segmentation 

was assessed comparing the nasal airways independently segmented by three different persons 

(two ENT surgeons and a radiologist).  The table below shows a comparison of the results of the 

3 different segmentations.  
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Figure 3.6. Operator variability in segmentation. The table above compares the total anterior 

nasal cavity volume and cross sectional area at 1. the head of the inferior turbinate, 2. mid 

inferior turbinate and 3. posterior inferior turbinate, for a single subject pre and post 

decongestion, as measured by 3 independent operators. The largest difference between 

operators is seen when the cross sectional area is smallest as here slight difference in 

segmentation threshold would have a larger effect on the cross sectional area. 

 

 

3.4 Nasal airflow profiles 

 

The hot-wire technique was used to acquire simultaneous bilateral measurements of the time-

varying inspiratory flow rate at each nostril. This method relies upon capturing the centerline 

velocity within a pipe attached to an anatomical nasal adaptor positioned against each nostril. 

Using this velocity signature the volume flow rate within the pipe (which represents that 

entering the nostril i.e., inspiratory flow rate) can be determined.  
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3.4.1  Study Design 

 

A total of 14 healthy subjects (ages ranging from 21 to 38 years; mean 28 years) were selected 

for inclusion in this study. The subjects (6 male, 8 female) were screened to ensure they had no 

nasal complaints and no obvious rhinoscopic abnormalities. Following baseline measurements 

(PNIF, AR, VAS, SNOT-22) simultaneous bilateral nasal airflow measurements were obtained 

using hot-wire anemometry. Subjects were instructed to take 5 normal breaths and then to sniff 

through the pipes containing the hot-wires, this was repeated 5 times for each subject. Subjects 

were then instructed to take 5 normal breaths and then to smell lemon through the pipes, this 

again was repeated 5 times for each subject. Finally subjects were instructed to take 5 normal 

breaths and then smell ammonia through the pipes, this was also repeated 5 times for each 

subject.  For each subject 45 normal breaths, 5 sniffs, 5 lemon smells and 5 ammonia smells 

were recorded. A metronome was used to guide subject towards a regular pattern of normal 

breathing, at a rate of 15 breaths per minute228.  Subjects were not instructed to perform 

‘maximal’ sniffs, and hence the sniffs recorded by the hot-wires cannot be taken as 

representative of the maximal effort inhalations employed for PNIF measurements (voluntary 

sniffs were performed in the absence of odorants). 

Subjects were then decongested with two sprays of 0.1% xylometazoline topically 

administered at each nostril and repeated once after 5 minutes with a single spray as per the 

MRI protocol (section 3.3.1). All measurements (hot-wire, AR and PNIF) were subsequently 

repeated twenty five minutes after administration, thus allowing time for the decongestant to 

take effect. 

The experimental apparatus for acquiring inspiratory profiles using the hot-wire 

technique is depicted in figure 3.7. The connection between the nostril and measuring tube is an 

important consideration to ensure the fidelity of both the hot-wire and acoustic rhinometry 

measurements128. Anatomical nose adaptors and sealing gel were used to increase the 

reproducibility of measurements229. Forehead and chin supports were used to limit the pressure 

exerted by the nasal adaptors on the nostril, which could alter the morphology of the nasal 

vestibule230 and, hence, constrain its motion during inspiration.  
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Figure 3.7 The layout of the experimental apparatus is depicted. Forehead and chin supports, 

anatomical nasal adaptors (with adjustable orientation) are shown with a schematic 

representation of the hot-wire configuration within the measurement pipe.   

 

3.4.2  Hot wire anemometry  

 

The hot-wire technique provides a means to measure the fluid velocity at a point in a given flow 

with high temporal resolution. A fine wire (~5 microns), heated by an electrical current, is 

placed in a flow. The frequency response of the hot wire depends on its thermal inertia, with a 

small diameter a response of tens of kHz is attainable. Usually the attainable frequency response 

is limited by the conditioning electronics. For these experiments, sampling at 10kHz provided 

an excellent dynamic response. Variations in the flow velocity affect the cooling provided by the 

flow, and thus alter the instantaneous wire temperature. In turn this affects the electrical 

resistance of the wire, which can be measured directly to enable the flow velocity to be 

determined (Figure 3.8). For a comprehensive account of this method see Bruun (1995) 231. 

This study used a miniature tungsten hot-wire probe connected to an anemometer (two 

models were used: DISA 55M01 and Dantec mini CTA) and run at an overheat ratio of 1.5. The 

output was connected to: i) a filter-amplifier unit and then on to an National Instruments 16-bit 

data acquisition card and ii) directly to the same card hence recording both the raw and 

conditioned data. The data was sampled at a frequency of 5000 Hz and filtered at 1000 Hz.  
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Figure 3.8 Schematic of the hot- wire anemometry technique232. 

 

To ensure the accuracy of the measurements the hot-wire was calibrated against a known flow 

in a controlled wind tunnel. The hot-wire and a Pitot-static probe (connected to a Furness 

micro-manometer FCO510) were positioned in the freestream air-flow of the wind-tunnel. The 

flow was incrementally adjusted through 12 different speeds spanning the largest range of 

velocities expected during the experiments.  At each velocity, a 10-second long record of the 

hot-wire anemometer output and the freestream velocity (obtained from the dynamic pressure 

registered by the micro-manometer) was recorded. A King’s power law and a fourth-order 

polynomial were fitted to the data to obtain the hot-wire calibration relationship.  

After calibration, the hot-wires were each positioned at the centre of the short pipes 

through which the subject breathed. With a distance of approximately 3 diameters between 

pipe inlet and hot-wire location, theoretical predictions suggested a blunt velocity profile and 

thus near unity value for the ratio of mean velocity to that measured by the probe. As a fidelity 

check, an exercise was performed to compare the hotwire measured, integrated flow, with an 

independent volumetric measurement. In this exercise a subject inhaled via the instrumented 

pipes and orally exhaled through a pipe connected to a large inverted jar full of water to 

measure the total exhaled volume over 20 respiratory cycles, this was repeated 5 times. The 

volume of air inhaled was determined from the hot-wire measurements and compared to the 

total exhaled volume captured in the tank. The ratio of the velocity, V(probe)/V(mean), was 

determined to be 0.89 +/- 0.08.  
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3.5 Methods to assess sinonasal transport  

 

Both physical and numerical modelling were employed to investigate sinus gas exchange. 

Gamma scintigraphy, theoretical order-of-magnitude estimates and computational fluid 

dynamics simulations were used to investigate convective and diffusive transport between the 

nose and the sinus in a range of idealised geometries.  

3.5.1 Definition of Anatomy  

A simplified Perspex model was constructed, based on detailed measurements of sinonasal 

anatomy made with image segmentation software (Amira 4.1) (as previous see section 3.3.3) 

and a 3D Computer Aided Design (CAD) programme (Rhinoceros, McNeel Europe), from pre-

existing computed tomography (CT) scans of a patient with no known sinus pathology 92.  

The idealised model was based on retrospective CT data from a 53 year old female 

subject. The scans were performed using a standard sinus protocol with axial acquisition and 

the patient in a supine position. The acquisition boundaries were from the inferior border of the 

maxillary sinus to the superior border of the frontal sinuses. The entire nasal cavity was 

included. The data was acquired using a with a Philips MX800 4-slice helical scanner with a slice 

thickness of 1.3 mm and a 0.7 mm increment.  The scanner settings were a peak kilo voltage of 

120 and a tube current of 35-85 mA. The data sets had a 512 x 512 matrix and the image stacks 

were in the region of 150 slices. The scans were reported by a consultant radiologist as showing 

no signs of sinonasal pathology. Coronal reconstructions were used for segmentation work.  

The boundaries to the airway were segmented primarily using threshold-based contour 

selection as previously described (Section 3.3.3). Considerable user intervention was required 

however to modify the selected contours and to correct spurious defects in the fine structures 

due to inadequate resolution and partial volume effects (Figure 3.5). After segmentation of the 

volume, smoothing was applied to remove digitisation artefacts and the results checked for 

fidelity with the original image resolution. 

The proposed dimensions for the model were as follows: a diameter of 3 mm with a 

length of 6 mm and for the main ostium, and a diameter of 1.5 mm with length of 2mm with for 

the accessory ostium, an inter-ostial separation of 14 mm, a width of the middle meatus of 2 mm 

and a model span width of 50 mm. These are based on the characteristics of the left sinonasal 

airway on the CT scan (figure 3.9). The diameter of the main ostium is comparable with the 

mean literature values and although its length approaches the shorter end of the spectrum, it is 
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still within the normal range (table 1.1). The diameter of the accessory or smaller ostium is 

small but again within the range found in the literature. The inter-ostial separation is one of the 

larger described by Blenke (2011)48 but there is no other comparable data available in the 

literature.  

 The advantage of a physical model study is that, if well-designed, it can be adjusted to 

test different configurations in a regulated manner. With this in mind an idealised model of the 

sinus and middle meatus was devised. The entire model was made from plastics to avoid 

imaging artefacts. The model consists of a box with a detachable top lid, through which two 

ostia pass, with a 20 ml syringe with adjustable plunger attached to it as the sinus. The syringe 

is attached downstream to ensure a more laminar flow in the middle meatus in the region of the 

ostia. The ostial configuration can be altered by occluding the ostia with adhesive tape. The box 

is filled with a spacer to create a middle meatus with a diameter of 2 mm, as based on the 

narrowest diameter of the middle meatus measured on the CT scan, under the assumption that 

the narrowest diameter would be the most restricting factor.  

The eventual model had the following dimensions: a diameter of 3 mm and a length of 8 

mm for the larger main ostium, similar to mean literature values (table 1.1), and a diameter of 

1.7 mm and a length of 3.5 mm for the smaller accessory ostium. The diameter for the small 

ostium is at the small end of the spectrum according to the literature. The length of the small 

ostium is larger than the mean 0.6 mm reported by Blenke (2011)48; however there are no other 

literature reports to compare with. The width of the middle meatus, the span width of the model 

and the interostial separation remained unchanged. 
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Figure 3.9 Defining the sinus and ostial anatomy213 

a. Coronal section of CT sinuses 

b. Reconstructed surface definition in conjunction with CT image.  

c. Reconstructed surface definition with maxillary ostium highlighted. The red line depicts the 

cross-sectional cut shown in e.  

d. Detailed view of the maxillary ostium. 

e. Cross-section through c showing multiple cross-sections of the maxillary ostia 

f. Detailed picture showing cross-sections through right maxillary ostium. 
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3.5.2 Creation of Experimental Model  

An experiment was designed to analyse gas flow between one side of the nose and a maxillary 

sinus in the idealised model using Krypton 81m and ɣ-Scintigraphy.  The physical model 

geometry (figure 3.10) represents a human middle meatus, maxillary sinus and two ostia which 

connect the sinus to the meatus. The top plate of the model was removable to allow the ostium 

configuration to be changed.  Adhesive tape was used to cover each ostium in turn for single-

ostium tests, and removed for the double-ostium tests. The sinus volume was adjustable 

through the use of a syringe plunger. The sinus was attached downstream on the middle meatus 

to allow a more laminar flow to have developed in the region of the ostia. The use of idealised 

physical models has allowed the ostium geometry to be varied in a controlled manner. It was 

constructed in Perspex and other plastics for flexibility with different scanning methods.  

 

 

Figure 3.10 a. Diagram of physical model geometry. The sinus volume is adjustable between 5 

and 20ml. The channel dimensions are 125 mm long by 2 mm thick and 50 mm wide. The larger 

maxillary ostium (MO) has a diameter of 3.0 mm and length of 8 mm, and the smaller accessory 

ostium (AO) has a diameter of 1.7 mm and length of 3.4 mm. The interostial distance is 14 mm. b. 

Photograph of the idealised model. 

a. a. 

b. 
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3.5.2.1  Experimental Apparatus   

 

The idealised model described above was connected upstream to a mixing chamber, in which 

krypton 81m was injected into the stream of compressed air and then passed through a tightly 

packed ball of wire wool (see figure 3.11).  Downstream of the model a rotameter was 

connected to ensure the correct flow rates were obtained. 

 

Figure 3.11 Krypton mixing chamber. 

 

 81mKr was obtained from a Rubidium generator, as used for clinical tests214.  The flow 

rate from the generator was 1L/min, with compressed air added to increase the flow rate.  The 

model was viewed through parallel γ cameras, which detected the γ decays emitted by the 

model.  Images of cumulative count number were recorded for times ranging from two to ten 

minutes.  Dynamic imaging sequences, with 2s collection times, were used to assess the time 

taken for the counts to reach steady state. Three different ostial configurations (double ostia, 

large single ostium (MO) and small single ostium (AO)) were investigated at two different flow 

rates (2.5L/min and 5L/min). The experiments were run five times for each different ostial 

configuration and flow rate to ensure repeatability of results. Please see appendix for the 

experimental protocol. 

The known volume of the model sinus also allows the effective volume flow rate to be 

calculated from the images, whereas for real sinuses with unknown volume only ventilation per 

unit volume can be found. The flow rate used is based on model studies of nasal airflow92 where 

the peak flow velocity in the middle meatus for quiet breathing was found to be 1.2m/s. 

The experiments used steady flow through the nose to drive gas transport in the sinus. 

Bi-directional flow in breathing has two possible flow effects for the sinus, both of which have 

previously been shown to be minor. During the breathing cycle there is a pressure variation in 

the nose and sinuses of around 10mm water (100 Pa), and it has been suggested based on 

unpublished results that this pressure variation could drive flow to the sinuses Möller et al. 
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(2009) also asserted that pressure gradients had been found to drive flow to the sinuses 208-

210,212. However, earlier publications found the pressure in the sinuses to follow exactly the 

pressure in the nasal cavity during normal breathing, implying that there is no pressure 

gradient and no flow is driven194,233. There will be a small movement of air due to the volume 

change associated with the pressure change, but the volume moved is very small relative to the 

volume of the sinus, as initially calculated by Proetz193 to take around an hour to replace all the 

air in a typical sinus. There may also be some additional mixing caused by the reversal of flow 

between each half-cycle. Aust and Drettner (1974)56 used bi-directional flow in their 

experiments, whose results were well matched by computational simulations in comparable 

simplified sinus geometries with steady flow through the nose151, suggesting that the effect of 

flow reversal mixing is small. 

 

3.5.2.2  Gamma scintigraphy 

 

Gamma scintigraphy is a technique in which a gamma camera is used to image gamma radiation 

emitting isotopes. The most common indication for ɣ scintigraphy is to diagnose pulmonary 

embolism with a lung ventilation/perfusion scan. In the ventilation phase of a 

ventilation/perfusion scan, a gaseous radionuclide, usually krypton 81m in the UK, is inhaled by 

the patient through a mouthpiece. The perfusion phase of the test involves the intravenous 

injection of radioactive technetium macro aggregated albumin (Tc99m-MAA). A gamma camera 

acquires the images for both phases of the study. These images are then examined for any 

ventilation perfusion mismatch. 

Gamma scintigraph involves a crystal inside the head of a gamma camera scintillating in 

response to radioactive particles and producing a burst of light that is picked up by sensors 

(photomultipliers) located behind the crystal. The camera constructs an image based on this 

information. A collimator is attached to the head of the gamma camera to help focus the gamma 

photons and give spatial information about the subject. It consists of a thick lead sheet with 

thousands of holes through the detector. Only gamma photons travelling perpendicularly to the 

crystal manage to hit it.  All the other photons are absorbed by the collimator. However, the 

collimator is also one of the sources of blurring within the image; lead does not totally attenuate 

incident gamma photons, there can be some crosstalk between holes234. 
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Figure 3.12 Gamma Camera Components235.  

 

3.5.2.3  Image Processing 

The γ images were processed by identifying two regions of interest, containing the sinus and 

channel respectively, and assessing the number of counts in each region.   Further analysis 

follows Amis and Jones236 who considered the steady state balance between the transport and 

decay of krypton to find relationships between activity and ventilation per unit volume in lung 

images.  The effective ventilation flow rate through the sinus can thus be found according to the 

following equation: 

Qeff   βQcλ/(Qc/Vc + λ - βQc/Vs) 

   Equation 3.2 

where Qeff is the effective volume flow rate of gas replacement in the sinus, β is the ratio of 

counts found in the sinus to those in the channel at steady state, Qc is the flow rate through the 

channel representing the middle meatus (converted from l/min into m3/s), λ is the decay 

constant for 81mKr (0.0533/second), Vc is the volume of the region of interest in the channel and 

Vs is the volume of the sinus (converted from ml into m3).  Qeff  is thus the only unknown variable 

in the equation and its value can be found. 

The placement of the measurement region of interest (ROI) could have a significant 

influence on the prediction of transport from the channel to the sinus. To address these 

concerns a sensitivity analysis was performed to assess the influence of the measurement 
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region location on the predicted transport between the channel and sinus. This identified that a 

non-subjective method of determining the measurement region locations was required to 

obtain reliable transport predictions. 

This ambiguity arises as the exact location of the physical model boundaries cannot be 

adequately identified from the gamma camera images. For instance, both partial volume effects 

and the fact that for gamma camera imaging the signal reaching the detector array can bleed to 

neighbouring pixels complicates precise discrimination between the signal originating from the 

channel and the signal from the adjacent sinus. The channel sections appear much wider on the 

image than in the physical model. This ‘spreading’ effect is due to the gamma rays not all 

following horizontal paths to reach the camera plates. This was tested by placing a 1 mm wide 

solid source in the field of view of the cameras at the same distance as the krypton model would 

be placed and measuring its width on the image, which was 9 mm. The real width of the model 

channel to which the sinus is attached is 2 mm, but this broadens significantly in the image, 

leading to counts originating in the channel being detected in the sinus and vice versa. The 

resulting meeting and overlap of the sinus and channel regions prevents the ostia being visible 

on the images and effectively reduces the resolution of the images. The number of counts 

detected in the sinus and channel regions were corrected for this interference by defining 

additional regions of interest.  
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Figure 3.13 Determining optimal region of interest position. 

 

In Figure 3.13 one would expect the total count number in ROI 1 to be less than or equal to ROI 

3. The krypton is flowing from 3 to 1 and decaying over time but the rate of decay is slower than 

the flow rate. However the results show a higher total count number in ROI 1 than 3. This is due 

to counts from the sinus (ROI 2), contributing to the count number in ROI 1. Therefore ROI 3 

(the proximal channel region of interest) and ROI 2 have been used to calculate flow rates (as 

opposed to 1 and 2) as there is no sinus adjacent to position 3 and therefore no additional 

source of counts. Determining the exact location of the ROI on the image requires careful 

consideration as small changes in positioning by just 2 or 3 pixels could alter the flow rate by up 

to 30%.  
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 Figure 3.14 The change in total count number of each ROI identified in Figure 3.13 associated 

with moving the ROI to the left or right on the image (figure 3.13), corresponding to the left and 

right of the vertical axis.  

To determine the optimal ROI location the orange and green lines in figure 3.14 were studied. 

The optimal location needed to capture all the counts from the sinus and all the counts from the 

channel with minimum cross over. Figure 3.14 illustrates that moving the ROI 2 one pixel to the 

right leads to loss of  some of the counts from the sinus (orange line) and by moving the ROI's 

one pixel to the left there is a loss of counts from the channel (green line). This is illustrated in 

figures showing the detail of ROI 3 and ROI 2-4 in the appendix. 

To determine the optimal location the channel ROI 3 was placed as far to the left as 

possible but still within 2% of the maximal value to ensure minimal loss of true channel count 

signal whilst minimising contribution of spurious channel counts to the sinus.  

 

3.5.2.4  Acoustic Excitation 

Acoustic modelling was carried out in collaboration with Christina Hood PhD student in the 

department of bioengineering to assess the responses of the sinuses to vocal frequency sounds. 

The voiced speech of a typical adult male will have a fundamental frequency from 85 to 180 Hz, 

and that of a typical adult female from 165 to 255 Hz237,238. Simple acoustic experiments were 
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performed with the physical model and Dr Hood performed one dimensional acoustic modelling 

to explore the physical basis for the increase of NO transport found during humming. 

The experimental set up for the acoustic experiments is depicted in Figure 3.15 below. It 

consisted of a small speaker connected downstream of the physical model (representing the 

nasopharynx) and two 8 mm diameter condenser microphones (RS 242-8905), used to measure 

sound levels (one microphone close to the speaker and the other in the sinus). The microphones 

were modified to use an external power source which gave a more consistent output voltage 

than the original batteries. Only one microphone could be connected to the filter at a time, so 

consecutive frequency sweeps were carried out for the sinus and speaker microphone positions 

for each ostium-sinus geometry combination. 

 

Figure 3.15 Schematic representation of the experiment apparatus used for acoustic 

experiments.  

 

To ensure that the microphone responses were consistent simple calibrations tests were 

performed using a short length of straight pipe, with a speaker at one end and a microphone at 

the other. The matching responses of both microphones are illustrated in the graph (Figure3. 

16). 



73 
 

 

Figure 3.16 Calibration results for the two microphones in a straight tube. Speaker frequency 

was varied between 100 and 500 Hz with constant output from the signal generator. 

 

For the acoustic experiments the setup was modified to incorporate a “sinus” microphone in an 

alternative syringe plunger and the additional speaker with nearby microphone was mounted in 

a short length of tubing which could easily be attached and detached from the main model thus, 

maintaining the integrity of the model. A signal generator was used to drive the speaker at 

frequencies between 100 and 700 Hz, at intervals of approximately 10 Hz. A high-pass filter was 

required for the removal of mains frequency (50 Hz) noise from the microphone signals, which 

was introduced by the microphone power supplies. The filtered microphone signals were 

examined on an oscilloscope and the frequency and amplitude near the speaker and in the sinus 

recorded. The ratio of the sinus amplitude to the speaker amplitude (‘gain’) was plotted against 

frequency in order to identify the resonant frequency and calculate the Q-factor. The Q factor is 

a dimensionless parameter that characterizes a resonator's bandwidth relative to its centre 

frequency illustrated in figure 3.17. 
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Figure 3.17 Resonances with high and low Q-factor. The grey acoustic response has a higher 

value of Q-factor than the black response239. 

 

3.5.3 Predicting Sinus Ventilation 

 

First order estimates and computational simulations have been used to provide a valuable cross 

checking of results with the physical experiments. Once matching has been established with a 

few sets of variables with results from both methods, there is increased confidence in results 

from each method alone. 

3.5.3.1 Péclet Number 

The Péclet (Pe) number is a dimensionless number used to compare the significance of 

convective and diffusive transport. 

    
  

 
 

 Equation 3.3 

Where U is a typical velocity (m/s); L is a typical linear dimension (m); and D is the diffusivity of 

the species of interest (m2/s). Péclet numbers of much less than 1 indicate diffusion dominated 

transport, values around one indicate convection and diffusion are of similar importance and 

values much greater than 1 signify convection dominated transport. The Péclet numbers for the 

single ostium geometries were calculated using the peak x-velocity on the ostium-sinus 

interface as U and the ostial diameter as L. 



75 
 

3.5.3.2 Diffusive Transport 

Studies have shown that ventilation of sinuses with a single ostium <4mm in diameter is 

through diffusion. Therefore for geometries with a single ostium gas exchange was modelled 

using Fick’s first law of diffusion. If the concentration in the sinus is Cs, while that in the nasal 

cavity is CN, diffusive flux through the ostium will be given by; 

 

          

 
 

Equation 3.4 

where D is the diffusivity of the species of interest (m2/s) in air,  

A is the cross-sectional area of the ostium (m2) and  

L is the length of the ostium (m).  

 

3.5.3.3 Convective Exchange 

 

Estimates of convective exchange times were obtained from ostial volume flow rates. It was 

assumed that the sinus is a well-mixed vessel with a uniform concentration and any gas leaving 

the sinus has the same composition as the gas in the sinus. To obtain the estimates, mixing in 

the vessel was considered to be fast compared to the transport through the vessel. Coulson & 

Richardson240 gave the following expression for the time taken to achieve 90% exchange in a 

well-mixed vessel: 

      
  

 
      

          Equation 3.5 

where T90 is the time for 90% exchange (s), VS is the volume of the sinus (m3) and Q is the flow 

rate into or through the sinus (m3/s). 
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3.5.3.4 Flow Rate through a double-ostium sinus  

 

The addition of a second or accessory ostium to the maxillary sinus results in a net flow through 

the sinus. The pressure differential that would drive this flow was investigated using the 

intranasal pressure drop predictions of Croce et al.241 and Taylor et al.191. Croce et al. measured 

the intranasal pressure at various points along the nose in a plastinated cadaveric model of the 

human nose at 3 different flow rates, namely 109 ml/s, 231 ml/s and 353ml/s (figure 3.18). The 

position of the main and accessory ostia of the geometry described earlier and verified by 

computer aided design measurements are plotted onto the graph (figure 3.18). Taylor (2008)242 

used computational fluid dynamics to investigate nasal pressure drop in the same nasal 

geometry as that on which the idealised model is based (Figure 3.19). 

 

 

Figure 3.18 Pressure drop curves along the nasal cavity for flow rates of 109 ml/s, 231 ml/s and 

353 ml/s. MO refers to the maxillary ostium and AO refers to the accessory ostium. Adapted from 

Croce et al.241. 

 



77 
 

 

 

Figure 3.19 The pressure drop in the left nasal cavity based on the same CT scan data as the 

idealised sinus model. The airway boundary is colour-coded to indicate the local static pressure 

for a flow rate of 5 l/min. The nasal vestibule is not shown and the external reference pressure is 

set to zero. The large black spot indicates the position of the maxillary ostium. The smaller black 

spot AO indicates the position of the accessory ostium. Pressure scale in Pa. Figure provided by 

Dr D. J. Taylor, Imperial College London. 

 

The volume flow rate can be estimated using Poiseuille’s law as described by Hood239. An 

important consideration in estimating the volume flow rates is the ostial entry flow effects. If 

the ostial Reynolds’ number (Re) is below 30, as then entry flow effects can be neglected243. 

However, when the value is greater than 30 as in this case, entry flow effects will be significant 

and must be taken into account. Loudon and McCullogh (1999)244 developed an empirical 

correction for this which was utilised to estimate the effects of entry flow in the ostia on the 

flow rate through a double ostium sinus. For the Poiseuille flow estimate, the unknown pressure 

in the sinus, Ps is assumed to be uniform and constant, while the pressures at the nasal end of 

the upstream and downstream ostia, Pu and Pd respectively, are assumed constant and known. 

Thus the volume flow rate through the upstream ostium (positive into the sinus) is given by 

   
   

 

     
          

Equation 3.6 

and similarly for the downstream ostium 
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Equation 3.7 

where Q is the volume flow rate into the sinus (m3/s), r is the ostium radius (m), μ is the 

dynamic viscosity of air (1.79x10−5 m2/s at T=360C), L is the ostium length (m) and subscripts u 

and d refer to the upstream and downstream ostia respectively. By conservation of mass, the 

flow into the sinus through the upstream ostium must be equal to that out of the sinus through 

the downstream ostium, 

          

Equation 3.8 

Hence where the ostia have unrelated geometry, 

   
 

  
 

 

  

  
  

  

  
 

         

Equation 3.9 

Loudon and McCullogh (1999)244 used the following expression for entry length, the pipe length 

required for flow to reach 99% of its Poiseuille flow profile: 

  

 
             

  

 
 

Equation 3.10 

where LE is the entry length (m); d is the pipe (ostium) diameter (m); Re is the pipe Reynolds’  

number (dimensionless); U is the average velocity in the pipe (m/s); and  is the kinematic 

viscosity of air (1.46x10−5 m2/s at T=360C). Their correction to Poiseuille flow rates in the 

entrance region is given by 

  

  
  

   ⁄

        ⁄
 

Equation 3.11 

where QE is the corrected flow rate (m3/s); QP is the Poiseuille flow rate (m3/s); L is the total 

length of the ostium (m); and LE is the entry length calculated earlier. This expression tends to 

under-estimate QE, as the entry length is calculated based on the Reynolds number derived from 
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the Poiseuille flow estimate, which tends to be too large. Consequently the correction was used 

iteratively, with a new Reynolds number calculated from the corrected flow rate and used to 

find an updated entry length and improved flow rate estimate. Hence, using   
    

 
 

        
 

             
   

Equation 3.12 

where QE(i+1) is the updated entry flow estimate and QE(i) is the previous estimate. The first value 

of the series, QE(0) is the Poiseuille flow rate. The convergence of this series is shown in the 

appendix . The flow rates vary by less than 3% beyond the 10th iteration, so 10 iterations were 

used to find a converged solution47. 

 

3.5.3.5 Computational Fluid Dynamics 

 

A computational geometry and mesh were created in Gambit 2.4.6 (Fluent Inc., NH, USA) by Dr C 

Hood to match each physical model configuration.  In order to reduce computational expense, 

the vertical sections at each end of the physical model channel were not included in the 

computational geometry, as they did not affect the flow profile approaching the ostia. Different 

volume cell geometries were used in different regions of the model in order to improve 

computational efficiency.  Hence anisotropic hexahedral cells were used in the channel, with the 

highest mesh density across the thickness of the channel where the gradients of flow variables 

are expected to be steepest, and increased mesh density close to the ostia.  The irregular shapes 

of the ostia and sinus did not allow for hexahedral meshing, so tetrahedral cells were used in 

these components.  Non-conformal surface meshes at the interface of the different types of 

volume mesh were avoided by using triangular prism cells in the projections of the ostia across 

the channel. The quality and density of the computational mesh used is critical for the accuracy 

of any CFD solution. The mesh independence of the solution was tested by comparing the x-

velocities in the maxillary ostium of the idealised model for three meshes of different densities. 

A graph of these velocities is given in figure 3.20, where the velocities found for the 3.0 and 6.1 

million cell meshes are almost indistinguishable, indicating that the 3.0 million cell mesh is 

adequately resolved. 

Flow simulations were run in Fluent 6.3.26, initially only modelling steady velocity and 

pressure for convective transport and later adding unsteady transport of an inert species in 



80 
 

order to allow for diffusion. Convective-only volume flow rates for single-ostium sinuses are 

upper-bound estimates and were determined by finding the integral of positive z-velocities 

across a surface of constant z (perpendicular to the ostium axis) just below the curved ostium-

sinus interface.  For the double-ostium sinuses, the volume flow rate through each ostium could 

be obtained directly from Fluent. 

 

Figure 3.20 Graph of x-velocities in the ostium and channel on lines parallel to but offset from 

the ostium axis for meshes with 2.7, 3.0 and 6.1 million hexahedral cells. x=0 is the interface 

between the channel and the ostium while x=-0.006 m is the interface between the ostium and 

the sinus. ). On the right the schematic illustrates the relationship of the graph to the model. 

Adapted from Dr C.M. Hood47. 

The computational fluid dynamic simulations were performed by Dr C.M. Hood, 

Department of Bioengineering, Imperial College London.  

Effective volume flow rates for combined convection and diffusion simulations were 

calculated based on the concentration of Kr in the sinus relative to that in the nose (ratio α), 

based on the assumption that the sinus is a well-mixed cavity so Qeff = Vsln(1-α)/Tα, where Vs is 

the volume of the sinus and Tα is the time at which the ratio of concentration in the sinus to that 

in the nose is α.  For the single-ostium geometries, where transport is expected to be dominated 

by diffusion, first-order estimates of Qeff, based on Fick's Law of one-dimensional diffusion, were 

also made as QDeff = DA/L, where D is the diffusion coefficient of Kr in air (1.578x10-5 m2/s), A is 

the cross-sectional area of the ostium and L is the ostium length. 
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3.5.3.6 Estimating NO transport  

 

High concentrations of nitric oxide (NO) have previously been measured in human maxillary 

sinuses, but the transport rates between the sinus and the nose during normal breathing have 

not been quantified.  In this study, NO transport is investigated using published NO 

concentrations and production rates, first-order modelling and computational fluid dynamics 

(CFD) in idealised physiological, pathological and post-surgical geometries. The diffusive 

transport of NO through the ostium is given by 

          

 
 

Equation 3.13 

where D is the diffusivity of NO in air (2.4x10-5 m2/s), A is the cross-sectional area of the ostium 

(m2), Cs is the  concentration of NO in the sinus (mol/m3), CN is the concentration of NO in the 

nasal cavity (mol/m3) and L is the ostium length (m).  The corresponding convective flux of NO 

is given by 

QCS 

Equation 3.14 

where Q is the convective volume flow rate (m3/s) and CS is the sinus concentration as before.  

Balancing NO production (P, mol/s) and transport gives the following expression for the steady-

state sinus NO concentration: 

   
   

  
   

   
  
 

 

Equation 3.15 

Sinus and nasal NO concentrations in the literature are typically quoted in parts per billion 

(ppb), equivalent to nl/l. For calculations it is however more consistent to use the SI units 

mol/m3. Conversion between these units was carried out using the perfect gas law, where 1mol 

of gas is known to occupy 22.4x10−3 m3 at atmospheric pressure and 0◦C, or 25.4x10-3 m3 at 

atmospheric pressure and 37◦C. Hence 1ppb is equivalent to 39.3x10-9 mol/m3. Production rates 

were converted similarly from nl/min to mol/s. 



82 
 

 

 

 

 

 

Chapter 4  

Nasal Anatomy in the congested and 

decongested states  
 

 

4.1  Introduction 
 

This chapter presents the results of a pilot study on the capability of MR imaging to reveal the 

regional changes in nasal anatomy associated with decongestion. Procedures to map the 

changes in geometry are outlined and, within the limitations of a preliminary investigation, to 

consider the implications for nasal airflow and transport.  

The geometry of the nasal airway plays an important functional role in maintaining a 

healthy upper respiratory tract. The large surface area of nasal cavity covered with respiratory 

epithelium and a mucociliary blanket provides a surface over which heat and moisture 

exchange can take place. Warming inspired air to core temperatures protects the delicate lung 

alveolar membrane from thermal injury, while saturating it with water keeps the membrane 

wet, facilitating rapid absorption of oxygen and excretion of carbon dioxide. Although all parts 

of the respiratory tract are capable of temperature and moisture modification, the vast majority 

of heating and humidification of inspired air during nasal breathing occurs in the internal nasal 

passages68,245,246. Upon inspiration, ambient air comes in contact with the warm, moist 

respiratory mucosa where thermal and water vapour pressure gradients promote changes in 

the temperature and moisture content of the inspired air. Heat is transferred from the nasal 

mucosa to the inspired air primarily via convection, and since the ability of air to hold water 
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vapour increases with temperature, raising the temperature of the inspired air results in the 

concurrent transfer of moisture via evaporation. 68,71,74,245,247 

However the complex three dimensional anatomy of the nasal cavity is not static, given 

that the erectile tissue in the nasal turbinates (especially the inferior turbinate), fluctuates 

greatly in size depending on physiological changes (e.g. nasal cycle, body temperature, posture 

and exercise) and response to inflammation. To date there has been little investigation of the 

normal intra-individual variations in nasal anatomy due to congestion and decongestion. These 

changes could lead to alterations in the transport of inhaled substances and the processes of 

heat and water exchange at the nasal mucosal surface. The nasal anatomy varies in a time 

dependent manner in around 40% of the population36,248.  This ‘nasal cycle’ results in 

alternating patent and congested passages for periods ranging from 1 to 7 hours 249. The nasal 

cycle usually goes unnoticed since the total nasal airflow resistance remains unaffected2,250.  

There is currently little available data to detail the anatomical changes during the nasal cycle or 

with decongestion.  

Recent improvements in imaging techniques, such as computed axial tomography (CT) 

and magnetic resonance imaging (MRI), have enabled the capture of accurate in vivo nasal 

geometric information, which goes beyond that previously obtained by acoustic rhinometry 

(AR) and cadaveric dissection (which is complicated by the drying out and loss of tissue volume 

in specimens). Earlier investigations comparing CT and AR cross-sectional data show a good 

correlation between measurements within the relatively open anterior spaces of the nose120,251. 

However, AR tends to overestimate cross-sectional area (CSA) beyond the complex and 

sometimes obstructed turbinate region121. Post-processing of CT or MRI data also provides 

additional morphological information unavailable through AR techniques, such as airway 

perimeter and total airway volume. MRI scans have previously been used for assessing nasal 

morphology93,97, with the advantage of MRI being that there is no associated dose of ionising 

radiation and hence scans can be repeated. However, many of the MRI studies were performed 

on early MRI scanners and required long scan times and as a result suffered significant 

movement artefact. The introduction of 3T MRI into clinical practice has dramatically reduced 

scanning times. High resolution 3T MRI scans are fast, non-invasive and provide a detailed 3D 

geometry.  The MRI sequence used for the data reported here is a new isotropic three-

dimensional (3D) fast spin-echo (FSE) pulse sequence called 3D cube.  Recent 3D FSE MRI 

imaging has proven very efficient in imaging soft tissues in joints such as the knee, ankle and 

has also been used in imaging the brain252-254. 
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For this study, the effect of decongestion on nasal airway dimensions was investigated 

in seven normal subjects using high resolution 3T MRI scanning.  Subject ages ranged from 21-

38 years (mean=28). The SNOT-22 scores ranged from 1-7 (mean=3.8). The study protocol is 

given in appendix and outlined in section 3.3.1 pg 51. 

The results are presented in the sections as follows. (4.2) shows sample image slices at 

three representative locations for two subjects to illustrate the scale of changes observed with 

decongestion; (4.3) illustrates of the procedure to quantify change in nasal passage cross-

sectional area; (4.4) shows mean change in turbinate volume associated with decongestion; 

(4.5) offers a comparison between 6-slice sample of  MR data and AR measurements of mean 

cross-sectional area (4.6) describes metrics related to exchange function of the nose: SAVR 

(surface area to volume ratio) and PA (perimeter to area). Finally (4.7) summarises the findings.  

 

4.2  Images of Geometry Changes with Decongestion 

 

Figures 4.2 and 4.3 illustrate the dramatic scale of changes in nasal airway geometry associated 

with decongestion, in the anterior, mid-turbinate and posterior turbinate zones, as indicated in 

fig. 4.1. 

 

Figure 4.1 Sagittal sections through the nose showing the location of slices. 
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Figure 4.2 MRI images of nasal anatomy pre- (top) and post- (bottom) decongestion, for Subject 

A left and B right 

 

 

Figure 4.3 Coronal sections through subject A’s nose with the pre-decongested and decongested 

nasal airspace shown in blue and red, respectively 

After image registration (using MatLab255)the segmented airways are overlapped for 

comparison of the pre- (labelled blue) and post (labelled red) decongestion airway anatomy 

(figure 4.3). Pronounced shrinkage of the inferior turbinate is evident, the middle turbinate and 

septum also demonstrate shrinkage with decongestion but to a far lesser extent. The calibre of 

the inferior part of the nasal cavity is significantly larger following decongestion. 
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4.3  Quantifying Regional Patterns of Change 

 

A series of six coronal slices at 15mm spacing through the nasal anatomy, from nares to 

nasopharynx, were examined for comparison (Figure 4.4). Slice 1 is just anterior to the head of 

the inferior turbinate, slice 2 in through the anterior part of the inferior turbinate, slice 3 in 

through the anterior part of the middle turbinate, slice 4 posterior end of the middle turbinate, 

slice 5 posterior end of the inferior turbinate and slice 6 the nasopharynx.  Cross sectional areas 

calculated using the CAD package Rhino from the 2D segmentations which automatically 

calculates area within a defined boundary. The maximum change in cross sectional area was 

seen in the turbinate region slices 2-4 figure 4.4. The areas least effected by decongestion were 

the region of the nasal vestibule slice 1 and the nasopharynx slice 6. 

 

 

Figure 4.4 6 representative slices through the nasal anatomy for comparison from just anterior 

to the head of the inferior tubinate to the nasaopharynx. The slice spacing is 15mm. 
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Cross sectional area in mm2 

 

 

Congested Decongested % Area Change 

#Slice Right Left Right Left Right Left 

1 84.4 (+/-2%) 79.3 (+/-1%) 128.6 (+/-4%) 89.4 (+/-3%) 52.5 12.8 

2 36.3 (+/-4%) 92.2 (+/-1%) 170.8 (+/-2%) 131.7 (+/-1%) 370.2 42.8 

3 52.8 (+/-6%) 128.8 (+/-4%) 177.6 (+/-1%) 184 (+/-1%) 236 42.9 

4 35.1 (+/-7%) 144.1 (+/-5%) 166 (+/-2%) 197.2 (+/-2%) 372.8 36.9 

5 288.4 (+/-3%) 469.6 (+/-4%) 62.8 

6 856.7 (+/-1%) 871.3 (+/-2%) 1.7 

 

Table 4.1 Cross sectional area at each of the 6 slices in subject B. A much larger change in area is 

demonstrated on the right side however when the MRI scans are studied (figure 4.2) it can be 

seen that the left nostril was in a decongested state prior to the application of the nasal 

decongestant. 

 

The narrowest point of the nasal passage determines the nasal resistance to airflow and this 

area is referred to as the ‘‘nasal valve’’ 256. The anatomical and physiological evidence indicates 

that the nasal valve occurs at the entrance of the piriform aperture. The nasal valve region, 

formed by the junction of the upper lateral cartilages, the nasal septum and the inferior 

turbinate, is typically the narrowest point in the nasal cavity and accounts for up to 50% of total 

airway resistance in quiet breathing conditions2. The nasal valve is not a fixed anatomical 

constriction of the airway but a dynamic valve. The nasal airway resistance is determined by 

swelling and constriction of the venous sinuses of the inferior turbinate and nasal septum which 

can cause complete obstruction of the nasal passage37,257. Haight and Cole (1983)258 found that 

the anterior end of the turbinate could advance by as much as 5 mm after application of 

histamine. In subject B described above, the minimal cross sectional area on the right side 

moves anteriorly from slice 2 in the normal congested state to slice 1 in the decongested state 

due to decongestion of the engorged right inferior turbinate which was obstructing the airway. 
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 4.4  Turbinate volume changes with decongestion 

 

Turbinate volume changes were investigated in collaboration with Raul Cetto PhD student, 

Imperial College London. To determine the changes in turbinate volume, the MR images were 

first resampled to reduce the size of each individual pixel, reducing the size of the stepped 

finishes in the original image of 512 x 512 and producing a better quality image of double the 

resolution 1024 x 1024.  Resampling is a common operation in all signal and image processing 

applications. Methods available vary in their computational complexity, speed, and quality259.  

Following resampling, image registration between the pre- and post-decongestion 

images was performed using non-rigid registration algorithms260,261. The registration aligns 

structures such as bone and septum from both scans so one can focus on the soft tissues inside 

of the nasal cavity of each patient. After going through the process of resampling and non-rigid 

registration, the nasal geometries were segmented as described in section 3.3.3. The resulting 

segmentations were then analysed using MATLAB, providing numerical data allowing us to map 

changes within the nasal cavity including the airway, the inferior turbinate, middle turbinate 

and the septum.    

Decongestion had the greatest effect in three sites: the inferior turbinate, middle 

turbinate and the septum. Figures 4.5 and 4.6 demonstrate the mean volume changes of erectile 

tissue in the inferior and middle turbinates for all 7 subjects262. The greatest change in erectile 

tissue volume (ETV) was observed in the inferior turbinate (p value<0.005). Figure 4.4 

illustrates the dramatic volume change in the inferior turbinate with decongestion and figure 

4.5 demonstrates the much smaller change in the middle turbinate. Changes were also seen in 

the septal mucosa but to a much lesser extent.  
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Figure 4.5 Mean volume changes of erectile tissue in inferior turbinate for all seven subjects. The 

red line represents the volume per coronal slice from anterior to posterior found in the pre 

decongested nose. And the blue line represents the corresponding coronal section following 

decongestion. The space between the two lines represents the mean volume change found.262 

 

 
 

Figure 4.6 Mean volume changes of erectile tissue in middle turbinate for all seven subjects. The 

red line represents the volume per coronal slice from anterior to posterior found in the pre 

decongested nose. The blue line represents the corresponding coronal section following 

decongestion. The space between the two lines represents the mean volume change found.262 

Pre Decongestion 
 
Decongested 
 
Volume Change 

Pre Decongestion 
 
Decongested 
 
Volume Change 

Inferior turbinate 

Middle turbinate 
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Acoustic rhinometry was performed pre and post decongestion for comparison with the MRI 

imaging.  

 

 

 

Figure 4.7 Comparison of the mean acoustic rhinometric data and MRI data. The red line is the 

cross sectional area before decongestion and the blue line is following decongestion. The red 

triangles are the MRI cross sectional area prior to decongestion and blue post decongestion. The 

distance between the red and blue line represents the change in area.  

The mean acoustic rhinometry and MRI data of all seven patients is represented in the figure 

4.7. There is good agreement between the data particularly anteriorly. The differences from 2-6 

cm could be accounted for by the difference between the acoustic path and a straight line from 

nares to nasopharynx. The acoustic path through the nose is curvilinear and not perpendicular 

to the MRI coronal slices through the nose which have been measured. Terheyden et al. 

(2000)122 found that it was problematic to correlate area-distance curves derived from other 

methods with those derived by AR, unless the individual sound path and the individual 

measuring planes were known. The acoustic rhinometry measuring planes follow the individual 

propagation of the sound waves on a curved line through the nasal cavity. Hence when 

comparing the area-distance curve determined by AR with real distances in the nose on a 

straight line from the nosepiece to the pharynx AR appears to overestimate areas towards the 

back of the nasal cavity. 
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 4.5  Geometric Measures Related to Exchange: SAVR & PA  

 

Previous studies have found surface area to volume ratio (SAVR) to be a useful measure of nasal 

patency. Patients with atrophic rhinitis have been shown to have very low SAVR’s compared to 

healthy individuals 3. The aim in surgery for atrophic rhinitis is to restore the original surface 

area in order to minimise the water flux per unit area. Calculating the surface area to volume 

ratio is a time consuming laborious process as it requires segmentation of the entire nasal 

airway with significant user intervention. However, if a quick approximation was possible this 

could provide a useful clinical measure. Yokley (2009)263  in his anthropological study looking 

the CT scans of 49 patients found that the perimeter to cross sectional area ratio (P/A) of a 

coronal section just beyond the head of the middle turbinate provided a good approximation of 

the SAVR. The surface area to volume ratio and perimeter to area ratios for subjects A and B pre 

and post decongestion are compared in Table 4.2. 

 

Table 4.2 Comparison of the surface area to volume ratio (SAVR) and perimeter to cross 

sectional area ratio (P/A) just posterior to head of the middle turbinate pre and post 

decongestion in Subjects A and B (previously described in Figure 4.2). 

Surface area to volume ratios are significantly decreased with decongestion. In the decongested 

(non physiological) state the perimeter to cross sectional area ratio approximates well to the 

SAVR. However, in the pre decongested (normal physiological) state this is not the case. The 

difference between these findings and those of Yokley (2009)263 could be accounted for by the 

small sample size in this pilot study.   
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4.6  Discussion 

 

The effect of decongestion on ETV has been investigated here in-vivo in far greater detail than 

previously studied, and at higher spatial resolution. High resolution 3T-MRI was found to be an 

excellent modality as it provides a detailed 3D-geometry ideal for mapping changes in nasal 

mucosa.  

Following analysis of the images from a number of MRI sequences on healthy volunteers 

a sequence known as a “Cube” sequence was selected for this study. Conventional MR imaging 

has typically provided discrete slices in one plane only. This requires repeating the acquisition 

for every additional plane or evaluating images without the benefit of data provided from 

different angles. However, the Cube sequence replaces several slice-by-slice, plane-after-plane 

2D acquisitions with a single 3D volume scan. The scan time is short hence minimising 

movement artefact and the high definition, high contrast images with a slice thickness of only 

1.2mm, permit detailed segmentation work. Therefore the Cube sequence provided the best 

sequence option for this study. 

The sequence used proved to be efficient in mapping changes within the nasal mucosa 

using a fast spin Echo to provide contrast and does not rely on the much lower soft tissue 

contrast produced by gradient Echo sequences which can also carry out isotropic 3-D volumes. 

This sequence allows data to be obtained in a single scan plane but the data can then be 

reconstructed into multiple other planes because of the isotropic nature of the Voxel 

acquisition. The sequence has been employed in a variety of areas to provide fine detail in a 

single sequence which can then be manipulated into multiple planes264.  

These results demonstrate the significant effect of decongestion on ETV, with the 

greatest result seen in the inferior turbinate. Decongestion was found to have a significant 

impact on surface area to volume ratio. Variations in SAVR have implications for the transport 

of inhaled substances and the processes of heat and water exchange at the nasal mucosal 

surface. Further work using this MRI sequence will enable mapping of the normal nasal cycle 

and could be used to study the response to allergen challenges as well as detailing post surgical 

changes and the healing process. 
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Chapter 5 
 

 

Characterising nasal inspiratory flow patterns 

 

 

5.1  Introduction  

 

Air flow through the nose is cyclic, though with significant breath to breath variability. This in 

turn leads to variability in function (olfaction, heat and water exchange) and the mechanics of 

absorption or deposition of inhaled species. However the modelling of nasal airflow to date has 

ignored inter- and intra-breath flow variability; indeed as the mean time required for inspired 

air to transit the nasal airways is relatively small compared to the course of a single breath, the 

flow is often assumed quasi-steady. This chapter presents the results of an investigation of the 

time-varying flow rate during inspiration at rest, in smelling and in sniffing, both pre- and post-

decongestion. It aims to provide a better understanding of nasal airflow mechanics, both to 

improve the physiological modelling of respiratory airflow and for potential applications such 

as the delivery of aerosolized therapeutic drugs and to improve clinical knowledge.  

 Although breathing is generally treated as a rhythmic process, the variability in cycle-

by-cycle measurements of respiratory period and breath amplitude is, in fact, considerable in 

healthy adults, where no two breaths are identical. It is scarcely possible to attempt to quantify 

every possible breath, given that the extent of conscious control is large, particularly in 

comparison with the cardiac cycle. For this investigation, subjects were guided by metronome in 

order to establish some form of rhythmic breathing, in a restful state. This permits investigation 

of flow characteristics in a mode that should be common to the cohort of subjects, as well as 

enabling the inherent degree of variability that exists within a particular regime to be examined 

The temporal profile of inspiration through each nostril during normal breathing, 

sniffing and smelling (in 14 healthy subjects) was measured using high speed simultaneous 

bilateral sampling of hot wires mounted in the centre of short tubes connected to each nostril. 
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This enabled many features to be determined, including the rapidity of flow establishment 

during inspiration, the time course of inspiration, the degree of bias between the flow in the left 

and right passages, the range of peak amplitude and the constancy of flow during inspiration.  

Moreover all the above could be compared pre- and post-decongestion. Averaging and 

normalisation of the measurements allowed comparison of mean inspiratory profiles for the 

various conditions. The results reveal significant and distinct unsteady dynamic attributes of the 

various modes of inspiration, as will be described. 

 

 

5.2  Processing methodology for Hot-wire measurements 

 

At low flow velocities the hot-wire technique can be unreliable due to natural convection effects 

becoming significant. Therefore, the data acquired at the start and end of each inspiration were 

truncated below a voltage corresponding to a flow rate in the 10 cm diameter tubes attached to 

the nostrils of approximately 55 ml.s-1. A data fitting procedure was applied to reconstruct the 

initial portion of the profile (where flow rate rapidly increases) and the terminating portion of 

inspiration (where flow rate decays). The steps of this process are illustrated in figure 5.1, 

where a least squares fit approach was applied to extrapolate for both the initial and 

terminating phases. The intervals over which fitting was applied were defined respectively as: 

a) the data between the truncation location at the start of inspiration and a point at ⅔ of the 

initial maximum flow rate, Qmax1 (determined as the first peak in flow rate); and b) the data 

between one third of the maximum flow rate (⅓ Qmax1) attained in the particular inspiration and 

the end truncation point.  
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Figure 5.1 Left:  A typical measurement of inspiration at rest for the right and left nostril. The 

flow in expiration is highly disturbed, and therefore was not considered further at present. The 

truncation process is illustrated (upper-right) along with the corresponding reconstruction of the 

initial and terminating portions of inspiration (dashed lines – lower-right).    

 

To analyse the temporal profile, each inspiration was divided into its three constituent phases, 

namely:  

1) flow initiation – where the flow rate rapidly increases; 

2) a ‘plateau’ region – where a high flow rate is sustained; and  

3) flow decay – where inspiratory flow rate decreases up to the end of inspiration, as 

shown in figure 5.2 (a).  

 

The portion of the inspiration in which flow is above the mean is taken as defining the plateau 

phase; the corresponding plateau flow rate is the average flow over this phase. Given the 

variability of breathing profiles, care must be exercised when fitting data. This is illustrated in 

figure 5.2 where three measured profiles are compared, yielding respectively a good overall fit 

(a), a poor fit to the initial (b) and a poor fit to the terminating (c) phases. 
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Figure 5.2 A typical inspiration at rest is shown for a good fit at both the initiation and 

termination of the inspiratory profile.  The three phases of inspiration are indicated: 1) initiation; 

2) plateau and 3) decay. An example of a poor fit for the initial and terminating portions of the 

profile are shown (upper-right and lower-right, respectively). 

 

In order to test whether the above fitting process exerted any bias, a comparison was 

performed of the time taken for the flow rate to increase from 55 to 150 ml.s-1 by the above 

procedure namely: 

 (a) deriving the interval from a linear fit applied to the corresponding inspiratory profiles, with 

a simple measure,  

 (b) subtraction of the times at which flow first attained these values in each inspiration. 

 

 The results are shown in figure 5.3. For inspiration at rest the slope of the linear regression line 

for the data (solid line) was determined to be 1.001 (with 95% confidence bounds of 0.983 and 

1.020) indicating that there are no artifactual effects or significant bias in the determined rise-

times introduced by the fitting process. Similarly, for the sniffing measurements, a slope of 

1.268 (with 95% confidence bounds of 1.161 and 1.375) indicates that fitting may result in a 

bias of the rise-time estimate of ~25%. Overall, the fitting procedure is preferred as it prevents 

experimental noise from introducing unfeasibly low values for rise-times. The plots indicate 

that some of the outliers represent points where the data may have been too poor to provide a 

good fit.  
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Figure 5.3 The correlation between the raw and fitted data is shown for time taken for flow rate 

to increase from 55ml.s-1 to 150ml.s-1. The time determined from the raw data is plotted against 

that obtained by the least squares fit, together with the respective linear regression line, during 

inspiration at rest and sniffing, shown left and right, respectively. 

 

To investigate the reliability of the fitting process, and to provide a criterion to exclude 

poor data, the error in the fitting process (R2, i.e., coefficient of determination) and the 

additional time added as a result of the fitting (Δt) were analysed. A scatter plot of these 

variables, shown in figure 5.4, illustrates a clustering of points (representing ~2,000 individual 

measurements) at the top-left of each plot for fits to the initial phase (left) and terminating 

phase (right). The dashed-line boxes delineate the data points which were deemed reliable and, 

hence, were included for further analysis. This included 97% of the original measurement data 

for the initiation phase and 98% for the decay phase.    

 

Figure 5.4 The error in the fitting process (R2 - coefficient of determination) was determined for 

each inspiration and is plotted against the additional time added as a result of the fitting process, 

for the initiation (left) and termination (right) portions of inspiration. Inspirations at rest are 

shown as grey circular symbols and sniffs as black triangles. Data points outside the dashed lines 

have not been considered in further analysis.  
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To eliminate concerns that the pipes and their connection to the nose might affect the 

measured inspiratory profiles, measurements were made with and without (figure 5.5) the pipe 

in position. As  demonstrated in figure 5.6 no discernible difference was seen in the 

characteristics of typical flow profile whilst breathing at rest or sniffing, whilst naturally the 

amplitude of the measured velocity  is much reduced when the flow is not constrained to enter 

and exit via a tube. The unsteadiness of the expiratory flow is also demonstrated in both cases. It 

would be of interest to fully explore the flow field without the use of a tube attachment, but in 

order to derive a measurement of instantaneous flow, this would require simultaneous velocity 

sampling at multiple locations, which is not currently practical. 

 

 

 

Figure 5.5 Experimental set up without the pipe attachments. (See figure 3.7 for comparison) 
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Figure 5.6 Comparison of the inspiratory profiles of a single subject with (top) and without 

(bottom) the pipe. The measured inspiratory profile has a much greater velocity within the pipe, 

as it corresponds to a midline peak velocity, whereas without the pipe it corresponds to a single 

point in the flow field close to the nose so does not capture the same inspiratory flow. 

 

The Poiseuille pressure drop through the pipe was calculated to determine if the increased 

resistance could significantly impact the subject’s inspiration.  

 

    
    

   
 

Equation 5.183 

 

In the above expression, ΔP is the pressure drop, µ is the dynamic viscosity of air, (taken to be 

17.9 x 10-6 kg/m.s), L is the length of the pipe, Q is the volume flow rate and R is the radius. At a 

flow rate of 200 ml/s consistent with breathing at rest the pressure drop is 0.23 Pascals and at 

1000 ml/s more consistent with sniffing the pressure drop is 1.46 Pascals. A typical ΔP for quiet 

inspiratory breathing is of the order of 8 Pascals in experimental and CFD models, according to 

Taylor et al. 2010 and Croce et al. 2006. In vivo measurements with rhinomanometry suggest 

values of order 20 Pa. Therefore the contribution of the pipe to transnasal resistance is minimal 

and is likely to have had negligible impact on the mechanics of inspiration. 
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Many experiments dealing with respiratory flow have been confounded by the fact that 

the breathing pattern of subjects changes once instructed to breathe and they become aware of 

what is generally an unconscious act265-267. Western and Pack 268 found that focusing attention 

on breathing resulted in an increase in the inspiratory and expiratory times by 0.4 seconds on 

average, and also an increase in tidal volume by an average of 75 mL. Experiments applying face 

masks to patients have found that with the mask on, subjects tend to increase their breathing 

rate and minute volume266,267,269-271. These changes in ventilation have been attributed to: 1) the 

influence of the additional dead space; 2) stimulation of the nasal and oral mucosa by the nose 

clip and mouthpiece; 3) shift of respiratory route from unrestricted nose to mouth; 4) focusing a 

subject's attention on their breathing may influence ventilation.  

The use of any recording technique, even a non-invasive one can modify the 

spontaneous breathing pattern as the subject is aware that their breathing is being recorded 265. 

To determine the degree of influence imposed by these experiments on the subjects breathing, 

the minute volumes for all subjects was compared with typical literature values.  The data 

obtained in these tests correspond to an average minute volume of 11.1 L/min with standard 

deviation of 2.12 L/min. This would indicate an elevated breathing rate, but not 

hyperventilation, and lies within typical values in the literature. McGregor272 reported typical 

minute volumes of 8.0 +/- 1.27, Baydur 273 reported 10.11 +/-2.69  L/min and Burki274 obtained 

values of 8.4+/- 1.3 L/min. McGregor272 further demonstrated that the ventilatory volume in the 

sitting position both during rest and exercise was significantly higher than recumbent. At rest 

the minute volume was found to be 8.0 L/min when recumbent and 9.27 L/min when sitting, 

during exercise the minute volume was 25.07 L/min when recumbent and 35.23 L/min when 

sitting. Since the subjects in this experiment were all sitting this could account for the elevated 

minute volume found. 

 

 

Figure 5.7 Boxplot of minute volumes showing no significant difference between the congested 

and decongested states. 
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5.3 Measures to describe the temporal profile of inspiration 

 

The time-dependent profiles of inspiration have been compared over three phases identified in 

figure 5.2: 1) flow initiation – represented by an initial rapid increase in flow rate; 2) plateau 

region – represented by a nominally constant flow rate during the mid-portion of the 

inspiration; and 3) the period – the total time of inspiration. Results are compared pre- and 

post-decongestion. 

 

5.3.1 Rise times 

 

The rapid initiation of flow was characterised using the time for the inspiratory flow rate to rise 

to 150ml.s-1, (T150) as shown in figure 5.8. 

 

 

Figure 5.8a Rapid rise times in a single subject’s sniff b Detail of extremely rapid sniff 

 

 Mean T150 rise-times of 129 ms and 136 ms were found in inspiration at rest for the right and 

left nostrils, respectively, in the pre-decongested state. Sniffing was found to reduce equivalent 

mean rise-times to 85 ms and 105 ms, respectively, (Fig 5.9), whilst the fastest sniffs showed a 

T150 of only 20 ms (Fig 5.8). These results were not significantly affected by decongestion, either 

in inspiration at rest or sniffing (Mann Whitney U test, p < 0.05).  However, there was a 

significant difference in the rise-time when comparing inspiration at rest to sniffing, both pre- 

and post-decongestion. To check the finding that overall the results did not show a significant 

change with decongestion, the paired data for each individual’s fastest rise-times before and 

b 

a 
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after decongestion were compared. However, no significant differences were found. The 

smelling of both ammonia and lemon showed a trend towards slower rise times than inspiration 

at rest but this was not significant. 

 

Figure 5.9 The time taken for flow rate to reach 150ml.s-1 (t150) is depicted using boxplots, where 

the median is represented with a thick horizontal line. The whiskers extend to 1.5 times the 

inter-quartile range (represented by a box) and data points outside this (outliers) are depicted 

using crosses.  

 

5.3.2 Magnitude of established flow 

 

In the plateau phase, there was a significant difference (Mann Whitney U test, p < 0.05) between 

the flow rate for normal inspiration (median rate ~0.3 L.s-1), compared with sniffing (median 

~0.6 L.s-1), as shown in fig. 5.10. Overall, decongestion had no significant effect on this measure. 

There was no significant difference between smelling lemon and ammonia, or between smelling 

and normal inspiration. 
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Figure 5.10 The mean plateau flow rate (QMP – ml.s-1), calculated as the mean amplitude in the 

plateau phase, is depicted using boxplots, where the median is represented with a thick 

horizontal line. The whiskers extend to 1.5 times the inter-quartile range (represented by a box) 

and data points outside this (outliers) are depicted using crosses.  

 

5.3.3 Duration 

 

Results for measurements of the period (duration) for inspiration at rest and for sniffing are 

shown in figure 5.11. The use of the metronome as a guide is expected to have reduced the 

degree of variability of inspirations at rest and the results are included for completeness. 

However in spite of the use of the metronome there is still a wide variation in the duration of 

inspirations and no two inspirations are the same.  Sniffing, even though intentional, may be 

expected to be less responsive to guidance. The results indicated a shorter period associated 

with sniffing (160ms at rest and 135ms sniffing). In both cases, decongestion did not 

significantly affect the results. Smelling in contrast had a significantly longer duration than both 

sniffing and inspiration at rest. 
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Figure 5.11 The total inspiratory period (T) is depicted using boxplots, where the median is 

represented with a thick horizontal line. The whiskers extend to 1.5 times the inter-quartile 

range (represented by a box) and data points outside this (outliers) are depicted using crosses. 

 

5.3.4 Morphological changes on decongestion 

 

The lack of significant changes with decongestion prompted a morphological investigation. The 

degree of morphological change in nasal anatomy, due to decongestion, was quantified in terms 

of percentage increase in minimal cross sectional area (MCA) and anterior nasal cavity volume 

(NCV) using acoustic rhinometry, in order to better understand its lack of significant impact on 

all of the acquired measures (rise-times, plateau flow rates and inspiratory period).  

Measurements of MCA and NCV are shown in figure 5.12, and indicate that decongestion 

clearly was effective, with results showing a significant increase in nasal volume (Wilcoxon 

Signed Rank test, p < 0.05). However, the increase in minimal cross-sectional area proved less 

pronounced. Interestingly, despite strong regional variations with decongestion, the MCA does 

not change significantly, and therefore decongestion might not be expected to reduce nasal 

resistance significantly. The percentage increase in volume and cross-sectional area between 

right and left sides proved not to be significant. 
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Figure 5.12 The percentage increase in the minimum cross-sectional area (MCA) and nasal 

cavity volume (NCV) with decongestion are shown to the left and right, respectively. The median 

levels of the data are represented with a thick horizontal line. The whiskers extend to 1.5 times 

the inter-quartile range (represented by a box) and data points outside this (outliers) are 

depicted using crosses. 

 

The limiting effect of nasal resistance, related to congestion, on flow rate should be most 

pronounced at the highest flow rates. Considering only the maximal plateau flow rate achieved 

for each individual in a sniff, further processing of the data suggested a weak association 

between the NCV and sniff maximal plateau flow rate in the pre-decongested state (coefficient 

of determination 0.34). However, the data did not show a correlation between change in 

maximal plateau flow rate and increase in either NCV or in MCA resulting from decongestion, 

even where nasal volume above the median in the pre-decongested state were excluded. 

Despite any clear association with the above geometric measures, the sniff maximal 

plateau flow rate was found to increase with decongestion, (Wilcoxon signed rank test, p < 

0.05). However although the increase may be statistically significant, the degree of change was 

found to be slight: the median increase was less than 0.1 L.s-1 corresponding to no more than a 

10% increase in sniff maximal plateau flow. 

By comparison the PNIF measurements showed a 25% mean increase with 

decongestion. This suggests that PNIF measurements do not necessarily reflect normal or ‘non-

extreme’ sniff inspiratory behavior, which is not unsurprising in a group of normal subjects. 
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It seems a reasonable conjecture that applying a decongestant should abolish or at least 

diminish the normal physiological bias of nasal airflow between the nostrils (due to congestion 

of the turbinates). To test this, the mean plateau flow rate in the dominant nostril, right or left 

according to the particular subject, was divided by the corresponding flow rate in the non-

dominant nostril to derive a measure of inspiratory flow bias, expressed as a simple ratio. The 

flow bias ratio so defined is compared pre- and post-decongestion for normal breathing and 

sniffing in Figure 5.13. 

 

 

Figure 5.13 The flow bias between the dominant and non-dominant nostrils, pre and post 

decongestion during normal breathing and sniffing. The mean plateau flow rate in dominant 

nostril has been divided by the non-dominant nostril for each subject in each instance.  

 

In all but 4 subjects (1,3, 8 and 12) the flow bias approached 1 following decongestion during 

normal breathing. This suggests that the air flow is more evenly distributed between the 

nostrils following decongestion. However the data also indicates there are exceptions, as found 

for subjects 3 and 11. A possible reason is pronounced asymmetry in cavities, which may either 

remain on decongestion, or could indeed be magnified; for example where decongestion of the 

inferior turbinate significantly affects the minimum cross-sectional area. 

 

5.4 Determining characteristic profiles for different modes 

 

As outlined earlier, the variability in cycle-by-cycle measurements of respiratory period and 

breath amplitude is considerable in healthy adults. Here we seek to determine an ‘average’ 

inspiratory profile and the degree of breath to breath variability, particularly to aid appropriate 

modelling of the appropriate flow dynamics. 
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It is not possible to average the inspiratory traces simply by time, since each inspiration has a 

different duration as well as amplitude. This is well illustrated for a single subject in Figure 5.14, 

where a selection of individual right and left inhalations are compared with the average, created 

as described next.  Note also the small bias between left and right nostrils for this subject. 

 

 

Figure 5.14 Data from 30 normal inhalations of a single subject with the ‘average’ traces for left 

and right nostrils superimposed. 

 

Normalisation procedure. For each profile, the period T1 and mean plateau value A1 are 

determined so each trace as plotted consists of a vector of time values and a corresponding 

vector of amplitude values. The time vector is divided by T1 and the amplitude vector by A1; 

hence the time vector goes between 0 and 1 and the amplitude vector goes between 0 and 

slightly more than 1, because the peak of the amplitude vector is larger than the mean plateau 

level. This is then applied to all traces, i.e. every trace is brought to a stencil, of 0 to    1 in time 

and in amplitude. Once all traces are normalised the mean trace can be determined. This mean 

trace is then unnormalised so as to recover real units of time and amplitude. To unnormalise, 

we find the mean period and mean plateau level of the original data then multiply the mean 

trace’s normalised time and normalised amplitude vectors by these respective means. The 

resulting trace (in real units) corresponds to an average breath, and is shown superimposed on 

the normal breaths in figure 5.14.  
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A comparison of the inspiratory profiles obtained by simple time averaging and normalisation is 

shown in Figure 5.15. The similarity between the profiles gave increased confidence in the 

normalisation process. The advantage of normalisation is that the characteristic shape of the 

inspiratory profile is maintained, whereas simple time averaging flattens the decay phase of 

inspiration. This is a consequence of the varying period of each inspiration, resulting in the 

expiratory phase for some profiles contributing to the average during the later part of the decay 

phase. In turn, the variable breath duration accounts for the progressive deviation between the 

simple average and normalized mean traces in Figure 5.15. 

 

 

Figure 5.15 Comparison of the inspiratory profiles derived by normalisation (pink and red) and 

time averaging (black).  

 

The ‘average’ inspiratory profiles for a single subject, figure 5.16, and across all subjects figure 

5.17 may now be compared. It is seen that a normal breath is typified by (i) a rapid ramp to 

initiate the flow rate, (ii) a plateau phase where a high flow rate is maintained and (iii), a decay 

phase. The sniff has a similar profile to the normal inspiration but with faster rise times and 

higher sustained flow rates. The smelling profiles for both lemon and ammonia are observed to 

be surprisingly similar (subjects were expected to smell the unpleasant ammonia for a much 

shorter time than the pleasant lemon), the plateau phase is much flatter and longer than a 

normal inspiration or sniff, and appears to oscillate, which could be important in the mixing of 

odorants and their transport to the olfactory cleft. 
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Figure 5.16 The ‘average’ inspiration traces in a single subject for each mode of inspiration 

studied.  

 

Figure 5.17 The ‘average’ inspiration traces for all subjects for each mode of inspiration studied. 

Within the clinical setting, cycles of inspiration and expiration are typically examined as 

flow volume loops. Figure 5.18 demonstrates an average flow volume loop for nasal inspiration 
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and expiration in one subject. This flow volume loop differs from those obtained with 

spirometry in lung function tests, as spirometry requires the subject to make a maximal 

inspiratory and expiratory effort, figure 5.18 is a normal inspiration and expiration.  

 

Figure 5.18 Flow-Volume loop for the average normal inspiration in one subject. Positive values 

represent expiration, negative values represent inspiration. At the start of the test both flow and 

volume are equal to zero (representing the volume in the spirometer rather than the lung). The 

trace moves clockwise for expiration followed by inspiration.  

 

5.4.1 Significance of characteristic profiles 

 

Experiments in nasal replica models and computational predictions have been used to 

investigate nasal air flow mechanics. However these studies have assumed constant volumetric 

(quasi-steady) inspiration due to its simplicity, or at best have employed simplified waveforms. 

In figure 5.19 an average nasal inspiratory profile as deduced here is shown compared to a sine 

wave. These results reveal that the initiation phase represents a very intense acceleration of the 

flow even in inspiration at rest, which is not captured in the approximation to a sine wave or a 

constant flow rate. This rapid ramp up in flow rate could impact on accumulative processes such 

as air conditioning, olfactory sensation, drug delivery, and toxicology. Rapid flow initiation can 

destabilise flow patterns leading to an alteration from laminar to transitional flow with 

consequential alterations to the transport of inhaled substances and the processes of heat and 

water exchange at the nasal mucosal surface. Figure 5.20d demonstrates the enhanced mixing 

seen with the transient dynamics of a sharp inspiration. 92 
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Figure 5.19 Comparison of a normal inspiratory profile with a sine wave. 

 

Future modeling studies should investigate the significance of these phenomena. 

 

Figure 5.20 Steady-flow instability and sudden inspiration. (a) Experimental: (i) time-averaged 

PIV measurements at steady inspiratory flow rate of 150 ml s-1  through an idealised model, 

superimposed on a particle image. The inspiratory jet exceeds speeds of 3.5 m.s-1 as it is funneled 

into the main cavity, with weaker recirculating velocities typically 0.5–1 m.s-1 indicated by 

contours and direction indicators in (i). (ii) Instantaneous velocity measurements with a lapse of 

0.71 ms (in vivo equivalent interval) are shown with a vorticity map derived from (i), extracted 

from the region illustrated with a black box in the large flow field image. Regularly shed 

structures can be observed. (b) Computational: direct numerical simulation shows similar 

features to experiment. Instantaneous vorticity field indicates unsteadiness of flow in upper and 

anterior cavity, elsewhere fluctuations not evident. (c) High-speed PIV and (d) direct numerical 
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simulation, showing the formation of the starting vortex in the idealized model as the flow is 

impulsed from stationary to 200 ml s-1 over a 20 ms interval. The effectiveness of mixing in the 

nose is greatly enhanced by transient flow dynamics, such as the sharp sniff shown. Figure 

courtesy of Dr DJ Taylor. 

 

5.5  Discussion  

 

Novel methods were applied to investigate the temporal profiles of nasal inspiration. Inherent 

features of the profile were identified and found to be significantly different between 

inspiration at rest and in sniffing. Characteristic temporal profile shapes for the different modes 

of inspiration were determined. Decongestion was found to have little effect on the temporal 

profiles for the flow regimes studied.  

  The initiation phase can be characterised by determining the time required for the flow 

rate to increase to 150ml.s-1. Intense acceleration was observed in this phase. Typical plateau 

phase flow rates were found to be of order 350 ml.s-1 in inspiration at rest and significantly 

higher in sniffing.  

These results could have significant implications for the understanding of nasal airflow 

mechanics. Nearly all studies concerned with transport and exchange processes in the nasal 

airways, such as aerosol deposition, model nasal inspiratory flow as a quasi-steady process, or 

at best have used grossly simplified approximations (e.g., sinusoidal flow rate variation). 

However, these results reveal that the initiation phase represents a rapid acceleration of the 

flow, and moreover that very high flow rates may be sustained in sniffing. It is well recognised 

that rapid accelerations or decelerations can destabilise laminar flows leading to an alteration 

from a laminar to a transitional (i.e. incompletely turbulent) state with consequential 

alterations to the transport of inhaled substances and the processes of heat and water exchange. 

To accurately predict these accumulative processes within the nasal airways the transient 

nature of the inspiratory profile should be considered. For instance, the temporal dynamics of 

the sniff are believed to be central to odorant perception, by affecting odorant intensity and 

component discrimination. 

The use of a bilateral hot wire probe could potentially provide useful information in a 

clinical setting, enabling for example the degree of nasal flow bias and the response to 

decongestion to be determined. However means to make the sensors more rugged (perhaps by 

replacing with a hot film) and providing a calibration means would be required. 
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Chapter 6    

Sinus Ventilation & Transport 
  

6.1 Introduction 

 

Rhinosinusitis is a common condition and accounts for a huge number of medical consultations 

worldwide14.  In the United States rhinosinusitis is ranked in the top ten most expensive medical 

conditions for employers based on combined healthcare and reduced productivity costs22. 

Despite the huge socioeconomic impact, the causes of sinusitis are not well understood. 

Important factors in the pathogenesis of sinusitis are reduced sinus ventilation and impaired 

mucociliary transport. Improved sinus ventilation is often a goal of clinical interventions216,275-

277; however, the links between sinus geometry, ventilation, and clinical outcomes are still 

poorly understood. Current surgical treatment for chronic rhinosinusitis involves enlarging the 

natural maxillary sinus ostium creating a middle meatal antrostomy. In the past, surgery 

involved creating inferior meatal antrostomies as a second ostial opening to improve sinus 

ventilation however these have largely been abandoned due to disruption of mucociliary 

clearance pathways and poor long term patency. In this chapter the relationship between sinus 

ventilation and ostial configuration is elucidated in experimental, computational and numerical 

models. 
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6.2  Sinus Ventilation 

 

In the following the effects of 

i. ostial diameter, 

ii. ostial and sinus geometry, 

iii. a second ostium, 

iv. nasal flow rate and 

v. mucocillary transport 

on the mechanics of sinus ventilation are examined. 

 

6.2.1 Effects of ostial diameter on sinus ventilation 

 

An idealised physical model of a human maxillary sinus (Chapter 3 pg 62 fig 3.10) was used in 

conjunction with gamma scintigraphy employing Krypton-81m to allow measurement of 

volume flow rates and gas transport. Matching computational simulations enabled investigation 

of additional variables, which were not possible to examine experimentally, and separation of 

transport mechanisms. Comparison of geometrical configurations and data on maxillary sinus 

volumes is summarised in Chapter 3 section 3.5.1 and literature values are given in Chapter 1 

table 1.1. The idealised physical model has two ostia connecting the sinus to the middle meatus, 

the larger the maxillary ostium (MO) has a diameter of 3mm and the smaller or accessory 

ostium (AO) has a diameter of 1.7mm. Krypton experiments were run occluding each ostium in 

turn. The results are compared with first order estimates and computational simulations (table 

6.1).  

Previous studies have shown that when a single ostium is less than 4mm in diameter 

ventilation is by diffusion57,151,204.  The qualitative flow characteristics of the idealised physical 

model geometries were found to follow the predictions obtained either by first order estimates 

or by accurate computations.  
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Ostium 

configuration 

Péclet 

number Pe 

Fick’s Law  

V'eff 

  Computational simulation Experimental 

V'eff Conv-only Conv + Diff  T90 

Large single 3.8x10
-3 

1.4 x 10
-8

 2.3 x 10
-12

 1.4 x 10
-8

 2700 1.5 x 10
-8

 

Small single 4.5x10
-5 

1.1 x 10
-8 

2.6 x 10
-11 

8.7 x 10
-9

 4400 8.5 x 10
-9

 

 

Table 6.1 Experimental and computational values for effective volume flow rate and 90% 

exchange time for krypton transport in physical model geometries with a 10ml sinus and flow 

rate of 5L/min. Péclet numbers for both geometries <1 indicating diffusion dominated transport. 

Fick’s Law: prediction from Fick’s law first-order diffusion; V'eff: effective volume flow rate, m3/s; 

Conv-only results are from purely convective simulations; Conv + diff results are from a 

simulation that combined convective and diffusive effects; T90: 90% exchange time, s. 

 

Increased levels of radioactivity are seen in the sinus when the ostial diameter is increased 

(figure 6.1). With a single ostium, doubling the ostial diameter doubles the effective volume flow 

rate of gas exchange. The 90% exchange time for the single large ostia is 45 minutes and for the 

single small ostium is 73 minutes showing that the natural ventilation rate of a sinus with a 

single ostium is extremely slow.  

 

 

Figure 6.1 Gamma camera images from krypton experiments in the idealised physical model. 

Left shows a run with a small single ostium and right is a large-ostium only experiment. Sinus 

volumes are 10ml and the channel flow rate is 5 L/min. The image thresholding and resolution 

are the same for both images, as can be seen by the identical channel brightness. The channel 

sections appear much wider on the image than in the physical model. This ‘spreading’ effect is 

due to the gamma rays not all following horizontal paths to reach the camera plates see section 

3.5.2.3.  
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The computational results as shown by the streamlines in figure 6.2 clearly demonstrate the 

flow patterns in the sinus.  With a single ostium, there is no net flow across the ostium so 

exchange is limited to diffusion and is very slow.  The channel flow provides a shear driving 

force at the nasal end of the ostium, which sets up two counter-rotating vortices in the ostium. 

There is a close match between the pattern of vortices found in this study and theoretical results 

for shear-driven cavities278,279, as well as those for a channel side branch with no net flow280. The 

computational simulations also revealed a uniform pressure throughout the ostium and sinus, 

matching that in the channel outside the ostium. This finding matches earlier experimental 

evidence that the sinus pressure follows the variation of nasal cavity pressure during breathing 

194, and confirms that steady gas movements between the sinus and nose cannot be pressure-

driven (figure 6.4). 

 

Figure 6.2 Left: Velocity contours for the single large ostium configuration with a 10 mL sinus 

and flow rate of 5 L/min215. Right: Streamlines found analytically for a small side-branch off a 

larger channel with no net flow along the branch, reproduced from Tutty (1988)280.  

 

6.2.2 Effect of geometry on ventilatory flow patterns  

 

The design of the idealised physical model permitted the investigation of ventilation in three 

different sinus volumes 10, 15 and 20ml. Changing the shape of the sinus is expected to affect 

only the flow in the sinus, not that in the ostium or middle meatus. Table 6.2 demonstrates no 

change in the effective volume flow rate into the sinuses with increasing volume.  
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Ostium 
configuration 

Vs (ml) Fick's law V'eff 

(m
3
/s) 

Computational V'eff (m
3
/s) Experimental 

V'eff (m
3
/s) 

Conv-only Conv + Diff 

Large single 10 1.4 x 10
-8 

2.3 x 10
-12 

1.5 x 10
-8

 1.4 x 10
-8 

15 1.4 x 10
-8 

2.3 x 10
-12 

1.5 x 10
-8

 1.4 x 10
-8 

20 1.4 x 10
-8 

2.3 x 10
-12 

1.6 x 10
-8

 1.4 x 10
-8 

Small single 10 1.1 x 10
-8 

2.6 x 10
-11 

8.5 x 10
-9

 1.1 x 10
-8 

15 1.1 x 10
-8 

2.6 x 10
-11 

9.2 x 10
-9

 1.1 x 10
-8 

20 1.1 x 10
-8 

2.6 x 10
-11 

8.7 x 10
-9

 1.1 x 10
-8 

 

Table 6.2 Experimental and computational values of V'eff for all sinus volumes, flow rate 5 L/min, 

Vs : sinus volume. 

 

Hood 201047 was able to further investigate the effects of change in geometry computationally. 

Ostial length, elliptical cross section area, ostial curvature, channel curvature and taper and 

sinus shape were studied.  

Summarising her results; 

 Ostial flow patterns were found to be determined by the relative rather than absolute 

ostial length. However, the ostium-sinus interface velocities were greater for a larger 

ostium; therefore the estimated exchange times are affected by both relative and 

absolute ostial length.  

 An elliptical ostium was found to have a similar flow pattern as a cylindrical one of the 

same length and major diameter. However the ostium-sinus interface velocities and 

hence the estimated exchange flow rates were much smaller with an elliptical ostium.  

 The flow patterns in tapered ostia, with diameter varying along their length, were 

determined by the maximum diameter.  

 Ostial curvature slightly reduced the velocity magnitudes and exchange flow rates, 

although this could have been due to the slightly larger effective ostium length. Channel 

curvature of the middle meatus was not found to exert any significant influence on sinus 

ventilation.   

 The effect of sinus shape was studied in a sinus shaped as a truncated sphere. There the 

peak velocities at the ostium-sinus interface and the estimated exchange flow rate were 

found to be approximately double the values found for the standard sinus shape. 

However, this change is very much smaller than the variations found for changing 
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ostium diameter, length or shape, so the sinus shape does not seem to be a significant 

factor controlling sinus ventilation.239 

 

 

6.2.3  Implications of a second ostium 

 

An additional ostium can occur due to either a natural accessory ostium or surgical antrostomy, 

for example, an inferior meatal antrostomy. The proportion of the population who have 

accessory ostia is controversial, with rates between 5% and 44% reported in the literature 51-

53,60. Measurements of ostial size and the presence of accessory ostia are hampered by the 

inaccessibility and complex geometry of the sinuses, and as a result many studies have been 

performed in cadavers, where the thin fontanelle membranes (in which the majority of 

accessory ostia are found) could easily be damaged when drying out43. A relationship between 

rhinosinusitis and the presence of accessory ostia has been reported in the literature, but the 

causal link is unclear. It has been proposed that infections may damage the fontanelle 

membranes and create accessory ostia28 and that accessory ostia disrupt mucociliary clearance 

pathways and result in sinusitis45. Inferior meatal antrostomies were designed to aerate the 

maxillary antrum and drain the sinus by gravity; however, it is known that dependent drainage 

does not occur as the cilia continue to transport secretions to the natural ostium.  Inferior 

meatal antrostomies have now largely been abandoned given the low rate of long-term patency 

and high rate of failure281.  

The results from the Krypton experiments show increased levels of radioactivity in the 

sinus with the presence of an additional ostium (figure 6.3). This translates to an approximately 

50 fold increase in the effective volume flow rate of gas replacement in the sinus with an 

additional ostium. The measurements in table 6.3 show the actual increase is from 1.5 x 10-8 

m3/s, (standard deviations of 2.7 x 10-10 m3/s), to 7.4 x 10-7 m3/s, (standard deviations of 2.3 x 

10-8 m3/s), hence the rise is more precisely estimated as 49.3 +/- 1.5. The 90% exchange times 

for the single large ostia is 45 minutes whereas with the 2 ostia is only 36 seconds. 
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Figure 6.3 Gamma camera images from krypton experiments in the idealised physical model. 

Left shows a run with a small single ostium, in the centre is the single large ostium and on the 

right is the double ostium configuration. Sinus volumes are 20ml at the top and 10ml at the 

bottom and the channel flow rate is 5 L/min. The results for exchange times are given in the 

following table. 

Ostium 
configuration 

Vs (ml) Experimental 
V'eff (m

3
/s) 

Computational V'eff (m
3
/s) T90 (s) Fick's law V'eff 

(m
3
/s) Conv-only Conv+diff 

Double 10 7.4 x 10
-7 

7.6 x 10
-7 

7.9 x 10
-7 

29 - 

15 1.2 x 10
-6 

7.6 x 10
-7 

  - 

20 1.3 x 10
-6 

7.6 x 10
-7 

8.2 x 10
-7 

56 - 

Single large 10 1.5 x 10
-8 

2.3 x 10
-12 

1.4 x 10
-8

  1.4 x 10
-8 

15 1.5 x 10
-8 

2.4 x 10
-12 

  1.4 x 10
-8 

20 1.6 x 10
-8 

2.3 x 10
-12 

1.4 x 10
-8 

3300 1.4 x 10
-8 

Single small 10 8.5 x 10
-9 2.6 x 10

-11 
  1.1 x 10

-8 

15 9.2 x 10
-9 2.6 x 10

-11 
  1.1 x 10

-8 

20 8.7 x 10
-9 2.6 x 10

-11 
8.7 x 10

-9 
5300 1.1 x 10

-8 

 

Table 6.3 Experimental and computational values of volume flow rate (V'eff) for all geometry 

configurations, flow rate 5 l/min, Vs : sinus volume, T90: 90% exchange time, s. 
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The computational results clearly demonstrate the different flow patterns in the sinus 

for different ostial geometries, as shown by the streamlines in figure 6.4.  When there is only a 

single ostium, there can be no net flow across the ostium so exchange is limited to diffusion and 

is very slow.  In the presence of an additional ostium, there is a net flow through the sinus and 

convective gas transport is dominant. 

 

 

Figure 6.4 Velocity streamlines are superimposed on pressure contours in the physical model 

geometry with sinus volume 20 ml, single large ostium (left) and double ostium configuration 

(right). Channel flow rate 5 L/min. Pressure scale in Pa.47 
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Figure 6.5 Computational results for Krypton concentration against time in the three idealised 

physical model configurations: all sinus volumes 20 ml, channel flow rate 5 L/min, single small 

and large ostia and both ostia. Fick’s law comparison shown for single ostium geometries47. 

 

 

 

Figure 6.6 Experimental results showing total count numbers against time for the large single 

and double ostium geometries in the idealised physical model. The rapid wash in for the double 

ostium case is thus verified experimentally. Direct comparison with fig 6.5 is however 

complicated by the rapid decay rate of the tracer. 
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6.2.4 Modelling the effect of nasal flow rate on sinus ventilation 

 

Krypton experiments were run in all ostial configurations of the idealised physical model at two 

flow rates 2.5L/min and 5L/min and each run was repeated five times. These flow rates 

correspond to the typical literature values for middle meatal flow rates for a channel calibre of 

2mm and spam of 50mm. The increase in the channel flow rate from 2.5L/min to 5L/min 

increases the pressure difference between the ostial openings and results in an almost doubled 

volume flow rate through the sinus from 7.6 x 10-7 m3/s at 2.5L/min to 1.3 x 10-6 m3/s (compare 

20ml sinus with double ostia in tables 6.3 and 6.4). The increase in sinus flow rate is not exactly 

proportional to the increase in pressure difference along the channel because the ostia-sinus 

path has higher flow resistance to flow than the parallel channel path, so the flow in this section 

of the channel will increase more than the flow through the sinus. In vivo the pressure 

difference between the nasal ends of the ostia can be increased by an elevation in nasal flow 

rate, as demonstrated above, or (equivalently) by increasing the spacing between the ostia with 

a constant nasal flow rate and hence pressure gradient. 

 

Ostium 
configuration 

Vs (ml) Experimental 
V'eff (m

3
/s) 

Computational V'eff (m
3
/s) T90 (s) Fick's law 

V'Deff (m
3
/s) 

Conv-only Conv+diff 

Double 10 5.1 x 10
-7 

4.8 x 10
-7 

  - 

15 7.8 x 10
-7 

4.8 x 10
-7 

  - 

20 7.6 x 10
-7 

4.8 x 10
-7 

4.9 x 10
-7

 94 - 

Single large 10 1.6 x 10
-8

 1.3 x 10
-12 

  1.4 x 10
-8 

15 1.6 x 10
-8

 1.4 x 10
-12 

  1.4 x 10
-8 

20 1.6 x 10
-8

 1.3 x 10
-12 

1.3 x 10
-8

 3500 1.4 x 10
-8 

Single small 10 8.4 x 10
-9

 1.1 x 10
-11 

  1.1 x 10
-8 

15 8.1 x 10
-9

 1.1 x 10
-11 

  1.1 x 10
-8 

20 8.6 x 10
-9

 1.1 x 10
-11 

8.3 x 10
-9

 5500 1.1 x 10
-8 

 
Table 6.4 Experimental and computational values of the volume flow rate (V'eff) for all geometry 

configurations, flow rate 2.5 L/min, Vs : sinus volume, T90: 90% exchange time, s. 
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6.2.5 Estimating the effects of mucociliary transport on ventilation 

 

Previous work has shown that modelling of mucociliary velocities on the mucosal surfaces had 

no effect on convective or diffusive exchange times151. Mucus plugging can prevent gaseous 

exchange but this has not been modelled in this study. Mucociliary transport is, however, 

essential in maintaining healthy sinuses as it is required in order to remove pathogens that 

enter the sinus. Additional ostia are associated with disrupted mucociliary transport45, possibly 

leading to delay or prevention of the removal of any pathogens entering the sinus, and to 

recirculation of mucus, which can introduce pathogens from other parts of the nasal cavity. 

 

6.2.6 Prediction of ventilation rates: comparison of experimental and computational 

results 

 

Computational predictions of gas exchange rates closely match the experimental findings 

(tables 6.3 and 6.4), giving increased confidence in both methods. The results show that volume 

flow rates are independent of sinus volume, indicating that sinus ventilation is influenced by 

ostial geometry and channel flow rate alone. The results for single ostium geometries are 

independent of channel flow rate, demonstrating that the gas exchange mechanism is diffusion 

dominated.  

Experimental results and computational predictions for the 15 and 20 ml sinus volumes 

with double ostia do not agree as closely as the other 14 combinations of ostium geometry, 

sinus volume and channel flow rate. The processing of the experimental krypton data assumes a 

uniform concentration in the sinus; hence any variation in sinus concentration may lead to 

discrepancies between the count ratios and the effective flow rates. Computational plots of 

krypton concentration normalised by the inlet value are shown in figure 6.7. The single ostium 

sinuses have a very uniform concentration whereas the double ostium sinuses show a far 

greater variation in concentration particularly with the largest sinus volume 20ml indicating 

that the assumptions used to process the experimental data are compromised. 

 Krypton’s very short half-life (13 s) means that the count numbers in each region of the 

image will reach 90% of their steady state value at or before 43 seconds (3.32 half-lives). This is 

several orders of magnitude lower than the predicted 90% exchange times for the single ostium 

geometries. Whereas when compared to the 90% exchange times for the double ostium 
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geometries, 43 seconds is slighter longer than that for the 10 ml double ostium sinuses, but 

around half the values predicted for the 15 and 20ml double ostium sinuses.  

Therefore, the steady state count numbers for the single ostium geometries reflect a 

very early state of exchange, whereas the 10 ml double ostium geometries show a completed 

exchange, and an intermediate stage for both the 15 and 20 ml double ostium sinuses. These 

differences may be an additional source of error in the experimental results. The use of a tracer 

gas with a longer half-life, such as xenon-133 (half-life 5.24 days) would prevent these errors. 

However, xenon also has disadvantages it is lipophilic and would adhere to the model but also 

the longer half-life means it would need to be captured when leaving the model to prevent 

exposing the experimenters to excessive radiation doses or the anaesthetic effects of xenon.  

 

 

Figure 6.7 Contours of Kr concentration, divided by inlet value, for physical model geometries. 

Channel flow rate 5 L/min for all. Clockwise from top left: single small ostium, 20 ml sinus after 

50 s; single large ostium, 20 ml sinus after 50 s; both ostia, 20 ml sinus after 10 s; both ostia, 10 

ml sinus after 10 s.47 
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6.3 Sinus transport 

 

The experimental and computational results demonstrated that there is enhanced ventilation 

associated with an enlarged or accessory ostium. However an excessively augmented 

ventilation may not be clinically beneficial151, as it could reduce the normally high Nitric Oxide 

(NO) concentrations in the maxillary sinus145, and impair the sterility of the milieu. Since NO has 

anti-microbial properties and can stimulate ciliary motion, it is therefore thought to be a 

significant factor in sinus health. 

 Nitric Oxide is a free radical molecule with many different functions in the body282. In 

the upper airways, NO is particularly noted for its role in immune defence, due to its anti-

microbial properties283,284, and promotion of ciliary activity285. NO is formed in vivo from 

arginine by three isoforms of the enzyme nitric oxide synthase (NOS). Three different types of 

NOS have been described, two of which have been found in the nose and sinuses. Nasal NO is 

formed by human endothelial or type 3-NOS286, with some activity from type 2-NOS, whereas 

the sinuses contain only type 2-NOS145. Type 2-NOS is inducible and can be expressed in 

response to hypoxia and/or inflammation287.  

Arguments as to what constitutes a desirable level of sinus ventilation are as yet 

unresolved. On the one hand enlargement of the maxillary ostium is associated with reduced NO 

levels. Kirihene et al. (2002)288 showed that surgical enlargement of the maxillary sinus ostium 

produced a significant decrease in both the maxillary sinus and the nasal cavity NO levels and 

the size of the ostium showed a significant correlation to the sinus NO level. The lowered levels 

of NO were found irrespective of the technique of measurement of the NO. Qian et al. (2000)289 

looked at the NO outputs from each nostril in patients who had undergone unilateral medial 

maxillectomy compared to normal volunteers and found significantly lower NO levels on the 

operated side in the post-operative group. NO inhaled from the upper to the lower airways may 

help with ventilation-perfusion matching in the lungs as it has vasodilative effects. 

Conversely, the absence of effective ventilation is associated with decreased NO 

production290,291 and diminished mucociliary clearance, may lead to chronic rhinosinusitis292. 

Low nasal NO levels have been reported in cases of acute rhinosinusitis293, nasal polyposis294, 

primary ciliary dyskinesia179 and cystic fibrosis295. 
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6.3.1 Efforts to determine NO production rates and sinus concentrations 

 

Lundberg et al. (1995)145 first identified high concentrations of NO in the paranasal sinuses. 

They reported a sinus NO production rate of 20 nmol/min (3.3x10-10 mol/s), based on the 

increase in measured sinus NO concentrations when temporarily blocking the ostia for varying 

durations. Andersson et al. (2002)296 also found a much higher concentration of NO in the 

maxillary sinus than in the nasal cavity. Unfortunately their measuring technique did not 

resolve concentrations above 10,000 ppb, which was exceeded in some of the sinuses resulting 

in artificially low mean sinus concentrations. Menzel et al. (2005)297 investigated the effect of 

humming on NO concentrations in the sinus, and found a rate constant of 3.7x10-3 mol/s for 

sinus NO concentration recovery after washout, indicating a net production rate at the steady 

state sinus concentration of 3.8x10−11 mol/s, an order of magnitude lower than the Lundberg 

value. However, they did not consider gas transport of NO out of the sinus in their model. 

The effect of blocking the sinus ostium on nasal NO concentration was studied by Haight 

et al. (1999)298. They measured nasal and sinus NO concentrations and production in a single 

subject with open and then experimentally blocked ostia. They reported a 12% reduction in 

nasal NO output when the sinuses were blocked, hence concluded that the sinuses contribution 

to nasal NO was small. They estimated rates of NO production per unit area of epithelium as 6 

nL/min/cm2 (3.9x10-8 mol/s/m2) for the maxillary sinus and 0.5 nL/min/cm2 (3.3x10-9 

mol/s/m2) for the nasal cavity. These values are of a similar order of magnitude to other studies, 

however their sinus NO production rate was reduced by a much greater proportion than the 

nasal NO production by the anaesthetic and decongestant used for the study. In view of the 

significant variations in nasal and sinus NO concentrations between subjects in other studies, 

these results in a single subject might not be representative of the wider population.  

The effect of ambient oxygen concentration on nasal NO output has been investigated by 

both Haight et al. (2000)291 and Nakano et al. (2002)290. Haight et al. found no change in nasal 

NO output if the nasal oxygen concentration was increased and a 50% reduction if the 

concentration was dropped to zero. Nakano et al. (2002) found a reduction in NO output of 37% 

with zero oxygen concentration. These findings suggest that nasal and sinus NO is produced 

partly with gaseous oxygen and partly with blood oxygen. 

DuBois et al. (1998)299 assessed NO production and absorption in the nasal cavities. 

They estimated a ventilation rate for sinuses based on Xenon washout half-times from Paulsson 

et al. (1992)201, and a combined sinus volume of 80 ml, to obtain an equivalent flow rate of 5 
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ml/min (8.3x10−8 m3/s). They did not measure sinus concentrations or consider diffusive 

transport. 

 

6.3.2 Application of the sinus ventilation model to NO transport  

 

Fick's law of first-order diffusion was previously found to give accurate results for sinus 

diffusive exchange times and thus exchange rates.  The diffusive transport of NO through the 

ostium is given by 

          

 
 

Equation 6.1 

where D is the diffusivity of NO in air (2.4x10-5 m2/s), A is the cross-sectional area of the ostium 

(m2), CS is the concentration of NO in the sinus (mol/m3), CN is the concentration of NO in the 

nasal cavity (mol/m3) and L is the ostium length (m).   

The corresponding convective flux of NO is given by 

QCS 

 Equation 6.2 

where Q is the convective volume flow rate (m3/s) and CS is the sinus concentration as before.  

Balancing NO production (P, mol/s) and transport gives the following expression for the steady-

state sinus NO concentration: 

CS = (P+CNDA/L)/(Q+DA/L) 

Equation 6.3 

The steady state NO concentration in the sinus can be estimated using the above equation, with 

published production rates and nasal NO concentrations, along with CFD convective flow rates. 

Lundberg et al. (1995)145 found that variation in nasal NO concentration had a trivial effect on 

the sinus concentration.  
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Ostial diameter (mm) Steady state sinus  
NO concentration (ppb) 

1.7 mm 300, 000 

3 mm 48, 000 

10 mm 6, 900 

3 mm and 1.7 mm 7, 000 

 

Table 6.5 NO steady state concentrations: Convective flow rates obtained from CFD simulations, 

diffusive from Fick's law estimates.  All values based on Lundberg et al. (1995)145 NO 

concentration and production rate measurements. 

Ostium streamlines for the single large and double ostium configuration are plotted in Figure 

6.4, showing that the single ostium geometries have no net flow into or out of the sinus, whereas 

the double ostium geometries have a net flow through the sinus.  Computationally a typical 

post-surgical geometry has also been created with an ostial diameter of 10mm typical for a 

middle meatal antrostomy in functional endoscopic surgery. The streamlines for the new 

geometry are shown in figure 6.12. 

 

Figure 6.8 Velocity streamlines are superimposed on pressure contours in the physical model 

geometry with sinus volume 20 ml, single very large ostium with ostial diameter 10mm. Channel 

flow rate 5 L/min. Pressure scale in Pa. 47. 

 

Values of steady-state NO concentration for each geometry considered are given in Table 6.5.  

The data shown are based on measurements of NO concentration and production from 

Lundberg (1995)145, who found sinus concentrations of 9.1±3.8ppm, nasal concentrations 

1.2±0.2ppm and sinus production rate 20nmol/min.  
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 The pathological or post-surgery geometries described have demonstrated significantly 

higher transport rates and lower steady state sinus NO concentrations than the physiological 

geometries.  There is no significant difference in NO transport or sinus concentration between 

the two post-surgery geometries considered, representing middle meatal (10mm diameter 

single ostium) or inferior meatal antrostomy (double ostium). The results suggest that sinuses 

with a single ositum of 3mm can maintain steady state concentrations similar or higher than 

published data for maxillary sinuses.  In contrast, the pathological or post-surgery geometries 

described have lower steady state concentration estimates. All of the predicted sinus NO 

concentrations are above the levels found to have bacteriostatic effects (100-1400 ppb)283. The 

threshold NO concentrations for other anti-microbial effects are less clear, as the primary paper 

describing anti-viral effects284 does not determine NO concentrations. Only the pathological or 

post-surgery geometries described in this study could provide the entire NO found in the nose 

(205-455nl/min). The physiological geometries described do not allow sufficient transport 

through the ostium to supply nasal NO levels. 

Lindberg et al. (1997)300 defined an abnormally low concentration of NO for the nose as 

1.96 standard deviations below the median value, or 100 ppb, and found that nasal NO 

concentrations below this value were associated with reduced ciliary beat frequency and 

mucociliary transport rate. A similar threshold can be found for sinus NO concentration using 

mean and standard deviation values from Lundberg et al. (1995)145, giving a lower threshold of 

1652 ppb for the normal range of sinus concentrations. All the steady state NO concentrations 

predicted using NO production rates from the same Lundberg study are above this level, so the 

reductions caused by pathological or post-surgery geometries may not be significant. Important 

caveats are that the assumed NO production rate may be overestimated and placement of 

accessory ostia affects the flow dependent driving pressure differential. Consequently there is a 

possibility that the NO levels could be much reduced. 

 

6.3.3  Implications of Transport Estimates  

 

The results demonstrate a significant difference in NO transport rates and steady state 

concentration values between ostial geometries considered physiological and those which are 

pathological or post-surgery. Clinically, middle meatal antrosomies have been shown to be more 

successful than inferior meatal antrostomies301, in the surgical treatment of chronic 

rhinosinusitis, but in this example this cannot be attributed to differences in NO transport. The 

model representing an inferior meatal antrostomy in this study, has an interostial separation of 
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14mm. An increase in the interostial separation will increase the pressure differential between 

the ostium ends, resulting in an elevated flow rate through the sinus and thus increased NO 

transport. The length of the additional ostium in this model is 3.4mm based on CT data for one 

subject (due to a lack of information about inferior meatus antrostomy lengths). If one ostium 

was significantly shorter, due to passing through a thinner layer of tissue, the flow resistance 

would decrease and the sinus exchange flow would increase.  

The optimum size for a middle meatal antrostomy is determined by number of factors, 

not all of which can be addressed by experimental modelling and transport predictions.  A 

balance is required between i) minimising the transport between the sinus and nose in order to 

maintain a high sinus steady state NO concentration, and ii) allowing sufficient ventilation of the 

sinus. The final antrostomy size remaining after healing must also be sufficiently large to allow 

mucociliary transport out of the sinus while extensive scar tissue (which may lack cilia and 

impede mucous clearance) at the ostium must be avoided. Accessory ostia in the middle meatus 

are strongly associated with mucous recirculation and surgical failure302, but including them in a 

dramatically enlarged natural ostium may cause excessive ventilation. The restricted visibility 

and confined spaces for instruments during endoscopic surgery will also place limits on 

antrostomy size and shape, as will the individual patient’s anatomy47.  

In conclusion the mechanics of sinus ventilation determine NO transport. Surgical 

enlargement or creation of an additional ostium can dramatically augment ventilation and the 

effect of this can be estimated or in principle determined in vivo via imaging. Translation to NO 

concentration however depends on production rates. 

 

6.4  Effect of acoustic stimulation on sinus transport 

 

Finally we examine whether acoustic stimulation can enhance sinonasal exchange. From the 

preceding we have demonstrated breathing modes, ostial and interostial flows affect it. Recent 

experimental results linking humming to increased sinus gas exchange297,303-305 have raised 

interesting questions about how sound effects gas transport in the upper airways. Currently 

there is little understanding of the physical basis of the increase in nasal NO found during 

humming. It is thought to be due to increased transport from the sinuses. Previous studies have 

shown that aerosols excited by sound waves deposit in larger quantities in the sinuses than un-

excited aerosols306, and this has been confirmed more recently by Maniscalco et al. (2006)307 

and Moller et al.208,209. Although the sound waves used by the Moller group are not 

representative of vocal amplitude or frequency.  
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It has been demonstrated that acoustic excitation can have significant effects on sinus 

ventilation and particle transport however; the mechanisms involved are not fully understood. 

Granqvist et al. (2006)308 created an electrical-analogy model of their experimental equipment, 

including loudspeaker and cabinet, but did not attempt to model a more physiologically relevant 

geometry. Menzel et al. (2005)297 analysed the increase in transport of NO during humming but 

did not consider NO transport during normal breathing.  

 

6.4.1 Modelling and Experiments in Physical Model Geometries  

 

The resonant frequencies and Q-factor values were calculated for each of the ostial 

configurations at the three different sinus volumes in the idealised physical model geometry.  

The experiments provide validity for the computational methods which can then be extended to 

investigate further combinations. The computational and experimental results for small ostium 

configurations in the physical model geometry are shown in (Figure 6.13 pg 130), with a 

comparison of resonant frequencies for all the modelled geometries in figure 6.14 and table 

6.16. 

 

Figure 6.9 Experimental and computational results for small ostium geometries, with error bars 

shown for 10 ml sinus configuration. Figure courtesy of Dr CM Hood. 
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Figure 6.10 Comparison of measured and simulated resonant frequencies for small and large 

ostium geometries. Figure courtesy of Dr CM Hood. 

 

 

Figure 6.11Experimental acoustic response results for all physical model ostium configurations 

with 20 ml sinus. 
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Table 6.6 Computational and experimental resonant frequencies and Q-factors from the physical 

model geometries, compared with first-order Helmholtz resonant frequencies. Table courtesy of 

Dr CM Hood. 

 

All of the computationally predicted resonant frequencies lie within 10% of the 

experimental measurements, with most within 5%. Both the experimental and computational 

resonant frequencies are consistently lower than first-order Helmholtz resonator frequencies. 

This is likely to be due to the connection through the nasal cavity which is included in both the 

computations and experiments whereas, the first order Helmholtz predictions are based on a 

sinus ostium opening to the atmosphere. The computations and experiments follow the trends 

of Helmholtz resonators with resonant frequency decreasing with increasing sinus volume and 

ostial diameter.  

The peak amplitudes of the computations and experiments match well but the 

simulations tend to have higher Q-factors. These differences could be a result of simplifications 

made in the geometry for the computational code. The duct geometry was simplified to the 

length of the main channel, with reflection coefficients appropriate to the area changes at each 

end, but this may not be an accurate description of the effects of the real duct geometry 47. The 

multiple area changes between the main channel and the open end or the speaker are more 

likely to affect the magnitude and Q-factor than the resonant frequency. The effect of ostium 

geometry on the acoustic response of the sinus is shown in the experimental results for the 20 

ml sinus in figure 6.15. As predicted the physical model with both ostia open has a similar 

resonance to the single larger ostium. 

 The effect of acoustic stimulation on sinus ventilation in krypton model was 

investigated but no increase in sinus transport was observed. However this could be due to the 

rigidity of the model whereas parts of the sinus wall are this and could be excited, although if 

this is the case lower frequencies would be expected to elicit a greater response. 
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A pilot study of 2 subjects was conducted to determine if the increased in NO transport 

described when humming was related to particular vocal frequencies. Unfortunately neither of 

the subjects demonstrated any increase in nasal NO levels when humming although both had 

normal nasal NO measurements and no evidence of any nasal or sinus disease. 

6.4.2 Significance of Acoustic Resonance  

 

The acoustic resonances within the sinuses were found to be in range of human vocal 

frequencies; however, the significance of this in relation to sinus physiology is unclear. Many 

studies have demonstrated increased NO transport during humming suggesting that acoustic 

excitation 297,307 but no physical studies of this phenomenon could be found in the literature. 

Unfortunately no increase in NO transport was found in the pilot study performed but only 2 

subjects were considered. 

Menzel et al. (2005)297 modelled their in vivo experimental results of the washout of NO 

during humming with a rate constant rH, which they found to have a mean value of 0.216 s-1. If 

we consider humming to produce gas transport equal to an additional effective volume flow 

rate QH, then 

 

    
  

  
 

Equation 6.4 

where VS is the sinus volume. Re-arranging gives a mean QH value of 6.3x10−6 m3/s 47. In 

contrast, the fastest effective volume flow rate from steady convection and diffusion was found 

in this study to be 1.6x10−8 m3/s, showing that humming could increase transport by at least an 

order of magnitude.  

The experiments performed to date on humming and NO transport, have not 

determined whether the increased gas transport is frequency dependent. The human voice is 

generally not a single frequency; this could complicate in vivo investigation of the variation in 

transport with frequency.  

It is possible that geometries with a high Q-factor would have particularly fast transport 

at the resonant frequency, but less transport at other frequencies.  It is not known if the fast 

clearance of NO associated with humming is beneficial or detrimental so sinus/nasal health. 

Anecdotally a single case study has reported successfully treating sinusitis through extended 

humming 309.  
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6.5 Conclusions  

 

81mKr and γ-camera imaging has been shown to enable a quantitative assessment of effective 

volume flow rate in physical model sinuses.  The effective volume flow rates obtained 

experimentally for single and double-ostium sinuses match the computational predictions of 

matching geometries, while velocity fields follow the patterns found in simplified sinus 

geometries and topologically similar geometries.  The combined use of computational 

simulations and physical experiments provides valuable cross-checking of results.  Once 

matching has been established with a few sets of variables with results from both methods, 

there is increased confidence in results from each method alone, for example it is not always 

possible to obtain clear images with very low flow rates but computational simulations are still 

possible.  This demonstration of the use of 81mKr to assess ventilation in model sinuses is seen 

as a first step to using 81mKr to investigate sinus ventilation in vivo in a clinical setting. 

 The computational and experimental effective flow rates depend on the ostium 

geometry. Sinuses with two ostia have much faster transport than sinuses with a single ostium.  

Sinuses with a single ostium also have diffusion-dominated gas transport, whereas sinuses with 

two ostia are convection-dominated.  In the convection-dominated nature of the two-ostia flow, 

there is an increase in effective flow rate of 8% when the effect of diffusion is included in the 

computational model.  The differences in both transport mechanism and transport rate between 

single and double ostium configurations are due to a qualitative difference in flow, as a sinus 

with a single ostium acts as a reservoir of fluid attached to the nose but a sinus with two ostia 

forms an alternative flow path to the nose. Increasing the diameter or reducing the length of the 

ostia is also seen to increase sinus ventilation but not to the extent of an additional ostium 

unless the ostium is very large (e.g. a middle meatal antrostomy). 

The results suggest that the natural single-ostium sinus ventilation is remarkably slow. 

This limited ventilation may be protective for the sinus, preventing mucosal drying, maintaining 

sterility with high NO concentrations and minimising entry of pathogens. Whereas ventilation is 

necessary, excessive ventilation due to an additional ostium or very large ostium may not be 

clinically beneficial, as it could: 1) increase wash-out of nitric oxide (NO), which is excreted by 

the mucosa of the paranasal sinuses and is thought to have bacteriostatic and mucociliary 

regulating properties; 2) increase access of pathogens to the sinus, which could have compound 

effects with NO reduction; 3) cause mucosal drying, particularly if the upstream ostium is near 

the nostril and thus exposed to less well-conditioned air.  
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Rapid sinonasal gas exchange and the resulting reduction in NO levels, could arguably 

contribute to the development of rhinosinusitis. More research is needed to clarify the role of an 

additional ostium in sinonasal exchange processes and the effects of changing NO 

concentrations on sinonasal pathology.   

 81mKr has recently been used to image sinuses in vivo by Möller et al. 208 but they have 

not made a quantitative assessment of sinus ventilation under normal breathing conditions.  

This study represents the first step in quantitatively analysing sinus ventilation. The use of 

krypton imaging for quantitative assessment is successfully demonstrated and corroborated by 

comparison with computational modelling. Further work should look at the changes of sinus 

ventilation with variation of flow rate and sinus volume - expanding the verification of 

computations and testing the flexibility of the experimental method.  

The transport of NO between the maxillary sinuses and the nasal cavity has been 

quantified for a range of physiological, pathological and post-surgical ostium geometries.  The 

pathological and post-surgical geometries show increased NO transport and reduced steady-

state sinus NO concentration compared to physiological geometries.  Only the pathological 

geometries could supply the levels of NO output found in the nose.  The acoustic resonances of 

the sinus model were investigated to determine if the sinus could be acting as a Helmholtz 

resonator. Interestingly the resonances found were all within vocal frequencies however the 

significance of this in relation to physiological processes remains unknown. 
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Chapter 7 

Conclusions and Further Work 
 

 

Summary and key findings 
 

The aim of this thesis is to improve our current understanding of airflow and transport in the 

upper respiratory tract.  Major deficiencies in our understanding concern the variability of 

cavity anatomy, the temporal dynamics of inhalation and the mechanics of sinus ventilation and 

transport. By performing in-vitro and in-vivo experiments the mucosal changes in the nasal 

geometry, the time dependent profile of inspiration and sinonasal transport mechanisms have 

been systematically investigated. The work combined measurement techniques from different 

fields, including: 3T MRI and image processing (radiology); hot-wire anemometry (aeronautics); 

acoustic rhinometry (ENT surgery) γ-scintigraphy (nuclear medicine), in a manner that is 

believed to be hitherto unique. 

Prior to summarising the findings with regard to sinonasal airflow and transport the 

main novelties and improvements in experimental techniques are briefly reviewed as these may 

benefit future studies.  

Firstly, segmentation of high resolution 3T MRI scans allowed the definition of 

anatomically realistic nasal surface geometries of seven healthy subjects, both pre- and post-

decongestion. Localised changes in the nasal mucosa were shown to be well-resolved by the 

imaging modality, enabling variations in whole nasal cavity morphology to be quantified in a 

non-invasive manner.  
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Secondly, nasal inspiratory flow profiles were investigated in high temporal detail using 

a novel experimental methodology. It was shown that hot-wire anemometry enables 

simultaneous measurement of the bilateral nasal flow profile at a far higher frequency (5000Hz) 

than previously accomplished. Hot-wire inspiratory profile measurements were acquired from 

a cohort of fourteen subjects and complemented by data acquired using clinically available tools 

(acoustic rhinometry, SNOT-22, VAS and PNIF). Unlike MR imaging, the measurement 

necessitates a small compromise in geometric fidelity, limited to the external nose. To limit the 

impact and ensure the fidelity of the hot-wire experiments and acoustic rhinometry, the 

connection between the measuring tube and the nose was carefully considered to avoid 

splinting the external nares. Anatomical nasal adaptors and a rim of gel applied to the tip of the 

nasal adaptors were used to improve the connection, limit deformation of the nasal vestibule 

and increase the reproducibility of measurements whilst also retaining the normal dynamic 

resistance characteristics of the external nose. Apart from the most vigorous sniffs, it was 

concluded that the measurement technique adopted did not significantly affect the inspiratory 

profile.  

Thirdly, 81mKr and γ-scintigraphy has been shown to provide a quantitative assessment 

of effective volume flow rate within a physical model of the human sinuses. The technique offers 

a number of advantages for more widespread use in the clinical setting. 81mKr is a γ emitter 

with a short half-life which is readily available in hospitals as it is used clinically in ventilation-

perfusion scanning of the lungs. In contrast to other radionuclides krypton is chemically inert 

and does not interact with the materials of a physical model or with biological tissues. Having 

such a short half-life means the counts in the experimental model quickly reduce to typical 

background levels between experimental runs and minimal radiation protection is required. 

However, this limits dynamic imaging and the experiment required that ventilation rates be 

assessed from the count ratios determined from accumulated images.  

Key findings  

 

Chapter 4 

The nasal geometry and the effects of decongestion on nasal airway morphology were obtained 

non-invasively in-vivo in greater detail than previously, and at higher spatial resolution. High 

resolution 3T MRI was found to be an excellent modality to study mucosal changes within the 

nose as it images the air mucosa interface directly. Regional changes have been quantified 

throughout the nasal cavity and complemented by anterior acoustic rhinometry. In summary 

the conclusions drawn were as follows: 
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(1) Decongestion was found to have greatest effect on the turbinate region where changes 

of > 300% in the nasal cross sectional area are observed.  

(2) Measurements of nasal cross-sectional area by MRI and by acoustic rhinometry 

displayed a good correlation anteriorly; however the correlation between 

measurements was markedly reduced beyond the osteomeatal complex.  

(3) Decongestion was observed to have a large effect on nasal volume but only a limited 

effect on the surface area. Surface area to volume ratios are hence significantly 

decreased with decongestion. These variations in SAVR have implications for the 

transport of inhaled substances and the processes of heat and water exchange at the 

nasal mucosal surface.  

(4) The ratio of perimeter to cross-sectional area at the head of the middle turbinate 

provided a good approximation to the SAVR when decongested however this did not 

apply in the pre decongested state.  

Chapter 5 

Nasal inspiratory flow patterns at rest, in sniffing and in smelling within a cohort of healthy 

volunteers have been characterised. Furthermore, both pleasant and unpleasant odours and 

both pre and post decongested nasal airways were considered. Bilateral inspiratory nasal flow 

profiles were recorded simultaneously in high definition with hotwire anemometry. It is 

concluded that significant differences exist between normal inspiration and sniffing. The 

analysis indicated that the inspiratory profile could be broken down into three constituent 

phases, namely: 1) flow initiation the phase in which flow rate rapidly increases; 2) a plateau 

region in which a high flow rate is sustained, representative also of the vigour of inspiration; 

and 3) flow decay where inspiratory flow rate decreases up to the end of inspiration. A 

summary of the specific findings is as follows. 

(1)  The initiation phase can be characterised by determining the time required for the flow 

rate to increase to 150ml.s-1. Intense acceleration was observed in this phase. An initial 

rapid ramp up, typically of order ~120 ms, was found in inspiration at rest and became 

significantly shorter in sniffing (~60 ms), though with rates just below 20 ms in the 

fastest sniffs. This intense acceleration is likely to induce strong starting vortex type 

flow, which could dramatically enhance mixing and significantly impact on particle 

deposition patterns within the nose, odorant perception and heat and water exchange 

processes.  
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(2) Typical plateau phase flow rates were found to be of order 350 ml.s-1 in inspiration at 

rest and significantly higher in sniffing (of order 600 ml.s-1). High flow rates may be 

maintained in sniffing with the strongest sniffs producing sustained flow rates in excess 

of 1 L.s-1 (per nostril). The mode of sniffing investigated in these studies is generally 

more representative of gentle to moderate sniffing and does not represent the peak 

nasal inspiratory flow measurements achieved with maximal exertion.  

These new results have significant implications for the understanding of nasal airflow 

mechanics. Nearly all studies investigating transport and exchange processes in the nasal 

airways (e.g. aerosol deposition) model nasal inspiratory flow as a quasi-steady process, or at 

best have used grossly simplified approximations (e.g., sinusoidal flow rate variation). However, 

these results reveal that the initiation phase represents a rapid acceleration of the flow, and 

moreover that very high flow rates may be sustained in sniffing. It is well recognised that rapid 

accelerations or decelerations can destabilise laminar flows leading to an alteration from a 

laminar to a transitional (i.e. incompletely turbulent) state with consequential alterations to the 

transport of inhaled substances and the processes of heat and water exchange. To accurately 

predict these accumulative processes within the nasal airways the transient nature of the 

inspiratory profile should be considered. For instance, the temporal dynamics of the sniff are 

believed to be central to odorant perception, by affecting odorant intensity and component 

discrimination. 

Chapter 6  

(1) The use of krypton imaging for quantitative assessment of maxillary sinus ventilation 

has been successfully demonstrated and corroborated by comparison with 

computational modelling.  

(2) The effective flow rates between the nasal cavity and maxillary sinus were found to 

depend on the ostial geometry. Sinus ventilation through a single natural ostium is 

remarkably slow. In single ostium geometries diffusion is the dominant transport 

mechanism as indicated by the Péclet number (Pe O(<1)). In the smallest diameter ostia 

Fick’s Law provides a good first order estimate of diffusive exchange times. However as 

the diameter of the ostium increases so does the convective influence on transport. 

Whilst increasing ostial cross sectional area results in a proportional increase in 

diffusive transport rates, the increases in convective transport are more complex due to 

changes in flow structures. 
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 Sinuses with two ostia, representative of a pathological accessory ostium or post-

surgical inferior meatal antrostomy, provide considerably faster transport than sinuses 

with a single ostium as gas transport becomes convection dominated. The differences in 

both the transport mechanism and transport rate, between single and double ostium 

configurations, are due to a qualitative difference in flow.  A sinus with a single ostium 

acts as a reservoir of fluid attached to the nose but a sinus with two ostia forms an 

alternative flow path to the nose. These results are in close agreement with the 

computational findings 47 and are contrary to much of the published otolaryngology 

literature in which Proetz’s conclusions that an accessory ostia would not increase sinus 

ventilation are cited out of their original context (i.e. unrepresentative of normal 

breathing).  

This study has potentially significant implications for the understanding of sinus ventilation and 

pathology.  

It is hypothesised that the remarkably slow ventilation seen in the case of a natural 

single ostium may be protective for the sinus, preventing mucosal drying, maintaining sterility 

with high NO concentrations and minimising entry of pathogens. Mucociliary transport is 

essential in maintaining healthy sinuses and although previous work has shown it has no effect 

on convective or diffusive exchange times, mucus plugging would prevent gas transport and this 

has not been investigated in this study. Furthermore, the presence of additional ostia not only 

increases sinus ventilation but is also associated with disrupted mucociliary transport 45, which 

could prevent the removal of pathogens from the sinus.  

Ventilation is vital for the healthy function of the maxillary sinus, however, there needs 

to be a fine balance as both insufficient and excessive ventilation may be clinically detrimental. 

If the slow natural ventilation of the sinus is reduced there may be a deleterious effect on 

mucociliary transport as a reduction in oxygen levels within the sinus will inhibit NO 

production, leading to a reduced concentration of NO in the sinus and a decreased ciliary beat 

frequency 290. Similarly excessive ventilation due to an additional ostium or very large ostium 

may not be clinically beneficial, as it could: 1) increase wash-out of nitric oxide (NO), which is 

excreted by the mucosa of the paranasal sinuses; 2) increase access of pathogens to the sinus, 

which could have compound effects with NO reduction; and 3) cause mucosal drying, 

particularly if the upstream ostium is near the nostril and thus exposed to less well-conditioned 

air. Rapid sinonasal gas exchange and the resulting reduction in NO levels, could arguably 

contribute to the development of rhinosinusitis. More research is needed to clarify the role of an 
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additional ostium in sinonasal exchange processes and the effects of changing NO 

concentrations on sinonasal pathology.  

The findings of this research have potential implications when determining the optimal 

size of surgical middle meatal antrostomies during Functional Endoscopic Sinus Surgery (FESS). 

The perfect antrostomy must be large enough to prevent scarring down and closure post 

operatively but must also permit mucociliary clearance and adequate gas transport. Conversely, 

it must not be so large as to reduce sinus NO concentrations and increase pathogen entry into 

the sinus. Hood et al. showed that a single ostium with a diameter between 3-6mm (considered 

physiological) had normal steady state NO concentrations whereas ostial diameters >10mm 

(representative of post-surgical antrostomies) were associated with reduced NO 

concentrations. Creating antrostomies within these narrow margins would be technically 

demanding but could potentially improve surgical outcomes.  

Previous work has linked humming to increased sinus ventilation, with many 

experiments showing a subsequent increased NO transport. To date the effect of acoustics on 

gas transport in the upper respiratory tract has largely been ignored. Therefore the acoustic 

resonances of the sinus model were investigated to determine if the sinus could be acting as a 

Helmholtz resonator. Interestingly the resonances found were all within vocal frequencies 

however the significance of this in relation to physiological processes remains unknown. 

 

Recommendations for Future Work 

 

Current clinical technology limits the acquisition of detailed patterns of sinonasal airflow and 

transport in-vivo. Hence, modelling studies are required to further our understanding of these 

processes. It is therefore important to ensure our modelling processes are based on detailed 

clinical measurements that can ensure the realism of the results obtained. The dynamic changes 

in nasal morphology and time varying inspiratory flow rate should be utilised to enhance future 

models of the sinonasal airways, and hence, improve the understanding of airflow dynamics and 

transport mechanisms. Future efforts should focus on obtaining detailed clinical measures in 

order to better define normal and pathological populations.  

The investigation of both nasal airway geometry changes with decongestion and the 

evolution of the time dependent volume flow rate waveform in inspiration has concentrated on 

small numbers of healthy subjects and therefore may not be applicable to pathological cases. 

Once parameters have been determined for the normal range, comparison with pathological 
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cases is essential.  This would permit investigations such as determining whether imbalances in 

the localised burden of transport and exchange may be a manifestation or feature of disease 

processes. Furthermore, certain parameters could potentially be used as diagnostic criteria in 

the future. 

The characterisation of modes of variation in normal nasal anatomy is highly desirable 

but requires the segmentation of a large data set and improved geometric analysis techniques. It 

has been shown that 3T MR imaging provides a means to acquire such measurements, but 

further progress requires a large increase in the number of available image datasets. This could 

be accomplished either by new studies or by sharing retrospective data.  

Use of the hot wire technique could in principle be migrated to the clinic as a diagnostic 

tool. Some work would be needed to render the instrumentation more robust and portable.  

An ideal model to investigate sinonasal airflow and transport would incorporate the 

following: consideration of the anatomy during different phases of congestion, realistic 

inspiratory and expiratory flow dynamics (rather than quasi-steady assumptions), 

incorporation of a model of the mucociliary blanket (not only for heat and water exchange, but 

for airborne solute uptake), and finally dynamic airway changes. Air liquid interface cell culture 

provides a promising technique to bridge model studies and the in-vivo milieu. To render the 

culture conditions more lifelike, appropriate cyclical airflow should be applied. It is conceivable 

that rapid prototype techniques, suitably adapted, might even be used to form a more realistic 

framework. This would offer considerable benefits for pharmacological and toxicological 

studies. 

Gamma scintigraphy of krypton sinus ventilation has shown its potential to accurately 

determine sinus flow rates in vitro. This work now requires translation to in-vivo, in order to 

determine its potential as a clinical tool and approval to undertake further studies such be 

sought. 

It has been hypothesised that excessive sinus ventilation may adversely affect sinus 

health via NO depletion. However, very little is known about sinus NO concentration in vivo, or 

the effects of NO concentration on sinus health. More research is urgently needed to establish 

the normal range of NO concentration, the rate of NO production, and hence the ability of the 

sinus to maintain appropriate levels during a variety of ventilatory regimes.  This data would 

clarify the biological impact of an additional ostium in sinonasal exchange processes and allow 

the effects of changing NO concentrations to be related to sinonasal pathology.  Indeed this 

would provide a rationale to improve antrostomy procedures. 
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Finally it would be interesting to further investigate acoustic resonance effects on 

transport within the upper respiratory tract. 

It is hoped that the work presented in this thesis provides a foundation and direction for 

future studies on sinonasal airflow and transport. 
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Appendices 
 

Protocol for Acoustic Rhinometry 

 

The unit must be calibrated each time it is  switched on. 

Turn the unit on it will be in calibration mode with the word calibrate highlighted. 

Place calibration tube firmly on wave tube. 

Press enter on the keyboard to begin calibration. You will hear clicking noises as the unit is 

calibrated. 

The word Acquire is highlighted when calibration is finished. 

Remove the calibration tube. 

Prepare for a test 

Select Patient 

Enter all patient data  

Select Acquire 

Sit the patient in a straight backed chair facing straight ahead and remove glasses 

Always place the chair in a consistent location (give the subject an X to focus on). 

Explain the test and run through the motions with the patient so they are familiar with the 

sound and breathing techniques and the feel of the tube against their nose. 

The patient should rest and acclimatize first for 30mins before measurement. 

Perform Test 

Determine nose tip size (2 available standard or small). 

Place nose tip on wave tube. 

Put gel on the edge of the nose tip avoiding the lumen. 

Ensure the downward slant of the nose tip is towards septum. 

Gently place the nose tip against the subject’s nostril. 

Ensure no distortion of the nostril by the tube and no gel in tip. 

Hold the wave tube on the same plane as the bridge of the subject’s nose and fix position with 

clamp. 

Tell the patient to pause in breathing on the count of 3  

Press start/stop on the wave tube  

Collect data until you hear an audible bleep or see red dot on right hand corner of the screen 

(about 4 seconds) and press start /stop again. The test result is shown on the monitor. 

Rotate the tip 180 to do the other nostril. 
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MRI Study Protocol 

1. Anterior rhinoscopy and nasoendoscopy to ensure normal anatomy 

2. 30mins to acclimatise at rest in test room 

3. SNOT 22 questionnaire and visual analogue score whilst acclimatising. 

4. A pre decongestant Acoustic Rhinometry reading is taken (as per AR protocol) 

5. First MRI scan taken supine with head and neck coil (head in fixed position) 

6. While the subject is lying on the MRI table, the decongestant (otrivine) is 

sprayed three times into each nasal cavity until the subject tasted or noticed 

traces of the spray in the throat. (The atomizer delivers a mean volume of 0.3 ml 

of decongestant per spray active ingredient xylometazoline hydrocholride 

0.1%.) 1 Spray repeated after 5 minutes. 

7. Allow 20 minutes for the decongestant to take effect. Take care not to move the 

subject during this period.  

8. The post-decongestant MRI scans are then performed without changing the 

window contrast or other settings.  

9. Post decongestant AR measurements are taken after the MRI scan.  

10. The same positioning and alignment coordinates that were used for the pre 

decongestant readings are used for the post decongestant measurements. 
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Krypton Study Protocol 

Date       

Time       

Room Temperature 

Check ostial configuration    

Check sinus size     

Ensure model lid tightly screwed down  

Place model in scanner ensure horizontal  

Ensure tight fit between cameras   

Connect medical air     

Connect Krypton     

Connect flow meter     

Check flow rates     

Start Medical Air     

Start gamma camera     

Start Krypton       

Image every 2 seconds for 5 or 10 mins  

Stop Krypton      

Reconfigure model and repeat    
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Volunteer information sheet: Measuring nasal function. 

 This study invites you to help us improve our clinical assessment of patients' noses and improve our 

understanding of healthy nasal physiology.  

 

 The way we do this is to look at and analyse images of the inside of your nose and take measurements 

of your nose using an acoustic rhinometer, rhinomanometer, nasal inspiratory peak flow meter and 

hot wire anemometer: 

 Acoustic rhinometry entails placing a small tube on the end of each nostril while a computer 

measures the internal dimensions of your nose using sound waves. It doesn't hurt and takes a 

couple of minutes to do. Then we will spray your nose with decongestant (the same spray used to 

examine your nose in the ENT outpatient clinic) and will repeat the measurement. While the 

spray is working we will ask you to fill out a simple questionnaire about your nasal symptoms 

(SNOT-22). 

 Rhinomanometry entails placing a mask over your face with tube on the end of your nostril. A 

computer measures the pressure changes in your nose while you breathe. 

 Nasal Inspiratory Peak Flow entails placing a mask over your face and you taking 3 sharp breaths 

in through your nose. A small dial indicates the maximum flow rate. 

 Hot wire anemometry entails breathing through a tube placed against each nostril. The tube 

contains a tiny probe linked to a computer which records the flow rates. 

 MRI Scan entails lying still in a scanner for 5 minutes the scanner is noisy and some people find it 

claustrophobic. 

 

 You have been selected for this study because you are a normal volunteer. 

 In terms of your time, we are asking you to come to the outpatient department on 1 occasion to 

undergo the above measurements and to have an MRI scan of your nose before and after a 

decongestant is administered. To perform hot wire anemometry an additional visit to Imperial College 

London will be required. One of the doctors will telephone you to confirm the dates of these and 

where to come.  

 Your data, when gathered will be coded and stored on a database  - nobody will be able to recognise 

your nose from the data we have! 

 You are not obliged to participate in this study, but obviously any participation on your part and 

information we can gather will be most gratefully received.  

 If you decide to take part you will be given this information sheet to keep and asked to sign a consent 

form. If you decide to take part you are still free to withdraw at any time and without giving a reason. 

 Imperial College London holds insurance policies which apply to this study.  If you experience serious 

and enduring harm or injury as a result of taking part in this study, you may be eligible to claim 

compensation without having to prove that Imperial College is at fault.  This does not affect your legal 

rights to seek compensation. 

 If you are harmed due to someone’s negligence, then you may have grounds for a legal action.  

Regardless of this, if you wish to complain, or have any concerns about any aspect of the way you 

have been treated during the course of this study then you should immediately inform the 

Investigator Miss Catherine Rennie. The normal National Health Service complaints mechanisms are 

also available to you.  If you are still not satisfied with the response, you may contact the Imperial 

AHSC Joint Research Office.   

 

 

Thank you for your time. 
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Volunteer Consent Form 

Study Protocol Number: 2 

Full Title of Project: Investigation of sinonasal airflow and transport 

Name of Principal Investigator: Mr N S Tolley 

Please initial box 

1. I confirm that I have read and understand the subject information sheet for the above study 
and have had the opportunity to ask questions which have been answered fully. 
 
 
2. I understand that my participation is voluntary and I am free to withdraw at any time, 
without giving any reason, without my medical care or legal rights being affected. 
 
 
3. The compensation arrangements have been discussed with me.  
 
 
4. I agree to take part in the above study.  
 
 
________________________ ________________ ________________ 

Name of Subject   Signature   Date 

 

_________________________ ________________ ________________ 

Name of Person taking consent  Signature   Date 

(if different from Principal Investigator) 

 

_______________________ ________________ ________________ 

Principal Investigator   Signature   Date 

1 copy for subject; 1 copy for Principal Investigator; 1copy to be kept with hospital notes 
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MRI scanner settings 

CUBE 3D TSC with variable flip angle 

Slice thickness 1.2mm  

T2 weighted  

Repetition time 2500ms 

Echo time 89.248ms 

 

CT scanning parameters  
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Correcting for the effects of entry flow 

 

When the value of Re for the ostium flow is above 30, entry flow effects will be significant and 

this must be taken into account when estimating ostium flow rate. An empirical correction 

developed by Loudon and McCulloh (1999) was used to estimate the effects of entry flow in the 

ostia on the flow rate through a double ostium sinus. 

 

 

Convergence of Equation 3.12 applied over ten iterations. The Poiseuille and CFD flow rates are 

also shown. Figure provided courtesy of Dr C.M. Hood 47. 
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Determining an average waveform for a single subject 

 

 

 

The figures above demonstrate the steps taken in determining an average waveform for a single 

subject going from the raw data top left to final waveform bottom right. 
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Gamma scintigraphy image processing detail 

Closer detail of the change in total count number of ROI 3 and the difference between ROI 2 and 4 

(identified in Figure 3.13) associated with moving the ROI to the left or right on the image (figure 3.13), 

corresponding to the left and right of the vertical axis. 

 

 

Determining the optimum position of the ROI in the gamma scintigraphy images. (Compare with 

figure 3.14 pg 69)  
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Computational model and solver settings 

 

• Double Precision: Selected for increased numerical accuracy in handling very small variations 

of pressure and other flow variables, and also its suitability for geometries with wide length 

scale variations. It means that each value is stored as 64 bits rather than the default 32 bits, 

increasing the overall memory requirement. 

• Higher-order Discretisations: Third-order spatial discretisation and second order implicit 

temporal discretisation were chosen to improve the accuracy and stability of the numerical 

solutions. 

• Pressure-Based Solver: The nasal cavity and sinuses have very low flow velocities, so 

compressibility effects are expected to be negligible. Hence the pressure-based rather than 

density-based solver was chosen for sinus ventilation modelling. 

• Laminar: The Reynolds’ number (Re) in the channel at the standard flow rate is approximately 

250, while the maximum Re in an accessory ostium with through-flow is 20. These values of Re 

are too high to allow the assumption of inertia-free Stokes’ flow, but low enough to indicate that 

the flow will be fully laminar, with no transition to turbulence. 

• Steady flow: Although breathing is a bi-directional process, during quiet breathing the time for 

flow reversal and the energy available for mixing is unlikely to be significant. The experimental 

findings of identical pressure changes in the sinus and nose and very small volume changes due 

to Boyle’s law indicate that the role of flow reversal in sinus ventilation is likely to be minor, so 

all the models were run with steady flow along the channel. 

• Residuals: The errors in the values of each primary flow variable (velocity, continuity 

[conservation of mass] and species concentration when relevant) which remained at the end of 

each iteration, were monitored for convergence. These errors are collectively known as 

residuals. Convergence was considered to have occurred when the residuals had dropped 

significantly and then maintained 

a low level, rather than by setting an arbitrary convergence threshold. 

 

The physical model simulations were run with a uniform velocity at the inlet, based on 

the volume flow rate used in the experiments. Applying a more complex velocity profile at the 

inlet would have no influence on the ostial flow, as the channel is long enough for the flow to 

develop a classic parabolic profile before approaching the ostia, regardless of the inlet velocity 

profile. The channel flow profile 1 cm upstream from the large ostium and a parabolic profile 

are plotted in the figure below for comparison. The very close matching shows that the inlet 

velocity profile and the details of the ends of the model geometry do not affect the flow past the 
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ostia and thus the ostium gas transport, justifying the simplification of the geometry in order to 

reduce computational expense47. 

 

 

Velocity profile in the centre of the physical model channel, 1 cm upstream of large ostium, from 

CFD simulation (squares) and as predicted by Poiseuille flow (line). Figure provided courtesy of 

Dr C.M. Hood 47. 

 

 


